]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/exec.c
Merge branch 'pm-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/rafael/suspe...
[mirror_ubuntu-artful-kernel.git] / fs / exec.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/exec.c
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 */
6
7/*
8 * #!-checking implemented by tytso.
9 */
10/*
11 * Demand-loading implemented 01.12.91 - no need to read anything but
12 * the header into memory. The inode of the executable is put into
13 * "current->executable", and page faults do the actual loading. Clean.
14 *
15 * Once more I can proudly say that linux stood up to being changed: it
16 * was less than 2 hours work to get demand-loading completely implemented.
17 *
18 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead,
19 * current->executable is only used by the procfs. This allows a dispatch
20 * table to check for several different types of binary formats. We keep
21 * trying until we recognize the file or we run out of supported binary
22 * formats.
23 */
24
1da177e4
LT
25#include <linux/slab.h>
26#include <linux/file.h>
9f3acc31 27#include <linux/fdtable.h>
ba92a43d 28#include <linux/mm.h>
1da177e4
LT
29#include <linux/stat.h>
30#include <linux/fcntl.h>
ba92a43d 31#include <linux/swap.h>
74aadce9 32#include <linux/string.h>
1da177e4 33#include <linux/init.h>
ca5b172b 34#include <linux/pagemap.h>
cdd6c482 35#include <linux/perf_event.h>
1da177e4
LT
36#include <linux/highmem.h>
37#include <linux/spinlock.h>
38#include <linux/key.h>
39#include <linux/personality.h>
40#include <linux/binfmts.h>
1da177e4 41#include <linux/utsname.h>
84d73786 42#include <linux/pid_namespace.h>
1da177e4
LT
43#include <linux/module.h>
44#include <linux/namei.h>
1da177e4
LT
45#include <linux/mount.h>
46#include <linux/security.h>
47#include <linux/syscalls.h>
8f0ab514 48#include <linux/tsacct_kern.h>
9f46080c 49#include <linux/cn_proc.h>
473ae30b 50#include <linux/audit.h>
6341c393 51#include <linux/tracehook.h>
5f4123be 52#include <linux/kmod.h>
6110e3ab 53#include <linux/fsnotify.h>
5ad4e53b 54#include <linux/fs_struct.h>
61be228a 55#include <linux/pipe_fs_i.h>
3d5992d2 56#include <linux/oom.h>
0e028465 57#include <linux/compat.h>
1da177e4
LT
58
59#include <asm/uaccess.h>
60#include <asm/mmu_context.h>
b6a2fea3 61#include <asm/tlb.h>
a6f76f23 62#include "internal.h"
1da177e4 63
1da177e4 64int core_uses_pid;
71ce92f3 65char core_pattern[CORENAME_MAX_SIZE] = "core";
a293980c 66unsigned int core_pipe_limit;
d6e71144
AC
67int suid_dumpable = 0;
68
1b0d300b
XF
69struct core_name {
70 char *corename;
71 int used, size;
72};
73static atomic_t call_count = ATOMIC_INIT(1);
74
1da177e4
LT
75/* The maximal length of core_pattern is also specified in sysctl.c */
76
e4dc1b14 77static LIST_HEAD(formats);
1da177e4
LT
78static DEFINE_RWLOCK(binfmt_lock);
79
74641f58 80int __register_binfmt(struct linux_binfmt * fmt, int insert)
1da177e4 81{
1da177e4
LT
82 if (!fmt)
83 return -EINVAL;
1da177e4 84 write_lock(&binfmt_lock);
74641f58
IK
85 insert ? list_add(&fmt->lh, &formats) :
86 list_add_tail(&fmt->lh, &formats);
1da177e4
LT
87 write_unlock(&binfmt_lock);
88 return 0;
89}
90
74641f58 91EXPORT_SYMBOL(__register_binfmt);
1da177e4 92
f6b450d4 93void unregister_binfmt(struct linux_binfmt * fmt)
1da177e4 94{
1da177e4 95 write_lock(&binfmt_lock);
e4dc1b14 96 list_del(&fmt->lh);
1da177e4 97 write_unlock(&binfmt_lock);
1da177e4
LT
98}
99
100EXPORT_SYMBOL(unregister_binfmt);
101
102static inline void put_binfmt(struct linux_binfmt * fmt)
103{
104 module_put(fmt->module);
105}
106
107/*
108 * Note that a shared library must be both readable and executable due to
109 * security reasons.
110 *
111 * Also note that we take the address to load from from the file itself.
112 */
1e7bfb21 113SYSCALL_DEFINE1(uselib, const char __user *, library)
1da177e4 114{
964bd183 115 struct file *file;
964bd183
AV
116 char *tmp = getname(library);
117 int error = PTR_ERR(tmp);
47c805dc
AV
118 static const struct open_flags uselib_flags = {
119 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
120 .acc_mode = MAY_READ | MAY_EXEC | MAY_OPEN,
121 .intent = LOOKUP_OPEN
122 };
964bd183 123
6e8341a1
AV
124 if (IS_ERR(tmp))
125 goto out;
126
47c805dc 127 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags, LOOKUP_FOLLOW);
6e8341a1
AV
128 putname(tmp);
129 error = PTR_ERR(file);
130 if (IS_ERR(file))
1da177e4
LT
131 goto out;
132
133 error = -EINVAL;
6e8341a1 134 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
1da177e4
LT
135 goto exit;
136
30524472 137 error = -EACCES;
6e8341a1 138 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
1da177e4
LT
139 goto exit;
140
2a12a9d7 141 fsnotify_open(file);
6110e3ab 142
1da177e4
LT
143 error = -ENOEXEC;
144 if(file->f_op) {
145 struct linux_binfmt * fmt;
146
147 read_lock(&binfmt_lock);
e4dc1b14 148 list_for_each_entry(fmt, &formats, lh) {
1da177e4
LT
149 if (!fmt->load_shlib)
150 continue;
151 if (!try_module_get(fmt->module))
152 continue;
153 read_unlock(&binfmt_lock);
154 error = fmt->load_shlib(file);
155 read_lock(&binfmt_lock);
156 put_binfmt(fmt);
157 if (error != -ENOEXEC)
158 break;
159 }
160 read_unlock(&binfmt_lock);
161 }
6e8341a1 162exit:
1da177e4
LT
163 fput(file);
164out:
165 return error;
1da177e4
LT
166}
167
b6a2fea3 168#ifdef CONFIG_MMU
ae6b585e
ON
169/*
170 * The nascent bprm->mm is not visible until exec_mmap() but it can
171 * use a lot of memory, account these pages in current->mm temporary
172 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
173 * change the counter back via acct_arg_size(0).
174 */
0e028465 175static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
3c77f845
ON
176{
177 struct mm_struct *mm = current->mm;
178 long diff = (long)(pages - bprm->vma_pages);
179
180 if (!mm || !diff)
181 return;
182
183 bprm->vma_pages = pages;
184
185#ifdef SPLIT_RSS_COUNTING
186 add_mm_counter(mm, MM_ANONPAGES, diff);
187#else
188 spin_lock(&mm->page_table_lock);
189 add_mm_counter(mm, MM_ANONPAGES, diff);
190 spin_unlock(&mm->page_table_lock);
191#endif
192}
193
0e028465 194static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
b6a2fea3
OW
195 int write)
196{
197 struct page *page;
198 int ret;
199
200#ifdef CONFIG_STACK_GROWSUP
201 if (write) {
d05f3169 202 ret = expand_downwards(bprm->vma, pos);
b6a2fea3
OW
203 if (ret < 0)
204 return NULL;
205 }
206#endif
207 ret = get_user_pages(current, bprm->mm, pos,
208 1, write, 1, &page, NULL);
209 if (ret <= 0)
210 return NULL;
211
212 if (write) {
b6a2fea3 213 unsigned long size = bprm->vma->vm_end - bprm->vma->vm_start;
a64e715f
LT
214 struct rlimit *rlim;
215
3c77f845
ON
216 acct_arg_size(bprm, size / PAGE_SIZE);
217
a64e715f
LT
218 /*
219 * We've historically supported up to 32 pages (ARG_MAX)
220 * of argument strings even with small stacks
221 */
222 if (size <= ARG_MAX)
223 return page;
b6a2fea3
OW
224
225 /*
226 * Limit to 1/4-th the stack size for the argv+env strings.
227 * This ensures that:
228 * - the remaining binfmt code will not run out of stack space,
229 * - the program will have a reasonable amount of stack left
230 * to work from.
231 */
a64e715f 232 rlim = current->signal->rlim;
d554ed89 233 if (size > ACCESS_ONCE(rlim[RLIMIT_STACK].rlim_cur) / 4) {
b6a2fea3
OW
234 put_page(page);
235 return NULL;
236 }
237 }
238
239 return page;
240}
241
242static void put_arg_page(struct page *page)
243{
244 put_page(page);
245}
246
247static void free_arg_page(struct linux_binprm *bprm, int i)
248{
249}
250
251static void free_arg_pages(struct linux_binprm *bprm)
252{
253}
254
255static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
256 struct page *page)
257{
258 flush_cache_page(bprm->vma, pos, page_to_pfn(page));
259}
260
261static int __bprm_mm_init(struct linux_binprm *bprm)
262{
eaccbfa5 263 int err;
b6a2fea3
OW
264 struct vm_area_struct *vma = NULL;
265 struct mm_struct *mm = bprm->mm;
266
267 bprm->vma = vma = kmem_cache_zalloc(vm_area_cachep, GFP_KERNEL);
268 if (!vma)
eaccbfa5 269 return -ENOMEM;
b6a2fea3
OW
270
271 down_write(&mm->mmap_sem);
272 vma->vm_mm = mm;
273
274 /*
275 * Place the stack at the largest stack address the architecture
276 * supports. Later, we'll move this to an appropriate place. We don't
277 * use STACK_TOP because that can depend on attributes which aren't
278 * configured yet.
