]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - ipc/sem.c
x86/speculation: Use synthetic bits for IBRS/IBPB/STIBP
[mirror_ubuntu-artful-kernel.git] / ipc / sem.c
CommitLineData
1da177e4
LT
1/*
2 * linux/ipc/sem.c
3 * Copyright (C) 1992 Krishna Balasubramanian
4 * Copyright (C) 1995 Eric Schenk, Bruno Haible
5 *
1da177e4
LT
6 * /proc/sysvipc/sem support (c) 1999 Dragos Acostachioaie <dragos@iname.com>
7 *
8 * SMP-threaded, sysctl's added
624dffcb 9 * (c) 1999 Manfred Spraul <manfred@colorfullife.com>
1da177e4 10 * Enforced range limit on SEM_UNDO
046c6884 11 * (c) 2001 Red Hat Inc
1da177e4
LT
12 * Lockless wakeup
13 * (c) 2003 Manfred Spraul <manfred@colorfullife.com>
9ae949fa 14 * (c) 2016 Davidlohr Bueso <dave@stgolabs.net>
c5cf6359
MS
15 * Further wakeup optimizations, documentation
16 * (c) 2010 Manfred Spraul <manfred@colorfullife.com>
073115d6
SG
17 *
18 * support for audit of ipc object properties and permission changes
19 * Dustin Kirkland <dustin.kirkland@us.ibm.com>
e3893534
KK
20 *
21 * namespaces support
22 * OpenVZ, SWsoft Inc.
23 * Pavel Emelianov <xemul@openvz.org>
c5cf6359
MS
24 *
25 * Implementation notes: (May 2010)
26 * This file implements System V semaphores.
27 *
28 * User space visible behavior:
29 * - FIFO ordering for semop() operations (just FIFO, not starvation
30 * protection)
31 * - multiple semaphore operations that alter the same semaphore in
32 * one semop() are handled.
33 * - sem_ctime (time of last semctl()) is updated in the IPC_SET, SETVAL and
34 * SETALL calls.
35 * - two Linux specific semctl() commands: SEM_STAT, SEM_INFO.
36 * - undo adjustments at process exit are limited to 0..SEMVMX.
37 * - namespace are supported.
38 * - SEMMSL, SEMMNS, SEMOPM and SEMMNI can be configured at runtine by writing
39 * to /proc/sys/kernel/sem.
40 * - statistics about the usage are reported in /proc/sysvipc/sem.
41 *
42 * Internals:
43 * - scalability:
44 * - all global variables are read-mostly.
45 * - semop() calls and semctl(RMID) are synchronized by RCU.
46 * - most operations do write operations (actually: spin_lock calls) to
47 * the per-semaphore array structure.
48 * Thus: Perfect SMP scaling between independent semaphore arrays.
49 * If multiple semaphores in one array are used, then cache line
50 * trashing on the semaphore array spinlock will limit the scaling.
2f2ed41d 51 * - semncnt and semzcnt are calculated on demand in count_semcnt()
c5cf6359
MS
52 * - the task that performs a successful semop() scans the list of all
53 * sleeping tasks and completes any pending operations that can be fulfilled.
54 * Semaphores are actively given to waiting tasks (necessary for FIFO).
55 * (see update_queue())
56 * - To improve the scalability, the actual wake-up calls are performed after
9ae949fa 57 * dropping all locks. (see wake_up_sem_queue_prepare())
c5cf6359
MS
58 * - All work is done by the waker, the woken up task does not have to do
59 * anything - not even acquiring a lock or dropping a refcount.
60 * - A woken up task may not even touch the semaphore array anymore, it may
61 * have been destroyed already by a semctl(RMID).
c5cf6359
MS
62 * - UNDO values are stored in an array (one per process and per
63 * semaphore array, lazily allocated). For backwards compatibility, multiple
64 * modes for the UNDO variables are supported (per process, per thread)
65 * (see copy_semundo, CLONE_SYSVSEM)
66 * - There are two lists of the pending operations: a per-array list
67 * and per-semaphore list (stored in the array). This allows to achieve FIFO
68 * ordering without always scanning all pending operations.
69 * The worst-case behavior is nevertheless O(N^2) for N wakeups.
