]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/kernfs/dir.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / kernfs / dir.c
CommitLineData
b8441ed2
TH
1/*
2 * fs/kernfs/dir.c - kernfs directory implementation
3 *
4 * Copyright (c) 2001-3 Patrick Mochel
5 * Copyright (c) 2007 SUSE Linux Products GmbH
6 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
7 *
8 * This file is released under the GPLv2.
9 */
fd7b9f7b 10
abd54f02 11#include <linux/sched.h>
fd7b9f7b
TH
12#include <linux/fs.h>
13#include <linux/namei.h>
14#include <linux/idr.h>
15#include <linux/slab.h>
16#include <linux/security.h>
17#include <linux/hash.h>
18
19#include "kernfs-internal.h"
20
a797bfc3 21DEFINE_MUTEX(kernfs_mutex);
3eef34ad
TH
22static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */
23static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by rename_lock */
fd7b9f7b 24
adc5e8b5 25#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
fd7b9f7b 26
81c173cb
TH
27static bool kernfs_active(struct kernfs_node *kn)
28{
29 lockdep_assert_held(&kernfs_mutex);
30 return atomic_read(&kn->active) >= 0;
31}
32
182fd64b
TH
33static bool kernfs_lockdep(struct kernfs_node *kn)
34{
35#ifdef CONFIG_DEBUG_LOCK_ALLOC
36 return kn->flags & KERNFS_LOCKDEP;
37#else
38 return false;
39#endif
40}
41
3eef34ad
TH
42static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
43{
17627157
KK
44 if (!kn)
45 return strlcpy(buf, "(null)", buflen);
46
3eef34ad
TH
47 return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
48}
49
9f6df573
AK
50/* kernfs_node_depth - compute depth from @from to @to */
51static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
3eef34ad 52{
9f6df573 53 size_t depth = 0;
3eef34ad 54
9f6df573
AK
55 while (to->parent && to != from) {
56 depth++;
57 to = to->parent;
58 }
59 return depth;
60}
3eef34ad 61
9f6df573
AK
62static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
63 struct kernfs_node *b)
64{
65 size_t da, db;
66 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
67
68 if (ra != rb)
69 return NULL;
70
71 da = kernfs_depth(ra->kn, a);
72 db = kernfs_depth(rb->kn, b);
73
74 while (da > db) {
75 a = a->parent;
76 da--;
77 }
78 while (db > da) {
79 b = b->parent;
80 db--;
81 }
82
83 /* worst case b and a will be the same at root */
84 while (b != a) {
85 b = b->parent;
86 a = a->parent;
87 }
88
89 return a;
90}
91
92/**
93 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
94 * where kn_from is treated as root of the path.
95 * @kn_from: kernfs node which should be treated as root for the path
96 * @kn_to: kernfs node to which path is needed
97 * @buf: buffer to copy the path into
98 * @buflen: size of @buf
99 *
100 * We need to handle couple of scenarios here:
101 * [1] when @kn_from is an ancestor of @kn_to at some level
102 * kn_from: /n1/n2/n3
103 * kn_to: /n1/n2/n3/n4/n5
104 * result: /n4/n5
105 *
106 * [2] when @kn_from is on a different hierarchy and we need to find common
107 * ancestor between @kn_from and @kn_to.
108 * kn_from: /n1/n2/n3/n4
109 * kn_to: /n1/n2/n5
110 * result: /../../n5
111 * OR
112 * kn_from: /n1/n2/n3/n4/n5 [depth=5]
113 * kn_to: /n1/n2/n3 [depth=3]
114 * result: /../..
115 *
17627157
KK
116 * [3] when @kn_to is NULL result will be "(null)"
117 *
3abb1d90
TH
118 * Returns the length of the full path. If the full length is equal to or
119 * greater than @buflen, @buf contains the truncated path with the trailing
120 * '\0'. On error, -errno is returned.
9f6df573
AK
121 */
122static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
123 struct kernfs_node *kn_from,
124 char *buf, size_t buflen)
125{
126 struct kernfs_node *kn, *common;
127 const char parent_str[] = "/..";
3abb1d90
TH
128 size_t depth_from, depth_to, len = 0;
129 int i, j;
9f6df573 130
17627157
KK
131 if (!kn_to)
132 return strlcpy(buf, "(null)", buflen);
133
9f6df573
AK
134 if (!kn_from)
135 kn_from = kernfs_root(kn_to)->kn;
136
137 if (kn_from == kn_to)
138 return strlcpy(buf, "/", buflen);
139
140 common = kernfs_common_ancestor(kn_from, kn_to);
141 if (WARN_ON(!common))
3abb1d90 142 return -EINVAL;
9f6df573
AK
143
144 depth_to = kernfs_depth(common, kn_to);
145 depth_from = kernfs_depth(common, kn_from);
146
147 if (buf)
148 buf[0] = '\0';
149
150 for (i = 0; i < depth_from; i++)
151 len += strlcpy(buf + len, parent_str,
152 len < buflen ? buflen - len : 0);
153
154 /* Calculate how many bytes we need for the rest */
3abb1d90
TH
155 for (i = depth_to - 1; i >= 0; i--) {
156 for (kn = kn_to, j = 0; j < i; j++)
157 kn = kn->parent;
158 len += strlcpy(buf + len, "/",
159 len < buflen ? buflen - len : 0);
160 len += strlcpy(buf + len, kn->name,
161 len < buflen ? buflen - len : 0);
9f6df573 162 }
3eef34ad 163
3abb1d90 164 return len;
3eef34ad
TH
165}
166
167/**
168 * kernfs_name - obtain the name of a given node
169 * @kn: kernfs_node of interest
170 * @buf: buffer to copy @kn's name into
171 * @buflen: size of @buf
172 *
173 * Copies the name of @kn into @buf of @buflen bytes. The behavior is
174 * similar to strlcpy(). It returns the length of @kn's name and if @buf
175 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
176 *
17627157
KK
177 * Fills buffer with "(null)" if @kn is NULL.
178 *
3eef34ad
TH
179 * This function can be called from any context.
180 */
181int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
182{
183 unsigned long flags;
184 int ret;
185
186 spin_lock_irqsave(&kernfs_rename_lock, flags);
187 ret = kernfs_name_locked(kn, buf, buflen);
188 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
189 return ret;
190}
191
9f6df573
AK
192/**
193 * kernfs_path_from_node - build path of node @to relative to @from.
194 * @from: parent kernfs_node relative to which we need to build the path
195 * @to: kernfs_node of interest
196 * @buf: buffer to copy @to's path into
197 * @buflen: size of @buf
198 *
199 * Builds @to's path relative to @from in @buf. @from and @to must
200 * be on the same kernfs-root. If @from is not parent of @to, then a relative
201 * path (which includes '..'s) as needed to reach from @from to @to is
202 * returned.
203 *
3abb1d90
TH
204 * Returns the length of the full path. If the full length is equal to or
205 * greater than @buflen, @buf contains the truncated path with the trailing
206 * '\0'. On error, -errno is returned.
9f6df573
AK
207 */
208int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
209 char *buf, size_t buflen)
210{
211 unsigned long flags;
212 int ret;
213
214 spin_lock_irqsave(&kernfs_rename_lock, flags);
215 ret = kernfs_path_from_node_locked(to, from, buf, buflen);
216 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
217 return ret;
218}
219EXPORT_SYMBOL_GPL(kernfs_path_from_node);
220
3eef34ad
TH
221/**
222 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
223 * @kn: kernfs_node of interest
224 *
225 * This function can be called from any context.
226 */
227void pr_cont_kernfs_name(struct kernfs_node *kn)
228{
229 unsigned long flags;
230
231 spin_lock_irqsave(&kernfs_rename_lock, flags);
232
233 kernfs_name_locked(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
234 pr_cont("%s", kernfs_pr_cont_buf);
235
236 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
237}
238
239/**
240 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
241 * @kn: kernfs_node of interest
242 *
243 * This function can be called from any context.
