]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/dcache.c
fs: fix kernel-doc for dcache::d_validate
[mirror_ubuntu-artful-kernel.git] / fs / dcache.c
CommitLineData
1da177e4
LT
1/*
2 * fs/dcache.c
3 *
4 * Complete reimplementation
5 * (C) 1997 Thomas Schoebel-Theuer,
6 * with heavy changes by Linus Torvalds
7 */
8
9/*
10 * Notes on the allocation strategy:
11 *
12 * The dcache is a master of the icache - whenever a dcache entry
13 * exists, the inode will always exist. "iput()" is done either when
14 * the dcache entry is deleted or garbage collected.
15 */
16
1da177e4
LT
17#include <linux/syscalls.h>
18#include <linux/string.h>
19#include <linux/mm.h>
20#include <linux/fs.h>
7a91bf7f 21#include <linux/fsnotify.h>
1da177e4
LT
22#include <linux/slab.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/hash.h>
25#include <linux/cache.h>
26#include <linux/module.h>
27#include <linux/mount.h>
28#include <linux/file.h>
29#include <asm/uaccess.h>
30#include <linux/security.h>
31#include <linux/seqlock.h>
32#include <linux/swap.h>
33#include <linux/bootmem.h>
5ad4e53b 34#include <linux/fs_struct.h>
613afbf8 35#include <linux/hardirq.h>
ceb5bdc2
NP
36#include <linux/bit_spinlock.h>
37#include <linux/rculist_bl.h>
07f3f05c 38#include "internal.h"
1da177e4 39
789680d1
NP
40/*
41 * Usage:
873feea0
NP
42 * dcache->d_inode->i_lock protects:
43 * - i_dentry, d_alias, d_inode of aliases
ceb5bdc2
NP
44 * dcache_hash_bucket lock protects:
45 * - the dcache hash table
46 * s_anon bl list spinlock protects:
47 * - the s_anon list (see __d_drop)
23044507
NP
48 * dcache_lru_lock protects:
49 * - the dcache lru lists and counters
50 * d_lock protects:
51 * - d_flags
52 * - d_name
53 * - d_lru
b7ab39f6 54 * - d_count
da502956 55 * - d_unhashed()
2fd6b7f5
NP
56 * - d_parent and d_subdirs
57 * - childrens' d_child and d_parent
b23fb0a6 58 * - d_alias, d_inode
789680d1
NP
59 *
60 * Ordering:
873feea0 61 * dentry->d_inode->i_lock
b5c84bf6
NP
62 * dentry->d_lock
63 * dcache_lru_lock
ceb5bdc2
NP
64 * dcache_hash_bucket lock
65 * s_anon lock
789680d1 66 *
da502956
NP
67 * If there is an ancestor relationship:
68 * dentry->d_parent->...->d_parent->d_lock
69 * ...
70 * dentry->d_parent->d_lock
71 * dentry->d_lock
72 *
73 * If no ancestor relationship:
789680d1
NP
74 * if (dentry1 < dentry2)
75 * dentry1->d_lock
76 * dentry2->d_lock
77 */
fa3536cc 78int sysctl_vfs_cache_pressure __read_mostly = 100;
1da177e4
LT
79EXPORT_SYMBOL_GPL(sysctl_vfs_cache_pressure);
80
23044507 81static __cacheline_aligned_in_smp DEFINE_SPINLOCK(dcache_lru_lock);
74c3cbe3 82__cacheline_aligned_in_smp DEFINE_SEQLOCK(rename_lock);
1da177e4 83
949854d0 84EXPORT_SYMBOL(rename_lock);
1da177e4 85
e18b890b 86static struct kmem_cache *dentry_cache __read_mostly;
1da177e4 87
1da177e4
LT
88/*
89 * This is the single most critical data structure when it comes
90 * to the dcache: the hashtable for lookups. Somebody should try
91 * to make this good - I've just made it work.
92 *
93 * This hash-function tries to avoid losing too many bits of hash
94 * information, yet avoid using a prime hash-size or similar.
95 */
96#define D_HASHBITS d_hash_shift
97#define D_HASHMASK d_hash_mask
98
fa3536cc
ED
99static unsigned int d_hash_mask __read_mostly;
100static unsigned int d_hash_shift __read_mostly;
ceb5bdc2
NP
101
102struct dcache_hash_bucket {
103 struct hlist_bl_head head;
104};
105static struct dcache_hash_bucket *dentry_hashtable __read_mostly;
106
107static inline struct dcache_hash_bucket *d_hash(struct dentry *parent,
108 unsigned long hash)
109{
110 hash += ((unsigned long) parent ^ GOLDEN_RATIO_PRIME) / L1_CACHE_BYTES;
111 hash = hash ^ ((hash ^ GOLDEN_RATIO_PRIME) >> D_HASHBITS);
112 return dentry_hashtable + (hash & D_HASHMASK);
113}
114
115static inline void spin_lock_bucket(struct dcache_hash_bucket *b)
116{
117 bit_spin_lock(0, (unsigned long *)&b->head.first);
118}
119
120static inline void spin_unlock_bucket(struct dcache_hash_bucket *b)
121{
122 __bit_spin_unlock(0, (unsigned long *)&b->head.first);
123}
1da177e4
LT
124
125/* Statistics gathering. */
126struct dentry_stat_t dentry_stat = {
127 .age_limit = 45,
128};
129
3e880fb5 130static DEFINE_PER_CPU(unsigned int, nr_dentry);
312d3ca8
CH
131
132#if defined(CONFIG_SYSCTL) && defined(CONFIG_PROC_FS)
3e880fb5
NP
133static int get_nr_dentry(void)
134{
135 int i;
136 int sum = 0;
137 for_each_possible_cpu(i)
138 sum += per_cpu(nr_dentry, i);
139 return sum < 0 ? 0 : sum;
140}
141
312d3ca8
CH
142int proc_nr_dentry(ctl_table *table, int write, void __user *buffer,
143 size_t *lenp, loff_t *ppos)
144{
3e880fb5 145 dentry_stat.nr_dentry = get_nr_dentry();
312d3ca8
CH
146 return proc_dointvec(table, write, buffer, lenp, ppos);
147}
148#endif
149
9c82ab9c 150static void __d_free(struct rcu_head *head)
1da177e4 151{
9c82ab9c
CH
152 struct dentry *dentry = container_of(head, struct dentry, d_u.d_rcu);
153
fd217f4d 154 WARN_ON(!list_empty(&dentry->d_alias));
1da177e4
LT
155 if (dname_external(dentry))
156 kfree(dentry->d_name.name);
157 kmem_cache_free(dentry_cache, dentry);
158}
159
160/*
b5c84bf6 161 * no locks, please.
1da177e4
LT
162 */
163static void d_free(struct dentry *dentry)
164{
b7ab39f6 165 BUG_ON(dentry->d_count);
3e880fb5 166 this_cpu_dec(nr_dentry);
1da177e4
LT
167 if (dentry->d_op && dentry->d_op->d_release)
168 dentry->d_op->d_release(dentry);
312d3ca8 169
b3423415 170 /* if dentry was never inserted into hash, immediate free is OK */
ceb5bdc2 171 if (hlist_bl_unhashed(&dentry->d_hash))
9c82ab9c 172 __d_free(&dentry->d_u.d_rcu);
b3423415 173 else
9c82ab9c 174 call_rcu(&dentry->d_u.d_rcu, __d_free);
1da177e4
LT
175}
176
31e6b01f
NP
177/**
178 * dentry_rcuwalk_barrier - invalidate in-progress rcu-walk lookups
179 * After this call, in-progress rcu-walk path lookup will fail. This
180 * should be called after unhashing, and after changing d_inode (if
181 * the dentry has not already been unhashed).
182 */
183static inline void dentry_rcuwalk_barrier(struct dentry *dentry)
184{
185 assert_spin_locked(&dentry->d_lock);
186 /* Go through a barrier */
187 write_seqcount_barrier(&dentry->d_seq);
188}
189
1da177e4
LT
190/*
191 * Release the dentry's inode, using the filesystem
31e6b01f
NP
192 * d_iput() operation if defined. Dentry has no refcount
193 * and is unhashed.
1da177e4 194 */
858119e1 195static void dentry_iput(struct dentry * dentry)
31f3e0b3 196 __releases(dentry->d_lock)
873feea0 197 __releases(dentry->d_inode->i_lock)
1da177e4
LT
198{
199 struct inode *inode = dentry->d_inode;
200 if (inode) {
201 dentry->d_inode = NULL;
202 list_del_init(&dentry->d_alias);
203 spin_unlock(&dentry->d_lock);
873feea0 204 spin_unlock(&inode->i_lock);
f805fbda
LT
205 if (!inode->i_nlink)
206 fsnotify_inoderemove(inode);
1da177e4
LT
207 if (dentry->d_op && dentry->d_op->d_iput)
208 dentry->d_op->d_iput(dentry, inode);
209 else
210 iput(inode);
211 } else {
212 spin_unlock(&dentry->d_lock);
1da177e4
LT
213 }
214}
215
31e6b01f
NP
216/*
217 * Release the dentry's inode, using the filesystem
218 * d_iput() operation if defined. dentry remains in-use.
219 */
220static void dentry_unlink_inode(struct dentry * dentry)
221 __releases(dentry->d_lock)
873feea0 222 __releases(dentry->d_inode->i_lock)
31e6b01f
NP
223{
224 struct inode *inode = dentry->d_inode;
225 dentry->d_inode = NULL;
226 list_del_init(&dentry->d_alias);
227 dentry_rcuwalk_barrier(dentry);
228 spin_unlock(&dentry->d_lock);
873feea0 229 spin_unlock(&inode->i_lock);
31e6b01f
NP
230 if (!inode->i_nlink)
231 fsnotify_inoderemove(inode);
232 if (dentry->d_op && dentry->d_op->d_iput)
233 dentry->d_op->d_iput(dentry, inode);
234 else
235 iput(inode);
236}
237
da3bbdd4 238/*
23044507 239 * dentry_lru_(add|del|move_tail) must be called with d_lock held.
da3bbdd4
KM
240 */
241static void dentry_lru_add(struct dentry *dentry)
242{
a4633357 243 if (list_empty(&dentry->d_lru)) {
23044507 244 spin_lock(&dcache_lru_lock);
a4633357
CH
245 list_add(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
246 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 247 dentry_stat.nr_unused++;
23044507 248 spin_unlock(&dcache_lru_lock);
a4633357 249 }
da3bbdd4
KM
250}
251
23044507
NP
252static void __dentry_lru_del(struct dentry *dentry)
253{
254 list_del_init(&dentry->d_lru);
255 dentry->d_sb->s_nr_dentry_unused--;
256 dentry_stat.nr_unused--;
257}
258
da3bbdd4
KM
259static void dentry_lru_del(struct dentry *dentry)
260{
261 if (!list_empty(&dentry->d_lru)) {
23044507
NP
262 spin_lock(&dcache_lru_lock);
263 __dentry_lru_del(dentry);
264 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
265 }
266}
267
a4633357 268static void dentry_lru_move_tail(struct dentry *dentry)
da3bbdd4 269{
23044507 270 spin_lock(&dcache_lru_lock);
a4633357
CH
271 if (list_empty(&dentry->d_lru)) {
272 list_add_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
273 dentry->d_sb->s_nr_dentry_unused++;
86c8749e 274 dentry_stat.nr_unused++;
a4633357
CH
275 } else {
276 list_move_tail(&dentry->d_lru, &dentry->d_sb->s_dentry_lru);
da3bbdd4 277 }
23044507 278 spin_unlock(&dcache_lru_lock);
da3bbdd4
KM
279}
280
d52b9086
MS
281/**
282 * d_kill - kill dentry and return parent
283 * @dentry: dentry to kill
284 *
31f3e0b3 285 * The dentry must already be unhashed and removed from the LRU.
d52b9086
MS
286 *
287 * If this is the root of the dentry tree, return NULL.
23044507 288 *
b5c84bf6
NP
289 * dentry->d_lock and parent->d_lock must be held by caller, and are dropped by
290 * d_kill.
d52b9086 291 */
2fd6b7f5 292static struct dentry *d_kill(struct dentry *dentry, struct dentry *parent)
31f3e0b3 293 __releases(dentry->d_lock)
2fd6b7f5 294 __releases(parent->d_lock)
873feea0 295 __releases(dentry->d_inode->i_lock)
d52b9086 296{
949854d0 297 dentry->d_parent = NULL;
d52b9086 298 list_del(&dentry->d_u.d_child);
2fd6b7f5
NP
299 if (parent)
300 spin_unlock(&parent->d_lock);
d52b9086 301 dentry_iput(dentry);
b7ab39f6
NP
302 /*
303 * dentry_iput drops the locks, at which point nobody (except
304 * transient RCU lookups) can reach this dentry.
305 */
d52b9086 306 d_free(dentry);
871c0067 307 return parent;
d52b9086
MS
308}
309
789680d1
NP
310/**
311 * d_drop - drop a dentry
312 * @dentry: dentry to drop
313 *
314 * d_drop() unhashes the entry from the parent dentry hashes, so that it won't
315 * be found through a VFS lookup any more. Note that this is different from
316 * deleting the dentry - d_delete will try to mark the dentry negative if
317 * possible, giving a successful _negative_ lookup, while d_drop will
318 * just make the cache lookup fail.
319 *
320 * d_drop() is used mainly for stuff that wants to invalidate a dentry for some
321 * reason (NFS timeouts or autofs deletes).
322 *
323 * __d_drop requires dentry->d_lock.
324 */
325void __d_drop(struct dentry *dentry)
326{
327 if (!(dentry->d_flags & DCACHE_UNHASHED)) {
ceb5bdc2
NP
328 if (unlikely(dentry->d_flags & DCACHE_DISCONNECTED)) {
329 bit_spin_lock(0,
330 (unsigned long *)&dentry->d_sb->s_anon.first);
331 dentry->d_flags |= DCACHE_UNHASHED;
332 hlist_bl_del_init(&dentry->d_hash);
333 __bit_spin_unlock(0,
334 (unsigned long *)&dentry->d_sb->s_anon.first);
335 } else {
336 struct dcache_hash_bucket *b;
337 b = d_hash(dentry->d_parent, dentry->d_name.hash);
338 spin_lock_bucket(b);
339 /*
340 * We may not actually need to put DCACHE_UNHASHED
341 * manipulations under the hash lock, but follow
342 * the principle of least surprise.
343 */
344 dentry->d_flags |= DCACHE_UNHASHED;
345 hlist_bl_del_rcu(&dentry->d_hash);
346 spin_unlock_bucket(b);
347 dentry_rcuwalk_barrier(dentry);
348 }
789680d1
NP
349 }
350}
351EXPORT_SYMBOL(__d_drop);
352
353void d_drop(struct dentry *dentry)
354{
789680d1
NP
355 spin_lock(&dentry->d_lock);
356 __d_drop(dentry);
357 spin_unlock(&dentry->d_lock);
789680d1
NP
358}
359EXPORT_SYMBOL(d_drop);
360
77812a1e
NP
361/*
362 * Finish off a dentry we've decided to kill.
363 * dentry->d_lock must be held, returns with it unlocked.
364 * If ref is non-zero, then decrement the refcount too.
365 * Returns dentry requiring refcount drop, or NULL if we're done.