1da177e4
LT
70 */
71
1da177e4
LT
72#include <linux/slab.h>
73#include <linux/spinlock.h>
74#include <linux/init.h>
75#include <linux/proc_fs.h>
76#include <linux/time.h>
1da177e4
LT
77#include <linux/security.h>
78#include <linux/syscalls.h>
79#include <linux/audit.h>
c59ede7b 80#include <linux/capability.h>
19b4946c 81#include <linux/seq_file.h>
3e148c79 82#include <linux/rwsem.h>
e3893534 83#include <linux/nsproxy.h>
ae5e1b22 84#include <linux/ipc_namespace.h>
84f001e1 85#include <linux/sched/wake_q.h>
5f921ae9 86
7153e402 87#include <linux/uaccess.h>
1da177e4
LT
88#include "util.h"
89
e57940d7
MS
90
91/* One queue for each sleeping process in the system. */
92struct sem_queue {
e57940d7
MS
93 struct list_head list; /* queue of pending operations */
94 struct task_struct *sleeper; /* this process */
95 struct sem_undo *undo; /* undo structure */
96 int pid; /* process id of requesting process */
97 int status; /* completion status of operation */
98 struct sembuf *sops; /* array of pending operations */
ed247b7c 99 struct sembuf *blocking; /* the operation that blocked */
e57940d7 100 int nsops; /* number of operations */
4ce33ec2
DB
101 bool alter; /* does *sops alter the array? */
102 bool dupsop; /* sops on more than one sem_num */
e57940d7
MS
103};
104
105/* Each task has a list of undo requests. They are executed automatically
106 * when the process exits.
107 */
108struct sem_undo {
109 struct list_head list_proc; /* per-process list: *
110 * all undos from one process
111 * rcu protected */
112 struct rcu_head rcu; /* rcu struct for sem_undo */
113 struct sem_undo_list *ulp; /* back ptr to sem_undo_list */
114 struct list_head list_id; /* per semaphore array list:
115 * all undos for one array */
116 int semid; /* semaphore set identifier */
117 short *semadj; /* array of adjustments */
118 /* one per semaphore */
119};
120
121/* sem_undo_list controls shared access to the list of sem_undo structures
122 * that may be shared among all a CLONE_SYSVSEM task group.
123 */
124struct sem_undo_list {
125 atomic_t refcnt;
126 spinlock_t lock;
127 struct list_head list_proc;
128};
129
130
ed2ddbf8 131#define sem_ids(ns) ((ns)->ids[IPC_SEM_IDS])
e3893534 132
1b531f21 133#define sem_checkid(sma, semid) ipc_checkid(&sma->sem_perm, semid)
1da177e4 134
7748dbfa 135static int newary(struct ipc_namespace *, struct ipc_params *);
01b8b07a 136static void freeary(struct ipc_namespace *, struct kern_ipc_perm *);
1da177e4 137#ifdef CONFIG_PROC_FS
19b4946c 138static int sysvipc_sem_proc_show(struct seq_file *s, void *it);
1da177e4
LT
139#endif
140
141#define SEMMSL_FAST 256 /* 512 bytes on stack */
142#define SEMOPM_FAST 64 /* ~ 372 bytes on stack */
143
9de5ab8a
MS
144/*
145 * Switching from the mode suitable for simple ops
146 * to the mode for complex ops is costly. Therefore:
147 * use some hysteresis
148 */
149#define USE_GLOBAL_LOCK_HYSTERESIS 10
150
1da177e4 151/*
758a6ba3 152 * Locking:
5864a2fd 153 * a) global sem_lock() for read/write
1da177e4 154 * sem_undo.id_next,
758a6ba3 155 * sem_array.complex_count,
5864a2fd
MS
156 * sem_array.pending{_alter,_const},
157 * sem_array.sem_undo
46c0a8ca 158 *
5864a2fd 159 * b) global or semaphore sem_lock() for read/write:
1a233956 160 * sem_array.sems[i].pending_{const,alter}:
5864a2fd
MS
161 *
162 * c) special:
163 * sem_undo_list.list_proc:
164 * * undo_list->lock for write
165 * * rcu for read
9de5ab8a
MS
166 * use_global_lock:
167 * * global sem_lock() for write
168 * * either local or global sem_lock() for read.