279 */
a8bef8ff 280 BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
b6a2fea3
OW
281 vma->vm_end = STACK_TOP_MAX;
282 vma->vm_start = vma->vm_end - PAGE_SIZE;
a8bef8ff 283 vma->vm_flags = VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
3ed75eb8 284 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
5beb4930 285 INIT_LIST_HEAD(&vma->anon_vma_chain);
462e635e
TO
286
287 err = security_file_mmap(NULL, 0, 0, 0, vma->vm_start, 1);
288 if (err)
289 goto err;
290
b6a2fea3 291 err = insert_vm_struct(mm, vma);
eaccbfa5 292 if (err)
b6a2fea3 293 goto err;
b6a2fea3
OW
294
295 mm->stack_vm = mm->total_vm = 1;
296 up_write(&mm->mmap_sem);
b6a2fea3 297 bprm->p = vma->vm_end - sizeof(void *);
b6a2fea3 298 return 0;
b6a2fea3 299err:
eaccbfa5
LFC
300 up_write(&mm->mmap_sem);
301 bprm->vma = NULL;
302 kmem_cache_free(vm_area_cachep, vma);
b6a2fea3
OW
303 return err;
304}
305
306static bool valid_arg_len(struct linux_binprm *bprm, long len)
307{
308 return len <= MAX_ARG_STRLEN;
309}
310
311#else
312
0e028465 313static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
3c77f845
ON
314{
315}
316
0e028465 317static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
b6a2fea3
OW
318 int write)
319{
320 struct page *page;
321
322 page = bprm->page[pos / PAGE_SIZE];
323 if (!page && write) {
324 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
325 if (!page)
326 return NULL;
327 bprm->page[pos / PAGE_SIZE] = page;
328 }
329
330 return page;
331}
332
333static void put_arg_page(struct page *page)
334{
335}
336
337static void free_arg_page(struct linux_binprm *bprm, int i)
338{
339 if (bprm->page[i]) {
340 __free_page(bprm->page[i]);
341 bprm->page[i] = NULL;
342 }
343}
344
345static void free_arg_pages(struct linux_binprm *bprm)
346{
347 int i;
348
349 for (i = 0; i < MAX_ARG_PAGES; i++)
350 free_arg_page(bprm, i);
351}
352
353static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
354 struct page *page)
355{
356}
357
358static int __bprm_mm_init(struct linux_binprm *bprm)
359{
360 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
361 return 0;
362}
363
364static bool valid_arg_len(struct linux_binprm *bprm, long len)
365{
366 return len <= bprm->p;
367}
368
369#endif /* CONFIG_MMU */
370
371/*
372 * Create a new mm_struct and populate it with a temporary stack
373 * vm_area_struct. We don't have enough context at this point to set the stack
374 * flags, permissions, and offset, so we use temporary values. We'll update
375 * them later in setup_arg_pages().
376 */
377int bprm_mm_init(struct linux_binprm *bprm)
378{
379 int err;
380 struct mm_struct *mm = NULL;
381
382 bprm->mm = mm = mm_alloc();
383 err = -ENOMEM;
384 if (!mm)
385 goto err;
386
387 err = init_new_context(current, mm);
388 if (err)
389 goto err;
390
391 err = __bprm_mm_init(bprm);
392 if (err)
393 goto err;
394
395 return 0;
396
397err:
398 if (mm) {
399 bprm->mm = NULL;
400 mmdrop(mm);
401 }
402
403 return err;
404}
405
ba2d0162 406struct user_arg_ptr {
0e028465
ON
407#ifdef CONFIG_COMPAT
408 bool is_compat;
409#endif
410 union {
411 const char __user *const __user *native;
412#ifdef CONFIG_COMPAT
413 compat_uptr_t __user *compat;
414#endif
415 } ptr;
ba2d0162
ON
416};
417
418static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
1d1dbf81 419{
0e028465
ON
420 const char __user *native;
421
422#ifdef CONFIG_COMPAT
423 if (unlikely(argv.is_compat)) {
424 compat_uptr_t compat;
425
426 if (get_user(compat, argv.ptr.compat + nr))
427 return ERR_PTR(-EFAULT);
1d1dbf81 428
0e028465
ON
429 return compat_ptr(compat);
430 }
431#endif
432
433 if (get_user(native, argv.ptr.native + nr))
1d1dbf81
ON
434 return ERR_PTR(-EFAULT);
435
0e028465 436 return native;
1d1dbf81
ON
437}
438
1da177e4
LT
439/*
440 * count() counts the number of strings in array ARGV.
441 */
ba2d0162 442static int count(struct user_arg_ptr argv, int max)
1da177e4
LT
443{
444 int i = 0;
445
0e028465 446 if (argv.ptr.native != NULL) {
1da177e4 447 for (;;) {
1d1dbf81 448 const char __user *p = get_user_arg_ptr(argv, i);
1da177e4 449
1da177e4
LT
450 if (!p)
451 break;
1d1dbf81
ON
452
453 if (IS_ERR(p))
454 return -EFAULT;
455
362e6663 456 if (i++ >= max)
1da177e4 457 return -E2BIG;
9aea5a65
RM
458
459 if (fatal_signal_pending(current))
460 return -ERESTARTNOHAND;
1da177e4
LT
461 cond_resched();
462 }
463 }
464 return i;
465}
466
467/*
b6a2fea3
OW
468 * 'copy_strings()' copies argument/environment strings from the old
469 * processes's memory to the new process's stack. The call to get_user_pages()
470 * ensures the destination page is created and not swapped out.
1da177e4 471 */
ba2d0162 472static int copy_strings(int argc, struct user_arg_ptr argv,
75c96f85 473 struct linux_binprm *bprm)
1da177e4
LT
474{
475 struct page *kmapped_page = NULL;
476 char *kaddr = NULL;
b6a2fea3 477 unsigned long kpos = 0;
1da177e4
LT
478 int ret;
479
480 while (argc-- > 0) {
d7627467 481 const char __user *str;
1da177e4
LT
482 int len;
483 unsigned long pos;
484
1d1dbf81
ON
485 ret = -EFAULT;
486 str = get_user_arg_ptr(argv, argc);
487 if (IS_ERR(str))
1da177e4 488 goto out;
1da177e4 489
1d1dbf81
ON
490 len = strnlen_user(str, MAX_ARG_STRLEN);
491 if (!len)
492 goto out;
493
494 ret = -E2BIG;
495 if (!valid_arg_len(bprm, len))
1da177e4 496 goto out;
1da177e4 497
b6a2fea3 498 /* We're going to work our way backwords. */
1da177e4 499 pos = bprm->p;
b6a2fea3
OW
500 str += len;
501 bprm->p -= len;
1da177e4
LT
502
503 while (len > 0) {
1da177e4 504 int offset, bytes_to_copy;
1da177e4 505
9aea5a65
RM
506 if (fatal_signal_pending(current)) {
507 ret = -ERESTARTNOHAND;
508 goto out;
509 }
7993bc1f
RM
510 cond_resched();
511
1da177e4 512 offset = pos % PAGE_SIZE;
b6a2fea3
OW
513 if (offset == 0)
514 offset = PAGE_SIZE;
515
516 bytes_to_copy = offset;
517 if (bytes_to_copy > len)
518 bytes_to_copy = len;
519
520 offset -= bytes_to_copy;
521 pos -= bytes_to_copy;
522 str -= bytes_to_copy;
523 len -= bytes_to_copy;
524
525 if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
526 struct page *page;
527
528 page = get_arg_page(bprm, pos, 1);
1da177e4 529 if (!page) {
b6a2fea3 530 ret = -E2BIG;
1da177e4
LT
531 goto out;
532 }
1da177e4 533
b6a2fea3
OW
534 if (kmapped_page) {
535 flush_kernel_dcache_page(kmapped_page);
1da177e4 536 kunmap(kmapped_page);
b6a2fea3
OW
537 put_arg_page(kmapped_page);
538 }
1da177e4
LT
539 kmapped_page = page;
540 kaddr = kmap(kmapped_page);
b6a2fea3
OW
541 kpos = pos & PAGE_MASK;
542 flush_arg_page(bprm, kpos, kmapped_page);
1da177e4 543 }
b6a2fea3 544 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
1da177e4
LT
545 ret = -EFAULT;
546 goto out;
547 }
1da177e4
LT
548 }
549 }
550 ret = 0;
551out:
b6a2fea3
OW
552 if (kmapped_page) {
553 flush_kernel_dcache_page(kmapped_page);
1da177e4 554 kunmap(kmapped_page);
b6a2fea3
OW
555 put_arg_page(kmapped_page);
556 }
1da177e4
LT
557 return ret;
558}
559
560/*
561 * Like copy_strings, but get argv and its values from kernel memory.
562 */
ba2d0162 563int copy_strings_kernel(int argc, const char *const *__argv,
d7627467 564 struct linux_binprm *bprm)
1da177e4
LT
565{
566 int r;
567 mm_segment_t oldfs = get_fs();
ba2d0162 568 struct user_arg_ptr argv = {
0e028465 569 .ptr.native = (const char __user *const __user *)__argv,
ba2d0162
ON
570 };
571
1da177e4 572 set_fs(KERNEL_DS);
ba2d0162 573 r = copy_strings(argc, argv, bprm);
1da177e4 574 set_fs(oldfs);
ba2d0162 575
1da177e4
LT
576 return r;
577}
1da177e4
LT
578EXPORT_SYMBOL(copy_strings_kernel);
579
580#ifdef CONFIG_MMU
b6a2fea3 581
1da177e4 582/*
b6a2fea3
OW
583 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once
584 * the binfmt code determines where the new stack should reside, we shift it to
585 * its final location. The process proceeds as follows:
1da177e4 586 *
b6a2fea3
OW
587 * 1) Use shift to calculate the new vma endpoints.
588 * 2) Extend vma to cover both the old and new ranges. This ensures the
589 * arguments passed to subsequent functions are consistent.
590 * 3) Move vma's page tables to the new range.
591 * 4) Free up any cleared pgd range.
592 * 5) Shrink the vma to cover only the new range.
1da177e4 593 */
b6a2fea3 594static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
1da177e4
LT
595{
596 struct mm_struct *mm = vma->vm_mm;
b6a2fea3
OW
597 unsigned long old_start = vma->vm_start;
598 unsigned long old_end = vma->vm_end;
599 unsigned long length = old_end - old_start;
600 unsigned long new_start = old_start - shift;
601 unsigned long new_end = old_end - shift;
d16dfc55 602 struct mmu_gather tlb;
1da177e4 603
b6a2fea3 604 BUG_ON(new_start > new_end);
1da177e4 605
b6a2fea3
OW
606 /*
607 * ensure there are no vmas between where we want to go
608 * and where we are
609 */
610 if (vma != find_vma(mm, new_start))
611 return -EFAULT;
612
613 /*
614 * cover the whole range: [new_start, old_end)
615 */
5beb4930
RR
616 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
617 return -ENOMEM;
b6a2fea3
OW
618
619 /*
620 * move the page tables downwards, on failure we rely on
621 * process cleanup to remove whatever mess we made.
622 */
623 if (length != move_page_tables(vma, old_start,
624 vma, new_start, length))
625 return -ENOMEM;
626
627 lru_add_drain();
d16dfc55 628 tlb_gather_mmu(&tlb, mm, 0);
b6a2fea3
OW
629 if (new_end > old_start) {
630 /*
631 * when the old and new regions overlap clear from new_end.
632 */
d16dfc55 633 free_pgd_range(&tlb, new_end, old_end, new_end,
b6a2fea3
OW
634 vma->vm_next ? vma->vm_next->vm_start : 0);
635 } else {
636 /*
637 * otherwise, clean from old_start; this is done to not touch
638 * the address space in [new_end, old_start) some architectures
639 * have constraints on va-space that make this illegal (IA64) -
640 * for the others its just a little faster.
