]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - fs/userfaultfd.c
userfaultfd: non-cooperative: dup_userfaultfd: use mm_count instead of mm_users
[mirror_ubuntu-artful-kernel.git] / fs / userfaultfd.c
CommitLineData
86039bd3
AA
1/*
2 * fs/userfaultfd.c
3 *
4 * Copyright (C) 2007 Davide Libenzi <davidel@xmailserver.org>
5 * Copyright (C) 2008-2009 Red Hat, Inc.
6 * Copyright (C) 2015 Red Hat, Inc.
7 *
8 * This work is licensed under the terms of the GNU GPL, version 2. See
9 * the COPYING file in the top-level directory.
10 *
11 * Some part derived from fs/eventfd.c (anon inode setup) and
12 * mm/ksm.c (mm hashing).
13 */
14
9cd75c3c 15#include <linux/list.h>
86039bd3
AA
16#include <linux/hashtable.h>
17#include <linux/sched.h>
18#include <linux/mm.h>
19#include <linux/poll.h>
20#include <linux/slab.h>
21#include <linux/seq_file.h>
22#include <linux/file.h>
23#include <linux/bug.h>
24#include <linux/anon_inodes.h>
25#include <linux/syscalls.h>
26#include <linux/userfaultfd_k.h>
27#include <linux/mempolicy.h>
28#include <linux/ioctl.h>
29#include <linux/security.h>
30
3004ec9c
AA
31static struct kmem_cache *userfaultfd_ctx_cachep __read_mostly;
32
86039bd3
AA
33enum userfaultfd_state {
34 UFFD_STATE_WAIT_API,
35 UFFD_STATE_RUNNING,
36};
37
3004ec9c
AA
38/*
39 * Start with fault_pending_wqh and fault_wqh so they're more likely
40 * to be in the same cacheline.
41 */
86039bd3 42struct userfaultfd_ctx {
15b726ef
AA
43 /* waitqueue head for the pending (i.e. not read) userfaults */
44 wait_queue_head_t fault_pending_wqh;
45 /* waitqueue head for the userfaults */
86039bd3
AA
46 wait_queue_head_t fault_wqh;
47 /* waitqueue head for the pseudo fd to wakeup poll/read */
48 wait_queue_head_t fd_wqh;
9cd75c3c
PE
49 /* waitqueue head for events */
50 wait_queue_head_t event_wqh;
2c5b7e1b
AA
51 /* a refile sequence protected by fault_pending_wqh lock */
52 struct seqcount refile_seq;
3004ec9c
AA
53 /* pseudo fd refcounting */
54 atomic_t refcount;
86039bd3
AA
55 /* userfaultfd syscall flags */
56 unsigned int flags;
9cd75c3c
PE
57 /* features requested from the userspace */
58 unsigned int features;
86039bd3
AA
59 /* state machine */
60 enum userfaultfd_state state;
61 /* released */
62 bool released;
63 /* mm with one ore more vmas attached to this userfaultfd_ctx */
64 struct mm_struct *mm;
65};
66
893e26e6
PE
67struct userfaultfd_fork_ctx {
68 struct userfaultfd_ctx *orig;
69 struct userfaultfd_ctx *new;
70 struct list_head list;
71};
72
86039bd3 73struct userfaultfd_wait_queue {
a9b85f94 74 struct uffd_msg msg;
86039bd3 75 wait_queue_t wq;
86039bd3 76 struct userfaultfd_ctx *ctx;
15a77c6f 77 bool waken;
86039bd3
AA
78};
79
80struct userfaultfd_wake_range {
81 unsigned long start;
82 unsigned long len;
83};
84
85static int userfaultfd_wake_function(wait_queue_t *wq, unsigned mode,
86 int wake_flags, void *key)
87{
88 struct userfaultfd_wake_range *range = key;
89 int ret;
90 struct userfaultfd_wait_queue *uwq;
91 unsigned long start, len;
92
93 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
94 ret = 0;
86039bd3
AA
95 /* len == 0 means wake all */
96 start = range->start;
97 len = range->len;
a9b85f94
AA
98 if (len && (start > uwq->msg.arg.pagefault.address ||
99 start + len <= uwq->msg.arg.pagefault.address))
86039bd3 100 goto out;
15a77c6f
AA
101 WRITE_ONCE(uwq->waken, true);
102 /*
103 * The implicit smp_mb__before_spinlock in try_to_wake_up()
104 * renders uwq->waken visible to other CPUs before the task is
105 * waken.
106 */
86039bd3
AA
107 ret = wake_up_state(wq->private, mode);
108 if (ret)
109 /*
110 * Wake only once, autoremove behavior.
111 *
112 * After the effect of list_del_init is visible to the
113 * other CPUs, the waitqueue may disappear from under
114 * us, see the !list_empty_careful() in
115 * handle_userfault(). try_to_wake_up() has an
116 * implicit smp_mb__before_spinlock, and the
117 * wq->private is read before calling the extern
118 * function "wake_up_state" (which in turns calls
119 * try_to_wake_up). While the spin_lock;spin_unlock;
120 * wouldn't be enough, the smp_mb__before_spinlock is
121 * enough to avoid an explicit smp_mb() here.
122 */
123 list_del_init(&wq->task_list);
124out:
125 return ret;
126}
127
128/**
129 * userfaultfd_ctx_get - Acquires a reference to the internal userfaultfd
130 * context.
131 * @ctx: [in] Pointer to the userfaultfd context.
132 *
133 * Returns: In case of success, returns not zero.
134 */
135static void userfaultfd_ctx_get(struct userfaultfd_ctx *ctx)
136{
137 if (!atomic_inc_not_zero(&ctx->refcount))
138 BUG();
139}
140
141/**
142 * userfaultfd_ctx_put - Releases a reference to the internal userfaultfd
143 * context.
144 * @ctx: [in] Pointer to userfaultfd context.
145 *
146 * The userfaultfd context reference must have been previously acquired either
147 * with userfaultfd_ctx_get() or userfaultfd_ctx_fdget().
148 */
149static void userfaultfd_ctx_put(struct userfaultfd_ctx *ctx)
150{
151 if (atomic_dec_and_test(&ctx->refcount)) {
152 VM_BUG_ON(spin_is_locked(&ctx->fault_pending_wqh.lock));
153 VM_BUG_ON(waitqueue_active(&ctx->fault_pending_wqh));
154 VM_BUG_ON(spin_is_locked(&ctx->fault_wqh.lock));
155 VM_BUG_ON(waitqueue_active(&ctx->fault_wqh));
9cd75c3c
PE
156 VM_BUG_ON(spin_is_locked(&ctx->event_wqh.lock));
157 VM_BUG_ON(waitqueue_active(&ctx->event_wqh));
86039bd3
AA
158 VM_BUG_ON(spin_is_locked(&ctx->fd_wqh.lock));
159 VM_BUG_ON(waitqueue_active(&ctx->fd_wqh));
d2005e3f 160 mmdrop(ctx->mm);
3004ec9c 161 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
86039bd3
AA
162 }
163}
164
a9b85f94 165static inline void msg_init(struct uffd_msg *msg)
86039bd3 166{
a9b85f94
AA
167 BUILD_BUG_ON(sizeof(struct uffd_msg) != 32);
168 /*
169 * Must use memset to zero out the paddings or kernel data is
170 * leaked to userland.
171 */
172 memset(msg, 0, sizeof(struct uffd_msg));
173}
174
175static inline struct uffd_msg userfault_msg(unsigned long address,
176 unsigned int flags,
177 unsigned long reason)
178{
179 struct uffd_msg msg;
180 msg_init(&msg);
181 msg.event = UFFD_EVENT_PAGEFAULT;
182 msg.arg.pagefault.address = address;
86039bd3
AA
183 if (flags & FAULT_FLAG_WRITE)
184 /*
a4605a61 185 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
a9b85f94
AA
186 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WRITE
187 * was not set in a UFFD_EVENT_PAGEFAULT, it means it
188 * was a read fault, otherwise if set it means it's
189 * a write fault.