169 *
170 * Memory ordering:
171 * Most ordering is enforced by using spin_lock() and spin_unlock().
172 * The special case is use_global_lock:
173 * Setting it from non-zero to 0 is a RELEASE, this is ensured by
174 * using smp_store_release().
175 * Testing if it is non-zero is an ACQUIRE, this is ensured by using
176 * smp_load_acquire().
177 * Setting it from 0 to non-zero must be ordered with regards to
178 * this smp_load_acquire(), this is guaranteed because the smp_load_acquire()
179 * is inside a spin_lock() and after a write from 0 to non-zero a
180 * spin_lock()+spin_unlock() is done.
1da177e4
LT
181 */
182
e3893534
KK
183#define sc_semmsl sem_ctls[0]
184#define sc_semmns sem_ctls[1]
185#define sc_semopm sem_ctls[2]
186#define sc_semmni sem_ctls[3]
187
ed2ddbf8 188void sem_init_ns(struct ipc_namespace *ns)
e3893534 189{
e3893534
KK
190 ns->sc_semmsl = SEMMSL;
191 ns->sc_semmns = SEMMNS;
192 ns->sc_semopm = SEMOPM;
193 ns->sc_semmni = SEMMNI;
194 ns->used_sems = 0;
ed2ddbf8 195 ipc_init_ids(&ns->ids[IPC_SEM_IDS]);
e3893534
KK
196}
197
ae5e1b22 198#ifdef CONFIG_IPC_NS
e3893534
KK
199void sem_exit_ns(struct ipc_namespace *ns)
200{
01b8b07a 201 free_ipcs(ns, &sem_ids(ns), freeary);
7d6feeb2 202 idr_destroy(&ns->ids[IPC_SEM_IDS].ipcs_idr);
e3893534 203}
ae5e1b22 204#endif
1da177e4 205
239521f3 206void __init sem_init(void)
1da177e4 207{
ed2ddbf8 208 sem_init_ns(&init_ipc_ns);
19b4946c
MW
209 ipc_init_proc_interface("sysvipc/sem",
210 " key semid perms nsems uid gid cuid cgid otime ctime\n",
e3893534 211 IPC_SEM_IDS, sysvipc_sem_proc_show);
1da177e4
LT
212}
213
f269f40a
MS
214/**
215 * unmerge_queues - unmerge queues, if possible.
216 * @sma: semaphore array
217 *
218 * The function unmerges the wait queues if complex_count is 0.
219 * It must be called prior to dropping the global semaphore array lock.
220 */
221static void unmerge_queues(struct sem_array *sma)
222{
223 struct sem_queue *q, *tq;
224
225 /* complex operations still around? */
226 if (sma->complex_count)
227 return;
228 /*
229 * We will switch back to simple mode.
230 * Move all pending operation back into the per-semaphore
231 * queues.
232 */
233 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
234 struct sem *curr;
1a233956 235 curr = &sma->sems[q->sops[0].sem_num];
f269f40a
MS
236
237 list_add_tail(&q->list, &curr->pending_alter);
238 }
239 INIT_LIST_HEAD(&sma->pending_alter);
240}
241
242/**
8001c858 243 * merge_queues - merge single semop queues into global queue
f269f40a
MS
244 * @sma: semaphore array
245 *
246 * This function merges all per-semaphore queues into the global queue.
247 * It is necessary to achieve FIFO ordering for the pending single-sop
248 * operations when a multi-semop operation must sleep.
249 * Only the alter operations must be moved, the const operations can stay.
250 */
251static void merge_queues(struct sem_array *sma)
252{
253 int i;
254 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 255 struct sem *sem = &sma->sems[i];
f269f40a
MS
256
257 list_splice_init(&sem->pending_alter, &sma->pending_alter);
258 }
259}
260
53dad6d3
DB
261static void sem_rcu_free(struct rcu_head *head)
262{
dba4cdd3
MS
263 struct kern_ipc_perm *p = container_of(head, struct kern_ipc_perm, rcu);
264 struct sem_array *sma = container_of(p, struct sem_array, sem_perm);
53dad6d3
DB
265
266 security_sem_free(sma);
e2029dfe 267 kvfree(sma);
53dad6d3
DB
268}
269
5e9d5275 270/*
5864a2fd 271 * Enter the mode suitable for non-simple operations:
5e9d5275 272 * Caller must own sem_perm.lock.