641 */
d16dfc55 642 free_pgd_range(&tlb, old_start, old_end, new_end,
b6a2fea3 643 vma->vm_next ? vma->vm_next->vm_start : 0);
1da177e4 644 }
d16dfc55 645 tlb_finish_mmu(&tlb, new_end, old_end);
b6a2fea3
OW
646
647 /*
5beb4930 648 * Shrink the vma to just the new range. Always succeeds.
b6a2fea3
OW
649 */
650 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
651
652 return 0;
1da177e4
LT
653}
654
b6a2fea3
OW
655/*
656 * Finalizes the stack vm_area_struct. The flags and permissions are updated,
657 * the stack is optionally relocated, and some extra space is added.
658 */
1da177e4
LT
659int setup_arg_pages(struct linux_binprm *bprm,
660 unsigned long stack_top,
661 int executable_stack)
662{
b6a2fea3
OW
663 unsigned long ret;
664 unsigned long stack_shift;
1da177e4 665 struct mm_struct *mm = current->mm;
b6a2fea3
OW
666 struct vm_area_struct *vma = bprm->vma;
667 struct vm_area_struct *prev = NULL;
668 unsigned long vm_flags;
669 unsigned long stack_base;
803bf5ec
MN
670 unsigned long stack_size;
671 unsigned long stack_expand;
672 unsigned long rlim_stack;
1da177e4
LT
673
674#ifdef CONFIG_STACK_GROWSUP
1da177e4 675 /* Limit stack size to 1GB */
d554ed89 676 stack_base = rlimit_max(RLIMIT_STACK);
1da177e4
LT
677 if (stack_base > (1 << 30))
678 stack_base = 1 << 30;
1da177e4 679
b6a2fea3
OW
680 /* Make sure we didn't let the argument array grow too large. */
681 if (vma->vm_end - vma->vm_start > stack_base)
682 return -ENOMEM;
1da177e4 683
b6a2fea3 684 stack_base = PAGE_ALIGN(stack_top - stack_base);
1da177e4 685
b6a2fea3
OW
686 stack_shift = vma->vm_start - stack_base;
687 mm->arg_start = bprm->p - stack_shift;
688 bprm->p = vma->vm_end - stack_shift;
1da177e4 689#else
b6a2fea3
OW
690 stack_top = arch_align_stack(stack_top);
691 stack_top = PAGE_ALIGN(stack_top);
1b528181
RM
692
693 if (unlikely(stack_top < mmap_min_addr) ||
694 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
695 return -ENOMEM;
696
b6a2fea3
OW
697 stack_shift = vma->vm_end - stack_top;
698
699 bprm->p -= stack_shift;
1da177e4 700 mm->arg_start = bprm->p;
1da177e4
LT
701#endif
702
1da177e4 703 if (bprm->loader)
b6a2fea3
OW
704 bprm->loader -= stack_shift;
705 bprm->exec -= stack_shift;
1da177e4 706
1da177e4 707 down_write(&mm->mmap_sem);
96a8e13e 708 vm_flags = VM_STACK_FLAGS;
b6a2fea3
OW
709
710 /*
711 * Adjust stack execute permissions; explicitly enable for
712 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
713 * (arch default) otherwise.
714 */
715 if (unlikely(executable_stack == EXSTACK_ENABLE_X))
716 vm_flags |= VM_EXEC;
717 else if (executable_stack == EXSTACK_DISABLE_X)
718 vm_flags &= ~VM_EXEC;
719 vm_flags |= mm->def_flags;
a8bef8ff 720 vm_flags |= VM_STACK_INCOMPLETE_SETUP;
b6a2fea3
OW
721
722 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
723 vm_flags);
724 if (ret)
725 goto out_unlock;
726 BUG_ON(prev != vma);
727
728 /* Move stack pages down in memory. */
729 if (stack_shift) {
730 ret = shift_arg_pages(vma, stack_shift);
fc63cf23
AB
731 if (ret)
732 goto out_unlock;
1da177e4
LT
733 }
734
a8bef8ff
MG
735 /* mprotect_fixup is overkill to remove the temporary stack flags */
736 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
737
5ef097dd 738 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
803bf5ec
MN
739 stack_size = vma->vm_end - vma->vm_start;
740 /*
741 * Align this down to a page boundary as expand_stack
742 * will align it up.
743 */
744 rlim_stack = rlimit(RLIMIT_STACK) & PAGE_MASK;
b6a2fea3 745#ifdef CONFIG_STACK_GROWSUP
803bf5ec
MN
746 if (stack_size + stack_expand > rlim_stack)
747 stack_base = vma->vm_start + rlim_stack;
748 else
749 stack_base = vma->vm_end + stack_expand;
b6a2fea3 750#else
803bf5ec
MN
751 if (stack_size + stack_expand > rlim_stack)
752 stack_base = vma->vm_end - rlim_stack;
753 else
754 stack_base = vma->vm_start - stack_expand;
b6a2fea3 755#endif
3af9e859 756 current->mm->start_stack = bprm->p;
b6a2fea3
OW
757 ret = expand_stack(vma, stack_base);
758 if (ret)
759 ret = -EFAULT;
760
761out_unlock:
1da177e4 762 up_write(&mm->mmap_sem);
fc63cf23 763 return ret;
1da177e4 764}
1da177e4
LT
765EXPORT_SYMBOL(setup_arg_pages);
766
1da177e4
LT
767#endif /* CONFIG_MMU */
768
769struct file *open_exec(const char *name)
770{
1da177e4 771 struct file *file;
e56b6a5d 772 int err;
47c805dc
AV
773 static const struct open_flags open_exec_flags = {
774 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
775 .acc_mode = MAY_EXEC | MAY_OPEN,
776 .intent = LOOKUP_OPEN
777 };
1da177e4 778
47c805dc 779 file = do_filp_open(AT_FDCWD, name, &open_exec_flags, LOOKUP_FOLLOW);
6e8341a1 780 if (IS_ERR(file))
e56b6a5d
CH
781 goto out;
782
783 err = -EACCES;
6e8341a1
AV
784 if (!S_ISREG(file->f_path.dentry->d_inode->i_mode))
785 goto exit;
e56b6a5d 786
6e8341a1
AV
787 if (file->f_path.mnt->mnt_flags & MNT_NOEXEC)
788 goto exit;
e56b6a5d 789
2a12a9d7 790 fsnotify_open(file);
6110e3ab 791
e56b6a5d 792 err = deny_write_access(file);
6e8341a1
AV
793 if (err)
794 goto exit;
1da177e4 795
6e8341a1 796out:
e56b6a5d
CH
797 return file;
798
6e8341a1
AV
799exit:
800 fput(file);
e56b6a5d
CH
801 return ERR_PTR(err);
802}
1da177e4
LT
803EXPORT_SYMBOL(open_exec);
804
6777d773
MZ
805int kernel_read(struct file *file, loff_t offset,
806 char *addr, unsigned long count)
1da177e4
LT
807{
808 mm_segment_t old_fs;
809 loff_t pos = offset;
810 int result;
811
812 old_fs = get_fs();
813 set_fs(get_ds());
814 /* The cast to a user pointer is valid due to the set_fs() */
815 result = vfs_read(file, (void __user *)addr, count, &pos);
816 set_fs(old_fs);
817 return result;
818}
819
820EXPORT_SYMBOL(kernel_read);
821
822static int exec_mmap(struct mm_struct *mm)
823{
824 struct task_struct *tsk;
825 struct mm_struct * old_mm, *active_mm;
826
827 /* Notify parent that we're no longer interested in the old VM */
828 tsk = current;
829 old_mm = current->mm;
34e55232 830 sync_mm_rss(tsk, old_mm);
1da177e4
LT
831 mm_release(tsk, old_mm);
832
833 if (old_mm) {
834 /*
835 * Make sure that if there is a core dump in progress
836 * for the old mm, we get out and die instead of going
837 * through with the exec. We must hold mmap_sem around
999d9fc1 838 * checking core_state and changing tsk->mm.
1da177e4
LT
839 */
840 down_read(&old_mm->mmap_sem);
999d9fc1 841 if (unlikely(old_mm->core_state)) {
1da177e4
LT
842 up_read(&old_mm->mmap_sem);
843 return -EINTR;
844 }
845 }
846 task_lock(tsk);
847 active_mm = tsk->active_mm;
848 tsk->mm = mm;
849 tsk->active_mm = mm;
850 activate_mm(active_mm, mm);
3d5992d2
YH
851 if (old_mm && tsk->signal->oom_score_adj == OOM_SCORE_ADJ_MIN) {
852 atomic_dec(&old_mm->oom_disable_count);
853 atomic_inc(&tsk->mm->oom_disable_count);
854 }
1da177e4
LT
855 task_unlock(tsk);
856 arch_pick_mmap_layout(mm);
857 if (old_mm) {
858 up_read(&old_mm->mmap_sem);
7dddb12c 859 BUG_ON(active_mm != old_mm);
31a78f23 860 mm_update_next_owner(old_mm);
1da177e4
LT
861 mmput(old_mm);
862 return 0;
863 }
864 mmdrop(active_mm);
865 return 0;
866}
867
868/*
869 * This function makes sure the current process has its own signal table,
870 * so that flush_signal_handlers can later reset the handlers without
871 * disturbing other processes. (Other processes might share the signal
872 * table via the CLONE_SIGHAND option to clone().)
873 */
858119e1 874static int de_thread(struct task_struct *tsk)
1da177e4
LT
875{
876 struct signal_struct *sig = tsk->signal;
b2c903b8 877 struct sighand_struct *oldsighand = tsk->sighand;
1da177e4 878 spinlock_t *lock = &oldsighand->siglock;
1da177e4 879
aafe6c2a 880 if (thread_group_empty(tsk))
1da177e4
LT
881 goto no_thread_group;
882
883 /*
884 * Kill all other threads in the thread group.
1da177e4 885 */
1da177e4 886 spin_lock_irq(lock);
ed5d2cac 887 if (signal_group_exit(sig)) {
1da177e4
LT
888 /*
889 * Another group action in progress, just
890 * return so that the signal is processed.