244 */
245void pr_cont_kernfs_path(struct kernfs_node *kn)
246{
247 unsigned long flags;
9f6df573 248 int sz;
3eef34ad
TH
249
250 spin_lock_irqsave(&kernfs_rename_lock, flags);
251
9f6df573
AK
252 sz = kernfs_path_from_node_locked(kn, NULL, kernfs_pr_cont_buf,
253 sizeof(kernfs_pr_cont_buf));
254 if (sz < 0) {
255 pr_cont("(error)");
256 goto out;
257 }
258
259 if (sz >= sizeof(kernfs_pr_cont_buf)) {
260 pr_cont("(name too long)");
261 goto out;
262 }
263
264 pr_cont("%s", kernfs_pr_cont_buf);
3eef34ad 265
9f6df573 266out:
3eef34ad
TH
267 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
268}
269
270/**
271 * kernfs_get_parent - determine the parent node and pin it
272 * @kn: kernfs_node of interest
273 *
274 * Determines @kn's parent, pins and returns it. This function can be
275 * called from any context.
276 */
277struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
278{
279 struct kernfs_node *parent;
280 unsigned long flags;
281
282 spin_lock_irqsave(&kernfs_rename_lock, flags);
283 parent = kn->parent;
284 kernfs_get(parent);
285 spin_unlock_irqrestore(&kernfs_rename_lock, flags);
286
287 return parent;
288}
289
fd7b9f7b 290/**
c637b8ac 291 * kernfs_name_hash
fd7b9f7b
TH
292 * @name: Null terminated string to hash
293 * @ns: Namespace tag to hash
294 *
295 * Returns 31 bit hash of ns + name (so it fits in an off_t )
296 */
c637b8ac 297static unsigned int kernfs_name_hash(const char *name, const void *ns)
fd7b9f7b 298{
8387ff25 299 unsigned long hash = init_name_hash(ns);
fd7b9f7b
TH
300 unsigned int len = strlen(name);
301 while (len--)
302 hash = partial_name_hash(*name++, hash);
8387ff25 303 hash = end_name_hash(hash);
fd7b9f7b
TH
304 hash &= 0x7fffffffU;
305 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
88391d49 306 if (hash < 2)
fd7b9f7b
TH
307 hash += 2;
308 if (hash >= INT_MAX)
309 hash = INT_MAX - 1;
310 return hash;
311}
312
c637b8ac
TH
313static int kernfs_name_compare(unsigned int hash, const char *name,
314 const void *ns, const struct kernfs_node *kn)
fd7b9f7b 315{
72392ed0
RV
316 if (hash < kn->hash)
317 return -1;
318 if (hash > kn->hash)
319 return 1;
320 if (ns < kn->ns)
321 return -1;
322 if (ns > kn->ns)
323 return 1;
adc5e8b5 324 return strcmp(name, kn->name);
fd7b9f7b
TH
325}
326
c637b8ac
TH
327static int kernfs_sd_compare(const struct kernfs_node *left,
328 const struct kernfs_node *right)
fd7b9f7b 329{
c637b8ac 330 return kernfs_name_compare(left->hash, left->name, left->ns, right);
fd7b9f7b
TH
331}
332
333/**
c637b8ac 334 * kernfs_link_sibling - link kernfs_node into sibling rbtree
324a56e1 335 * @kn: kernfs_node of interest
fd7b9f7b 336 *
324a56e1 337 * Link @kn into its sibling rbtree which starts from
adc5e8b5 338 * @kn->parent->dir.children.
fd7b9f7b
TH
339 *
340 * Locking:
a797bfc3 341 * mutex_lock(kernfs_mutex)
fd7b9f7b
TH
342 *
343 * RETURNS:
344 * 0 on susccess -EEXIST on failure.
345 */
c637b8ac 346static int kernfs_link_sibling(struct kernfs_node *kn)
fd7b9f7b 347{
adc5e8b5 348 struct rb_node **node = &kn->parent->dir.children.rb_node;
fd7b9f7b
TH
349 struct rb_node *parent = NULL;
350
fd7b9f7b 351 while (*node) {
324a56e1 352 struct kernfs_node *pos;
fd7b9f7b
TH
353 int result;
354
324a56e1 355 pos = rb_to_kn(*node);
fd7b9f7b 356 parent = *node;
c637b8ac 357 result = kernfs_sd_compare(kn, pos);
fd7b9f7b 358 if (result < 0)
adc5e8b5 359 node = &pos->rb.rb_left;
fd7b9f7b 360 else if (result > 0)
adc5e8b5 361 node = &pos->rb.rb_right;
fd7b9f7b
TH
362 else
363 return -EEXIST;
364 }
c1befb88 365
fd7b9f7b 366 /* add new node and rebalance the tree */
adc5e8b5
TH
367 rb_link_node(&kn->rb, parent, node);
368 rb_insert_color(&kn->rb, &kn->parent->dir.children);
c1befb88
JZ
369
370 /* successfully added, account subdir number */
371 if (kernfs_type(kn) == KERNFS_DIR)
372 kn->parent->dir.subdirs++;
373
fd7b9f7b
TH
374 return 0;
375}
376
377/**
c637b8ac 378 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
324a56e1 379 * @kn: kernfs_node of interest
fd7b9f7b 380 *
35beab06
TH
381 * Try to unlink @kn from its sibling rbtree which starts from
382 * kn->parent->dir.children. Returns %true if @kn was actually
383 * removed, %false if @kn wasn't on the rbtree.
fd7b9f7b
TH
384 *
385 * Locking:
a797bfc3 386 * mutex_lock(kernfs_mutex)
fd7b9f7b 387 */
35beab06 388static bool kernfs_unlink_sibling(struct kernfs_node *kn)
fd7b9f7b 389{
35beab06
TH
390 if (RB_EMPTY_NODE(&kn->rb))
391 return false;
392
df23fc39 393 if (kernfs_type(kn) == KERNFS_DIR)
adc5e8b5 394 kn->parent->dir.subdirs--;
fd7b9f7b 395
adc5e8b5 396 rb_erase(&kn->rb, &kn->parent->dir.children);
35beab06
TH
397 RB_CLEAR_NODE(&kn->rb);
398 return true;
fd7b9f7b
TH
399}
400
401/**
c637b8ac 402 * kernfs_get_active - get an active reference to kernfs_node
324a56e1 403 * @kn: kernfs_node to get an active reference to
fd7b9f7b 404 *
324a56e1 405 * Get an active reference of @kn. This function is noop if @kn
fd7b9f7b
TH
406 * is NULL.
407 *
408 * RETURNS:
324a56e1 409 * Pointer to @kn on success, NULL on failure.
fd7b9f7b 410 */
c637b8ac 411struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
fd7b9f7b 412{
324a56e1 413 if (unlikely(!kn))
fd7b9f7b
TH
414 return NULL;
415
f4b3e631
GKH
416 if (!atomic_inc_unless_negative(&kn->active))
417 return NULL;
895a068a 418
182fd64b 419 if (kernfs_lockdep(kn))
f4b3e631
GKH
420 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
421 return kn;
fd7b9f7b
TH
422}
423
424/**
c637b8ac 425 * kernfs_put_active - put an active reference to kernfs_node
324a56e1 426 * @kn: kernfs_node to put an active reference to
fd7b9f7b 427 *
324a56e1 428 * Put an active reference to @kn. This function is noop if @kn
fd7b9f7b
TH
429 * is NULL.