86039bd3 190 */
a9b85f94 191 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WRITE;
86039bd3
AA
192 if (reason & VM_UFFD_WP)
193 /*
a9b85f94
AA
194 * If UFFD_FEATURE_PAGEFAULT_FLAG_WP was set in the
195 * uffdio_api.features and UFFD_PAGEFAULT_FLAG_WP was
196 * not set in a UFFD_EVENT_PAGEFAULT, it means it was
197 * a missing fault, otherwise if set it means it's a
198 * write protect fault.
86039bd3 199 */
a9b85f94
AA
200 msg.arg.pagefault.flags |= UFFD_PAGEFAULT_FLAG_WP;
201 return msg;
86039bd3
AA
202}
203
8d2afd96
AA
204/*
205 * Verify the pagetables are still not ok after having reigstered into
206 * the fault_pending_wqh to avoid userland having to UFFDIO_WAKE any
207 * userfault that has already been resolved, if userfaultfd_read and
208 * UFFDIO_COPY|ZEROPAGE are being run simultaneously on two different
209 * threads.
210 */
211static inline bool userfaultfd_must_wait(struct userfaultfd_ctx *ctx,
212 unsigned long address,
213 unsigned long flags,
214 unsigned long reason)
215{
216 struct mm_struct *mm = ctx->mm;
217 pgd_t *pgd;
218 pud_t *pud;
219 pmd_t *pmd, _pmd;
220 pte_t *pte;
221 bool ret = true;
222
223 VM_BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
224
225 pgd = pgd_offset(mm, address);
226 if (!pgd_present(*pgd))
227 goto out;
228 pud = pud_offset(pgd, address);
229 if (!pud_present(*pud))
230 goto out;
231 pmd = pmd_offset(pud, address);
232 /*
233 * READ_ONCE must function as a barrier with narrower scope
234 * and it must be equivalent to:
235 * _pmd = *pmd; barrier();
236 *
237 * This is to deal with the instability (as in
238 * pmd_trans_unstable) of the pmd.
239 */
240 _pmd = READ_ONCE(*pmd);
241 if (!pmd_present(_pmd))
242 goto out;
243
244 ret = false;
245 if (pmd_trans_huge(_pmd))
246 goto out;
247
248 /*
249 * the pmd is stable (as in !pmd_trans_unstable) so we can re-read it
250 * and use the standard pte_offset_map() instead of parsing _pmd.
251 */
252 pte = pte_offset_map(pmd, address);
253 /*
254 * Lockless access: we're in a wait_event so it's ok if it
255 * changes under us.
256 */
257 if (pte_none(*pte))
258 ret = true;
259 pte_unmap(pte);
260
261out:
262 return ret;
263}
264
86039bd3
AA
265/*
266 * The locking rules involved in returning VM_FAULT_RETRY depending on
267 * FAULT_FLAG_ALLOW_RETRY, FAULT_FLAG_RETRY_NOWAIT and
268 * FAULT_FLAG_KILLABLE are not straightforward. The "Caution"
269 * recommendation in __lock_page_or_retry is not an understatement.
270 *
271 * If FAULT_FLAG_ALLOW_RETRY is set, the mmap_sem must be released
272 * before returning VM_FAULT_RETRY only if FAULT_FLAG_RETRY_NOWAIT is
273 * not set.
274 *
275 * If FAULT_FLAG_ALLOW_RETRY is set but FAULT_FLAG_KILLABLE is not
276 * set, VM_FAULT_RETRY can still be returned if and only if there are
277 * fatal_signal_pending()s, and the mmap_sem must be released before
278 * returning it.
279 */
82b0f8c3 280int handle_userfault(struct vm_fault *vmf, unsigned long reason)
86039bd3 281{
82b0f8c3 282 struct mm_struct *mm = vmf->vma->vm_mm;
86039bd3
AA
283 struct userfaultfd_ctx *ctx;
284 struct userfaultfd_wait_queue uwq;
ba85c702 285 int ret;
dfa37dc3 286 bool must_wait, return_to_userland;
15a77c6f 287 long blocking_state;
86039bd3
AA
288
289 BUG_ON(!rwsem_is_locked(&mm->mmap_sem));
290
ba85c702 291 ret = VM_FAULT_SIGBUS;
82b0f8c3 292 ctx = vmf->vma->vm_userfaultfd_ctx.ctx;
86039bd3 293 if (!ctx)
ba85c702 294 goto out;
86039bd3
AA
295
296 BUG_ON(ctx->mm != mm);
297
298 VM_BUG_ON(reason & ~(VM_UFFD_MISSING|VM_UFFD_WP));
299 VM_BUG_ON(!(reason & VM_UFFD_MISSING) ^ !!(reason & VM_UFFD_WP));
300
301 /*
302 * If it's already released don't get it. This avoids to loop
303 * in __get_user_pages if userfaultfd_release waits on the
304 * caller of handle_userfault to release the mmap_sem.
305 */
306 if (unlikely(ACCESS_ONCE(ctx->released)))
ba85c702 307 goto out;
86039bd3 308
39680f50
LT
309 /*
310 * We don't do userfault handling for the final child pid update.
311 */
312 if (current->flags & PF_EXITING)
313 goto out;
314
86039bd3
AA
315 /*
316 * Check that we can return VM_FAULT_RETRY.
317 *
318 * NOTE: it should become possible to return VM_FAULT_RETRY
319 * even if FAULT_FLAG_TRIED is set without leading to gup()
320 * -EBUSY failures, if the userfaultfd is to be extended for
321 * VM_UFFD_WP tracking and we intend to arm the userfault
322 * without first stopping userland access to the memory. For
323 * VM_UFFD_MISSING userfaults this is enough for now.
324 */
82b0f8c3 325 if (unlikely(!(vmf->flags & FAULT_FLAG_ALLOW_RETRY))) {
86039bd3
AA
326 /*
327 * Validate the invariant that nowait must allow retry
328 * to be sure not to return SIGBUS erroneously on
329 * nowait invocations.
330 */
82b0f8c3 331 BUG_ON(vmf->flags & FAULT_FLAG_RETRY_NOWAIT);
86039bd3
AA
332#ifdef CONFIG_DEBUG_VM
333 if (printk_ratelimit()) {
334 printk(KERN_WARNING
82b0f8c3
JK
335 "FAULT_FLAG_ALLOW_RETRY missing %x\n",
336 vmf->flags);
86039bd3
AA
337 dump_stack();
338 }
339#endif
ba85c702 340 goto out;
86039bd3
AA
341 }
342
343 /*
344 * Handle nowait, not much to do other than tell it to retry
345 * and wait.
346 */
ba85c702 347 ret = VM_FAULT_RETRY;
82b0f8c3 348 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
ba85c702 349 goto out;
86039bd3
AA
350
351 /* take the reference before dropping the mmap_sem */
352 userfaultfd_ctx_get(ctx);
353
86039bd3
AA
354 init_waitqueue_func_entry(&uwq.wq, userfaultfd_wake_function);
355 uwq.wq.private = current;
82b0f8c3 356 uwq.msg = userfault_msg(vmf->address, vmf->flags, reason);
86039bd3 357 uwq.ctx = ctx;
15a77c6f 358 uwq.waken = false;
86039bd3 359
bae473a4 360 return_to_userland =
82b0f8c3 361 (vmf->flags & (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE)) ==
dfa37dc3 362 (FAULT_FLAG_USER|FAULT_FLAG_KILLABLE);
15a77c6f
AA
363 blocking_state = return_to_userland ? TASK_INTERRUPTIBLE :
364 TASK_KILLABLE;
dfa37dc3 365
15b726ef 366 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
367 /*
368 * After the __add_wait_queue the uwq is visible to userland
369 * through poll/read().
370 */
15b726ef
AA
371 __add_wait_queue(&ctx->fault_pending_wqh, &uwq.wq);
372 /*
373 * The smp_mb() after __set_current_state prevents the reads
374 * following the spin_unlock to happen before the list_add in
375 * __add_wait_queue.