891 */
892 spin_unlock_irq(lock);
1da177e4
LT
893 return -EAGAIN;
894 }
d344193a 895
ed5d2cac 896 sig->group_exit_task = tsk;
d344193a
ON
897 sig->notify_count = zap_other_threads(tsk);
898 if (!thread_group_leader(tsk))
899 sig->notify_count--;
1da177e4 900
d344193a 901 while (sig->notify_count) {
1da177e4
LT
902 __set_current_state(TASK_UNINTERRUPTIBLE);
903 spin_unlock_irq(lock);
904 schedule();
905 spin_lock_irq(lock);
906 }
1da177e4
LT
907 spin_unlock_irq(lock);
908
909 /*
910 * At this point all other threads have exited, all we have to
911 * do is to wait for the thread group leader to become inactive,
912 * and to assume its PID:
913 */
aafe6c2a 914 if (!thread_group_leader(tsk)) {
8187926b 915 struct task_struct *leader = tsk->group_leader;
6db840fa 916
2800d8d1 917 sig->notify_count = -1; /* for exit_notify() */
6db840fa
ON
918 for (;;) {
919 write_lock_irq(&tasklist_lock);
920 if (likely(leader->exit_state))
921 break;
922 __set_current_state(TASK_UNINTERRUPTIBLE);
923 write_unlock_irq(&tasklist_lock);
924 schedule();
925 }
1da177e4 926
f5e90281
RM
927 /*
928 * The only record we have of the real-time age of a
929 * process, regardless of execs it's done, is start_time.
930 * All the past CPU time is accumulated in signal_struct
931 * from sister threads now dead. But in this non-leader
932 * exec, nothing survives from the original leader thread,
933 * whose birth marks the true age of this process now.
934 * When we take on its identity by switching to its PID, we
935 * also take its birthdate (always earlier than our own).
936 */
aafe6c2a 937 tsk->start_time = leader->start_time;
f5e90281 938
bac0abd6
PE
939 BUG_ON(!same_thread_group(leader, tsk));
940 BUG_ON(has_group_leader_pid(tsk));
1da177e4
LT
941 /*
942 * An exec() starts a new thread group with the
943 * TGID of the previous thread group. Rehash the
944 * two threads with a switched PID, and release
945 * the former thread group leader:
946 */
d73d6529
EB
947
948 /* Become a process group leader with the old leader's pid.
c18258c6
EB
949 * The old leader becomes a thread of the this thread group.
950 * Note: The old leader also uses this pid until release_task
d73d6529
EB
951 * is called. Odd but simple and correct.
952 */
aafe6c2a
EB
953 detach_pid(tsk, PIDTYPE_PID);
954 tsk->pid = leader->pid;
3743ca05 955 attach_pid(tsk, PIDTYPE_PID, task_pid(leader));
aafe6c2a
EB
956 transfer_pid(leader, tsk, PIDTYPE_PGID);
957 transfer_pid(leader, tsk, PIDTYPE_SID);
9cd80bbb 958
aafe6c2a 959 list_replace_rcu(&leader->tasks, &tsk->tasks);
9cd80bbb 960 list_replace_init(&leader->sibling, &tsk->sibling);
1da177e4 961
aafe6c2a
EB
962 tsk->group_leader = tsk;
963 leader->group_leader = tsk;
de12a787 964
aafe6c2a 965 tsk->exit_signal = SIGCHLD;
962b564c
ON
966
967 BUG_ON(leader->exit_state != EXIT_ZOMBIE);
968 leader->exit_state = EXIT_DEAD;
1da177e4 969 write_unlock_irq(&tasklist_lock);
8187926b
ON
970
971 release_task(leader);
ed5d2cac 972 }
1da177e4 973
6db840fa
ON
974 sig->group_exit_task = NULL;
975 sig->notify_count = 0;
1da177e4
LT
976
977no_thread_group:
1f10206c
JP
978 if (current->mm)
979 setmax_mm_hiwater_rss(&sig->maxrss, current->mm);
980
1da177e4 981 exit_itimers(sig);
cbaffba1 982 flush_itimer_signals();
329f7dba 983
b2c903b8
ON
984 if (atomic_read(&oldsighand->count) != 1) {
985 struct sighand_struct *newsighand;
1da177e4 986 /*
b2c903b8
ON
987 * This ->sighand is shared with the CLONE_SIGHAND
988 * but not CLONE_THREAD task, switch to the new one.
1da177e4 989 */
b2c903b8
ON
990 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
991 if (!newsighand)
992 return -ENOMEM;
993
1da177e4
LT
994 atomic_set(&newsighand->count, 1);
995 memcpy(newsighand->action, oldsighand->action,
996 sizeof(newsighand->action));
997
998 write_lock_irq(&tasklist_lock);
999 spin_lock(&oldsighand->siglock);
aafe6c2a 1000 rcu_assign_pointer(tsk->sighand, newsighand);
1da177e4
LT
1001 spin_unlock(&oldsighand->siglock);
1002 write_unlock_irq(&tasklist_lock);
1003
fba2afaa 1004 __cleanup_sighand(oldsighand);
1da177e4
LT
1005 }
1006
aafe6c2a 1007 BUG_ON(!thread_group_leader(tsk));
1da177e4
LT
1008 return 0;
1009}
0840a90d 1010
1da177e4
LT
1011/*
1012 * These functions flushes out all traces of the currently running executable
1013 * so that a new one can be started
1014 */
858119e1 1015static void flush_old_files(struct files_struct * files)
1da177e4
LT
1016{
1017 long j = -1;
badf1662 1018 struct fdtable *fdt;
1da177e4
LT
1019
1020 spin_lock(&files->file_lock);
1021 for (;;) {
1022 unsigned long set, i;
1023
1024 j++;
1025 i = j * __NFDBITS;
badf1662 1026 fdt = files_fdtable(files);
bbea9f69 1027 if (i >= fdt->max_fds)
1da177e4 1028 break;
badf1662 1029 set = fdt->close_on_exec->fds_bits[j];
1da177e4
LT
1030 if (!set)
1031 continue;
badf1662 1032 fdt->close_on_exec->fds_bits[j] = 0;
1da177e4
LT
1033 spin_unlock(&files->file_lock);
1034 for ( ; set ; i++,set >>= 1) {
1035 if (set & 1) {
1036 sys_close(i);
1037 }
1038 }
1039 spin_lock(&files->file_lock);
1040
1041 }
1042 spin_unlock(&files->file_lock);
1043}
1044
59714d65 1045char *get_task_comm(char *buf, struct task_struct *tsk)
1da177e4
LT
1046{
1047 /* buf must be at least sizeof(tsk->comm) in size */
1048 task_lock(tsk);
1049 strncpy(buf, tsk->comm, sizeof(tsk->comm));
1050 task_unlock(tsk);
59714d65 1051 return buf;
1da177e4 1052}
7d74f492 1053EXPORT_SYMBOL_GPL(get_task_comm);
1da177e4
LT
1054
1055void set_task_comm(struct task_struct *tsk, char *buf)
1056{
1057 task_lock(tsk);
4614a696
JS
1058
1059 /*
1060 * Threads may access current->comm without holding
1061 * the task lock, so write the string carefully.
1062 * Readers without a lock may see incomplete new
1063 * names but are safe from non-terminating string reads.
1064 */
1065 memset(tsk->comm, 0, TASK_COMM_LEN);
1066 wmb();
1da177e4
LT
1067 strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1068 task_unlock(tsk);
cdd6c482 1069 perf_event_comm(tsk);
1da177e4
LT
1070}
1071
1072int flush_old_exec(struct linux_binprm * bprm)
1073{
221af7f8 1074 int retval;
1da177e4
LT
1075
1076 /*
1077 * Make sure we have a private signal table and that
1078 * we are unassociated from the previous thread group.
1079 */
1080 retval = de_thread(current);
1081 if (retval)
1082 goto out;
1083
925d1c40
MH
1084 set_mm_exe_file(bprm->mm, bprm->file);
1085
1da177e4
LT
1086 /*
1087 * Release all of the old mmap stuff
1088 */
3c77f845 1089 acct_arg_size(bprm, 0);
1da177e4
LT
1090 retval = exec_mmap(bprm->mm);
1091 if (retval)
fd8328be 1092 goto out;
1da177e4
LT
1093
1094 bprm->mm = NULL; /* We're using it now */
7ab02af4 1095
98391cf4 1096 current->flags &= ~(PF_RANDOMIZE | PF_KTHREAD);
7ab02af4
LT
1097 flush_thread();
1098 current->personality &= ~bprm->per_clear;
1099
221af7f8
LT
1100 return 0;
1101
1102out:
1103 return retval;
1104}
1105EXPORT_SYMBOL(flush_old_exec);
1106
1107void setup_new_exec(struct linux_binprm * bprm)
1108{
1109 int i, ch;
d7627467 1110 const char *name;
221af7f8
LT
1111 char tcomm[sizeof(current->comm)];
1112
1113 arch_pick_mmap_layout(current->mm);
1da177e4
LT
1114
1115 /* This is the point of no return */
1da177e4
LT
1116 current->sas_ss_sp = current->sas_ss_size = 0;
1117
da9592ed 1118 if (current_euid() == current_uid() && current_egid() == current_gid())
6c5d5238 1119 set_dumpable(current->mm, 1);
d6e71144 1120 else
6c5d5238 1121 set_dumpable(current->mm, suid_dumpable);
d6e71144 1122
1da177e4 1123 name = bprm->filename;
36772092
PBG
1124
1125 /* Copies the binary name from after last slash */
1da177e4
LT
1126 for (i=0; (ch = *(name++)) != '\0';) {
1127 if (ch == '/')
36772092 1128 i = 0; /* overwrite what we wrote */
1da177e4
LT
1129 else
1130 if (i < (sizeof(tcomm) - 1))
1131 tcomm[i++] = ch;
1132 }
1133 tcomm[i] = '\0';
1134 set_task_comm(current, tcomm);
1135
0551fbd2
BH
1136 /* Set the new mm task size. We have to do that late because it may
1137 * depend on TIF_32BIT which is only updated in flush_thread() on
1138 * some architectures like powerpc
1139 */
1140 current->mm->task_size = TASK_SIZE;
1141
a6f76f23
DH
1142 /* install the new credentials */
1143 if (bprm->cred->uid != current_euid() ||
1144 bprm->cred->gid != current_egid()) {
d2d56c5f
MH
1145 current->pdeath_signal = 0;
1146 } else if (file_permission(bprm->file, MAY_READ) ||
a6f76f23 1147 bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP) {
6c5d5238 1148 set_dumpable(current->mm, suid_dumpable);
1da177e4
LT
1149 }
1150
f65cb45c
IM
1151 /*
1152 * Flush performance counters when crossing a
1153 * security domain:
1154 */
1155 if (!get_dumpable(current->mm))
cdd6c482 1156 perf_event_exit_task(current);
f65cb45c 1157
1da177e4
LT
1158 /* An exec changes our domain. We are no longer part of the thread
1159 group */
1160
1161 current->self_exec_id++;
1162
1163 flush_signal_handlers(current, 0);
1164 flush_old_files(current->files);
1da177e4 1165}
221af7f8 1166EXPORT_SYMBOL(setup_new_exec);
1da177e4 1167
a2a8474c
ON
1168/*
1169 * Prepare credentials and lock ->cred_guard_mutex.
