]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/direct-io.c
[PATCH] dio: remove duplicate bio wait code
[mirror_ubuntu-artful-kernel.git] / fs / direct-io.c
CommitLineData
1da177e4
LT
1/*
2 * fs/direct-io.c
3 *
4 * Copyright (C) 2002, Linus Torvalds.
5 *
6 * O_DIRECT
7 *
8 * 04Jul2002 akpm@zip.com.au
9 * Initial version
10 * 11Sep2002 janetinc@us.ibm.com
11 * added readv/writev support.
12 * 29Oct2002 akpm@zip.com.au
13 * rewrote bio_add_page() support.
14 * 30Oct2002 pbadari@us.ibm.com
15 * added support for non-aligned IO.
16 * 06Nov2002 pbadari@us.ibm.com
17 * added asynchronous IO support.
18 * 21Jul2003 nathans@sgi.com
19 * added IO completion notifier.
20 */
21
22#include <linux/kernel.h>
23#include <linux/module.h>
24#include <linux/types.h>
25#include <linux/fs.h>
26#include <linux/mm.h>
27#include <linux/slab.h>
28#include <linux/highmem.h>
29#include <linux/pagemap.h>
98c4d57d 30#include <linux/task_io_accounting_ops.h>
1da177e4
LT
31#include <linux/bio.h>
32#include <linux/wait.h>
33#include <linux/err.h>
34#include <linux/blkdev.h>
35#include <linux/buffer_head.h>
36#include <linux/rwsem.h>
37#include <linux/uio.h>
38#include <asm/atomic.h>
39
40/*
41 * How many user pages to map in one call to get_user_pages(). This determines
42 * the size of a structure on the stack.
43 */
44#define DIO_PAGES 64
45
46/*
47 * This code generally works in units of "dio_blocks". A dio_block is
48 * somewhere between the hard sector size and the filesystem block size. it
49 * is determined on a per-invocation basis. When talking to the filesystem
50 * we need to convert dio_blocks to fs_blocks by scaling the dio_block quantity
51 * down by dio->blkfactor. Similarly, fs-blocksize quantities are converted
52 * to bio_block quantities by shifting left by blkfactor.
53 *
54 * If blkfactor is zero then the user's request was aligned to the filesystem's
55 * blocksize.
56 *
57 * lock_type is DIO_LOCKING for regular files on direct-IO-naive filesystems.
58 * This determines whether we need to do the fancy locking which prevents
59 * direct-IO from being able to read uninitialised disk blocks. If its zero
1b1dcc1b 60 * (blockdev) this locking is not done, and if it is DIO_OWN_LOCKING i_mutex is
1da177e4
LT
61 * not held for the entire direct write (taken briefly, initially, during a
62 * direct read though, but its never held for the duration of a direct-IO).
63 */
64
65struct dio {
66 /* BIO submission state */
67 struct bio *bio; /* bio under assembly */
68 struct inode *inode;
69 int rw;
29504ff3 70 loff_t i_size; /* i_size when submitted */
1da177e4
LT
71 int lock_type; /* doesn't change */
72 unsigned blkbits; /* doesn't change */
73 unsigned blkfactor; /* When we're using an alignment which
74 is finer than the filesystem's soft
75 blocksize, this specifies how much
76 finer. blkfactor=2 means 1/4-block
77 alignment. Does not change */
78 unsigned start_zero_done; /* flag: sub-blocksize zeroing has
79 been performed at the start of a
80 write */
81 int pages_in_io; /* approximate total IO pages */
82 size_t size; /* total request size (doesn't change)*/
83 sector_t block_in_file; /* Current offset into the underlying
84 file in dio_block units. */
85 unsigned blocks_available; /* At block_in_file. changes */
86 sector_t final_block_in_request;/* doesn't change */
87 unsigned first_block_in_page; /* doesn't change, Used only once */
88 int boundary; /* prev block is at a boundary */
89 int reap_counter; /* rate limit reaping */
1d8fa7a2 90 get_block_t *get_block; /* block mapping function */
1da177e4
LT
91 dio_iodone_t *end_io; /* IO completion function */
92 sector_t final_block_in_bio; /* current final block in bio + 1 */
93 sector_t next_block_for_io; /* next block to be put under IO,
94 in dio_blocks units */
1d8fa7a2 95 struct buffer_head map_bh; /* last get_block() result */
1da177e4
LT
96
97 /*
98 * Deferred addition of a page to the dio. These variables are
99 * private to dio_send_cur_page(), submit_page_section() and
100 * dio_bio_add_page().
101 */
102 struct page *cur_page; /* The page */
103 unsigned cur_page_offset; /* Offset into it, in bytes */
104 unsigned cur_page_len; /* Nr of bytes at cur_page_offset */
105 sector_t cur_page_block; /* Where it starts */
106
107 /*
108 * Page fetching state. These variables belong to dio_refill_pages().
109 */
110 int curr_page; /* changes */
111 int total_pages; /* doesn't change */
112 unsigned long curr_user_address;/* changes */
113
114 /*
115 * Page queue. These variables belong to dio_refill_pages() and
116 * dio_get_page().
117 */
118 struct page *pages[DIO_PAGES]; /* page buffer */
119 unsigned head; /* next page to process */
120 unsigned tail; /* last valid page + 1 */
121 int page_errors; /* errno from get_user_pages() */
122
123 /* BIO completion state */
0273201e 124 atomic_t refcount; /* direct_io_worker() and bios */
1da177e4 125 spinlock_t bio_lock; /* protects BIO fields below */
1da177e4
LT
126 struct bio *bio_list; /* singly linked via bi_private */
127 struct task_struct *waiter; /* waiting task (NULL if none) */
128
129 /* AIO related stuff */
130 struct kiocb *iocb; /* kiocb */
131 int is_async; /* is IO async ? */
174e27c6 132 int io_error; /* IO error in completion path */
1da177e4
LT
133 ssize_t result; /* IO result */
134};
135
136/*
137 * How many pages are in the queue?