376 */
15a77c6f 377 set_current_state(blocking_state);
15b726ef 378 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 379
82b0f8c3
JK
380 must_wait = userfaultfd_must_wait(ctx, vmf->address, vmf->flags,
381 reason);
8d2afd96
AA
382 up_read(&mm->mmap_sem);
383
384 if (likely(must_wait && !ACCESS_ONCE(ctx->released) &&
dfa37dc3
AA
385 (return_to_userland ? !signal_pending(current) :
386 !fatal_signal_pending(current)))) {
86039bd3
AA
387 wake_up_poll(&ctx->fd_wqh, POLLIN);
388 schedule();
ba85c702 389 ret |= VM_FAULT_MAJOR;
15a77c6f
AA
390
391 /*
392 * False wakeups can orginate even from rwsem before
393 * up_read() however userfaults will wait either for a
394 * targeted wakeup on the specific uwq waitqueue from
395 * wake_userfault() or for signals or for uffd
396 * release.
397 */
398 while (!READ_ONCE(uwq.waken)) {
399 /*
400 * This needs the full smp_store_mb()
401 * guarantee as the state write must be
402 * visible to other CPUs before reading
403 * uwq.waken from other CPUs.
404 */
405 set_current_state(blocking_state);
406 if (READ_ONCE(uwq.waken) ||
407 READ_ONCE(ctx->released) ||
408 (return_to_userland ? signal_pending(current) :
409 fatal_signal_pending(current)))
410 break;
411 schedule();
412 }
ba85c702 413 }
86039bd3 414
ba85c702 415 __set_current_state(TASK_RUNNING);
15b726ef 416
dfa37dc3
AA
417 if (return_to_userland) {
418 if (signal_pending(current) &&
419 !fatal_signal_pending(current)) {
420 /*
421 * If we got a SIGSTOP or SIGCONT and this is
422 * a normal userland page fault, just let
423 * userland return so the signal will be
424 * handled and gdb debugging works. The page
425 * fault code immediately after we return from
426 * this function is going to release the
427 * mmap_sem and it's not depending on it
428 * (unlike gup would if we were not to return
429 * VM_FAULT_RETRY).
430 *
431 * If a fatal signal is pending we still take
432 * the streamlined VM_FAULT_RETRY failure path
433 * and there's no need to retake the mmap_sem
434 * in such case.
435 */
436 down_read(&mm->mmap_sem);
437 ret = 0;
438 }
439 }
440
15b726ef
AA
441 /*
442 * Here we race with the list_del; list_add in
443 * userfaultfd_ctx_read(), however because we don't ever run
444 * list_del_init() to refile across the two lists, the prev
445 * and next pointers will never point to self. list_add also
446 * would never let any of the two pointers to point to
447 * self. So list_empty_careful won't risk to see both pointers
448 * pointing to self at any time during the list refile. The
449 * only case where list_del_init() is called is the full
450 * removal in the wake function and there we don't re-list_add
451 * and it's fine not to block on the spinlock. The uwq on this
452 * kernel stack can be released after the list_del_init.
453 */
ba85c702 454 if (!list_empty_careful(&uwq.wq.task_list)) {
15b726ef
AA
455 spin_lock(&ctx->fault_pending_wqh.lock);
456 /*
457 * No need of list_del_init(), the uwq on the stack
458 * will be freed shortly anyway.
459 */
460 list_del(&uwq.wq.task_list);
461 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3 462 }
86039bd3
AA
463
464 /*
465 * ctx may go away after this if the userfault pseudo fd is
466 * already released.
467 */
468 userfaultfd_ctx_put(ctx);
469
ba85c702
AA
470out:
471 return ret;
86039bd3
AA
472}
473
893e26e6
PE
474static int userfaultfd_event_wait_completion(struct userfaultfd_ctx *ctx,
475 struct userfaultfd_wait_queue *ewq)
9cd75c3c
PE
476{
477 int ret = 0;
478
479 ewq->ctx = ctx;
480 init_waitqueue_entry(&ewq->wq, current);
481
482 spin_lock(&ctx->event_wqh.lock);
483 /*
484 * After the __add_wait_queue the uwq is visible to userland
485 * through poll/read().
486 */
487 __add_wait_queue(&ctx->event_wqh, &ewq->wq);
488 for (;;) {
489 set_current_state(TASK_KILLABLE);
490 if (ewq->msg.event == 0)
491 break;
492 if (ACCESS_ONCE(ctx->released) ||
493 fatal_signal_pending(current)) {
494 ret = -1;
495 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
496 break;
497 }
498
499 spin_unlock(&ctx->event_wqh.lock);
500
501 wake_up_poll(&ctx->fd_wqh, POLLIN);
502 schedule();
503
504 spin_lock(&ctx->event_wqh.lock);
505 }
506 __set_current_state(TASK_RUNNING);
507 spin_unlock(&ctx->event_wqh.lock);
508
509 /*
510 * ctx may go away after this if the userfault pseudo fd is
511 * already released.
512 */
513
514 userfaultfd_ctx_put(ctx);
515 return ret;
516}
517
518static void userfaultfd_event_complete(struct userfaultfd_ctx *ctx,
519 struct userfaultfd_wait_queue *ewq)
520{
521 ewq->msg.event = 0;
522 wake_up_locked(&ctx->event_wqh);
523 __remove_wait_queue(&ctx->event_wqh, &ewq->wq);
524}
525
893e26e6
PE
526int dup_userfaultfd(struct vm_area_struct *vma, struct list_head *fcs)
527{
528 struct userfaultfd_ctx *ctx = NULL, *octx;
529 struct userfaultfd_fork_ctx *fctx;
530
531 octx = vma->vm_userfaultfd_ctx.ctx;
532 if (!octx || !(octx->features & UFFD_FEATURE_EVENT_FORK)) {
533 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
534 vma->vm_flags &= ~(VM_UFFD_WP | VM_UFFD_MISSING);
535 return 0;
536 }
537
538 list_for_each_entry(fctx, fcs, list)
539 if (fctx->orig == octx) {
540 ctx = fctx->new;
541 break;
542 }
543
544 if (!ctx) {
545 fctx = kmalloc(sizeof(*fctx), GFP_KERNEL);
546 if (!fctx)
547 return -ENOMEM;
548
549 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
550 if (!ctx) {
551 kfree(fctx);
552 return -ENOMEM;
553 }
554
555 atomic_set(&ctx->refcount, 1);
556 ctx->flags = octx->flags;
557 ctx->state = UFFD_STATE_RUNNING;
558 ctx->features = octx->features;
559 ctx->released = false;
560 ctx->mm = vma->vm_mm;
d3aadc8e 561 atomic_inc(&ctx->mm->mm_count);
893e26e6
PE
562
563 userfaultfd_ctx_get(octx);
564 fctx->orig = octx;
565 fctx->new = ctx;
566 list_add_tail(&fctx->list, fcs);
567 }
568
569 vma->vm_userfaultfd_ctx.ctx = ctx;
570 return 0;
571}
572
573static int dup_fctx(struct userfaultfd_fork_ctx *fctx)
574{
575 struct userfaultfd_ctx *ctx = fctx->orig;
576 struct userfaultfd_wait_queue ewq;
577
578 msg_init(&ewq.msg);
579
580 ewq.msg.event = UFFD_EVENT_FORK;
581 ewq.msg.arg.reserved.reserved1 = (unsigned long)fctx->new;
582
583 return userfaultfd_event_wait_completion(ctx, &ewq);
584}
585
586void dup_userfaultfd_complete(struct list_head *fcs)
587{
588 int ret = 0;
589 struct userfaultfd_fork_ctx *fctx, *n;
590
591 list_for_each_entry_safe(fctx, n, fcs, list) {
592 if (!ret)
593 ret = dup_fctx(fctx);
594 list_del(&fctx->list);
595 kfree(fctx);
596 }
597}
598
86039bd3
AA
599static int userfaultfd_release(struct inode *inode, struct file *file)
600{
601 struct userfaultfd_ctx *ctx = file->private_data;
602 struct mm_struct *mm = ctx->mm;
603 struct vm_area_struct *vma, *prev;
604 /* len == 0 means wake all */
605 struct userfaultfd_wake_range range = { .len = 0, };
606 unsigned long new_flags;
607
608 ACCESS_ONCE(ctx->released) = true;
609
d2005e3f
ON
610 if (!mmget_not_zero(mm))
611 goto wakeup;
612
86039bd3
AA
613 /*
614 * Flush page faults out of all CPUs. NOTE: all page faults
615 * must be retried without returning VM_FAULT_SIGBUS if
616 * userfaultfd_ctx_get() succeeds but vma->vma_userfault_ctx
617 * changes while handle_userfault released the mmap_sem. So
618 * it's critical that released is set to true (above), before
619 * taking the mmap_sem for writing.