1170 * install_exec_creds() commits the new creds and drops the lock.
1171 * Or, if exec fails before, free_bprm() should release ->cred and
1172 * and unlock.
1173 */
1174int prepare_bprm_creds(struct linux_binprm *bprm)
1175{
9b1bf12d 1176 if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
a2a8474c
ON
1177 return -ERESTARTNOINTR;
1178
1179 bprm->cred = prepare_exec_creds();
1180 if (likely(bprm->cred))
1181 return 0;
1182
9b1bf12d 1183 mutex_unlock(&current->signal->cred_guard_mutex);
a2a8474c
ON
1184 return -ENOMEM;
1185}
1186
1187void free_bprm(struct linux_binprm *bprm)
1188{
1189 free_arg_pages(bprm);
1190 if (bprm->cred) {
9b1bf12d 1191 mutex_unlock(&current->signal->cred_guard_mutex);
a2a8474c
ON
1192 abort_creds(bprm->cred);
1193 }
1194 kfree(bprm);
1195}
1196
a6f76f23
DH
1197/*
1198 * install the new credentials for this executable
1199 */
1200void install_exec_creds(struct linux_binprm *bprm)
1201{
1202 security_bprm_committing_creds(bprm);
1203
1204 commit_creds(bprm->cred);
1205 bprm->cred = NULL;
a2a8474c
ON
1206 /*
1207 * cred_guard_mutex must be held at least to this point to prevent
a6f76f23 1208 * ptrace_attach() from altering our determination of the task's
a2a8474c
ON
1209 * credentials; any time after this it may be unlocked.
1210 */
a6f76f23 1211 security_bprm_committed_creds(bprm);
9b1bf12d 1212 mutex_unlock(&current->signal->cred_guard_mutex);
a6f76f23
DH
1213}
1214EXPORT_SYMBOL(install_exec_creds);
1215
1216/*
1217 * determine how safe it is to execute the proposed program
9b1bf12d 1218 * - the caller must hold ->cred_guard_mutex to protect against
a6f76f23
DH
1219 * PTRACE_ATTACH
1220 */
498052bb 1221int check_unsafe_exec(struct linux_binprm *bprm)
a6f76f23 1222{
0bf2f3ae 1223 struct task_struct *p = current, *t;
f1191b50 1224 unsigned n_fs;
498052bb 1225 int res = 0;
a6f76f23
DH
1226
1227 bprm->unsafe = tracehook_unsafe_exec(p);
1228
0bf2f3ae 1229 n_fs = 1;
2a4419b5 1230 spin_lock(&p->fs->lock);
437f7fdb 1231 rcu_read_lock();
0bf2f3ae
DH
1232 for (t = next_thread(p); t != p; t = next_thread(t)) {
1233 if (t->fs == p->fs)
1234 n_fs++;
0bf2f3ae 1235 }
437f7fdb 1236 rcu_read_unlock();
0bf2f3ae 1237
f1191b50 1238 if (p->fs->users > n_fs) {
a6f76f23 1239 bprm->unsafe |= LSM_UNSAFE_SHARE;
498052bb 1240 } else {
8c652f96
ON
1241 res = -EAGAIN;
1242 if (!p->fs->in_exec) {
1243 p->fs->in_exec = 1;
1244 res = 1;
1245 }
498052bb 1246 }
2a4419b5 1247 spin_unlock(&p->fs->lock);
498052bb
AV
1248
1249 return res;
a6f76f23
DH
1250}
1251
1da177e4
LT
1252/*
1253 * Fill the binprm structure from the inode.
1254 * Check permissions, then read the first 128 (BINPRM_BUF_SIZE) bytes
a6f76f23
DH
1255 *
1256 * This may be called multiple times for binary chains (scripts for example).
1da177e4
LT
1257 */
1258int prepare_binprm(struct linux_binprm *bprm)
1259{
a6f76f23 1260 umode_t mode;
0f7fc9e4 1261 struct inode * inode = bprm->file->f_path.dentry->d_inode;
1da177e4
LT
1262 int retval;
1263
1264 mode = inode->i_mode;
1da177e4
LT
1265 if (bprm->file->f_op == NULL)
1266 return -EACCES;
1267
a6f76f23
DH
1268 /* clear any previous set[ug]id data from a previous binary */
1269 bprm->cred->euid = current_euid();
1270 bprm->cred->egid = current_egid();
1da177e4 1271
a6f76f23 1272 if (!(bprm->file->f_path.mnt->mnt_flags & MNT_NOSUID)) {
1da177e4
LT
1273 /* Set-uid? */
1274 if (mode & S_ISUID) {
a6f76f23
DH
1275 bprm->per_clear |= PER_CLEAR_ON_SETID;
1276 bprm->cred->euid = inode->i_uid;
1da177e4
LT
1277 }
1278
1279 /* Set-gid? */
1280 /*
1281 * If setgid is set but no group execute bit then this
1282 * is a candidate for mandatory locking, not a setgid
1283 * executable.
1284 */
1285 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
a6f76f23
DH
1286 bprm->per_clear |= PER_CLEAR_ON_SETID;
1287 bprm->cred->egid = inode->i_gid;
1da177e4
LT
1288 }
1289 }
1290
1291 /* fill in binprm security blob */
a6f76f23 1292 retval = security_bprm_set_creds(bprm);
1da177e4
LT
1293 if (retval)
1294 return retval;
a6f76f23 1295 bprm->cred_prepared = 1;
1da177e4 1296
a6f76f23
DH
1297 memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1298 return kernel_read(bprm->file, 0, bprm->buf, BINPRM_BUF_SIZE);
1da177e4
LT
1299}
1300
1301EXPORT_SYMBOL(prepare_binprm);
1302
4fc75ff4
NP
1303/*
1304 * Arguments are '\0' separated strings found at the location bprm->p
1305 * points to; chop off the first by relocating brpm->p to right after
1306 * the first '\0' encountered.
1307 */
b6a2fea3 1308int remove_arg_zero(struct linux_binprm *bprm)
1da177e4 1309{
b6a2fea3
OW
1310 int ret = 0;
1311 unsigned long offset;
1312 char *kaddr;
1313 struct page *page;
4fc75ff4 1314
b6a2fea3
OW
1315 if (!bprm->argc)
1316 return 0;
1da177e4 1317
b6a2fea3
OW
1318 do {
1319 offset = bprm->p & ~PAGE_MASK;
1320 page = get_arg_page(bprm, bprm->p, 0);
1321 if (!page) {
1322 ret = -EFAULT;
1323 goto out;
1324 }
1325 kaddr = kmap_atomic(page, KM_USER0);
4fc75ff4 1326
b6a2fea3
OW
1327 for (; offset < PAGE_SIZE && kaddr[offset];
1328 offset++, bprm->p++)
1329 ;
4fc75ff4 1330
b6a2fea3
OW
1331 kunmap_atomic(kaddr, KM_USER0);
1332 put_arg_page(page);
4fc75ff4 1333
b6a2fea3
OW
1334 if (offset == PAGE_SIZE)
1335 free_arg_page(bprm, (bprm->p >> PAGE_SHIFT) - 1);
1336 } while (offset == PAGE_SIZE);
4fc75ff4 1337
b6a2fea3
OW
1338 bprm->p++;
1339 bprm->argc--;
1340 ret = 0;
4fc75ff4 1341
b6a2fea3
OW
1342out:
1343 return ret;
1da177e4 1344}
1da177e4
LT
1345EXPORT_SYMBOL(remove_arg_zero);
1346
1347/*
1348 * cycle the list of binary formats handler, until one recognizes the image
1349 */
1350int search_binary_handler(struct linux_binprm *bprm,struct pt_regs *regs)
1351{
85f33466 1352 unsigned int depth = bprm->recursion_depth;
1da177e4
LT
1353 int try,retval;
1354 struct linux_binfmt *fmt;
1da177e4 1355
1da177e4
LT
1356 retval = security_bprm_check(bprm);
1357 if (retval)
1358 return retval;
1359
1360 /* kernel module loader fixup */
1361 /* so we don't try to load run modprobe in kernel space. */
1362 set_fs(USER_DS);
473ae30b
AV
1363
1364 retval = audit_bprm(bprm);
1365 if (retval)
1366 return retval;
1367
1da177e4
LT
1368 retval = -ENOENT;
1369 for (try=0; try<2; try++) {
1370 read_lock(&binfmt_lock);
e4dc1b14 1371 list_for_each_entry(fmt, &formats, lh) {
1da177e4
LT
1372 int (*fn)(struct linux_binprm *, struct pt_regs *) = fmt->load_binary;
1373 if (!fn)
1374 continue;
1375 if (!try_module_get(fmt->module))
1376 continue;
1377 read_unlock(&binfmt_lock);
1378 retval = fn(bprm, regs);
85f33466
RM
1379 /*
1380 * Restore the depth counter to its starting value
1381 * in this call, so we don't have to rely on every
1382 * load_binary function to restore it on return.
1383 */
1384 bprm->recursion_depth = depth;
1da177e4 1385 if (retval >= 0) {
85f33466
RM
1386 if (depth == 0)
1387 tracehook_report_exec(fmt, bprm, regs);
1da177e4
LT
1388 put_binfmt(fmt);
1389 allow_write_access(bprm->file);
1390 if (bprm->file)
1391 fput(bprm->file);
1392 bprm->file = NULL;
1393 current->did_exec = 1;
9f46080c 1394 proc_exec_connector(current);
1da177e4
LT
1395 return retval;
1396 }
1397 read_lock(&binfmt_lock);
1398 put_binfmt(fmt);
1399 if (retval != -ENOEXEC || bprm->mm == NULL)
1400 break;
1401 if (!bprm->file) {
1402 read_unlock(&binfmt_lock);
1403 return retval;
1404 }
1405 }
1406 read_unlock(&binfmt_lock);
1407 if (retval != -ENOEXEC || bprm->mm == NULL) {
1408 break;
5f4123be
JB
1409#ifdef CONFIG_MODULES
1410 } else {
1da177e4
LT
1411#define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1412 if (printable(bprm->buf[0]) &&
1413 printable(bprm->buf[1]) &&
1414 printable(bprm->buf[2]) &&
1415 printable(bprm->buf[3]))
1416 break; /* -ENOEXEC */
1417 request_module("binfmt-%04x", *(unsigned short *)(&bprm->buf[2]));
1418#endif
1419 }
1420 }
1421 return retval;
1422}
1423
1424EXPORT_SYMBOL(search_binary_handler);
1425
1426/*
1427 * sys_execve() executes a new program.