138 */
139static inline unsigned dio_pages_present(struct dio *dio)
140{
141 return dio->tail - dio->head;
142}
143
144/*
145 * Go grab and pin some userspace pages. Typically we'll get 64 at a time.
146 */
147static int dio_refill_pages(struct dio *dio)
148{
149 int ret;
150 int nr_pages;
151
152 nr_pages = min(dio->total_pages - dio->curr_page, DIO_PAGES);
153 down_read(&current->mm->mmap_sem);
154 ret = get_user_pages(
155 current, /* Task for fault acounting */
156 current->mm, /* whose pages? */
157 dio->curr_user_address, /* Where from? */
158 nr_pages, /* How many pages? */
159 dio->rw == READ, /* Write to memory? */
160 0, /* force (?) */
161 &dio->pages[0],
162 NULL); /* vmas */
163 up_read(&current->mm->mmap_sem);
164
b31dc66a 165 if (ret < 0 && dio->blocks_available && (dio->rw & WRITE)) {
b5810039 166 struct page *page = ZERO_PAGE(dio->curr_user_address);
1da177e4
LT
167 /*
168 * A memory fault, but the filesystem has some outstanding
169 * mapped blocks. We need to use those blocks up to avoid
170 * leaking stale data in the file.
171 */
172 if (dio->page_errors == 0)
173 dio->page_errors = ret;
b5810039
NP
174 page_cache_get(page);
175 dio->pages[0] = page;
1da177e4
LT
176 dio->head = 0;
177 dio->tail = 1;
178 ret = 0;
179 goto out;
180 }
181
182 if (ret >= 0) {
183 dio->curr_user_address += ret * PAGE_SIZE;
184 dio->curr_page += ret;
185 dio->head = 0;
186 dio->tail = ret;
187 ret = 0;
188 }
189out:
190 return ret;
191}
192
193/*
194 * Get another userspace page. Returns an ERR_PTR on error. Pages are
195 * buffered inside the dio so that we can call get_user_pages() against a
196 * decent number of pages, less frequently. To provide nicer use of the
197 * L1 cache.
198 */
199static struct page *dio_get_page(struct dio *dio)
200{
201 if (dio_pages_present(dio) == 0) {
202 int ret;
203
204 ret = dio_refill_pages(dio);
205 if (ret)
206 return ERR_PTR(ret);
207 BUG_ON(dio_pages_present(dio) == 0);
208 }
209 return dio->pages[dio->head++];
210}
211
6d544bb4
ZB
212/**
213 * dio_complete() - called when all DIO BIO I/O has been completed
214 * @offset: the byte offset in the file of the completed operation
215 *
216 * This releases locks as dictated by the locking type, lets interested parties
217 * know that a DIO operation has completed, and calculates the resulting return
218 * code for the operation.
219 *
220 * It lets the filesystem know if it registered an interest earlier via
221 * get_block. Pass the private field of the map buffer_head so that
222 * filesystems can use it to hold additional state between get_block calls and
223 * dio_complete.
1da177e4 224 */
6d544bb4 225static int dio_complete(struct dio *dio, loff_t offset, int ret)
1da177e4 226{
6d544bb4
ZB
227 ssize_t transferred = 0;
228
229 if (dio->result) {
230 transferred = dio->result;
231
232 /* Check for short read case */
233 if ((dio->rw == READ) && ((offset + transferred) > dio->i_size))
234 transferred = dio->i_size - offset;
235 }
236
1da177e4 237 if (dio->end_io && dio->result)
6d544bb4
ZB
238 dio->end_io(dio->iocb, offset, transferred,
239 dio->map_bh.b_private);
1da177e4 240 if (dio->lock_type == DIO_LOCKING)
d8aa905b
IM
241 /* lockdep: non-owner release */
242 up_read_non_owner(&dio->inode->i_alloc_sem);
6d544bb4
ZB
243
244 if (ret == 0)
245 ret = dio->page_errors;
246 if (ret == 0)
247 ret = dio->io_error;
248 if (ret == 0)
249 ret = transferred;
250
251 return ret;
1da177e4
LT
252}
253
254/*
255 * Called when a BIO has been processed. If the count goes to zero then IO is
256 * complete and we can signal this to the AIO layer.
257 */
0273201e 258static void dio_complete_aio(struct dio *dio)
1da177e4 259{
0273201e 260 int ret;
1da177e4 261
0273201e 262 ret = dio_complete(dio, dio->iocb->ki_pos, 0);
29504ff3 263
0273201e
ZB
264 /* Complete AIO later if falling back to buffered i/o */
265 if (dio->result == dio->size ||
266 ((dio->rw == READ) && dio->result)) {
267 aio_complete(dio->iocb, ret, 0);
268 kfree(dio);
1da177e4 269 }
1da177e4
LT
270}
271
272static int dio_bio_complete(struct dio *dio, struct bio *bio);
273/*
274 * Asynchronous IO callback.
275 */
276static int dio_bio_end_aio(struct bio *bio, unsigned int bytes_done, int error)
277{
278 struct dio *dio = bio->bi_private;
20258b2b
ZB
279 int waiter_holds_ref = 0;
280 int remaining;
1da177e4
LT
281
282 if (bio->bi_size)
283 return 1;
284
285 /* cleanup the bio */
286 dio_bio_complete(dio, bio);
0273201e 287
20258b2b
ZB
288 waiter_holds_ref = !!dio->waiter;
289 remaining = atomic_sub_return(1, (&dio->refcount));
290 if (remaining == 1 && waiter_holds_ref)
291 wake_up_process(dio->waiter);
292
293 if (remaining == 0)
0273201e
ZB
294 dio_complete_aio(dio);
295
1da177e4
LT
296 return 0;
297}
298
299/*
300 * The BIO completion handler simply queues the BIO up for the process-context
301 * handler.
302 *
303 * During I/O bi_private points at the dio. After I/O, bi_private is used to
304 * implement a singly-linked list of completed BIOs, at dio->bio_list.