620 */
621 down_write(&mm->mmap_sem);
622 prev = NULL;
623 for (vma = mm->mmap; vma; vma = vma->vm_next) {
624 cond_resched();
625 BUG_ON(!!vma->vm_userfaultfd_ctx.ctx ^
626 !!(vma->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
627 if (vma->vm_userfaultfd_ctx.ctx != ctx) {
628 prev = vma;
629 continue;
630 }
631 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
632 prev = vma_merge(mm, prev, vma->vm_start, vma->vm_end,
633 new_flags, vma->anon_vma,
634 vma->vm_file, vma->vm_pgoff,
635 vma_policy(vma),
636 NULL_VM_UFFD_CTX);
637 if (prev)
638 vma = prev;
639 else
640 prev = vma;
641 vma->vm_flags = new_flags;
642 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
643 }
644 up_write(&mm->mmap_sem);
d2005e3f
ON
645 mmput(mm);
646wakeup:
86039bd3 647 /*
15b726ef 648 * After no new page faults can wait on this fault_*wqh, flush
86039bd3 649 * the last page faults that may have been already waiting on
15b726ef 650 * the fault_*wqh.
86039bd3 651 */
15b726ef 652 spin_lock(&ctx->fault_pending_wqh.lock);
ac5be6b4
AA
653 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL, &range);
654 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, &range);
15b726ef 655 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
656
657 wake_up_poll(&ctx->fd_wqh, POLLHUP);
658 userfaultfd_ctx_put(ctx);
659 return 0;
660}
661
15b726ef 662/* fault_pending_wqh.lock must be hold by the caller */
6dcc27fd
PE
663static inline struct userfaultfd_wait_queue *find_userfault_in(
664 wait_queue_head_t *wqh)
86039bd3
AA
665{
666 wait_queue_t *wq;
15b726ef 667 struct userfaultfd_wait_queue *uwq;
86039bd3 668
6dcc27fd 669 VM_BUG_ON(!spin_is_locked(&wqh->lock));
86039bd3 670
15b726ef 671 uwq = NULL;
6dcc27fd 672 if (!waitqueue_active(wqh))
15b726ef
AA
673 goto out;
674 /* walk in reverse to provide FIFO behavior to read userfaults */
6dcc27fd 675 wq = list_last_entry(&wqh->task_list, typeof(*wq), task_list);
15b726ef
AA
676 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
677out:
678 return uwq;
86039bd3 679}
6dcc27fd
PE
680
681static inline struct userfaultfd_wait_queue *find_userfault(
682 struct userfaultfd_ctx *ctx)
683{
684 return find_userfault_in(&ctx->fault_pending_wqh);
685}
86039bd3 686
9cd75c3c
PE
687static inline struct userfaultfd_wait_queue *find_userfault_evt(
688 struct userfaultfd_ctx *ctx)
689{
690 return find_userfault_in(&ctx->event_wqh);
691}
692
86039bd3
AA
693static unsigned int userfaultfd_poll(struct file *file, poll_table *wait)
694{
695 struct userfaultfd_ctx *ctx = file->private_data;
696 unsigned int ret;
697
698 poll_wait(file, &ctx->fd_wqh, wait);
699
700 switch (ctx->state) {
701 case UFFD_STATE_WAIT_API:
702 return POLLERR;
703 case UFFD_STATE_RUNNING:
ba85c702
AA
704 /*
705 * poll() never guarantees that read won't block.
706 * userfaults can be waken before they're read().
707 */
708 if (unlikely(!(file->f_flags & O_NONBLOCK)))
709 return POLLERR;
15b726ef
AA
710 /*
711 * lockless access to see if there are pending faults
712 * __pollwait last action is the add_wait_queue but
713 * the spin_unlock would allow the waitqueue_active to
714 * pass above the actual list_add inside
715 * add_wait_queue critical section. So use a full
716 * memory barrier to serialize the list_add write of
717 * add_wait_queue() with the waitqueue_active read
718 * below.
719 */
720 ret = 0;
721 smp_mb();
722 if (waitqueue_active(&ctx->fault_pending_wqh))
723 ret = POLLIN;
9cd75c3c
PE
724 else if (waitqueue_active(&ctx->event_wqh))
725 ret = POLLIN;
726
86039bd3
AA
727 return ret;
728 default:
8474901a
AA
729 WARN_ON_ONCE(1);
730 return POLLERR;
86039bd3
AA
731 }
732}
733
893e26e6
PE
734static const struct file_operations userfaultfd_fops;
735
736static int resolve_userfault_fork(struct userfaultfd_ctx *ctx,
737 struct userfaultfd_ctx *new,
738 struct uffd_msg *msg)
739{
740 int fd;
741 struct file *file;
742 unsigned int flags = new->flags & UFFD_SHARED_FCNTL_FLAGS;
743
744 fd = get_unused_fd_flags(flags);
745 if (fd < 0)
746 return fd;
747
748 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, new,
749 O_RDWR | flags);
750 if (IS_ERR(file)) {
751 put_unused_fd(fd);
752 return PTR_ERR(file);
753 }
754
755 fd_install(fd, file);
756 msg->arg.reserved.reserved1 = 0;
757 msg->arg.fork.ufd = fd;
758
759 return 0;
760}
761
86039bd3 762static ssize_t userfaultfd_ctx_read(struct userfaultfd_ctx *ctx, int no_wait,
a9b85f94 763 struct uffd_msg *msg)
86039bd3
AA
764{
765 ssize_t ret;
766 DECLARE_WAITQUEUE(wait, current);
15b726ef 767 struct userfaultfd_wait_queue *uwq;
893e26e6
PE
768 /*
769 * Handling fork event requires sleeping operations, so
770 * we drop the event_wqh lock, then do these ops, then
771 * lock it back and wake up the waiter. While the lock is
772 * dropped the ewq may go away so we keep track of it
773 * carefully.
774 */
775 LIST_HEAD(fork_event);
776 struct userfaultfd_ctx *fork_nctx = NULL;
86039bd3 777
15b726ef 778 /* always take the fd_wqh lock before the fault_pending_wqh lock */
86039bd3
AA
779 spin_lock(&ctx->fd_wqh.lock);
780 __add_wait_queue(&ctx->fd_wqh, &wait);
781 for (;;) {
782 set_current_state(TASK_INTERRUPTIBLE);
15b726ef
AA
783 spin_lock(&ctx->fault_pending_wqh.lock);
784 uwq = find_userfault(ctx);
785 if (uwq) {
2c5b7e1b
AA
786 /*
787 * Use a seqcount to repeat the lockless check
788 * in wake_userfault() to avoid missing
789 * wakeups because during the refile both
790 * waitqueue could become empty if this is the
791 * only userfault.
792 */
793 write_seqcount_begin(&ctx->refile_seq);
794
86039bd3 795 /*
15b726ef
AA
796 * The fault_pending_wqh.lock prevents the uwq
797 * to disappear from under us.
798 *
799 * Refile this userfault from
800 * fault_pending_wqh to fault_wqh, it's not
801 * pending anymore after we read it.
