]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/namespace.c
vfs: spread struct mount - change_mnt_propagation/set_mnt_shared
[mirror_ubuntu-artful-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
b105e270 81static int mnt_alloc_id(struct mount *mnt)
73cd49ec
MS
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
b105e270 88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt.mnt_id);
f21f6220 89 if (!res)
b105e270 90 mnt_id_start = mnt->mnt.mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
b105e270 98static void mnt_free_id(struct mount *mnt)
73cd49ec 99{
b105e270 100 int id = mnt->mnt.mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
4b8b21f4 113static int mnt_alloc_group_id(struct mount *mnt)
719f5d7f 114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
4b8b21f4 122 &mnt->mnt.mnt_group_id);
f21f6220 123 if (!res)
4b8b21f4 124 mnt_group_start = mnt->mnt.mnt_group_id + 1;
f21f6220
AV
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
4b8b21f4 132void mnt_release_group_id(struct mount *mnt)
719f5d7f 133{
4b8b21f4 134 int id = mnt->mnt.mnt_group_id;
f21f6220
AV
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
4b8b21f4 138 mnt->mnt.mnt_group_id = 0;
719f5d7f
MS
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
144static inline void mnt_add_count(struct vfsmount *mnt, int n)
145{
146#ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148#else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152#endif
153}
154
b3e19d92
NP
155/*
156 * vfsmount lock must be held for write
157 */
158unsigned int mnt_get_count(struct vfsmount *mnt)
159{
160#ifdef CONFIG_SMP
f03c6599 161 unsigned int count = 0;
b3e19d92
NP
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
166 }
167
168 return count;
169#else
170 return mnt->mnt_count;
171#endif
172}
173
b105e270 174static struct mount *alloc_vfsmnt(const char *name)
1da177e4 175{
7d6fec45
AV
176 struct mount *p = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
177 if (p) {
178 struct vfsmount *mnt = &p->mnt;
73cd49ec
MS
179 int err;
180
b105e270 181 err = mnt_alloc_id(p);
88b38782
LZ
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
73cd49ec
MS
189 }
190
b3e19d92
NP
191#ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
f03c6599 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92
NP
197#else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200#endif
201
1da177e4
LT
202 INIT_LIST_HEAD(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 206 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 207 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
210#ifdef CONFIG_FSNOTIFY
211 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 212#endif
1da177e4 213 }
b105e270 214 return p;
88b38782 215
d3ef3d73 216#ifdef CONFIG_SMP
217out_free_devname:
7d6fec45 218 kfree(p->mnt.mnt_devname);
d3ef3d73 219#endif
88b38782 220out_free_id:
b105e270 221 mnt_free_id(p);
88b38782 222out_free_cache:
7d6fec45 223 kmem_cache_free(mnt_cache, p);
88b38782 224 return NULL;
1da177e4
LT
225}
226
3d733633
DH
227/*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235/*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246int __mnt_is_readonly(struct vfsmount *mnt)
247{
2e4b7fcd
DH
248 if (mnt->mnt_flags & MNT_READONLY)
249 return 1;
250 if (mnt->mnt_sb->s_flags & MS_RDONLY)
251 return 1;
252 return 0;
3d733633
DH
253}
254EXPORT_SYMBOL_GPL(__mnt_is_readonly);
255
c6653a83 256static inline void mnt_inc_writers(struct vfsmount *mnt)
d3ef3d73 257{
258#ifdef CONFIG_SMP
b3e19d92 259 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 260#else
261 mnt->mnt_writers++;
262#endif
263}
3d733633 264
c6653a83 265static inline void mnt_dec_writers(struct vfsmount *mnt)
3d733633 266{
d3ef3d73 267#ifdef CONFIG_SMP
b3e19d92 268 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 269#else
270 mnt->mnt_writers--;
271#endif
3d733633 272}
3d733633 273
c6653a83 274static unsigned int mnt_get_writers(struct vfsmount *mnt)
3d733633 275{
d3ef3d73 276#ifdef CONFIG_SMP
277 unsigned int count = 0;
3d733633 278 int cpu;
3d733633
DH
279
280 for_each_possible_cpu(cpu) {
b3e19d92 281 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 282 }
3d733633 283
d3ef3d73 284 return count;
285#else
286 return mnt->mnt_writers;
287#endif
3d733633
DH
288}
289
8366025e
DH
290/*
291 * Most r/o checks on a fs are for operations that take
292 * discrete amounts of time, like a write() or unlink().
293 * We must keep track of when those operations start
294 * (for permission checks) and when they end, so that
295 * we can determine when writes are able to occur to
296 * a filesystem.
297 */
298/**
299 * mnt_want_write - get write access to a mount
300 * @mnt: the mount on which to take a write
301 *
302 * This tells the low-level filesystem that a write is
303 * about to be performed to it, and makes sure that
304 * writes are allowed before returning success. When
305 * the write operation is finished, mnt_drop_write()
306 * must be called. This is effectively a refcount.
307 */
308int mnt_want_write(struct vfsmount *mnt)
309{
3d733633 310 int ret = 0;
3d733633 311
d3ef3d73 312 preempt_disable();
c6653a83 313 mnt_inc_writers(mnt);
d3ef3d73 314 /*
c6653a83 315 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 316 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
317 * incremented count after it has set MNT_WRITE_HOLD.
318 */
319 smp_mb();
320 while (mnt->mnt_flags & MNT_WRITE_HOLD)
321 cpu_relax();
322 /*
323 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
324 * be set to match its requirements. So we must not load that until
325 * MNT_WRITE_HOLD is cleared.
326 */
327 smp_rmb();
3d733633 328 if (__mnt_is_readonly(mnt)) {
c6653a83 329 mnt_dec_writers(mnt);
3d733633
DH
330 ret = -EROFS;
331 goto out;
332 }
3d733633 333out:
d3ef3d73 334 preempt_enable();
3d733633 335 return ret;
8366025e
DH
336}
337EXPORT_SYMBOL_GPL(mnt_want_write);
338
96029c4e 339/**
340 * mnt_clone_write - get write access to a mount
341 * @mnt: the mount on which to take a write
342 *
343 * This is effectively like mnt_want_write, except
344 * it must only be used to take an extra write reference
345 * on a mountpoint that we already know has a write reference
346 * on it. This allows some optimisation.
347 *
348 * After finished, mnt_drop_write must be called as usual to
349 * drop the reference.
350 */
351int mnt_clone_write(struct vfsmount *mnt)
352{
353 /* superblock may be r/o */
354 if (__mnt_is_readonly(mnt))
355 return -EROFS;
356 preempt_disable();
c6653a83 357 mnt_inc_writers(mnt);
96029c4e 358 preempt_enable();
359 return 0;
360}
361EXPORT_SYMBOL_GPL(mnt_clone_write);
362
363/**
364 * mnt_want_write_file - get write access to a file's mount
365 * @file: the file who's mount on which to take a write
366 *
367 * This is like mnt_want_write, but it takes a file and can
368 * do some optimisations if the file is open for write already
369 */
370int mnt_want_write_file(struct file *file)
371{
2d8dd38a
OH
372 struct inode *inode = file->f_dentry->d_inode;
373 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 374 return mnt_want_write(file->f_path.mnt);
375 else
376 return mnt_clone_write(file->f_path.mnt);
377}
378EXPORT_SYMBOL_GPL(mnt_want_write_file);
379
8366025e
DH
380/**
381 * mnt_drop_write - give up write access to a mount
382 * @mnt: the mount on which to give up write access
383 *
384 * Tells the low-level filesystem that we are done
385 * performing writes to it. Must be matched with
386 * mnt_want_write() call above.
387 */
388void mnt_drop_write(struct vfsmount *mnt)
389{
d3ef3d73 390 preempt_disable();
c6653a83 391 mnt_dec_writers(mnt);
d3ef3d73 392 preempt_enable();
8366025e
DH
393}
394EXPORT_SYMBOL_GPL(mnt_drop_write);
395
2a79f17e
AV
396void mnt_drop_write_file(struct file *file)
397{
398 mnt_drop_write(file->f_path.mnt);
399}
400EXPORT_SYMBOL(mnt_drop_write_file);
401
2e4b7fcd 402static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 403{
3d733633
DH
404 int ret = 0;
405
99b7db7b 406 br_write_lock(vfsmount_lock);
d3ef3d73 407 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 408 /*
d3ef3d73 409 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
410 * should be visible before we do.
3d733633 411 */
d3ef3d73 412 smp_mb();
413
3d733633 414 /*
d3ef3d73 415 * With writers on hold, if this value is zero, then there are
416 * definitely no active writers (although held writers may subsequently
417 * increment the count, they'll have to wait, and decrement it after
418 * seeing MNT_READONLY).
419 *
420 * It is OK to have counter incremented on one CPU and decremented on
421 * another: the sum will add up correctly. The danger would be when we
422 * sum up each counter, if we read a counter before it is incremented,
423 * but then read another CPU's count which it has been subsequently
424 * decremented from -- we would see more decrements than we should.
425 * MNT_WRITE_HOLD protects against this scenario, because
426 * mnt_want_write first increments count, then smp_mb, then spins on
427 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
428 * we're counting up here.
3d733633 429 */
c6653a83 430 if (mnt_get_writers(mnt) > 0)
d3ef3d73 431 ret = -EBUSY;
432 else
2e4b7fcd 433 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73 434 /*
435 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
436 * that become unheld will see MNT_READONLY.
437 */
438 smp_wmb();
439 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 440 br_write_unlock(vfsmount_lock);
3d733633 441 return ret;
8366025e 442}
8366025e 443
2e4b7fcd
DH
444static void __mnt_unmake_readonly(struct vfsmount *mnt)
445{
99b7db7b 446 br_write_lock(vfsmount_lock);
2e4b7fcd 447 mnt->mnt_flags &= ~MNT_READONLY;
99b7db7b 448 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
449}
450
b105e270 451static void free_vfsmnt(struct mount *mnt)
1da177e4 452{
b105e270 453 kfree(mnt->mnt.mnt_devname);
73cd49ec 454 mnt_free_id(mnt);
d3ef3d73 455#ifdef CONFIG_SMP
b105e270 456 free_percpu(mnt->mnt.mnt_pcp);
d3ef3d73 457#endif
b105e270 458 kmem_cache_free(mnt_cache, mnt);
1da177e4
LT
459}
460
461/*
a05964f3
RP
462 * find the first or last mount at @dentry on vfsmount @mnt depending on
463 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 464 * vfsmount_lock must be held for read or write.
1da177e4 465 */
c7105365 466struct mount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
a05964f3 467 int dir)
1da177e4 468{
b58fed8b
RP
469 struct list_head *head = mount_hashtable + hash(mnt, dentry);
470 struct list_head *tmp = head;
c7105365 471 struct mount *p, *found = NULL;
1da177e4 472
1da177e4 473 for (;;) {
a05964f3 474 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
475 p = NULL;
476 if (tmp == head)
477 break;
c7105365
AV
478 p = list_entry(tmp, struct mount, mnt.mnt_hash);
479 if (p->mnt.mnt_parent == mnt && p->mnt.mnt_mountpoint == dentry) {
a05964f3 480 found = p;
1da177e4
LT
481 break;
482 }
483 }
1da177e4
LT
484 return found;
485}
486
a05964f3
RP
487/*
488 * lookup_mnt increments the ref count before returning
489 * the vfsmount struct.