305 */
306static int dio_bio_end_io(struct bio *bio, unsigned int bytes_done, int error)
307{
308 struct dio *dio = bio->bi_private;
309 unsigned long flags;
310
311 if (bio->bi_size)
312 return 1;
313
314 spin_lock_irqsave(&dio->bio_lock, flags);
315 bio->bi_private = dio->bio_list;
316 dio->bio_list = bio;
0273201e 317 if ((atomic_sub_return(1, &dio->refcount) == 1) && dio->waiter)
1da177e4
LT
318 wake_up_process(dio->waiter);
319 spin_unlock_irqrestore(&dio->bio_lock, flags);
320 return 0;
321}
322
323static int
324dio_bio_alloc(struct dio *dio, struct block_device *bdev,
325 sector_t first_sector, int nr_vecs)
326{
327 struct bio *bio;
328
329 bio = bio_alloc(GFP_KERNEL, nr_vecs);
330 if (bio == NULL)
331 return -ENOMEM;
332
333 bio->bi_bdev = bdev;
334 bio->bi_sector = first_sector;
335 if (dio->is_async)
336 bio->bi_end_io = dio_bio_end_aio;
337 else
338 bio->bi_end_io = dio_bio_end_io;
339
340 dio->bio = bio;
341 return 0;
342}
343
344/*
345 * In the AIO read case we speculatively dirty the pages before starting IO.
346 * During IO completion, any of these pages which happen to have been written
347 * back will be redirtied by bio_check_pages_dirty().
0273201e
ZB
348 *
349 * bios hold a dio reference between submit_bio and ->end_io.
1da177e4
LT
350 */
351static void dio_bio_submit(struct dio *dio)
352{
353 struct bio *bio = dio->bio;
1da177e4
LT
354
355 bio->bi_private = dio;
0273201e 356 atomic_inc(&dio->refcount);
1da177e4
LT
357 if (dio->is_async && dio->rw == READ)
358 bio_set_pages_dirty(bio);
359 submit_bio(dio->rw, bio);
360
361 dio->bio = NULL;
362 dio->boundary = 0;
363}
364
365/*
366 * Release any resources in case of a failure
367 */
368static void dio_cleanup(struct dio *dio)
369{
370 while (dio_pages_present(dio))
371 page_cache_release(dio_get_page(dio));
372}
373
0273201e
ZB
374static int wait_for_more_bios(struct dio *dio)
375{
376 assert_spin_locked(&dio->bio_lock);
377
378 return (atomic_read(&dio->refcount) > 1) && (dio->bio_list == NULL);
379}
380
1da177e4 381/*
0273201e
ZB
382 * Wait for the next BIO to complete. Remove it and return it. NULL is
383 * returned once all BIOs have been completed. This must only be called once
384 * all bios have been issued so that dio->refcount can only decrease. This
385 * requires that that the caller hold a reference on the dio.
1da177e4
LT
386 */
387static struct bio *dio_await_one(struct dio *dio)
388{
389 unsigned long flags;
0273201e 390 struct bio *bio = NULL;
1da177e4
LT
391
392 spin_lock_irqsave(&dio->bio_lock, flags);
0273201e 393 while (wait_for_more_bios(dio)) {
1da177e4 394 set_current_state(TASK_UNINTERRUPTIBLE);
0273201e 395 if (wait_for_more_bios(dio)) {
1da177e4
LT
396 dio->waiter = current;
397 spin_unlock_irqrestore(&dio->bio_lock, flags);
1da177e4
LT
398 io_schedule();
399 spin_lock_irqsave(&dio->bio_lock, flags);
400 dio->waiter = NULL;
401 }
402 set_current_state(TASK_RUNNING);
403 }
0273201e
ZB
404 if (dio->bio_list) {
405 bio = dio->bio_list;
406 dio->bio_list = bio->bi_private;
407 }
1da177e4
LT
408 spin_unlock_irqrestore(&dio->bio_lock, flags);
409 return bio;
410}
411
412/*
413 * Process one completed BIO. No locks are held.
414 */
415static int dio_bio_complete(struct dio *dio, struct bio *bio)
416{
417 const int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
418 struct bio_vec *bvec = bio->bi_io_vec;
419 int page_no;
420
421 if (!uptodate)
174e27c6 422 dio->io_error = -EIO;
1da177e4
LT
423
424 if (dio->is_async && dio->rw == READ) {
425 bio_check_pages_dirty(bio); /* transfers ownership */
426 } else {
427 for (page_no = 0; page_no < bio->bi_vcnt; page_no++) {
428 struct page *page = bvec[page_no].bv_page;
429
430 if (dio->rw == READ && !PageCompound(page))
431 set_page_dirty_lock(page);
432 page_cache_release(page);
433 }
434 bio_put(bio);
435 }
1da177e4
LT
436 return uptodate ? 0 : -EIO;
437}
438
439/*
0273201e
ZB
440 * Wait on and process all in-flight BIOs. This must only be called once
441 * all bios have been issued so that the refcount can only decrease.
442 * This just waits for all bios to make it through dio_bio_complete. IO
443 * errors are propogated through dio->io_error and should be propogated via
444 * dio_complete().
1da177e4 445 */
6d544bb4 446static void dio_await_completion(struct dio *dio)
1da177e4 447{
0273201e
ZB
448 struct bio *bio;
449 do {
450 bio = dio_await_one(dio);
451 if (bio)
452 dio_bio_complete(dio, bio);
453 } while (bio);
1da177e4
LT
454}
455
456/*
457 * A really large O_DIRECT read or write can generate a lot of BIOs. So
458 * to keep the memory consumption sane we periodically reap any completed BIOs
459 * during the BIO generation phase.
460 *
461 * This also helps to limit the peak amount of pinned userspace memory.
462 */
463static int dio_bio_reap(struct dio *dio)
464{
465 int ret = 0;
466
467 if (dio->reap_counter++ >= 64) {
468 while (dio->bio_list) {
469 unsigned long flags;
470 struct bio *bio;
471 int ret2;
472
473 spin_lock_irqsave(&dio->bio_lock, flags);
474 bio = dio->bio_list;
475 dio->bio_list = bio->bi_private;
476 spin_unlock_irqrestore(&dio->bio_lock, flags);
477 ret2 = dio_bio_complete(dio, bio);
478 if (ret == 0)
479 ret = ret2;
480 }
481 dio->reap_counter = 0;
482 }
483 return ret;
484}
485
486/*
487 * Call into the fs to map some more disk blocks. We record the current number
488 * of available blocks at dio->blocks_available. These are in units of the
489 * fs blocksize, (1 << inode->i_blkbits).