5e9d5275 273 */
5864a2fd 274static void complexmode_enter(struct sem_array *sma)
5e9d5275
MS
275{
276 int i;
277 struct sem *sem;
278
9de5ab8a
MS
279 if (sma->use_global_lock > 0) {
280 /*
281 * We are already in global lock mode.
282 * Nothing to do, just reset the
283 * counter until we return to simple mode.
284 */
285 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
6d07b68c
MS
286 return;
287 }
9de5ab8a 288 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
5864a2fd 289
5e9d5275 290 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 291 sem = &sma->sems[i];
27d7be18
MS
292 spin_lock(&sem->lock);
293 spin_unlock(&sem->lock);
5e9d5275 294 }
5864a2fd
MS
295}
296
297/*
298 * Try to leave the mode that disallows simple operations:
299 * Caller must own sem_perm.lock.
300 */
301static void complexmode_tryleave(struct sem_array *sma)
302{
303 if (sma->complex_count) {
304 /* Complex ops are sleeping.
305 * We must stay in complex mode
306 */
307 return;
308 }
9de5ab8a
MS
309 if (sma->use_global_lock == 1) {
310 /*
311 * Immediately after setting use_global_lock to 0,
312 * a simple op can start. Thus: all memory writes
313 * performed by the current operation must be visible
314 * before we set use_global_lock to 0.
315 */
316 smp_store_release(&sma->use_global_lock, 0);
317 } else {
318 sma->use_global_lock--;
319 }
5e9d5275
MS
320}
321
5864a2fd 322#define SEM_GLOBAL_LOCK (-1)
6062a8dc
RR
323/*
324 * If the request contains only one semaphore operation, and there are
325 * no complex transactions pending, lock only the semaphore involved.
326 * Otherwise, lock the entire semaphore array, since we either have
327 * multiple semaphores in our own semops, or we need to look at
328 * semaphores from other pending complex operations.
6062a8dc
RR
329 */
330static inline int sem_lock(struct sem_array *sma, struct sembuf *sops,
331 int nsops)
332{
5e9d5275 333 struct sem *sem;
6062a8dc 334
5e9d5275
MS
335 if (nsops != 1) {
336 /* Complex operation - acquire a full lock */
337 ipc_lock_object(&sma->sem_perm);
6062a8dc 338
5864a2fd
MS
339 /* Prevent parallel simple ops */
340 complexmode_enter(sma);
341 return SEM_GLOBAL_LOCK;
5e9d5275
MS
342 }
343
344 /*
345 * Only one semaphore affected - try to optimize locking.
5864a2fd
MS
346 * Optimized locking is possible if no complex operation
347 * is either enqueued or processed right now.
348 *
9de5ab8a 349 * Both facts are tracked by use_global_mode.
5e9d5275 350 */
1a233956 351 sem = &sma->sems[sops->sem_num];
6062a8dc 352
5864a2fd 353 /*
9de5ab8a 354 * Initial check for use_global_lock. Just an optimization,
5864a2fd
MS
355 * no locking, no memory barrier.
356 */
9de5ab8a 357 if (!sma->use_global_lock) {
6062a8dc 358 /*
5e9d5275
MS
359 * It appears that no complex operation is around.
360 * Acquire the per-semaphore lock.
6062a8dc 361 */
5e9d5275
MS
362 spin_lock(&sem->lock);
363
9de5ab8a
MS
364 /* pairs with smp_store_release() */
365 if (!smp_load_acquire(&sma->use_global_lock)) {
5864a2fd
MS
366 /* fast path successful! */
367 return sops->sem_num;
6062a8dc 368 }
5e9d5275
MS
369 spin_unlock(&sem->lock);
370 }
371
372 /* slow path: acquire the full lock */
373 ipc_lock_object(&sma->sem_perm);
6062a8dc 374
9de5ab8a
MS
375 if (sma->use_global_lock == 0) {
376 /*
377 * The use_global_lock mode ended while we waited for
378 * sma->sem_perm.lock. Thus we must switch to locking
379 * with sem->lock.