366 */
367static inline struct dentry *dentry_kill(struct dentry *dentry, int ref)
368 __releases(dentry->d_lock)
369{
873feea0 370 struct inode *inode;
77812a1e
NP
371 struct dentry *parent;
372
873feea0
NP
373 inode = dentry->d_inode;
374 if (inode && !spin_trylock(&inode->i_lock)) {
77812a1e
NP
375relock:
376 spin_unlock(&dentry->d_lock);
377 cpu_relax();
378 return dentry; /* try again with same dentry */
379 }
380 if (IS_ROOT(dentry))
381 parent = NULL;
382 else
383 parent = dentry->d_parent;
384 if (parent && !spin_trylock(&parent->d_lock)) {
873feea0
NP
385 if (inode)
386 spin_unlock(&inode->i_lock);
77812a1e
NP
387 goto relock;
388 }
31e6b01f 389
77812a1e
NP
390 if (ref)
391 dentry->d_count--;
392 /* if dentry was on the d_lru list delete it from there */
393 dentry_lru_del(dentry);
394 /* if it was on the hash then remove it */
395 __d_drop(dentry);
396 return d_kill(dentry, parent);
397}
398
1da177e4
LT
399/*
400 * This is dput
401 *
402 * This is complicated by the fact that we do not want to put
403 * dentries that are no longer on any hash chain on the unused
404 * list: we'd much rather just get rid of them immediately.
405 *
406 * However, that implies that we have to traverse the dentry
407 * tree upwards to the parents which might _also_ now be
408 * scheduled for deletion (it may have been only waiting for
409 * its last child to go away).
410 *
411 * This tail recursion is done by hand as we don't want to depend
412 * on the compiler to always get this right (gcc generally doesn't).
413 * Real recursion would eat up our stack space.
414 */
415
416/*
417 * dput - release a dentry
418 * @dentry: dentry to release
419 *
420 * Release a dentry. This will drop the usage count and if appropriate
421 * call the dentry unlink method as well as removing it from the queues and
422 * releasing its resources. If the parent dentries were scheduled for release
423 * they too may now get deleted.
1da177e4 424 */
1da177e4
LT
425void dput(struct dentry *dentry)
426{
427 if (!dentry)
428 return;
429
430repeat:
b7ab39f6 431 if (dentry->d_count == 1)
1da177e4 432 might_sleep();
1da177e4 433 spin_lock(&dentry->d_lock);
61f3dee4
NP
434 BUG_ON(!dentry->d_count);
435 if (dentry->d_count > 1) {
436 dentry->d_count--;
1da177e4 437 spin_unlock(&dentry->d_lock);
1da177e4
LT
438 return;
439 }
440
fb045adb 441 if (dentry->d_flags & DCACHE_OP_DELETE) {
1da177e4 442 if (dentry->d_op->d_delete(dentry))
61f3dee4 443 goto kill_it;
1da177e4 444 }
265ac902 445
1da177e4
LT
446 /* Unreachable? Get rid of it */
447 if (d_unhashed(dentry))
448 goto kill_it;
265ac902
NP
449
450 /* Otherwise leave it cached and ensure it's on the LRU */
451 dentry->d_flags |= DCACHE_REFERENCED;
a4633357 452 dentry_lru_add(dentry);
265ac902 453
61f3dee4
NP
454 dentry->d_count--;
455 spin_unlock(&dentry->d_lock);
1da177e4
LT
456 return;
457
d52b9086 458kill_it:
77812a1e 459 dentry = dentry_kill(dentry, 1);
d52b9086
MS
460 if (dentry)
461 goto repeat;
1da177e4 462}
ec4f8605 463EXPORT_SYMBOL(dput);
1da177e4
LT
464
465/**
466 * d_invalidate - invalidate a dentry
467 * @dentry: dentry to invalidate
468 *
469 * Try to invalidate the dentry if it turns out to be
470 * possible. If there are other dentries that can be
471 * reached through this one we can't delete it and we
472 * return -EBUSY. On success we return 0.
473 *
474 * no dcache lock.
475 */
476
477int d_invalidate(struct dentry * dentry)
478{
479 /*
480 * If it's already been dropped, return OK.
481 */
da502956 482 spin_lock(&dentry->d_lock);
1da177e4 483 if (d_unhashed(dentry)) {
da502956 484 spin_unlock(&dentry->d_lock);
1da177e4
LT
485 return 0;
486 }
487 /*
488 * Check whether to do a partial shrink_dcache
489 * to get rid of unused child entries.
490 */
491 if (!list_empty(&dentry->d_subdirs)) {
da502956 492 spin_unlock(&dentry->d_lock);
1da177e4 493 shrink_dcache_parent(dentry);
da502956 494 spin_lock(&dentry->d_lock);
1da177e4
LT
495 }
496
497 /*
498 * Somebody else still using it?
499 *
500 * If it's a directory, we can't drop it
501 * for fear of somebody re-populating it
502 * with children (even though dropping it
503 * would make it unreachable from the root,
504 * we might still populate it if it was a
505 * working directory or similar).
506 */
b7ab39f6 507 if (dentry->d_count > 1) {
1da177e4
LT
508 if (dentry->d_inode && S_ISDIR(dentry->d_inode->i_mode)) {
509 spin_unlock(&dentry->d_lock);
1da177e4
LT
510 return -EBUSY;
511 }
512 }
513
514 __d_drop(dentry);
515 spin_unlock(&dentry->d_lock);
1da177e4
LT
516 return 0;
517}
ec4f8605 518EXPORT_SYMBOL(d_invalidate);
1da177e4 519
b5c84bf6 520/* This must be called with d_lock held */
dc0474be 521static inline void __dget_dlock(struct dentry *dentry)
23044507 522{
b7ab39f6 523 dentry->d_count++;
23044507
NP
524}
525
dc0474be 526static inline void __dget(struct dentry *dentry)
1da177e4 527{
23044507 528 spin_lock(&dentry->d_lock);
dc0474be 529 __dget_dlock(dentry);
23044507 530 spin_unlock(&dentry->d_lock);
1da177e4
LT
531}
532
b7ab39f6
NP
533struct dentry *dget_parent(struct dentry *dentry)
534{
535 struct dentry *ret;
536
537repeat:
a734eb45
NP
538 /*
539 * Don't need rcu_dereference because we re-check it was correct under
540 * the lock.
541 */
542 rcu_read_lock();
b7ab39f6 543 ret = dentry->d_parent;
a734eb45
NP
544 if (!ret) {
545 rcu_read_unlock();
b7ab39f6
NP
546 goto out;
547 }
a734eb45
NP
548 spin_lock(&ret->d_lock);
549 if (unlikely(ret != dentry->d_parent)) {
550 spin_unlock(&ret->d_lock);
551 rcu_read_unlock();
b7ab39f6
NP
552 goto repeat;
553 }
a734eb45 554 rcu_read_unlock();
b7ab39f6
NP
555 BUG_ON(!ret->d_count);
556 ret->d_count++;
557 spin_unlock(&ret->d_lock);
558out:
b7ab39f6
NP
559 return ret;
560}
561EXPORT_SYMBOL(dget_parent);
562
1da177e4
LT
563/**
564 * d_find_alias - grab a hashed alias of inode
565 * @inode: inode in question
566 * @want_discon: flag, used by d_splice_alias, to request
567 * that only a DISCONNECTED alias be returned.
568 *
569 * If inode has a hashed alias, or is a directory and has any alias,
570 * acquire the reference to alias and return it. Otherwise return NULL.
571 * Notice that if inode is a directory there can be only one alias and
572 * it can be unhashed only if it has no children, or if it is the root
573 * of a filesystem.
574 *
21c0d8fd 575 * If the inode has an IS_ROOT, DCACHE_DISCONNECTED alias, then prefer
1da177e4 576 * any other hashed alias over that one unless @want_discon is set,
21c0d8fd 577 * in which case only return an IS_ROOT, DCACHE_DISCONNECTED alias.
1da177e4 578 */
da502956 579static struct dentry *__d_find_alias(struct inode *inode, int want_discon)
1da177e4 580{
da502956 581 struct dentry *alias, *discon_alias;
1da177e4 582
da502956
NP
583again:
584 discon_alias = NULL;
585 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
586 spin_lock(&alias->d_lock);
1da177e4 587 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
21c0d8fd 588 if (IS_ROOT(alias) &&
da502956 589 (alias->d_flags & DCACHE_DISCONNECTED)) {
1da177e4 590 discon_alias = alias;
da502956 591 } else if (!want_discon) {
dc0474be 592 __dget_dlock(alias);
da502956
NP
593 spin_unlock(&alias->d_lock);
594 return alias;
595 }
596 }
597 spin_unlock(&alias->d_lock);
598 }
599 if (discon_alias) {
600 alias = discon_alias;
601 spin_lock(&alias->d_lock);
602 if (S_ISDIR(inode->i_mode) || !d_unhashed(alias)) {
603 if (IS_ROOT(alias) &&
604 (alias->d_flags & DCACHE_DISCONNECTED)) {
dc0474be 605 __dget_dlock(alias);
da502956 606 spin_unlock(&alias->d_lock);
1da177e4
LT
607 return alias;
608 }
609 }
da502956
NP
610 spin_unlock(&alias->d_lock);
611 goto again;
1da177e4 612 }
da502956 613 return NULL;
1da177e4
LT
614}
615
da502956 616struct dentry *d_find_alias(struct inode *inode)
1da177e4 617{
214fda1f
DH
618 struct dentry *de = NULL;
619
620 if (!list_empty(&inode->i_dentry)) {
873feea0 621 spin_lock(&inode->i_lock);
214fda1f 622 de = __d_find_alias(inode, 0);
873feea0 623 spin_unlock(&inode->i_lock);
214fda1f 624 }
1da177e4
LT
625 return de;
626}
ec4f8605 627EXPORT_SYMBOL(d_find_alias);
1da177e4
LT
628
629/*
630 * Try to kill dentries associated with this inode.
631 * WARNING: you must own a reference to inode.
632 */
633void d_prune_aliases(struct inode *inode)
634{
0cdca3f9 635 struct dentry *dentry;
1da177e4 636restart:
873feea0 637 spin_lock(&inode->i_lock);
0cdca3f9 638 list_for_each_entry(dentry, &inode->i_dentry, d_alias) {
1da177e4 639 spin_lock(&dentry->d_lock);
b7ab39f6 640 if (!dentry->d_count) {
dc0474be 641 __dget_dlock(dentry);
1da177e4
LT
642 __d_drop(dentry);
643 spin_unlock(&dentry->d_lock);
873feea0 644 spin_unlock(&inode->i_lock);
1da177e4
LT
645 dput(dentry);
646 goto restart;
647 }
648 spin_unlock(&dentry->d_lock);
649 }
873feea0 650 spin_unlock(&inode->i_lock);
1da177e4 651}
ec4f8605 652EXPORT_SYMBOL(d_prune_aliases);
1da177e4
LT
653
654/*
77812a1e
NP
655 * Try to throw away a dentry - free the inode, dput the parent.
656 * Requires dentry->d_lock is held, and dentry->d_count == 0.
657 * Releases dentry->d_lock.
d702ccb3 658 *
77812a1e 659 * This may fail if locks cannot be acquired no problem, just try again.
1da177e4 660 */
77812a1e 661static void try_prune_one_dentry(struct dentry *dentry)
31f3e0b3 662 __releases(dentry->d_lock)
1da177e4 663{
77812a1e 664 struct dentry *parent;
d52b9086 665
77812a1e 666 parent = dentry_kill(dentry, 0);
d52b9086 667 /*
77812a1e
NP
668 * If dentry_kill returns NULL, we have nothing more to do.
669 * if it returns the same dentry, trylocks failed. In either
670 * case, just loop again.
671 *
672 * Otherwise, we need to prune ancestors too. This is necessary
673 * to prevent quadratic behavior of shrink_dcache_parent(), but
674 * is also expected to be beneficial in reducing dentry cache
675 * fragmentation.
d52b9086 676 */
77812a1e
NP
677 if (!parent)
678 return;
679 if (parent == dentry)
680 return;
681
682 /* Prune ancestors. */
683 dentry = parent;
d52b9086 684 while (dentry) {
b7ab39f6 685 spin_lock(&dentry->d_lock);
89e60548
NP
686 if (dentry->d_count > 1) {
687 dentry->d_count--;
688 spin_unlock(&dentry->d_lock);
689 return;
690 }
77812a1e 691 dentry = dentry_kill(dentry, 1);
d52b9086 692 }
1da177e4
LT
693}
694
3049cfe2 695static void shrink_dentry_list(struct list_head *list)
1da177e4 696{
da3bbdd4 697 struct dentry *dentry;
da3bbdd4 698
ec33679d
NP
699 rcu_read_lock();
700 for (;;) {
ec33679d
NP
701 dentry = list_entry_rcu(list->prev, struct dentry, d_lru);
702 if (&dentry->d_lru == list)
703 break; /* empty */
704 spin_lock(&dentry->d_lock);
705 if (dentry != list_entry(list->prev, struct dentry, d_lru)) {
706 spin_unlock(&dentry->d_lock);
23044507
NP
707 continue;
708 }
709
1da177e4
LT
710 /*
711 * We found an inuse dentry which was not removed from
da3bbdd4
KM
712 * the LRU because of laziness during lookup. Do not free
713 * it - just keep it off the LRU list.
1da177e4 714 */
b7ab39f6 715 if (dentry->d_count) {
ec33679d 716 dentry_lru_del(dentry);
da3bbdd4 717 spin_unlock(&dentry->d_lock);
1da177e4
LT
718 continue;
719 }
ec33679d 720
ec33679d 721 rcu_read_unlock();
77812a1e
NP
722
723 try_prune_one_dentry(dentry);
724
ec33679d 725 rcu_read_lock();
da3bbdd4 726 }
ec33679d 727 rcu_read_unlock();
3049cfe2
CH
728}
729
730/**
731 * __shrink_dcache_sb - shrink the dentry LRU on a given superblock
732 * @sb: superblock to shrink dentry LRU.
733 * @count: number of entries to prune
734 * @flags: flags to control the dentry processing
735 *
736 * If flags contains DCACHE_REFERENCED reference dentries will not be pruned.
737 */
738static void __shrink_dcache_sb(struct super_block *sb, int *count, int flags)
739{
740 /* called from prune_dcache() and shrink_dcache_parent() */
741 struct dentry *dentry;
742 LIST_HEAD(referenced);
743 LIST_HEAD(tmp);
744 int cnt = *count;
745
23044507
NP
746relock:
747 spin_lock(&dcache_lru_lock);
3049cfe2
CH
748 while (!list_empty(&sb->s_dentry_lru)) {
749 dentry = list_entry(sb->s_dentry_lru.prev,
750 struct dentry, d_lru);
751 BUG_ON(dentry->d_sb != sb);
752
23044507
NP
753 if (!spin_trylock(&dentry->d_lock)) {
754 spin_unlock(&dcache_lru_lock);
755 cpu_relax();
756 goto relock;
757 }
758
3049cfe2
CH
759 /*
760 * If we are honouring the DCACHE_REFERENCED flag and the
761 * dentry has this flag set, don't free it. Clear the flag
762 * and put it back on the LRU.
763 */
23044507
NP
764 if (flags & DCACHE_REFERENCED &&
765 dentry->d_flags & DCACHE_REFERENCED) {
766 dentry->d_flags &= ~DCACHE_REFERENCED;
767 list_move(&dentry->d_lru, &referenced);
3049cfe2 768 spin_unlock(&dentry->d_lock);
23044507
NP
769 } else {
770 list_move_tail(&dentry->d_lru, &tmp);
771 spin_unlock(&dentry->d_lock);
772 if (!--cnt)
773 break;
3049cfe2 774 }
ec33679d 775 cond_resched_lock(&dcache_lru_lock);
3049cfe2 776 }
da3bbdd4
KM
777 if (!list_empty(&referenced))
778 list_splice(&referenced, &sb->s_dentry_lru);
23044507 779 spin_unlock(&dcache_lru_lock);
ec33679d
NP
780
781 shrink_dentry_list(&tmp);
782
783 *count = cnt;
da3bbdd4
KM
784}
785
786/**
787 * prune_dcache - shrink the dcache
788 * @count: number of entries to try to free
789 *
790 * Shrink the dcache. This is done when we need more memory, or simply when we
791 * need to unmount something (at which point we need to unuse all dentries).