430 */
c637b8ac 431void kernfs_put_active(struct kernfs_node *kn)
fd7b9f7b 432{
abd54f02 433 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b
TH
434 int v;
435
324a56e1 436 if (unlikely(!kn))
fd7b9f7b
TH
437 return;
438
182fd64b 439 if (kernfs_lockdep(kn))
324a56e1 440 rwsem_release(&kn->dep_map, 1, _RET_IP_);
adc5e8b5 441 v = atomic_dec_return(&kn->active);
df23fc39 442 if (likely(v != KN_DEACTIVATED_BIAS))
fd7b9f7b
TH
443 return;
444
abd54f02 445 wake_up_all(&root->deactivate_waitq);
fd7b9f7b
TH
446}
447
448/**
81c173cb
TH
449 * kernfs_drain - drain kernfs_node
450 * @kn: kernfs_node to drain
fd7b9f7b 451 *
81c173cb
TH
452 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple
453 * removers may invoke this function concurrently on @kn and all will
454 * return after draining is complete.
fd7b9f7b 455 */
81c173cb 456static void kernfs_drain(struct kernfs_node *kn)
35beab06 457 __releases(&kernfs_mutex) __acquires(&kernfs_mutex)
fd7b9f7b 458{
abd54f02 459 struct kernfs_root *root = kernfs_root(kn);
fd7b9f7b 460
35beab06 461 lockdep_assert_held(&kernfs_mutex);
81c173cb 462 WARN_ON_ONCE(kernfs_active(kn));
ea1c472d 463
35beab06 464 mutex_unlock(&kernfs_mutex);
abd54f02 465
182fd64b 466 if (kernfs_lockdep(kn)) {
35beab06
TH
467 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
468 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
469 lock_contended(&kn->dep_map, _RET_IP_);
470 }
abd54f02 471
35beab06 472 /* but everyone should wait for draining */
abd54f02
TH
473 wait_event(root->deactivate_waitq,
474 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
fd7b9f7b 475
182fd64b 476 if (kernfs_lockdep(kn)) {
a6607930
TH
477 lock_acquired(&kn->dep_map, _RET_IP_);
478 rwsem_release(&kn->dep_map, 1, _RET_IP_);
479 }
35beab06 480
0e67db2f 481 kernfs_drain_open_files(kn);
ccf02aaf 482
35beab06 483 mutex_lock(&kernfs_mutex);
fd7b9f7b
TH
484}
485
fd7b9f7b 486/**
324a56e1
TH
487 * kernfs_get - get a reference count on a kernfs_node
488 * @kn: the target kernfs_node
fd7b9f7b 489 */
324a56e1 490void kernfs_get(struct kernfs_node *kn)
fd7b9f7b 491{
324a56e1 492 if (kn) {
adc5e8b5
TH
493 WARN_ON(!atomic_read(&kn->count));
494 atomic_inc(&kn->count);
fd7b9f7b
TH
495 }
496}
497EXPORT_SYMBOL_GPL(kernfs_get);
498
499/**
324a56e1
TH
500 * kernfs_put - put a reference count on a kernfs_node
501 * @kn: the target kernfs_node
fd7b9f7b 502 *
324a56e1 503 * Put a reference count of @kn and destroy it if it reached zero.
fd7b9f7b 504 */
324a56e1 505void kernfs_put(struct kernfs_node *kn)
fd7b9f7b 506{
324a56e1 507 struct kernfs_node *parent;
ba7443bc 508 struct kernfs_root *root;
fd7b9f7b 509
adc5e8b5 510 if (!kn || !atomic_dec_and_test(&kn->count))
fd7b9f7b 511 return;
324a56e1 512 root = kernfs_root(kn);
fd7b9f7b 513 repeat:
81c173cb
TH
514 /*
515 * Moving/renaming is always done while holding reference.
adc5e8b5 516 * kn->parent won't change beneath us.
fd7b9f7b 517 */
adc5e8b5 518 parent = kn->parent;
fd7b9f7b 519
81c173cb
TH
520 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
521 "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
522 parent ? parent->name : "", kn->name, atomic_read(&kn->active));
324a56e1 523
df23fc39 524 if (kernfs_type(kn) == KERNFS_LINK)
adc5e8b5 525 kernfs_put(kn->symlink.target_kn);
dfeb0750
TH
526
527 kfree_const(kn->name);
528
adc5e8b5
TH
529 if (kn->iattr) {
530 if (kn->iattr->ia_secdata)
531 security_release_secctx(kn->iattr->ia_secdata,
532 kn->iattr->ia_secdata_len);
533 simple_xattrs_free(&kn->iattr->xattrs);
2322392b 534 }
adc5e8b5
TH
535 kfree(kn->iattr);
536 ida_simple_remove(&root->ino_ida, kn->ino);
a797bfc3 537 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 538
324a56e1
TH
539 kn = parent;
540 if (kn) {
adc5e8b5 541 if (atomic_dec_and_test(&kn->count))
ba7443bc
TH
542 goto repeat;
543 } else {
324a56e1 544 /* just released the root kn, free @root too */
bc755553 545 ida_destroy(&root->ino_ida);
ba7443bc
TH
546 kfree(root);
547 }
fd7b9f7b
TH
548}
549EXPORT_SYMBOL_GPL(kernfs_put);
550
c637b8ac 551static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
fd7b9f7b 552{
324a56e1 553 struct kernfs_node *kn;
fd7b9f7b
TH
554
555 if (flags & LOOKUP_RCU)
556 return -ECHILD;
557
19bbb926 558 /* Always perform fresh lookup for negatives */
2b0143b5 559 if (d_really_is_negative(dentry))
19bbb926
TH
560 goto out_bad_unlocked;
561
324a56e1 562 kn = dentry->d_fsdata;
a797bfc3 563 mutex_lock(&kernfs_mutex);
fd7b9f7b 564
81c173cb
TH
565 /* The kernfs node has been deactivated */
566 if (!kernfs_active(kn))
fd7b9f7b
TH
567 goto out_bad;
568
c637b8ac 569 /* The kernfs node has been moved? */
adc5e8b5 570 if (dentry->d_parent->d_fsdata != kn->parent)
fd7b9f7b
TH
571 goto out_bad;
572
c637b8ac 573 /* The kernfs node has been renamed */
adc5e8b5 574 if (strcmp(dentry->d_name.name, kn->name) != 0)
fd7b9f7b
TH
575 goto out_bad;
576
c637b8ac 577 /* The kernfs node has been moved to a different namespace */
adc5e8b5 578 if (kn->parent && kernfs_ns_enabled(kn->parent) &&
c525aadd 579 kernfs_info(dentry->d_sb)->ns != kn->ns)
fd7b9f7b
TH
580 goto out_bad;
581
a797bfc3 582 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
583 return 1;
584out_bad:
a797bfc3 585 mutex_unlock(&kernfs_mutex);
19bbb926 586out_bad_unlocked:
fd7b9f7b
TH
587 return 0;
588}
589
c637b8ac 590static void kernfs_dop_release(struct dentry *dentry)
fd7b9f7b
TH
591{
592 kernfs_put(dentry->d_fsdata);
593}
594
a797bfc3 595const struct dentry_operations kernfs_dops = {
c637b8ac 596 .d_revalidate = kernfs_dop_revalidate,
c637b8ac 597 .d_release = kernfs_dop_release,
fd7b9f7b
TH
598};
599
0c23b225
TH
600/**
601 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
602 * @dentry: the dentry in question
603 *
604 * Return the kernfs_node associated with @dentry. If @dentry is not a
605 * kernfs one, %NULL is returned.
606 *
607 * While the returned kernfs_node will stay accessible as long as @dentry
608 * is accessible, the returned node can be in any state and the caller is
609 * fully responsible for determining what's accessible.
