]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/ubifs/tnc.c
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / fs / ubifs / tnc.c
CommitLineData
1e51764a
AB
1/*
2 * This file is part of UBIFS.
3 *
4 * Copyright (C) 2006-2008 Nokia Corporation.
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
9 *
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18 *
19 * Authors: Adrian Hunter
20 * Artem Bityutskiy (Битюцкий Артём)
21 */
22
23/*
24 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
25 * the UBIFS B-tree.
26 *
27 * At the moment the locking rules of the TNC tree are quite simple and
28 * straightforward. We just have a mutex and lock it when we traverse the
29 * tree. If a znode is not in memory, we read it from flash while still having
30 * the mutex locked.
31 */
32
33#include <linux/crc32.h>
5a0e3ad6 34#include <linux/slab.h>
1e51764a
AB
35#include "ubifs.h"
36
1cb51a15
RW
37static int try_read_node(const struct ubifs_info *c, void *buf, int type,
38 int len, int lnum, int offs);
39static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
40 struct ubifs_zbranch *zbr, void *node);
41
1e51764a
AB
42/*
43 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
44 * @NAME_LESS: name corresponding to the first argument is less than second
45 * @NAME_MATCHES: names match
46 * @NAME_GREATER: name corresponding to the second argument is greater than
47 * first
48 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
49 *
50 * These constants were introduce to improve readability.
51 */
52enum {
53 NAME_LESS = 0,
54 NAME_MATCHES = 1,
55 NAME_GREATER = 2,
56 NOT_ON_MEDIA = 3,
57};
58
59/**
60 * insert_old_idx - record an index node obsoleted since the last commit start.
61 * @c: UBIFS file-system description object
62 * @lnum: LEB number of obsoleted index node
63 * @offs: offset of obsoleted index node
64 *
65 * Returns %0 on success, and a negative error code on failure.
66 *
67 * For recovery, there must always be a complete intact version of the index on
68 * flash at all times. That is called the "old index". It is the index as at the
69 * time of the last successful commit. Many of the index nodes in the old index
70 * may be dirty, but they must not be erased until the next successful commit
71 * (at which point that index becomes the old index).
72 *
73 * That means that the garbage collection and the in-the-gaps method of
74 * committing must be able to determine if an index node is in the old index.
75 * Most of the old index nodes can be found by looking up the TNC using the
76 * 'lookup_znode()' function. However, some of the old index nodes may have
77 * been deleted from the current index or may have been changed so much that
78 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
79 * That is what this function does. The RB-tree is ordered by LEB number and
80 * offset because they uniquely identify the old index node.
81 */
82static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
83{
84 struct ubifs_old_idx *old_idx, *o;
85 struct rb_node **p, *parent = NULL;
86
87 old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
88 if (unlikely(!old_idx))
89 return -ENOMEM;
90 old_idx->lnum = lnum;
91 old_idx->offs = offs;
92
93 p = &c->old_idx.rb_node;
94 while (*p) {
95 parent = *p;
96 o = rb_entry(parent, struct ubifs_old_idx, rb);
97 if (lnum < o->lnum)
98 p = &(*p)->rb_left;
99 else if (lnum > o->lnum)
100 p = &(*p)->rb_right;
101 else if (offs < o->offs)
102 p = &(*p)->rb_left;
103 else if (offs > o->offs)
104 p = &(*p)->rb_right;
105 else {
235c362b 106 ubifs_err(c, "old idx added twice!");
1e51764a
AB
107 kfree(old_idx);
108 return 0;
109 }
110 }
111 rb_link_node(&old_idx->rb, parent, p);
112 rb_insert_color(&old_idx->rb, &c->old_idx);
113 return 0;
114}
115
116/**
117 * insert_old_idx_znode - record a znode obsoleted since last commit start.
118 * @c: UBIFS file-system description object
119 * @znode: znode of obsoleted index node
120 *
121 * Returns %0 on success, and a negative error code on failure.
122 */
123int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
124{
125 if (znode->parent) {
126 struct ubifs_zbranch *zbr;
127
128 zbr = &znode->parent->zbranch[znode->iip];
129 if (zbr->len)
130 return insert_old_idx(c, zbr->lnum, zbr->offs);
131 } else
132 if (c->zroot.len)
133 return insert_old_idx(c, c->zroot.lnum,
134 c->zroot.offs);
135 return 0;
136}
137
138/**
139 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
140 * @c: UBIFS file-system description object
141 * @znode: znode of obsoleted index node
142 *
143 * Returns %0 on success, and a negative error code on failure.
144 */
145static int ins_clr_old_idx_znode(struct ubifs_info *c,
146 struct ubifs_znode *znode)
147{
148 int err;
149
150 if (znode->parent) {
151 struct ubifs_zbranch *zbr;
152
153 zbr = &znode->parent->zbranch[znode->iip];
154 if (zbr->len) {
155 err = insert_old_idx(c, zbr->lnum, zbr->offs);
156 if (err)
157 return err;
158 zbr->lnum = 0;
159 zbr->offs = 0;
160 zbr->len = 0;
161 }
162 } else
163 if (c->zroot.len) {
164 err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
165 if (err)
166 return err;
167 c->zroot.lnum = 0;
168 c->zroot.offs = 0;
169 c->zroot.len = 0;
170 }
171 return 0;
172}
173
174/**
175 * destroy_old_idx - destroy the old_idx RB-tree.
176 * @c: UBIFS file-system description object
177 *
178 * During start commit, the old_idx RB-tree is used to avoid overwriting index
179 * nodes that were in the index last commit but have since been deleted. This
180 * is necessary for recovery i.e. the old index must be kept intact until the
181 * new index is successfully written. The old-idx RB-tree is used for the
182 * in-the-gaps method of writing index nodes and is destroyed every commit.
183 */
184void destroy_old_idx(struct ubifs_info *c)
185{
bb25e49f
CS
186 struct ubifs_old_idx *old_idx, *n;
187
188 rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
1e51764a 189 kfree(old_idx);
bb25e49f 190
1e51764a
AB
191 c->old_idx = RB_ROOT;
192}
193
194/**
195 * copy_znode - copy a dirty znode.
196 * @c: UBIFS file-system description object
197 * @znode: znode to copy
198 *
199 * A dirty znode being committed may not be changed, so it is copied.
200 */
201static struct ubifs_znode *copy_znode(struct ubifs_info *c,
202 struct ubifs_znode *znode)
203{
204 struct ubifs_znode *zn;
205
bbc8a004 206 zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
1e51764a
AB
207 if (unlikely(!zn))
208 return ERR_PTR(-ENOMEM);
209
1e51764a
AB
210 zn->cnext = NULL;
211 __set_bit(DIRTY_ZNODE, &zn->flags);
212 __clear_bit(COW_ZNODE, &zn->flags);
213
f42eed7c 214 ubifs_assert(!ubifs_zn_obsolete(znode));
1e51764a
AB
215 __set_bit(OBSOLETE_ZNODE, &znode->flags);
216
217 if (znode->level != 0) {
218 int i;
219 const int n = zn->child_cnt;
220
221 /* The children now have new parent */
222 for (i = 0; i < n; i++) {
223 struct ubifs_zbranch *zbr = &zn->zbranch[i];
224
225 if (zbr->znode)
226 zbr->znode->parent = zn;
227 }
228 }
229
230 atomic_long_inc(&c->dirty_zn_cnt);
231 return zn;
232}
233
234/**
235 * add_idx_dirt - add dirt due to a dirty znode.
236 * @c: UBIFS file-system description object
237 * @lnum: LEB number of index node
238 * @dirt: size of index node
239 *
240 * This function updates lprops dirty space and the new size of the index.
241 */
242static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
243{
244 c->calc_idx_sz -= ALIGN(dirt, 8);
245 return ubifs_add_dirt(c, lnum, dirt);
246}
247
248/**
249 * dirty_cow_znode - ensure a znode is not being committed.
250 * @c: UBIFS file-system description object
251 * @zbr: branch of znode to check
252 *
253 * Returns dirtied znode on success or negative error code on failure.
254 */
255static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
256 struct ubifs_zbranch *zbr)
257{
258 struct ubifs_znode *znode = zbr->znode;
259 struct ubifs_znode *zn;
260 int err;
261
f42eed7c 262 if (!ubifs_zn_cow(znode)) {
1e51764a
AB
263 /* znode is not being committed */
264 if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
265 atomic_long_inc(&c->dirty_zn_cnt);
266 atomic_long_dec(&c->clean_zn_cnt);
267 atomic_long_dec(&ubifs_clean_zn_cnt);
268 err = add_idx_dirt(c, zbr->lnum, zbr->len);
269 if (unlikely(err))
270 return ERR_PTR(err);
271 }
272 return znode;
273 }
274
275 zn = copy_znode(c, znode);
8d47aef4 276 if (IS_ERR(zn))
1e51764a
AB
277 return zn;
278
279 if (zbr->len) {
280 err = insert_old_idx(c, zbr->lnum, zbr->offs);
281 if (unlikely(err))
282 return ERR_PTR(err);
283 err = add_idx_dirt(c, zbr->lnum, zbr->len);
284 } else
285 err = 0;
286
287 zbr->znode = zn;
288 zbr->lnum = 0;
289 zbr->offs = 0;
290 zbr->len = 0;
291
292 if (unlikely(err))
293 return ERR_PTR(err);
294 return zn;
295}
296
297/**
298 * lnc_add - add a leaf node to the leaf node cache.
299 * @c: UBIFS file-system description object
300 * @zbr: zbranch of leaf node
301 * @node: leaf node
302 *
303 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
304 * purpose of the leaf node cache is to save re-reading the same leaf node over
305 * and over again. Most things are cached by VFS, however the file system must
306 * cache directory entries for readdir and for resolving hash collisions. The
307 * present implementation of the leaf node cache is extremely simple, and
308 * allows for error returns that are not used but that may be needed if a more
309 * complex implementation is created.
310 *
311 * Note, this function does not add the @node object to LNC directly, but
312 * allocates a copy of the object and adds the copy to LNC. The reason for this
313 * is that @node has been allocated outside of the TNC subsystem and will be
314 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
315 * may be changed at any time, e.g. freed by the shrinker.
316 */
317static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
318 const void *node)
319{
320 int err;
321 void *lnc_node;
322 const struct ubifs_dent_node *dent = node;
323
324 ubifs_assert(!zbr->leaf);
325 ubifs_assert(zbr->len != 0);
326 ubifs_assert(is_hash_key(c, &zbr->key));
327
328 err = ubifs_validate_entry(c, dent);
329 if (err) {
7c46d0ae 330 dump_stack();
edf6be24 331 ubifs_dump_node(c, dent);
1e51764a
AB
332 return err;
333 }
334
eaecf43a 335 lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
1e51764a
AB
336 if (!lnc_node)
337 /* We don't have to have the cache, so no error */
338 return 0;
339
1e51764a
AB
340 zbr->leaf = lnc_node;
341 return 0;
342}
343
344 /**
345 * lnc_add_directly - add a leaf node to the leaf-node-cache.
346 * @c: UBIFS file-system description object
347 * @zbr: zbranch of leaf node
348 * @node: leaf node
349 *
350 * This function is similar to 'lnc_add()', but it does not create a copy of
351 * @node but inserts @node to TNC directly.
352 */
353static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
354 void *node)
355{
356 int err;
357
358 ubifs_assert(!zbr->leaf);
359 ubifs_assert(zbr->len != 0);
360
361 err = ubifs_validate_entry(c, node);
362 if (err) {
7c46d0ae 363 dump_stack();
edf6be24 364 ubifs_dump_node(c, node);
1e51764a
AB
365 return err;
366 }
367
368 zbr->leaf = node;
369 return 0;
370}
371
372/**
373 * lnc_free - remove a leaf node from the leaf node cache.
374 * @zbr: zbranch of leaf node
375 * @node: leaf node
376 */
377static void lnc_free(struct ubifs_zbranch *zbr)
378{
379 if (!zbr->leaf)
380 return;
381 kfree(zbr->leaf);
382 zbr->leaf = NULL;
383}
384
385/**
b91dc981 386 * tnc_read_hashed_node - read a "hashed" leaf node.
1e51764a
AB
387 * @c: UBIFS file-system description object
388 * @zbr: key and position of the node
389 * @node: node is returned here
390 *
391 * This function reads a "hashed" node defined by @zbr from the leaf node cache
392 * (in it is there) or from the hash media, in which case the node is also
393 * added to LNC. Returns zero in case of success or a negative negative error
394 * code in case of failure.
395 */
b91dc981
RW
396static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
397 void *node)
1e51764a
AB
398{
399 int err;
400
401 ubifs_assert(is_hash_key(c, &zbr->key));
402
403 if (zbr->leaf) {
404 /* Read from the leaf node cache */
405 ubifs_assert(zbr->len != 0);
406 memcpy(node, zbr->leaf, zbr->len);
407 return 0;
408 }
409
1cb51a15
RW
410 if (c->replaying) {
411 err = fallible_read_node(c, &zbr->key, zbr, node);
412 /*
413 * When the node was not found, return -ENOENT, 0 otherwise.
414 * Negative return codes stay as-is.
415 */
416 if (err == 0)
417 err = -ENOENT;
418 else if (err == 1)
419 err = 0;
420 } else {
421 err = ubifs_tnc_read_node(c, zbr, node);
422 }
1e51764a
AB
423 if (err)
424 return err;
425
426 /* Add the node to the leaf node cache */
427 err = lnc_add(c, zbr, node);
428 return err;
429}
430
431/**
432 * try_read_node - read a node if it is a node.
433 * @c: UBIFS file-system description object
434 * @buf: buffer to read to
435 * @type: node type
436 * @len: node length (not aligned)
437 * @lnum: LEB number of node to read
438 * @offs: offset of node to read
439 *
440 * This function tries to read a node of known type and length, checks it and
441 * stores it in @buf. This function returns %1 if a node is present and %0 if
442 * a node is not present. A negative error code is returned for I/O errors.
443 * This function performs that same function as ubifs_read_node except that
444 * it does not require that there is actually a node present and instead
445 * the return code indicates if a node was read.
6f7ab6d4
AB
446 *
447 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
448 * is true (it is controlled by corresponding mount option). However, if
18d1d7fb
AB
449 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
450 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
451 * because during mounting or re-mounting from R/O mode to R/W mode we may read
452 * journal nodes (when replying the journal or doing the recovery) and the
453 * journal nodes may potentially be corrupted, so checking is required.