792 *
793 * This function may fail to free any resources if all the dentries are in use.
794 */
795static void prune_dcache(int count)
796{
dca33252 797 struct super_block *sb, *p = NULL;
da3bbdd4 798 int w_count;
86c8749e 799 int unused = dentry_stat.nr_unused;
da3bbdd4
KM
800 int prune_ratio;
801 int pruned;
802
803 if (unused == 0 || count == 0)
804 return;
da3bbdd4
KM
805 if (count >= unused)
806 prune_ratio = 1;
807 else
808 prune_ratio = unused / count;
809 spin_lock(&sb_lock);
dca33252 810 list_for_each_entry(sb, &super_blocks, s_list) {
551de6f3
AV
811 if (list_empty(&sb->s_instances))
812 continue;
da3bbdd4 813 if (sb->s_nr_dentry_unused == 0)
1da177e4 814 continue;
da3bbdd4
KM
815 sb->s_count++;
816 /* Now, we reclaim unused dentrins with fairness.
817 * We reclaim them same percentage from each superblock.
818 * We calculate number of dentries to scan on this sb
819 * as follows, but the implementation is arranged to avoid
820 * overflows:
821 * number of dentries to scan on this sb =
822 * count * (number of dentries on this sb /
823 * number of dentries in the machine)
0feae5c4 824 */
da3bbdd4
KM
825 spin_unlock(&sb_lock);
826 if (prune_ratio != 1)
827 w_count = (sb->s_nr_dentry_unused / prune_ratio) + 1;
828 else
829 w_count = sb->s_nr_dentry_unused;
830 pruned = w_count;
0feae5c4 831 /*
da3bbdd4
KM
832 * We need to be sure this filesystem isn't being unmounted,
833 * otherwise we could race with generic_shutdown_super(), and
834 * end up holding a reference to an inode while the filesystem
835 * is unmounted. So we try to get s_umount, and make sure
836 * s_root isn't NULL.
0feae5c4 837 */
da3bbdd4
KM
838 if (down_read_trylock(&sb->s_umount)) {
839 if ((sb->s_root != NULL) &&
840 (!list_empty(&sb->s_dentry_lru))) {
da3bbdd4
KM
841 __shrink_dcache_sb(sb, &w_count,
842 DCACHE_REFERENCED);
843 pruned -= w_count;
0feae5c4 844 }
da3bbdd4 845 up_read(&sb->s_umount);
0feae5c4 846 }
da3bbdd4 847 spin_lock(&sb_lock);
dca33252
AV
848 if (p)
849 __put_super(p);
da3bbdd4 850 count -= pruned;
dca33252 851 p = sb;
79893c17
AV
852 /* more work left to do? */
853 if (count <= 0)
854 break;
1da177e4 855 }
dca33252
AV
856 if (p)
857 __put_super(p);
da3bbdd4 858 spin_unlock(&sb_lock);
1da177e4
LT
859}
860
1da177e4
LT
861/**
862 * shrink_dcache_sb - shrink dcache for a superblock
863 * @sb: superblock
864 *
3049cfe2
CH
865 * Shrink the dcache for the specified super block. This is used to free
866 * the dcache before unmounting a file system.
1da177e4 867 */
3049cfe2 868void shrink_dcache_sb(struct super_block *sb)
1da177e4 869{
3049cfe2
CH
870 LIST_HEAD(tmp);
871
23044507 872 spin_lock(&dcache_lru_lock);
3049cfe2
CH
873 while (!list_empty(&sb->s_dentry_lru)) {
874 list_splice_init(&sb->s_dentry_lru, &tmp);
ec33679d 875 spin_unlock(&dcache_lru_lock);
3049cfe2 876 shrink_dentry_list(&tmp);
ec33679d 877 spin_lock(&dcache_lru_lock);
3049cfe2 878 }
23044507 879 spin_unlock(&dcache_lru_lock);
1da177e4 880}
ec4f8605 881EXPORT_SYMBOL(shrink_dcache_sb);
1da177e4 882
c636ebdb
DH
883/*
884 * destroy a single subtree of dentries for unmount
885 * - see the comments on shrink_dcache_for_umount() for a description of the
886 * locking
887 */
888static void shrink_dcache_for_umount_subtree(struct dentry *dentry)
889{
890 struct dentry *parent;
f8713576 891 unsigned detached = 0;
c636ebdb
DH
892
893 BUG_ON(!IS_ROOT(dentry));
894
895 /* detach this root from the system */
23044507 896 spin_lock(&dentry->d_lock);
a4633357 897 dentry_lru_del(dentry);
c636ebdb 898 __d_drop(dentry);
da502956 899 spin_unlock(&dentry->d_lock);
c636ebdb
DH
900
901 for (;;) {
902 /* descend to the first leaf in the current subtree */
903 while (!list_empty(&dentry->d_subdirs)) {
904 struct dentry *loop;
905
906 /* this is a branch with children - detach all of them
907 * from the system in one go */
2fd6b7f5 908 spin_lock(&dentry->d_lock);
c636ebdb
DH
909 list_for_each_entry(loop, &dentry->d_subdirs,
910 d_u.d_child) {
2fd6b7f5
NP
911 spin_lock_nested(&loop->d_lock,
912 DENTRY_D_LOCK_NESTED);
a4633357 913 dentry_lru_del(loop);
c636ebdb 914 __d_drop(loop);
da502956 915 spin_unlock(&loop->d_lock);
c636ebdb 916 }
2fd6b7f5 917 spin_unlock(&dentry->d_lock);
c636ebdb
DH
918
919 /* move to the first child */
920 dentry = list_entry(dentry->d_subdirs.next,
921 struct dentry, d_u.d_child);
922 }
923
924 /* consume the dentries from this leaf up through its parents
925 * until we find one with children or run out altogether */
926 do {
927 struct inode *inode;
928
b7ab39f6 929 if (dentry->d_count != 0) {
c636ebdb
DH
930 printk(KERN_ERR
931 "BUG: Dentry %p{i=%lx,n=%s}"
932 " still in use (%d)"
933 " [unmount of %s %s]\n",
934 dentry,
935 dentry->d_inode ?
936 dentry->d_inode->i_ino : 0UL,
937 dentry->d_name.name,
b7ab39f6 938 dentry->d_count,
c636ebdb
DH
939 dentry->d_sb->s_type->name,
940 dentry->d_sb->s_id);
941 BUG();
942 }
943
2fd6b7f5 944 if (IS_ROOT(dentry)) {
c636ebdb 945 parent = NULL;
2fd6b7f5
NP
946 list_del(&dentry->d_u.d_child);
947 } else {
871c0067 948 parent = dentry->d_parent;
b7ab39f6
NP
949 spin_lock(&parent->d_lock);
950 parent->d_count--;
2fd6b7f5 951 list_del(&dentry->d_u.d_child);
b7ab39f6 952 spin_unlock(&parent->d_lock);
871c0067 953 }
c636ebdb 954
f8713576 955 detached++;
c636ebdb
DH
956
957 inode = dentry->d_inode;
958 if (inode) {
959 dentry->d_inode = NULL;
960 list_del_init(&dentry->d_alias);
961 if (dentry->d_op && dentry->d_op->d_iput)
962 dentry->d_op->d_iput(dentry, inode);
963 else
964 iput(inode);
965 }
966
967 d_free(dentry);
968
969 /* finished when we fall off the top of the tree,
970 * otherwise we ascend to the parent and move to the
971 * next sibling if there is one */
972 if (!parent)
312d3ca8 973 return;
c636ebdb 974 dentry = parent;
c636ebdb
DH
975 } while (list_empty(&dentry->d_subdirs));
976
977 dentry = list_entry(dentry->d_subdirs.next,
978 struct dentry, d_u.d_child);
979 }
980}
981
982/*
983 * destroy the dentries attached to a superblock on unmounting
b5c84bf6 984 * - we don't need to use dentry->d_lock because:
c636ebdb
DH
985 * - the superblock is detached from all mountings and open files, so the
986 * dentry trees will not be rearranged by the VFS
987 * - s_umount is write-locked, so the memory pressure shrinker will ignore
988 * any dentries belonging to this superblock that it comes across
989 * - the filesystem itself is no longer permitted to rearrange the dentries
990 * in this superblock
991 */
992void shrink_dcache_for_umount(struct super_block *sb)
993{
994 struct dentry *dentry;
995
996 if (down_read_trylock(&sb->s_umount))
997 BUG();
998
999 dentry = sb->s_root;
1000 sb->s_root = NULL;
b7ab39f6
NP
1001 spin_lock(&dentry->d_lock);
1002 dentry->d_count--;
1003 spin_unlock(&dentry->d_lock);
c636ebdb
DH
1004 shrink_dcache_for_umount_subtree(dentry);
1005
ceb5bdc2
NP
1006 while (!hlist_bl_empty(&sb->s_anon)) {
1007 dentry = hlist_bl_entry(hlist_bl_first(&sb->s_anon), struct dentry, d_hash);
c636ebdb
DH
1008 shrink_dcache_for_umount_subtree(dentry);
1009 }
1010}
1011
1da177e4
LT
1012/*
1013 * Search for at least 1 mount point in the dentry's subdirs.
1014 * We descend to the next level whenever the d_subdirs
1015 * list is non-empty and continue searching.
1016 */
1017
1018/**
1019 * have_submounts - check for mounts over a dentry
1020 * @parent: dentry to check.
1021 *
1022 * Return true if the parent or its subdirectories contain
1023 * a mount point
1024 */
1da177e4
LT
1025int have_submounts(struct dentry *parent)
1026{
949854d0 1027 struct dentry *this_parent;
1da177e4 1028 struct list_head *next;
949854d0 1029 unsigned seq;
58db63d0 1030 int locked = 0;
949854d0 1031
949854d0 1032 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1033again:
1034 this_parent = parent;
1da177e4 1035
1da177e4
LT
1036 if (d_mountpoint(parent))
1037 goto positive;
2fd6b7f5 1038 spin_lock(&this_parent->d_lock);
1da177e4
LT
1039repeat:
1040 next = this_parent->d_subdirs.next;
1041resume:
1042 while (next != &this_parent->d_subdirs) {
1043 struct list_head *tmp = next;
5160ee6f 1044 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 1045 next = tmp->next;
2fd6b7f5
NP
1046
1047 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
1da177e4 1048 /* Have we found a mount point ? */
2fd6b7f5
NP
1049 if (d_mountpoint(dentry)) {
1050 spin_unlock(&dentry->d_lock);
1051 spin_unlock(&this_parent->d_lock);
1da177e4 1052 goto positive;
2fd6b7f5 1053 }
1da177e4 1054 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1055 spin_unlock(&this_parent->d_lock);
1056 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1057 this_parent = dentry;
2fd6b7f5 1058 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1059 goto repeat;
1060 }
2fd6b7f5 1061 spin_unlock(&dentry->d_lock);
1da177e4
LT
1062 }
1063 /*
1064 * All done at this level ... ascend and resume the search.
1065 */
1066 if (this_parent != parent) {
949854d0
NP
1067 struct dentry *tmp;
1068 struct dentry *child;
1069
1070 tmp = this_parent->d_parent;
1071 rcu_read_lock();
2fd6b7f5 1072 spin_unlock(&this_parent->d_lock);
949854d0
NP
1073 child = this_parent;
1074 this_parent = tmp;
2fd6b7f5 1075 spin_lock(&this_parent->d_lock);
949854d0
NP
1076 /* might go back up the wrong parent if we have had a rename
1077 * or deletion */
1078 if (this_parent != child->d_parent ||
58db63d0 1079 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 1080 spin_unlock(&this_parent->d_lock);
949854d0
NP
1081 rcu_read_unlock();
1082 goto rename_retry;
1083 }
1084 rcu_read_unlock();
1085 next = child->d_u.d_child.next;
1da177e4
LT
1086 goto resume;
1087 }
2fd6b7f5 1088 spin_unlock(&this_parent->d_lock);
58db63d0 1089 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1090 goto rename_retry;
58db63d0
NP
1091 if (locked)
1092 write_sequnlock(&rename_lock);
1da177e4
LT
1093 return 0; /* No mount points found in tree */
1094positive:
58db63d0 1095 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1096 goto rename_retry;
58db63d0
NP
1097 if (locked)
1098 write_sequnlock(&rename_lock);
1da177e4 1099 return 1;
58db63d0
NP
1100
1101rename_retry:
1102 locked = 1;
1103 write_seqlock(&rename_lock);
1104 goto again;
1da177e4 1105}
ec4f8605 1106EXPORT_SYMBOL(have_submounts);
1da177e4
LT
1107
1108/*
1109 * Search the dentry child list for the specified parent,
1110 * and move any unused dentries to the end of the unused
1111 * list for prune_dcache(). We descend to the next level
1112 * whenever the d_subdirs list is non-empty and continue
1113 * searching.
1114 *
1115 * It returns zero iff there are no unused children,
1116 * otherwise it returns the number of children moved to
1117 * the end of the unused list. This may not be the total
1118 * number of unused children, because select_parent can
1119 * drop the lock and return early due to latency
1120 * constraints.
1121 */
1122static int select_parent(struct dentry * parent)
1123{
949854d0 1124 struct dentry *this_parent;
1da177e4 1125 struct list_head *next;
949854d0 1126 unsigned seq;
1da177e4 1127 int found = 0;
58db63d0 1128 int locked = 0;
1da177e4 1129
949854d0 1130 seq = read_seqbegin(&rename_lock);
58db63d0
NP
1131again:
1132 this_parent = parent;
2fd6b7f5 1133 spin_lock(&this_parent->d_lock);
1da177e4
LT
1134repeat:
1135 next = this_parent->d_subdirs.next;
1136resume:
1137 while (next != &this_parent->d_subdirs) {
1138 struct list_head *tmp = next;
5160ee6f 1139 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4
LT
1140 next = tmp->next;
1141
2fd6b7f5 1142 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
23044507 1143
1da177e4
LT
1144 /*
1145 * move only zero ref count dentries to the end
1146 * of the unused list for prune_dcache
1147 */
b7ab39f6 1148 if (!dentry->d_count) {
a4633357 1149 dentry_lru_move_tail(dentry);
1da177e4 1150 found++;
a4633357
CH
1151 } else {
1152 dentry_lru_del(dentry);
1da177e4
LT
1153 }
1154
1155 /*
1156 * We can return to the caller if we have found some (this
1157 * ensures forward progress). We'll be coming back to find
1158 * the rest.
1159 */
2fd6b7f5
NP
1160 if (found && need_resched()) {
1161 spin_unlock(&dentry->d_lock);
1da177e4 1162 goto out;
2fd6b7f5 1163 }
1da177e4
LT
1164
1165 /*
1166 * Descend a level if the d_subdirs list is non-empty.
1167 */
1168 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
1169 spin_unlock(&this_parent->d_lock);
1170 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 1171 this_parent = dentry;
2fd6b7f5 1172 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
1173 goto repeat;
1174 }
2fd6b7f5
NP
1175
1176 spin_unlock(&dentry->d_lock);
1da177e4
LT
1177 }
1178 /*
1179 * All done at this level ... ascend and resume the search.