610 */
611struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
612{
f41c5934 613 if (dentry->d_sb->s_op == &kernfs_sops)
0c23b225
TH
614 return dentry->d_fsdata;
615 return NULL;
616}
617
db4aad20
TH
618static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
619 const char *name, umode_t mode,
620 unsigned flags)
fd7b9f7b 621{
324a56e1 622 struct kernfs_node *kn;
bc755553 623 int ret;
fd7b9f7b 624
dfeb0750
TH
625 name = kstrdup_const(name, GFP_KERNEL);
626 if (!name)
627 return NULL;
fd7b9f7b 628
a797bfc3 629 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
324a56e1 630 if (!kn)
fd7b9f7b
TH
631 goto err_out1;
632
b2a209ff 633 ret = ida_simple_get(&root->ino_ida, 1, 0, GFP_KERNEL);
bc755553 634 if (ret < 0)
fd7b9f7b 635 goto err_out2;
adc5e8b5 636 kn->ino = ret;
fd7b9f7b 637
adc5e8b5 638 atomic_set(&kn->count, 1);
81c173cb 639 atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
35beab06 640 RB_CLEAR_NODE(&kn->rb);
fd7b9f7b 641
adc5e8b5
TH
642 kn->name = name;
643 kn->mode = mode;
81c173cb 644 kn->flags = flags;
fd7b9f7b 645
324a56e1 646 return kn;
fd7b9f7b
TH
647
648 err_out2:
a797bfc3 649 kmem_cache_free(kernfs_node_cache, kn);
fd7b9f7b 650 err_out1:
dfeb0750 651 kfree_const(name);
fd7b9f7b
TH
652 return NULL;
653}
654
db4aad20
TH
655struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
656 const char *name, umode_t mode,
657 unsigned flags)
658{
659 struct kernfs_node *kn;
660
661 kn = __kernfs_new_node(kernfs_root(parent), name, mode, flags);
662 if (kn) {
663 kernfs_get(parent);
664 kn->parent = parent;
665 }
666 return kn;
667}
668
fd7b9f7b 669/**
c637b8ac 670 * kernfs_add_one - add kernfs_node to parent without warning
324a56e1 671 * @kn: kernfs_node to be added
fd7b9f7b 672 *
db4aad20
TH
673 * The caller must already have initialized @kn->parent. This
674 * function increments nlink of the parent's inode if @kn is a
675 * directory and link into the children list of the parent.
fd7b9f7b 676 *
fd7b9f7b
TH
677 * RETURNS:
678 * 0 on success, -EEXIST if entry with the given name already
679 * exists.
680 */
988cd7af 681int kernfs_add_one(struct kernfs_node *kn)
fd7b9f7b 682{
db4aad20 683 struct kernfs_node *parent = kn->parent;
c525aadd 684 struct kernfs_iattrs *ps_iattr;
988cd7af 685 bool has_ns;
fd7b9f7b
TH
686 int ret;
687
988cd7af
TH
688 mutex_lock(&kernfs_mutex);
689
690 ret = -EINVAL;
691 has_ns = kernfs_ns_enabled(parent);
692 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
693 has_ns ? "required" : "invalid", parent->name, kn->name))
694 goto out_unlock;
fd7b9f7b 695
df23fc39 696 if (kernfs_type(parent) != KERNFS_DIR)
988cd7af 697 goto out_unlock;
fd7b9f7b 698
988cd7af 699 ret = -ENOENT;
ea015218
EB
700 if (parent->flags & KERNFS_EMPTY_DIR)
701 goto out_unlock;
702
d35258ef 703 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
988cd7af 704 goto out_unlock;
798c75a0 705
c637b8ac 706 kn->hash = kernfs_name_hash(kn->name, kn->ns);
fd7b9f7b 707
c637b8ac 708 ret = kernfs_link_sibling(kn);
fd7b9f7b 709 if (ret)
988cd7af 710 goto out_unlock;
fd7b9f7b
TH
711
712 /* Update timestamps on the parent */
adc5e8b5 713 ps_iattr = parent->iattr;
fd7b9f7b
TH
714 if (ps_iattr) {
715 struct iattr *ps_iattrs = &ps_iattr->ia_iattr;
3a3a5fec
DD
716 ktime_get_real_ts(&ps_iattrs->ia_ctime);
717 ps_iattrs->ia_mtime = ps_iattrs->ia_ctime;
fd7b9f7b
TH
718 }
719
d35258ef
TH
720 mutex_unlock(&kernfs_mutex);
721
722 /*
723 * Activate the new node unless CREATE_DEACTIVATED is requested.
724 * If not activated here, the kernfs user is responsible for
725 * activating the node with kernfs_activate(). A node which hasn't
726 * been activated is not visible to userland and its removal won't
727 * trigger deactivation.
728 */
729 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
730 kernfs_activate(kn);
731 return 0;
732
988cd7af 733out_unlock:
a797bfc3 734 mutex_unlock(&kernfs_mutex);
988cd7af 735 return ret;
fd7b9f7b
TH
736}
737
738/**
324a56e1
TH
739 * kernfs_find_ns - find kernfs_node with the given name
740 * @parent: kernfs_node to search under
fd7b9f7b
TH
741 * @name: name to look for
742 * @ns: the namespace tag to use
743 *
324a56e1
TH
744 * Look for kernfs_node with name @name under @parent. Returns pointer to
745 * the found kernfs_node on success, %NULL on failure.
fd7b9f7b 746 */
324a56e1
TH
747static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
748 const unsigned char *name,
749 const void *ns)
fd7b9f7b 750{
adc5e8b5 751 struct rb_node *node = parent->dir.children.rb_node;
ac9bba03 752 bool has_ns = kernfs_ns_enabled(parent);
fd7b9f7b
TH
753 unsigned int hash;
754
a797bfc3 755 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
756
757 if (has_ns != (bool)ns) {
c637b8ac 758 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
adc5e8b5 759 has_ns ? "required" : "invalid", parent->name, name);
fd7b9f7b
TH
760 return NULL;
761 }
762
c637b8ac 763 hash = kernfs_name_hash(name, ns);
fd7b9f7b 764 while (node) {
324a56e1 765 struct kernfs_node *kn;
fd7b9f7b
TH
766 int result;
767
324a56e1 768 kn = rb_to_kn(node);
c637b8ac 769 result = kernfs_name_compare(hash, name, ns, kn);
fd7b9f7b
TH
770 if (result < 0)
771 node = node->rb_left;
772 else if (result > 0)
773 node = node->rb_right;
774 else
324a56e1 775 return kn;
fd7b9f7b
TH
776 }
777 return NULL;
778}
779
bd96f76a
TH
780static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
781 const unsigned char *path,
782 const void *ns)
783{
e56ed358
TH
784 size_t len;
785 char *p, *name;
bd96f76a
TH
786
787 lockdep_assert_held(&kernfs_mutex);
788
e56ed358
TH
789 /* grab kernfs_rename_lock to piggy back on kernfs_pr_cont_buf */
790 spin_lock_irq(&kernfs_rename_lock);
791
792 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
793
794 if (len >= sizeof(kernfs_pr_cont_buf)) {
795 spin_unlock_irq(&kernfs_rename_lock);
bd96f76a 796 return NULL;
e56ed358
TH
797 }
798
799 p = kernfs_pr_cont_buf;
bd96f76a
TH
800
801 while ((name = strsep(&p, "/")) && parent) {
802 if (*name == '\0')
803 continue;
804 parent = kernfs_find_ns(parent, name, ns);
805 }
806
e56ed358
TH
807 spin_unlock_irq(&kernfs_rename_lock);
808
bd96f76a
TH
809 return parent;
810}
811
fd7b9f7b 812/**
324a56e1
TH
813 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
814 * @parent: kernfs_node to search under
fd7b9f7b
TH
815 * @name: name to look for
816 * @ns: the namespace tag to use
817 *
324a56e1 818 * Look for kernfs_node with name @name under @parent and get a reference
fd7b9f7b 819 * if found. This function may sleep and returns pointer to the found
324a56e1 820 * kernfs_node on success, %NULL on failure.
fd7b9f7b 821 */
324a56e1
TH
822struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
823 const char *name, const void *ns)
fd7b9f7b 824{
324a56e1 825 struct kernfs_node *kn;
fd7b9f7b 826
a797bfc3 827 mutex_lock(&kernfs_mutex);
324a56e1
TH
828 kn = kernfs_find_ns(parent, name, ns);
829 kernfs_get(kn);
a797bfc3 830 mutex_unlock(&kernfs_mutex);
fd7b9f7b 831
324a56e1 832 return kn;
fd7b9f7b
TH
833}
834EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
835
bd96f76a
TH
836/**
837 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
838 * @parent: kernfs_node to search under
839 * @path: path to look for
840 * @ns: the namespace tag to use
841 *
842 * Look for kernfs_node with path @path under @parent and get a reference
843 * if found. This function may sleep and returns pointer to the found
844 * kernfs_node on success, %NULL on failure.