490 */
1c755af4 491struct vfsmount *lookup_mnt(struct path *path)
a05964f3 492{
c7105365 493 struct mount *child_mnt;
99b7db7b
NP
494
495 br_read_lock(vfsmount_lock);
c7105365
AV
496 child_mnt = __lookup_mnt(path->mnt, path->dentry, 1);
497 if (child_mnt) {
498 mnt_add_count(child_mnt, 1);
499 br_read_unlock(vfsmount_lock);
500 return &child_mnt->mnt;
501 } else {
502 br_read_unlock(vfsmount_lock);
503 return NULL;
504 }
a05964f3
RP
505}
506
1da177e4
LT
507static inline int check_mnt(struct vfsmount *mnt)
508{
6b3286ed 509 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
510}
511
99b7db7b
NP
512/*
513 * vfsmount lock must be held for write
514 */
6b3286ed 515static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
516{
517 if (ns) {
518 ns->event = ++event;
519 wake_up_interruptible(&ns->poll);
520 }
521}
522
99b7db7b
NP
523/*
524 * vfsmount lock must be held for write
525 */
6b3286ed 526static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
527{
528 if (ns && ns->event != event) {
529 ns->event = event;
530 wake_up_interruptible(&ns->poll);
531 }
532}
533
5f57cbcc
NP
534/*
535 * Clear dentry's mounted state if it has no remaining mounts.
536 * vfsmount_lock must be held for write.
537 */
aa0a4cf0 538static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
539{
540 unsigned u;
541
542 for (u = 0; u < HASH_SIZE; u++) {
543 struct vfsmount *p;
544
545 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
546 if (p->mnt_mountpoint == dentry)
547 return;
548 }
549 }
550 spin_lock(&dentry->d_lock);
551 dentry->d_flags &= ~DCACHE_MOUNTED;
552 spin_unlock(&dentry->d_lock);
553}
554
99b7db7b
NP
555/*
556 * vfsmount lock must be held for write
557 */
419148da
AV
558static void detach_mnt(struct mount *mnt, struct path *old_path)
559{
560 old_path->dentry = mnt->mnt.mnt_mountpoint;
561 old_path->mnt = mnt->mnt.mnt_parent;
562 mnt->mnt.mnt_parent = &mnt->mnt;
563 mnt->mnt.mnt_mountpoint = mnt->mnt.mnt_root;
564 list_del_init(&mnt->mnt.mnt_child);
565 list_del_init(&mnt->mnt.mnt_hash);
aa0a4cf0 566 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
567}
568
99b7db7b
NP
569/*
570 * vfsmount lock must be held for write
571 */
b90fa9ae
RP
572void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
573 struct vfsmount *child_mnt)
574{
575 child_mnt->mnt_parent = mntget(mnt);
576 child_mnt->mnt_mountpoint = dget(dentry);
5f57cbcc
NP
577 spin_lock(&dentry->d_lock);
578 dentry->d_flags |= DCACHE_MOUNTED;
579 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
580}
581
99b7db7b
NP
582/*
583 * vfsmount lock must be held for write
584 */
419148da 585static void attach_mnt(struct mount *mnt, struct path *path)
1da177e4 586{
419148da
AV
587 mnt_set_mountpoint(path->mnt, path->dentry, &mnt->mnt);
588 list_add_tail(&mnt->mnt.mnt_hash, mount_hashtable +
1a390689 589 hash(path->mnt, path->dentry));
419148da 590 list_add_tail(&mnt->mnt.mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
591}
592
7e3d0eb0
AV
593static inline void __mnt_make_longterm(struct vfsmount *mnt)
594{
595#ifdef CONFIG_SMP
596 atomic_inc(&mnt->mnt_longterm);
597#endif
598}
599
600/* needs vfsmount lock for write */
601static inline void __mnt_make_shortterm(struct vfsmount *mnt)
602{
603#ifdef CONFIG_SMP
604 atomic_dec(&mnt->mnt_longterm);
605#endif
606}
607
b90fa9ae 608/*
99b7db7b 609 * vfsmount lock must be held for write
b90fa9ae 610 */
4b2619a5 611static void commit_tree(struct mount *mnt)
b90fa9ae 612{
4b2619a5 613 struct vfsmount *parent = mnt->mnt.mnt_parent;
b90fa9ae
RP
614 struct vfsmount *m;
615 LIST_HEAD(head);
6b3286ed 616 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae 617
4b2619a5 618 BUG_ON(parent == &mnt->mnt);
b90fa9ae 619
4b2619a5 620 list_add_tail(&head, &mnt->mnt.mnt_list);
f03c6599 621 list_for_each_entry(m, &head, mnt_list) {
6b3286ed 622 m->mnt_ns = n;
7e3d0eb0 623 __mnt_make_longterm(m);
f03c6599
AV
624 }
625
b90fa9ae
RP
626 list_splice(&head, n->list.prev);
627
4b2619a5
AV
628 list_add_tail(&mnt->mnt.mnt_hash, mount_hashtable +
629 hash(parent, mnt->mnt.mnt_mountpoint));
630 list_add_tail(&mnt->mnt.mnt_child, &parent->mnt_mounts);
6b3286ed 631 touch_mnt_namespace(n);
1da177e4
LT
632}
633
315fc83e 634static struct mount *next_mnt(struct mount *p, struct vfsmount *root)
1da177e4 635{
315fc83e
AV
636 struct list_head *next = p->mnt.mnt_mounts.next;
637 if (next == &p->mnt.mnt_mounts) {
1da177e4 638 while (1) {
315fc83e 639 if (&p->mnt == root)
1da177e4 640 return NULL;
315fc83e
AV
641 next = p->mnt.mnt_child.next;
642 if (next != &p->mnt.mnt_parent->mnt_mounts)
1da177e4 643 break;
315fc83e 644 p = real_mount(p->mnt.mnt_parent);
1da177e4
LT
645 }
646 }
315fc83e 647 return list_entry(next, struct mount, mnt.mnt_child);
1da177e4
LT
648}
649
315fc83e 650static struct mount *skip_mnt_tree(struct mount *p)
9676f0c6 651{
315fc83e
AV
652 struct list_head *prev = p->mnt.mnt_mounts.prev;
653 while (prev != &p->mnt.mnt_mounts) {
654 p = list_entry(prev, struct mount, mnt.mnt_child);
655 prev = p->mnt.mnt_mounts.prev;
9676f0c6
RP
656 }
657 return p;
658}
659
9d412a43
AV
660struct vfsmount *
661vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
662{
b105e270 663 struct mount *mnt;
9d412a43
AV
664 struct dentry *root;
665
666 if (!type)
667 return ERR_PTR(-ENODEV);
668
669 mnt = alloc_vfsmnt(name);
670 if (!mnt)
671 return ERR_PTR(-ENOMEM);
672
673 if (flags & MS_KERNMOUNT)
b105e270 674 mnt->mnt.mnt_flags = MNT_INTERNAL;
9d412a43
AV
675
676 root = mount_fs(type, flags, name, data);
677 if (IS_ERR(root)) {
678 free_vfsmnt(mnt);
679 return ERR_CAST(root);
680 }
681
b105e270
AV
682 mnt->mnt.mnt_root = root;
683 mnt->mnt.mnt_sb = root->d_sb;
684 mnt->mnt.mnt_mountpoint = mnt->mnt.mnt_root;
685 mnt->mnt.mnt_parent = &mnt->mnt;
686 return &mnt->mnt;
9d412a43
AV
687}
688EXPORT_SYMBOL_GPL(vfs_kern_mount);
689
36341f64
RP
690static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
691 int flag)
1da177e4
LT
692{
693 struct super_block *sb = old->mnt_sb;
b105e270 694 struct mount *mnt = alloc_vfsmnt(old->mnt_devname);
1da177e4
LT
695
696 if (mnt) {
719f5d7f 697 if (flag & (CL_SLAVE | CL_PRIVATE))
b105e270 698 mnt->mnt.mnt_group_id = 0; /* not a peer of original */
719f5d7f 699 else
b105e270 700 mnt->mnt.mnt_group_id = old->mnt_group_id;
719f5d7f 701
b105e270
AV
702 if ((flag & CL_MAKE_SHARED) && !mnt->mnt.mnt_group_id) {
703 int err = mnt_alloc_group_id(mnt);
719f5d7f
MS
704 if (err)
705 goto out_free;
706 }
707
b105e270 708 mnt->mnt.mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
1da177e4 709 atomic_inc(&sb->s_active);
b105e270
AV
710 mnt->mnt.mnt_sb = sb;
711 mnt->mnt.mnt_root = dget(root);
712 mnt->mnt.mnt_mountpoint = mnt->mnt.mnt_root;
713 mnt->mnt.mnt_parent = &mnt->mnt;
b90fa9ae 714
5afe0022 715 if (flag & CL_SLAVE) {
b105e270
AV
716 list_add(&mnt->mnt.mnt_slave, &old->mnt_slave_list);
717 mnt->mnt.mnt_master = old;
718 CLEAR_MNT_SHARED(&mnt->mnt);
8aec0809 719 } else if (!(flag & CL_PRIVATE)) {
796a6b52 720 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
b105e270 721 list_add(&mnt->mnt.mnt_share, &old->mnt_share);
5afe0022 722 if (IS_MNT_SLAVE(old))
b105e270
AV
723 list_add(&mnt->mnt.mnt_slave, &old->mnt_slave);
724 mnt->mnt.mnt_master = old->mnt_master;
5afe0022 725 }
b90fa9ae 726 if (flag & CL_MAKE_SHARED)
0f0afb1d 727 set_mnt_shared(mnt);
1da177e4
LT
728
729 /* stick the duplicate mount on the same expiry list
730 * as the original if that was on one */
36341f64 731 if (flag & CL_EXPIRE) {
36341f64 732 if (!list_empty(&old->mnt_expire))
b105e270 733 list_add(&mnt->mnt.mnt_expire, &old->mnt_expire);
36341f64 734 }
1da177e4 735 }
b105e270 736 return &mnt->mnt;
719f5d7f
MS
737
738 out_free:
739 free_vfsmnt(mnt);
740 return NULL;
1da177e4
LT
741}
742
b3e19d92 743static inline void mntfree(struct vfsmount *mnt)
1da177e4
LT
744{
745 struct super_block *sb = mnt->mnt_sb;
b3e19d92 746
3d733633
DH
747 /*
748 * This probably indicates that somebody messed
749 * up a mnt_want/drop_write() pair. If this
750 * happens, the filesystem was probably unable
751 * to make r/w->r/o transitions.