1e51764a
AB
454 */
455static int try_read_node(const struct ubifs_info *c, void *buf, int type,
456 int len, int lnum, int offs)
457{
458 int err, node_len;
459 struct ubifs_ch *ch = buf;
460 uint32_t crc, node_crc;
461
462 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
463
d304820a 464 err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
1e51764a 465 if (err) {
235c362b 466 ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
1e51764a
AB
467 type, lnum, offs, err);
468 return err;
469 }
470
471 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
472 return 0;
473
474 if (ch->node_type != type)
475 return 0;
476
477 node_len = le32_to_cpu(ch->len);
478 if (node_len != len)
479 return 0;
480
18d1d7fb
AB
481 if (type == UBIFS_DATA_NODE && c->no_chk_data_crc && !c->mounting &&
482 !c->remounting_rw)
6f7ab6d4 483 return 1;
2953e73f 484
1e51764a
AB
485 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
486 node_crc = le32_to_cpu(ch->crc);
487 if (crc != node_crc)
488 return 0;
489
490 return 1;
491}
492
493/**
494 * fallible_read_node - try to read a leaf node.
495 * @c: UBIFS file-system description object
496 * @key: key of node to read
497 * @zbr: position of node
498 * @node: node returned
499 *
500 * This function tries to read a node and returns %1 if the node is read, %0
501 * if the node is not present, and a negative error code in the case of error.
502 */
503static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
504 struct ubifs_zbranch *zbr, void *node)
505{
506 int ret;
507
515315a1 508 dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
1e51764a
AB
509
510 ret = try_read_node(c, node, key_type(c, key), zbr->len, zbr->lnum,
511 zbr->offs);
512 if (ret == 1) {
513 union ubifs_key node_key;
514 struct ubifs_dent_node *dent = node;
515
516 /* All nodes have key in the same place */
517 key_read(c, &dent->key, &node_key);
518 if (keys_cmp(c, key, &node_key) != 0)
519 ret = 0;
520 }
601c0bc4 521 if (ret == 0 && c->replaying)
515315a1
AB
522 dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
523 zbr->lnum, zbr->offs, zbr->len);
1e51764a
AB
524 return ret;
525}
526
527/**
528 * matches_name - determine if a direntry or xattr entry matches a given name.
529 * @c: UBIFS file-system description object
530 * @zbr: zbranch of dent
531 * @nm: name to match
532 *
533 * This function checks if xentry/direntry referred by zbranch @zbr matches name
534 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
535 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
536 * of failure, a negative error code is returned.
537 */
538static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
f4f61d2c 539 const struct fscrypt_name *nm)
1e51764a
AB
540{
541 struct ubifs_dent_node *dent;
542 int nlen, err;
543
544 /* If possible, match against the dent in the leaf node cache */
545 if (!zbr->leaf) {
546 dent = kmalloc(zbr->len, GFP_NOFS);
547 if (!dent)
548 return -ENOMEM;
549
550 err = ubifs_tnc_read_node(c, zbr, dent);
551 if (err)
552 goto out_free;
553
554 /* Add the node to the leaf node cache */
555 err = lnc_add_directly(c, zbr, dent);
556 if (err)
557 goto out_free;
558 } else
559 dent = zbr->leaf;
560
561 nlen = le16_to_cpu(dent->nlen);
f4f61d2c 562 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
1e51764a 563 if (err == 0) {
f4f61d2c 564 if (nlen == fname_len(nm))
1e51764a 565 return NAME_MATCHES;
f4f61d2c 566 else if (nlen < fname_len(nm))
1e51764a
AB
567 return NAME_LESS;
568 else
569 return NAME_GREATER;
570 } else if (err < 0)
571 return NAME_LESS;
572 else
573 return NAME_GREATER;
574
575out_free:
576 kfree(dent);
577 return err;
578}
579
580/**
581 * get_znode - get a TNC znode that may not be loaded yet.
582 * @c: UBIFS file-system description object
583 * @znode: parent znode
584 * @n: znode branch slot number
585 *
586 * This function returns the znode or a negative error code.
587 */
588static struct ubifs_znode *get_znode(struct ubifs_info *c,
589 struct ubifs_znode *znode, int n)
590{
591 struct ubifs_zbranch *zbr;
592
593 zbr = &znode->zbranch[n];
594 if (zbr->znode)
595 znode = zbr->znode;
596 else
597 znode = ubifs_load_znode(c, zbr, znode, n);
598 return znode;
599}
600
601/**
602 * tnc_next - find next TNC entry.
603 * @c: UBIFS file-system description object
604 * @zn: znode is passed and returned here
605 * @n: znode branch slot number is passed and returned here
606 *
607 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
608 * no next entry, or a negative error code otherwise.
609 */
610static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
611{
612 struct ubifs_znode *znode = *zn;
613 int nn = *n;
614
615 nn += 1;
616 if (nn < znode->child_cnt) {
617 *n = nn;
618 return 0;
619 }
620 while (1) {
621 struct ubifs_znode *zp;
622
623 zp = znode->parent;
624 if (!zp)
625 return -ENOENT;
626 nn = znode->iip + 1;
627 znode = zp;
628 if (nn < znode->child_cnt) {
629 znode = get_znode(c, znode, nn);
630 if (IS_ERR(znode))
631 return PTR_ERR(znode);
632 while (znode->level != 0) {
633 znode = get_znode(c, znode, 0);
634 if (IS_ERR(znode))
635 return PTR_ERR(znode);
636 }
637 nn = 0;
638 break;
639 }
640 }
641 *zn = znode;
642 *n = nn;
643 return 0;
644}
645
646/**
647 * tnc_prev - find previous TNC entry.
648 * @c: UBIFS file-system description object
649 * @zn: znode is returned here
650 * @n: znode branch slot number is passed and returned here
651 *
652 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
653 * there is no next entry, or a negative error code otherwise.
654 */
655static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
656{
657 struct ubifs_znode *znode = *zn;
658 int nn = *n;
659
660 if (nn > 0) {
661 *n = nn - 1;
662 return 0;
663 }
664 while (1) {
665 struct ubifs_znode *zp;
666
667 zp = znode->parent;
668 if (!zp)
669 return -ENOENT;
670 nn = znode->iip - 1;
671 znode = zp;
672 if (nn >= 0) {
673 znode = get_znode(c, znode, nn);
674 if (IS_ERR(znode))
675 return PTR_ERR(znode);
676 while (znode->level != 0) {
677 nn = znode->child_cnt - 1;
678 znode = get_znode(c, znode, nn);
679 if (IS_ERR(znode))
680 return PTR_ERR(znode);
681 }
682 nn = znode->child_cnt - 1;
683 break;
684 }
685 }
686 *zn = znode;
687 *n = nn;
688 return 0;
689}
690
691/**
692 * resolve_collision - resolve a collision.
693 * @c: UBIFS file-system description object
694 * @key: key of a directory or extended attribute entry
695 * @zn: znode is returned here
696 * @n: zbranch number is passed and returned here
697 * @nm: name of the entry
698 *
699 * This function is called for "hashed" keys to make sure that the found key
700 * really corresponds to the looked up node (directory or extended attribute
701 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
702 * %0 is returned if @nm is not found and @zn and @n are set to the previous
703 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
704 * This means that @n may be set to %-1 if the leftmost key in @zn is the
705 * previous one. A negative error code is returned on failures.
706 */
707static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
708 struct ubifs_znode **zn, int *n,
f4f61d2c 709 const struct fscrypt_name *nm)
1e51764a
AB
710{
711 int err;
712
713 err = matches_name(c, &(*zn)->zbranch[*n], nm);
714 if (unlikely(err < 0))
715 return err;
716 if (err == NAME_MATCHES)
717 return 1;
718
719 if (err == NAME_GREATER) {
720 /* Look left */
721 while (1) {
722 err = tnc_prev(c, zn, n);
723 if (err == -ENOENT) {
724 ubifs_assert(*n == 0);
725 *n = -1;
726 return 0;
727 }
728 if (err < 0)
729 return err;
730 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
731 /*
732 * We have found the branch after which we would
733 * like to insert, but inserting in this znode
734 * may still be wrong. Consider the following 3
735 * znodes, in the case where we are resolving a
736 * collision with Key2.
737 *
738 * znode zp
739 * ----------------------
740 * level 1 | Key0 | Key1 |
741 * -----------------------
742 * | |
743 * znode za | | znode zb
744 * ------------ ------------
745 * level 0 | Key0 | | Key2 |
746 * ------------ ------------
747 *
748 * The lookup finds Key2 in znode zb. Lets say
749 * there is no match and the name is greater so
750 * we look left. When we find Key0, we end up
751 * here. If we return now, we will insert into
752 * znode za at slot n = 1. But that is invalid
753 * according to the parent's keys. Key2 must
754 * be inserted into znode zb.
755 *
756 * Note, this problem is not relevant for the
757 * case when we go right, because
758 * 'tnc_insert()' would correct the parent key.
759 */
760 if (*n == (*zn)->child_cnt - 1) {
761 err = tnc_next(c, zn, n);
762 if (err) {
763 /* Should be impossible */
764 ubifs_assert(0);
765 if (err == -ENOENT)
766 err = -EINVAL;
767 return err;
768 }
769 ubifs_assert(*n == 0);
770 *n = -1;
771 }
772 return 0;
773 }
774 err = matches_name(c, &(*zn)->zbranch[*n], nm);
775 if (err < 0)
776 return err;
777 if (err == NAME_LESS)
778 return 0;
779 if (err == NAME_MATCHES)
780 return 1;
781 ubifs_assert(err == NAME_GREATER);
782 }
783 } else {
784 int nn = *n;
785 struct ubifs_znode *znode = *zn;
786
787 /* Look right */
788 while (1) {
789 err = tnc_next(c, &znode, &nn);
790 if (err == -ENOENT)
791 return 0;
792 if (err < 0)
793 return err;
794 if (keys_cmp(c, &znode->zbranch[nn].key, key))
795 return 0;
796 err = matches_name(c, &znode->zbranch[nn], nm);
797 if (err < 0)
798 return err;
799 if (err == NAME_GREATER)
800 return 0;
801 *zn = znode;
802 *n = nn;
803 if (err == NAME_MATCHES)
804 return 1;
805 ubifs_assert(err == NAME_LESS);
806 }
807 }
808}
809
810/**
811 * fallible_matches_name - determine if a dent matches a given name.
812 * @c: UBIFS file-system description object
813 * @zbr: zbranch of dent
814 * @nm: name to match
815 *
816 * This is a "fallible" version of 'matches_name()' function which does not
817 * panic if the direntry/xentry referred by @zbr does not exist on the media.
818 *
819 * This function checks if xentry/direntry referred by zbranch @zbr matches name
820 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
821 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
822 * if xentry/direntry referred by @zbr does not exist on the media. A negative
823 * error code is returned in case of failure.
824 */
825static int fallible_matches_name(struct ubifs_info *c,
826 struct ubifs_zbranch *zbr,
f4f61d2c 827 const struct fscrypt_name *nm)
1e51764a
AB
828{
829 struct ubifs_dent_node *dent;
830 int nlen, err;
831
832 /* If possible, match against the dent in the leaf node cache */
833 if (!zbr->leaf) {
834 dent = kmalloc(zbr->len, GFP_NOFS);
835 if (!dent)
836 return -ENOMEM;
837
838 err = fallible_read_node(c, &zbr->key, zbr, dent);
839 if (err < 0)
840 goto out_free;
841 if (err == 0) {
842 /* The node was not present */
843 err = NOT_ON_MEDIA;
844 goto out_free;
845 }
846 ubifs_assert(err == 1);
847
848 err = lnc_add_directly(c, zbr, dent);
849 if (err)
850 goto out_free;
851 } else
852 dent = zbr->leaf;
853
854 nlen = le16_to_cpu(dent->nlen);
f4f61d2c 855 err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
1e51764a 856 if (err == 0) {
f4f61d2c 857 if (nlen == fname_len(nm))
1e51764a 858 return NAME_MATCHES;
f4f61d2c 859 else if (nlen < fname_len(nm))
1e51764a
AB
860 return NAME_LESS;
861 else
862 return NAME_GREATER;
863 } else if (err < 0)
864 return NAME_LESS;
865 else
866 return NAME_GREATER;
867
868out_free:
869 kfree(dent);
870 return err;
871}
872
873/**
874 * fallible_resolve_collision - resolve a collision even if nodes are missing.
875 * @c: UBIFS file-system description object
876 * @key: key
877 * @zn: znode is returned here
878 * @n: branch number is passed and returned here
879 * @nm: name of directory entry
880 * @adding: indicates caller is adding a key to the TNC
881 *
882 * This is a "fallible" version of the 'resolve_collision()' function which
883 * does not panic if one of the nodes referred to by TNC does not exist on the
884 * media. This may happen when replaying the journal if a deleted node was
885 * Garbage-collected and the commit was not done. A branch that refers to a node
886 * that is not present is called a dangling branch. The following are the return
887 * codes for this function:
888 * o if @nm was found, %1 is returned and @zn and @n are set to the found
889 * branch;
890 * o if we are @adding and @nm was not found, %0 is returned;
891 * o if we are not @adding and @nm was not found, but a dangling branch was
892 * found, then %1 is returned and @zn and @n are set to the dangling branch;
893 * o a negative error code is returned in case of failure.
894 */
895static int fallible_resolve_collision(struct ubifs_info *c,
896 const union ubifs_key *key,
897 struct ubifs_znode **zn, int *n,
f4f61d2c
RW
898 const struct fscrypt_name *nm,
899 int adding)
1e51764a
AB
900{
901 struct ubifs_znode *o_znode = NULL, *znode = *zn;
902 int uninitialized_var(o_n), err, cmp, unsure = 0, nn = *n;
903
904 cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
905 if (unlikely(cmp < 0))
906 return cmp;
907 if (cmp == NAME_MATCHES)
908 return 1;
909 if (cmp == NOT_ON_MEDIA) {
910 o_znode = znode;
911 o_n = nn;
912 /*
913 * We are unlucky and hit a dangling branch straight away.
914 * Now we do not really know where to go to find the needed
915 * branch - to the left or to the right. Well, let's try left.