845 */
846struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
847 const char *path, const void *ns)
848{
849 struct kernfs_node *kn;
850
851 mutex_lock(&kernfs_mutex);
852 kn = kernfs_walk_ns(parent, path, ns);
853 kernfs_get(kn);
854 mutex_unlock(&kernfs_mutex);
855
856 return kn;
857}
858
ba7443bc
TH
859/**
860 * kernfs_create_root - create a new kernfs hierarchy
90c07c89 861 * @scops: optional syscall operations for the hierarchy
d35258ef 862 * @flags: KERNFS_ROOT_* flags
ba7443bc
TH
863 * @priv: opaque data associated with the new directory
864 *
865 * Returns the root of the new hierarchy on success, ERR_PTR() value on
866 * failure.
867 */
90c07c89 868struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
d35258ef 869 unsigned int flags, void *priv)
ba7443bc
TH
870{
871 struct kernfs_root *root;
324a56e1 872 struct kernfs_node *kn;
ba7443bc
TH
873
874 root = kzalloc(sizeof(*root), GFP_KERNEL);
875 if (!root)
876 return ERR_PTR(-ENOMEM);
877
bc755553 878 ida_init(&root->ino_ida);
7d568a83 879 INIT_LIST_HEAD(&root->supers);
bc755553 880
db4aad20
TH
881 kn = __kernfs_new_node(root, "", S_IFDIR | S_IRUGO | S_IXUGO,
882 KERNFS_DIR);
324a56e1 883 if (!kn) {
bc755553 884 ida_destroy(&root->ino_ida);
ba7443bc
TH
885 kfree(root);
886 return ERR_PTR(-ENOMEM);
887 }
888
324a56e1 889 kn->priv = priv;
adc5e8b5 890 kn->dir.root = root;
ba7443bc 891
90c07c89 892 root->syscall_ops = scops;
d35258ef 893 root->flags = flags;
324a56e1 894 root->kn = kn;
abd54f02 895 init_waitqueue_head(&root->deactivate_waitq);
ba7443bc 896
d35258ef
TH
897 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
898 kernfs_activate(kn);
899
ba7443bc
TH
900 return root;
901}
902
903/**
904 * kernfs_destroy_root - destroy a kernfs hierarchy
905 * @root: root of the hierarchy to destroy
906 *
907 * Destroy the hierarchy anchored at @root by removing all existing
908 * directories and destroying @root.
909 */
910void kernfs_destroy_root(struct kernfs_root *root)
911{
324a56e1 912 kernfs_remove(root->kn); /* will also free @root */
ba7443bc
TH
913}
914
fd7b9f7b
TH
915/**
916 * kernfs_create_dir_ns - create a directory
917 * @parent: parent in which to create a new directory
918 * @name: name of the new directory
bb8b9d09 919 * @mode: mode of the new directory
fd7b9f7b
TH
920 * @priv: opaque data associated with the new directory
921 * @ns: optional namespace tag of the directory
922 *
923 * Returns the created node on success, ERR_PTR() value on failure.
924 */
324a56e1 925struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
bb8b9d09
TH
926 const char *name, umode_t mode,
927 void *priv, const void *ns)
fd7b9f7b 928{
324a56e1 929 struct kernfs_node *kn;
fd7b9f7b
TH
930 int rc;
931
932 /* allocate */
db4aad20 933 kn = kernfs_new_node(parent, name, mode | S_IFDIR, KERNFS_DIR);
324a56e1 934 if (!kn)
fd7b9f7b
TH
935 return ERR_PTR(-ENOMEM);
936
adc5e8b5
TH
937 kn->dir.root = parent->dir.root;
938 kn->ns = ns;
324a56e1 939 kn->priv = priv;
fd7b9f7b
TH
940
941 /* link in */
988cd7af 942 rc = kernfs_add_one(kn);
fd7b9f7b 943 if (!rc)
324a56e1 944 return kn;
fd7b9f7b 945
324a56e1 946 kernfs_put(kn);
fd7b9f7b
TH
947 return ERR_PTR(rc);
948}
949
ea015218
EB
950/**
951 * kernfs_create_empty_dir - create an always empty directory
952 * @parent: parent in which to create a new directory
953 * @name: name of the new directory
954 *
955 * Returns the created node on success, ERR_PTR() value on failure.
956 */
957struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
958 const char *name)
959{
960 struct kernfs_node *kn;
961 int rc;
962
963 /* allocate */
964 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, KERNFS_DIR);
965 if (!kn)
966 return ERR_PTR(-ENOMEM);
967
968 kn->flags |= KERNFS_EMPTY_DIR;
969 kn->dir.root = parent->dir.root;
970 kn->ns = NULL;
971 kn->priv = NULL;
972
973 /* link in */
974 rc = kernfs_add_one(kn);
975 if (!rc)
976 return kn;
977
978 kernfs_put(kn);
979 return ERR_PTR(rc);
980}
981
c637b8ac
TH
982static struct dentry *kernfs_iop_lookup(struct inode *dir,
983 struct dentry *dentry,
984 unsigned int flags)
fd7b9f7b 985{
19bbb926 986 struct dentry *ret;
324a56e1
TH
987 struct kernfs_node *parent = dentry->d_parent->d_fsdata;
988 struct kernfs_node *kn;
fd7b9f7b
TH
989 struct inode *inode;
990 const void *ns = NULL;
991
a797bfc3 992 mutex_lock(&kernfs_mutex);
fd7b9f7b 993
324a56e1 994 if (kernfs_ns_enabled(parent))
c525aadd 995 ns = kernfs_info(dir->i_sb)->ns;
fd7b9f7b 996
324a56e1 997 kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
fd7b9f7b
TH
998
999 /* no such entry */
b9c9dad0 1000 if (!kn || !kernfs_active(kn)) {
19bbb926 1001 ret = NULL;
fd7b9f7b
TH
1002 goto out_unlock;
1003 }
324a56e1
TH
1004 kernfs_get(kn);
1005 dentry->d_fsdata = kn;
fd7b9f7b
TH
1006
1007 /* attach dentry and inode */
c637b8ac 1008 inode = kernfs_get_inode(dir->i_sb, kn);
fd7b9f7b
TH
1009 if (!inode) {
1010 ret = ERR_PTR(-ENOMEM);
1011 goto out_unlock;
1012 }
1013
1014 /* instantiate and hash dentry */
41d28bca 1015 ret = d_splice_alias(inode, dentry);
fd7b9f7b 1016 out_unlock:
a797bfc3 1017 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1018 return ret;
1019}
1020
80b9bbef
TH
1021static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1022 umode_t mode)
1023{
1024 struct kernfs_node *parent = dir->i_private;
90c07c89 1025 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
07c7530d 1026 int ret;
80b9bbef 1027
90c07c89 1028 if (!scops || !scops->mkdir)
80b9bbef
TH
1029 return -EPERM;
1030
07c7530d
TH
1031 if (!kernfs_get_active(parent))
1032 return -ENODEV;
1033
90c07c89 1034 ret = scops->mkdir(parent, dentry->d_name.name, mode);
07c7530d
TH
1035
1036 kernfs_put_active(parent);
1037 return ret;
80b9bbef
TH
1038}
1039
1040static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1041{
1042 struct kernfs_node *kn = dentry->d_fsdata;
90c07c89 1043 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 1044 int ret;
80b9bbef 1045
90c07c89 1046 if (!scops || !scops->rmdir)
80b9bbef
TH
1047 return -EPERM;
1048
07c7530d
TH
1049 if (!kernfs_get_active(kn))
1050 return -ENODEV;
1051