1180 */
1181 if (this_parent != parent) {
2fd6b7f5 1182 struct dentry *tmp;
949854d0
NP
1183 struct dentry *child;
1184
2fd6b7f5 1185 tmp = this_parent->d_parent;
949854d0 1186 rcu_read_lock();
2fd6b7f5 1187 spin_unlock(&this_parent->d_lock);
949854d0 1188 child = this_parent;
2fd6b7f5
NP
1189 this_parent = tmp;
1190 spin_lock(&this_parent->d_lock);
949854d0
NP
1191 /* might go back up the wrong parent if we have had a rename
1192 * or deletion */
1193 if (this_parent != child->d_parent ||
58db63d0 1194 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 1195 spin_unlock(&this_parent->d_lock);
949854d0
NP
1196 rcu_read_unlock();
1197 goto rename_retry;
1198 }
1199 rcu_read_unlock();
1200 next = child->d_u.d_child.next;
1da177e4
LT
1201 goto resume;
1202 }
1203out:
2fd6b7f5 1204 spin_unlock(&this_parent->d_lock);
58db63d0 1205 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 1206 goto rename_retry;
58db63d0
NP
1207 if (locked)
1208 write_sequnlock(&rename_lock);
1da177e4 1209 return found;
58db63d0
NP
1210
1211rename_retry:
1212 if (found)
1213 return found;
1214 locked = 1;
1215 write_seqlock(&rename_lock);
1216 goto again;
1da177e4
LT
1217}
1218
1219/**
1220 * shrink_dcache_parent - prune dcache
1221 * @parent: parent of entries to prune
1222 *
1223 * Prune the dcache to remove unused children of the parent dentry.
1224 */
1225
1226void shrink_dcache_parent(struct dentry * parent)
1227{
da3bbdd4 1228 struct super_block *sb = parent->d_sb;
1da177e4
LT
1229 int found;
1230
1231 while ((found = select_parent(parent)) != 0)
da3bbdd4 1232 __shrink_dcache_sb(sb, &found, 0);
1da177e4 1233}
ec4f8605 1234EXPORT_SYMBOL(shrink_dcache_parent);
1da177e4 1235
1da177e4
LT
1236/*
1237 * Scan `nr' dentries and return the number which remain.
1238 *
1239 * We need to avoid reentering the filesystem if the caller is performing a
1240 * GFP_NOFS allocation attempt. One example deadlock is:
1241 *
1242 * ext2_new_block->getblk->GFP->shrink_dcache_memory->prune_dcache->
1243 * prune_one_dentry->dput->dentry_iput->iput->inode->i_sb->s_op->put_inode->
1244 * ext2_discard_prealloc->ext2_free_blocks->lock_super->DEADLOCK.
1245 *
1246 * In this case we return -1 to tell the caller that we baled.
1247 */
7f8275d0 1248static int shrink_dcache_memory(struct shrinker *shrink, int nr, gfp_t gfp_mask)
1da177e4
LT
1249{
1250 if (nr) {
1251 if (!(gfp_mask & __GFP_FS))
1252 return -1;
da3bbdd4 1253 prune_dcache(nr);
1da177e4 1254 }
312d3ca8 1255
86c8749e 1256 return (dentry_stat.nr_unused / 100) * sysctl_vfs_cache_pressure;
1da177e4
LT
1257}
1258
8e1f936b
RR
1259static struct shrinker dcache_shrinker = {
1260 .shrink = shrink_dcache_memory,
1261 .seeks = DEFAULT_SEEKS,
1262};
1263
1da177e4
LT
1264/**
1265 * d_alloc - allocate a dcache entry
1266 * @parent: parent of entry to allocate
1267 * @name: qstr of the name
1268 *
1269 * Allocates a dentry. It returns %NULL if there is insufficient memory
1270 * available. On a success the dentry is returned. The name passed in is
1271 * copied and the copy passed in may be reused after this call.
1272 */
1273
1274struct dentry *d_alloc(struct dentry * parent, const struct qstr *name)
1275{
1276 struct dentry *dentry;
1277 char *dname;
1278
e12ba74d 1279 dentry = kmem_cache_alloc(dentry_cache, GFP_KERNEL);
1da177e4
LT
1280 if (!dentry)
1281 return NULL;
1282
1283 if (name->len > DNAME_INLINE_LEN-1) {
1284 dname = kmalloc(name->len + 1, GFP_KERNEL);
1285 if (!dname) {
1286 kmem_cache_free(dentry_cache, dentry);
1287 return NULL;
1288 }
1289 } else {
1290 dname = dentry->d_iname;
1291 }
1292 dentry->d_name.name = dname;
1293
1294 dentry->d_name.len = name->len;
1295 dentry->d_name.hash = name->hash;
1296 memcpy(dname, name->name, name->len);
1297 dname[name->len] = 0;
1298
b7ab39f6 1299 dentry->d_count = 1;
1da177e4
LT
1300 dentry->d_flags = DCACHE_UNHASHED;
1301 spin_lock_init(&dentry->d_lock);
31e6b01f 1302 seqcount_init(&dentry->d_seq);
1da177e4
LT
1303 dentry->d_inode = NULL;
1304 dentry->d_parent = NULL;
1305 dentry->d_sb = NULL;
1306 dentry->d_op = NULL;
1307 dentry->d_fsdata = NULL;
ceb5bdc2 1308 INIT_HLIST_BL_NODE(&dentry->d_hash);
1da177e4
LT
1309 INIT_LIST_HEAD(&dentry->d_lru);
1310 INIT_LIST_HEAD(&dentry->d_subdirs);
1311 INIT_LIST_HEAD(&dentry->d_alias);
2fd6b7f5 1312 INIT_LIST_HEAD(&dentry->d_u.d_child);
1da177e4
LT
1313
1314 if (parent) {
2fd6b7f5 1315 spin_lock(&parent->d_lock);
89ad485f
NP
1316 /*
1317 * don't need child lock because it is not subject
1318 * to concurrency here
1319 */
dc0474be
NP
1320 __dget_dlock(parent);
1321 dentry->d_parent = parent;
1da177e4 1322 dentry->d_sb = parent->d_sb;
c8aebb0c 1323 d_set_d_op(dentry, dentry->d_sb->s_d_op);
5160ee6f 1324 list_add(&dentry->d_u.d_child, &parent->d_subdirs);
2fd6b7f5 1325 spin_unlock(&parent->d_lock);
2fd6b7f5 1326 }
1da177e4 1327
3e880fb5 1328 this_cpu_inc(nr_dentry);
312d3ca8 1329
1da177e4
LT
1330 return dentry;
1331}
ec4f8605 1332EXPORT_SYMBOL(d_alloc);
1da177e4 1333
4b936885
NP
1334struct dentry *d_alloc_pseudo(struct super_block *sb, const struct qstr *name)
1335{
1336 struct dentry *dentry = d_alloc(NULL, name);
1337 if (dentry) {
1338 dentry->d_sb = sb;
c8aebb0c 1339 d_set_d_op(dentry, dentry->d_sb->s_d_op);
4b936885
NP
1340 dentry->d_parent = dentry;
1341 dentry->d_flags |= DCACHE_DISCONNECTED;
1342 }
1343 return dentry;
1344}
1345EXPORT_SYMBOL(d_alloc_pseudo);
1346
1da177e4
LT
1347struct dentry *d_alloc_name(struct dentry *parent, const char *name)
1348{
1349 struct qstr q;
1350
1351 q.name = name;
1352 q.len = strlen(name);
1353 q.hash = full_name_hash(q.name, q.len);
1354 return d_alloc(parent, &q);
1355}
ef26ca97 1356EXPORT_SYMBOL(d_alloc_name);
1da177e4 1357
fb045adb
NP
1358void d_set_d_op(struct dentry *dentry, const struct dentry_operations *op)
1359{
1360 BUG_ON(dentry->d_op);
1361 BUG_ON(dentry->d_flags & (DCACHE_OP_HASH |
1362 DCACHE_OP_COMPARE |
1363 DCACHE_OP_REVALIDATE |
1364 DCACHE_OP_DELETE ));
1365 dentry->d_op = op;
1366 if (!op)
1367 return;
1368 if (op->d_hash)
1369 dentry->d_flags |= DCACHE_OP_HASH;
1370 if (op->d_compare)
1371 dentry->d_flags |= DCACHE_OP_COMPARE;
1372 if (op->d_revalidate)
1373 dentry->d_flags |= DCACHE_OP_REVALIDATE;
1374 if (op->d_delete)
1375 dentry->d_flags |= DCACHE_OP_DELETE;
1376
1377}
1378EXPORT_SYMBOL(d_set_d_op);
1379
360da900
OH
1380static void __d_instantiate(struct dentry *dentry, struct inode *inode)
1381{
b23fb0a6 1382 spin_lock(&dentry->d_lock);
360da900
OH
1383 if (inode)
1384 list_add(&dentry->d_alias, &inode->i_dentry);
1385 dentry->d_inode = inode;
31e6b01f 1386 dentry_rcuwalk_barrier(dentry);
b23fb0a6 1387 spin_unlock(&dentry->d_lock);
360da900
OH
1388 fsnotify_d_instantiate(dentry, inode);
1389}
1390
1da177e4
LT
1391/**
1392 * d_instantiate - fill in inode information for a dentry
1393 * @entry: dentry to complete
1394 * @inode: inode to attach to this dentry
1395 *
1396 * Fill in inode information in the entry.
1397 *
1398 * This turns negative dentries into productive full members
1399 * of society.
1400 *
1401 * NOTE! This assumes that the inode count has been incremented
1402 * (or otherwise set) by the caller to indicate that it is now
1403 * in use by the dcache.
1404 */
1405
1406void d_instantiate(struct dentry *entry, struct inode * inode)
1407{
28133c7b 1408 BUG_ON(!list_empty(&entry->d_alias));
873feea0
NP
1409 if (inode)
1410 spin_lock(&inode->i_lock);
360da900 1411 __d_instantiate(entry, inode);
873feea0
NP
1412 if (inode)
1413 spin_unlock(&inode->i_lock);
1da177e4
LT
1414 security_d_instantiate(entry, inode);
1415}
ec4f8605 1416EXPORT_SYMBOL(d_instantiate);
1da177e4
LT
1417
1418/**
1419 * d_instantiate_unique - instantiate a non-aliased dentry
1420 * @entry: dentry to instantiate
1421 * @inode: inode to attach to this dentry
1422 *
1423 * Fill in inode information in the entry. On success, it returns NULL.
1424 * If an unhashed alias of "entry" already exists, then we return the
e866cfa9 1425 * aliased dentry instead and drop one reference to inode.
1da177e4
LT
1426 *
1427 * Note that in order to avoid conflicts with rename() etc, the caller
1428 * had better be holding the parent directory semaphore.
e866cfa9
OD
1429 *
1430 * This also assumes that the inode count has been incremented
1431 * (or otherwise set) by the caller to indicate that it is now
1432 * in use by the dcache.
1da177e4 1433 */
770bfad8
DH
1434static struct dentry *__d_instantiate_unique(struct dentry *entry,
1435 struct inode *inode)
1da177e4
LT
1436{
1437 struct dentry *alias;
1438 int len = entry->d_name.len;
1439 const char *name = entry->d_name.name;
1440 unsigned int hash = entry->d_name.hash;
1441
770bfad8 1442 if (!inode) {
360da900 1443 __d_instantiate(entry, NULL);
770bfad8
DH
1444 return NULL;
1445 }
1446
1da177e4
LT
1447 list_for_each_entry(alias, &inode->i_dentry, d_alias) {
1448 struct qstr *qstr = &alias->d_name;
1449
9abca360
NP
1450 /*
1451 * Don't need alias->d_lock here, because aliases with
1452 * d_parent == entry->d_parent are not subject to name or
1453 * parent changes, because the parent inode i_mutex is held.
1454 */
1da177e4
LT
1455 if (qstr->hash != hash)
1456 continue;
1457 if (alias->d_parent != entry->d_parent)
1458 continue;
9d55c369 1459 if (dentry_cmp(qstr->name, qstr->len, name, len))
1da177e4 1460 continue;
dc0474be 1461 __dget(alias);
1da177e4
LT
1462 return alias;
1463 }
770bfad8 1464
360da900 1465 __d_instantiate(entry, inode);
1da177e4
LT
1466 return NULL;
1467}
770bfad8
DH
1468
1469struct dentry *d_instantiate_unique(struct dentry *entry, struct inode *inode)
1470{
1471 struct dentry *result;
1472
1473 BUG_ON(!list_empty(&entry->d_alias));
1474
873feea0
NP
1475 if (inode)
1476 spin_lock(&inode->i_lock);
770bfad8 1477 result = __d_instantiate_unique(entry, inode);
873feea0
NP
1478 if (inode)
1479 spin_unlock(&inode->i_lock);
770bfad8
DH
1480
1481 if (!result) {
1482 security_d_instantiate(entry, inode);
1483 return NULL;
1484 }
1485
1486 BUG_ON(!d_unhashed(result));
1487 iput(inode);
1488 return result;
1489}
1490
1da177e4
LT
1491EXPORT_SYMBOL(d_instantiate_unique);
1492
1493/**
1494 * d_alloc_root - allocate root dentry
1495 * @root_inode: inode to allocate the root for
1496 *
1497 * Allocate a root ("/") dentry for the inode given. The inode is
1498 * instantiated and returned. %NULL is returned if there is insufficient
1499 * memory or the inode passed is %NULL.
1500 */
1501
1502struct dentry * d_alloc_root(struct inode * root_inode)
1503{
1504 struct dentry *res = NULL;
1505
1506 if (root_inode) {
1507 static const struct qstr name = { .name = "/", .len = 1 };
1508
1509 res = d_alloc(NULL, &name);
1510 if (res) {
1511 res->d_sb = root_inode->i_sb;
c8aebb0c 1512 d_set_d_op(res, res->d_sb->s_d_op);
1da177e4
LT
1513 res->d_parent = res;
1514 d_instantiate(res, root_inode);
1515 }
1516 }
1517 return res;
1518}
ec4f8605 1519EXPORT_SYMBOL(d_alloc_root);
1da177e4 1520
4ea3ada2
CH
1521/**
1522 * d_obtain_alias - find or allocate a dentry for a given inode
1523 * @inode: inode to allocate the dentry for
1524 *
1525 * Obtain a dentry for an inode resulting from NFS filehandle conversion or
1526 * similar open by handle operations. The returned dentry may be anonymous,
1527 * or may have a full name (if the inode was already in the cache).
1528 *
1529 * When called on a directory inode, we must ensure that the inode only ever
1530 * has one dentry. If a dentry is found, that is returned instead of
1531 * allocating a new one.
1532 *
1533 * On successful return, the reference to the inode has been transferred
44003728
CH
1534 * to the dentry. In case of an error the reference on the inode is released.
1535 * To make it easier to use in export operations a %NULL or IS_ERR inode may
1536 * be passed in and will be the error will be propagate to the return value,
1537 * with a %NULL @inode replaced by ERR_PTR(-ESTALE).