752 */
d3ef3d73 753 /*
b3e19d92
NP
754 * The locking used to deal with mnt_count decrement provides barriers,
755 * so mnt_get_writers() below is safe.
d3ef3d73 756 */
c6653a83 757 WARN_ON(mnt_get_writers(mnt));
ca9c726e 758 fsnotify_vfsmount_delete(mnt);
1da177e4 759 dput(mnt->mnt_root);
b105e270 760 free_vfsmnt(real_mount(mnt));
1da177e4
LT
761 deactivate_super(sb);
762}
763
f03c6599 764static void mntput_no_expire(struct vfsmount *mnt)
b3e19d92 765{
b3e19d92 766put_again:
f03c6599
AV
767#ifdef CONFIG_SMP
768 br_read_lock(vfsmount_lock);
769 if (likely(atomic_read(&mnt->mnt_longterm))) {
aa9c0e07 770 mnt_add_count(mnt, -1);
b3e19d92 771 br_read_unlock(vfsmount_lock);
f03c6599 772 return;
b3e19d92 773 }
f03c6599 774 br_read_unlock(vfsmount_lock);
b3e19d92 775
99b7db7b 776 br_write_lock(vfsmount_lock);
aa9c0e07 777 mnt_add_count(mnt, -1);
b3e19d92 778 if (mnt_get_count(mnt)) {
99b7db7b
NP
779 br_write_unlock(vfsmount_lock);
780 return;
781 }
b3e19d92 782#else
aa9c0e07 783 mnt_add_count(mnt, -1);
b3e19d92 784 if (likely(mnt_get_count(mnt)))
99b7db7b 785 return;
b3e19d92 786 br_write_lock(vfsmount_lock);
f03c6599 787#endif
b3e19d92
NP
788 if (unlikely(mnt->mnt_pinned)) {
789 mnt_add_count(mnt, mnt->mnt_pinned + 1);
790 mnt->mnt_pinned = 0;
791 br_write_unlock(vfsmount_lock);
792 acct_auto_close_mnt(mnt);
793 goto put_again;
7b7b1ace 794 }
99b7db7b 795 br_write_unlock(vfsmount_lock);
b3e19d92
NP
796 mntfree(mnt);
797}
b3e19d92
NP
798
799void mntput(struct vfsmount *mnt)
800{
801 if (mnt) {
802 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
803 if (unlikely(mnt->mnt_expiry_mark))
804 mnt->mnt_expiry_mark = 0;
f03c6599 805 mntput_no_expire(mnt);
b3e19d92
NP
806 }
807}
808EXPORT_SYMBOL(mntput);
809
810struct vfsmount *mntget(struct vfsmount *mnt)
811{
812 if (mnt)
aa9c0e07 813 mnt_add_count(mnt, 1);
b3e19d92
NP
814 return mnt;
815}
816EXPORT_SYMBOL(mntget);
817
7b7b1ace
AV
818void mnt_pin(struct vfsmount *mnt)
819{
99b7db7b 820 br_write_lock(vfsmount_lock);
7b7b1ace 821 mnt->mnt_pinned++;
99b7db7b 822 br_write_unlock(vfsmount_lock);
7b7b1ace 823}
7b7b1ace
AV
824EXPORT_SYMBOL(mnt_pin);
825
826void mnt_unpin(struct vfsmount *mnt)
827{
99b7db7b 828 br_write_lock(vfsmount_lock);
7b7b1ace 829 if (mnt->mnt_pinned) {
aa9c0e07 830 mnt_add_count(mnt, 1);
7b7b1ace
AV
831 mnt->mnt_pinned--;
832 }
99b7db7b 833 br_write_unlock(vfsmount_lock);
7b7b1ace 834}
7b7b1ace 835EXPORT_SYMBOL(mnt_unpin);
1da177e4 836
b3b304a2
MS
837static inline void mangle(struct seq_file *m, const char *s)
838{
839 seq_escape(m, s, " \t\n\\");
840}
841
842/*
843 * Simple .show_options callback for filesystems which don't want to
844 * implement more complex mount option showing.
845 *
846 * See also save_mount_options().
847 */
848int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
849{
2a32cebd
AV
850 const char *options;
851
852 rcu_read_lock();
853 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
854
855 if (options != NULL && options[0]) {
856 seq_putc(m, ',');
857 mangle(m, options);
858 }
2a32cebd 859 rcu_read_unlock();
b3b304a2
MS
860
861 return 0;
862}
863EXPORT_SYMBOL(generic_show_options);
864
865/*
866 * If filesystem uses generic_show_options(), this function should be
867 * called from the fill_super() callback.
868 *
869 * The .remount_fs callback usually needs to be handled in a special
870 * way, to make sure, that previous options are not overwritten if the
871 * remount fails.
872 *
873 * Also note, that if the filesystem's .remount_fs function doesn't
874 * reset all options to their default value, but changes only newly
875 * given options, then the displayed options will not reflect reality
876 * any more.
877 */
878void save_mount_options(struct super_block *sb, char *options)
879{
2a32cebd
AV
880 BUG_ON(sb->s_options);
881 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
882}
883EXPORT_SYMBOL(save_mount_options);
884
2a32cebd
AV
885void replace_mount_options(struct super_block *sb, char *options)
886{
887 char *old = sb->s_options;
888 rcu_assign_pointer(sb->s_options, options);
889 if (old) {
890 synchronize_rcu();
891 kfree(old);
892 }
893}
894EXPORT_SYMBOL(replace_mount_options);
895
a1a2c409 896#ifdef CONFIG_PROC_FS
1da177e4
LT
897/* iterator */
898static void *m_start(struct seq_file *m, loff_t *pos)
899{
a1a2c409 900 struct proc_mounts *p = m->private;
1da177e4 901
390c6843 902 down_read(&namespace_sem);
a1a2c409 903 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
904}
905
906static void *m_next(struct seq_file *m, void *v, loff_t *pos)
907{
a1a2c409 908 struct proc_mounts *p = m->private;
b0765fb8 909
a1a2c409 910 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
911}
912
913static void m_stop(struct seq_file *m, void *v)
914{
390c6843 915 up_read(&namespace_sem);
1da177e4
LT
916}
917
9f5596af
AV
918int mnt_had_events(struct proc_mounts *p)
919{
920 struct mnt_namespace *ns = p->ns;
921 int res = 0;
922
99b7db7b 923 br_read_lock(vfsmount_lock);
f1514638
KS
924 if (p->m.poll_event != ns->event) {
925 p->m.poll_event = ns->event;
9f5596af
AV
926 res = 1;
927 }
99b7db7b 928 br_read_unlock(vfsmount_lock);
9f5596af
AV
929
930 return res;
931}
932
2d4d4864
RP
933struct proc_fs_info {
934 int flag;
935 const char *str;
936};
937
2069f457 938static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 939{
2d4d4864 940 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
941 { MS_SYNCHRONOUS, ",sync" },
942 { MS_DIRSYNC, ",dirsync" },
943 { MS_MANDLOCK, ",mand" },
1da177e4
LT
944 { 0, NULL }
945 };
2d4d4864
RP
946 const struct proc_fs_info *fs_infop;
947
948 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
949 if (sb->s_flags & fs_infop->flag)
950 seq_puts(m, fs_infop->str);
951 }
2069f457
EP
952
953 return security_sb_show_options(m, sb);
2d4d4864
RP
954}
955
956static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
957{
958 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
959 { MNT_NOSUID, ",nosuid" },
960 { MNT_NODEV, ",nodev" },
961 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
962 { MNT_NOATIME, ",noatime" },
963 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 964 { MNT_RELATIME, ",relatime" },
1da177e4
LT
965 { 0, NULL }
966 };
2d4d4864
RP
967 const struct proc_fs_info *fs_infop;
968
969 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
970 if (mnt->mnt_flags & fs_infop->flag)
971 seq_puts(m, fs_infop->str);
972 }
973}
974
975static void show_type(struct seq_file *m, struct super_block *sb)
976{
977 mangle(m, sb->s_type->name);
978 if (sb->s_subtype && sb->s_subtype[0]) {
979 seq_putc(m, '.');
980 mangle(m, sb->s_subtype);
981 }
982}
983
984static int show_vfsmnt(struct seq_file *m, void *v)
985{
986 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
987 int err = 0;
c32c2f63 988 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4 989
c7f404b4
AV
990 if (mnt->mnt_sb->s_op->show_devname) {
991 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
992 if (err)
993 goto out;
994 } else {
995 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
996 }
1da177e4 997 seq_putc(m, ' ');
c32c2f63 998 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 999 seq_putc(m, ' ');
2d4d4864 1000 show_type(m, mnt->mnt_sb);
2e4b7fcd 1001 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
1002 err = show_sb_opts(m, mnt->mnt_sb);
1003 if (err)
1004 goto out;
2d4d4864 1005 show_mnt_opts(m, mnt);
1da177e4
LT
1006 if (mnt->mnt_sb->s_op->show_options)
1007 err = mnt->mnt_sb->s_op->show_options(m, mnt);
1008 seq_puts(m, " 0 0\n");
2069f457 1009out:
1da177e4
LT
1010 return err;
1011}
1012
a1a2c409 1013const struct seq_operations mounts_op = {
1da177e4
LT
1014 .start = m_start,
1015 .next = m_next,
1016 .stop = m_stop,
1017 .show = show_vfsmnt
1018};
1019
2d4d4864
RP
1020static int show_mountinfo(struct seq_file *m, void *v)
1021{
1022 struct proc_mounts *p = m->private;
1023 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1024 struct super_block *sb = mnt->mnt_sb;
1025 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1026 struct path root = p->root;
1027 int err = 0;
1028
1029 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1030 MAJOR(sb->s_dev), MINOR(sb->s_dev));
c7f404b4
AV
1031 if (sb->s_op->show_path)
1032 err = sb->s_op->show_path(m, mnt);
1033 else
1034 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1035 if (err)
1036 goto out;
2d4d4864 1037 seq_putc(m, ' ');
02125a82
AV
1038
1039 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
1040 err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
1041 if (err)
1042 goto out;
1043
2d4d4864
RP
1044 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1045 show_mnt_opts(m, mnt);
1046
1047 /* Tagged fields ("foo:X" or "bar") */
1048 if (IS_MNT_SHARED(mnt))
1049 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
1050 if (IS_MNT_SLAVE(mnt)) {
1051 int master = mnt->mnt_master->mnt_group_id;
1052 int dom = get_dominating_id(mnt, &p->root);
1053 seq_printf(m, " master:%i", master);
1054 if (dom && dom != master)
1055 seq_printf(m, " propagate_from:%i", dom);
1056 }
2d4d4864
RP
1057 if (IS_MNT_UNBINDABLE(mnt))
1058 seq_puts(m, " unbindable");
1059
1060 /* Filesystem specific data */
1061 seq_puts(m, " - ");
1062 show_type(m, sb);
1063 seq_putc(m, ' ');
c7f404b4
AV
1064 if (sb->s_op->show_devname)
1065 err = sb->s_op->show_devname(m, mnt);
1066 else
1067 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1068 if (err)
1069 goto out;
2d4d4864 1070 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
1071 err = show_sb_opts(m, sb);
1072 if (err)
1073 goto out;
2d4d4864
RP
1074 if (sb->s_op->show_options)
1075 err = sb->s_op->show_options(m, mnt);
1076 seq_putc(m, '\n');
2069f457 1077out:
2d4d4864
RP
1078 return err;
1079}
1080
1081const struct seq_operations mountinfo_op = {
1082 .start = m_start,
1083 .next = m_next,
1084 .stop = m_stop,
1085 .show = show_mountinfo,
1086};
1087
b4629fe2
CL
1088static int show_vfsstat(struct seq_file *m, void *v)
1089{
b0765fb8 1090 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 1091 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
1092 int err = 0;
1093
1094 /* device */
c7f404b4 1095 if (mnt->mnt_sb->s_op->show_devname) {
a877ee03 1096 seq_puts(m, "device ");
c7f404b4
AV
1097 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1098 } else {
1099 if (mnt->mnt_devname) {
1100 seq_puts(m, "device ");
1101 mangle(m, mnt->mnt_devname);
1102 } else
1103 seq_puts(m, "no device");
1104 }
b4629fe2
CL
1105
1106 /* mount point */
1107 seq_puts(m, " mounted on ");
c32c2f63 1108 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
1109 seq_putc(m, ' ');
1110
1111 /* file system type */
1112 seq_puts(m, "with fstype ");
2d4d4864 1113 show_type(m, mnt->mnt_sb);
b4629fe2
CL
1114
1115 /* optional statistics */
1116 if (mnt->mnt_sb->s_op->show_stats) {
1117 seq_putc(m, ' ');
c7f404b4
AV
1118 if (!err)
1119 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
b4629fe2
CL
1120 }
1121
1122 seq_putc(m, '\n');
1123 return err;
1124}
1125
a1a2c409 1126const struct seq_operations mountstats_op = {
b4629fe2
CL
1127 .start = m_start,
1128 .next = m_next,
1129 .stop = m_stop,
1130 .show = show_vfsstat,
1131};
a1a2c409 1132#endif /* CONFIG_PROC_FS */
b4629fe2 1133
1da177e4
LT
1134/**
1135 * may_umount_tree - check if a mount tree is busy
1136 * @mnt: root of mount tree
1137 *
1138 * This is called to check if a tree of mounts has any
1139 * open files, pwds, chroots or sub mounts that are
1140 * busy.