90c07c89 1052 ret = scops->rmdir(kn);
07c7530d
TH
1053
1054 kernfs_put_active(kn);
1055 return ret;
80b9bbef
TH
1056}
1057
1058static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1cd66c93
MS
1059 struct inode *new_dir, struct dentry *new_dentry,
1060 unsigned int flags)
80b9bbef
TH
1061{
1062 struct kernfs_node *kn = old_dentry->d_fsdata;
1063 struct kernfs_node *new_parent = new_dir->i_private;
90c07c89 1064 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
07c7530d 1065 int ret;
80b9bbef 1066
1cd66c93
MS
1067 if (flags)
1068 return -EINVAL;
1069
90c07c89 1070 if (!scops || !scops->rename)
80b9bbef
TH
1071 return -EPERM;
1072
07c7530d
TH
1073 if (!kernfs_get_active(kn))
1074 return -ENODEV;
1075
1076 if (!kernfs_get_active(new_parent)) {
1077 kernfs_put_active(kn);
1078 return -ENODEV;
1079 }
1080
90c07c89 1081 ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
07c7530d
TH
1082
1083 kernfs_put_active(new_parent);
1084 kernfs_put_active(kn);
1085 return ret;
80b9bbef
TH
1086}
1087
a797bfc3 1088const struct inode_operations kernfs_dir_iops = {
c637b8ac
TH
1089 .lookup = kernfs_iop_lookup,
1090 .permission = kernfs_iop_permission,
1091 .setattr = kernfs_iop_setattr,
1092 .getattr = kernfs_iop_getattr,
c637b8ac 1093 .listxattr = kernfs_iop_listxattr,
80b9bbef
TH
1094
1095 .mkdir = kernfs_iop_mkdir,
1096 .rmdir = kernfs_iop_rmdir,
1097 .rename = kernfs_iop_rename,
fd7b9f7b
TH
1098};
1099
c637b8ac 1100static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
fd7b9f7b 1101{
324a56e1 1102 struct kernfs_node *last;
fd7b9f7b
TH
1103
1104 while (true) {
1105 struct rb_node *rbn;
1106
1107 last = pos;
1108
df23fc39 1109 if (kernfs_type(pos) != KERNFS_DIR)
fd7b9f7b
TH
1110 break;
1111
adc5e8b5 1112 rbn = rb_first(&pos->dir.children);
fd7b9f7b
TH
1113 if (!rbn)
1114 break;
1115
324a56e1 1116 pos = rb_to_kn(rbn);
fd7b9f7b
TH
1117 }
1118
1119 return last;
1120}
1121
1122/**
c637b8ac 1123 * kernfs_next_descendant_post - find the next descendant for post-order walk
fd7b9f7b 1124 * @pos: the current position (%NULL to initiate traversal)
324a56e1 1125 * @root: kernfs_node whose descendants to walk
fd7b9f7b
TH
1126 *
1127 * Find the next descendant to visit for post-order traversal of @root's
1128 * descendants. @root is included in the iteration and the last node to be
1129 * visited.
1130 */
c637b8ac
TH
1131static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1132 struct kernfs_node *root)
fd7b9f7b
TH
1133{
1134 struct rb_node *rbn;
1135
a797bfc3 1136 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b
TH
1137
1138 /* if first iteration, visit leftmost descendant which may be root */
1139 if (!pos)
c637b8ac 1140 return kernfs_leftmost_descendant(root);
fd7b9f7b
TH
1141
1142 /* if we visited @root, we're done */
1143 if (pos == root)
1144 return NULL;
1145
1146 /* if there's an unvisited sibling, visit its leftmost descendant */
adc5e8b5 1147 rbn = rb_next(&pos->rb);
fd7b9f7b 1148 if (rbn)
c637b8ac 1149 return kernfs_leftmost_descendant(rb_to_kn(rbn));
fd7b9f7b
TH
1150
1151 /* no sibling left, visit parent */
adc5e8b5 1152 return pos->parent;
fd7b9f7b
TH
1153}
1154
d35258ef
TH
1155/**
1156 * kernfs_activate - activate a node which started deactivated
1157 * @kn: kernfs_node whose subtree is to be activated
1158 *
1159 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1160 * needs to be explicitly activated. A node which hasn't been activated
1161 * isn't visible to userland and deactivation is skipped during its
1162 * removal. This is useful to construct atomic init sequences where
1163 * creation of multiple nodes should either succeed or fail atomically.
1164 *
1165 * The caller is responsible for ensuring that this function is not called
1166 * after kernfs_remove*() is invoked on @kn.
1167 */
1168void kernfs_activate(struct kernfs_node *kn)
1169{
1170 struct kernfs_node *pos;
1171
1172 mutex_lock(&kernfs_mutex);
1173
1174 pos = NULL;
1175 while ((pos = kernfs_next_descendant_post(pos, kn))) {
1176 if (!pos || (pos->flags & KERNFS_ACTIVATED))
1177 continue;
1178
1179 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1180 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1181
1182 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1183 pos->flags |= KERNFS_ACTIVATED;
1184 }
1185
1186 mutex_unlock(&kernfs_mutex);
1187}
1188
988cd7af 1189static void __kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1190{
35beab06
TH
1191 struct kernfs_node *pos;
1192
1193 lockdep_assert_held(&kernfs_mutex);
fd7b9f7b 1194
6b0afc2a
TH
1195 /*
1196 * Short-circuit if non-root @kn has already finished removal.
1197 * This is for kernfs_remove_self() which plays with active ref
1198 * after removal.
1199 */
1200 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
ce9b499c
GKH
1201 return;
1202
c637b8ac 1203 pr_debug("kernfs %s: removing\n", kn->name);
fd7b9f7b 1204
81c173cb 1205 /* prevent any new usage under @kn by deactivating all nodes */
35beab06
TH
1206 pos = NULL;
1207 while ((pos = kernfs_next_descendant_post(pos, kn)))
81c173cb
TH
1208 if (kernfs_active(pos))
1209 atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
35beab06
TH
1210
1211 /* deactivate and unlink the subtree node-by-node */
fd7b9f7b 1212 do {
35beab06
TH
1213 pos = kernfs_leftmost_descendant(kn);
1214
1215 /*
81c173cb
TH
1216 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1217 * base ref could have been put by someone else by the time
1218 * the function returns. Make sure it doesn't go away
1219 * underneath us.
35beab06
TH
1220 */
1221 kernfs_get(pos);
1222
d35258ef
TH
1223 /*
1224 * Drain iff @kn was activated. This avoids draining and
1225 * its lockdep annotations for nodes which have never been
1226 * activated and allows embedding kernfs_remove() in create
1227 * error paths without worrying about draining.
1228 */
1229 if (kn->flags & KERNFS_ACTIVATED)
1230 kernfs_drain(pos);
1231 else
1232 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
35beab06
TH
1233
1234 /*
1235 * kernfs_unlink_sibling() succeeds once per node. Use it
1236 * to decide who's responsible for cleanups.