802 *
803 * Use list_del() by hand (as
804 * userfaultfd_wake_function also uses
805 * list_del_init() by hand) to be sure nobody
806 * changes __remove_wait_queue() to use
807 * list_del_init() in turn breaking the
808 * !list_empty_careful() check in
809 * handle_userfault(). The uwq->wq.task_list
810 * must never be empty at any time during the
811 * refile, or the waitqueue could disappear
812 * from under us. The "wait_queue_head_t"
813 * parameter of __remove_wait_queue() is unused
814 * anyway.
86039bd3 815 */
15b726ef
AA
816 list_del(&uwq->wq.task_list);
817 __add_wait_queue(&ctx->fault_wqh, &uwq->wq);
818
2c5b7e1b
AA
819 write_seqcount_end(&ctx->refile_seq);
820
a9b85f94
AA
821 /* careful to always initialize msg if ret == 0 */
822 *msg = uwq->msg;
15b726ef 823 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
824 ret = 0;
825 break;
826 }
15b726ef 827 spin_unlock(&ctx->fault_pending_wqh.lock);
9cd75c3c
PE
828
829 spin_lock(&ctx->event_wqh.lock);
830 uwq = find_userfault_evt(ctx);
831 if (uwq) {
832 *msg = uwq->msg;
833
893e26e6
PE
834 if (uwq->msg.event == UFFD_EVENT_FORK) {
835 fork_nctx = (struct userfaultfd_ctx *)
836 (unsigned long)
837 uwq->msg.arg.reserved.reserved1;
838 list_move(&uwq->wq.task_list, &fork_event);
839 spin_unlock(&ctx->event_wqh.lock);
840 ret = 0;
841 break;
842 }
843
9cd75c3c
PE
844 userfaultfd_event_complete(ctx, uwq);
845 spin_unlock(&ctx->event_wqh.lock);
846 ret = 0;
847 break;
848 }
849 spin_unlock(&ctx->event_wqh.lock);
850
86039bd3
AA
851 if (signal_pending(current)) {
852 ret = -ERESTARTSYS;
853 break;
854 }
855 if (no_wait) {
856 ret = -EAGAIN;
857 break;
858 }
859 spin_unlock(&ctx->fd_wqh.lock);
860 schedule();
861 spin_lock(&ctx->fd_wqh.lock);
862 }
863 __remove_wait_queue(&ctx->fd_wqh, &wait);
864 __set_current_state(TASK_RUNNING);
865 spin_unlock(&ctx->fd_wqh.lock);
866
893e26e6
PE
867 if (!ret && msg->event == UFFD_EVENT_FORK) {
868 ret = resolve_userfault_fork(ctx, fork_nctx, msg);
869
870 if (!ret) {
871 spin_lock(&ctx->event_wqh.lock);
872 if (!list_empty(&fork_event)) {
873 uwq = list_first_entry(&fork_event,
874 typeof(*uwq),
875 wq.task_list);
876 list_del(&uwq->wq.task_list);
877 __add_wait_queue(&ctx->event_wqh, &uwq->wq);
878 userfaultfd_event_complete(ctx, uwq);
879 }
880 spin_unlock(&ctx->event_wqh.lock);
881 }
882 }
883
86039bd3
AA
884 return ret;
885}
886
887static ssize_t userfaultfd_read(struct file *file, char __user *buf,
888 size_t count, loff_t *ppos)
889{
890 struct userfaultfd_ctx *ctx = file->private_data;
891 ssize_t _ret, ret = 0;
a9b85f94 892 struct uffd_msg msg;
86039bd3
AA
893 int no_wait = file->f_flags & O_NONBLOCK;
894
895 if (ctx->state == UFFD_STATE_WAIT_API)
896 return -EINVAL;
86039bd3
AA
897
898 for (;;) {
a9b85f94 899 if (count < sizeof(msg))
86039bd3 900 return ret ? ret : -EINVAL;
a9b85f94 901 _ret = userfaultfd_ctx_read(ctx, no_wait, &msg);
86039bd3
AA
902 if (_ret < 0)
903 return ret ? ret : _ret;
a9b85f94 904 if (copy_to_user((__u64 __user *) buf, &msg, sizeof(msg)))
86039bd3 905 return ret ? ret : -EFAULT;
a9b85f94
AA
906 ret += sizeof(msg);
907 buf += sizeof(msg);
908 count -= sizeof(msg);
86039bd3
AA
909 /*
910 * Allow to read more than one fault at time but only
911 * block if waiting for the very first one.
912 */
913 no_wait = O_NONBLOCK;
914 }
915}
916
917static void __wake_userfault(struct userfaultfd_ctx *ctx,
918 struct userfaultfd_wake_range *range)
919{
920 unsigned long start, end;
921
922 start = range->start;
923 end = range->start + range->len;
924
15b726ef 925 spin_lock(&ctx->fault_pending_wqh.lock);
86039bd3 926 /* wake all in the range and autoremove */
15b726ef 927 if (waitqueue_active(&ctx->fault_pending_wqh))
ac5be6b4 928 __wake_up_locked_key(&ctx->fault_pending_wqh, TASK_NORMAL,
15b726ef
AA
929 range);
930 if (waitqueue_active(&ctx->fault_wqh))
ac5be6b4 931 __wake_up_locked_key(&ctx->fault_wqh, TASK_NORMAL, range);
15b726ef 932 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
933}
934
935static __always_inline void wake_userfault(struct userfaultfd_ctx *ctx,
936 struct userfaultfd_wake_range *range)
937{
2c5b7e1b
AA
938 unsigned seq;
939 bool need_wakeup;
940
86039bd3
AA
941 /*
942 * To be sure waitqueue_active() is not reordered by the CPU
943 * before the pagetable update, use an explicit SMP memory
944 * barrier here. PT lock release or up_read(mmap_sem) still
945 * have release semantics that can allow the
946 * waitqueue_active() to be reordered before the pte update.
947 */
948 smp_mb();
949
950 /*
951 * Use waitqueue_active because it's very frequent to
952 * change the address space atomically even if there are no
953 * userfaults yet. So we take the spinlock only when we're
954 * sure we've userfaults to wake.
955 */
2c5b7e1b
AA
956 do {
957 seq = read_seqcount_begin(&ctx->refile_seq);
958 need_wakeup = waitqueue_active(&ctx->fault_pending_wqh) ||
959 waitqueue_active(&ctx->fault_wqh);
960 cond_resched();
961 } while (read_seqcount_retry(&ctx->refile_seq, seq));
962 if (need_wakeup)
86039bd3
AA
963 __wake_userfault(ctx, range);
964}
965
966static __always_inline int validate_range(struct mm_struct *mm,
967 __u64 start, __u64 len)
968{
969 __u64 task_size = mm->task_size;
970
971 if (start & ~PAGE_MASK)
972 return -EINVAL;
973 if (len & ~PAGE_MASK)
974 return -EINVAL;
975 if (!len)
976 return -EINVAL;
977 if (start < mmap_min_addr)
978 return -EINVAL;
979 if (start >= task_size)
980 return -EINVAL;
981 if (len > task_size - start)
982 return -EINVAL;
983 return 0;
984}
985
986static int userfaultfd_register(struct userfaultfd_ctx *ctx,
987 unsigned long arg)
988{
989 struct mm_struct *mm = ctx->mm;
990 struct vm_area_struct *vma, *prev, *cur;
991 int ret;
992 struct uffdio_register uffdio_register;
993 struct uffdio_register __user *user_uffdio_register;
994 unsigned long vm_flags, new_flags;
995 bool found;
996 unsigned long start, end, vma_end;
997
998 user_uffdio_register = (struct uffdio_register __user *) arg;
999
1000 ret = -EFAULT;
1001 if (copy_from_user(&uffdio_register, user_uffdio_register,
1002 sizeof(uffdio_register)-sizeof(__u64)))
1003 goto out;
1004
1005 ret = -EINVAL;
1006 if (!uffdio_register.mode)
1007 goto out;
1008 if (uffdio_register.mode & ~(UFFDIO_REGISTER_MODE_MISSING|
1009 UFFDIO_REGISTER_MODE_WP))
1010 goto out;
1011 vm_flags = 0;
1012 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_MISSING)
1013 vm_flags |= VM_UFFD_MISSING;
1014 if (uffdio_register.mode & UFFDIO_REGISTER_MODE_WP) {
1015 vm_flags |= VM_UFFD_WP;
1016 /*
1017 * FIXME: remove the below error constraint by
1018 * implementing the wprotect tracking mode.