916 */
917 unsure = 1;
918 } else if (!adding)
919 unsure = 1; /* Remove a dangling branch wherever it is */
920
921 if (cmp == NAME_GREATER || unsure) {
922 /* Look left */
923 while (1) {
924 err = tnc_prev(c, zn, n);
925 if (err == -ENOENT) {
926 ubifs_assert(*n == 0);
927 *n = -1;
928 break;
929 }
930 if (err < 0)
931 return err;
932 if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
933 /* See comments in 'resolve_collision()' */
934 if (*n == (*zn)->child_cnt - 1) {
935 err = tnc_next(c, zn, n);
936 if (err) {
937 /* Should be impossible */
938 ubifs_assert(0);
939 if (err == -ENOENT)
940 err = -EINVAL;
941 return err;
942 }
943 ubifs_assert(*n == 0);
944 *n = -1;
945 }
946 break;
947 }
948 err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
949 if (err < 0)
950 return err;
951 if (err == NAME_MATCHES)
952 return 1;
953 if (err == NOT_ON_MEDIA) {
954 o_znode = *zn;
955 o_n = *n;
956 continue;
957 }
958 if (!adding)
959 continue;
960 if (err == NAME_LESS)
961 break;
962 else
963 unsure = 0;
964 }
965 }
966
967 if (cmp == NAME_LESS || unsure) {
968 /* Look right */
969 *zn = znode;
970 *n = nn;
971 while (1) {
972 err = tnc_next(c, &znode, &nn);
973 if (err == -ENOENT)
974 break;
975 if (err < 0)
976 return err;
977 if (keys_cmp(c, &znode->zbranch[nn].key, key))
978 break;
979 err = fallible_matches_name(c, &znode->zbranch[nn], nm);
980 if (err < 0)
981 return err;
982 if (err == NAME_GREATER)
983 break;
984 *zn = znode;
985 *n = nn;
986 if (err == NAME_MATCHES)
987 return 1;
988 if (err == NOT_ON_MEDIA) {
989 o_znode = znode;
990 o_n = nn;
991 }
992 }
993 }
994
995 /* Never match a dangling branch when adding */
996 if (adding || !o_znode)
997 return 0;
998
515315a1 999 dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1e51764a 1000 o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
515315a1 1001 o_znode->zbranch[o_n].len);
1e51764a
AB
1002 *zn = o_znode;
1003 *n = o_n;
1004 return 1;
1005}
1006
1007/**
1008 * matches_position - determine if a zbranch matches a given position.
1009 * @zbr: zbranch of dent
1010 * @lnum: LEB number of dent to match
1011 * @offs: offset of dent to match
1012 *
1013 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1014 */
1015static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1016{
1017 if (zbr->lnum == lnum && zbr->offs == offs)
1018 return 1;
1019 else
1020 return 0;
1021}
1022
1023/**
1024 * resolve_collision_directly - resolve a collision directly.
1025 * @c: UBIFS file-system description object
1026 * @key: key of directory entry
1027 * @zn: znode is passed and returned here
1028 * @n: zbranch number is passed and returned here
1029 * @lnum: LEB number of dent node to match
1030 * @offs: offset of dent node to match
1031 *
1032 * This function is used for "hashed" keys to make sure the found directory or
1033 * extended attribute entry node is what was looked for. It is used when the
1034 * flash address of the right node is known (@lnum:@offs) which makes it much
1035 * easier to resolve collisions (no need to read entries and match full
1036 * names). This function returns %1 and sets @zn and @n if the collision is
1037 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1038 * previous directory entry. Otherwise a negative error code is returned.
1039 */
1040static int resolve_collision_directly(struct ubifs_info *c,
1041 const union ubifs_key *key,
1042 struct ubifs_znode **zn, int *n,
1043 int lnum, int offs)
1044{
1045 struct ubifs_znode *znode;
1046 int nn, err;
1047
1048 znode = *zn;
1049 nn = *n;
1050 if (matches_position(&znode->zbranch[nn], lnum, offs))
1051 return 1;
1052
1053 /* Look left */
1054 while (1) {
1055 err = tnc_prev(c, &znode, &nn);
1056 if (err == -ENOENT)
1057 break;
1058 if (err < 0)
1059 return err;
1060 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1061 break;
1062 if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1063 *zn = znode;
1064 *n = nn;
1065 return 1;
1066 }
1067 }
1068
1069 /* Look right */
1070 znode = *zn;
1071 nn = *n;
1072 while (1) {
1073 err = tnc_next(c, &znode, &nn);
1074 if (err == -ENOENT)
1075 return 0;
1076 if (err < 0)
1077 return err;
1078 if (keys_cmp(c, &znode->zbranch[nn].key, key))
1079 return 0;
1080 *zn = znode;
1081 *n = nn;
1082 if (matches_position(&znode->zbranch[nn], lnum, offs))
1083 return 1;
1084 }
1085}
1086
1087/**
1088 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1089 * @c: UBIFS file-system description object
1090 * @znode: znode to dirty
1091 *
1092 * If we do not have a unique key that resides in a znode, then we cannot
1093 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1094 * This function records the path back to the last dirty ancestor, and then
1095 * dirties the znodes on that path.
1096 */
1097static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1098 struct ubifs_znode *znode)
1099{
1100 struct ubifs_znode *zp;
1101 int *path = c->bottom_up_buf, p = 0;
1102
1103 ubifs_assert(c->zroot.znode);
1104 ubifs_assert(znode);
1105 if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1106 kfree(c->bottom_up_buf);
1107 c->bottom_up_buf = kmalloc(c->zroot.znode->level * sizeof(int),
1108 GFP_NOFS);
1109 if (!c->bottom_up_buf)
1110 return ERR_PTR(-ENOMEM);
1111 path = c->bottom_up_buf;
1112 }
1113 if (c->zroot.znode->level) {
1114 /* Go up until parent is dirty */
1115 while (1) {
1116 int n;
1117
1118 zp = znode->parent;
1119 if (!zp)
1120 break;
1121 n = znode->iip;
1122 ubifs_assert(p < c->zroot.znode->level);
1123 path[p++] = n;
1124 if (!zp->cnext && ubifs_zn_dirty(znode))
1125 break;
1126 znode = zp;
1127 }
1128 }
1129
1130 /* Come back down, dirtying as we go */
1131 while (1) {
1132 struct ubifs_zbranch *zbr;
1133
1134 zp = znode->parent;
1135 if (zp) {
1136 ubifs_assert(path[p - 1] >= 0);
1137 ubifs_assert(path[p - 1] < zp->child_cnt);
1138 zbr = &zp->zbranch[path[--p]];
1139 znode = dirty_cow_znode(c, zbr);
1140 } else {
1141 ubifs_assert(znode == c->zroot.znode);
1142 znode = dirty_cow_znode(c, &c->zroot);
1143 }
8d47aef4 1144 if (IS_ERR(znode) || !p)
1e51764a
AB
1145 break;
1146 ubifs_assert(path[p - 1] >= 0);
1147 ubifs_assert(path[p - 1] < znode->child_cnt);
1148 znode = znode->zbranch[path[p - 1]].znode;
1149 }
1150
1151 return znode;
1152}
1153
1154/**
1155 * ubifs_lookup_level0 - search for zero-level znode.
1156 * @c: UBIFS file-system description object
1157 * @key: key to lookup
1158 * @zn: znode is returned here
1159 * @n: znode branch slot number is returned here
1160 *
1161 * This function looks up the TNC tree and search for zero-level znode which
1162 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1163 * cases:
1164 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1165 * is returned and slot number of the matched branch is stored in @n;
1166 * o not exact match, which means that zero-level znode does not contain
e3c3efc2
AB
1167 * @key, then %0 is returned and slot number of the closest branch is stored
1168 * in @n;
1e51764a
AB
1169 * o @key is so small that it is even less than the lowest key of the
1170 * leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1171 *
1172 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1173 * function reads corresponding indexing nodes and inserts them to TNC. In
1174 * case of failure, a negative error code is returned.
1175 */
1176int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1177 struct ubifs_znode **zn, int *n)
1178{
1179 int err, exact;
1180 struct ubifs_znode *znode;
1181 unsigned long time = get_seconds();
1182
515315a1 1183 dbg_tnck(key, "search key ");
ba2f48f7 1184 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
1e51764a
AB
1185
1186 znode = c->zroot.znode;
1187 if (unlikely(!znode)) {
1188 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1189 if (IS_ERR(znode))
1190 return PTR_ERR(znode);
1191 }
1192
1193 znode->time = time;
1194
1195 while (1) {
1196 struct ubifs_zbranch *zbr;
1197
1198 exact = ubifs_search_zbranch(c, znode, key, n);
1199
1200 if (znode->level == 0)
1201 break;
1202
1203 if (*n < 0)
1204 *n = 0;
1205 zbr = &znode->zbranch[*n];
1206
1207 if (zbr->znode) {
1208 znode->time = time;
1209 znode = zbr->znode;
1210 continue;
1211 }
1212
1213 /* znode is not in TNC cache, load it from the media */
1214 znode = ubifs_load_znode(c, zbr, znode, *n);
1215 if (IS_ERR(znode))
1216 return PTR_ERR(znode);
1217 }
1218
1219 *zn = znode;
1220 if (exact || !is_hash_key(c, key) || *n != -1) {
1221 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1222 return exact;
1223 }
1224
1225 /*
1226 * Here is a tricky place. We have not found the key and this is a
1227 * "hashed" key, which may collide. The rest of the code deals with
1228 * situations like this:
1229 *
1230 * | 3 | 5 |
1231 * / \
1232 * | 3 | 5 | | 6 | 7 | (x)
1233 *
1234 * Or more a complex example:
1235 *
1236 * | 1 | 5 |
1237 * / \
1238 * | 1 | 3 | | 5 | 8 |
1239 * \ /
1240 * | 5 | 5 | | 6 | 7 | (x)
1241 *
1242 * In the examples, if we are looking for key "5", we may reach nodes
1243 * marked with "(x)". In this case what we have do is to look at the
1244 * left and see if there is "5" key there. If there is, we have to
1245 * return it.
1246 *
1247 * Note, this whole situation is possible because we allow to have
1248 * elements which are equivalent to the next key in the parent in the
1249 * children of current znode. For example, this happens if we split a
1250 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1251 * like this:
1252 * | 3 | 5 |
1253 * / \
1254 * | 3 | 5 | | 5 | 6 | 7 |
1255 * ^
1256 * And this becomes what is at the first "picture" after key "5" marked
1257 * with "^" is removed. What could be done is we could prohibit
1258 * splitting in the middle of the colliding sequence. Also, when
1259 * removing the leftmost key, we would have to correct the key of the
1260 * parent node, which would introduce additional complications. Namely,
7d4e9ccb 1261 * if we changed the leftmost key of the parent znode, the garbage
1e51764a
AB
1262 * collector would be unable to find it (GC is doing this when GC'ing
1263 * indexing LEBs). Although we already have an additional RB-tree where
1264 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1265 * after the commit. But anyway, this does not look easy to implement
1266 * so we did not try this.
1267 */
1268 err = tnc_prev(c, &znode, n);
1269 if (err == -ENOENT) {
1270 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1271 *n = -1;
1272 return 0;
1273 }
1274 if (unlikely(err < 0))
1275 return err;
1276 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1277 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1278 *n = -1;
1279 return 0;
1280 }
1281
1282 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1283 *zn = znode;
1284 return 1;
1285}
1286
1287/**
1288 * lookup_level0_dirty - search for zero-level znode dirtying.
1289 * @c: UBIFS file-system description object
1290 * @key: key to lookup
1291 * @zn: znode is returned here
1292 * @n: znode branch slot number is returned here
1293 *
1294 * This function looks up the TNC tree and search for zero-level znode which
1295 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1296 * cases:
1297 * o exact match, i.e. the found zero-level znode contains key @key, then %1
1298 * is returned and slot number of the matched branch is stored in @n;
1299 * o not exact match, which means that zero-level znode does not contain @key
1300 * then %0 is returned and slot number of the closed branch is stored in
1301 * @n;
1302 * o @key is so small that it is even less than the lowest key of the
1303 * leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1304 *
1305 * Additionally all znodes in the path from the root to the located zero-level
1306 * znode are marked as dirty.
1307 *
1308 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1309 * function reads corresponding indexing nodes and inserts them to TNC. In
1310 * case of failure, a negative error code is returned.
1311 */
1312static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1313 struct ubifs_znode **zn, int *n)
1314{
1315 int err, exact;
1316 struct ubifs_znode *znode;
1317 unsigned long time = get_seconds();
1318
515315a1 1319 dbg_tnck(key, "search and dirty key ");
1e51764a
AB
1320
1321 znode = c->zroot.znode;
1322 if (unlikely(!znode)) {
1323 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1324 if (IS_ERR(znode))
1325 return PTR_ERR(znode);
1326 }
1327
1328 znode = dirty_cow_znode(c, &c->zroot);
1329 if (IS_ERR(znode))
1330 return PTR_ERR(znode);
1331
1332 znode->time = time;
1333
1334 while (1) {
1335 struct ubifs_zbranch *zbr;
1336
1337 exact = ubifs_search_zbranch(c, znode, key, n);
1338
1339 if (znode->level == 0)
1340 break;
1341
1342 if (*n < 0)
1343 *n = 0;
1344 zbr = &znode->zbranch[*n];
1345
1346 if (zbr->znode) {
1347 znode->time = time;
1348 znode = dirty_cow_znode(c, zbr);
1349 if (IS_ERR(znode))
1350 return PTR_ERR(znode);
1351 continue;
1352 }
1353
1354 /* znode is not in TNC cache, load it from the media */
1355 znode = ubifs_load_znode(c, zbr, znode, *n);
1356 if (IS_ERR(znode))
1357 return PTR_ERR(znode);
1358 znode = dirty_cow_znode(c, zbr);
1359 if (IS_ERR(znode))
1360 return PTR_ERR(znode);
1361 }
1362
1363 *zn = znode;
1364 if (exact || !is_hash_key(c, key) || *n != -1) {
1365 dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1366 return exact;
1367 }
1368
1369 /*
1370 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1371 * code.