1141 */
1142int may_umount_tree(struct vfsmount *mnt)
1143{
36341f64
RP
1144 int actual_refs = 0;
1145 int minimum_refs = 0;
315fc83e
AV
1146 struct mount *p;
1147 BUG_ON(!mnt);
1da177e4 1148
b3e19d92
NP
1149 /* write lock needed for mnt_get_count */
1150 br_write_lock(vfsmount_lock);
315fc83e
AV
1151 for (p = real_mount(mnt); p; p = next_mnt(p, mnt)) {
1152 actual_refs += mnt_get_count(&p->mnt);
1da177e4 1153 minimum_refs += 2;
1da177e4 1154 }
b3e19d92 1155 br_write_unlock(vfsmount_lock);
1da177e4
LT
1156
1157 if (actual_refs > minimum_refs)
e3474a8e 1158 return 0;
1da177e4 1159
e3474a8e 1160 return 1;
1da177e4
LT
1161}
1162
1163EXPORT_SYMBOL(may_umount_tree);
1164
1165/**
1166 * may_umount - check if a mount point is busy
1167 * @mnt: root of mount
1168 *
1169 * This is called to check if a mount point has any
1170 * open files, pwds, chroots or sub mounts. If the
1171 * mount has sub mounts this will return busy
1172 * regardless of whether the sub mounts are busy.
1173 *
1174 * Doesn't take quota and stuff into account. IOW, in some cases it will
1175 * give false negatives. The main reason why it's here is that we need
1176 * a non-destructive way to look for easily umountable filesystems.
1177 */
1178int may_umount(struct vfsmount *mnt)
1179{
e3474a8e 1180 int ret = 1;
8ad08d8a 1181 down_read(&namespace_sem);
b3e19d92 1182 br_write_lock(vfsmount_lock);
a05964f3 1183 if (propagate_mount_busy(mnt, 2))
e3474a8e 1184 ret = 0;
b3e19d92 1185 br_write_unlock(vfsmount_lock);
8ad08d8a 1186 up_read(&namespace_sem);
a05964f3 1187 return ret;
1da177e4
LT
1188}
1189
1190EXPORT_SYMBOL(may_umount);
1191
b90fa9ae 1192void release_mounts(struct list_head *head)
70fbcdf4
RP
1193{
1194 struct vfsmount *mnt;
bf066c7d 1195 while (!list_empty(head)) {
b5e61818 1196 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4 1197 list_del_init(&mnt->mnt_hash);
b2dba1af 1198 if (mnt_has_parent(mnt)) {
70fbcdf4
RP
1199 struct dentry *dentry;
1200 struct vfsmount *m;
99b7db7b
NP
1201
1202 br_write_lock(vfsmount_lock);
70fbcdf4
RP
1203 dentry = mnt->mnt_mountpoint;
1204 m = mnt->mnt_parent;
1205 mnt->mnt_mountpoint = mnt->mnt_root;
1206 mnt->mnt_parent = mnt;
7c4b93d8 1207 m->mnt_ghosts--;
99b7db7b 1208 br_write_unlock(vfsmount_lock);
70fbcdf4
RP
1209 dput(dentry);
1210 mntput(m);
1211 }
f03c6599 1212 mntput(mnt);
70fbcdf4
RP
1213 }
1214}
1215
99b7db7b
NP
1216/*
1217 * vfsmount lock must be held for write
1218 * namespace_sem must be held for write
1219 */
a05964f3 1220void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4 1221{
7b8a53fd 1222 LIST_HEAD(tmp_list);
315fc83e 1223 struct mount *p;
1da177e4 1224
315fc83e
AV
1225 for (p = real_mount(mnt); p; p = next_mnt(p, mnt))
1226 list_move(&p->mnt.mnt_hash, &tmp_list);
1da177e4 1227
a05964f3 1228 if (propagate)
7b8a53fd 1229 propagate_umount(&tmp_list);
a05964f3 1230
315fc83e
AV
1231 list_for_each_entry(p, &tmp_list, mnt.mnt_hash) {
1232 list_del_init(&p->mnt.mnt_expire);
1233 list_del_init(&p->mnt.mnt_list);
1234 __touch_mnt_namespace(p->mnt.mnt_ns);
1235 p->mnt.mnt_ns = NULL;
1236 __mnt_make_shortterm(&p->mnt);
1237 list_del_init(&p->mnt.mnt_child);
1238 if (mnt_has_parent(&p->mnt)) {
1239 p->mnt.mnt_parent->mnt_ghosts++;
1240 dentry_reset_mounted(p->mnt.mnt_mountpoint);
7c4b93d8 1241 }
0f0afb1d 1242 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1243 }
7b8a53fd 1244 list_splice(&tmp_list, kill);
1da177e4
LT
1245}
1246
c35038be
AV
1247static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1248
1da177e4
LT
1249static int do_umount(struct vfsmount *mnt, int flags)
1250{
b58fed8b 1251 struct super_block *sb = mnt->mnt_sb;
1da177e4 1252 int retval;
70fbcdf4 1253 LIST_HEAD(umount_list);
1da177e4
LT
1254
1255 retval = security_sb_umount(mnt, flags);
1256 if (retval)
1257 return retval;
1258
1259 /*
1260 * Allow userspace to request a mountpoint be expired rather than
1261 * unmounting unconditionally. Unmount only happens if:
1262 * (1) the mark is already set (the mark is cleared by mntput())
1263 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1264 */
1265 if (flags & MNT_EXPIRE) {
6ac08c39 1266 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1267 flags & (MNT_FORCE | MNT_DETACH))
1268 return -EINVAL;
1269
b3e19d92
NP
1270 /*
1271 * probably don't strictly need the lock here if we examined
1272 * all race cases, but it's a slowpath.
1273 */
1274 br_write_lock(vfsmount_lock);
1275 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1276 br_write_unlock(vfsmount_lock);
1da177e4 1277 return -EBUSY;
b3e19d92
NP
1278 }
1279 br_write_unlock(vfsmount_lock);
1da177e4
LT
1280
1281 if (!xchg(&mnt->mnt_expiry_mark, 1))
1282 return -EAGAIN;
1283 }
1284
1285 /*
1286 * If we may have to abort operations to get out of this
1287 * mount, and they will themselves hold resources we must
1288 * allow the fs to do things. In the Unix tradition of
1289 * 'Gee thats tricky lets do it in userspace' the umount_begin
1290 * might fail to complete on the first run through as other tasks
1291 * must return, and the like. Thats for the mount program to worry
1292 * about for the moment.
1293 */
1294
42faad99 1295 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1296 sb->s_op->umount_begin(sb);
42faad99 1297 }
1da177e4
LT
1298
1299 /*
1300 * No sense to grab the lock for this test, but test itself looks
1301 * somewhat bogus. Suggestions for better replacement?
1302 * Ho-hum... In principle, we might treat that as umount + switch
1303 * to rootfs. GC would eventually take care of the old vfsmount.
1304 * Actually it makes sense, especially if rootfs would contain a
1305 * /reboot - static binary that would close all descriptors and
1306 * call reboot(9). Then init(8) could umount root and exec /reboot.
1307 */
6ac08c39 1308 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1309 /*
1310 * Special case for "unmounting" root ...
1311 * we just try to remount it readonly.
1312 */
1313 down_write(&sb->s_umount);
4aa98cf7 1314 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1315 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1316 up_write(&sb->s_umount);
1317 return retval;
1318 }
1319
390c6843 1320 down_write(&namespace_sem);
99b7db7b 1321 br_write_lock(vfsmount_lock);
5addc5dd 1322 event++;
1da177e4 1323
c35038be
AV
1324 if (!(flags & MNT_DETACH))
1325 shrink_submounts(mnt, &umount_list);
1326
1da177e4 1327 retval = -EBUSY;
a05964f3 1328 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1329 if (!list_empty(&mnt->mnt_list))
a05964f3 1330 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1331 retval = 0;
1332 }
99b7db7b 1333 br_write_unlock(vfsmount_lock);
390c6843 1334 up_write(&namespace_sem);
70fbcdf4 1335 release_mounts(&umount_list);
1da177e4
LT
1336 return retval;
1337}
1338
1339/*
1340 * Now umount can handle mount points as well as block devices.
1341 * This is important for filesystems which use unnamed block devices.
1342 *
1343 * We now support a flag for forced unmount like the other 'big iron'
1344 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1345 */
1346
bdc480e3 1347SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1348{
2d8f3038 1349 struct path path;
1da177e4 1350 int retval;
db1f05bb 1351 int lookup_flags = 0;
1da177e4 1352
db1f05bb
MS
1353 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1354 return -EINVAL;
1355
1356 if (!(flags & UMOUNT_NOFOLLOW))
1357 lookup_flags |= LOOKUP_FOLLOW;
1358
1359 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1360 if (retval)
1361 goto out;
1362 retval = -EINVAL;
2d8f3038 1363 if (path.dentry != path.mnt->mnt_root)
1da177e4 1364 goto dput_and_out;
2d8f3038 1365 if (!check_mnt(path.mnt))
1da177e4
LT
1366 goto dput_and_out;
1367
1368 retval = -EPERM;
1369 if (!capable(CAP_SYS_ADMIN))
1370 goto dput_and_out;
1371
2d8f3038 1372 retval = do_umount(path.mnt, flags);
1da177e4 1373dput_and_out:
429731b1 1374 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1375 dput(path.dentry);
1376 mntput_no_expire(path.mnt);
1da177e4
LT
1377out:
1378 return retval;
1379}
1380
1381#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1382
1383/*
b58fed8b 1384 * The 2.0 compatible umount. No flags.