490 *
491 * The fs is allowed to map lots of blocks at once. If it wants to do that,
492 * it uses the passed inode-relative block number as the file offset, as usual.
493 *
1d8fa7a2 494 * get_block() is passed the number of i_blkbits-sized blocks which direct_io
1da177e4
LT
495 * has remaining to do. The fs should not map more than this number of blocks.
496 *
497 * If the fs has mapped a lot of blocks, it should populate bh->b_size to
498 * indicate how much contiguous disk space has been made available at
499 * bh->b_blocknr.
500 *
501 * If *any* of the mapped blocks are new, then the fs must set buffer_new().
502 * This isn't very efficient...
503 *
504 * In the case of filesystem holes: the fs may return an arbitrarily-large
505 * hole by returning an appropriate value in b_size and by clearing
506 * buffer_mapped(). However the direct-io code will only process holes one
1d8fa7a2 507 * block at a time - it will repeatedly call get_block() as it walks the hole.
1da177e4
LT
508 */
509static int get_more_blocks(struct dio *dio)
510{
511 int ret;
512 struct buffer_head *map_bh = &dio->map_bh;
513 sector_t fs_startblk; /* Into file, in filesystem-sized blocks */
514 unsigned long fs_count; /* Number of filesystem-sized blocks */
515 unsigned long dio_count;/* Number of dio_block-sized blocks */
516 unsigned long blkmask;
517 int create;
518
519 /*
520 * If there was a memory error and we've overwritten all the
521 * mapped blocks then we can now return that memory error
522 */
523 ret = dio->page_errors;
524 if (ret == 0) {
1da177e4
LT
525 BUG_ON(dio->block_in_file >= dio->final_block_in_request);
526 fs_startblk = dio->block_in_file >> dio->blkfactor;
527 dio_count = dio->final_block_in_request - dio->block_in_file;
528 fs_count = dio_count >> dio->blkfactor;
529 blkmask = (1 << dio->blkfactor) - 1;
530 if (dio_count & blkmask)
531 fs_count++;
532
3c674e74
NS
533 map_bh->b_state = 0;
534 map_bh->b_size = fs_count << dio->inode->i_blkbits;
535
b31dc66a 536 create = dio->rw & WRITE;
1da177e4
LT
537 if (dio->lock_type == DIO_LOCKING) {
538 if (dio->block_in_file < (i_size_read(dio->inode) >>
539 dio->blkbits))
540 create = 0;
541 } else if (dio->lock_type == DIO_NO_LOCKING) {
542 create = 0;
543 }
3c674e74 544
1da177e4
LT
545 /*
546 * For writes inside i_size we forbid block creations: only
547 * overwrites are permitted. We fall back to buffered writes
548 * at a higher level for inside-i_size block-instantiating
549 * writes.
550 */
1d8fa7a2 551 ret = (*dio->get_block)(dio->inode, fs_startblk,
1da177e4
LT
552 map_bh, create);
553 }
554 return ret;
555}
556
557/*
558 * There is no bio. Make one now.
559 */
560static int dio_new_bio(struct dio *dio, sector_t start_sector)
561{
562 sector_t sector;
563 int ret, nr_pages;
564
565 ret = dio_bio_reap(dio);
566 if (ret)
567 goto out;
568 sector = start_sector << (dio->blkbits - 9);
569 nr_pages = min(dio->pages_in_io, bio_get_nr_vecs(dio->map_bh.b_bdev));
570 BUG_ON(nr_pages <= 0);
571 ret = dio_bio_alloc(dio, dio->map_bh.b_bdev, sector, nr_pages);
572 dio->boundary = 0;
573out:
574 return ret;
575}
576
577/*
578 * Attempt to put the current chunk of 'cur_page' into the current BIO. If
579 * that was successful then update final_block_in_bio and take a ref against
580 * the just-added page.
581 *
582 * Return zero on success. Non-zero means the caller needs to start a new BIO.
583 */
584static int dio_bio_add_page(struct dio *dio)
585{
586 int ret;
587
588 ret = bio_add_page(dio->bio, dio->cur_page,
589 dio->cur_page_len, dio->cur_page_offset);
590 if (ret == dio->cur_page_len) {
591 /*
592 * Decrement count only, if we are done with this page
593 */
594 if ((dio->cur_page_len + dio->cur_page_offset) == PAGE_SIZE)
595 dio->pages_in_io--;
596 page_cache_get(dio->cur_page);
597 dio->final_block_in_bio = dio->cur_page_block +
598 (dio->cur_page_len >> dio->blkbits);
599 ret = 0;
600 } else {
601 ret = 1;
602 }
603 return ret;
604}
605
606/*
607 * Put cur_page under IO. The section of cur_page which is described by
608 * cur_page_offset,cur_page_len is put into a BIO. The section of cur_page
609 * starts on-disk at cur_page_block.
610 *
611 * We take a ref against the page here (on behalf of its presence in the bio).
612 *
613 * The caller of this function is responsible for removing cur_page from the
614 * dio, and for dropping the refcount which came from that presence.
615 */
616static int dio_send_cur_page(struct dio *dio)
617{
618 int ret = 0;
619
620 if (dio->bio) {
621 /*
622 * See whether this new request is contiguous with the old
623 */
624 if (dio->final_block_in_bio != dio->cur_page_block)
625 dio_bio_submit(dio);
626 /*
627 * Submit now if the underlying fs is about to perform a
628 * metadata read
629 */
630 if (dio->boundary)
631 dio_bio_submit(dio);
632 }
633
634 if (dio->bio == NULL) {
635 ret = dio_new_bio(dio, dio->cur_page_block);
636 if (ret)
637 goto out;
638 }
639
640 if (dio_bio_add_page(dio) != 0) {
641 dio_bio_submit(dio);
642 ret = dio_new_bio(dio, dio->cur_page_block);
643 if (ret == 0) {
644 ret = dio_bio_add_page(dio);
645 BUG_ON(ret != 0);
646 }
647 }
648out:
649 return ret;
650}
651
652/*
653 * An autonomous function to put a chunk of a page under deferred IO.