4ea3ada2
CH
1538 */
1539struct dentry *d_obtain_alias(struct inode *inode)
1540{
9308a612
CH
1541 static const struct qstr anonstring = { .name = "" };
1542 struct dentry *tmp;
1543 struct dentry *res;
4ea3ada2
CH
1544
1545 if (!inode)
44003728 1546 return ERR_PTR(-ESTALE);
4ea3ada2
CH
1547 if (IS_ERR(inode))
1548 return ERR_CAST(inode);
1549
9308a612
CH
1550 res = d_find_alias(inode);
1551 if (res)
1552 goto out_iput;
1553
1554 tmp = d_alloc(NULL, &anonstring);
1555 if (!tmp) {
1556 res = ERR_PTR(-ENOMEM);
1557 goto out_iput;
4ea3ada2 1558 }
9308a612
CH
1559 tmp->d_parent = tmp; /* make sure dput doesn't croak */
1560
b5c84bf6 1561
873feea0 1562 spin_lock(&inode->i_lock);
9308a612
CH
1563 res = __d_find_alias(inode, 0);
1564 if (res) {
873feea0 1565 spin_unlock(&inode->i_lock);
9308a612
CH
1566 dput(tmp);
1567 goto out_iput;
1568 }
1569
1570 /* attach a disconnected dentry */
1571 spin_lock(&tmp->d_lock);
1572 tmp->d_sb = inode->i_sb;
c8aebb0c 1573 d_set_d_op(tmp, tmp->d_sb->s_d_op);
9308a612
CH
1574 tmp->d_inode = inode;
1575 tmp->d_flags |= DCACHE_DISCONNECTED;
9308a612 1576 list_add(&tmp->d_alias, &inode->i_dentry);
ceb5bdc2
NP
1577 bit_spin_lock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
1578 tmp->d_flags &= ~DCACHE_UNHASHED;
1579 hlist_bl_add_head(&tmp->d_hash, &tmp->d_sb->s_anon);
1580 __bit_spin_unlock(0, (unsigned long *)&tmp->d_sb->s_anon.first);
9308a612 1581 spin_unlock(&tmp->d_lock);
873feea0 1582 spin_unlock(&inode->i_lock);
9308a612 1583
9308a612
CH
1584 return tmp;
1585
1586 out_iput:
1587 iput(inode);
1588 return res;
4ea3ada2 1589}
adc48720 1590EXPORT_SYMBOL(d_obtain_alias);
1da177e4
LT
1591
1592/**
1593 * d_splice_alias - splice a disconnected dentry into the tree if one exists
1594 * @inode: the inode which may have a disconnected dentry
1595 * @dentry: a negative dentry which we want to point to the inode.
1596 *
1597 * If inode is a directory and has a 'disconnected' dentry (i.e. IS_ROOT and
1598 * DCACHE_DISCONNECTED), then d_move that in place of the given dentry
1599 * and return it, else simply d_add the inode to the dentry and return NULL.
1600 *
1601 * This is needed in the lookup routine of any filesystem that is exportable
1602 * (via knfsd) so that we can build dcache paths to directories effectively.
1603 *
1604 * If a dentry was found and moved, then it is returned. Otherwise NULL
1605 * is returned. This matches the expected return value of ->lookup.
1606 *
1607 */
1608struct dentry *d_splice_alias(struct inode *inode, struct dentry *dentry)
1609{
1610 struct dentry *new = NULL;
1611
21c0d8fd 1612 if (inode && S_ISDIR(inode->i_mode)) {
873feea0 1613 spin_lock(&inode->i_lock);
1da177e4
LT
1614 new = __d_find_alias(inode, 1);
1615 if (new) {
1616 BUG_ON(!(new->d_flags & DCACHE_DISCONNECTED));
873feea0 1617 spin_unlock(&inode->i_lock);
1da177e4 1618 security_d_instantiate(new, inode);
1da177e4
LT
1619 d_move(new, dentry);
1620 iput(inode);
1621 } else {
873feea0 1622 /* already taking inode->i_lock, so d_add() by hand */
360da900 1623 __d_instantiate(dentry, inode);
873feea0 1624 spin_unlock(&inode->i_lock);
1da177e4
LT
1625 security_d_instantiate(dentry, inode);
1626 d_rehash(dentry);
1627 }
1628 } else
1629 d_add(dentry, inode);
1630 return new;
1631}
ec4f8605 1632EXPORT_SYMBOL(d_splice_alias);
1da177e4 1633
9403540c
BN
1634/**
1635 * d_add_ci - lookup or allocate new dentry with case-exact name
1636 * @inode: the inode case-insensitive lookup has found
1637 * @dentry: the negative dentry that was passed to the parent's lookup func
1638 * @name: the case-exact name to be associated with the returned dentry
1639 *
1640 * This is to avoid filling the dcache with case-insensitive names to the
1641 * same inode, only the actual correct case is stored in the dcache for
1642 * case-insensitive filesystems.
1643 *
1644 * For a case-insensitive lookup match and if the the case-exact dentry
1645 * already exists in in the dcache, use it and return it.
1646 *
1647 * If no entry exists with the exact case name, allocate new dentry with
1648 * the exact case, and return the spliced entry.
1649 */
e45b590b 1650struct dentry *d_add_ci(struct dentry *dentry, struct inode *inode,
9403540c
BN
1651 struct qstr *name)
1652{
1653 int error;
1654 struct dentry *found;
1655 struct dentry *new;
1656
b6520c81
CH
1657 /*
1658 * First check if a dentry matching the name already exists,
1659 * if not go ahead and create it now.
1660 */
9403540c 1661 found = d_hash_and_lookup(dentry->d_parent, name);
9403540c
BN
1662 if (!found) {
1663 new = d_alloc(dentry->d_parent, name);
1664 if (!new) {
1665 error = -ENOMEM;
1666 goto err_out;
1667 }
b6520c81 1668
9403540c
BN
1669 found = d_splice_alias(inode, new);
1670 if (found) {
1671 dput(new);
1672 return found;
1673 }
1674 return new;
1675 }
b6520c81
CH
1676
1677 /*
1678 * If a matching dentry exists, and it's not negative use it.
1679 *
1680 * Decrement the reference count to balance the iget() done
1681 * earlier on.
1682 */
9403540c
BN
1683 if (found->d_inode) {
1684 if (unlikely(found->d_inode != inode)) {
1685 /* This can't happen because bad inodes are unhashed. */
1686 BUG_ON(!is_bad_inode(inode));
1687 BUG_ON(!is_bad_inode(found->d_inode));
1688 }
9403540c
BN
1689 iput(inode);
1690 return found;
1691 }
b6520c81 1692
9403540c
BN
1693 /*
1694 * Negative dentry: instantiate it unless the inode is a directory and
b6520c81 1695 * already has a dentry.
9403540c 1696 */
873feea0 1697 spin_lock(&inode->i_lock);
b6520c81 1698 if (!S_ISDIR(inode->i_mode) || list_empty(&inode->i_dentry)) {
360da900 1699 __d_instantiate(found, inode);
873feea0 1700 spin_unlock(&inode->i_lock);
9403540c
BN
1701 security_d_instantiate(found, inode);
1702 return found;
1703 }
b6520c81 1704
9403540c 1705 /*
b6520c81
CH
1706 * In case a directory already has a (disconnected) entry grab a
1707 * reference to it, move it in place and use it.
9403540c
BN
1708 */
1709 new = list_entry(inode->i_dentry.next, struct dentry, d_alias);
dc0474be 1710 __dget(new);
873feea0 1711 spin_unlock(&inode->i_lock);
9403540c 1712 security_d_instantiate(found, inode);
9403540c 1713 d_move(new, found);
9403540c 1714 iput(inode);
9403540c 1715 dput(found);
9403540c
BN
1716 return new;
1717
1718err_out:
1719 iput(inode);
1720 return ERR_PTR(error);
1721}
ec4f8605 1722EXPORT_SYMBOL(d_add_ci);
1da177e4 1723
31e6b01f
NP
1724/**
1725 * __d_lookup_rcu - search for a dentry (racy, store-free)
1726 * @parent: parent dentry
1727 * @name: qstr of name we wish to find
1728 * @seq: returns d_seq value at the point where the dentry was found
1729 * @inode: returns dentry->d_inode when the inode was found valid.
1730 * Returns: dentry, or NULL
1731 *
1732 * __d_lookup_rcu is the dcache lookup function for rcu-walk name
1733 * resolution (store-free path walking) design described in
1734 * Documentation/filesystems/path-lookup.txt.
1735 *
1736 * This is not to be used outside core vfs.
1737 *
1738 * __d_lookup_rcu must only be used in rcu-walk mode, ie. with vfsmount lock
1739 * held, and rcu_read_lock held. The returned dentry must not be stored into
1740 * without taking d_lock and checking d_seq sequence count against @seq
1741 * returned here.
1742 *
1743 * A refcount may be taken on the found dentry with the __d_rcu_to_refcount
1744 * function.
1745 *
1746 * Alternatively, __d_lookup_rcu may be called again to look up the child of
1747 * the returned dentry, so long as its parent's seqlock is checked after the
1748 * child is looked up. Thus, an interlocking stepping of sequence lock checks
1749 * is formed, giving integrity down the path walk.
1750 */
1751struct dentry *__d_lookup_rcu(struct dentry *parent, struct qstr *name,
1752 unsigned *seq, struct inode **inode)
1753{
1754 unsigned int len = name->len;
1755 unsigned int hash = name->hash;
1756 const unsigned char *str = name->name;
ceb5bdc2
NP
1757 struct dcache_hash_bucket *b = d_hash(parent, hash);
1758 struct hlist_bl_node *node;
31e6b01f
NP
1759 struct dentry *dentry;
1760
1761 /*
1762 * Note: There is significant duplication with __d_lookup_rcu which is
1763 * required to prevent single threaded performance regressions
1764 * especially on architectures where smp_rmb (in seqcounts) are costly.
1765 * Keep the two functions in sync.
1766 */
1767
1768 /*
1769 * The hash list is protected using RCU.
1770 *
1771 * Carefully use d_seq when comparing a candidate dentry, to avoid
1772 * races with d_move().
1773 *
1774 * It is possible that concurrent renames can mess up our list
1775 * walk here and result in missing our dentry, resulting in the
1776 * false-negative result. d_lookup() protects against concurrent
1777 * renames using rename_lock seqlock.
1778 *
1779 * See Documentation/vfs/dcache-locking.txt for more details.
1780 */
ceb5bdc2 1781 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
31e6b01f
NP
1782 struct inode *i;
1783 const char *tname;
1784 int tlen;
1785
1786 if (dentry->d_name.hash != hash)
1787 continue;
1788
1789seqretry:
1790 *seq = read_seqcount_begin(&dentry->d_seq);
1791 if (dentry->d_parent != parent)
1792 continue;
1793 if (d_unhashed(dentry))
1794 continue;
1795 tlen = dentry->d_name.len;
1796 tname = dentry->d_name.name;
1797 i = dentry->d_inode;
e1bb5782
NP
1798 prefetch(tname);
1799 if (i)
1800 prefetch(i);
31e6b01f
NP
1801 /*
1802 * This seqcount check is required to ensure name and
1803 * len are loaded atomically, so as not to walk off the
1804 * edge of memory when walking. If we could load this
1805 * atomically some other way, we could drop this check.
1806 */
1807 if (read_seqcount_retry(&dentry->d_seq, *seq))
1808 goto seqretry;
fb045adb 1809 if (parent->d_flags & DCACHE_OP_COMPARE) {
31e6b01f
NP
1810 if (parent->d_op->d_compare(parent, *inode,
1811 dentry, i,
1812 tlen, tname, name))
1813 continue;
1814 } else {
9d55c369 1815 if (dentry_cmp(tname, tlen, str, len))
31e6b01f
NP
1816 continue;
1817 }
1818 /*
1819 * No extra seqcount check is required after the name
1820 * compare. The caller must perform a seqcount check in
1821 * order to do anything useful with the returned dentry
1822 * anyway.
1823 */
1824 *inode = i;
1825 return dentry;
1826 }
1827 return NULL;
1828}
1829
1da177e4
LT
1830/**
1831 * d_lookup - search for a dentry
1832 * @parent: parent dentry
1833 * @name: qstr of name we wish to find
b04f784e 1834 * Returns: dentry, or NULL
1da177e4 1835 *
b04f784e
NP
1836 * d_lookup searches the children of the parent dentry for the name in
1837 * question. If the dentry is found its reference count is incremented and the
1838 * dentry is returned. The caller must use dput to free the entry when it has
1839 * finished using it. %NULL is returned if the dentry does not exist.
1da177e4 1840 */
31e6b01f 1841struct dentry *d_lookup(struct dentry *parent, struct qstr *name)
1da177e4 1842{
31e6b01f 1843 struct dentry *dentry;
949854d0 1844 unsigned seq;
1da177e4
LT
1845
1846 do {
1847 seq = read_seqbegin(&rename_lock);
1848 dentry = __d_lookup(parent, name);
1849 if (dentry)
1850 break;
1851 } while (read_seqretry(&rename_lock, seq));
1852 return dentry;
1853}
ec4f8605 1854EXPORT_SYMBOL(d_lookup);
1da177e4 1855
31e6b01f 1856/**
b04f784e
NP
1857 * __d_lookup - search for a dentry (racy)
1858 * @parent: parent dentry
1859 * @name: qstr of name we wish to find
1860 * Returns: dentry, or NULL
1861 *
1862 * __d_lookup is like d_lookup, however it may (rarely) return a
1863 * false-negative result due to unrelated rename activity.
1864 *
1865 * __d_lookup is slightly faster by avoiding rename_lock read seqlock,
1866 * however it must be used carefully, eg. with a following d_lookup in
1867 * the case of failure.
1868 *
1869 * __d_lookup callers must be commented.
1870 */
31e6b01f 1871struct dentry *__d_lookup(struct dentry *parent, struct qstr *name)
1da177e4
LT
1872{
1873 unsigned int len = name->len;
1874 unsigned int hash = name->hash;
1875 const unsigned char *str = name->name;
ceb5bdc2
NP
1876 struct dcache_hash_bucket *b = d_hash(parent, hash);
1877 struct hlist_bl_node *node;
31e6b01f 1878 struct dentry *found = NULL;
665a7583 1879 struct dentry *dentry;
1da177e4 1880
31e6b01f
NP
1881 /*
1882 * Note: There is significant duplication with __d_lookup_rcu which is
1883 * required to prevent single threaded performance regressions
1884 * especially on architectures where smp_rmb (in seqcounts) are costly.
1885 * Keep the two functions in sync.
1886 */
1887
b04f784e
NP
1888 /*
1889 * The hash list is protected using RCU.
1890 *
1891 * Take d_lock when comparing a candidate dentry, to avoid races
1892 * with d_move().
1893 *
1894 * It is possible that concurrent renames can mess up our list
1895 * walk here and result in missing our dentry, resulting in the
1896 * false-negative result. d_lookup() protects against concurrent
1897 * renames using rename_lock seqlock.
1898 *
1899 * See Documentation/vfs/dcache-locking.txt for more details.
1900 */
1da177e4
LT
1901 rcu_read_lock();
1902
ceb5bdc2 1903 hlist_bl_for_each_entry_rcu(dentry, node, &b->head, d_hash) {
31e6b01f
NP
1904 const char *tname;
1905 int tlen;
1da177e4 1906
1da177e4
LT
1907 if (dentry->d_name.hash != hash)
1908 continue;
1da177e4
LT
1909
1910 spin_lock(&dentry->d_lock);
1da177e4
LT
1911 if (dentry->d_parent != parent)
1912 goto next;
d0185c08
LT
1913 if (d_unhashed(dentry))
1914 goto next;
1915
1da177e4
LT
1916 /*
1917 * It is safe to compare names since d_move() cannot
1918 * change the qstr (protected by d_lock).
1919 */
31e6b01f
NP
1920 tlen = dentry->d_name.len;
1921 tname = dentry->d_name.name;
fb045adb 1922 if (parent->d_flags & DCACHE_OP_COMPARE) {
621e155a
NP
1923 if (parent->d_op->d_compare(parent, parent->d_inode,
1924 dentry, dentry->d_inode,
31e6b01f 1925 tlen, tname, name))
1da177e4
LT
1926 goto next;
1927 } else {
9d55c369 1928 if (dentry_cmp(tname, tlen, str, len))
1da177e4
LT
1929 goto next;
1930 }
1931
b7ab39f6 1932 dentry->d_count++;
d0185c08 1933 found = dentry;
1da177e4
LT
1934 spin_unlock(&dentry->d_lock);
1935 break;
1936next:
1937 spin_unlock(&dentry->d_lock);
1938 }
1939 rcu_read_unlock();
1940
1941 return found;
1942}
1943
3e7e241f
EB
1944/**
1945 * d_hash_and_lookup - hash the qstr then search for a dentry
1946 * @dir: Directory to search in
1947 * @name: qstr of name we wish to find
1948 *
1949 * On hash failure or on lookup failure NULL is returned.