1019 */
1020 ret = -EINVAL;
1021 goto out;
1022 }
1023
1024 ret = validate_range(mm, uffdio_register.range.start,
1025 uffdio_register.range.len);
1026 if (ret)
1027 goto out;
1028
1029 start = uffdio_register.range.start;
1030 end = start + uffdio_register.range.len;
1031
d2005e3f
ON
1032 ret = -ENOMEM;
1033 if (!mmget_not_zero(mm))
1034 goto out;
1035
86039bd3
AA
1036 down_write(&mm->mmap_sem);
1037 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1038 if (!vma)
1039 goto out_unlock;
1040
1041 /* check that there's at least one vma in the range */
1042 ret = -EINVAL;
1043 if (vma->vm_start >= end)
1044 goto out_unlock;
1045
1046 /*
1047 * Search for not compatible vmas.
1048 *
1049 * FIXME: this shall be relaxed later so that it doesn't fail
1050 * on tmpfs backed vmas (in addition to the current allowance
1051 * on anonymous vmas).
1052 */
1053 found = false;
1054 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1055 cond_resched();
1056
1057 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1058 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1059
1060 /* check not compatible vmas */
1061 ret = -EINVAL;
a94720bf 1062 if (!vma_is_anonymous(cur))
86039bd3
AA
1063 goto out_unlock;
1064
1065 /*
1066 * Check that this vma isn't already owned by a
1067 * different userfaultfd. We can't allow more than one
1068 * userfaultfd to own a single vma simultaneously or we
1069 * wouldn't know which one to deliver the userfaults to.
1070 */
1071 ret = -EBUSY;
1072 if (cur->vm_userfaultfd_ctx.ctx &&
1073 cur->vm_userfaultfd_ctx.ctx != ctx)
1074 goto out_unlock;
1075
1076 found = true;
1077 }
1078 BUG_ON(!found);
1079
1080 if (vma->vm_start < start)
1081 prev = vma;
1082
1083 ret = 0;
1084 do {
1085 cond_resched();
1086
a94720bf 1087 BUG_ON(!vma_is_anonymous(vma));
86039bd3
AA
1088 BUG_ON(vma->vm_userfaultfd_ctx.ctx &&
1089 vma->vm_userfaultfd_ctx.ctx != ctx);
1090
1091 /*
1092 * Nothing to do: this vma is already registered into this
1093 * userfaultfd and with the right tracking mode too.
1094 */
1095 if (vma->vm_userfaultfd_ctx.ctx == ctx &&
1096 (vma->vm_flags & vm_flags) == vm_flags)
1097 goto skip;
1098
1099 if (vma->vm_start > start)
1100 start = vma->vm_start;
1101 vma_end = min(end, vma->vm_end);
1102
1103 new_flags = (vma->vm_flags & ~vm_flags) | vm_flags;
1104 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1105 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1106 vma_policy(vma),
1107 ((struct vm_userfaultfd_ctx){ ctx }));
1108 if (prev) {
1109 vma = prev;
1110 goto next;
1111 }
1112 if (vma->vm_start < start) {
1113 ret = split_vma(mm, vma, start, 1);
1114 if (ret)
1115 break;
1116 }
1117 if (vma->vm_end > end) {
1118 ret = split_vma(mm, vma, end, 0);
1119 if (ret)
1120 break;
1121 }
1122 next:
1123 /*
1124 * In the vma_merge() successful mprotect-like case 8:
1125 * the next vma was merged into the current one and
1126 * the current one has not been updated yet.
1127 */
1128 vma->vm_flags = new_flags;
1129 vma->vm_userfaultfd_ctx.ctx = ctx;
1130
1131 skip:
1132 prev = vma;
1133 start = vma->vm_end;
1134 vma = vma->vm_next;
1135 } while (vma && vma->vm_start < end);
1136out_unlock:
1137 up_write(&mm->mmap_sem);
d2005e3f 1138 mmput(mm);
86039bd3
AA
1139 if (!ret) {
1140 /*
1141 * Now that we scanned all vmas we can already tell
1142 * userland which ioctls methods are guaranteed to
1143 * succeed on this range.
1144 */
1145 if (put_user(UFFD_API_RANGE_IOCTLS,
1146 &user_uffdio_register->ioctls))
1147 ret = -EFAULT;
1148 }
1149out:
1150 return ret;
1151}
1152
1153static int userfaultfd_unregister(struct userfaultfd_ctx *ctx,
1154 unsigned long arg)
1155{
1156 struct mm_struct *mm = ctx->mm;
1157 struct vm_area_struct *vma, *prev, *cur;
1158 int ret;
1159 struct uffdio_range uffdio_unregister;
1160 unsigned long new_flags;
1161 bool found;
1162 unsigned long start, end, vma_end;
1163 const void __user *buf = (void __user *)arg;
1164
1165 ret = -EFAULT;
1166 if (copy_from_user(&uffdio_unregister, buf, sizeof(uffdio_unregister)))
1167 goto out;
1168
1169 ret = validate_range(mm, uffdio_unregister.start,
1170 uffdio_unregister.len);
1171 if (ret)
1172 goto out;
1173
1174 start = uffdio_unregister.start;
1175 end = start + uffdio_unregister.len;
1176
d2005e3f
ON
1177 ret = -ENOMEM;
1178 if (!mmget_not_zero(mm))
1179 goto out;
1180
86039bd3
AA
1181 down_write(&mm->mmap_sem);
1182 vma = find_vma_prev(mm, start, &prev);
86039bd3
AA
1183 if (!vma)
1184 goto out_unlock;
1185
1186 /* check that there's at least one vma in the range */
1187 ret = -EINVAL;
1188 if (vma->vm_start >= end)
1189 goto out_unlock;
1190
1191 /*
1192 * Search for not compatible vmas.
1193 *
1194 * FIXME: this shall be relaxed later so that it doesn't fail
1195 * on tmpfs backed vmas (in addition to the current allowance
1196 * on anonymous vmas).
1197 */
1198 found = false;
1199 ret = -EINVAL;
1200 for (cur = vma; cur && cur->vm_start < end; cur = cur->vm_next) {
1201 cond_resched();
1202
1203 BUG_ON(!!cur->vm_userfaultfd_ctx.ctx ^
1204 !!(cur->vm_flags & (VM_UFFD_MISSING | VM_UFFD_WP)));
1205
1206 /*
1207 * Check not compatible vmas, not strictly required
1208 * here as not compatible vmas cannot have an
1209 * userfaultfd_ctx registered on them, but this
1210 * provides for more strict behavior to notice
1211 * unregistration errors.
1212 */
a94720bf 1213 if (!vma_is_anonymous(cur))
86039bd3
AA
1214 goto out_unlock;
1215
1216 found = true;
1217 }
1218 BUG_ON(!found);
1219
1220 if (vma->vm_start < start)
1221 prev = vma;
1222
1223 ret = 0;
1224 do {
1225 cond_resched();
1226
a94720bf 1227 BUG_ON(!vma_is_anonymous(vma));
86039bd3
AA
1228
1229 /*
1230 * Nothing to do: this vma is already registered into this
1231 * userfaultfd and with the right tracking mode too.
1232 */
1233 if (!vma->vm_userfaultfd_ctx.ctx)
1234 goto skip;
1235
1236 if (vma->vm_start > start)
1237 start = vma->vm_start;
1238 vma_end = min(end, vma->vm_end);
1239
1240 new_flags = vma->vm_flags & ~(VM_UFFD_MISSING | VM_UFFD_WP);
1241 prev = vma_merge(mm, prev, start, vma_end, new_flags,
1242 vma->anon_vma, vma->vm_file, vma->vm_pgoff,
1243 vma_policy(vma),
1244 NULL_VM_UFFD_CTX);
1245 if (prev) {
1246 vma = prev;
1247 goto next;
1248 }
1249 if (vma->vm_start < start) {
1250 ret = split_vma(mm, vma, start, 1);
1251 if (ret)
1252 break;
1253 }
1254 if (vma->vm_end > end) {
1255 ret = split_vma(mm, vma, end, 0);
1256 if (ret)
1257 break;
1258 }
1259 next:
1260 /*
1261 * In the vma_merge() successful mprotect-like case 8:
1262 * the next vma was merged into the current one and
1263 * the current one has not been updated yet.