654 *
655 * The caller doesn't actually know (or care) whether this piece of page is in
656 * a BIO, or is under IO or whatever. We just take care of all possible
657 * situations here. The separation between the logic of do_direct_IO() and
658 * that of submit_page_section() is important for clarity. Please don't break.
659 *
660 * The chunk of page starts on-disk at blocknr.
661 *
662 * We perform deferred IO, by recording the last-submitted page inside our
663 * private part of the dio structure. If possible, we just expand the IO
664 * across that page here.
665 *
666 * If that doesn't work out then we put the old page into the bio and add this
667 * page to the dio instead.
668 */
669static int
670submit_page_section(struct dio *dio, struct page *page,
671 unsigned offset, unsigned len, sector_t blocknr)
672{
673 int ret = 0;
674
98c4d57d
AM
675 if (dio->rw & WRITE) {
676 /*
677 * Read accounting is performed in submit_bio()
678 */
679 task_io_account_write(len);
680 }
681
1da177e4
LT
682 /*
683 * Can we just grow the current page's presence in the dio?
684 */
685 if ( (dio->cur_page == page) &&
686 (dio->cur_page_offset + dio->cur_page_len == offset) &&
687 (dio->cur_page_block +
688 (dio->cur_page_len >> dio->blkbits) == blocknr)) {
689 dio->cur_page_len += len;
690
691 /*
692 * If dio->boundary then we want to schedule the IO now to
693 * avoid metadata seeks.
694 */
695 if (dio->boundary) {
696 ret = dio_send_cur_page(dio);
697 page_cache_release(dio->cur_page);
698 dio->cur_page = NULL;
699 }
700 goto out;
701 }
702
703 /*
704 * If there's a deferred page already there then send it.
705 */
706 if (dio->cur_page) {
707 ret = dio_send_cur_page(dio);
708 page_cache_release(dio->cur_page);
709 dio->cur_page = NULL;
710 if (ret)
711 goto out;
712 }
713
714 page_cache_get(page); /* It is in dio */
715 dio->cur_page = page;
716 dio->cur_page_offset = offset;
717 dio->cur_page_len = len;
718 dio->cur_page_block = blocknr;
719out:
720 return ret;
721}
722
723/*
724 * Clean any dirty buffers in the blockdev mapping which alias newly-created
725 * file blocks. Only called for S_ISREG files - blockdevs do not set
726 * buffer_new
727 */
728static void clean_blockdev_aliases(struct dio *dio)
729{
730 unsigned i;
731 unsigned nblocks;
732
733 nblocks = dio->map_bh.b_size >> dio->inode->i_blkbits;
734
735 for (i = 0; i < nblocks; i++) {
736 unmap_underlying_metadata(dio->map_bh.b_bdev,
737 dio->map_bh.b_blocknr + i);
738 }
739}
740
741/*
742 * If we are not writing the entire block and get_block() allocated
743 * the block for us, we need to fill-in the unused portion of the
744 * block with zeros. This happens only if user-buffer, fileoffset or
745 * io length is not filesystem block-size multiple.
746 *
747 * `end' is zero if we're doing the start of the IO, 1 at the end of the
748 * IO.
749 */
750static void dio_zero_block(struct dio *dio, int end)
751{
752 unsigned dio_blocks_per_fs_block;
753 unsigned this_chunk_blocks; /* In dio_blocks */
754 unsigned this_chunk_bytes;
755 struct page *page;
756
757 dio->start_zero_done = 1;
758 if (!dio->blkfactor || !buffer_new(&dio->map_bh))
759 return;
760
761 dio_blocks_per_fs_block = 1 << dio->blkfactor;
762 this_chunk_blocks = dio->block_in_file & (dio_blocks_per_fs_block - 1);
763
764 if (!this_chunk_blocks)
765 return;
766
767 /*
768 * We need to zero out part of an fs block. It is either at the
769 * beginning or the end of the fs block.
770 */
771 if (end)
772 this_chunk_blocks = dio_blocks_per_fs_block - this_chunk_blocks;
773
774 this_chunk_bytes = this_chunk_blocks << dio->blkbits;
775
776 page = ZERO_PAGE(dio->curr_user_address);
777 if (submit_page_section(dio, page, 0, this_chunk_bytes,
778 dio->next_block_for_io))
779 return;
780
781 dio->next_block_for_io += this_chunk_blocks;
782}
783
784/*
785 * Walk the user pages, and the file, mapping blocks to disk and generating
786 * a sequence of (page,offset,len,block) mappings. These mappings are injected
787 * into submit_page_section(), which takes care of the next stage of submission
788 *
789 * Direct IO against a blockdev is different from a file. Because we can
790 * happily perform page-sized but 512-byte aligned IOs. It is important that
791 * blockdev IO be able to have fine alignment and large sizes.
792 *
1d8fa7a2 793 * So what we do is to permit the ->get_block function to populate bh.b_size
1da177e4
LT
794 * with the size of IO which is permitted at this offset and this i_blkbits.
795 *
796 * For best results, the blockdev should be set up with 512-byte i_blkbits and
1d8fa7a2 797 * it should set b_size to PAGE_SIZE or more inside get_block(). This gives
1da177e4
LT
798 * fine alignment but still allows this function to work in PAGE_SIZE units.