1da177e4 1385 */
bdc480e3 1386SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1387{
b58fed8b 1388 return sys_umount(name, 0);
1da177e4
LT
1389}
1390
1391#endif
1392
2d92ab3c 1393static int mount_is_safe(struct path *path)
1da177e4
LT
1394{
1395 if (capable(CAP_SYS_ADMIN))
1396 return 0;
1397 return -EPERM;
1398#ifdef notyet
2d92ab3c 1399 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1400 return -EPERM;
2d92ab3c 1401 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1402 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1403 return -EPERM;
1404 }
2d92ab3c 1405 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1406 return -EPERM;
1407 return 0;
1408#endif
1409}
1410
b90fa9ae 1411struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1412 int flag)
1da177e4 1413{
315fc83e 1414 struct vfsmount *res, *p, *q, *r;
1a390689 1415 struct path path;
1da177e4 1416
9676f0c6
RP
1417 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1418 return NULL;
1419
36341f64 1420 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1421 if (!q)
1422 goto Enomem;
1423 q->mnt_mountpoint = mnt->mnt_mountpoint;
1424
1425 p = mnt;
fdadd65f 1426 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
315fc83e 1427 struct mount *s;
7ec02ef1 1428 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1429 continue;
1430
315fc83e
AV
1431 for (s = real_mount(r); s; s = next_mnt(s, r)) {
1432 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(&s->mnt)) {
9676f0c6
RP
1433 s = skip_mnt_tree(s);
1434 continue;
1435 }
315fc83e 1436 while (p != s->mnt.mnt_parent) {
1da177e4
LT
1437 p = p->mnt_parent;
1438 q = q->mnt_parent;
1439 }
315fc83e 1440 p = &s->mnt;
1a390689
AV
1441 path.mnt = q;
1442 path.dentry = p->mnt_mountpoint;
36341f64 1443 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1444 if (!q)
1445 goto Enomem;
99b7db7b 1446 br_write_lock(vfsmount_lock);
1da177e4 1447 list_add_tail(&q->mnt_list, &res->mnt_list);
419148da 1448 attach_mnt(real_mount(q), &path);
99b7db7b 1449 br_write_unlock(vfsmount_lock);
1da177e4
LT
1450 }
1451 }
1452 return res;
b58fed8b 1453Enomem:
1da177e4 1454 if (res) {
70fbcdf4 1455 LIST_HEAD(umount_list);
99b7db7b 1456 br_write_lock(vfsmount_lock);
a05964f3 1457 umount_tree(res, 0, &umount_list);
99b7db7b 1458 br_write_unlock(vfsmount_lock);
70fbcdf4 1459 release_mounts(&umount_list);
1da177e4
LT
1460 }
1461 return NULL;
1462}
1463
589ff870 1464struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1465{
1466 struct vfsmount *tree;
1a60a280 1467 down_write(&namespace_sem);
589ff870 1468 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1469 up_write(&namespace_sem);
8aec0809
AV
1470 return tree;
1471}
1472
1473void drop_collected_mounts(struct vfsmount *mnt)
1474{
1475 LIST_HEAD(umount_list);
1a60a280 1476 down_write(&namespace_sem);
99b7db7b 1477 br_write_lock(vfsmount_lock);
8aec0809 1478 umount_tree(mnt, 0, &umount_list);
99b7db7b 1479 br_write_unlock(vfsmount_lock);
1a60a280 1480 up_write(&namespace_sem);
8aec0809
AV
1481 release_mounts(&umount_list);
1482}
1483
1f707137
AV
1484int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1485 struct vfsmount *root)
1486{
1487 struct vfsmount *mnt;
1488 int res = f(root, arg);
1489 if (res)
1490 return res;
1491 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1492 res = f(mnt, arg);
1493 if (res)
1494 return res;
1495 }
1496 return 0;
1497}
1498
4b8b21f4 1499static void cleanup_group_ids(struct mount *mnt, struct mount *end)
719f5d7f 1500{
315fc83e 1501 struct mount *p;
719f5d7f 1502
4b8b21f4 1503 for (p = mnt; p != end; p = next_mnt(p, &mnt->mnt)) {
315fc83e 1504 if (p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt))
4b8b21f4 1505 mnt_release_group_id(p);
719f5d7f
MS
1506 }
1507}
1508
4b8b21f4 1509static int invent_group_ids(struct mount *mnt, bool recurse)
719f5d7f 1510{
315fc83e 1511 struct mount *p;
719f5d7f 1512
4b8b21f4 1513 for (p = mnt; p; p = recurse ? next_mnt(p, &mnt->mnt) : NULL) {
315fc83e 1514 if (!p->mnt.mnt_group_id && !IS_MNT_SHARED(&p->mnt)) {
4b8b21f4 1515 int err = mnt_alloc_group_id(p);
719f5d7f 1516 if (err) {
4b8b21f4 1517 cleanup_group_ids(mnt, p);
719f5d7f
MS
1518 return err;
1519 }
1520 }
1521 }
1522
1523 return 0;
1524}
1525
b90fa9ae
RP
1526/*
1527 * @source_mnt : mount tree to be attached
21444403
RP
1528 * @nd : place the mount tree @source_mnt is attached
1529 * @parent_nd : if non-null, detach the source_mnt from its parent and
1530 * store the parent mount and mountpoint dentry.
1531 * (done when source_mnt is moved)
b90fa9ae
RP
1532 *
1533 * NOTE: in the table below explains the semantics when a source mount
1534 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1535 * ---------------------------------------------------------------------------
1536 * | BIND MOUNT OPERATION |
1537 * |**************************************************************************
1538 * | source-->| shared | private | slave | unbindable |
1539 * | dest | | | | |
1540 * | | | | | | |
1541 * | v | | | | |
1542 * |**************************************************************************
1543 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1544 * | | | | | |
1545 * |non-shared| shared (+) | private | slave (*) | invalid |
1546 * ***************************************************************************
b90fa9ae
RP
1547 * A bind operation clones the source mount and mounts the clone on the
1548 * destination mount.
1549 *
1550 * (++) the cloned mount is propagated to all the mounts in the propagation
1551 * tree of the destination mount and the cloned mount is added to
1552 * the peer group of the source mount.
1553 * (+) the cloned mount is created under the destination mount and is marked
1554 * as shared. The cloned mount is added to the peer group of the source
1555 * mount.
5afe0022
RP
1556 * (+++) the mount is propagated to all the mounts in the propagation tree
1557 * of the destination mount and the cloned mount is made slave
1558 * of the same master as that of the source mount. The cloned mount
1559 * is marked as 'shared and slave'.
1560 * (*) the cloned mount is made a slave of the same master as that of the
1561 * source mount.
1562 *
9676f0c6
RP
1563 * ---------------------------------------------------------------------------
1564 * | MOVE MOUNT OPERATION |
1565 * |**************************************************************************
1566 * | source-->| shared | private | slave | unbindable |
1567 * | dest | | | | |
1568 * | | | | | | |
1569 * | v | | | | |
1570 * |**************************************************************************
1571 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1572 * | | | | | |
1573 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1574 * ***************************************************************************
5afe0022
RP
1575 *
1576 * (+) the mount is moved to the destination. And is then propagated to
1577 * all the mounts in the propagation tree of the destination mount.
21444403 1578 * (+*) the mount is moved to the destination.
5afe0022
RP
1579 * (+++) the mount is moved to the destination and is then propagated to
1580 * all the mounts belonging to the destination mount's propagation tree.
1581 * the mount is marked as 'shared and slave'.
1582 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1583 *
1584 * if the source mount is a tree, the operations explained above is
1585 * applied to each mount in the tree.
1586 * Must be called without spinlocks held, since this function can sleep
1587 * in allocations.
1588 */
0fb54e50 1589static int attach_recursive_mnt(struct mount *source_mnt,
1a390689 1590 struct path *path, struct path *parent_path)
b90fa9ae
RP
1591{
1592 LIST_HEAD(tree_list);
1a390689
AV
1593 struct vfsmount *dest_mnt = path->mnt;
1594 struct dentry *dest_dentry = path->dentry;
315fc83e 1595 struct mount *child, *p;
719f5d7f 1596 int err;
b90fa9ae 1597
719f5d7f 1598 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1599 err = invent_group_ids(source_mnt, true);
719f5d7f
MS
1600 if (err)
1601 goto out;
1602 }
0fb54e50 1603 err = propagate_mnt(dest_mnt, dest_dentry, &source_mnt->mnt, &tree_list);
719f5d7f
MS
1604 if (err)
1605 goto out_cleanup_ids;
b90fa9ae 1606
99b7db7b 1607 br_write_lock(vfsmount_lock);
df1a1ad2 1608
b90fa9ae 1609 if (IS_MNT_SHARED(dest_mnt)) {
0fb54e50 1610 for (p = source_mnt; p; p = next_mnt(p, &source_mnt->mnt))
0f0afb1d 1611 set_mnt_shared(p);
b90fa9ae 1612 }
1a390689 1613 if (parent_path) {
0fb54e50
AV
1614 detach_mnt(source_mnt, parent_path);
1615 attach_mnt(source_mnt, path);
e5d67f07 1616 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403 1617 } else {
0fb54e50
AV
1618 mnt_set_mountpoint(dest_mnt, dest_dentry, &source_mnt->mnt);
1619 commit_tree(source_mnt);
21444403 1620 }
b90fa9ae 1621
315fc83e
AV
1622 list_for_each_entry_safe(child, p, &tree_list, mnt.mnt_hash) {
1623 list_del_init(&child->mnt.mnt_hash);
4b2619a5 1624 commit_tree(child);
b90fa9ae 1625 }
99b7db7b
NP
1626 br_write_unlock(vfsmount_lock);
1627
b90fa9ae 1628 return 0;
719f5d7f
MS
1629
1630 out_cleanup_ids:
1631 if (IS_MNT_SHARED(dest_mnt))
0fb54e50 1632 cleanup_group_ids(source_mnt, NULL);
719f5d7f
MS
1633 out:
1634 return err;
b90fa9ae
RP
1635}
1636
b12cea91
AV
1637static int lock_mount(struct path *path)
1638{
1639 struct vfsmount *mnt;
1640retry:
1641 mutex_lock(&path->dentry->d_inode->i_mutex);
1642 if (unlikely(cant_mount(path->dentry))) {
1643 mutex_unlock(&path->dentry->d_inode->i_mutex);
1644 return -ENOENT;
1645 }
1646 down_write(&namespace_sem);
1647 mnt = lookup_mnt(path);
1648 if (likely(!mnt))
1649 return 0;
1650 up_write(&namespace_sem);
1651 mutex_unlock(&path->dentry->d_inode->i_mutex);
1652 path_put(path);
1653 path->mnt = mnt;
1654 path->dentry = dget(mnt->mnt_root);
1655 goto retry;
1656}
1657
1658static void unlock_mount(struct path *path)
1659{
1660 up_write(&namespace_sem);
1661 mutex_unlock(&path->dentry->d_inode->i_mutex);
1662}
1663
8c3ee42e 1664static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4 1665{
1da177e4
LT
1666 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1667 return -EINVAL;
1668
8c3ee42e 1669 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1670 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1671 return -ENOTDIR;
1672
b12cea91
AV
1673 if (d_unlinked(path->dentry))
1674 return -ENOENT;
1da177e4 1675
0fb54e50 1676 return attach_recursive_mnt(real_mount(mnt), path, NULL);
1da177e4
LT
1677}
1678
7a2e8a8f
VA
1679/*
1680 * Sanity check the flags to change_mnt_propagation.
1681 */
1682
1683static int flags_to_propagation_type(int flags)
1684{
7c6e984d 1685 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1686
1687 /* Fail if any non-propagation flags are set */
1688 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1689 return 0;
1690 /* Only one propagation flag should be set */
1691 if (!is_power_of_2(type))
1692 return 0;
1693 return type;
1694}
1695
07b20889
RP
1696/*
1697 * recursively change the type of the mountpoint.
1698 */
0a0d8a46 1699static int do_change_type(struct path *path, int flag)
07b20889 1700{
315fc83e 1701 struct mount *m;
4b8b21f4 1702 struct mount *mnt = real_mount(path->mnt);
07b20889 1703 int recurse = flag & MS_REC;
7a2e8a8f 1704 int type;
719f5d7f 1705 int err = 0;
07b20889 1706
ee6f9582
MS
1707 if (!capable(CAP_SYS_ADMIN))
1708 return -EPERM;
1709
2d92ab3c 1710 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1711 return -EINVAL;
1712
7a2e8a8f
VA
1713 type = flags_to_propagation_type(flag);
1714 if (!type)
1715 return -EINVAL;
1716
07b20889 1717 down_write(&namespace_sem);
719f5d7f
MS
1718 if (type == MS_SHARED) {
1719 err = invent_group_ids(mnt, recurse);
1720 if (err)
1721 goto out_unlock;
1722 }
1723
99b7db7b 1724 br_write_lock(vfsmount_lock);
4b8b21f4 1725 for (m = mnt; m; m = (recurse ? next_mnt(m, &mnt->mnt) : NULL))
0f0afb1d 1726 change_mnt_propagation(m, type);
99b7db7b 1727 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1728
1729 out_unlock:
07b20889 1730 up_write(&namespace_sem);
719f5d7f 1731 return err;
07b20889
RP
1732}
1733
1da177e4
LT
1734/*
1735 * do loopback mount.