1950 */
1951struct dentry *d_hash_and_lookup(struct dentry *dir, struct qstr *name)
1952{
1953 struct dentry *dentry = NULL;
1954
1955 /*
1956 * Check for a fs-specific hash function. Note that we must
1957 * calculate the standard hash first, as the d_op->d_hash()
1958 * routine may choose to leave the hash value unchanged.
1959 */
1960 name->hash = full_name_hash(name->name, name->len);
fb045adb 1961 if (dir->d_flags & DCACHE_OP_HASH) {
b1e6a015 1962 if (dir->d_op->d_hash(dir, dir->d_inode, name) < 0)
3e7e241f
EB
1963 goto out;
1964 }
1965 dentry = d_lookup(dir, name);
1966out:
1967 return dentry;
1968}
1969
1da177e4 1970/**
786a5e15 1971 * d_validate - verify dentry provided from insecure source (deprecated)
1da177e4 1972 * @dentry: The dentry alleged to be valid child of @dparent
1c977540 1973 * @parent: The parent dentry (known to be valid)
1da177e4
LT
1974 *
1975 * An insecure source has sent us a dentry, here we verify it and dget() it.
1976 * This is used by ncpfs in its readdir implementation.
1977 * Zero is returned in the dentry is invalid.
786a5e15
NP
1978 *
1979 * This function is slow for big directories, and deprecated, do not use it.
1da177e4 1980 */
d3a23e16 1981int d_validate(struct dentry *dentry, struct dentry *dparent)
1da177e4 1982{
786a5e15 1983 struct dentry *child;
d3a23e16 1984
2fd6b7f5 1985 spin_lock(&dparent->d_lock);
786a5e15
NP
1986 list_for_each_entry(child, &dparent->d_subdirs, d_u.d_child) {
1987 if (dentry == child) {
2fd6b7f5 1988 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
dc0474be 1989 __dget_dlock(dentry);
2fd6b7f5
NP
1990 spin_unlock(&dentry->d_lock);
1991 spin_unlock(&dparent->d_lock);
1da177e4
LT
1992 return 1;
1993 }
1994 }
2fd6b7f5 1995 spin_unlock(&dparent->d_lock);
786a5e15 1996
1da177e4
LT
1997 return 0;
1998}
ec4f8605 1999EXPORT_SYMBOL(d_validate);
1da177e4
LT
2000
2001/*
2002 * When a file is deleted, we have two options:
2003 * - turn this dentry into a negative dentry
2004 * - unhash this dentry and free it.
2005 *
2006 * Usually, we want to just turn this into
2007 * a negative dentry, but if anybody else is
2008 * currently using the dentry or the inode
2009 * we can't do that and we fall back on removing
2010 * it from the hash queues and waiting for
2011 * it to be deleted later when it has no users
2012 */
2013
2014/**
2015 * d_delete - delete a dentry
2016 * @dentry: The dentry to delete
2017 *
2018 * Turn the dentry into a negative dentry if possible, otherwise
2019 * remove it from the hash queues so it can be deleted later
2020 */
2021
2022void d_delete(struct dentry * dentry)
2023{
873feea0 2024 struct inode *inode;
7a91bf7f 2025 int isdir = 0;
1da177e4
LT
2026 /*
2027 * Are we the only user?
2028 */
357f8e65 2029again:
1da177e4 2030 spin_lock(&dentry->d_lock);
873feea0
NP
2031 inode = dentry->d_inode;
2032 isdir = S_ISDIR(inode->i_mode);
b7ab39f6 2033 if (dentry->d_count == 1) {
873feea0 2034 if (inode && !spin_trylock(&inode->i_lock)) {
357f8e65
NP
2035 spin_unlock(&dentry->d_lock);
2036 cpu_relax();
2037 goto again;
2038 }
13e3c5e5 2039 dentry->d_flags &= ~DCACHE_CANT_MOUNT;
31e6b01f 2040 dentry_unlink_inode(dentry);
7a91bf7f 2041 fsnotify_nameremove(dentry, isdir);
1da177e4
LT
2042 return;
2043 }
2044
2045 if (!d_unhashed(dentry))
2046 __d_drop(dentry);
2047
2048 spin_unlock(&dentry->d_lock);
7a91bf7f
JM
2049
2050 fsnotify_nameremove(dentry, isdir);
1da177e4 2051}
ec4f8605 2052EXPORT_SYMBOL(d_delete);
1da177e4 2053
ceb5bdc2 2054static void __d_rehash(struct dentry * entry, struct dcache_hash_bucket *b)
1da177e4 2055{
ceb5bdc2
NP
2056 BUG_ON(!d_unhashed(entry));
2057 spin_lock_bucket(b);
1da177e4 2058 entry->d_flags &= ~DCACHE_UNHASHED;
ceb5bdc2
NP
2059 hlist_bl_add_head_rcu(&entry->d_hash, &b->head);
2060 spin_unlock_bucket(b);
1da177e4
LT
2061}
2062
770bfad8
DH
2063static void _d_rehash(struct dentry * entry)
2064{
2065 __d_rehash(entry, d_hash(entry->d_parent, entry->d_name.hash));
2066}
2067
1da177e4
LT
2068/**
2069 * d_rehash - add an entry back to the hash
2070 * @entry: dentry to add to the hash
2071 *
2072 * Adds a dentry to the hash according to its name.
2073 */
2074
2075void d_rehash(struct dentry * entry)
2076{
1da177e4 2077 spin_lock(&entry->d_lock);
770bfad8 2078 _d_rehash(entry);
1da177e4 2079 spin_unlock(&entry->d_lock);
1da177e4 2080}
ec4f8605 2081EXPORT_SYMBOL(d_rehash);
1da177e4 2082
fb2d5b86
NP
2083/**
2084 * dentry_update_name_case - update case insensitive dentry with a new name
2085 * @dentry: dentry to be updated
2086 * @name: new name
2087 *
2088 * Update a case insensitive dentry with new case of name.
2089 *
2090 * dentry must have been returned by d_lookup with name @name. Old and new
2091 * name lengths must match (ie. no d_compare which allows mismatched name
2092 * lengths).
2093 *
2094 * Parent inode i_mutex must be held over d_lookup and into this call (to
2095 * keep renames and concurrent inserts, and readdir(2) away).
2096 */
2097void dentry_update_name_case(struct dentry *dentry, struct qstr *name)
2098{
2099 BUG_ON(!mutex_is_locked(&dentry->d_inode->i_mutex));
2100 BUG_ON(dentry->d_name.len != name->len); /* d_lookup gives this */
2101
fb2d5b86 2102 spin_lock(&dentry->d_lock);
31e6b01f 2103 write_seqcount_begin(&dentry->d_seq);
fb2d5b86 2104 memcpy((unsigned char *)dentry->d_name.name, name->name, name->len);
31e6b01f 2105 write_seqcount_end(&dentry->d_seq);
fb2d5b86 2106 spin_unlock(&dentry->d_lock);
fb2d5b86
NP
2107}
2108EXPORT_SYMBOL(dentry_update_name_case);
2109
1da177e4
LT
2110static void switch_names(struct dentry *dentry, struct dentry *target)
2111{
2112 if (dname_external(target)) {
2113 if (dname_external(dentry)) {
2114 /*
2115 * Both external: swap the pointers
2116 */
9a8d5bb4 2117 swap(target->d_name.name, dentry->d_name.name);
1da177e4
LT
2118 } else {
2119 /*
2120 * dentry:internal, target:external. Steal target's
2121 * storage and make target internal.
2122 */
321bcf92
BF
2123 memcpy(target->d_iname, dentry->d_name.name,
2124 dentry->d_name.len + 1);
1da177e4
LT
2125 dentry->d_name.name = target->d_name.name;
2126 target->d_name.name = target->d_iname;
2127 }
2128 } else {
2129 if (dname_external(dentry)) {
2130 /*
2131 * dentry:external, target:internal. Give dentry's
2132 * storage to target and make dentry internal
2133 */
2134 memcpy(dentry->d_iname, target->d_name.name,
2135 target->d_name.len + 1);
2136 target->d_name.name = dentry->d_name.name;
2137 dentry->d_name.name = dentry->d_iname;
2138 } else {
2139 /*
2140 * Both are internal. Just copy target to dentry
2141 */
2142 memcpy(dentry->d_iname, target->d_name.name,
2143 target->d_name.len + 1);
dc711ca3
AV
2144 dentry->d_name.len = target->d_name.len;
2145 return;
1da177e4
LT
2146 }
2147 }
9a8d5bb4 2148 swap(dentry->d_name.len, target->d_name.len);
1da177e4
LT
2149}
2150
2fd6b7f5
NP
2151static void dentry_lock_for_move(struct dentry *dentry, struct dentry *target)
2152{
2153 /*
2154 * XXXX: do we really need to take target->d_lock?
2155 */
2156 if (IS_ROOT(dentry) || dentry->d_parent == target->d_parent)
2157 spin_lock(&target->d_parent->d_lock);
2158 else {
2159 if (d_ancestor(dentry->d_parent, target->d_parent)) {
2160 spin_lock(&dentry->d_parent->d_lock);
2161 spin_lock_nested(&target->d_parent->d_lock,
2162 DENTRY_D_LOCK_NESTED);
2163 } else {
2164 spin_lock(&target->d_parent->d_lock);
2165 spin_lock_nested(&dentry->d_parent->d_lock,
2166 DENTRY_D_LOCK_NESTED);
2167 }
2168 }
2169 if (target < dentry) {
2170 spin_lock_nested(&target->d_lock, 2);
2171 spin_lock_nested(&dentry->d_lock, 3);
2172 } else {
2173 spin_lock_nested(&dentry->d_lock, 2);
2174 spin_lock_nested(&target->d_lock, 3);
2175 }
2176}
2177
2178static void dentry_unlock_parents_for_move(struct dentry *dentry,
2179 struct dentry *target)
2180{
2181 if (target->d_parent != dentry->d_parent)
2182 spin_unlock(&dentry->d_parent->d_lock);
2183 if (target->d_parent != target)
2184 spin_unlock(&target->d_parent->d_lock);
2185}
2186
1da177e4 2187/*
2fd6b7f5
NP
2188 * When switching names, the actual string doesn't strictly have to
2189 * be preserved in the target - because we're dropping the target
2190 * anyway. As such, we can just do a simple memcpy() to copy over
2191 * the new name before we switch.
2192 *
2193 * Note that we have to be a lot more careful about getting the hash
2194 * switched - we have to switch the hash value properly even if it
2195 * then no longer matches the actual (corrupted) string of the target.
2196 * The hash value has to match the hash queue that the dentry is on..
1da177e4 2197 */
9eaef27b 2198/*
b5c84bf6 2199 * d_move - move a dentry
1da177e4
LT
2200 * @dentry: entry to move
2201 * @target: new dentry
2202 *
2203 * Update the dcache to reflect the move of a file name. Negative
2204 * dcache entries should not be moved in this way.
2205 */
b5c84bf6 2206void d_move(struct dentry * dentry, struct dentry * target)
1da177e4 2207{
1da177e4
LT
2208 if (!dentry->d_inode)
2209 printk(KERN_WARNING "VFS: moving negative dcache entry\n");
2210
2fd6b7f5
NP
2211 BUG_ON(d_ancestor(dentry, target));
2212 BUG_ON(d_ancestor(target, dentry));
2213
1da177e4 2214 write_seqlock(&rename_lock);
2fd6b7f5
NP
2215
2216 dentry_lock_for_move(dentry, target);
1da177e4 2217
31e6b01f
NP
2218 write_seqcount_begin(&dentry->d_seq);
2219 write_seqcount_begin(&target->d_seq);
2220
ceb5bdc2
NP
2221 /* __d_drop does write_seqcount_barrier, but they're OK to nest. */
2222
2223 /*
2224 * Move the dentry to the target hash queue. Don't bother checking
2225 * for the same hash queue because of how unlikely it is.
2226 */
2227 __d_drop(dentry);
789680d1 2228 __d_rehash(dentry, d_hash(target->d_parent, target->d_name.hash));
1da177e4
LT
2229
2230 /* Unhash the target: dput() will then get rid of it */
2231 __d_drop(target);
2232
5160ee6f
ED
2233 list_del(&dentry->d_u.d_child);
2234 list_del(&target->d_u.d_child);
1da177e4
LT
2235
2236 /* Switch the names.. */
2237 switch_names(dentry, target);
9a8d5bb4 2238 swap(dentry->d_name.hash, target->d_name.hash);
1da177e4
LT
2239
2240 /* ... and switch the parents */
2241 if (IS_ROOT(dentry)) {
2242 dentry->d_parent = target->d_parent;
2243 target->d_parent = target;
5160ee6f 2244 INIT_LIST_HEAD(&target->d_u.d_child);
1da177e4 2245 } else {
9a8d5bb4 2246 swap(dentry->d_parent, target->d_parent);
1da177e4
LT
2247
2248 /* And add them back to the (new) parent lists */
5160ee6f 2249 list_add(&target->d_u.d_child, &target->d_parent->d_subdirs);
1da177e4
LT
2250 }
2251
5160ee6f 2252 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2fd6b7f5 2253
31e6b01f
NP
2254 write_seqcount_end(&target->d_seq);
2255 write_seqcount_end(&dentry->d_seq);
2256
2fd6b7f5 2257 dentry_unlock_parents_for_move(dentry, target);
1da177e4 2258 spin_unlock(&target->d_lock);
c32ccd87 2259 fsnotify_d_move(dentry);
1da177e4
LT
2260 spin_unlock(&dentry->d_lock);
2261 write_sequnlock(&rename_lock);
9eaef27b 2262}
ec4f8605 2263EXPORT_SYMBOL(d_move);
1da177e4 2264
e2761a11
OH
2265/**
2266 * d_ancestor - search for an ancestor
2267 * @p1: ancestor dentry
2268 * @p2: child dentry
2269 *
2270 * Returns the ancestor dentry of p2 which is a child of p1, if p1 is
2271 * an ancestor of p2, else NULL.
9eaef27b 2272 */
e2761a11 2273struct dentry *d_ancestor(struct dentry *p1, struct dentry *p2)
9eaef27b
TM
2274{
2275 struct dentry *p;
2276
871c0067 2277 for (p = p2; !IS_ROOT(p); p = p->d_parent) {
9eaef27b 2278 if (p->d_parent == p1)
e2761a11 2279 return p;
9eaef27b 2280 }
e2761a11 2281 return NULL;
9eaef27b
TM
2282}
2283
2284/*
2285 * This helper attempts to cope with remotely renamed directories
2286 *
2287 * It assumes that the caller is already holding
873feea0 2288 * dentry->d_parent->d_inode->i_mutex and the inode->i_lock
9eaef27b
TM
2289 *
2290 * Note: If ever the locking in lock_rename() changes, then please
2291 * remember to update this too...