799 */
800static int do_direct_IO(struct dio *dio)
801{
802 const unsigned blkbits = dio->blkbits;
803 const unsigned blocks_per_page = PAGE_SIZE >> blkbits;
804 struct page *page;
805 unsigned block_in_page;
806 struct buffer_head *map_bh = &dio->map_bh;
807 int ret = 0;
808
809 /* The I/O can start at any block offset within the first page */
810 block_in_page = dio->first_block_in_page;
811
812 while (dio->block_in_file < dio->final_block_in_request) {
813 page = dio_get_page(dio);
814 if (IS_ERR(page)) {
815 ret = PTR_ERR(page);
816 goto out;
817 }
818
819 while (block_in_page < blocks_per_page) {
820 unsigned offset_in_page = block_in_page << blkbits;
821 unsigned this_chunk_bytes; /* # of bytes mapped */
822 unsigned this_chunk_blocks; /* # of blocks */
823 unsigned u;
824
825 if (dio->blocks_available == 0) {
826 /*
827 * Need to go and map some more disk
828 */
829 unsigned long blkmask;
830 unsigned long dio_remainder;
831
832 ret = get_more_blocks(dio);
833 if (ret) {
834 page_cache_release(page);
835 goto out;
836 }
837 if (!buffer_mapped(map_bh))
838 goto do_holes;
839
840 dio->blocks_available =
841 map_bh->b_size >> dio->blkbits;
842 dio->next_block_for_io =
843 map_bh->b_blocknr << dio->blkfactor;
844 if (buffer_new(map_bh))
845 clean_blockdev_aliases(dio);
846
847 if (!dio->blkfactor)
848 goto do_holes;
849
850 blkmask = (1 << dio->blkfactor) - 1;
851 dio_remainder = (dio->block_in_file & blkmask);
852
853 /*
854 * If we are at the start of IO and that IO
855 * starts partway into a fs-block,
856 * dio_remainder will be non-zero. If the IO
857 * is a read then we can simply advance the IO
858 * cursor to the first block which is to be
859 * read. But if the IO is a write and the
860 * block was newly allocated we cannot do that;
861 * the start of the fs block must be zeroed out
862 * on-disk
863 */
864 if (!buffer_new(map_bh))
865 dio->next_block_for_io += dio_remainder;
866 dio->blocks_available -= dio_remainder;
867 }
868do_holes:
869 /* Handle holes */
870 if (!buffer_mapped(map_bh)) {
871 char *kaddr;
35dc8161 872 loff_t i_size_aligned;
1da177e4
LT
873
874 /* AKPM: eargh, -ENOTBLK is a hack */
b31dc66a 875 if (dio->rw & WRITE) {
1da177e4
LT
876 page_cache_release(page);
877 return -ENOTBLK;
878 }
879
35dc8161
JM
880 /*
881 * Be sure to account for a partial block as the
882 * last block in the file
883 */
884 i_size_aligned = ALIGN(i_size_read(dio->inode),
885 1 << blkbits);
1da177e4 886 if (dio->block_in_file >=
35dc8161 887 i_size_aligned >> blkbits) {
1da177e4
LT
888 /* We hit eof */
889 page_cache_release(page);
890 goto out;
891 }
892 kaddr = kmap_atomic(page, KM_USER0);
893 memset(kaddr + (block_in_page << blkbits),
894 0, 1 << blkbits);
895 flush_dcache_page(page);
896 kunmap_atomic(kaddr, KM_USER0);
897 dio->block_in_file++;
898 block_in_page++;
899 goto next_block;
900 }
901
902 /*
903 * If we're performing IO which has an alignment which
904 * is finer than the underlying fs, go check to see if
905 * we must zero out the start of this block.
906 */
907 if (unlikely(dio->blkfactor && !dio->start_zero_done))
908 dio_zero_block(dio, 0);
909
910 /*
911 * Work out, in this_chunk_blocks, how much disk we
912 * can add to this page
913 */
914 this_chunk_blocks = dio->blocks_available;
915 u = (PAGE_SIZE - offset_in_page) >> blkbits;
916 if (this_chunk_blocks > u)
917 this_chunk_blocks = u;
918 u = dio->final_block_in_request - dio->block_in_file;
919 if (this_chunk_blocks > u)
920 this_chunk_blocks = u;
921 this_chunk_bytes = this_chunk_blocks << blkbits;
922 BUG_ON(this_chunk_bytes == 0);
923
924 dio->boundary = buffer_boundary(map_bh);
925 ret = submit_page_section(dio, page, offset_in_page,
926 this_chunk_bytes, dio->next_block_for_io);
927 if (ret) {
928 page_cache_release(page);
929 goto out;
930 }
931 dio->next_block_for_io += this_chunk_blocks;
932
933 dio->block_in_file += this_chunk_blocks;
934 block_in_page += this_chunk_blocks;
935 dio->blocks_available -= this_chunk_blocks;
936next_block:
d4569d2e 937 BUG_ON(dio->block_in_file > dio->final_block_in_request);
1da177e4
LT
938 if (dio->block_in_file == dio->final_block_in_request)
939 break;
940 }
941
942 /* Drop the ref which was taken in get_user_pages() */
943 page_cache_release(page);
944 block_in_page = 0;
945 }
946out:
947 return ret;
948}
949
950/*
1b1dcc1b 951 * Releases both i_mutex and i_alloc_sem
1da177e4
LT
952 */
953static ssize_t
954direct_io_worker(int rw, struct kiocb *iocb, struct inode *inode,
955 const struct iovec *iov, loff_t offset, unsigned long nr_segs,
1d8fa7a2 956 unsigned blkbits, get_block_t get_block, dio_iodone_t end_io,
1da177e4
LT
957 struct dio *dio)
958{
959 unsigned long user_addr;
960 int seg;
961 ssize_t ret = 0;
962 ssize_t ret2;
963 size_t bytes;
964
965 dio->bio = NULL;
966 dio->inode = inode;
967 dio->rw = rw;
968 dio->blkbits = blkbits;
969 dio->blkfactor = inode->i_blkbits - blkbits;
970 dio->start_zero_done = 0;
971 dio->size = 0;
972 dio->block_in_file = offset >> blkbits;
973 dio->blocks_available = 0;
974 dio->cur_page = NULL;
975
976 dio->boundary = 0;
977 dio->reap_counter = 0;
1d8fa7a2 978 dio->get_block = get_block;
1da177e4
LT
979 dio->end_io = end_io;
980 dio->map_bh.b_private = NULL;
981 dio->final_block_in_bio = -1;
982 dio->next_block_for_io = -1;
983
984 dio->page_errors = 0;
174e27c6 985 dio->io_error = 0;
1da177e4
LT
986 dio->result = 0;
987 dio->iocb = iocb;
29504ff3 988 dio->i_size = i_size_read(inode);
1da177e4 989
0273201e 990 atomic_set(&dio->refcount, 1);
1da177e4
LT
991 spin_lock_init(&dio->bio_lock);
992 dio->bio_list = NULL;
993 dio->waiter = NULL;
994
995 /*
996 * In case of non-aligned buffers, we may need 2 more
997 * pages since we need to zero out first and last block.