1237 */
1238 if (!pos->parent || kernfs_unlink_sibling(pos)) {
1239 struct kernfs_iattrs *ps_iattr =
1240 pos->parent ? pos->parent->iattr : NULL;
1241
1242 /* update timestamps on the parent */
1243 if (ps_iattr) {
3a3a5fec
DD
1244 ktime_get_real_ts(&ps_iattr->ia_iattr.ia_ctime);
1245 ps_iattr->ia_iattr.ia_mtime =
1246 ps_iattr->ia_iattr.ia_ctime;
35beab06
TH
1247 }
1248
988cd7af 1249 kernfs_put(pos);
35beab06
TH
1250 }
1251
1252 kernfs_put(pos);
1253 } while (pos != kn);
fd7b9f7b
TH
1254}
1255
1256/**
324a56e1
TH
1257 * kernfs_remove - remove a kernfs_node recursively
1258 * @kn: the kernfs_node to remove
fd7b9f7b 1259 *
324a56e1 1260 * Remove @kn along with all its subdirectories and files.
fd7b9f7b 1261 */
324a56e1 1262void kernfs_remove(struct kernfs_node *kn)
fd7b9f7b 1263{
988cd7af
TH
1264 mutex_lock(&kernfs_mutex);
1265 __kernfs_remove(kn);
1266 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1267}
1268
6b0afc2a
TH
1269/**
1270 * kernfs_break_active_protection - break out of active protection
1271 * @kn: the self kernfs_node
1272 *
1273 * The caller must be running off of a kernfs operation which is invoked
1274 * with an active reference - e.g. one of kernfs_ops. Each invocation of
1275 * this function must also be matched with an invocation of
1276 * kernfs_unbreak_active_protection().
1277 *
1278 * This function releases the active reference of @kn the caller is
1279 * holding. Once this function is called, @kn may be removed at any point
1280 * and the caller is solely responsible for ensuring that the objects it
1281 * dereferences are accessible.
1282 */
1283void kernfs_break_active_protection(struct kernfs_node *kn)
1284{
1285 /*
1286 * Take out ourself out of the active ref dependency chain. If
1287 * we're called without an active ref, lockdep will complain.
1288 */
1289 kernfs_put_active(kn);
1290}
1291
1292/**
1293 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1294 * @kn: the self kernfs_node
1295 *
1296 * If kernfs_break_active_protection() was called, this function must be
1297 * invoked before finishing the kernfs operation. Note that while this
1298 * function restores the active reference, it doesn't and can't actually
1299 * restore the active protection - @kn may already or be in the process of
1300 * being removed. Once kernfs_break_active_protection() is invoked, that
1301 * protection is irreversibly gone for the kernfs operation instance.
1302 *
1303 * While this function may be called at any point after
1304 * kernfs_break_active_protection() is invoked, its most useful location
1305 * would be right before the enclosing kernfs operation returns.
1306 */
1307void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1308{
1309 /*
1310 * @kn->active could be in any state; however, the increment we do
1311 * here will be undone as soon as the enclosing kernfs operation
1312 * finishes and this temporary bump can't break anything. If @kn
1313 * is alive, nothing changes. If @kn is being deactivated, the
1314 * soon-to-follow put will either finish deactivation or restore
1315 * deactivated state. If @kn is already removed, the temporary
1316 * bump is guaranteed to be gone before @kn is released.
1317 */
1318 atomic_inc(&kn->active);
1319 if (kernfs_lockdep(kn))
1320 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1321}
1322
1323/**
1324 * kernfs_remove_self - remove a kernfs_node from its own method
1325 * @kn: the self kernfs_node to remove
1326 *
1327 * The caller must be running off of a kernfs operation which is invoked
1328 * with an active reference - e.g. one of kernfs_ops. This can be used to
1329 * implement a file operation which deletes itself.
1330 *
1331 * For example, the "delete" file for a sysfs device directory can be
1332 * implemented by invoking kernfs_remove_self() on the "delete" file
1333 * itself. This function breaks the circular dependency of trying to
1334 * deactivate self while holding an active ref itself. It isn't necessary
1335 * to modify the usual removal path to use kernfs_remove_self(). The
1336 * "delete" implementation can simply invoke kernfs_remove_self() on self
1337 * before proceeding with the usual removal path. kernfs will ignore later
1338 * kernfs_remove() on self.
1339 *
1340 * kernfs_remove_self() can be called multiple times concurrently on the
1341 * same kernfs_node. Only the first one actually performs removal and
1342 * returns %true. All others will wait until the kernfs operation which
1343 * won self-removal finishes and return %false. Note that the losers wait
1344 * for the completion of not only the winning kernfs_remove_self() but also
1345 * the whole kernfs_ops which won the arbitration. This can be used to
1346 * guarantee, for example, all concurrent writes to a "delete" file to
1347 * finish only after the whole operation is complete.
1348 */
1349bool kernfs_remove_self(struct kernfs_node *kn)
1350{
1351 bool ret;
1352
1353 mutex_lock(&kernfs_mutex);
1354 kernfs_break_active_protection(kn);
1355
1356 /*
1357 * SUICIDAL is used to arbitrate among competing invocations. Only
1358 * the first one will actually perform removal. When the removal
1359 * is complete, SUICIDED is set and the active ref is restored
1360 * while holding kernfs_mutex. The ones which lost arbitration
1361 * waits for SUICDED && drained which can happen only after the
1362 * enclosing kernfs operation which executed the winning instance
1363 * of kernfs_remove_self() finished.
1364 */
1365 if (!(kn->flags & KERNFS_SUICIDAL)) {
1366 kn->flags |= KERNFS_SUICIDAL;
1367 __kernfs_remove(kn);
1368 kn->flags |= KERNFS_SUICIDED;
1369 ret = true;
1370 } else {
1371 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1372 DEFINE_WAIT(wait);
1373
1374 while (true) {
1375 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1376
1377 if ((kn->flags & KERNFS_SUICIDED) &&
1378 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1379 break;
1380
1381 mutex_unlock(&kernfs_mutex);
1382 schedule();
1383 mutex_lock(&kernfs_mutex);
1384 }
1385 finish_wait(waitq, &wait);
1386 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1387 ret = false;
1388 }
1389
1390 /*
1391 * This must be done while holding kernfs_mutex; otherwise, waiting
1392 * for SUICIDED && deactivated could finish prematurely.
1393 */
1394 kernfs_unbreak_active_protection(kn);
1395
1396 mutex_unlock(&kernfs_mutex);
1397 return ret;
1398}
1399
fd7b9f7b 1400/**
324a56e1
TH
1401 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1402 * @parent: parent of the target
1403 * @name: name of the kernfs_node to remove
1404 * @ns: namespace tag of the kernfs_node to remove
fd7b9f7b 1405 *
324a56e1
TH
1406 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1407 * Returns 0 on success, -ENOENT if such entry doesn't exist.