1428 */
ba2d0162
ON
1429static int do_execve_common(const char *filename,
1430 struct user_arg_ptr argv,
1431 struct user_arg_ptr envp,
1432 struct pt_regs *regs)
1da177e4
LT
1433{
1434 struct linux_binprm *bprm;
1435 struct file *file;
3b125388 1436 struct files_struct *displaced;
8c652f96 1437 bool clear_in_exec;
1da177e4 1438 int retval;
1da177e4 1439
3b125388 1440 retval = unshare_files(&displaced);
fd8328be
AV
1441 if (retval)
1442 goto out_ret;
1443
1da177e4 1444 retval = -ENOMEM;
11b0b5ab 1445 bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1da177e4 1446 if (!bprm)
fd8328be 1447 goto out_files;
1da177e4 1448
a2a8474c
ON
1449 retval = prepare_bprm_creds(bprm);
1450 if (retval)
a6f76f23 1451 goto out_free;
498052bb
AV
1452
1453 retval = check_unsafe_exec(bprm);
8c652f96 1454 if (retval < 0)
a2a8474c 1455 goto out_free;
8c652f96 1456 clear_in_exec = retval;
a2a8474c 1457 current->in_execve = 1;
a6f76f23 1458
1da177e4
LT
1459 file = open_exec(filename);
1460 retval = PTR_ERR(file);
1461 if (IS_ERR(file))
498052bb 1462 goto out_unmark;
1da177e4
LT
1463
1464 sched_exec();
1465
1da177e4
LT
1466 bprm->file = file;
1467 bprm->filename = filename;
1468 bprm->interp = filename;
1da177e4 1469
b6a2fea3
OW
1470 retval = bprm_mm_init(bprm);
1471 if (retval)
1472 goto out_file;
1da177e4 1473
b6a2fea3 1474 bprm->argc = count(argv, MAX_ARG_STRINGS);
1da177e4 1475 if ((retval = bprm->argc) < 0)
a6f76f23 1476 goto out;
1da177e4 1477
b6a2fea3 1478 bprm->envc = count(envp, MAX_ARG_STRINGS);
1da177e4 1479 if ((retval = bprm->envc) < 0)
1da177e4
LT
1480 goto out;
1481
1482 retval = prepare_binprm(bprm);
1483 if (retval < 0)
1484 goto out;
1485
1486 retval = copy_strings_kernel(1, &bprm->filename, bprm);
1487 if (retval < 0)
1488 goto out;
1489
1490 bprm->exec = bprm->p;
1491 retval = copy_strings(bprm->envc, envp, bprm);
1492 if (retval < 0)
1493 goto out;
1494
1495 retval = copy_strings(bprm->argc, argv, bprm);
1496 if (retval < 0)
1497 goto out;
1498
1499 retval = search_binary_handler(bprm,regs);
a6f76f23
DH
1500 if (retval < 0)
1501 goto out;
1da177e4 1502
a6f76f23 1503 /* execve succeeded */
498052bb 1504 current->fs->in_exec = 0;
f9ce1f1c 1505 current->in_execve = 0;
a6f76f23
DH
1506 acct_update_integrals(current);
1507 free_bprm(bprm);
1508 if (displaced)
1509 put_files_struct(displaced);
1510 return retval;
1da177e4 1511
a6f76f23 1512out:
3c77f845
ON
1513 if (bprm->mm) {
1514 acct_arg_size(bprm, 0);
1515 mmput(bprm->mm);
1516 }
1da177e4
LT
1517
1518out_file:
1519 if (bprm->file) {
1520 allow_write_access(bprm->file);
1521 fput(bprm->file);
1522 }
a6f76f23 1523
498052bb 1524out_unmark:
8c652f96
ON
1525 if (clear_in_exec)
1526 current->fs->in_exec = 0;
f9ce1f1c 1527 current->in_execve = 0;
a6f76f23
DH
1528
1529out_free:
08a6fac1 1530 free_bprm(bprm);
1da177e4 1531
fd8328be 1532out_files:
3b125388
AV
1533 if (displaced)
1534 reset_files_struct(displaced);
1da177e4
LT
1535out_ret:
1536 return retval;
1537}
1538
ba2d0162
ON
1539int do_execve(const char *filename,
1540 const char __user *const __user *__argv,
1541 const char __user *const __user *__envp,
1542 struct pt_regs *regs)
1543{
0e028465
ON
1544 struct user_arg_ptr argv = { .ptr.native = __argv };
1545 struct user_arg_ptr envp = { .ptr.native = __envp };
1546 return do_execve_common(filename, argv, envp, regs);
1547}
1548
1549#ifdef CONFIG_COMPAT
1550int compat_do_execve(char *filename,
1551 compat_uptr_t __user *__argv,
1552 compat_uptr_t __user *__envp,
1553 struct pt_regs *regs)
1554{
1555 struct user_arg_ptr argv = {
1556 .is_compat = true,
1557 .ptr.compat = __argv,
1558 };
1559 struct user_arg_ptr envp = {
1560 .is_compat = true,
1561 .ptr.compat = __envp,
1562 };
ba2d0162
ON
1563 return do_execve_common(filename, argv, envp, regs);
1564}
0e028465 1565#endif
ba2d0162 1566
964ee7df 1567void set_binfmt(struct linux_binfmt *new)
1da177e4 1568{
801460d0
HS
1569 struct mm_struct *mm = current->mm;
1570
1571 if (mm->binfmt)
1572 module_put(mm->binfmt->module);
1da177e4 1573
801460d0 1574 mm->binfmt = new;
964ee7df
ON
1575 if (new)
1576 __module_get(new->module);
1da177e4
LT
1577}
1578
1579EXPORT_SYMBOL(set_binfmt);
1580
1b0d300b
XF
1581static int expand_corename(struct core_name *cn)
1582{
1583 char *old_corename = cn->corename;
1584
1585 cn->size = CORENAME_MAX_SIZE * atomic_inc_return(&call_count);
1586 cn->corename = krealloc(old_corename, cn->size, GFP_KERNEL);
1587
1588 if (!cn->corename) {
1589 kfree(old_corename);
1590 return -ENOMEM;
1591 }
1592
1593 return 0;
1594}
1595
1596static int cn_printf(struct core_name *cn, const char *fmt, ...)
1597{
1598 char *cur;
1599 int need;
1600 int ret;
1601 va_list arg;
1602
1603 va_start(arg, fmt);
1604 need = vsnprintf(NULL, 0, fmt, arg);
1605 va_end(arg);
1606
1607 if (likely(need < cn->size - cn->used - 1))
1608 goto out_printf;
1609
1610 ret = expand_corename(cn);
1611 if (ret)
1612 goto expand_fail;
1613
1614out_printf:
1615 cur = cn->corename + cn->used;
1616 va_start(arg, fmt);
1617 vsnprintf(cur, need + 1, fmt, arg);
1618 va_end(arg);
1619 cn->used += need;
1620 return 0;
1621
1622expand_fail:
1623 return ret;
1624}
1625
57cc083a
JS
1626static int cn_print_exe_file(struct core_name *cn)
1627{
1628 struct file *exe_file;
1629 char *pathbuf, *path, *p;
1630 int ret;
1631
1632 exe_file = get_mm_exe_file(current->mm);
1633 if (!exe_file)
1634 return cn_printf(cn, "(unknown)");
1635
1636 pathbuf = kmalloc(PATH_MAX, GFP_TEMPORARY);
1637 if (!pathbuf) {
1638 ret = -ENOMEM;
1639 goto put_exe_file;
1640 }
1641
1642 path = d_path(&exe_file->f_path, pathbuf, PATH_MAX);
1643 if (IS_ERR(path)) {
1644 ret = PTR_ERR(path);
1645 goto free_buf;
1646 }
1647
1648 for (p = path; *p; p++)
1649 if (*p == '/')
1650 *p = '!';
1651
1652 ret = cn_printf(cn, "%s", path);
1653
1654free_buf:
1655 kfree(pathbuf);
1656put_exe_file:
1657 fput(exe_file);
1658 return ret;
1659}
1660
1da177e4
LT
1661/* format_corename will inspect the pattern parameter, and output a
1662 * name into corename, which must have space for at least
1663 * CORENAME_MAX_SIZE bytes plus one byte for the zero terminator.