998 */
999 if (unlikely(dio->blkfactor))
1000 dio->pages_in_io = 2;
1001 else
1002 dio->pages_in_io = 0;
1003
1004 for (seg = 0; seg < nr_segs; seg++) {
1005 user_addr = (unsigned long)iov[seg].iov_base;
1006 dio->pages_in_io +=
1007 ((user_addr+iov[seg].iov_len +PAGE_SIZE-1)/PAGE_SIZE
1008 - user_addr/PAGE_SIZE);
1009 }
1010
1011 for (seg = 0; seg < nr_segs; seg++) {
1012 user_addr = (unsigned long)iov[seg].iov_base;
1013 dio->size += bytes = iov[seg].iov_len;
1014
1015 /* Index into the first page of the first block */
1016 dio->first_block_in_page = (user_addr & ~PAGE_MASK) >> blkbits;
1017 dio->final_block_in_request = dio->block_in_file +
1018 (bytes >> blkbits);
1019 /* Page fetching state */
1020 dio->head = 0;
1021 dio->tail = 0;
1022 dio->curr_page = 0;
1023
1024 dio->total_pages = 0;
1025 if (user_addr & (PAGE_SIZE-1)) {
1026 dio->total_pages++;
1027 bytes -= PAGE_SIZE - (user_addr & (PAGE_SIZE - 1));
1028 }
1029 dio->total_pages += (bytes + PAGE_SIZE - 1) / PAGE_SIZE;
1030 dio->curr_user_address = user_addr;
1031
1032 ret = do_direct_IO(dio);
1033
1034 dio->result += iov[seg].iov_len -
1035 ((dio->final_block_in_request - dio->block_in_file) <<
1036 blkbits);
1037
1038 if (ret) {
1039 dio_cleanup(dio);
1040 break;
1041 }
1042 } /* end iovec loop */
1043
b31dc66a 1044 if (ret == -ENOTBLK && (rw & WRITE)) {
1da177e4
LT
1045 /*
1046 * The remaining part of the request will be
1047 * be handled by buffered I/O when we return
1048 */
1049 ret = 0;
1050 }
1051 /*
1052 * There may be some unwritten disk at the end of a part-written
1053 * fs-block-sized block. Go zero that now.
1054 */
1055 dio_zero_block(dio, 1);
1056
1057 if (dio->cur_page) {
1058 ret2 = dio_send_cur_page(dio);
1059 if (ret == 0)
1060 ret = ret2;
1061 page_cache_release(dio->cur_page);
1062 dio->cur_page = NULL;
1063 }
1064 if (dio->bio)
1065 dio_bio_submit(dio);
1066
17a7b1d7
ZB
1067 /* All IO is now issued, send it on its way */
1068 blk_run_address_space(inode->i_mapping);
1069
1da177e4
LT
1070 /*
1071 * It is possible that, we return short IO due to end of file.
1072 * In that case, we need to release all the pages we got hold on.
1073 */
1074 dio_cleanup(dio);
1075
1076 /*
1077 * All block lookups have been performed. For READ requests
1b1dcc1b 1078 * we can let i_mutex go now that its achieved its purpose
1da177e4
LT
1079 * of protecting us from looking up uninitialized blocks.
1080 */
1081 if ((rw == READ) && (dio->lock_type == DIO_LOCKING))
1b1dcc1b 1082 mutex_unlock(&dio->inode->i_mutex);
1da177e4
LT
1083
1084 /*
1085 * OK, all BIOs are submitted, so we can decrement bio_count to truly
1086 * reflect the number of to-be-processed BIOs.
1087 */
1088 if (dio->is_async) {
1089 int should_wait = 0;
1090
b31dc66a 1091 if (dio->result < dio->size && (rw & WRITE)) {
1da177e4
LT
1092 dio->waiter = current;
1093 should_wait = 1;
1094 }
1095 if (ret == 0)
1096 ret = dio->result;
0273201e 1097
20258b2b
ZB
1098 if (should_wait)
1099 dio_await_completion(dio);
1100
0273201e
ZB
1101 /* this can free the dio */
1102 if (atomic_dec_and_test(&dio->refcount))
1103 dio_complete_aio(dio);
1104
20258b2b 1105 if (should_wait)
1da177e4 1106 kfree(dio);
1da177e4 1107 } else {
6d544bb4 1108 dio_await_completion(dio);
1da177e4 1109
6d544bb4 1110 ret = dio_complete(dio, offset, ret);
1da177e4
LT
1111
1112 /* We could have also come here on an AIO file extend */
b31dc66a 1113 if (!is_sync_kiocb(iocb) && (rw & WRITE) &&
1da177e4
LT
1114 ret >= 0 && dio->result == dio->size)
1115 /*
1116 * For AIO writes where we have completed the
1117 * i/o, we have to mark the the aio complete.
1118 */
1119 aio_complete(iocb, ret, 0);
0273201e
ZB
1120
1121 if (atomic_dec_and_test(&dio->refcount))
1122 kfree(dio);
1123 else
1124 BUG();
1da177e4
LT
1125 }
1126 return ret;
1127}
1128
1129/*
1130 * This is a library function for use by filesystem drivers.
1131 * The locking rules are governed by the dio_lock_type parameter.