1372 */
1373 err = tnc_prev(c, &znode, n);
1374 if (err == -ENOENT) {
1375 *n = -1;
1376 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1377 return 0;
1378 }
1379 if (unlikely(err < 0))
1380 return err;
1381 if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1382 *n = -1;
1383 dbg_tnc("found 0, lvl %d, n -1", znode->level);
1384 return 0;
1385 }
1386
1387 if (znode->cnext || !ubifs_zn_dirty(znode)) {
1388 znode = dirty_cow_bottom_up(c, znode);
1389 if (IS_ERR(znode))
1390 return PTR_ERR(znode);
1391 }
1392
1393 dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1394 *zn = znode;
1395 return 1;
1396}
1397
1398/**
601c0bc4 1399 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1e51764a 1400 * @c: UBIFS file-system description object
601c0bc4
AH
1401 * @lnum: LEB number
1402 * @gc_seq1: garbage collection sequence number
1e51764a 1403 *
601c0bc4
AH
1404 * This function determines if @lnum may have been garbage collected since
1405 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1406 * %0 is returned.
1e51764a 1407 */
601c0bc4 1408static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1e51764a 1409{
601c0bc4 1410 int gc_seq2, gced_lnum;
1e51764a 1411
601c0bc4
AH
1412 gced_lnum = c->gced_lnum;
1413 smp_rmb();
1414 gc_seq2 = c->gc_seq;
1415 /* Same seq means no GC */
1416 if (gc_seq1 == gc_seq2)
1417 return 0;
1418 /* Different by more than 1 means we don't know */
1419 if (gc_seq1 + 1 != gc_seq2)
1420 return 1;
1421 /*
1422 * We have seen the sequence number has increased by 1. Now we need to
1423 * be sure we read the right LEB number, so read it again.
1424 */
1425 smp_rmb();
1426 if (gced_lnum != c->gced_lnum)
1427 return 1;
1428 /* Finally we can check lnum */
1429 if (gced_lnum == lnum)
1430 return 1;
1431 return 0;
1e51764a
AB
1432}
1433
1434/**
1435 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1436 * @c: UBIFS file-system description object
1437 * @key: node key to lookup
1438 * @node: the node is returned here
1439 * @lnum: LEB number is returned here
1440 * @offs: offset is returned here
1441 *
e3c3efc2 1442 * This function looks up and reads node with key @key. The caller has to make
601c0bc4
AH
1443 * sure the @node buffer is large enough to fit the node. Returns zero in case
1444 * of success, %-ENOENT if the node was not found, and a negative error code in
1445 * case of failure. The node location can be returned in @lnum and @offs.
1e51764a
AB
1446 */
1447int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1448 void *node, int *lnum, int *offs)
1449{
601c0bc4 1450 int found, n, err, safely = 0, gc_seq1;
1e51764a
AB
1451 struct ubifs_znode *znode;
1452 struct ubifs_zbranch zbr, *zt;
1453
601c0bc4 1454again:
1e51764a
AB
1455 mutex_lock(&c->tnc_mutex);
1456 found = ubifs_lookup_level0(c, key, &znode, &n);
1457 if (!found) {
1458 err = -ENOENT;
1459 goto out;
1460 } else if (found < 0) {
1461 err = found;
1462 goto out;
1463 }
1464 zt = &znode->zbranch[n];
601c0bc4
AH
1465 if (lnum) {
1466 *lnum = zt->lnum;
1467 *offs = zt->offs;
1468 }
1e51764a
AB
1469 if (is_hash_key(c, key)) {
1470 /*
1471 * In this case the leaf node cache gets used, so we pass the
1472 * address of the zbranch and keep the mutex locked
1473 */
b91dc981 1474 err = tnc_read_hashed_node(c, zt, node);
1e51764a
AB
1475 goto out;
1476 }
601c0bc4
AH
1477 if (safely) {
1478 err = ubifs_tnc_read_node(c, zt, node);
1479 goto out;
1480 }
1481 /* Drop the TNC mutex prematurely and race with garbage collection */
1e51764a 1482 zbr = znode->zbranch[n];
601c0bc4 1483 gc_seq1 = c->gc_seq;
1e51764a
AB
1484 mutex_unlock(&c->tnc_mutex);
1485
601c0bc4
AH
1486 if (ubifs_get_wbuf(c, zbr.lnum)) {
1487 /* We do not GC journal heads */
1488 err = ubifs_tnc_read_node(c, &zbr, node);
1489 return err;
1490 }
1e51764a 1491
601c0bc4 1492 err = fallible_read_node(c, key, &zbr, node);
6dcfac4f 1493 if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
601c0bc4
AH
1494 /*
1495 * The node may have been GC'ed out from under us so try again
1496 * while keeping the TNC mutex locked.
1497 */
1498 safely = 1;
1499 goto again;
1500 }
1501 return 0;
1e51764a
AB
1502
1503out:
1504 mutex_unlock(&c->tnc_mutex);
1505 return err;
1506}
1507
4793e7c5
AH
1508/**
1509 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1510 * @c: UBIFS file-system description object
1511 * @bu: bulk-read parameters and results
1512 *
1513 * Lookup consecutive data node keys for the same inode that reside
6c0c42cd
AB
1514 * consecutively in the same LEB. This function returns zero in case of success
1515 * and a negative error code in case of failure.
1516 *
1517 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1518 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
6f7ab6d4 1519 * maximum possible amount of nodes for bulk-read.
4793e7c5
AH
1520 */
1521int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1522{
1523 int n, err = 0, lnum = -1, uninitialized_var(offs);
1524 int uninitialized_var(len);
1525 unsigned int block = key_block(c, &bu->key);
1526 struct ubifs_znode *znode;
1527
1528 bu->cnt = 0;
1529 bu->blk_cnt = 0;
1530 bu->eof = 0;
1531
1532 mutex_lock(&c->tnc_mutex);
1533 /* Find first key */
1534 err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1535 if (err < 0)
1536 goto out;
1537 if (err) {
1538 /* Key found */
1539 len = znode->zbranch[n].len;
1540 /* The buffer must be big enough for at least 1 node */
1541 if (len > bu->buf_len) {
1542 err = -EINVAL;
1543 goto out;
1544 }
1545 /* Add this key */
1546 bu->zbranch[bu->cnt++] = znode->zbranch[n];
1547 bu->blk_cnt += 1;
1548 lnum = znode->zbranch[n].lnum;
1549 offs = ALIGN(znode->zbranch[n].offs + len, 8);
1550 }
1551 while (1) {
1552 struct ubifs_zbranch *zbr;
1553 union ubifs_key *key;
1554 unsigned int next_block;
1555
1556 /* Find next key */
1557 err = tnc_next(c, &znode, &n);
1558 if (err)
1559 goto out;
1560 zbr = &znode->zbranch[n];
1561 key = &zbr->key;
1562 /* See if there is another data key for this file */
1563 if (key_inum(c, key) != key_inum(c, &bu->key) ||
1564 key_type(c, key) != UBIFS_DATA_KEY) {
1565 err = -ENOENT;
1566 goto out;
1567 }
1568 if (lnum < 0) {
1569 /* First key found */
1570 lnum = zbr->lnum;
1571 offs = ALIGN(zbr->offs + zbr->len, 8);
1572 len = zbr->len;
1573 if (len > bu->buf_len) {
1574 err = -EINVAL;
1575 goto out;
1576 }
1577 } else {
1578 /*
1579 * The data nodes must be in consecutive positions in
1580 * the same LEB.
1581 */
1582 if (zbr->lnum != lnum || zbr->offs != offs)
1583 goto out;
1584 offs += ALIGN(zbr->len, 8);
1585 len = ALIGN(len, 8) + zbr->len;
1586 /* Must not exceed buffer length */
1587 if (len > bu->buf_len)
1588 goto out;
1589 }
1590 /* Allow for holes */
1591 next_block = key_block(c, key);
1592 bu->blk_cnt += (next_block - block - 1);
1593 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1594 goto out;
1595 block = next_block;
1596 /* Add this key */
1597 bu->zbranch[bu->cnt++] = *zbr;
1598 bu->blk_cnt += 1;
1599 /* See if we have room for more */
1600 if (bu->cnt >= UBIFS_MAX_BULK_READ)
1601 goto out;
1602 if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1603 goto out;
1604 }
1605out:
1606 if (err == -ENOENT) {
1607 bu->eof = 1;
1608 err = 0;
1609 }
1610 bu->gc_seq = c->gc_seq;
1611 mutex_unlock(&c->tnc_mutex);
1612 if (err)
1613 return err;
1614 /*
1615 * An enormous hole could cause bulk-read to encompass too many
1616 * page cache pages, so limit the number here.
1617 */
63c300b6 1618 if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
4793e7c5
AH
1619 bu->blk_cnt = UBIFS_MAX_BULK_READ;
1620 /*
1621 * Ensure that bulk-read covers a whole number of page cache
1622 * pages.
1623 */
1624 if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1625 !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1626 return 0;
1627 if (bu->eof) {
1628 /* At the end of file we can round up */
1629 bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1630 return 0;
1631 }
1632 /* Exclude data nodes that do not make up a whole page cache page */
1633 block = key_block(c, &bu->key) + bu->blk_cnt;
1634 block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1635 while (bu->cnt) {
1636 if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1637 break;
1638 bu->cnt -= 1;
1639 }
1640 return 0;
1641}
1642
1643/**
1644 * read_wbuf - bulk-read from a LEB with a wbuf.
1645 * @wbuf: wbuf that may overlap the read
1646 * @buf: buffer into which to read
1647 * @len: read length
1648 * @lnum: LEB number from which to read
1649 * @offs: offset from which to read
1650 *
1651 * This functions returns %0 on success or a negative error code on failure.
1652 */
1653static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1654 int offs)
1655{
1656 const struct ubifs_info *c = wbuf->c;
1657 int rlen, overlap;
1658
1659 dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1660 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1661 ubifs_assert(!(offs & 7) && offs < c->leb_size);
1662 ubifs_assert(offs + len <= c->leb_size);
1663
1664 spin_lock(&wbuf->lock);
1665 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1666 if (!overlap) {
1667 /* We may safely unlock the write-buffer and read the data */
1668 spin_unlock(&wbuf->lock);
d304820a 1669 return ubifs_leb_read(c, lnum, buf, offs, len, 0);
4793e7c5
AH
1670 }
1671
1672 /* Don't read under wbuf */
1673 rlen = wbuf->offs - offs;
1674 if (rlen < 0)
1675 rlen = 0;
1676
1677 /* Copy the rest from the write-buffer */
1678 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1679 spin_unlock(&wbuf->lock);
1680
1681 if (rlen > 0)
1682 /* Read everything that goes before write-buffer */
d304820a 1683 return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
4793e7c5
AH
1684
1685 return 0;
1686}
1687
1688/**
1689 * validate_data_node - validate data nodes for bulk-read.
1690 * @c: UBIFS file-system description object
1691 * @buf: buffer containing data node to validate
1692 * @zbr: zbranch of data node to validate
1693 *
1694 * This functions returns %0 on success or a negative error code on failure.
1695 */
1696static int validate_data_node(struct ubifs_info *c, void *buf,
1697 struct ubifs_zbranch *zbr)
1698{
1699 union ubifs_key key1;
1700 struct ubifs_ch *ch = buf;
1701 int err, len;
1702
1703 if (ch->node_type != UBIFS_DATA_NODE) {
235c362b 1704 ubifs_err(c, "bad node type (%d but expected %d)",
4793e7c5
AH
1705 ch->node_type, UBIFS_DATA_NODE);
1706 goto out_err;
1707 }
1708
2953e73f 1709 err = ubifs_check_node(c, buf, zbr->lnum, zbr->offs, 0, 0);
4793e7c5 1710 if (err) {
235c362b 1711 ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
4793e7c5
AH
1712 goto out;
1713 }
1714
1715 len = le32_to_cpu(ch->len);
1716 if (len != zbr->len) {
235c362b 1717 ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
4793e7c5
AH
1718 goto out_err;
1719 }
1720
1721 /* Make sure the key of the read node is correct */
1722 key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1723 if (!keys_eq(c, &zbr->key, &key1)) {
235c362b 1724 ubifs_err(c, "bad key in node at LEB %d:%d",
4793e7c5 1725 zbr->lnum, zbr->offs);
515315a1
AB
1726 dbg_tnck(&zbr->key, "looked for key ");
1727 dbg_tnck(&key1, "found node's key ");
4793e7c5
AH
1728 goto out_err;
1729 }
1730
1731 return 0;
1732
1733out_err:
1734 err = -EINVAL;
1735out:
235c362b 1736 ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
edf6be24 1737 ubifs_dump_node(c, buf);
7c46d0ae 1738 dump_stack();
4793e7c5
AH
1739 return err;
1740}
1741
1742/**
1743 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1744 * @c: UBIFS file-system description object
1745 * @bu: bulk-read parameters and results
1746 *
1747 * This functions reads and validates the data nodes that were identified by the
1748 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1749 * -EAGAIN to indicate a race with GC, or another negative error code on
1750 * failure.
1751 */
1752int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1753{
1754 int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1755 struct ubifs_wbuf *wbuf;
1756 void *buf;
1757
1758 len = bu->zbranch[bu->cnt - 1].offs;
1759 len += bu->zbranch[bu->cnt - 1].len - offs;
1760 if (len > bu->buf_len) {
235c362b 1761 ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
4793e7c5
AH
1762 return -EINVAL;
1763 }
1764
1765 /* Do the read */
1766 wbuf = ubifs_get_wbuf(c, lnum);
1767 if (wbuf)
1768 err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1769 else
d304820a 1770 err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
4793e7c5
AH
1771
1772 /* Check for a race with GC */
1773 if (maybe_leb_gced(c, lnum, bu->gc_seq))
1774 return -EAGAIN;
1775
1776 if (err && err != -EBADMSG) {
235c362b 1777 ubifs_err(c, "failed to read from LEB %d:%d, error %d",
4793e7c5 1778 lnum, offs, err);
7c46d0ae 1779 dump_stack();
515315a1 1780 dbg_tnck(&bu->key, "key ");
4793e7c5
AH
1781 return err;
1782 }
1783
1784 /* Validate the nodes read */
1785 buf = bu->buf;
1786 for (i = 0; i < bu->cnt; i++) {
1787 err = validate_data_node(c, buf, &bu->zbranch[i]);
1788 if (err)
1789 return err;
1790 buf = buf + ALIGN(bu->zbranch[i].len, 8);
1791 }
1792
1793 return 0;
1794}
1795
1e51764a
AB
1796/**
1797 * do_lookup_nm- look up a "hashed" node.