1664 */
1b0d300b 1665static int format_corename(struct core_name *cn, long signr)
1da177e4 1666{
86a264ab 1667 const struct cred *cred = current_cred();
565b9b14
ON
1668 const char *pat_ptr = core_pattern;
1669 int ispipe = (*pat_ptr == '|');
1da177e4 1670 int pid_in_pattern = 0;
1b0d300b
XF
1671 int err = 0;
1672
1673 cn->size = CORENAME_MAX_SIZE * atomic_read(&call_count);
1674 cn->corename = kmalloc(cn->size, GFP_KERNEL);
1675 cn->used = 0;
1676
1677 if (!cn->corename)
1678 return -ENOMEM;
1da177e4
LT
1679
1680 /* Repeat as long as we have more pattern to process and more output
1681 space */
1682 while (*pat_ptr) {
1683 if (*pat_ptr != '%') {
1b0d300b 1684 if (*pat_ptr == 0)
1da177e4 1685 goto out;
1b0d300b 1686 err = cn_printf(cn, "%c", *pat_ptr++);
1da177e4
LT
1687 } else {
1688 switch (*++pat_ptr) {
1b0d300b 1689 /* single % at the end, drop that */
1da177e4
LT
1690 case 0:
1691 goto out;
1692 /* Double percent, output one percent */
1693 case '%':
1b0d300b 1694 err = cn_printf(cn, "%c", '%');
1da177e4
LT
1695 break;
1696 /* pid */
1697 case 'p':
1698 pid_in_pattern = 1;
1b0d300b
XF
1699 err = cn_printf(cn, "%d",
1700 task_tgid_vnr(current));
1da177e4
LT
1701 break;
1702 /* uid */
1703 case 'u':
1b0d300b 1704 err = cn_printf(cn, "%d", cred->uid);
1da177e4
LT
1705 break;
1706 /* gid */
1707 case 'g':
1b0d300b 1708 err = cn_printf(cn, "%d", cred->gid);
1da177e4
LT
1709 break;
1710 /* signal that caused the coredump */
1711 case 's':
1b0d300b 1712 err = cn_printf(cn, "%ld", signr);
1da177e4
LT
1713 break;
1714 /* UNIX time of coredump */
1715 case 't': {
1716 struct timeval tv;
1717 do_gettimeofday(&tv);
1b0d300b 1718 err = cn_printf(cn, "%lu", tv.tv_sec);
1da177e4
LT
1719 break;
1720 }
1721 /* hostname */
1722 case 'h':
1723 down_read(&uts_sem);
1b0d300b
XF
1724 err = cn_printf(cn, "%s",
1725 utsname()->nodename);
1da177e4 1726 up_read(&uts_sem);
1da177e4
LT
1727 break;
1728 /* executable */
1729 case 'e':
1b0d300b 1730 err = cn_printf(cn, "%s", current->comm);
1da177e4 1731 break;
57cc083a
JS
1732 case 'E':
1733 err = cn_print_exe_file(cn);
1734 break;
74aadce9
NH
1735 /* core limit size */
1736 case 'c':
1b0d300b
XF
1737 err = cn_printf(cn, "%lu",
1738 rlimit(RLIMIT_CORE));
74aadce9 1739 break;
1da177e4
LT
1740 default:
1741 break;
1742 }
1743 ++pat_ptr;
1744 }
1b0d300b
XF
1745
1746 if (err)
1747 return err;
1da177e4 1748 }
1b0d300b 1749
1da177e4
LT
1750 /* Backward compatibility with core_uses_pid:
1751 *
1752 * If core_pattern does not include a %p (as is the default)
1753 * and core_uses_pid is set, then .%pid will be appended to
c4bbafda 1754 * the filename. Do not do this for piped commands. */
6409324b 1755 if (!ispipe && !pid_in_pattern && core_uses_pid) {
1b0d300b
XF
1756 err = cn_printf(cn, ".%d", task_tgid_vnr(current));
1757 if (err)
1758 return err;
1da177e4 1759 }
c4bbafda 1760out:
c4bbafda 1761 return ispipe;
1da177e4
LT
1762}
1763
5c99cbf4 1764static int zap_process(struct task_struct *start, int exit_code)
aceecc04
ON
1765{
1766 struct task_struct *t;
8cd9c249 1767 int nr = 0;
281de339 1768
d5f70c00 1769 start->signal->flags = SIGNAL_GROUP_EXIT;
5c99cbf4 1770 start->signal->group_exit_code = exit_code;
d5f70c00 1771 start->signal->group_stop_count = 0;
aceecc04
ON
1772
1773 t = start;
1774 do {
39efa3ef 1775 task_clear_group_stop_pending(t);
aceecc04 1776 if (t != current && t->mm) {
281de339
ON
1777 sigaddset(&t->pending.signal, SIGKILL);
1778 signal_wake_up(t, 1);
8cd9c249 1779 nr++;
aceecc04 1780 }
e4901f92 1781 } while_each_thread(start, t);
8cd9c249
ON
1782
1783 return nr;
aceecc04
ON
1784}
1785
dcf560c5 1786static inline int zap_threads(struct task_struct *tsk, struct mm_struct *mm,
8cd9c249 1787 struct core_state *core_state, int exit_code)
1da177e4
LT
1788{
1789 struct task_struct *g, *p;
5debfa6d 1790 unsigned long flags;
8cd9c249 1791 int nr = -EAGAIN;
dcf560c5
ON
1792
1793 spin_lock_irq(&tsk->sighand->siglock);
ed5d2cac 1794 if (!signal_group_exit(tsk->signal)) {
8cd9c249 1795 mm->core_state = core_state;
5c99cbf4 1796 nr = zap_process(tsk, exit_code);
1da177e4 1797 }
dcf560c5 1798 spin_unlock_irq(&tsk->sighand->siglock);
8cd9c249
ON
1799 if (unlikely(nr < 0))
1800 return nr;
1da177e4 1801
8cd9c249 1802 if (atomic_read(&mm->mm_users) == nr + 1)
5debfa6d 1803 goto done;
e4901f92
ON
1804 /*
1805 * We should find and kill all tasks which use this mm, and we should
999d9fc1 1806 * count them correctly into ->nr_threads. We don't take tasklist
e4901f92
ON
1807 * lock, but this is safe wrt:
1808 *
1809 * fork:
1810 * None of sub-threads can fork after zap_process(leader). All
1811 * processes which were created before this point should be
1812 * visible to zap_threads() because copy_process() adds the new
1813 * process to the tail of init_task.tasks list, and lock/unlock
1814 * of ->siglock provides a memory barrier.
1815 *
1816 * do_exit:
1817 * The caller holds mm->mmap_sem. This means that the task which
1818 * uses this mm can't pass exit_mm(), so it can't exit or clear
1819 * its ->mm.
1820 *
1821 * de_thread:
1822 * It does list_replace_rcu(&leader->tasks, &current->tasks),
1823 * we must see either old or new leader, this does not matter.
1824 * However, it can change p->sighand, so lock_task_sighand(p)
1825 * must be used. Since p->mm != NULL and we hold ->mmap_sem
1826 * it can't fail.
1827 *
1828 * Note also that "g" can be the old leader with ->mm == NULL
1829 * and already unhashed and thus removed from ->thread_group.
1830 * This is OK, __unhash_process()->list_del_rcu() does not
1831 * clear the ->next pointer, we will find the new leader via
1832 * next_thread().
1833 */
7b1c6154 1834 rcu_read_lock();
aceecc04 1835 for_each_process(g) {
5debfa6d
ON
1836 if (g == tsk->group_leader)
1837 continue;
15b9f360
ON
1838 if (g->flags & PF_KTHREAD)
1839 continue;
aceecc04
ON
1840 p = g;
1841 do {
1842 if (p->mm) {
15b9f360 1843 if (unlikely(p->mm == mm)) {
5debfa6d 1844 lock_task_sighand(p, &flags);
5c99cbf4 1845 nr += zap_process(p, exit_code);
5debfa6d
ON
1846 unlock_task_sighand(p, &flags);
1847 }
aceecc04
ON
1848 break;
1849 }
e4901f92 1850 } while_each_thread(g, p);
aceecc04 1851 }
7b1c6154 1852 rcu_read_unlock();
5debfa6d 1853done:
c5f1cc8c 1854 atomic_set(&core_state->nr_threads, nr);
8cd9c249 1855 return nr;
1da177e4
LT
1856}
1857
9d5b327b 1858static int coredump_wait(int exit_code, struct core_state *core_state)
1da177e4 1859{
dcf560c5
ON
1860 struct task_struct *tsk = current;
1861 struct mm_struct *mm = tsk->mm;
dcf560c5 1862 struct completion *vfork_done;
269b005a 1863 int core_waiters = -EBUSY;
1da177e4 1864
9d5b327b 1865 init_completion(&core_state->startup);
b564daf8
ON
1866 core_state->dumper.task = tsk;
1867 core_state->dumper.next = NULL;
269b005a
ON
1868
1869 down_write(&mm->mmap_sem);
1870 if (!mm->core_state)
1871 core_waiters = zap_threads(tsk, mm, core_state, exit_code);
2384f55f
ON
1872 up_write(&mm->mmap_sem);
1873
dcf560c5
ON
1874 if (unlikely(core_waiters < 0))
1875 goto fail;
1876
1877 /*
1878 * Make sure nobody is waiting for us to release the VM,
1879 * otherwise we can deadlock when we wait on each other
1880 */
1881 vfork_done = tsk->vfork_done;
1882 if (vfork_done) {
1883 tsk->vfork_done = NULL;
1884 complete(vfork_done);
1885 }
1886
2384f55f 1887 if (core_waiters)
9d5b327b 1888 wait_for_completion(&core_state->startup);
dcf560c5 1889fail:
dcf560c5 1890 return core_waiters;
1da177e4
LT
1891}
1892
a94e2d40
ON
1893static void coredump_finish(struct mm_struct *mm)
1894{
1895 struct core_thread *curr, *next;
1896 struct task_struct *task;
1897
1898 next = mm->core_state->dumper.next;
1899 while ((curr = next) != NULL) {
1900 next = curr->next;
1901 task = curr->task;
1902 /*
1903 * see exit_mm(), curr->task must not see
1904 * ->task == NULL before we read ->next.
1905 */
1906 smp_mb();
1907 curr->task = NULL;
1908 wake_up_process(task);
1909 }
1910
1911 mm->core_state = NULL;
1912}
1913
6c5d5238
KH
1914/*
1915 * set_dumpable converts traditional three-value dumpable to two flags and
1916 * stores them into mm->flags. It modifies lower two bits of mm->flags, but
1917 * these bits are not changed atomically. So get_dumpable can observe the
1918 * intermediate state. To avoid doing unexpected behavior, get get_dumpable
1919 * return either old dumpable or new one by paying attention to the order of
1920 * modifying the bits.
1921 *
1922 * dumpable | mm->flags (binary)
1923 * old new | initial interim final
1924 * ---------+-----------------------
1925 * 0 1 | 00 01 01
1926 * 0 2 | 00 10(*) 11
1927 * 1 0 | 01 00 00
1928 * 1 2 | 01 11 11
1929 * 2 0 | 11 10(*) 00
1930 * 2 1 | 11 11 01
1931 *
1932 * (*) get_dumpable regards interim value of 10 as 11.
1933 */
1934void set_dumpable(struct mm_struct *mm, int value)
1935{
1936 switch (value) {
1937 case 0:
1938 clear_bit(MMF_DUMPABLE, &mm->flags);
1939 smp_wmb();
1940 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1941 break;
1942 case 1:
1943 set_bit(MMF_DUMPABLE, &mm->flags);
1944 smp_wmb();
1945 clear_bit(MMF_DUMP_SECURELY, &mm->flags);
1946 break;
1947 case 2:
1948 set_bit(MMF_DUMP_SECURELY, &mm->flags);
1949 smp_wmb();
1950 set_bit(MMF_DUMPABLE, &mm->flags);
1951 break;
1952 }
1953}
6c5d5238 1954
30736a4d 1955static int __get_dumpable(unsigned long mm_flags)
6c5d5238
KH
1956{
1957 int ret;
1958
30736a4d 1959 ret = mm_flags & MMF_DUMPABLE_MASK;
6c5d5238
KH
1960 return (ret >= 2) ? 2 : ret;
1961}
1962
30736a4d
MH
1963int get_dumpable(struct mm_struct *mm)
1964{
1965 return __get_dumpable(mm->flags);
1966}
1967
61be228a
NH
1968static void wait_for_dump_helpers(struct file *file)
1969{
1970 struct pipe_inode_info *pipe;
1971
1972 pipe = file->f_path.dentry->d_inode->i_pipe;
1973
1974 pipe_lock(pipe);
1975 pipe->readers++;
1976 pipe->writers--;
1977
1978 while ((pipe->readers > 1) && (!signal_pending(current))) {
1979 wake_up_interruptible_sync(&pipe->wait);
1980 kill_fasync(&pipe->fasync_readers, SIGIO, POLL_IN);
1981 pipe_wait(pipe);
1982 }
1983
1984 pipe->readers--;
1985 pipe->writers++;
1986 pipe_unlock(pipe);
1987
1988}
1989
1990
898b374a 1991/*
1bef8291 1992 * umh_pipe_setup
898b374a
NH
1993 * helper function to customize the process used
1994 * to collect the core in userspace. Specifically
1995 * it sets up a pipe and installs it as fd 0 (stdin)
1996 * for the process. Returns 0 on success, or
1997 * PTR_ERR on failure.