1264 */
1265 vma->vm_flags = new_flags;
1266 vma->vm_userfaultfd_ctx = NULL_VM_UFFD_CTX;
1267
1268 skip:
1269 prev = vma;
1270 start = vma->vm_end;
1271 vma = vma->vm_next;
1272 } while (vma && vma->vm_start < end);
1273out_unlock:
1274 up_write(&mm->mmap_sem);
d2005e3f 1275 mmput(mm);
86039bd3
AA
1276out:
1277 return ret;
1278}
1279
1280/*
ba85c702
AA
1281 * userfaultfd_wake may be used in combination with the
1282 * UFFDIO_*_MODE_DONTWAKE to wakeup userfaults in batches.
86039bd3
AA
1283 */
1284static int userfaultfd_wake(struct userfaultfd_ctx *ctx,
1285 unsigned long arg)
1286{
1287 int ret;
1288 struct uffdio_range uffdio_wake;
1289 struct userfaultfd_wake_range range;
1290 const void __user *buf = (void __user *)arg;
1291
1292 ret = -EFAULT;
1293 if (copy_from_user(&uffdio_wake, buf, sizeof(uffdio_wake)))
1294 goto out;
1295
1296 ret = validate_range(ctx->mm, uffdio_wake.start, uffdio_wake.len);
1297 if (ret)
1298 goto out;
1299
1300 range.start = uffdio_wake.start;
1301 range.len = uffdio_wake.len;
1302
1303 /*
1304 * len == 0 means wake all and we don't want to wake all here,
1305 * so check it again to be sure.
1306 */
1307 VM_BUG_ON(!range.len);
1308
1309 wake_userfault(ctx, &range);
1310 ret = 0;
1311
1312out:
1313 return ret;
1314}
1315
ad465cae
AA
1316static int userfaultfd_copy(struct userfaultfd_ctx *ctx,
1317 unsigned long arg)
1318{
1319 __s64 ret;
1320 struct uffdio_copy uffdio_copy;
1321 struct uffdio_copy __user *user_uffdio_copy;
1322 struct userfaultfd_wake_range range;
1323
1324 user_uffdio_copy = (struct uffdio_copy __user *) arg;
1325
1326 ret = -EFAULT;
1327 if (copy_from_user(&uffdio_copy, user_uffdio_copy,
1328 /* don't copy "copy" last field */
1329 sizeof(uffdio_copy)-sizeof(__s64)))
1330 goto out;
1331
1332 ret = validate_range(ctx->mm, uffdio_copy.dst, uffdio_copy.len);
1333 if (ret)
1334 goto out;
1335 /*
1336 * double check for wraparound just in case. copy_from_user()
1337 * will later check uffdio_copy.src + uffdio_copy.len to fit
1338 * in the userland range.
1339 */
1340 ret = -EINVAL;
1341 if (uffdio_copy.src + uffdio_copy.len <= uffdio_copy.src)
1342 goto out;
1343 if (uffdio_copy.mode & ~UFFDIO_COPY_MODE_DONTWAKE)
1344 goto out;
d2005e3f
ON
1345 if (mmget_not_zero(ctx->mm)) {
1346 ret = mcopy_atomic(ctx->mm, uffdio_copy.dst, uffdio_copy.src,
1347 uffdio_copy.len);
1348 mmput(ctx->mm);
1349 }
ad465cae
AA
1350 if (unlikely(put_user(ret, &user_uffdio_copy->copy)))
1351 return -EFAULT;
1352 if (ret < 0)
1353 goto out;
1354 BUG_ON(!ret);
1355 /* len == 0 would wake all */
1356 range.len = ret;
1357 if (!(uffdio_copy.mode & UFFDIO_COPY_MODE_DONTWAKE)) {
1358 range.start = uffdio_copy.dst;
1359 wake_userfault(ctx, &range);
1360 }
1361 ret = range.len == uffdio_copy.len ? 0 : -EAGAIN;
1362out:
1363 return ret;
1364}
1365
1366static int userfaultfd_zeropage(struct userfaultfd_ctx *ctx,
1367 unsigned long arg)
1368{
1369 __s64 ret;
1370 struct uffdio_zeropage uffdio_zeropage;
1371 struct uffdio_zeropage __user *user_uffdio_zeropage;
1372 struct userfaultfd_wake_range range;
1373
1374 user_uffdio_zeropage = (struct uffdio_zeropage __user *) arg;
1375
1376 ret = -EFAULT;
1377 if (copy_from_user(&uffdio_zeropage, user_uffdio_zeropage,
1378 /* don't copy "zeropage" last field */
1379 sizeof(uffdio_zeropage)-sizeof(__s64)))
1380 goto out;
1381
1382 ret = validate_range(ctx->mm, uffdio_zeropage.range.start,
1383 uffdio_zeropage.range.len);
1384 if (ret)
1385 goto out;
1386 ret = -EINVAL;
1387 if (uffdio_zeropage.mode & ~UFFDIO_ZEROPAGE_MODE_DONTWAKE)
1388 goto out;
1389
d2005e3f
ON
1390 if (mmget_not_zero(ctx->mm)) {
1391 ret = mfill_zeropage(ctx->mm, uffdio_zeropage.range.start,
1392 uffdio_zeropage.range.len);
1393 mmput(ctx->mm);
1394 }
ad465cae
AA
1395 if (unlikely(put_user(ret, &user_uffdio_zeropage->zeropage)))
1396 return -EFAULT;
1397 if (ret < 0)
1398 goto out;
1399 /* len == 0 would wake all */
1400 BUG_ON(!ret);
1401 range.len = ret;
1402 if (!(uffdio_zeropage.mode & UFFDIO_ZEROPAGE_MODE_DONTWAKE)) {
1403 range.start = uffdio_zeropage.range.start;
1404 wake_userfault(ctx, &range);
1405 }
1406 ret = range.len == uffdio_zeropage.range.len ? 0 : -EAGAIN;
1407out:
1408 return ret;
1409}
1410
9cd75c3c
PE
1411static inline unsigned int uffd_ctx_features(__u64 user_features)
1412{
1413 /*
1414 * For the current set of features the bits just coincide
1415 */
1416 return (unsigned int)user_features;
1417}
1418
86039bd3
AA
1419/*
1420 * userland asks for a certain API version and we return which bits
1421 * and ioctl commands are implemented in this kernel for such API
1422 * version or -EINVAL if unknown.