1798 * @c: UBIFS file-system description object
1799 * @key: node key to lookup
1800 * @node: the node is returned here
1801 * @nm: node name
1802 *
528e3d17 1803 * This function looks up and reads a node which contains name hash in the key.
1e51764a
AB
1804 * Since the hash may have collisions, there may be many nodes with the same
1805 * key, so we have to sequentially look to all of them until the needed one is
1806 * found. This function returns zero in case of success, %-ENOENT if the node
1807 * was not found, and a negative error code in case of failure.
1808 */
1809static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c 1810 void *node, const struct fscrypt_name *nm)
1e51764a
AB
1811{
1812 int found, n, err;
1813 struct ubifs_znode *znode;
1e51764a 1814
35ee314c 1815 dbg_tnck(key, "key ");
1e51764a
AB
1816 mutex_lock(&c->tnc_mutex);
1817 found = ubifs_lookup_level0(c, key, &znode, &n);
1818 if (!found) {
1819 err = -ENOENT;
1820 goto out_unlock;
1821 } else if (found < 0) {
1822 err = found;
1823 goto out_unlock;
1824 }
1825
1826 ubifs_assert(n >= 0);
1827
1828 err = resolve_collision(c, key, &znode, &n, nm);
1829 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1830 if (unlikely(err < 0))
1831 goto out_unlock;
1832 if (err == 0) {
1833 err = -ENOENT;
1834 goto out_unlock;
1835 }
1836
b91dc981 1837 err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1e51764a
AB
1838
1839out_unlock:
1840 mutex_unlock(&c->tnc_mutex);
1841 return err;
1842}
1843
1844/**
1845 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1846 * @c: UBIFS file-system description object
1847 * @key: node key to lookup
1848 * @node: the node is returned here
1849 * @nm: node name
1850 *
528e3d17 1851 * This function looks up and reads a node which contains name hash in the key.
1e51764a
AB
1852 * Since the hash may have collisions, there may be many nodes with the same
1853 * key, so we have to sequentially look to all of them until the needed one is
1854 * found. This function returns zero in case of success, %-ENOENT if the node
1855 * was not found, and a negative error code in case of failure.
1856 */
1857int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c 1858 void *node, const struct fscrypt_name *nm)
1e51764a
AB
1859{
1860 int err, len;
1861 const struct ubifs_dent_node *dent = node;
1862
1863 /*
1864 * We assume that in most of the cases there are no name collisions and
1865 * 'ubifs_tnc_lookup()' returns us the right direntry.
1866 */
1867 err = ubifs_tnc_lookup(c, key, node);
1868 if (err)
1869 return err;
1870
1871 len = le16_to_cpu(dent->nlen);
f4f61d2c 1872 if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1e51764a
AB
1873 return 0;
1874
1875 /*
1876 * Unluckily, there are hash collisions and we have to iterate over
1877 * them look at each direntry with colliding name hash sequentially.
1878 */
528e3d17 1879
1e51764a
AB
1880 return do_lookup_nm(c, key, node, nm);
1881}
1882
781f675e
RW
1883static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1884 struct ubifs_dent_node *dent, uint32_t cookie,
1885 struct ubifs_znode **zn, int *n)
528e3d17 1886{
781f675e
RW
1887 int err;
1888 struct ubifs_znode *znode = *zn;
528e3d17 1889 struct ubifs_zbranch *zbr;
781f675e 1890 union ubifs_key *dkey;
528e3d17
RW
1891
1892 for (;;) {
1893 if (!err) {
781f675e 1894 err = tnc_next(c, &znode, n);
528e3d17 1895 if (err)
781f675e 1896 goto out;
528e3d17
RW
1897 }
1898
781f675e 1899 zbr = &znode->zbranch[*n];
528e3d17
RW
1900 dkey = &zbr->key;
1901
1902 if (key_inum(c, dkey) != key_inum(c, key) ||
781f675e 1903 key_type(c, dkey) != key_type(c, key)) {
528e3d17 1904 err = -ENOENT;
781f675e 1905 goto out;
528e3d17
RW
1906 }
1907
1908 err = tnc_read_hashed_node(c, zbr, dent);
1909 if (err)
781f675e 1910 goto out;
528e3d17
RW
1911
1912 if (key_hash(c, key) == key_hash(c, dkey) &&
781f675e
RW
1913 le32_to_cpu(dent->cookie) == cookie) {
1914 *zn = znode;
1915 goto out;
1916 }
528e3d17
RW
1917 }
1918
781f675e
RW
1919out:
1920
1921 return err;
1922}
1923
1924static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1925 struct ubifs_dent_node *dent, uint32_t cookie)
1926{
1927 int n, err;
1928 struct ubifs_znode *znode;
1929 union ubifs_key start_key;
1930
1931 ubifs_assert(is_hash_key(c, key));
1932
1933 lowest_dent_key(c, &start_key, key_inum(c, key));
1934
1935 mutex_lock(&c->tnc_mutex);
1936 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1937 if (unlikely(err < 0))
1938 goto out_unlock;
1939
1940 err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
1941
528e3d17
RW
1942out_unlock:
1943 mutex_unlock(&c->tnc_mutex);
1944 return err;
1945}
1946
1947/**
1948 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1949 * @c: UBIFS file-system description object
1950 * @key: node key to lookup
1951 * @node: the node is returned here
1952 * @cookie: node cookie for collision resolution
1953 *
1954 * This function looks up and reads a node which contains name hash in the key.
1955 * Since the hash may have collisions, there may be many nodes with the same
1956 * key, so we have to sequentially look to all of them until the needed one
1957 * with the same cookie value is found.
1958 * This function returns zero in case of success, %-ENOENT if the node
1959 * was not found, and a negative error code in case of failure.
1960 */
1961int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1962 void *node, uint32_t cookie)
1963{
1964 int err;
1965 const struct ubifs_dent_node *dent = node;
1966
d63d61c1
RW
1967 if (!c->double_hash)
1968 return -EOPNOTSUPP;
1969
528e3d17
RW
1970 /*
1971 * We assume that in most of the cases there are no name collisions and
1972 * 'ubifs_tnc_lookup()' returns us the right direntry.
1973 */
1974 err = ubifs_tnc_lookup(c, key, node);
1975 if (err)
1976 return err;
1977
1978 if (le32_to_cpu(dent->cookie) == cookie)
1979 return 0;
1980
1981 /*
1982 * Unluckily, there are hash collisions and we have to iterate over
1983 * them look at each direntry with colliding name hash sequentially.
1984 */
1985 return do_lookup_dh(c, key, node, cookie);
1986}
1987
1e51764a
AB
1988/**
1989 * correct_parent_keys - correct parent znodes' keys.
1990 * @c: UBIFS file-system description object
1991 * @znode: znode to correct parent znodes for
1992 *
1993 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
1994 * zbranch changes, keys of parent znodes have to be corrected. This helper
1995 * function is called in such situations and corrects the keys if needed.
1996 */
1997static void correct_parent_keys(const struct ubifs_info *c,
1998 struct ubifs_znode *znode)
1999{
2000 union ubifs_key *key, *key1;
2001
2002 ubifs_assert(znode->parent);
2003 ubifs_assert(znode->iip == 0);
2004
2005 key = &znode->zbranch[0].key;
2006 key1 = &znode->parent->zbranch[0].key;
2007
2008 while (keys_cmp(c, key, key1) < 0) {
2009 key_copy(c, key, key1);
2010 znode = znode->parent;
2011 znode->alt = 1;
2012 if (!znode->parent || znode->iip)
2013 break;
2014 key1 = &znode->parent->zbranch[0].key;
2015 }
2016}
2017
2018/**
2019 * insert_zbranch - insert a zbranch into a znode.
2020 * @znode: znode into which to insert
2021 * @zbr: zbranch to insert
2022 * @n: slot number to insert to
2023 *
2024 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2025 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2026 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2027 * slot, zbranches starting from @n have to be moved right.
2028 */
2029static void insert_zbranch(struct ubifs_znode *znode,
2030 const struct ubifs_zbranch *zbr, int n)
2031{
2032 int i;
2033
2034 ubifs_assert(ubifs_zn_dirty(znode));
2035
2036 if (znode->level) {
2037 for (i = znode->child_cnt; i > n; i--) {
2038 znode->zbranch[i] = znode->zbranch[i - 1];
2039 if (znode->zbranch[i].znode)
2040 znode->zbranch[i].znode->iip = i;
2041 }
2042 if (zbr->znode)
2043 zbr->znode->iip = n;
2044 } else
2045 for (i = znode->child_cnt; i > n; i--)
2046 znode->zbranch[i] = znode->zbranch[i - 1];
2047
2048 znode->zbranch[n] = *zbr;
2049 znode->child_cnt += 1;
2050
2051 /*
2052 * After inserting at slot zero, the lower bound of the key range of
2053 * this znode may have changed. If this znode is subsequently split
2054 * then the upper bound of the key range may change, and furthermore
2055 * it could change to be lower than the original lower bound. If that
2056 * happens, then it will no longer be possible to find this znode in the
2057 * TNC using the key from the index node on flash. That is bad because
2058 * if it is not found, we will assume it is obsolete and may overwrite
2059 * it. Then if there is an unclean unmount, we will start using the
2060 * old index which will be broken.
2061 *
2062 * So we first mark znodes that have insertions at slot zero, and then
2063 * if they are split we add their lnum/offs to the old_idx tree.
2064 */
2065 if (n == 0)
2066 znode->alt = 1;
2067}
2068
2069/**
2070 * tnc_insert - insert a node into TNC.
2071 * @c: UBIFS file-system description object
2072 * @znode: znode to insert into
2073 * @zbr: branch to insert
2074 * @n: slot number to insert new zbranch to
2075 *
2076 * This function inserts a new node described by @zbr into znode @znode. If
2077 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2078 * are splat as well if needed. Returns zero in case of success or a negative
2079 * error code in case of failure.
2080 */
2081static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2082 struct ubifs_zbranch *zbr, int n)
2083{
2084 struct ubifs_znode *zn, *zi, *zp;
2085 int i, keep, move, appending = 0;
2242c689 2086 union ubifs_key *key = &zbr->key, *key1;
1e51764a
AB
2087
2088 ubifs_assert(n >= 0 && n <= c->fanout);
2089
2090 /* Implement naive insert for now */
2091again:
2092 zp = znode->parent;
2093 if (znode->child_cnt < c->fanout) {
2094 ubifs_assert(n != c->fanout);
515315a1 2095 dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
1e51764a
AB
2096
2097 insert_zbranch(znode, zbr, n);
2098
2099 /* Ensure parent's key is correct */
2100 if (n == 0 && zp && znode->iip == 0)
2101 correct_parent_keys(c, znode);
2102
2103 return 0;
2104 }
2105
2106 /*
2107 * Unfortunately, @znode does not have more empty slots and we have to
2108 * split it.
2109 */
515315a1 2110 dbg_tnck(key, "splitting level %d, key ", znode->level);
1e51764a
AB
2111
2112 if (znode->alt)
2113 /*
2114 * We can no longer be sure of finding this znode by key, so we
2115 * record it in the old_idx tree.
2116 */
2117 ins_clr_old_idx_znode(c, znode);
2118
2119 zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2120 if (!zn)
2121 return -ENOMEM;
2122 zn->parent = zp;
2123 zn->level = znode->level;
2124
2125 /* Decide where to split */
2242c689
AH
2126 if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2127 /* Try not to split consecutive data keys */
2128 if (n == c->fanout) {
2129 key1 = &znode->zbranch[n - 1].key;
2130 if (key_inum(c, key1) == key_inum(c, key) &&
2131 key_type(c, key1) == UBIFS_DATA_KEY)
2132 appending = 1;
2133 } else
2134 goto check_split;
2135 } else if (appending && n != c->fanout) {
2136 /* Try not to split consecutive data keys */
2137 appending = 0;
2138check_split:
2139 if (n >= (c->fanout + 1) / 2) {
2140 key1 = &znode->zbranch[0].key;
2141 if (key_inum(c, key1) == key_inum(c, key) &&
2142 key_type(c, key1) == UBIFS_DATA_KEY) {
2143 key1 = &znode->zbranch[n].key;
2144 if (key_inum(c, key1) != key_inum(c, key) ||
2145 key_type(c, key1) != UBIFS_DATA_KEY) {
2146 keep = n;
2147 move = c->fanout - keep;
2148 zi = znode;
2149 goto do_split;
2150 }
2151 }
2152 }
1e51764a
AB
2153 }
2154
2155 if (appending) {
2156 keep = c->fanout;
2157 move = 0;
2158 } else {
2159 keep = (c->fanout + 1) / 2;
2160 move = c->fanout - keep;
2161 }
2162
2163 /*
2164 * Although we don't at present, we could look at the neighbors and see
2165 * if we can move some zbranches there.