1736 */
0a0d8a46 1737static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1738 int recurse)
1da177e4 1739{
b12cea91 1740 LIST_HEAD(umount_list);
2d92ab3c 1741 struct path old_path;
1da177e4 1742 struct vfsmount *mnt = NULL;
2d92ab3c 1743 int err = mount_is_safe(path);
1da177e4
LT
1744 if (err)
1745 return err;
1746 if (!old_name || !*old_name)
1747 return -EINVAL;
815d405c 1748 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1749 if (err)
1750 return err;
1751
b12cea91
AV
1752 err = lock_mount(path);
1753 if (err)
1754 goto out;
1755
1da177e4 1756 err = -EINVAL;
2d92ab3c 1757 if (IS_MNT_UNBINDABLE(old_path.mnt))
b12cea91 1758 goto out2;
9676f0c6 1759
2d92ab3c 1760 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
b12cea91 1761 goto out2;
1da177e4 1762
ccd48bc7
AV
1763 err = -ENOMEM;
1764 if (recurse)
2d92ab3c 1765 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1766 else
2d92ab3c 1767 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1768
1769 if (!mnt)
b12cea91 1770 goto out2;
ccd48bc7 1771
2d92ab3c 1772 err = graft_tree(mnt, path);
ccd48bc7 1773 if (err) {
99b7db7b 1774 br_write_lock(vfsmount_lock);
a05964f3 1775 umount_tree(mnt, 0, &umount_list);
99b7db7b 1776 br_write_unlock(vfsmount_lock);
5b83d2c5 1777 }
b12cea91
AV
1778out2:
1779 unlock_mount(path);
1780 release_mounts(&umount_list);
ccd48bc7 1781out:
2d92ab3c 1782 path_put(&old_path);
1da177e4
LT
1783 return err;
1784}
1785
2e4b7fcd
DH
1786static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1787{
1788 int error = 0;
1789 int readonly_request = 0;
1790
1791 if (ms_flags & MS_RDONLY)
1792 readonly_request = 1;
1793 if (readonly_request == __mnt_is_readonly(mnt))
1794 return 0;
1795
1796 if (readonly_request)
1797 error = mnt_make_readonly(mnt);
1798 else
1799 __mnt_unmake_readonly(mnt);
1800 return error;
1801}
1802
1da177e4
LT
1803/*
1804 * change filesystem flags. dir should be a physical root of filesystem.
1805 * If you've mounted a non-root directory somewhere and want to do remount
1806 * on it - tough luck.
1807 */
0a0d8a46 1808static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1809 void *data)
1810{
1811 int err;
2d92ab3c 1812 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1813
1814 if (!capable(CAP_SYS_ADMIN))
1815 return -EPERM;
1816
2d92ab3c 1817 if (!check_mnt(path->mnt))
1da177e4
LT
1818 return -EINVAL;
1819
2d92ab3c 1820 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1821 return -EINVAL;
1822
ff36fe2c
EP
1823 err = security_sb_remount(sb, data);
1824 if (err)
1825 return err;
1826
1da177e4 1827 down_write(&sb->s_umount);
2e4b7fcd 1828 if (flags & MS_BIND)
2d92ab3c 1829 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1830 else
2e4b7fcd 1831 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1832 if (!err) {
99b7db7b 1833 br_write_lock(vfsmount_lock);
495d6c9c 1834 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1835 path->mnt->mnt_flags = mnt_flags;
99b7db7b 1836 br_write_unlock(vfsmount_lock);
7b43a79f 1837 }
1da177e4 1838 up_write(&sb->s_umount);
0e55a7cc 1839 if (!err) {
99b7db7b 1840 br_write_lock(vfsmount_lock);
0e55a7cc 1841 touch_mnt_namespace(path->mnt->mnt_ns);
99b7db7b 1842 br_write_unlock(vfsmount_lock);
0e55a7cc 1843 }
1da177e4
LT
1844 return err;
1845}
1846
cbbe362c 1847static inline int tree_contains_unbindable(struct mount *mnt)
9676f0c6 1848{
315fc83e 1849 struct mount *p;
cbbe362c 1850 for (p = mnt; p; p = next_mnt(p, &mnt->mnt)) {
315fc83e 1851 if (IS_MNT_UNBINDABLE(&p->mnt))
9676f0c6
RP
1852 return 1;
1853 }
1854 return 0;
1855}
1856
0a0d8a46 1857static int do_move_mount(struct path *path, char *old_name)
1da177e4 1858{
2d92ab3c 1859 struct path old_path, parent_path;
1da177e4 1860 struct vfsmount *p;
0fb54e50 1861 struct mount *old;
1da177e4
LT
1862 int err = 0;
1863 if (!capable(CAP_SYS_ADMIN))
1864 return -EPERM;
1865 if (!old_name || !*old_name)
1866 return -EINVAL;
2d92ab3c 1867 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1868 if (err)
1869 return err;
1870
b12cea91 1871 err = lock_mount(path);
cc53ce53
DH
1872 if (err < 0)
1873 goto out;
1874
1da177e4 1875 err = -EINVAL;
2d92ab3c 1876 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1877 goto out1;
1878
f3da392e 1879 if (d_unlinked(path->dentry))
21444403 1880 goto out1;
1da177e4
LT
1881
1882 err = -EINVAL;
2d92ab3c 1883 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1884 goto out1;
1da177e4 1885
0fb54e50
AV
1886 old = real_mount(old_path.mnt);
1887
b2dba1af 1888 if (!mnt_has_parent(old_path.mnt))
21444403 1889 goto out1;
1da177e4 1890
2d92ab3c
AV
1891 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1892 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1893 goto out1;
1894 /*
1895 * Don't move a mount residing in a shared parent.
1896 */
afac7cba 1897 if (IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1898 goto out1;
9676f0c6
RP
1899 /*
1900 * Don't move a mount tree containing unbindable mounts to a destination
1901 * mount which is shared.
1902 */
2d92ab3c 1903 if (IS_MNT_SHARED(path->mnt) &&
cbbe362c 1904 tree_contains_unbindable(old))
9676f0c6 1905 goto out1;
1da177e4 1906 err = -ELOOP;
b2dba1af 1907 for (p = path->mnt; mnt_has_parent(p); p = p->mnt_parent)
2d92ab3c 1908 if (p == old_path.mnt)
21444403 1909 goto out1;
1da177e4 1910
0fb54e50 1911 err = attach_recursive_mnt(old, path, &parent_path);
4ac91378 1912 if (err)
21444403 1913 goto out1;
1da177e4
LT
1914
1915 /* if the mount is moved, it should no longer be expire
1916 * automatically */
2d92ab3c 1917 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1918out1:
b12cea91 1919 unlock_mount(path);
1da177e4 1920out:
1da177e4 1921 if (!err)
1a390689 1922 path_put(&parent_path);
2d92ab3c 1923 path_put(&old_path);
1da177e4
LT
1924 return err;
1925}
1926
9d412a43
AV
1927static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1928{
1929 int err;
1930 const char *subtype = strchr(fstype, '.');
1931 if (subtype) {
1932 subtype++;
1933 err = -EINVAL;
1934 if (!subtype[0])
1935 goto err;
1936 } else
1937 subtype = "";
1938
1939 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1940 err = -ENOMEM;
1941 if (!mnt->mnt_sb->s_subtype)
1942 goto err;
1943 return mnt;
1944
1945 err:
1946 mntput(mnt);
1947 return ERR_PTR(err);
1948}
1949
79e801a9 1950static struct vfsmount *
9d412a43
AV
1951do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1952{
1953 struct file_system_type *type = get_fs_type(fstype);
1954 struct vfsmount *mnt;
1955 if (!type)
1956 return ERR_PTR(-ENODEV);
1957 mnt = vfs_kern_mount(type, flags, name, data);
1958 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1959 !mnt->mnt_sb->s_subtype)
1960 mnt = fs_set_subtype(mnt, fstype);
1961 put_filesystem(type);
1962 return mnt;
1963}
9d412a43
AV
1964
1965/*
1966 * add a mount into a namespace's mount tree
1967 */
1968static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1969{
1970 int err;
1971
1972 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1973
b12cea91
AV
1974 err = lock_mount(path);
1975 if (err)
1976 return err;
9d412a43
AV
1977
1978 err = -EINVAL;
1979 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1980 goto unlock;
1981
1982 /* Refuse the same filesystem on the same mount point */
1983 err = -EBUSY;
1984 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1985 path->mnt->mnt_root == path->dentry)
1986 goto unlock;
1987
1988 err = -EINVAL;
1989 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1990 goto unlock;
1991
1992 newmnt->mnt_flags = mnt_flags;
1993 err = graft_tree(newmnt, path);
1994
1995unlock:
b12cea91 1996 unlock_mount(path);
9d412a43
AV
1997 return err;
1998}
b1e75df4 1999
1da177e4
LT
2000/*
2001 * create a new mount for userspace and request it to be added into the
2002 * namespace's tree
2003 */
0a0d8a46 2004static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
2005 int mnt_flags, char *name, void *data)
2006{
2007 struct vfsmount *mnt;
15f9a3f3 2008 int err;
1da177e4 2009
eca6f534 2010 if (!type)
1da177e4
LT
2011 return -EINVAL;
2012
2013 /* we need capabilities... */
2014 if (!capable(CAP_SYS_ADMIN))
2015 return -EPERM;
2016
2017 mnt = do_kern_mount(type, flags, name, data);
2018 if (IS_ERR(mnt))
2019 return PTR_ERR(mnt);
2020
15f9a3f3
AV
2021 err = do_add_mount(mnt, path, mnt_flags);
2022 if (err)
2023 mntput(mnt);
2024 return err;
1da177e4
LT
2025}
2026
19a167af
AV
2027int finish_automount(struct vfsmount *m, struct path *path)
2028{
2029 int err;
2030 /* The new mount record should have at least 2 refs to prevent it being
2031 * expired before we get a chance to add it
2032 */
2033 BUG_ON(mnt_get_count(m) < 2);
2034
2035 if (m->mnt_sb == path->mnt->mnt_sb &&
2036 m->mnt_root == path->dentry) {
b1e75df4
AV
2037 err = -ELOOP;
2038 goto fail;
19a167af
AV
2039 }
2040
19a167af 2041 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2042 if (!err)
2043 return 0;
2044fail:
2045 /* remove m from any expiration list it may be on */
2046 if (!list_empty(&m->mnt_expire)) {
2047 down_write(&namespace_sem);
2048 br_write_lock(vfsmount_lock);
2049 list_del_init(&m->mnt_expire);
2050 br_write_unlock(vfsmount_lock);
2051 up_write(&namespace_sem);
19a167af 2052 }
b1e75df4
AV
2053 mntput(m);
2054 mntput(m);
19a167af
AV
2055 return err;
2056}
2057
ea5b778a
DH
2058/**
2059 * mnt_set_expiry - Put a mount on an expiration list
2060 * @mnt: The mount to list.
2061 * @expiry_list: The list to add the mount to.
2062 */
2063void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2064{
2065 down_write(&namespace_sem);
2066 br_write_lock(vfsmount_lock);
2067
2068 list_add_tail(&mnt->mnt_expire, expiry_list);
2069
2070 br_write_unlock(vfsmount_lock);
2071 up_write(&namespace_sem);
2072}
2073EXPORT_SYMBOL(mnt_set_expiry);
2074
1da177e4
LT
2075/*
2076 * process a list of expirable mountpoints with the intent of discarding any
2077 * mountpoints that aren't in use and haven't been touched since last we came
2078 * here
2079 */
2080void mark_mounts_for_expiry(struct list_head *mounts)
2081{
1da177e4
LT
2082 struct vfsmount *mnt, *next;
2083 LIST_HEAD(graveyard);
bcc5c7d2 2084 LIST_HEAD(umounts);
1da177e4
LT
2085
2086 if (list_empty(mounts))
2087 return;
2088
bcc5c7d2 2089 down_write(&namespace_sem);
99b7db7b 2090 br_write_lock(vfsmount_lock);
1da177e4
LT
2091
2092 /* extract from the expiration list every vfsmount that matches the
2093 * following criteria:
2094 * - only referenced by its parent vfsmount
2095 * - still marked for expiry (marked on the last call here; marks are
2096 * cleared by mntput())
2097 */
55e700b9 2098 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 2099 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 2100 propagate_mount_busy(mnt, 1))
1da177e4 2101 continue;
55e700b9 2102 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2103 }
bcc5c7d2
AV
2104 while (!list_empty(&graveyard)) {
2105 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2106 touch_mnt_namespace(mnt->mnt_ns);
2107 umount_tree(mnt, 1, &umounts);
2108 }
99b7db7b 2109 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
2110 up_write(&namespace_sem);
2111
2112 release_mounts(&umounts);
5528f911
TM
2113}
2114
2115EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2116
2117/*
2118 * Ripoff of 'select_parent()'
2119 *
2120 * search the list of submounts for a given mountpoint, and move any
2121 * shrinkable submounts to the 'graveyard' list.