9eaef27b 2292 */
873feea0
NP
2293static struct dentry *__d_unalias(struct inode *inode,
2294 struct dentry *dentry, struct dentry *alias)
9eaef27b
TM
2295{
2296 struct mutex *m1 = NULL, *m2 = NULL;
2297 struct dentry *ret;
2298
2299 /* If alias and dentry share a parent, then no extra locks required */
2300 if (alias->d_parent == dentry->d_parent)
2301 goto out_unalias;
2302
2303 /* Check for loops */
2304 ret = ERR_PTR(-ELOOP);
e2761a11 2305 if (d_ancestor(alias, dentry))
9eaef27b
TM
2306 goto out_err;
2307
2308 /* See lock_rename() */
2309 ret = ERR_PTR(-EBUSY);
2310 if (!mutex_trylock(&dentry->d_sb->s_vfs_rename_mutex))
2311 goto out_err;
2312 m1 = &dentry->d_sb->s_vfs_rename_mutex;
2313 if (!mutex_trylock(&alias->d_parent->d_inode->i_mutex))
2314 goto out_err;
2315 m2 = &alias->d_parent->d_inode->i_mutex;
2316out_unalias:
b5c84bf6 2317 d_move(alias, dentry);
9eaef27b
TM
2318 ret = alias;
2319out_err:
873feea0 2320 spin_unlock(&inode->i_lock);
9eaef27b
TM
2321 if (m2)
2322 mutex_unlock(m2);
2323 if (m1)
2324 mutex_unlock(m1);
2325 return ret;
2326}
2327
770bfad8
DH
2328/*
2329 * Prepare an anonymous dentry for life in the superblock's dentry tree as a
2330 * named dentry in place of the dentry to be replaced.
2fd6b7f5 2331 * returns with anon->d_lock held!
770bfad8
DH
2332 */
2333static void __d_materialise_dentry(struct dentry *dentry, struct dentry *anon)
2334{
2335 struct dentry *dparent, *aparent;
2336
2fd6b7f5 2337 dentry_lock_for_move(anon, dentry);
770bfad8 2338
31e6b01f
NP
2339 write_seqcount_begin(&dentry->d_seq);
2340 write_seqcount_begin(&anon->d_seq);
2341
770bfad8
DH
2342 dparent = dentry->d_parent;
2343 aparent = anon->d_parent;
2344
2fd6b7f5
NP
2345 switch_names(dentry, anon);
2346 swap(dentry->d_name.hash, anon->d_name.hash);
2347
770bfad8
DH
2348 dentry->d_parent = (aparent == anon) ? dentry : aparent;
2349 list_del(&dentry->d_u.d_child);
2350 if (!IS_ROOT(dentry))
2351 list_add(&dentry->d_u.d_child, &dentry->d_parent->d_subdirs);
2352 else
2353 INIT_LIST_HEAD(&dentry->d_u.d_child);
2354
2355 anon->d_parent = (dparent == dentry) ? anon : dparent;
2356 list_del(&anon->d_u.d_child);
2357 if (!IS_ROOT(anon))
2358 list_add(&anon->d_u.d_child, &anon->d_parent->d_subdirs);
2359 else
2360 INIT_LIST_HEAD(&anon->d_u.d_child);
2361
31e6b01f
NP
2362 write_seqcount_end(&dentry->d_seq);
2363 write_seqcount_end(&anon->d_seq);
2364
2fd6b7f5
NP
2365 dentry_unlock_parents_for_move(anon, dentry);
2366 spin_unlock(&dentry->d_lock);
2367
2368 /* anon->d_lock still locked, returns locked */
770bfad8
DH
2369 anon->d_flags &= ~DCACHE_DISCONNECTED;
2370}
2371
2372/**
2373 * d_materialise_unique - introduce an inode into the tree
2374 * @dentry: candidate dentry
2375 * @inode: inode to bind to the dentry, to which aliases may be attached
2376 *
2377 * Introduces an dentry into the tree, substituting an extant disconnected
2378 * root directory alias in its place if there is one
2379 */
2380struct dentry *d_materialise_unique(struct dentry *dentry, struct inode *inode)
2381{
9eaef27b 2382 struct dentry *actual;
770bfad8
DH
2383
2384 BUG_ON(!d_unhashed(dentry));
2385
770bfad8
DH
2386 if (!inode) {
2387 actual = dentry;
360da900 2388 __d_instantiate(dentry, NULL);
357f8e65
NP
2389 d_rehash(actual);
2390 goto out_nolock;
770bfad8
DH
2391 }
2392
873feea0 2393 spin_lock(&inode->i_lock);
357f8e65 2394
9eaef27b
TM
2395 if (S_ISDIR(inode->i_mode)) {
2396 struct dentry *alias;
2397
2398 /* Does an aliased dentry already exist? */
2399 alias = __d_find_alias(inode, 0);
2400 if (alias) {
2401 actual = alias;
2402 /* Is this an anonymous mountpoint that we could splice
2403 * into our tree? */
2404 if (IS_ROOT(alias)) {
9eaef27b
TM
2405 __d_materialise_dentry(dentry, alias);
2406 __d_drop(alias);
2407 goto found;
2408 }
2409 /* Nope, but we must(!) avoid directory aliasing */
873feea0 2410 actual = __d_unalias(inode, dentry, alias);
9eaef27b
TM
2411 if (IS_ERR(actual))
2412 dput(alias);
2413 goto out_nolock;
2414 }
770bfad8
DH
2415 }
2416
2417 /* Add a unique reference */
2418 actual = __d_instantiate_unique(dentry, inode);
2419 if (!actual)
2420 actual = dentry;
357f8e65
NP
2421 else
2422 BUG_ON(!d_unhashed(actual));
770bfad8 2423
770bfad8
DH
2424 spin_lock(&actual->d_lock);
2425found:
2426 _d_rehash(actual);
2427 spin_unlock(&actual->d_lock);
873feea0 2428 spin_unlock(&inode->i_lock);
9eaef27b 2429out_nolock:
770bfad8
DH
2430 if (actual == dentry) {
2431 security_d_instantiate(dentry, inode);
2432 return NULL;
2433 }
2434
2435 iput(inode);
2436 return actual;
770bfad8 2437}
ec4f8605 2438EXPORT_SYMBOL_GPL(d_materialise_unique);
770bfad8 2439
cdd16d02 2440static int prepend(char **buffer, int *buflen, const char *str, int namelen)
6092d048
RP
2441{
2442 *buflen -= namelen;
2443 if (*buflen < 0)
2444 return -ENAMETOOLONG;
2445 *buffer -= namelen;
2446 memcpy(*buffer, str, namelen);
2447 return 0;
2448}
2449
cdd16d02
MS
2450static int prepend_name(char **buffer, int *buflen, struct qstr *name)
2451{
2452 return prepend(buffer, buflen, name->name, name->len);
2453}
2454
1da177e4 2455/**
f2eb6575
MS
2456 * Prepend path string to a buffer
2457 *
9d1bc601
MS
2458 * @path: the dentry/vfsmount to report
2459 * @root: root vfsmnt/dentry (may be modified by this function)
f2eb6575
MS
2460 * @buffer: pointer to the end of the buffer
2461 * @buflen: pointer to buffer length
552ce544 2462 *
949854d0 2463 * Caller holds the rename_lock.
9d1bc601
MS
2464 *
2465 * If path is not reachable from the supplied root, then the value of
2466 * root is changed (without modifying refcounts).
1da177e4 2467 */
f2eb6575
MS
2468static int prepend_path(const struct path *path, struct path *root,
2469 char **buffer, int *buflen)
1da177e4 2470{
9d1bc601
MS
2471 struct dentry *dentry = path->dentry;
2472 struct vfsmount *vfsmnt = path->mnt;
f2eb6575
MS
2473 bool slash = false;
2474 int error = 0;
6092d048 2475
99b7db7b 2476 br_read_lock(vfsmount_lock);
f2eb6575 2477 while (dentry != root->dentry || vfsmnt != root->mnt) {
1da177e4
LT
2478 struct dentry * parent;
2479
1da177e4 2480 if (dentry == vfsmnt->mnt_root || IS_ROOT(dentry)) {
552ce544 2481 /* Global root? */
1da177e4 2482 if (vfsmnt->mnt_parent == vfsmnt) {
1da177e4
LT
2483 goto global_root;
2484 }
2485 dentry = vfsmnt->mnt_mountpoint;
2486 vfsmnt = vfsmnt->mnt_parent;
1da177e4
LT
2487 continue;
2488 }
2489 parent = dentry->d_parent;
2490 prefetch(parent);
9abca360 2491 spin_lock(&dentry->d_lock);
f2eb6575 2492 error = prepend_name(buffer, buflen, &dentry->d_name);
9abca360 2493 spin_unlock(&dentry->d_lock);
f2eb6575
MS
2494 if (!error)
2495 error = prepend(buffer, buflen, "/", 1);
2496 if (error)
2497 break;
2498
2499 slash = true;
1da177e4
LT
2500 dentry = parent;
2501 }
2502
be285c71 2503out:
f2eb6575
MS
2504 if (!error && !slash)
2505 error = prepend(buffer, buflen, "/", 1);
2506
99b7db7b 2507 br_read_unlock(vfsmount_lock);
f2eb6575 2508 return error;
1da177e4
LT
2509
2510global_root:
98dc568b
MS
2511 /*
2512 * Filesystems needing to implement special "root names"
2513 * should do so with ->d_dname()
2514 */
2515 if (IS_ROOT(dentry) &&
2516 (dentry->d_name.len != 1 || dentry->d_name.name[0] != '/')) {
2517 WARN(1, "Root dentry has weird name <%.*s>\n",
2518 (int) dentry->d_name.len, dentry->d_name.name);
2519 }
9d1bc601
MS
2520 root->mnt = vfsmnt;
2521 root->dentry = dentry;
be285c71 2522 goto out;
f2eb6575 2523}
be285c71 2524
f2eb6575
MS
2525/**
2526 * __d_path - return the path of a dentry
2527 * @path: the dentry/vfsmount to report
2528 * @root: root vfsmnt/dentry (may be modified by this function)
cd956a1c 2529 * @buf: buffer to return value in
f2eb6575
MS
2530 * @buflen: buffer length
2531 *
ffd1f4ed 2532 * Convert a dentry into an ASCII path name.
f2eb6575
MS
2533 *
2534 * Returns a pointer into the buffer or an error code if the
2535 * path was too long.
2536 *
be148247 2537 * "buflen" should be positive.
f2eb6575
MS
2538 *
2539 * If path is not reachable from the supplied root, then the value of
2540 * root is changed (without modifying refcounts).
2541 */
2542char *__d_path(const struct path *path, struct path *root,
2543 char *buf, int buflen)
2544{
2545 char *res = buf + buflen;
2546 int error;
2547
2548 prepend(&res, &buflen, "\0", 1);
949854d0 2549 write_seqlock(&rename_lock);
f2eb6575 2550 error = prepend_path(path, root, &res, &buflen);
949854d0 2551 write_sequnlock(&rename_lock);
be148247 2552
f2eb6575
MS
2553 if (error)
2554 return ERR_PTR(error);
f2eb6575 2555 return res;
1da177e4
LT
2556}
2557
ffd1f4ed
MS
2558/*
2559 * same as __d_path but appends "(deleted)" for unlinked files.
2560 */
2561static int path_with_deleted(const struct path *path, struct path *root,
2562 char **buf, int *buflen)
2563{
2564 prepend(buf, buflen, "\0", 1);
2565 if (d_unlinked(path->dentry)) {
2566 int error = prepend(buf, buflen, " (deleted)", 10);
2567 if (error)
2568 return error;
2569 }
2570
2571 return prepend_path(path, root, buf, buflen);
2572}
2573
8df9d1a4
MS
2574static int prepend_unreachable(char **buffer, int *buflen)
2575{
2576 return prepend(buffer, buflen, "(unreachable)", 13);
2577}
2578
a03a8a70
JB
2579/**
2580 * d_path - return the path of a dentry
cf28b486 2581 * @path: path to report
a03a8a70
JB
2582 * @buf: buffer to return value in
2583 * @buflen: buffer length
2584 *
2585 * Convert a dentry into an ASCII path name. If the entry has been deleted
2586 * the string " (deleted)" is appended. Note that this is ambiguous.
2587 *
52afeefb
AV
2588 * Returns a pointer into the buffer or an error code if the path was
2589 * too long. Note: Callers should use the returned pointer, not the passed
2590 * in buffer, to use the name! The implementation often starts at an offset
2591 * into the buffer, and may leave 0 bytes at the start.
a03a8a70 2592 *
31f3e0b3 2593 * "buflen" should be positive.
a03a8a70 2594 */
20d4fdc1 2595char *d_path(const struct path *path, char *buf, int buflen)
1da177e4 2596{
ffd1f4ed 2597 char *res = buf + buflen;
6ac08c39 2598 struct path root;
9d1bc601 2599 struct path tmp;
ffd1f4ed 2600 int error;
1da177e4 2601
c23fbb6b
ED
2602 /*
2603 * We have various synthetic filesystems that never get mounted. On
2604 * these filesystems dentries are never used for lookup purposes, and
2605 * thus don't need to be hashed. They also don't need a name until a
2606 * user wants to identify the object in /proc/pid/fd/. The little hack
2607 * below allows us to generate a name for these objects on demand:
2608 */
cf28b486
JB
2609 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2610 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
c23fbb6b 2611
f7ad3c6b 2612 get_fs_root(current->fs, &root);
949854d0 2613 write_seqlock(&rename_lock);
9d1bc601 2614 tmp = root;
ffd1f4ed
MS
2615 error = path_with_deleted(path, &tmp, &res, &buflen);
2616 if (error)
2617 res = ERR_PTR(error);
949854d0 2618 write_sequnlock(&rename_lock);
6ac08c39 2619 path_put(&root);
1da177e4
LT
2620 return res;
2621}
ec4f8605 2622EXPORT_SYMBOL(d_path);
1da177e4 2623
8df9d1a4
MS
2624/**
2625 * d_path_with_unreachable - return the path of a dentry
2626 * @path: path to report
2627 * @buf: buffer to return value in
2628 * @buflen: buffer length
2629 *
2630 * The difference from d_path() is that this prepends "(unreachable)"
2631 * to paths which are unreachable from the current process' root.
2632 */
2633char *d_path_with_unreachable(const struct path *path, char *buf, int buflen)
2634{
2635 char *res = buf + buflen;
2636 struct path root;
2637 struct path tmp;
2638 int error;
2639
2640 if (path->dentry->d_op && path->dentry->d_op->d_dname)
2641 return path->dentry->d_op->d_dname(path->dentry, buf, buflen);
2642
2643 get_fs_root(current->fs, &root);
949854d0 2644 write_seqlock(&rename_lock);
8df9d1a4
MS
2645 tmp = root;
2646 error = path_with_deleted(path, &tmp, &res, &buflen);
2647 if (!error && !path_equal(&tmp, &root))
2648 error = prepend_unreachable(&res, &buflen);
949854d0 2649 write_sequnlock(&rename_lock);
8df9d1a4
MS
2650 path_put(&root);
2651 if (error)
2652 res = ERR_PTR(error);
2653
2654 return res;
2655}
2656
c23fbb6b
ED
2657/*
2658 * Helper function for dentry_operations.d_dname() members
2659 */
2660char *dynamic_dname(struct dentry *dentry, char *buffer, int buflen,
2661 const char *fmt, ...)
2662{
2663 va_list args;
2664 char temp[64];
2665 int sz;
2666
2667 va_start(args, fmt);
2668 sz = vsnprintf(temp, sizeof(temp), fmt, args) + 1;
2669 va_end(args);
2670
2671 if (sz > sizeof(temp) || sz > buflen)
2672 return ERR_PTR(-ENAMETOOLONG);
2673
2674 buffer += buflen - sz;
2675 return memcpy(buffer, temp, sz);
2676}
2677
6092d048
RP
2678/*
2679 * Write full pathname from the root of the filesystem into the buffer.