2166 */
2167
2168 if (n < keep) {
2169 /* Insert into existing znode */
2170 zi = znode;
2171 move += 1;
2172 keep -= 1;
2173 } else {
2174 /* Insert into new znode */
2175 zi = zn;
2176 n -= keep;
2177 /* Re-parent */
2178 if (zn->level != 0)
2179 zbr->znode->parent = zn;
2180 }
2181
2242c689
AH
2182do_split:
2183
1e51764a
AB
2184 __set_bit(DIRTY_ZNODE, &zn->flags);
2185 atomic_long_inc(&c->dirty_zn_cnt);
2186
2187 zn->child_cnt = move;
2188 znode->child_cnt = keep;
2189
2190 dbg_tnc("moving %d, keeping %d", move, keep);
2191
2192 /* Move zbranch */
2193 for (i = 0; i < move; i++) {
2194 zn->zbranch[i] = znode->zbranch[keep + i];
2195 /* Re-parent */
2196 if (zn->level != 0)
2197 if (zn->zbranch[i].znode) {
2198 zn->zbranch[i].znode->parent = zn;
2199 zn->zbranch[i].znode->iip = i;
2200 }
2201 }
2202
2203 /* Insert new key and branch */
515315a1 2204 dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
1e51764a
AB
2205
2206 insert_zbranch(zi, zbr, n);
2207
2208 /* Insert new znode (produced by spitting) into the parent */
2209 if (zp) {
2242c689
AH
2210 if (n == 0 && zi == znode && znode->iip == 0)
2211 correct_parent_keys(c, znode);
2212
1e51764a
AB
2213 /* Locate insertion point */
2214 n = znode->iip + 1;
1e51764a
AB
2215
2216 /* Tail recursion */
2217 zbr->key = zn->zbranch[0].key;
2218 zbr->znode = zn;
2219 zbr->lnum = 0;
2220 zbr->offs = 0;
2221 zbr->len = 0;
2222 znode = zp;
2223
2224 goto again;
2225 }
2226
2227 /* We have to split root znode */
2228 dbg_tnc("creating new zroot at level %d", znode->level + 1);
2229
2230 zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2231 if (!zi)
2232 return -ENOMEM;
2233
2234 zi->child_cnt = 2;
2235 zi->level = znode->level + 1;
2236
2237 __set_bit(DIRTY_ZNODE, &zi->flags);
2238 atomic_long_inc(&c->dirty_zn_cnt);
2239
2240 zi->zbranch[0].key = znode->zbranch[0].key;
2241 zi->zbranch[0].znode = znode;
2242 zi->zbranch[0].lnum = c->zroot.lnum;
2243 zi->zbranch[0].offs = c->zroot.offs;
2244 zi->zbranch[0].len = c->zroot.len;
2245 zi->zbranch[1].key = zn->zbranch[0].key;
2246 zi->zbranch[1].znode = zn;
2247
2248 c->zroot.lnum = 0;
2249 c->zroot.offs = 0;
2250 c->zroot.len = 0;
2251 c->zroot.znode = zi;
2252
2253 zn->parent = zi;
2254 zn->iip = 1;
2255 znode->parent = zi;
2256 znode->iip = 0;
2257
2258 return 0;
2259}
2260
2261/**
2262 * ubifs_tnc_add - add a node to TNC.
2263 * @c: UBIFS file-system description object
2264 * @key: key to add
2265 * @lnum: LEB number of node
2266 * @offs: node offset
2267 * @len: node length
2268 *
2269 * This function adds a node with key @key to TNC. The node may be new or it may
2270 * obsolete some existing one. Returns %0 on success or negative error code on
2271 * failure.
2272 */
2273int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2274 int offs, int len)
2275{
2276 int found, n, err = 0;
2277 struct ubifs_znode *znode;
2278
2279 mutex_lock(&c->tnc_mutex);
515315a1 2280 dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
1e51764a
AB
2281 found = lookup_level0_dirty(c, key, &znode, &n);
2282 if (!found) {
2283 struct ubifs_zbranch zbr;
2284
2285 zbr.znode = NULL;
2286 zbr.lnum = lnum;
2287 zbr.offs = offs;
2288 zbr.len = len;
2289 key_copy(c, key, &zbr.key);
2290 err = tnc_insert(c, znode, &zbr, n + 1);
2291 } else if (found == 1) {
2292 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2293
2294 lnc_free(zbr);
2295 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2296 zbr->lnum = lnum;
2297 zbr->offs = offs;
2298 zbr->len = len;
2299 } else
2300 err = found;
2301 if (!err)
2302 err = dbg_check_tnc(c, 0);
2303 mutex_unlock(&c->tnc_mutex);
2304
2305 return err;
2306}
2307
2308/**
2309 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2310 * @c: UBIFS file-system description object
2311 * @key: key to add
2312 * @old_lnum: LEB number of old node
2313 * @old_offs: old node offset
2314 * @lnum: LEB number of node
2315 * @offs: node offset
2316 * @len: node length
2317 *
2318 * This function replaces a node with key @key in the TNC only if the old node
2319 * is found. This function is called by garbage collection when node are moved.
2320 * Returns %0 on success or negative error code on failure.
2321 */
2322int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2323 int old_lnum, int old_offs, int lnum, int offs, int len)
2324{
2325 int found, n, err = 0;
2326 struct ubifs_znode *znode;
2327
2328 mutex_lock(&c->tnc_mutex);
515315a1
AB
2329 dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2330 old_offs, lnum, offs, len);
1e51764a
AB
2331 found = lookup_level0_dirty(c, key, &znode, &n);
2332 if (found < 0) {
2333 err = found;
2334 goto out_unlock;
2335 }
2336
2337 if (found == 1) {
2338 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2339
2340 found = 0;
2341 if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2342 lnc_free(zbr);
2343 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2344 if (err)
2345 goto out_unlock;
2346 zbr->lnum = lnum;
2347 zbr->offs = offs;
2348 zbr->len = len;
2349 found = 1;
2350 } else if (is_hash_key(c, key)) {
2351 found = resolve_collision_directly(c, key, &znode, &n,
2352 old_lnum, old_offs);
2353 dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2354 found, znode, n, old_lnum, old_offs);
2355 if (found < 0) {
2356 err = found;
2357 goto out_unlock;
2358 }
2359
2360 if (found) {
2361 /* Ensure the znode is dirtied */
2362 if (znode->cnext || !ubifs_zn_dirty(znode)) {
f92b9826
AB
2363 znode = dirty_cow_bottom_up(c, znode);
2364 if (IS_ERR(znode)) {
2365 err = PTR_ERR(znode);
2366 goto out_unlock;
2367 }
1e51764a
AB
2368 }
2369 zbr = &znode->zbranch[n];
2370 lnc_free(zbr);
2371 err = ubifs_add_dirt(c, zbr->lnum,
2372 zbr->len);
2373 if (err)
2374 goto out_unlock;
2375 zbr->lnum = lnum;
2376 zbr->offs = offs;
2377 zbr->len = len;
2378 }
2379 }
2380 }
2381
2382 if (!found)
2383 err = ubifs_add_dirt(c, lnum, len);
2384
2385 if (!err)
2386 err = dbg_check_tnc(c, 0);
2387
2388out_unlock:
2389 mutex_unlock(&c->tnc_mutex);
2390 return err;
2391}
2392
2393/**
2394 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2395 * @c: UBIFS file-system description object
2396 * @key: key to add
2397 * @lnum: LEB number of node
2398 * @offs: node offset
2399 * @len: node length
2400 * @nm: node name
2401 *
2402 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2403 * may have collisions, like directory entry keys.
2404 */
2405int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c
RW
2406 int lnum, int offs, int len,
2407 const struct fscrypt_name *nm)
1e51764a
AB
2408{
2409 int found, n, err = 0;
2410 struct ubifs_znode *znode;
2411
2412 mutex_lock(&c->tnc_mutex);
35ee314c 2413 dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
1e51764a
AB
2414 found = lookup_level0_dirty(c, key, &znode, &n);
2415 if (found < 0) {
2416 err = found;
2417 goto out_unlock;
2418 }
2419
2420 if (found == 1) {
2421 if (c->replaying)
2422 found = fallible_resolve_collision(c, key, &znode, &n,
2423 nm, 1);
2424 else
2425 found = resolve_collision(c, key, &znode, &n, nm);
2426 dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2427 if (found < 0) {
2428 err = found;
2429 goto out_unlock;
2430 }
2431
2432 /* Ensure the znode is dirtied */
2433 if (znode->cnext || !ubifs_zn_dirty(znode)) {
f92b9826
AB
2434 znode = dirty_cow_bottom_up(c, znode);
2435 if (IS_ERR(znode)) {
2436 err = PTR_ERR(znode);
2437 goto out_unlock;
2438 }
1e51764a
AB
2439 }
2440
2441 if (found == 1) {
2442 struct ubifs_zbranch *zbr = &znode->zbranch[n];
2443
2444 lnc_free(zbr);
2445 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2446 zbr->lnum = lnum;
2447 zbr->offs = offs;
2448 zbr->len = len;
2449 goto out_unlock;
2450 }
2451 }
2452
2453 if (!found) {
2454 struct ubifs_zbranch zbr;
2455
2456 zbr.znode = NULL;
2457 zbr.lnum = lnum;
2458 zbr.offs = offs;
2459 zbr.len = len;
2460 key_copy(c, key, &zbr.key);
2461 err = tnc_insert(c, znode, &zbr, n + 1);
2462 if (err)
2463 goto out_unlock;
2464 if (c->replaying) {
2465 /*
2466 * We did not find it in the index so there may be a
2467 * dangling branch still in the index. So we remove it
2468 * by passing 'ubifs_tnc_remove_nm()' the same key but
2469 * an unmatchable name.
2470 */
f4f61d2c 2471 struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
1e51764a
AB
2472
2473 err = dbg_check_tnc(c, 0);
2474 mutex_unlock(&c->tnc_mutex);
2475 if (err)
2476 return err;
2477 return ubifs_tnc_remove_nm(c, key, &noname);
2478 }
2479 }
2480
2481out_unlock:
2482 if (!err)
2483 err = dbg_check_tnc(c, 0);
2484 mutex_unlock(&c->tnc_mutex);
2485 return err;
2486}
2487
2488/**
2489 * tnc_delete - delete a znode form TNC.
2490 * @c: UBIFS file-system description object
2491 * @znode: znode to delete from
2492 * @n: zbranch slot number to delete
2493 *
2494 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2495 * case of success and a negative error code in case of failure.
2496 */
2497static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2498{
2499 struct ubifs_zbranch *zbr;
2500 struct ubifs_znode *zp;
2501 int i, err;
2502
2503 /* Delete without merge for now */
2504 ubifs_assert(znode->level == 0);
2505 ubifs_assert(n >= 0 && n < c->fanout);
515315a1 2506 dbg_tnck(&znode->zbranch[n].key, "deleting key ");
1e51764a
AB
2507
2508 zbr = &znode->zbranch[n];
2509 lnc_free(zbr);
2510
2511 err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2512 if (err) {
edf6be24 2513 ubifs_dump_znode(c, znode);
1e51764a
AB
2514 return err;
2515 }
2516
2517 /* We do not "gap" zbranch slots */
2518 for (i = n; i < znode->child_cnt - 1; i++)
2519 znode->zbranch[i] = znode->zbranch[i + 1];
2520 znode->child_cnt -= 1;
2521
2522 if (znode->child_cnt > 0)
2523 return 0;
2524
2525 /*
2526 * This was the last zbranch, we have to delete this znode from the
2527 * parent.
2528 */
2529
2530 do {
f42eed7c 2531 ubifs_assert(!ubifs_zn_obsolete(znode));
1e51764a
AB
2532 ubifs_assert(ubifs_zn_dirty(znode));
2533
2534 zp = znode->parent;
2535 n = znode->iip;
2536
2537 atomic_long_dec(&c->dirty_zn_cnt);
2538
2539 err = insert_old_idx_znode(c, znode);
2540 if (err)
2541 return err;
2542
2543 if (znode->cnext) {
2544 __set_bit(OBSOLETE_ZNODE, &znode->flags);
2545 atomic_long_inc(&c->clean_zn_cnt);
2546 atomic_long_inc(&ubifs_clean_zn_cnt);
2547 } else
2548 kfree(znode);
2549 znode = zp;
2550 } while (znode->child_cnt == 1); /* while removing last child */
2551
2552 /* Remove from znode, entry n - 1 */
2553 znode->child_cnt -= 1;
2554 ubifs_assert(znode->level != 0);
2555 for (i = n; i < znode->child_cnt; i++) {
2556 znode->zbranch[i] = znode->zbranch[i + 1];
2557 if (znode->zbranch[i].znode)
2558 znode->zbranch[i].znode->iip = i;
2559 }
2560
2561 /*
2562 * If this is the root and it has only 1 child then
2563 * collapse the tree.
2564 */
2565 if (!znode->parent) {
2566 while (znode->child_cnt == 1 && znode->level != 0) {
2567 zp = znode;
2568 zbr = &znode->zbranch[0];
2569 znode = get_znode(c, znode, 0);
2570 if (IS_ERR(znode))
2571 return PTR_ERR(znode);
2572 znode = dirty_cow_znode(c, zbr);
2573 if (IS_ERR(znode))
2574 return PTR_ERR(znode);
2575 znode->parent = NULL;
2576 znode->iip = 0;
2577 if (c->zroot.len) {
2578 err = insert_old_idx(c, c->zroot.lnum,
2579 c->zroot.offs);
2580 if (err)
2581 return err;
2582 }
2583 c->zroot.lnum = zbr->lnum;
2584 c->zroot.offs = zbr->offs;
2585 c->zroot.len = zbr->len;
2586 c->zroot.znode = znode;
f42eed7c
AB
2587 ubifs_assert(!ubifs_zn_obsolete(zp));
2588 ubifs_assert(ubifs_zn_dirty(zp));
1e51764a
AB
2589 atomic_long_dec(&c->dirty_zn_cnt);
2590
2591 if (zp->cnext) {
2592 __set_bit(OBSOLETE_ZNODE, &zp->flags);
2593 atomic_long_inc(&c->clean_zn_cnt);
2594 atomic_long_inc(&ubifs_clean_zn_cnt);
2595 } else
2596 kfree(zp);
2597 }
2598 }
2599
2600 return 0;
2601}
2602
2603/**
2604 * ubifs_tnc_remove - remove an index entry of a node.
2605 * @c: UBIFS file-system description object
2606 * @key: key of node
2607 *
2608 * Returns %0 on success or negative error code on failure.
2609 */
2610int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2611{
2612 int found, n, err = 0;
2613 struct ubifs_znode *znode;
2614
2615 mutex_lock(&c->tnc_mutex);
515315a1 2616 dbg_tnck(key, "key ");
1e51764a
AB
2617 found = lookup_level0_dirty(c, key, &znode, &n);
2618 if (found < 0) {
2619 err = found;
2620 goto out_unlock;
2621 }
2622 if (found == 1)
2623 err = tnc_delete(c, znode, n);
2624 if (!err)
2625 err = dbg_check_tnc(c, 0);
2626
2627out_unlock:
2628 mutex_unlock(&c->tnc_mutex);
2629 return err;
2630}
2631
2632/**
2633 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2634 * @c: UBIFS file-system description object
2635 * @key: key of node
2636 * @nm: directory entry name
2637 *
2638 * Returns %0 on success or negative error code on failure.