1132 *
1133 * DIO_NO_LOCKING (no locking, for raw block device access)
1b1dcc1b 1134 * For writes, i_mutex is not held on entry; it is never taken.
1da177e4
LT
1135 *
1136 * DIO_LOCKING (simple locking for regular files)
3fb962bd
NS
1137 * For writes we are called under i_mutex and return with i_mutex held, even
1138 * though it is internally dropped.
1b1dcc1b 1139 * For reads, i_mutex is not held on entry, but it is taken and dropped before
1da177e4
LT
1140 * returning.
1141 *
1142 * DIO_OWN_LOCKING (filesystem provides synchronisation and handling of
1143 * uninitialised data, allowing parallel direct readers and writers)
1b1dcc1b 1144 * For writes we are called without i_mutex, return without it, never touch it.
3fb962bd
NS
1145 * For reads we are called under i_mutex and return with i_mutex held, even
1146 * though it may be internally dropped.
1da177e4
LT
1147 *
1148 * Additional i_alloc_sem locking requirements described inline below.
1149 */
1150ssize_t
1151__blockdev_direct_IO(int rw, struct kiocb *iocb, struct inode *inode,
1152 struct block_device *bdev, const struct iovec *iov, loff_t offset,
1d8fa7a2 1153 unsigned long nr_segs, get_block_t get_block, dio_iodone_t end_io,
1da177e4
LT
1154 int dio_lock_type)
1155{
1156 int seg;
1157 size_t size;
1158 unsigned long addr;
1159 unsigned blkbits = inode->i_blkbits;
1160 unsigned bdev_blkbits = 0;
1161 unsigned blocksize_mask = (1 << blkbits) - 1;
1162 ssize_t retval = -EINVAL;
1163 loff_t end = offset;
1164 struct dio *dio;
3fb962bd
NS
1165 int release_i_mutex = 0;
1166 int acquire_i_mutex = 0;
1da177e4
LT
1167
1168 if (rw & WRITE)
b31dc66a 1169 rw = WRITE_SYNC;
1da177e4
LT
1170
1171 if (bdev)
1172 bdev_blkbits = blksize_bits(bdev_hardsect_size(bdev));
1173
1174 if (offset & blocksize_mask) {
1175 if (bdev)
1176 blkbits = bdev_blkbits;
1177 blocksize_mask = (1 << blkbits) - 1;
1178 if (offset & blocksize_mask)
1179 goto out;
1180 }
1181
1182 /* Check the memory alignment. Blocks cannot straddle pages */
1183 for (seg = 0; seg < nr_segs; seg++) {
1184 addr = (unsigned long)iov[seg].iov_base;
1185 size = iov[seg].iov_len;
1186 end += size;
1187 if ((addr & blocksize_mask) || (size & blocksize_mask)) {
1188 if (bdev)
1189 blkbits = bdev_blkbits;
1190 blocksize_mask = (1 << blkbits) - 1;
1191 if ((addr & blocksize_mask) || (size & blocksize_mask))
1192 goto out;
1193 }
1194 }
1195
1196 dio = kmalloc(sizeof(*dio), GFP_KERNEL);
1197 retval = -ENOMEM;
1198 if (!dio)
1199 goto out;
1200
1201 /*
1202 * For block device access DIO_NO_LOCKING is used,
1203 * neither readers nor writers do any locking at all
1204 * For regular files using DIO_LOCKING,
1b1dcc1b
JS
1205 * readers need to grab i_mutex and i_alloc_sem
1206 * writers need to grab i_alloc_sem only (i_mutex is already held)
1da177e4
LT
1207 * For regular files using DIO_OWN_LOCKING,
1208 * neither readers nor writers take any locks here
1da177e4
LT
1209 */
1210 dio->lock_type = dio_lock_type;
1211 if (dio_lock_type != DIO_NO_LOCKING) {
1212 /* watch out for a 0 len io from a tricksy fs */
1213 if (rw == READ && end > offset) {
1214 struct address_space *mapping;
1215
1216 mapping = iocb->ki_filp->f_mapping;
1217 if (dio_lock_type != DIO_OWN_LOCKING) {
1b1dcc1b 1218 mutex_lock(&inode->i_mutex);
3fb962bd 1219 release_i_mutex = 1;
1da177e4
LT
1220 }
1221
1222 retval = filemap_write_and_wait_range(mapping, offset,
1223 end - 1);
1224 if (retval) {
1225 kfree(dio);
1226 goto out;
1227 }
1228
1229 if (dio_lock_type == DIO_OWN_LOCKING) {
1b1dcc1b 1230 mutex_unlock(&inode->i_mutex);
3fb962bd 1231 acquire_i_mutex = 1;
1da177e4
LT
1232 }
1233 }
1234
1235 if (dio_lock_type == DIO_LOCKING)
d8aa905b
IM
1236 /* lockdep: not the owner will release it */
1237 down_read_non_owner(&inode->i_alloc_sem);
1da177e4
LT
1238 }
1239
1240 /*
1241 * For file extending writes updating i_size before data
1242 * writeouts complete can expose uninitialized blocks. So
1243 * even for AIO, we need to wait for i/o to complete before
1244 * returning in this case.
1245 */
b31dc66a 1246 dio->is_async = !is_sync_kiocb(iocb) && !((rw & WRITE) &&
1da177e4
LT
1247 (end > i_size_read(inode)));
1248
1249 retval = direct_io_worker(rw, iocb, inode, iov, offset,
1d8fa7a2 1250 nr_segs, blkbits, get_block, end_io, dio);
1da177e4
LT
1251
1252 if (rw == READ && dio_lock_type == DIO_LOCKING)
3fb962bd 1253 release_i_mutex = 0;
1da177e4
LT
1254
1255out:
3fb962bd 1256 if (release_i_mutex)
1b1dcc1b 1257 mutex_unlock(&inode->i_mutex);
3fb962bd
NS
1258 else if (acquire_i_mutex)
1259 mutex_lock(&inode->i_mutex);
1da177e4
LT
1260 return retval;
1261}
1262EXPORT_SYMBOL(__blockdev_direct_IO);