2122 */
2123static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2124{
2125 struct vfsmount *this_parent = parent;
2126 struct list_head *next;
2127 int found = 0;
2128
2129repeat:
2130 next = this_parent->mnt_mounts.next;
2131resume:
2132 while (next != &this_parent->mnt_mounts) {
2133 struct list_head *tmp = next;
2134 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2135
2136 next = tmp->next;
2137 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 2138 continue;
5528f911
TM
2139 /*
2140 * Descend a level if the d_mounts list is non-empty.
2141 */
2142 if (!list_empty(&mnt->mnt_mounts)) {
2143 this_parent = mnt;
2144 goto repeat;
2145 }
1da177e4 2146
5528f911 2147 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
2148 list_move_tail(&mnt->mnt_expire, graveyard);
2149 found++;
2150 }
1da177e4 2151 }
5528f911
TM
2152 /*
2153 * All done at this level ... ascend and resume the search
2154 */
2155 if (this_parent != parent) {
2156 next = this_parent->mnt_child.next;
2157 this_parent = this_parent->mnt_parent;
2158 goto resume;
2159 }
2160 return found;
2161}
2162
2163/*
2164 * process a list of expirable mountpoints with the intent of discarding any
2165 * submounts of a specific parent mountpoint
99b7db7b
NP
2166 *
2167 * vfsmount_lock must be held for write
5528f911 2168 */
c35038be 2169static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
2170{
2171 LIST_HEAD(graveyard);
c35038be 2172 struct vfsmount *m;
5528f911 2173
5528f911 2174 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2175 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2176 while (!list_empty(&graveyard)) {
c35038be 2177 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 2178 mnt_expire);
afef80b3
EB
2179 touch_mnt_namespace(m->mnt_ns);
2180 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2181 }
2182 }
1da177e4
LT
2183}
2184
1da177e4
LT
2185/*
2186 * Some copy_from_user() implementations do not return the exact number of
2187 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2188 * Note that this function differs from copy_from_user() in that it will oops
2189 * on bad values of `to', rather than returning a short copy.
2190 */
b58fed8b
RP
2191static long exact_copy_from_user(void *to, const void __user * from,
2192 unsigned long n)
1da177e4
LT
2193{
2194 char *t = to;
2195 const char __user *f = from;
2196 char c;
2197
2198 if (!access_ok(VERIFY_READ, from, n))
2199 return n;
2200
2201 while (n) {
2202 if (__get_user(c, f)) {
2203 memset(t, 0, n);
2204 break;
2205 }
2206 *t++ = c;
2207 f++;
2208 n--;
2209 }
2210 return n;
2211}
2212
b58fed8b 2213int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2214{
2215 int i;
2216 unsigned long page;
2217 unsigned long size;
b58fed8b 2218
1da177e4
LT
2219 *where = 0;
2220 if (!data)
2221 return 0;
2222
2223 if (!(page = __get_free_page(GFP_KERNEL)))
2224 return -ENOMEM;
2225
2226 /* We only care that *some* data at the address the user
2227 * gave us is valid. Just in case, we'll zero
2228 * the remainder of the page.
2229 */
2230 /* copy_from_user cannot cross TASK_SIZE ! */
2231 size = TASK_SIZE - (unsigned long)data;
2232 if (size > PAGE_SIZE)
2233 size = PAGE_SIZE;
2234
2235 i = size - exact_copy_from_user((void *)page, data, size);
2236 if (!i) {
b58fed8b 2237 free_page(page);
1da177e4
LT
2238 return -EFAULT;
2239 }
2240 if (i != PAGE_SIZE)
2241 memset((char *)page + i, 0, PAGE_SIZE - i);
2242 *where = page;
2243 return 0;
2244}
2245
eca6f534
VN
2246int copy_mount_string(const void __user *data, char **where)
2247{
2248 char *tmp;
2249
2250 if (!data) {
2251 *where = NULL;
2252 return 0;
2253 }
2254
2255 tmp = strndup_user(data, PAGE_SIZE);
2256 if (IS_ERR(tmp))
2257 return PTR_ERR(tmp);
2258
2259 *where = tmp;
2260 return 0;
2261}
2262
1da177e4
LT
2263/*
2264 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2265 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2266 *
2267 * data is a (void *) that can point to any structure up to
2268 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2269 * information (or be NULL).
2270 *
2271 * Pre-0.97 versions of mount() didn't have a flags word.
2272 * When the flags word was introduced its top half was required
2273 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2274 * Therefore, if this magic number is present, it carries no information
2275 * and must be discarded.
2276 */
b58fed8b 2277long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2278 unsigned long flags, void *data_page)
2279{
2d92ab3c 2280 struct path path;
1da177e4
LT
2281 int retval = 0;
2282 int mnt_flags = 0;
2283
2284 /* Discard magic */
2285 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2286 flags &= ~MS_MGC_MSK;
2287
2288 /* Basic sanity checks */
2289
2290 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2291 return -EINVAL;
1da177e4
LT
2292
2293 if (data_page)
2294 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2295
a27ab9f2
TH
2296 /* ... and get the mountpoint */
2297 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2298 if (retval)
2299 return retval;
2300
2301 retval = security_sb_mount(dev_name, &path,
2302 type_page, flags, data_page);
2303 if (retval)
2304 goto dput_out;
2305
613cbe3d
AK
2306 /* Default to relatime unless overriden */
2307 if (!(flags & MS_NOATIME))
2308 mnt_flags |= MNT_RELATIME;
0a1c01c9 2309
1da177e4
LT
2310 /* Separate the per-mountpoint flags */
2311 if (flags & MS_NOSUID)
2312 mnt_flags |= MNT_NOSUID;
2313 if (flags & MS_NODEV)
2314 mnt_flags |= MNT_NODEV;
2315 if (flags & MS_NOEXEC)
2316 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2317 if (flags & MS_NOATIME)
2318 mnt_flags |= MNT_NOATIME;
2319 if (flags & MS_NODIRATIME)
2320 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2321 if (flags & MS_STRICTATIME)
2322 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2323 if (flags & MS_RDONLY)
2324 mnt_flags |= MNT_READONLY;
fc33a7bb 2325
7a4dec53 2326 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2327 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2328 MS_STRICTATIME);
1da177e4 2329
1da177e4 2330 if (flags & MS_REMOUNT)
2d92ab3c 2331 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2332 data_page);
2333 else if (flags & MS_BIND)
2d92ab3c 2334 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2335 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2336 retval = do_change_type(&path, flags);
1da177e4 2337 else if (flags & MS_MOVE)
2d92ab3c 2338 retval = do_move_mount(&path, dev_name);
1da177e4 2339 else
2d92ab3c 2340 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2341 dev_name, data_page);
2342dput_out:
2d92ab3c 2343 path_put(&path);
1da177e4
LT
2344 return retval;
2345}
2346
cf8d2c11
TM
2347static struct mnt_namespace *alloc_mnt_ns(void)
2348{
2349 struct mnt_namespace *new_ns;
2350
2351 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2352 if (!new_ns)
2353 return ERR_PTR(-ENOMEM);
2354 atomic_set(&new_ns->count, 1);
2355 new_ns->root = NULL;
2356 INIT_LIST_HEAD(&new_ns->list);
2357 init_waitqueue_head(&new_ns->poll);
2358 new_ns->event = 0;
2359 return new_ns;
2360}
2361
f03c6599
AV
2362void mnt_make_longterm(struct vfsmount *mnt)
2363{
7e3d0eb0 2364 __mnt_make_longterm(mnt);
f03c6599
AV
2365}
2366
2367void mnt_make_shortterm(struct vfsmount *mnt)
2368{
7e3d0eb0 2369#ifdef CONFIG_SMP
f03c6599
AV
2370 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2371 return;
2372 br_write_lock(vfsmount_lock);
2373 atomic_dec(&mnt->mnt_longterm);
2374 br_write_unlock(vfsmount_lock);
7e3d0eb0 2375#endif
f03c6599
AV
2376}
2377
741a2951
JD
2378/*
2379 * Allocate a new namespace structure and populate it with contents
2380 * copied from the namespace of the passed in task structure.
2381 */
e3222c4e 2382static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2383 struct fs_struct *fs)
1da177e4 2384{
6b3286ed 2385 struct mnt_namespace *new_ns;
7f2da1e7 2386 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
315fc83e 2387 struct mount *p, *q;
1da177e4 2388
cf8d2c11
TM
2389 new_ns = alloc_mnt_ns();
2390 if (IS_ERR(new_ns))
2391 return new_ns;
1da177e4 2392
390c6843 2393 down_write(&namespace_sem);
1da177e4 2394 /* First pass: copy the tree topology */
6b3286ed 2395 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 2396 CL_COPY_ALL | CL_EXPIRE);
1da177e4 2397 if (!new_ns->root) {
390c6843 2398 up_write(&namespace_sem);
1da177e4 2399 kfree(new_ns);
5cc4a034 2400 return ERR_PTR(-ENOMEM);
1da177e4 2401 }
99b7db7b 2402 br_write_lock(vfsmount_lock);
1da177e4 2403 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
99b7db7b 2404 br_write_unlock(vfsmount_lock);
1da177e4
LT
2405
2406 /*
2407 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2408 * as belonging to new namespace. We have already acquired a private
2409 * fs_struct, so tsk->fs->lock is not needed.