2639 */
2640int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
f4f61d2c 2641 const struct fscrypt_name *nm)
1e51764a
AB
2642{
2643 int n, err;
2644 struct ubifs_znode *znode;
2645
2646 mutex_lock(&c->tnc_mutex);
35ee314c 2647 dbg_tnck(key, "key ");
1e51764a
AB
2648 err = lookup_level0_dirty(c, key, &znode, &n);
2649 if (err < 0)
2650 goto out_unlock;
2651
2652 if (err) {
2653 if (c->replaying)
2654 err = fallible_resolve_collision(c, key, &znode, &n,
2655 nm, 0);
2656 else
2657 err = resolve_collision(c, key, &znode, &n, nm);
2658 dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2659 if (err < 0)
2660 goto out_unlock;
2661 if (err) {
2662 /* Ensure the znode is dirtied */
2663 if (znode->cnext || !ubifs_zn_dirty(znode)) {
c4361570
AB
2664 znode = dirty_cow_bottom_up(c, znode);
2665 if (IS_ERR(znode)) {
2666 err = PTR_ERR(znode);
2667 goto out_unlock;
2668 }
1e51764a
AB
2669 }
2670 err = tnc_delete(c, znode, n);
2671 }
2672 }
2673
2674out_unlock:
2675 if (!err)
2676 err = dbg_check_tnc(c, 0);
2677 mutex_unlock(&c->tnc_mutex);
2678 return err;
2679}
2680
781f675e
RW
2681/**
2682 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2683 * @c: UBIFS file-system description object
2684 * @key: key of node
2685 * @cookie: node cookie for collision resolution
2686 *
2687 * Returns %0 on success or negative error code on failure.
2688 */
2689int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2690 uint32_t cookie)
2691{
2692 int n, err;
2693 struct ubifs_znode *znode;
2694 struct ubifs_dent_node *dent;
2695 struct ubifs_zbranch *zbr;
2696
2697 if (!c->double_hash)
2698 return -EOPNOTSUPP;
2699
2700 mutex_lock(&c->tnc_mutex);
2701 err = lookup_level0_dirty(c, key, &znode, &n);
2702 if (err <= 0)
2703 goto out_unlock;
2704
2705 zbr = &znode->zbranch[n];
2706 dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2707 if (!dent) {
2708 err = -ENOMEM;
2709 goto out_unlock;
2710 }
2711
2712 err = tnc_read_hashed_node(c, zbr, dent);
2713 if (err)
2714 goto out_free;
2715
2716 /* If the cookie does not match, we're facing a hash collision. */
2717 if (le32_to_cpu(dent->cookie) != cookie) {
2718 union ubifs_key start_key;
2719
2720 lowest_dent_key(c, &start_key, key_inum(c, key));
2721
2722 err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2723 if (unlikely(err < 0))
2724 goto out_free;
2725
2726 err = search_dh_cookie(c, key, dent, cookie, &znode, &n);
2727 if (err)
2728 goto out_free;
2729 }
2730
2731 if (znode->cnext || !ubifs_zn_dirty(znode)) {
2732 znode = dirty_cow_bottom_up(c, znode);
2733 if (IS_ERR(znode)) {
2734 err = PTR_ERR(znode);
2735 goto out_free;
2736 }
2737 }
2738 err = tnc_delete(c, znode, n);
2739
2740out_free:
2741 kfree(dent);
2742out_unlock:
2743 if (!err)
2744 err = dbg_check_tnc(c, 0);
2745 mutex_unlock(&c->tnc_mutex);
2746 return err;
2747}
2748
1e51764a
AB
2749/**
2750 * key_in_range - determine if a key falls within a range of keys.
2751 * @c: UBIFS file-system description object
2752 * @key: key to check
2753 * @from_key: lowest key in range
2754 * @to_key: highest key in range
2755 *
2756 * This function returns %1 if the key is in range and %0 otherwise.
2757 */
2758static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2759 union ubifs_key *from_key, union ubifs_key *to_key)
2760{
2761 if (keys_cmp(c, key, from_key) < 0)
2762 return 0;
2763 if (keys_cmp(c, key, to_key) > 0)
2764 return 0;
2765 return 1;
2766}
2767
2768/**
2769 * ubifs_tnc_remove_range - remove index entries in range.
2770 * @c: UBIFS file-system description object
2771 * @from_key: lowest key to remove
2772 * @to_key: highest key to remove
2773 *
2774 * This function removes index entries starting at @from_key and ending at
2775 * @to_key. This function returns zero in case of success and a negative error
2776 * code in case of failure.
2777 */
2778int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2779 union ubifs_key *to_key)
2780{
2781 int i, n, k, err = 0;
2782 struct ubifs_znode *znode;
2783 union ubifs_key *key;
2784
2785 mutex_lock(&c->tnc_mutex);
2786 while (1) {
2787 /* Find first level 0 znode that contains keys to remove */
2788 err = ubifs_lookup_level0(c, from_key, &znode, &n);
2789 if (err < 0)
2790 goto out_unlock;
2791
2792 if (err)
2793 key = from_key;
2794 else {
2795 err = tnc_next(c, &znode, &n);
2796 if (err == -ENOENT) {
2797 err = 0;
2798 goto out_unlock;
2799 }
2800 if (err < 0)
2801 goto out_unlock;
2802 key = &znode->zbranch[n].key;
2803 if (!key_in_range(c, key, from_key, to_key)) {
2804 err = 0;
2805 goto out_unlock;
2806 }
2807 }
2808
2809 /* Ensure the znode is dirtied */
2810 if (znode->cnext || !ubifs_zn_dirty(znode)) {
f92b9826
AB
2811 znode = dirty_cow_bottom_up(c, znode);
2812 if (IS_ERR(znode)) {
2813 err = PTR_ERR(znode);
2814 goto out_unlock;
2815 }
1e51764a
AB
2816 }
2817
2818 /* Remove all keys in range except the first */
2819 for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2820 key = &znode->zbranch[i].key;
2821 if (!key_in_range(c, key, from_key, to_key))
2822 break;
2823 lnc_free(&znode->zbranch[i]);
2824 err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2825 znode->zbranch[i].len);
2826 if (err) {
edf6be24 2827 ubifs_dump_znode(c, znode);
1e51764a
AB
2828 goto out_unlock;
2829 }
515315a1 2830 dbg_tnck(key, "removing key ");
1e51764a
AB
2831 }
2832 if (k) {
2833 for (i = n + 1 + k; i < znode->child_cnt; i++)
2834 znode->zbranch[i - k] = znode->zbranch[i];
2835 znode->child_cnt -= k;
2836 }
2837
2838 /* Now delete the first */
2839 err = tnc_delete(c, znode, n);
2840 if (err)
2841 goto out_unlock;
2842 }
2843
2844out_unlock:
2845 if (!err)
2846 err = dbg_check_tnc(c, 0);
2847 mutex_unlock(&c->tnc_mutex);
2848 return err;
2849}
2850
2851/**
2852 * ubifs_tnc_remove_ino - remove an inode from TNC.
2853 * @c: UBIFS file-system description object
2854 * @inum: inode number to remove
2855 *
2856 * This function remove inode @inum and all the extended attributes associated
2857 * with the anode from TNC and returns zero in case of success or a negative
2858 * error code in case of failure.
2859 */
2860int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2861{
2862 union ubifs_key key1, key2;
2863 struct ubifs_dent_node *xent, *pxent = NULL;
f4f61d2c 2864 struct fscrypt_name nm = {0};
1e51764a 2865
e84461ad 2866 dbg_tnc("ino %lu", (unsigned long)inum);
1e51764a
AB
2867
2868 /*
2869 * Walk all extended attribute entries and remove them together with
2870 * corresponding extended attribute inodes.
2871 */
2872 lowest_xent_key(c, &key1, inum);
2873 while (1) {
2874 ino_t xattr_inum;
2875 int err;
2876
2877 xent = ubifs_tnc_next_ent(c, &key1, &nm);
2878 if (IS_ERR(xent)) {
2879 err = PTR_ERR(xent);
2880 if (err == -ENOENT)
2881 break;
2882 return err;
2883 }
2884
2885 xattr_inum = le64_to_cpu(xent->inum);
e84461ad
AB
2886 dbg_tnc("xent '%s', ino %lu", xent->name,
2887 (unsigned long)xattr_inum);
1e51764a 2888
272eda82
RW
2889 ubifs_evict_xattr_inode(c, xattr_inum);
2890
f4f61d2c
RW
2891 fname_name(&nm) = xent->name;
2892 fname_len(&nm) = le16_to_cpu(xent->nlen);
1e51764a
AB
2893 err = ubifs_tnc_remove_nm(c, &key1, &nm);
2894 if (err) {
2895 kfree(xent);
2896 return err;
2897 }
2898
2899 lowest_ino_key(c, &key1, xattr_inum);
2900 highest_ino_key(c, &key2, xattr_inum);
2901 err = ubifs_tnc_remove_range(c, &key1, &key2);
2902 if (err) {
2903 kfree(xent);
2904 return err;
2905 }
2906
2907 kfree(pxent);
2908 pxent = xent;
2909 key_read(c, &xent->key, &key1);
2910 }
2911
2912 kfree(pxent);
2913 lowest_ino_key(c, &key1, inum);
2914 highest_ino_key(c, &key2, inum);
2915
2916 return ubifs_tnc_remove_range(c, &key1, &key2);
2917}
2918
2919/**
2920 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2921 * @c: UBIFS file-system description object
2922 * @key: key of last entry
2923 * @nm: name of last entry found or %NULL
2924 *
2925 * This function finds and reads the next directory or extended attribute entry
2926 * after the given key (@key) if there is one. @nm is used to resolve
2927 * collisions.
2928 *
2929 * If the name of the current entry is not known and only the key is known,
2930 * @nm->name has to be %NULL. In this case the semantics of this function is a
2931 * little bit different and it returns the entry corresponding to this key, not
2932 * the next one. If the key was not found, the closest "right" entry is
2933 * returned.
2934 *
2935 * If the fist entry has to be found, @key has to contain the lowest possible
2936 * key value for this inode and @name has to be %NULL.
2937 *
2938 * This function returns the found directory or extended attribute entry node
2939 * in case of success, %-ENOENT is returned if no entry was found, and a
2940 * negative error code is returned in case of failure.
2941 */
2942struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2943 union ubifs_key *key,
f4f61d2c 2944 const struct fscrypt_name *nm)
1e51764a
AB
2945{
2946 int n, err, type = key_type(c, key);
2947 struct ubifs_znode *znode;
2948 struct ubifs_dent_node *dent;
2949 struct ubifs_zbranch *zbr;
2950 union ubifs_key *dkey;
2951
35ee314c 2952 dbg_tnck(key, "key ");
1e51764a
AB
2953 ubifs_assert(is_hash_key(c, key));
2954
2955 mutex_lock(&c->tnc_mutex);
2956 err = ubifs_lookup_level0(c, key, &znode, &n);
2957 if (unlikely(err < 0))
2958 goto out_unlock;
2959
f4f61d2c 2960 if (fname_len(nm) > 0) {
1e51764a
AB
2961 if (err) {
2962 /* Handle collisions */
1cb51a15
RW
2963 if (c->replaying)
2964 err = fallible_resolve_collision(c, key, &znode, &n,
2965 nm, 0);
2966 else
2967 err = resolve_collision(c, key, &znode, &n, nm);
1e51764a
AB
2968 dbg_tnc("rc returned %d, znode %p, n %d",
2969 err, znode, n);
2970 if (unlikely(err < 0))
2971 goto out_unlock;
2972 }
2973
2974 /* Now find next entry */
2975 err = tnc_next(c, &znode, &n);
2976 if (unlikely(err))
2977 goto out_unlock;
2978 } else {
2979 /*
2980 * The full name of the entry was not given, in which case the
2981 * behavior of this function is a little different and it
2982 * returns current entry, not the next one.
2983 */
2984 if (!err) {
2985 /*
2986 * However, the given key does not exist in the TNC
2987 * tree and @znode/@n variables contain the closest
2988 * "preceding" element. Switch to the next one.
2989 */
2990 err = tnc_next(c, &znode, &n);
2991 if (err)
2992 goto out_unlock;
2993 }
2994 }
2995
2996 zbr = &znode->zbranch[n];
2997 dent = kmalloc(zbr->len, GFP_NOFS);
2998 if (unlikely(!dent)) {
2999 err = -ENOMEM;
3000 goto out_unlock;
3001 }
3002
3003 /*
3004 * The above 'tnc_next()' call could lead us to the next inode, check
3005 * this.
3006 */
3007 dkey = &zbr->key;
3008 if (key_inum(c, dkey) != key_inum(c, key) ||
3009 key_type(c, dkey) != type) {
3010 err = -ENOENT;
3011 goto out_free;
3012 }
3013
b91dc981 3014 err = tnc_read_hashed_node(c, zbr, dent);
1e51764a
AB
3015 if (unlikely(err))
3016 goto out_free;
3017
3018 mutex_unlock(&c->tnc_mutex);
3019 return dent;
3020
3021out_free:
3022 kfree(dent);
3023out_unlock:
3024 mutex_unlock(&c->tnc_mutex);
3025 return ERR_PTR(err);
3026}
3027
3028/**
3029 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3030 * @c: UBIFS file-system description object
3031 *
3032 * Destroy left-over obsolete znodes from a failed commit.
3033 */
3034static void tnc_destroy_cnext(struct ubifs_info *c)
3035{
3036 struct ubifs_znode *cnext;
3037
3038 if (!c->cnext)
3039 return;
3040 ubifs_assert(c->cmt_state == COMMIT_BROKEN);
3041 cnext = c->cnext;
3042 do {
3043 struct ubifs_znode *znode = cnext;
3044
3045 cnext = cnext->cnext;
f42eed7c 3046 if (ubifs_zn_obsolete(znode))
1e51764a
AB
3047 kfree(znode);
3048 } while (cnext && cnext != c->cnext);
3049}
3050
3051/**
3052 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3053 * @c: UBIFS file-system description object
3054 */
3055void ubifs_tnc_close(struct ubifs_info *c)
3056{
1e51764a
AB
3057 tnc_destroy_cnext(c);
3058 if (c->zroot.znode) {
380347e9 3059 long n, freed;
83707237 3060
83707237 3061 n = atomic_long_read(&c->clean_zn_cnt);
380347e9 3062 freed = ubifs_destroy_tnc_subtree(c->zroot.znode);
3063 ubifs_assert(freed == n);
83707237 3064 atomic_long_sub(n, &ubifs_clean_zn_cnt);
1e51764a
AB
3065 }
3066 kfree(c->gap_lebs);
3067 kfree(c->ilebs);
3068 destroy_old_idx(c);
3069}
3070
3071/**
3072 * left_znode - get the znode to the left.