2680 */
ec2447c2 2681static char *__dentry_path(struct dentry *dentry, char *buf, int buflen)
6092d048
RP
2682{
2683 char *end = buf + buflen;
2684 char *retval;
2685
6092d048 2686 prepend(&end, &buflen, "\0", 1);
6092d048
RP
2687 if (buflen < 1)
2688 goto Elong;
2689 /* Get '/' right */
2690 retval = end-1;
2691 *retval = '/';
2692
cdd16d02
MS
2693 while (!IS_ROOT(dentry)) {
2694 struct dentry *parent = dentry->d_parent;
9abca360 2695 int error;
6092d048 2696
6092d048 2697 prefetch(parent);
9abca360
NP
2698 spin_lock(&dentry->d_lock);
2699 error = prepend_name(&end, &buflen, &dentry->d_name);
2700 spin_unlock(&dentry->d_lock);
2701 if (error != 0 || prepend(&end, &buflen, "/", 1) != 0)
6092d048
RP
2702 goto Elong;
2703
2704 retval = end;
2705 dentry = parent;
2706 }
c103135c
AV
2707 return retval;
2708Elong:
2709 return ERR_PTR(-ENAMETOOLONG);
2710}
ec2447c2
NP
2711
2712char *dentry_path_raw(struct dentry *dentry, char *buf, int buflen)
2713{
2714 char *retval;
2715
949854d0 2716 write_seqlock(&rename_lock);
ec2447c2 2717 retval = __dentry_path(dentry, buf, buflen);
949854d0 2718 write_sequnlock(&rename_lock);
ec2447c2
NP
2719
2720 return retval;
2721}
2722EXPORT_SYMBOL(dentry_path_raw);
c103135c
AV
2723
2724char *dentry_path(struct dentry *dentry, char *buf, int buflen)
2725{
2726 char *p = NULL;
2727 char *retval;
2728
949854d0 2729 write_seqlock(&rename_lock);
c103135c
AV
2730 if (d_unlinked(dentry)) {
2731 p = buf + buflen;
2732 if (prepend(&p, &buflen, "//deleted", 10) != 0)
2733 goto Elong;
2734 buflen++;
2735 }
2736 retval = __dentry_path(dentry, buf, buflen);
949854d0 2737 write_sequnlock(&rename_lock);
c103135c
AV
2738 if (!IS_ERR(retval) && p)
2739 *p = '/'; /* restore '/' overriden with '\0' */
6092d048
RP
2740 return retval;
2741Elong:
6092d048
RP
2742 return ERR_PTR(-ENAMETOOLONG);
2743}
2744
1da177e4
LT
2745/*
2746 * NOTE! The user-level library version returns a
2747 * character pointer. The kernel system call just
2748 * returns the length of the buffer filled (which
2749 * includes the ending '\0' character), or a negative
2750 * error value. So libc would do something like
2751 *
2752 * char *getcwd(char * buf, size_t size)
2753 * {
2754 * int retval;
2755 *
2756 * retval = sys_getcwd(buf, size);
2757 * if (retval >= 0)
2758 * return buf;
2759 * errno = -retval;
2760 * return NULL;
2761 * }
2762 */
3cdad428 2763SYSCALL_DEFINE2(getcwd, char __user *, buf, unsigned long, size)
1da177e4 2764{
552ce544 2765 int error;
6ac08c39 2766 struct path pwd, root;
552ce544 2767 char *page = (char *) __get_free_page(GFP_USER);
1da177e4
LT
2768
2769 if (!page)
2770 return -ENOMEM;
2771
f7ad3c6b 2772 get_fs_root_and_pwd(current->fs, &root, &pwd);
1da177e4 2773
552ce544 2774 error = -ENOENT;
949854d0 2775 write_seqlock(&rename_lock);
f3da392e 2776 if (!d_unlinked(pwd.dentry)) {
552ce544 2777 unsigned long len;
9d1bc601 2778 struct path tmp = root;
8df9d1a4
MS
2779 char *cwd = page + PAGE_SIZE;
2780 int buflen = PAGE_SIZE;
1da177e4 2781
8df9d1a4
MS
2782 prepend(&cwd, &buflen, "\0", 1);
2783 error = prepend_path(&pwd, &tmp, &cwd, &buflen);
949854d0 2784 write_sequnlock(&rename_lock);
552ce544 2785
8df9d1a4 2786 if (error)
552ce544
LT
2787 goto out;
2788
8df9d1a4
MS
2789 /* Unreachable from current root */
2790 if (!path_equal(&tmp, &root)) {
2791 error = prepend_unreachable(&cwd, &buflen);
2792 if (error)
2793 goto out;
2794 }
2795
552ce544
LT
2796 error = -ERANGE;
2797 len = PAGE_SIZE + page - cwd;
2798 if (len <= size) {
2799 error = len;
2800 if (copy_to_user(buf, cwd, len))
2801 error = -EFAULT;
2802 }
949854d0
NP
2803 } else {
2804 write_sequnlock(&rename_lock);
949854d0 2805 }
1da177e4
LT
2806
2807out:
6ac08c39
JB
2808 path_put(&pwd);
2809 path_put(&root);
1da177e4
LT
2810 free_page((unsigned long) page);
2811 return error;
2812}
2813
2814/*
2815 * Test whether new_dentry is a subdirectory of old_dentry.
2816 *
2817 * Trivially implemented using the dcache structure
2818 */
2819
2820/**
2821 * is_subdir - is new dentry a subdirectory of old_dentry
2822 * @new_dentry: new dentry
2823 * @old_dentry: old dentry
2824 *
2825 * Returns 1 if new_dentry is a subdirectory of the parent (at any depth).
2826 * Returns 0 otherwise.
2827 * Caller must ensure that "new_dentry" is pinned before calling is_subdir()
2828 */
2829
e2761a11 2830int is_subdir(struct dentry *new_dentry, struct dentry *old_dentry)
1da177e4
LT
2831{
2832 int result;
949854d0 2833 unsigned seq;
1da177e4 2834
e2761a11
OH
2835 if (new_dentry == old_dentry)
2836 return 1;
2837
e2761a11 2838 do {
1da177e4 2839 /* for restarting inner loop in case of seq retry */
1da177e4 2840 seq = read_seqbegin(&rename_lock);
949854d0
NP
2841 /*
2842 * Need rcu_readlock to protect against the d_parent trashing
2843 * due to d_move
2844 */
2845 rcu_read_lock();
e2761a11 2846 if (d_ancestor(old_dentry, new_dentry))
1da177e4 2847 result = 1;
e2761a11
OH
2848 else
2849 result = 0;
949854d0 2850 rcu_read_unlock();
1da177e4 2851 } while (read_seqretry(&rename_lock, seq));
1da177e4
LT
2852
2853 return result;
2854}
2855
2096f759
AV
2856int path_is_under(struct path *path1, struct path *path2)
2857{
2858 struct vfsmount *mnt = path1->mnt;
2859 struct dentry *dentry = path1->dentry;
2860 int res;
99b7db7b
NP
2861
2862 br_read_lock(vfsmount_lock);
2096f759
AV
2863 if (mnt != path2->mnt) {
2864 for (;;) {
2865 if (mnt->mnt_parent == mnt) {
99b7db7b 2866 br_read_unlock(vfsmount_lock);
2096f759
AV
2867 return 0;
2868 }
2869 if (mnt->mnt_parent == path2->mnt)
2870 break;
2871 mnt = mnt->mnt_parent;
2872 }
2873 dentry = mnt->mnt_mountpoint;
2874 }
2875 res = is_subdir(dentry, path2->dentry);
99b7db7b 2876 br_read_unlock(vfsmount_lock);
2096f759
AV
2877 return res;
2878}
2879EXPORT_SYMBOL(path_is_under);
2880
1da177e4
LT
2881void d_genocide(struct dentry *root)
2882{
949854d0 2883 struct dentry *this_parent;
1da177e4 2884 struct list_head *next;
949854d0 2885 unsigned seq;
58db63d0 2886 int locked = 0;
1da177e4 2887
949854d0 2888 seq = read_seqbegin(&rename_lock);
58db63d0
NP
2889again:
2890 this_parent = root;
2fd6b7f5 2891 spin_lock(&this_parent->d_lock);
1da177e4
LT
2892repeat:
2893 next = this_parent->d_subdirs.next;
2894resume:
2895 while (next != &this_parent->d_subdirs) {
2896 struct list_head *tmp = next;
5160ee6f 2897 struct dentry *dentry = list_entry(tmp, struct dentry, d_u.d_child);
1da177e4 2898 next = tmp->next;
949854d0 2899
da502956
NP
2900 spin_lock_nested(&dentry->d_lock, DENTRY_D_LOCK_NESTED);
2901 if (d_unhashed(dentry) || !dentry->d_inode) {
2902 spin_unlock(&dentry->d_lock);
1da177e4 2903 continue;
da502956 2904 }
1da177e4 2905 if (!list_empty(&dentry->d_subdirs)) {
2fd6b7f5
NP
2906 spin_unlock(&this_parent->d_lock);
2907 spin_release(&dentry->d_lock.dep_map, 1, _RET_IP_);
1da177e4 2908 this_parent = dentry;
2fd6b7f5 2909 spin_acquire(&this_parent->d_lock.dep_map, 0, 1, _RET_IP_);
1da177e4
LT
2910 goto repeat;
2911 }
949854d0
NP
2912 if (!(dentry->d_flags & DCACHE_GENOCIDE)) {
2913 dentry->d_flags |= DCACHE_GENOCIDE;
2914 dentry->d_count--;
2915 }
b7ab39f6 2916 spin_unlock(&dentry->d_lock);
1da177e4
LT
2917 }
2918 if (this_parent != root) {
949854d0
NP
2919 struct dentry *tmp;
2920 struct dentry *child;
2921
2922 tmp = this_parent->d_parent;
2923 if (!(this_parent->d_flags & DCACHE_GENOCIDE)) {
2924 this_parent->d_flags |= DCACHE_GENOCIDE;
2925 this_parent->d_count--;
2926 }
2927 rcu_read_lock();
b7ab39f6 2928 spin_unlock(&this_parent->d_lock);
949854d0
NP
2929 child = this_parent;
2930 this_parent = tmp;
2fd6b7f5 2931 spin_lock(&this_parent->d_lock);
949854d0
NP
2932 /* might go back up the wrong parent if we have had a rename
2933 * or deletion */
2934 if (this_parent != child->d_parent ||
58db63d0 2935 (!locked && read_seqretry(&rename_lock, seq))) {
949854d0 2936 spin_unlock(&this_parent->d_lock);
949854d0
NP
2937 rcu_read_unlock();
2938 goto rename_retry;
2939 }
2940 rcu_read_unlock();
2941 next = child->d_u.d_child.next;
1da177e4
LT
2942 goto resume;
2943 }
2fd6b7f5 2944 spin_unlock(&this_parent->d_lock);
58db63d0 2945 if (!locked && read_seqretry(&rename_lock, seq))
949854d0 2946 goto rename_retry;
58db63d0
NP
2947 if (locked)
2948 write_sequnlock(&rename_lock);
2949 return;
2950
2951rename_retry:
2952 locked = 1;
2953 write_seqlock(&rename_lock);
2954 goto again;
1da177e4
LT
2955}
2956
2957/**
2958 * find_inode_number - check for dentry with name
2959 * @dir: directory to check
2960 * @name: Name to find.
2961 *
2962 * Check whether a dentry already exists for the given name,
2963 * and return the inode number if it has an inode. Otherwise
2964 * 0 is returned.
2965 *
2966 * This routine is used to post-process directory listings for
2967 * filesystems using synthetic inode numbers, and is necessary
2968 * to keep getcwd() working.
2969 */
2970
2971ino_t find_inode_number(struct dentry *dir, struct qstr *name)
2972{
2973 struct dentry * dentry;
2974 ino_t ino = 0;
2975
3e7e241f
EB
2976 dentry = d_hash_and_lookup(dir, name);
2977 if (dentry) {
1da177e4
LT
2978 if (dentry->d_inode)
2979 ino = dentry->d_inode->i_ino;
2980 dput(dentry);
2981 }
1da177e4
LT
2982 return ino;
2983}
ec4f8605 2984EXPORT_SYMBOL(find_inode_number);
1da177e4
LT
2985
2986static __initdata unsigned long dhash_entries;
2987static int __init set_dhash_entries(char *str)
2988{
2989 if (!str)
2990 return 0;
2991 dhash_entries = simple_strtoul(str, &str, 0);
2992 return 1;
2993}
2994__setup("dhash_entries=", set_dhash_entries);
2995
2996static void __init dcache_init_early(void)
2997{
2998 int loop;
2999
3000 /* If hashes are distributed across NUMA nodes, defer
3001 * hash allocation until vmalloc space is available.
3002 */
3003 if (hashdist)
3004 return;
3005
3006 dentry_hashtable =
3007 alloc_large_system_hash("Dentry cache",
ceb5bdc2 3008 sizeof(struct dcache_hash_bucket),
1da177e4
LT
3009 dhash_entries,
3010 13,
3011 HASH_EARLY,
3012 &d_hash_shift,
3013 &d_hash_mask,
3014 0);
3015
3016 for (loop = 0; loop < (1 << d_hash_shift); loop++)
ceb5bdc2 3017 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
1da177e4
LT
3018}
3019
74bf17cf 3020static void __init dcache_init(void)
1da177e4
LT
3021{
3022 int loop;
3023
3024 /*
3025 * A constructor could be added for stable state like the lists,
3026 * but it is probably not worth it because of the cache nature
3027 * of the dcache.
3028 */
0a31bd5f
CL
3029 dentry_cache = KMEM_CACHE(dentry,
3030 SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
1da177e4 3031
8e1f936b 3032 register_shrinker(&dcache_shrinker);
1da177e4
LT
3033
3034 /* Hash may have been set up in dcache_init_early */
3035 if (!hashdist)
3036 return;
3037
3038 dentry_hashtable =
3039 alloc_large_system_hash("Dentry cache",
ceb5bdc2 3040 sizeof(struct dcache_hash_bucket),
1da177e4
LT
3041 dhash_entries,
3042 13,
3043 0,
3044 &d_hash_shift,
3045 &d_hash_mask,
3046 0);
3047
3048 for (loop = 0; loop < (1 << d_hash_shift); loop++)
ceb5bdc2 3049 INIT_HLIST_BL_HEAD(&dentry_hashtable[loop].head);
1da177e4
LT
3050}
3051
3052/* SLAB cache for __getname() consumers */
e18b890b 3053struct kmem_cache *names_cachep __read_mostly;
ec4f8605 3054EXPORT_SYMBOL(names_cachep);
1da177e4 3055
1da177e4
LT
3056EXPORT_SYMBOL(d_genocide);
3057
1da177e4
LT
3058void __init vfs_caches_init_early(void)
3059{
3060 dcache_init_early();
3061 inode_init_early();
3062}
3063
3064void __init vfs_caches_init(unsigned long mempages)
3065{
3066 unsigned long reserve;
3067
3068 /* Base hash sizes on available memory, with a reserve equal to
3069 150% of current kernel size */
3070
3071 reserve = min((mempages - nr_free_pages()) * 3/2, mempages - 1);
3072 mempages -= reserve;
3073
3074 names_cachep = kmem_cache_create("names_cache", PATH_MAX, 0,
20c2df83 3075 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4 3076
74bf17cf
DC
3077 dcache_init();
3078 inode_init();
1da177e4 3079 files_init(mempages);
74bf17cf 3080 mnt_init();
1da177e4
LT
3081 bdev_cache_init();
3082 chrdev_init();
3083}