1423 */
1424static int userfaultfd_api(struct userfaultfd_ctx *ctx,
1425 unsigned long arg)
1426{
1427 struct uffdio_api uffdio_api;
1428 void __user *buf = (void __user *)arg;
1429 int ret;
65603144 1430 __u64 features;
86039bd3
AA
1431
1432 ret = -EINVAL;
1433 if (ctx->state != UFFD_STATE_WAIT_API)
1434 goto out;
1435 ret = -EFAULT;
a9b85f94 1436 if (copy_from_user(&uffdio_api, buf, sizeof(uffdio_api)))
86039bd3 1437 goto out;
65603144
AA
1438 features = uffdio_api.features;
1439 if (uffdio_api.api != UFFD_API || (features & ~UFFD_API_FEATURES)) {
86039bd3
AA
1440 memset(&uffdio_api, 0, sizeof(uffdio_api));
1441 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1442 goto out;
1443 ret = -EINVAL;
1444 goto out;
1445 }
65603144
AA
1446 /* report all available features and ioctls to userland */
1447 uffdio_api.features = UFFD_API_FEATURES;
86039bd3
AA
1448 uffdio_api.ioctls = UFFD_API_IOCTLS;
1449 ret = -EFAULT;
1450 if (copy_to_user(buf, &uffdio_api, sizeof(uffdio_api)))
1451 goto out;
1452 ctx->state = UFFD_STATE_RUNNING;
65603144
AA
1453 /* only enable the requested features for this uffd context */
1454 ctx->features = uffd_ctx_features(features);
86039bd3
AA
1455 ret = 0;
1456out:
1457 return ret;
1458}
1459
1460static long userfaultfd_ioctl(struct file *file, unsigned cmd,
1461 unsigned long arg)
1462{
1463 int ret = -EINVAL;
1464 struct userfaultfd_ctx *ctx = file->private_data;
1465
e6485a47
AA
1466 if (cmd != UFFDIO_API && ctx->state == UFFD_STATE_WAIT_API)
1467 return -EINVAL;
1468
86039bd3
AA
1469 switch(cmd) {
1470 case UFFDIO_API:
1471 ret = userfaultfd_api(ctx, arg);
1472 break;
1473 case UFFDIO_REGISTER:
1474 ret = userfaultfd_register(ctx, arg);
1475 break;
1476 case UFFDIO_UNREGISTER:
1477 ret = userfaultfd_unregister(ctx, arg);
1478 break;
1479 case UFFDIO_WAKE:
1480 ret = userfaultfd_wake(ctx, arg);
1481 break;
ad465cae
AA
1482 case UFFDIO_COPY:
1483 ret = userfaultfd_copy(ctx, arg);
1484 break;
1485 case UFFDIO_ZEROPAGE:
1486 ret = userfaultfd_zeropage(ctx, arg);
1487 break;
86039bd3
AA
1488 }
1489 return ret;
1490}
1491
1492#ifdef CONFIG_PROC_FS
1493static void userfaultfd_show_fdinfo(struct seq_file *m, struct file *f)
1494{
1495 struct userfaultfd_ctx *ctx = f->private_data;
1496 wait_queue_t *wq;
1497 struct userfaultfd_wait_queue *uwq;
1498 unsigned long pending = 0, total = 0;
1499
15b726ef
AA
1500 spin_lock(&ctx->fault_pending_wqh.lock);
1501 list_for_each_entry(wq, &ctx->fault_pending_wqh.task_list, task_list) {
1502 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
1503 pending++;
1504 total++;
1505 }
86039bd3
AA
1506 list_for_each_entry(wq, &ctx->fault_wqh.task_list, task_list) {
1507 uwq = container_of(wq, struct userfaultfd_wait_queue, wq);
86039bd3
AA
1508 total++;
1509 }
15b726ef 1510 spin_unlock(&ctx->fault_pending_wqh.lock);
86039bd3
AA
1511
1512 /*
1513 * If more protocols will be added, there will be all shown
1514 * separated by a space. Like this:
1515 * protocols: aa:... bb:...
1516 */
1517 seq_printf(m, "pending:\t%lu\ntotal:\t%lu\nAPI:\t%Lx:%x:%Lx\n",
3f602d27 1518 pending, total, UFFD_API, UFFD_API_FEATURES,
86039bd3
AA
1519 UFFD_API_IOCTLS|UFFD_API_RANGE_IOCTLS);
1520}
1521#endif
1522
1523static const struct file_operations userfaultfd_fops = {
1524#ifdef CONFIG_PROC_FS
1525 .show_fdinfo = userfaultfd_show_fdinfo,
1526#endif
1527 .release = userfaultfd_release,
1528 .poll = userfaultfd_poll,
1529 .read = userfaultfd_read,
1530 .unlocked_ioctl = userfaultfd_ioctl,
1531 .compat_ioctl = userfaultfd_ioctl,
1532 .llseek = noop_llseek,
1533};
1534
3004ec9c
AA
1535static void init_once_userfaultfd_ctx(void *mem)
1536{
1537 struct userfaultfd_ctx *ctx = (struct userfaultfd_ctx *) mem;
1538
1539 init_waitqueue_head(&ctx->fault_pending_wqh);
1540 init_waitqueue_head(&ctx->fault_wqh);
9cd75c3c 1541 init_waitqueue_head(&ctx->event_wqh);
3004ec9c 1542 init_waitqueue_head(&ctx->fd_wqh);
2c5b7e1b 1543 seqcount_init(&ctx->refile_seq);
3004ec9c
AA
1544}
1545
86039bd3
AA
1546/**
1547 * userfaultfd_file_create - Creates an userfaultfd file pointer.
1548 * @flags: Flags for the userfaultfd file.
1549 *
1550 * This function creates an userfaultfd file pointer, w/out installing
1551 * it into the fd table. This is useful when the userfaultfd file is
1552 * used during the initialization of data structures that require
1553 * extra setup after the userfaultfd creation. So the userfaultfd
1554 * creation is split into the file pointer creation phase, and the
1555 * file descriptor installation phase. In this way races with
1556 * userspace closing the newly installed file descriptor can be
1557 * avoided. Returns an userfaultfd file pointer, or a proper error
1558 * pointer.
1559 */
1560static struct file *userfaultfd_file_create(int flags)
1561{
1562 struct file *file;
1563 struct userfaultfd_ctx *ctx;
1564
1565 BUG_ON(!current->mm);
1566
1567 /* Check the UFFD_* constants for consistency. */
1568 BUILD_BUG_ON(UFFD_CLOEXEC != O_CLOEXEC);
1569 BUILD_BUG_ON(UFFD_NONBLOCK != O_NONBLOCK);
1570
1571 file = ERR_PTR(-EINVAL);
1572 if (flags & ~UFFD_SHARED_FCNTL_FLAGS)
1573 goto out;
1574
1575 file = ERR_PTR(-ENOMEM);
3004ec9c 1576 ctx = kmem_cache_alloc(userfaultfd_ctx_cachep, GFP_KERNEL);
86039bd3
AA
1577 if (!ctx)
1578 goto out;
1579
1580 atomic_set(&ctx->refcount, 1);
86039bd3 1581 ctx->flags = flags;
9cd75c3c 1582 ctx->features = 0;
86039bd3
AA
1583 ctx->state = UFFD_STATE_WAIT_API;
1584 ctx->released = false;
1585 ctx->mm = current->mm;
1586 /* prevent the mm struct to be freed */
d2005e3f 1587 atomic_inc(&ctx->mm->mm_count);
86039bd3
AA
1588
1589 file = anon_inode_getfile("[userfaultfd]", &userfaultfd_fops, ctx,
1590 O_RDWR | (flags & UFFD_SHARED_FCNTL_FLAGS));
c03e946f 1591 if (IS_ERR(file)) {
d2005e3f 1592 mmdrop(ctx->mm);
3004ec9c 1593 kmem_cache_free(userfaultfd_ctx_cachep, ctx);
c03e946f 1594 }
86039bd3
AA
1595out:
1596 return file;
1597}
1598
1599SYSCALL_DEFINE1(userfaultfd, int, flags)
1600{
1601 int fd, error;
1602 struct file *file;
1603
1604 error = get_unused_fd_flags(flags & UFFD_SHARED_FCNTL_FLAGS);
1605 if (error < 0)
1606 return error;
1607 fd = error;
1608
1609 file = userfaultfd_file_create(flags);
1610 if (IS_ERR(file)) {
1611 error = PTR_ERR(file);
1612 goto err_put_unused_fd;
1613 }
1614 fd_install(fd, file);
1615
1616 return fd;
1617
1618err_put_unused_fd:
1619 put_unused_fd(fd);
1620
1621 return error;
1622}
3004ec9c
AA
1623
1624static int __init userfaultfd_init(void)
1625{
1626 userfaultfd_ctx_cachep = kmem_cache_create("userfaultfd_ctx_cache",
1627 sizeof(struct userfaultfd_ctx),
1628 0,
1629 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
1630 init_once_userfaultfd_ctx);
1631 return 0;
1632}
1633__initcall(userfaultfd_init);