3073 * @c: UBIFS file-system description object
3074 * @znode: znode
3075 *
3076 * This function returns a pointer to the znode to the left of @znode or NULL if
3077 * there is not one. A negative error code is returned on failure.
3078 */
3079static struct ubifs_znode *left_znode(struct ubifs_info *c,
3080 struct ubifs_znode *znode)
3081{
3082 int level = znode->level;
3083
3084 while (1) {
3085 int n = znode->iip - 1;
3086
3087 /* Go up until we can go left */
3088 znode = znode->parent;
3089 if (!znode)
3090 return NULL;
3091 if (n >= 0) {
3092 /* Now go down the rightmost branch to 'level' */
3093 znode = get_znode(c, znode, n);
3094 if (IS_ERR(znode))
3095 return znode;
3096 while (znode->level != level) {
3097 n = znode->child_cnt - 1;
3098 znode = get_znode(c, znode, n);
3099 if (IS_ERR(znode))
3100 return znode;
3101 }
3102 break;
3103 }
3104 }
3105 return znode;
3106}
3107
3108/**
3109 * right_znode - get the znode to the right.
3110 * @c: UBIFS file-system description object
3111 * @znode: znode
3112 *
3113 * This function returns a pointer to the znode to the right of @znode or NULL
3114 * if there is not one. A negative error code is returned on failure.
3115 */
3116static struct ubifs_znode *right_znode(struct ubifs_info *c,
3117 struct ubifs_znode *znode)
3118{
3119 int level = znode->level;
3120
3121 while (1) {
3122 int n = znode->iip + 1;
3123
3124 /* Go up until we can go right */
3125 znode = znode->parent;
3126 if (!znode)
3127 return NULL;
3128 if (n < znode->child_cnt) {
3129 /* Now go down the leftmost branch to 'level' */
3130 znode = get_znode(c, znode, n);
3131 if (IS_ERR(znode))
3132 return znode;
3133 while (znode->level != level) {
3134 znode = get_znode(c, znode, 0);
3135 if (IS_ERR(znode))
3136 return znode;
3137 }
3138 break;
3139 }
3140 }
3141 return znode;
3142}
3143
3144/**
3145 * lookup_znode - find a particular indexing node from TNC.
3146 * @c: UBIFS file-system description object
3147 * @key: index node key to lookup
3148 * @level: index node level
3149 * @lnum: index node LEB number
3150 * @offs: index node offset
3151 *
3152 * This function searches an indexing node by its first key @key and its
3153 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
ba2f48f7 3154 * nodes it traverses to TNC. This function is called for indexing nodes which
1e51764a
AB
3155 * were found on the media by scanning, for example when garbage-collecting or
3156 * when doing in-the-gaps commit. This means that the indexing node which is
3157 * looked for does not have to have exactly the same leftmost key @key, because
3158 * the leftmost key may have been changed, in which case TNC will contain a
3159 * dirty znode which still refers the same @lnum:@offs. This function is clever
3160 * enough to recognize such indexing nodes.
3161 *
3162 * Note, if a znode was deleted or changed too much, then this function will
3163 * not find it. For situations like this UBIFS has the old index RB-tree
3164 * (indexed by @lnum:@offs).
3165 *
3166 * This function returns a pointer to the znode found or %NULL if it is not
3167 * found. A negative error code is returned on failure.
3168 */
3169static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3170 union ubifs_key *key, int level,
3171 int lnum, int offs)
3172{
3173 struct ubifs_znode *znode, *zn;
3174 int n, nn;
3175
ba2f48f7
AB
3176 ubifs_assert(key_type(c, key) < UBIFS_INVALID_KEY);
3177
1e51764a
AB
3178 /*
3179 * The arguments have probably been read off flash, so don't assume
3180 * they are valid.
3181 */
3182 if (level < 0)
3183 return ERR_PTR(-EINVAL);
3184
3185 /* Get the root znode */
3186 znode = c->zroot.znode;
3187 if (!znode) {
3188 znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3189 if (IS_ERR(znode))
3190 return znode;
3191 }
3192 /* Check if it is the one we are looking for */
3193 if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3194 return znode;
3195 /* Descend to the parent level i.e. (level + 1) */
3196 if (level >= znode->level)
3197 return NULL;
3198 while (1) {
3199 ubifs_search_zbranch(c, znode, key, &n);
3200 if (n < 0) {
3201 /*
3202 * We reached a znode where the leftmost key is greater
3203 * than the key we are searching for. This is the same
3204 * situation as the one described in a huge comment at
3205 * the end of the 'ubifs_lookup_level0()' function. And
3206 * for exactly the same reasons we have to try to look
3207 * left before giving up.
3208 */
3209 znode = left_znode(c, znode);
3210 if (!znode)
3211 return NULL;
3212 if (IS_ERR(znode))
3213 return znode;
3214 ubifs_search_zbranch(c, znode, key, &n);
3215 ubifs_assert(n >= 0);
3216 }
3217 if (znode->level == level + 1)
3218 break;
3219 znode = get_znode(c, znode, n);
3220 if (IS_ERR(znode))
3221 return znode;
3222 }
3223 /* Check if the child is the one we are looking for */
3224 if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3225 return get_znode(c, znode, n);
3226 /* If the key is unique, there is nowhere else to look */
3227 if (!is_hash_key(c, key))
3228 return NULL;
3229 /*
3230 * The key is not unique and so may be also in the znodes to either
3231 * side.
3232 */
3233 zn = znode;
3234 nn = n;
3235 /* Look left */
3236 while (1) {
3237 /* Move one branch to the left */
3238 if (n)
3239 n -= 1;
3240 else {
3241 znode = left_znode(c, znode);
3242 if (!znode)
3243 break;
3244 if (IS_ERR(znode))
3245 return znode;
3246 n = znode->child_cnt - 1;
3247 }
3248 /* Check it */
3249 if (znode->zbranch[n].lnum == lnum &&
3250 znode->zbranch[n].offs == offs)
3251 return get_znode(c, znode, n);
3252 /* Stop if the key is less than the one we are looking for */
3253 if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3254 break;
3255 }
3256 /* Back to the middle */
3257 znode = zn;
3258 n = nn;
3259 /* Look right */
3260 while (1) {
3261 /* Move one branch to the right */
3262 if (++n >= znode->child_cnt) {
3263 znode = right_znode(c, znode);
3264 if (!znode)
3265 break;
3266 if (IS_ERR(znode))
3267 return znode;
3268 n = 0;
3269 }
3270 /* Check it */
3271 if (znode->zbranch[n].lnum == lnum &&
3272 znode->zbranch[n].offs == offs)
3273 return get_znode(c, znode, n);
3274 /* Stop if the key is greater than the one we are looking for */
3275 if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3276 break;
3277 }
3278 return NULL;
3279}
3280
3281/**
3282 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3283 * @c: UBIFS file-system description object
3284 * @key: key of index node
3285 * @level: index node level
3286 * @lnum: LEB number of index node
3287 * @offs: offset of index node
3288 *
3289 * This function returns %0 if the index node is not referred to in the TNC, %1
3290 * if the index node is referred to in the TNC and the corresponding znode is
3291 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3292 * znode is clean, and a negative error code in case of failure.
3293 *
3294 * Note, the @key argument has to be the key of the first child. Also note,
3295 * this function relies on the fact that 0:0 is never a valid LEB number and
3296 * offset for a main-area node.
3297 */
3298int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3299 int lnum, int offs)
3300{
3301 struct ubifs_znode *znode;
3302
3303 znode = lookup_znode(c, key, level, lnum, offs);
3304 if (!znode)
3305 return 0;
3306 if (IS_ERR(znode))
3307 return PTR_ERR(znode);
3308
3309 return ubifs_zn_dirty(znode) ? 1 : 2;
3310}
3311
3312/**
3313 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3314 * @c: UBIFS file-system description object
3315 * @key: node key
3316 * @lnum: node LEB number
3317 * @offs: node offset
3318 *
3319 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3320 * not, and a negative error code in case of failure.
3321 *
3322 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3323 * and offset for a main-area node.
3324 */
3325static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3326 int lnum, int offs)
3327{
3328 struct ubifs_zbranch *zbr;
3329 struct ubifs_znode *znode, *zn;
3330 int n, found, err, nn;
3331 const int unique = !is_hash_key(c, key);
3332
3333 found = ubifs_lookup_level0(c, key, &znode, &n);
3334 if (found < 0)
3335 return found; /* Error code */
3336 if (!found)
3337 return 0;
3338 zbr = &znode->zbranch[n];
3339 if (lnum == zbr->lnum && offs == zbr->offs)
3340 return 1; /* Found it */
3341 if (unique)
3342 return 0;
3343 /*
3344 * Because the key is not unique, we have to look left
3345 * and right as well
3346 */
3347 zn = znode;
3348 nn = n;
3349 /* Look left */
3350 while (1) {
3351 err = tnc_prev(c, &znode, &n);
3352 if (err == -ENOENT)
3353 break;
3354 if (err)
3355 return err;
3356 if (keys_cmp(c, key, &znode->zbranch[n].key))
3357 break;
3358 zbr = &znode->zbranch[n];
3359 if (lnum == zbr->lnum && offs == zbr->offs)
3360 return 1; /* Found it */
3361 }
3362 /* Look right */
3363 znode = zn;
3364 n = nn;
3365 while (1) {
3366 err = tnc_next(c, &znode, &n);
3367 if (err) {
3368 if (err == -ENOENT)
3369 return 0;
3370 return err;
3371 }
3372 if (keys_cmp(c, key, &znode->zbranch[n].key))
3373 break;
3374 zbr = &znode->zbranch[n];
3375 if (lnum == zbr->lnum && offs == zbr->offs)
3376 return 1; /* Found it */
3377 }
3378 return 0;
3379}
3380
3381/**
3382 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3383 * @c: UBIFS file-system description object
3384 * @key: node key
3385 * @level: index node level (if it is an index node)
3386 * @lnum: node LEB number
3387 * @offs: node offset
3388 * @is_idx: non-zero if the node is an index node
3389 *
3390 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3391 * negative error code in case of failure. For index nodes, @key has to be the
3392 * key of the first child. An index node is considered to be in the TNC only if
3393 * the corresponding znode is clean or has not been loaded.
3394 */
3395int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3396 int lnum, int offs, int is_idx)
3397{
3398 int err;
3399
3400 mutex_lock(&c->tnc_mutex);
3401 if (is_idx) {
3402 err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3403 if (err < 0)
3404 goto out_unlock;
3405 if (err == 1)
3406 /* The index node was found but it was dirty */
3407 err = 0;
3408 else if (err == 2)
3409 /* The index node was found and it was clean */
3410 err = 1;
3411 else
3412 BUG_ON(err != 0);
3413 } else
3414 err = is_leaf_node_in_tnc(c, key, lnum, offs);
3415
3416out_unlock:
3417 mutex_unlock(&c->tnc_mutex);
3418 return err;
3419}
3420
3421/**
3422 * ubifs_dirty_idx_node - dirty an index node.
3423 * @c: UBIFS file-system description object
3424 * @key: index node key
3425 * @level: index node level
3426 * @lnum: index node LEB number
3427 * @offs: index node offset
3428 *
3429 * This function loads and dirties an index node so that it can be garbage
3430 * collected. The @key argument has to be the key of the first child. This
3431 * function relies on the fact that 0:0 is never a valid LEB number and offset
3432 * for a main-area node. Returns %0 on success and a negative error code on
3433 * failure.
3434 */
3435int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3436 int lnum, int offs)
3437{
3438 struct ubifs_znode *znode;
3439 int err = 0;
3440
3441 mutex_lock(&c->tnc_mutex);
3442 znode = lookup_znode(c, key, level, lnum, offs);
3443 if (!znode)
3444 goto out_unlock;
3445 if (IS_ERR(znode)) {
3446 err = PTR_ERR(znode);
3447 goto out_unlock;
3448 }
3449 znode = dirty_cow_bottom_up(c, znode);
3450 if (IS_ERR(znode)) {
3451 err = PTR_ERR(znode);
3452 goto out_unlock;
3453 }
3454
3455out_unlock:
3456 mutex_unlock(&c->tnc_mutex);
3457 return err;
3458}
e3c3efc2 3459
e3c3efc2
AB
3460/**
3461 * dbg_check_inode_size - check if inode size is correct.
3462 * @c: UBIFS file-system description object
3463 * @inum: inode number
3464 * @size: inode size
3465 *
3466 * This function makes sure that the inode size (@size) is correct and it does
3467 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3468 * if it has a data page beyond @size, and other negative error code in case of
3469 * other errors.
3470 */
3471int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3472 loff_t size)
3473{
3474 int err, n;
3475 union ubifs_key from_key, to_key, *key;
3476 struct ubifs_znode *znode;
3477 unsigned int block;
3478
3479 if (!S_ISREG(inode->i_mode))
3480 return 0;
2b1844a8 3481 if (!dbg_is_chk_gen(c))
e3c3efc2
AB
3482 return 0;
3483
3484 block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3485 data_key_init(c, &from_key, inode->i_ino, block);
3486 highest_data_key(c, &to_key, inode->i_ino);
3487
3488 mutex_lock(&c->tnc_mutex);
3489 err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3490 if (err < 0)
3491 goto out_unlock;
3492
3493 if (err) {
e3c3efc2
AB
3494 key = &from_key;
3495 goto out_dump;
3496 }
3497
3498 err = tnc_next(c, &znode, &n);
3499 if (err == -ENOENT) {
3500 err = 0;
3501 goto out_unlock;
3502 }
3503 if (err < 0)
3504 goto out_unlock;
3505
3506 ubifs_assert(err == 0);
3507 key = &znode->zbranch[n].key;
3508 if (!key_in_range(c, key, &from_key, &to_key))
3509 goto out_unlock;
3510
3511out_dump:
3512 block = key_block(c, key);
235c362b 3513 ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
515315a1
AB
3514 (unsigned long)inode->i_ino, size,
3515 ((loff_t)block) << UBIFS_BLOCK_SHIFT);
4315fb40 3516 mutex_unlock(&c->tnc_mutex);
edf6be24 3517 ubifs_dump_inode(c, inode);
7c46d0ae 3518 dump_stack();
4315fb40 3519 return -EINVAL;
e3c3efc2
AB
3520
3521out_unlock:
3522 mutex_unlock(&c->tnc_mutex);
3523 return err;
3524}