fd7b9f7b 1408 */
324a56e1 1409int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
fd7b9f7b
TH
1410 const void *ns)
1411{
324a56e1 1412 struct kernfs_node *kn;
fd7b9f7b 1413
324a56e1 1414 if (!parent) {
c637b8ac 1415 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
fd7b9f7b
TH
1416 name);
1417 return -ENOENT;
1418 }
1419
988cd7af 1420 mutex_lock(&kernfs_mutex);
fd7b9f7b 1421
324a56e1
TH
1422 kn = kernfs_find_ns(parent, name, ns);
1423 if (kn)
988cd7af 1424 __kernfs_remove(kn);
fd7b9f7b 1425
988cd7af 1426 mutex_unlock(&kernfs_mutex);
fd7b9f7b 1427
324a56e1 1428 if (kn)
fd7b9f7b
TH
1429 return 0;
1430 else
1431 return -ENOENT;
1432}
1433
1434/**
1435 * kernfs_rename_ns - move and rename a kernfs_node
324a56e1 1436 * @kn: target node
fd7b9f7b
TH
1437 * @new_parent: new parent to put @sd under
1438 * @new_name: new name
1439 * @new_ns: new namespace tag
1440 */
324a56e1 1441int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
fd7b9f7b
TH
1442 const char *new_name, const void *new_ns)
1443{
3eef34ad
TH
1444 struct kernfs_node *old_parent;
1445 const char *old_name = NULL;
fd7b9f7b
TH
1446 int error;
1447
3eef34ad
TH
1448 /* can't move or rename root */
1449 if (!kn->parent)
1450 return -EINVAL;
1451
798c75a0
GKH
1452 mutex_lock(&kernfs_mutex);
1453
d0ae3d43 1454 error = -ENOENT;
ea015218
EB
1455 if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1456 (new_parent->flags & KERNFS_EMPTY_DIR))
d0ae3d43
TH
1457 goto out;
1458
fd7b9f7b 1459 error = 0;
adc5e8b5
TH
1460 if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1461 (strcmp(kn->name, new_name) == 0))
798c75a0 1462 goto out; /* nothing to rename */
fd7b9f7b
TH
1463
1464 error = -EEXIST;
1465 if (kernfs_find_ns(new_parent, new_name, new_ns))
798c75a0 1466 goto out;
fd7b9f7b 1467
324a56e1 1468 /* rename kernfs_node */
adc5e8b5 1469 if (strcmp(kn->name, new_name) != 0) {
fd7b9f7b 1470 error = -ENOMEM;
75287a67 1471 new_name = kstrdup_const(new_name, GFP_KERNEL);
fd7b9f7b 1472 if (!new_name)
798c75a0 1473 goto out;
3eef34ad
TH
1474 } else {
1475 new_name = NULL;
fd7b9f7b
TH
1476 }
1477
1478 /*
1479 * Move to the appropriate place in the appropriate directories rbtree.
1480 */
c637b8ac 1481 kernfs_unlink_sibling(kn);
fd7b9f7b 1482 kernfs_get(new_parent);
3eef34ad
TH
1483
1484 /* rename_lock protects ->parent and ->name accessors */
1485 spin_lock_irq(&kernfs_rename_lock);
1486
1487 old_parent = kn->parent;
adc5e8b5 1488 kn->parent = new_parent;
3eef34ad
TH
1489
1490 kn->ns = new_ns;
1491 if (new_name) {
dfeb0750 1492 old_name = kn->name;
3eef34ad
TH
1493 kn->name = new_name;
1494 }
1495
1496 spin_unlock_irq(&kernfs_rename_lock);
1497
9561a896 1498 kn->hash = kernfs_name_hash(kn->name, kn->ns);
c637b8ac 1499 kernfs_link_sibling(kn);
fd7b9f7b 1500
3eef34ad 1501 kernfs_put(old_parent);
75287a67 1502 kfree_const(old_name);
3eef34ad 1503
fd7b9f7b 1504 error = 0;
798c75a0 1505 out:
a797bfc3 1506 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1507 return error;
1508}
1509
fd7b9f7b 1510/* Relationship between s_mode and the DT_xxx types */
324a56e1 1511static inline unsigned char dt_type(struct kernfs_node *kn)
fd7b9f7b 1512{
adc5e8b5 1513 return (kn->mode >> 12) & 15;
fd7b9f7b
TH
1514}
1515
c637b8ac 1516static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
fd7b9f7b
TH
1517{
1518 kernfs_put(filp->private_data);
1519 return 0;
1520}
1521
c637b8ac 1522static struct kernfs_node *kernfs_dir_pos(const void *ns,
324a56e1 1523 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
fd7b9f7b
TH
1524{
1525 if (pos) {
81c173cb 1526 int valid = kernfs_active(pos) &&
798c75a0 1527 pos->parent == parent && hash == pos->hash;
fd7b9f7b
TH
1528 kernfs_put(pos);
1529 if (!valid)
1530 pos = NULL;
1531 }
1532 if (!pos && (hash > 1) && (hash < INT_MAX)) {
adc5e8b5 1533 struct rb_node *node = parent->dir.children.rb_node;
fd7b9f7b 1534 while (node) {
324a56e1 1535 pos = rb_to_kn(node);
fd7b9f7b 1536
adc5e8b5 1537 if (hash < pos->hash)
fd7b9f7b 1538 node = node->rb_left;
adc5e8b5 1539 else if (hash > pos->hash)
fd7b9f7b
TH
1540 node = node->rb_right;
1541 else
1542 break;
1543 }
1544 }
b9c9dad0
TH
1545 /* Skip over entries which are dying/dead or in the wrong namespace */
1546 while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
adc5e8b5 1547 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1548 if (!node)
1549 pos = NULL;
1550 else
324a56e1 1551 pos = rb_to_kn(node);
fd7b9f7b
TH
1552 }
1553 return pos;
1554}
1555
c637b8ac 1556static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
324a56e1 1557 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
fd7b9f7b 1558{
c637b8ac 1559 pos = kernfs_dir_pos(ns, parent, ino, pos);
b9c9dad0 1560 if (pos) {
fd7b9f7b 1561 do {
adc5e8b5 1562 struct rb_node *node = rb_next(&pos->rb);
fd7b9f7b
TH
1563 if (!node)
1564 pos = NULL;
1565 else
324a56e1 1566 pos = rb_to_kn(node);
b9c9dad0
TH
1567 } while (pos && (!kernfs_active(pos) || pos->ns != ns));
1568 }
fd7b9f7b
TH
1569 return pos;
1570}
1571
c637b8ac 1572static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
fd7b9f7b
TH
1573{
1574 struct dentry *dentry = file->f_path.dentry;
324a56e1
TH
1575 struct kernfs_node *parent = dentry->d_fsdata;
1576 struct kernfs_node *pos = file->private_data;
fd7b9f7b
TH
1577 const void *ns = NULL;
1578
1579 if (!dir_emit_dots(file, ctx))
1580 return 0;
a797bfc3 1581 mutex_lock(&kernfs_mutex);
fd7b9f7b 1582
324a56e1 1583 if (kernfs_ns_enabled(parent))
c525aadd 1584 ns = kernfs_info(dentry->d_sb)->ns;
fd7b9f7b 1585
c637b8ac 1586 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
fd7b9f7b 1587 pos;
c637b8ac 1588 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
adc5e8b5 1589 const char *name = pos->name;
fd7b9f7b
TH
1590 unsigned int type = dt_type(pos);
1591 int len = strlen(name);
adc5e8b5 1592 ino_t ino = pos->ino;
fd7b9f7b 1593
adc5e8b5 1594 ctx->pos = pos->hash;
fd7b9f7b
TH
1595 file->private_data = pos;
1596 kernfs_get(pos);
1597
a797bfc3 1598 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1599 if (!dir_emit(ctx, name, len, ino, type))
1600 return 0;
a797bfc3 1601 mutex_lock(&kernfs_mutex);
fd7b9f7b 1602 }
a797bfc3 1603 mutex_unlock(&kernfs_mutex);
fd7b9f7b
TH
1604 file->private_data = NULL;
1605 ctx->pos = INT_MAX;
1606 return 0;
1607}
1608
a797bfc3 1609const struct file_operations kernfs_dir_fops = {
fd7b9f7b 1610 .read = generic_read_dir,
8cb0d2c1 1611 .iterate_shared = kernfs_fop_readdir,
c637b8ac 1612 .release = kernfs_dir_fop_release,
8cb0d2c1 1613 .llseek = generic_file_llseek,
fd7b9f7b 1614};