1998 * Note that it also sets the core limit to 1. This
1999 * is a special value that we use to trap recursive
2000 * core dumps
2001 */
2002static int umh_pipe_setup(struct subprocess_info *info)
2003{
2004 struct file *rp, *wp;
2005 struct fdtable *fdt;
2006 struct coredump_params *cp = (struct coredump_params *)info->data;
2007 struct files_struct *cf = current->files;
2008
2009 wp = create_write_pipe(0);
2010 if (IS_ERR(wp))
2011 return PTR_ERR(wp);
2012
2013 rp = create_read_pipe(wp, 0);
2014 if (IS_ERR(rp)) {
2015 free_write_pipe(wp);
2016 return PTR_ERR(rp);
2017 }
2018
2019 cp->file = wp;
2020
2021 sys_close(0);
2022 fd_install(0, rp);
2023 spin_lock(&cf->file_lock);
2024 fdt = files_fdtable(cf);
2025 FD_SET(0, fdt->open_fds);
2026 FD_CLR(0, fdt->close_on_exec);
2027 spin_unlock(&cf->file_lock);
2028
2029 /* and disallow core files too */
2030 current->signal->rlim[RLIMIT_CORE] = (struct rlimit){1, 1};
2031
2032 return 0;
2033}
2034
8cd3ac3a 2035void do_coredump(long signr, int exit_code, struct pt_regs *regs)
1da177e4 2036{
9d5b327b 2037 struct core_state core_state;
1b0d300b 2038 struct core_name cn;
1da177e4
LT
2039 struct mm_struct *mm = current->mm;
2040 struct linux_binfmt * binfmt;
d84f4f99
DH
2041 const struct cred *old_cred;
2042 struct cred *cred;
1da177e4 2043 int retval = 0;
d6e71144 2044 int flag = 0;
d5bf4c4f 2045 int ispipe;
a293980c 2046 static atomic_t core_dump_count = ATOMIC_INIT(0);
f6151dfe
MH
2047 struct coredump_params cprm = {
2048 .signr = signr,
2049 .regs = regs,
d554ed89 2050 .limit = rlimit(RLIMIT_CORE),
30736a4d
MH
2051 /*
2052 * We must use the same mm->flags while dumping core to avoid
2053 * inconsistency of bit flags, since this flag is not protected
2054 * by any locks.
2055 */
2056 .mm_flags = mm->flags,
f6151dfe 2057 };
1da177e4 2058
0a4ff8c2
SG
2059 audit_core_dumps(signr);
2060
801460d0 2061 binfmt = mm->binfmt;
1da177e4
LT
2062 if (!binfmt || !binfmt->core_dump)
2063 goto fail;
269b005a
ON
2064 if (!__get_dumpable(cprm.mm_flags))
2065 goto fail;
d84f4f99
DH
2066
2067 cred = prepare_creds();
5e43aef5 2068 if (!cred)
d84f4f99 2069 goto fail;
d6e71144
AC
2070 /*
2071 * We cannot trust fsuid as being the "true" uid of the
2072 * process nor do we know its entire history. We only know it
2073 * was tainted so we dump it as root in mode 2.
2074 */
30736a4d
MH
2075 if (__get_dumpable(cprm.mm_flags) == 2) {
2076 /* Setuid core dump mode */
d6e71144 2077 flag = O_EXCL; /* Stop rewrite attacks */
d84f4f99 2078 cred->fsuid = 0; /* Dump root private */
d6e71144 2079 }
1291cf41 2080
9d5b327b 2081 retval = coredump_wait(exit_code, &core_state);
5e43aef5
ON
2082 if (retval < 0)
2083 goto fail_creds;
d84f4f99
DH
2084
2085 old_cred = override_creds(cred);
1da177e4
LT
2086
2087 /*
2088 * Clear any false indication of pending signals that might
2089 * be seen by the filesystem code called to write the core file.
2090 */
1da177e4
LT
2091 clear_thread_flag(TIF_SIGPENDING);
2092
1b0d300b
XF
2093 ispipe = format_corename(&cn, signr);
2094
2095 if (ispipe == -ENOMEM) {
2096 printk(KERN_WARNING "format_corename failed\n");
2097 printk(KERN_WARNING "Aborting core\n");
2098 goto fail_corename;
2099 }
725eae32 2100
c4bbafda 2101 if (ispipe) {
d5bf4c4f
ON
2102 int dump_count;
2103 char **helper_argv;
2104
898b374a 2105 if (cprm.limit == 1) {
725eae32
NH
2106 /*
2107 * Normally core limits are irrelevant to pipes, since
2108 * we're not writing to the file system, but we use
898b374a
NH
2109 * cprm.limit of 1 here as a speacial value. Any
2110 * non-1 limit gets set to RLIM_INFINITY below, but
725eae32
NH
2111 * a limit of 0 skips the dump. This is a consistent
2112 * way to catch recursive crashes. We can still crash
898b374a 2113 * if the core_pattern binary sets RLIM_CORE = !1
725eae32
NH
2114 * but it runs as root, and can do lots of stupid things
2115 * Note that we use task_tgid_vnr here to grab the pid
2116 * of the process group leader. That way we get the
2117 * right pid if a thread in a multi-threaded
2118 * core_pattern process dies.
2119 */
2120 printk(KERN_WARNING
898b374a 2121 "Process %d(%s) has RLIMIT_CORE set to 1\n",
725eae32
NH
2122 task_tgid_vnr(current), current->comm);
2123 printk(KERN_WARNING "Aborting core\n");
2124 goto fail_unlock;
2125 }
d5bf4c4f 2126 cprm.limit = RLIM_INFINITY;
725eae32 2127
a293980c
NH
2128 dump_count = atomic_inc_return(&core_dump_count);
2129 if (core_pipe_limit && (core_pipe_limit < dump_count)) {
2130 printk(KERN_WARNING "Pid %d(%s) over core_pipe_limit\n",
2131 task_tgid_vnr(current), current->comm);
2132 printk(KERN_WARNING "Skipping core dump\n");
2133 goto fail_dropcount;
2134 }
2135
1b0d300b 2136 helper_argv = argv_split(GFP_KERNEL, cn.corename+1, NULL);
350eaf79
TH
2137 if (!helper_argv) {
2138 printk(KERN_WARNING "%s failed to allocate memory\n",
2139 __func__);
a293980c 2140 goto fail_dropcount;
350eaf79 2141 }
32321137 2142
d5bf4c4f
ON
2143 retval = call_usermodehelper_fns(helper_argv[0], helper_argv,
2144 NULL, UMH_WAIT_EXEC, umh_pipe_setup,
2145 NULL, &cprm);
2146 argv_free(helper_argv);
2147 if (retval) {
d025c9db 2148 printk(KERN_INFO "Core dump to %s pipe failed\n",
1b0d300b 2149 cn.corename);
d5bf4c4f 2150 goto close_fail;
d025c9db 2151 }
c7135411
ON
2152 } else {
2153 struct inode *inode;
2154
2155 if (cprm.limit < binfmt->min_coredump)
2156 goto fail_unlock;
2157
1b0d300b 2158 cprm.file = filp_open(cn.corename,
6d4df677
AD
2159 O_CREAT | 2 | O_NOFOLLOW | O_LARGEFILE | flag,
2160 0600);
c7135411
ON
2161 if (IS_ERR(cprm.file))
2162 goto fail_unlock;
1da177e4 2163
c7135411
ON
2164 inode = cprm.file->f_path.dentry->d_inode;
2165 if (inode->i_nlink > 1)
2166 goto close_fail;
2167 if (d_unhashed(cprm.file->f_path.dentry))
2168 goto close_fail;
2169 /*
2170 * AK: actually i see no reason to not allow this for named
2171 * pipes etc, but keep the previous behaviour for now.
2172 */
2173 if (!S_ISREG(inode->i_mode))
2174 goto close_fail;
2175 /*
2176 * Dont allow local users get cute and trick others to coredump
2177 * into their pre-created files.
2178 */
2179 if (inode->i_uid != current_fsuid())
2180 goto close_fail;
2181 if (!cprm.file->f_op || !cprm.file->f_op->write)
2182 goto close_fail;
2183 if (do_truncate(cprm.file->f_path.dentry, 0, 0, cprm.file))
2184 goto close_fail;
2185 }
1da177e4 2186
c7135411 2187 retval = binfmt->core_dump(&cprm);
1da177e4
LT
2188 if (retval)
2189 current->signal->group_exit_code |= 0x80;
d5bf4c4f 2190
61be228a 2191 if (ispipe && core_pipe_limit)
f6151dfe 2192 wait_for_dump_helpers(cprm.file);
d5bf4c4f
ON
2193close_fail:
2194 if (cprm.file)
2195 filp_close(cprm.file, NULL);
a293980c 2196fail_dropcount:
d5bf4c4f 2197 if (ispipe)
a293980c 2198 atomic_dec(&core_dump_count);
1da177e4 2199fail_unlock:
1b0d300b
XF
2200 kfree(cn.corename);
2201fail_corename:
5e43aef5 2202 coredump_finish(mm);
d84f4f99 2203 revert_creds(old_cred);
5e43aef5 2204fail_creds:
d84f4f99 2205 put_cred(cred);
1da177e4 2206fail:
8cd3ac3a 2207 return;
1da177e4 2208}
3aa0ce82
LT
2209
2210/*
2211 * Core dumping helper functions. These are the only things you should
2212 * do on a core-file: use only these functions to write out all the
2213 * necessary info.
2214 */
2215int dump_write(struct file *file, const void *addr, int nr)
2216{
2217 return access_ok(VERIFY_READ, addr, nr) && file->f_op->write(file, addr, nr, &file->f_pos) == nr;
2218}
8fd01d6c 2219EXPORT_SYMBOL(dump_write);
3aa0ce82
LT
2220
2221int dump_seek(struct file *file, loff_t off)
2222{
2223 int ret = 1;
2224
2225 if (file->f_op->llseek && file->f_op->llseek != no_llseek) {
2226 if (file->f_op->llseek(file, off, SEEK_CUR) < 0)
2227 return 0;
2228 } else {
2229 char *buf = (char *)get_zeroed_page(GFP_KERNEL);
2230
2231 if (!buf)
2232 return 0;
2233 while (off > 0) {
2234 unsigned long n = off;
2235
2236 if (n > PAGE_SIZE)
2237 n = PAGE_SIZE;
2238 if (!dump_write(file, buf, n)) {
2239 ret = 0;
2240 break;
2241 }
2242 off -= n;
2243 }
2244 free_page((unsigned long)buf);
2245 }
2246 return ret;
2247}
8fd01d6c 2248EXPORT_SYMBOL(dump_seek);