2410 */
315fc83e
AV
2411 p = real_mount(mnt_ns->root);
2412 q = real_mount(new_ns->root);
1da177e4 2413 while (p) {
315fc83e
AV
2414 q->mnt.mnt_ns = new_ns;
2415 __mnt_make_longterm(&q->mnt);
1da177e4 2416 if (fs) {
315fc83e
AV
2417 if (&p->mnt == fs->root.mnt) {
2418 fs->root.mnt = mntget(&q->mnt);
2419 __mnt_make_longterm(&q->mnt);
2420 mnt_make_shortterm(&p->mnt);
2421 rootmnt = &p->mnt;
1da177e4 2422 }
315fc83e
AV
2423 if (&p->mnt == fs->pwd.mnt) {
2424 fs->pwd.mnt = mntget(&q->mnt);
2425 __mnt_make_longterm(&q->mnt);
2426 mnt_make_shortterm(&p->mnt);
2427 pwdmnt = &p->mnt;
1da177e4 2428 }
1da177e4 2429 }
6b3286ed 2430 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2431 q = next_mnt(q, new_ns->root);
2432 }
390c6843 2433 up_write(&namespace_sem);
1da177e4 2434
1da177e4 2435 if (rootmnt)
f03c6599 2436 mntput(rootmnt);
1da177e4 2437 if (pwdmnt)
f03c6599 2438 mntput(pwdmnt);
1da177e4 2439
741a2951
JD
2440 return new_ns;
2441}
2442
213dd266 2443struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2444 struct fs_struct *new_fs)
741a2951 2445{
6b3286ed 2446 struct mnt_namespace *new_ns;
741a2951 2447
e3222c4e 2448 BUG_ON(!ns);
6b3286ed 2449 get_mnt_ns(ns);
741a2951
JD
2450
2451 if (!(flags & CLONE_NEWNS))
e3222c4e 2452 return ns;
741a2951 2453
e3222c4e 2454 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2455
6b3286ed 2456 put_mnt_ns(ns);
e3222c4e 2457 return new_ns;
1da177e4
LT
2458}
2459
cf8d2c11
TM
2460/**
2461 * create_mnt_ns - creates a private namespace and adds a root filesystem
2462 * @mnt: pointer to the new root filesystem mountpoint
2463 */
6c449c8d 2464static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2465{
2466 struct mnt_namespace *new_ns;
2467
2468 new_ns = alloc_mnt_ns();
2469 if (!IS_ERR(new_ns)) {
2470 mnt->mnt_ns = new_ns;
7e3d0eb0 2471 __mnt_make_longterm(mnt);
cf8d2c11
TM
2472 new_ns->root = mnt;
2473 list_add(&new_ns->list, &new_ns->root->mnt_list);
c1334495
AV
2474 } else {
2475 mntput(mnt);
cf8d2c11
TM
2476 }
2477 return new_ns;
2478}
cf8d2c11 2479
ea441d11
AV
2480struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2481{
2482 struct mnt_namespace *ns;
d31da0f0 2483 struct super_block *s;
ea441d11
AV
2484 struct path path;
2485 int err;
2486
2487 ns = create_mnt_ns(mnt);
2488 if (IS_ERR(ns))
2489 return ERR_CAST(ns);
2490
2491 err = vfs_path_lookup(mnt->mnt_root, mnt,
2492 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2493
2494 put_mnt_ns(ns);
2495
2496 if (err)
2497 return ERR_PTR(err);
2498
2499 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2500 s = path.mnt->mnt_sb;
2501 atomic_inc(&s->s_active);
ea441d11
AV
2502 mntput(path.mnt);
2503 /* lock the sucker */
d31da0f0 2504 down_write(&s->s_umount);
ea441d11
AV
2505 /* ... and return the root of (sub)tree on it */
2506 return path.dentry;
2507}
2508EXPORT_SYMBOL(mount_subtree);
2509
bdc480e3
HC
2510SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2511 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2512{
eca6f534
VN
2513 int ret;
2514 char *kernel_type;
2515 char *kernel_dir;
2516 char *kernel_dev;
1da177e4 2517 unsigned long data_page;
1da177e4 2518
eca6f534
VN
2519 ret = copy_mount_string(type, &kernel_type);
2520 if (ret < 0)
2521 goto out_type;
1da177e4 2522
eca6f534
VN
2523 kernel_dir = getname(dir_name);
2524 if (IS_ERR(kernel_dir)) {
2525 ret = PTR_ERR(kernel_dir);
2526 goto out_dir;
2527 }
1da177e4 2528
eca6f534
VN
2529 ret = copy_mount_string(dev_name, &kernel_dev);
2530 if (ret < 0)
2531 goto out_dev;
1da177e4 2532
eca6f534
VN
2533 ret = copy_mount_options(data, &data_page);
2534 if (ret < 0)
2535 goto out_data;
1da177e4 2536
eca6f534
VN
2537 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2538 (void *) data_page);
1da177e4 2539
eca6f534
VN
2540 free_page(data_page);
2541out_data:
2542 kfree(kernel_dev);
2543out_dev:
2544 putname(kernel_dir);
2545out_dir:
2546 kfree(kernel_type);
2547out_type:
2548 return ret;
1da177e4
LT
2549}
2550
afac7cba
AV
2551/*
2552 * Return true if path is reachable from root
2553 *
2554 * namespace_sem or vfsmount_lock is held
2555 */
2556bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
2557 const struct path *root)
2558{
2559 while (mnt != root->mnt && mnt_has_parent(mnt)) {
2560 dentry = mnt->mnt_mountpoint;
2561 mnt = mnt->mnt_parent;
2562 }
2563 return mnt == root->mnt && is_subdir(dentry, root->dentry);
2564}
2565
2566int path_is_under(struct path *path1, struct path *path2)
2567{
2568 int res;
2569 br_read_lock(vfsmount_lock);
2570 res = is_path_reachable(path1->mnt, path1->dentry, path2);
2571 br_read_unlock(vfsmount_lock);
2572 return res;
2573}
2574EXPORT_SYMBOL(path_is_under);
2575
1da177e4
LT
2576/*
2577 * pivot_root Semantics:
2578 * Moves the root file system of the current process to the directory put_old,
2579 * makes new_root as the new root file system of the current process, and sets
2580 * root/cwd of all processes which had them on the current root to new_root.
2581 *
2582 * Restrictions:
2583 * The new_root and put_old must be directories, and must not be on the
2584 * same file system as the current process root. The put_old must be
2585 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2586 * pointed to by put_old must yield the same directory as new_root. No other
2587 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2588 *
4a0d11fa
NB
2589 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2590 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2591 * in this situation.
2592 *
1da177e4
LT
2593 * Notes:
2594 * - we don't move root/cwd if they are not at the root (reason: if something
2595 * cared enough to change them, it's probably wrong to force them elsewhere)
2596 * - it's okay to pick a root that isn't the root of a file system, e.g.
2597 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2598 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2599 * first.
2600 */
3480b257
HC
2601SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2602 const char __user *, put_old)
1da177e4 2603{
2d8f3038 2604 struct path new, old, parent_path, root_parent, root;
419148da 2605 struct mount *new_mnt, *root_mnt;
1da177e4
LT
2606 int error;
2607
2608 if (!capable(CAP_SYS_ADMIN))
2609 return -EPERM;
2610
2d8f3038 2611 error = user_path_dir(new_root, &new);
1da177e4
LT
2612 if (error)
2613 goto out0;
1da177e4 2614
2d8f3038 2615 error = user_path_dir(put_old, &old);
1da177e4
LT
2616 if (error)
2617 goto out1;
2618
2d8f3038 2619 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2620 if (error)
2621 goto out2;
1da177e4 2622
f7ad3c6b 2623 get_fs_root(current->fs, &root);
b12cea91
AV
2624 error = lock_mount(&old);
2625 if (error)
2626 goto out3;
2627
1da177e4 2628 error = -EINVAL;
419148da
AV
2629 new_mnt = real_mount(new.mnt);
2630 root_mnt = real_mount(root.mnt);
2d8f3038
AV
2631 if (IS_MNT_SHARED(old.mnt) ||
2632 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2633 IS_MNT_SHARED(root.mnt->mnt_parent))
b12cea91 2634 goto out4;
27cb1572 2635 if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
b12cea91 2636 goto out4;
1da177e4 2637 error = -ENOENT;
f3da392e 2638 if (d_unlinked(new.dentry))
b12cea91 2639 goto out4;
f3da392e 2640 if (d_unlinked(old.dentry))
b12cea91 2641 goto out4;
1da177e4 2642 error = -EBUSY;
2d8f3038
AV
2643 if (new.mnt == root.mnt ||
2644 old.mnt == root.mnt)
b12cea91 2645 goto out4; /* loop, on the same file system */
1da177e4 2646 error = -EINVAL;
8c3ee42e 2647 if (root.mnt->mnt_root != root.dentry)
b12cea91 2648 goto out4; /* not a mountpoint */
b2dba1af 2649 if (!mnt_has_parent(root.mnt))
b12cea91 2650 goto out4; /* not attached */
2d8f3038 2651 if (new.mnt->mnt_root != new.dentry)
b12cea91 2652 goto out4; /* not a mountpoint */
b2dba1af 2653 if (!mnt_has_parent(new.mnt))
b12cea91 2654 goto out4; /* not attached */
4ac91378 2655 /* make sure we can reach put_old from new_root */
afac7cba 2656 if (!is_path_reachable(old.mnt, old.dentry, &new))
b12cea91 2657 goto out4;
27cb1572 2658 br_write_lock(vfsmount_lock);
419148da
AV
2659 detach_mnt(new_mnt, &parent_path);
2660 detach_mnt(root_mnt, &root_parent);
4ac91378 2661 /* mount old root on put_old */
419148da 2662 attach_mnt(root_mnt, &old);
4ac91378 2663 /* mount new_root on / */
419148da 2664 attach_mnt(new_mnt, &root_parent);
6b3286ed 2665 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2666 br_write_unlock(vfsmount_lock);
2d8f3038 2667 chroot_fs_refs(&root, &new);
1da177e4 2668 error = 0;
b12cea91
AV
2669out4:
2670 unlock_mount(&old);
2671 if (!error) {
2672 path_put(&root_parent);
2673 path_put(&parent_path);
2674 }
2675out3:
8c3ee42e 2676 path_put(&root);
b12cea91 2677out2:
2d8f3038 2678 path_put(&old);
1da177e4 2679out1:
2d8f3038 2680 path_put(&new);
1da177e4 2681out0:
1da177e4 2682 return error;
1da177e4
LT
2683}
2684
2685static void __init init_mount_tree(void)
2686{
2687 struct vfsmount *mnt;
6b3286ed 2688 struct mnt_namespace *ns;
ac748a09 2689 struct path root;
1da177e4
LT
2690
2691 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2692 if (IS_ERR(mnt))
2693 panic("Can't create rootfs");
b3e19d92 2694
3b22edc5
TM
2695 ns = create_mnt_ns(mnt);
2696 if (IS_ERR(ns))
1da177e4 2697 panic("Can't allocate initial namespace");
6b3286ed
KK
2698
2699 init_task.nsproxy->mnt_ns = ns;
2700 get_mnt_ns(ns);
2701
ac748a09
JB
2702 root.mnt = ns->root;
2703 root.dentry = ns->root->mnt_root;
2704
2705 set_fs_pwd(current->fs, &root);
2706 set_fs_root(current->fs, &root);
1da177e4
LT
2707}
2708
74bf17cf 2709void __init mnt_init(void)
1da177e4 2710{
13f14b4d 2711 unsigned u;
15a67dd8 2712 int err;
1da177e4 2713
390c6843
RP
2714 init_rwsem(&namespace_sem);
2715
7d6fec45 2716 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2717 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2718
b58fed8b 2719 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2720
2721 if (!mount_hashtable)
2722 panic("Failed to allocate mount hash table\n");
2723
80cdc6da 2724 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2725
2726 for (u = 0; u < HASH_SIZE; u++)
2727 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2728
99b7db7b
NP
2729 br_lock_init(vfsmount_lock);
2730
15a67dd8
RD
2731 err = sysfs_init();
2732 if (err)
2733 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2734 __func__, err);
00d26666
GKH
2735 fs_kobj = kobject_create_and_add("fs", NULL);
2736 if (!fs_kobj)
8e24eea7 2737 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2738 init_rootfs();
2739 init_mount_tree();
2740}
2741
616511d0 2742void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2743{
70fbcdf4 2744 LIST_HEAD(umount_list);
616511d0 2745
d498b25a 2746 if (!atomic_dec_and_test(&ns->count))
616511d0 2747 return;
390c6843 2748 down_write(&namespace_sem);
99b7db7b 2749 br_write_lock(vfsmount_lock);
d498b25a 2750 umount_tree(ns->root, 0, &umount_list);
99b7db7b 2751 br_write_unlock(vfsmount_lock);
390c6843 2752 up_write(&namespace_sem);
70fbcdf4 2753 release_mounts(&umount_list);
6b3286ed 2754 kfree(ns);
1da177e4 2755}
9d412a43
AV
2756
2757struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2758{
423e0ab0
TC
2759 struct vfsmount *mnt;
2760 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2761 if (!IS_ERR(mnt)) {
2762 /*
2763 * it is a longterm mount, don't release mnt until
2764 * we unmount before file sys is unregistered
2765 */
2766 mnt_make_longterm(mnt);
2767 }
2768 return mnt;
9d412a43
AV
2769}
2770EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2771
2772void kern_unmount(struct vfsmount *mnt)
2773{
2774 /* release long term mount so mount point can be released */
2775 if (!IS_ERR_OR_NULL(mnt)) {
2776 mnt_make_shortterm(mnt);
2777 mntput(mnt);
2778 }
2779}
2780EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2781
2782bool our_mnt(struct vfsmount *mnt)
2783{
2784 return check_mnt(mnt);
2785}