380 * Unlike in the fast path, there is no need to recheck
381 * sma->use_global_lock after we have acquired sem->lock:
382 * We own sma->sem_perm.lock, thus use_global_lock cannot
383 * change.
5e9d5275
MS
384 */
385 spin_lock(&sem->lock);
9de5ab8a 386
5e9d5275
MS
387 ipc_unlock_object(&sma->sem_perm);
388 return sops->sem_num;
6062a8dc 389 } else {
9de5ab8a
MS
390 /*
391 * Not a false alarm, thus continue to use the global lock
392 * mode. No need for complexmode_enter(), this was done by
393 * the caller that has set use_global_mode to non-zero.
6062a8dc 394 */
5864a2fd 395 return SEM_GLOBAL_LOCK;
6062a8dc 396 }
6062a8dc
RR
397}
398
399static inline void sem_unlock(struct sem_array *sma, int locknum)
400{
5864a2fd 401 if (locknum == SEM_GLOBAL_LOCK) {
f269f40a 402 unmerge_queues(sma);
5864a2fd 403 complexmode_tryleave(sma);
cf9d5d78 404 ipc_unlock_object(&sma->sem_perm);
6062a8dc 405 } else {
1a233956 406 struct sem *sem = &sma->sems[locknum];
6062a8dc
RR
407 spin_unlock(&sem->lock);
408 }
6062a8dc
RR
409}
410
3e148c79 411/*
d9a605e4 412 * sem_lock_(check_) routines are called in the paths where the rwsem
3e148c79 413 * is not held.
321310ce
LT
414 *
415 * The caller holds the RCU read lock.
3e148c79 416 */
16df3674
DB
417static inline struct sem_array *sem_obtain_object(struct ipc_namespace *ns, int id)
418{
55b7ae50 419 struct kern_ipc_perm *ipcp = ipc_obtain_object_idr(&sem_ids(ns), id);
16df3674
DB
420
421 if (IS_ERR(ipcp))
422 return ERR_CAST(ipcp);
423
424 return container_of(ipcp, struct sem_array, sem_perm);
425}
426
16df3674
DB
427static inline struct sem_array *sem_obtain_object_check(struct ipc_namespace *ns,
428 int id)
429{
430 struct kern_ipc_perm *ipcp = ipc_obtain_object_check(&sem_ids(ns), id);
431
432 if (IS_ERR(ipcp))
433 return ERR_CAST(ipcp);
b1ed88b4 434
03f02c76 435 return container_of(ipcp, struct sem_array, sem_perm);
023a5355
ND
436}
437
6ff37972
PP
438static inline void sem_lock_and_putref(struct sem_array *sma)
439{
6062a8dc 440 sem_lock(sma, NULL, -1);
dba4cdd3 441 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
6ff37972
PP
442}
443
7ca7e564
ND
444static inline void sem_rmid(struct ipc_namespace *ns, struct sem_array *s)
445{
446 ipc_rmid(&sem_ids(ns), &s->sem_perm);
447}
448
101ede01
KC
449static struct sem_array *sem_alloc(size_t nsems)
450{
451 struct sem_array *sma;
452 size_t size;
453
454 if (nsems > (INT_MAX - sizeof(*sma)) / sizeof(sma->sems[0]))
455 return NULL;
456
457 size = sizeof(*sma) + nsems * sizeof(sma->sems[0]);
458 sma = kvmalloc(size, GFP_KERNEL);
459 if (unlikely(!sma))
460 return NULL;
461
462 memset(sma, 0, size);
101ede01
KC
463
464 return sma;
465}
466
f4566f04
ND
467/**
468 * newary - Create a new semaphore set
469 * @ns: namespace
470 * @params: ptr to the structure that contains key, semflg and nsems
471 *
d9a605e4 472 * Called with sem_ids.rwsem held (as a writer)
f4566f04 473 */
7748dbfa 474static int newary(struct ipc_namespace *ns, struct ipc_params *params)
1da177e4 475{
1da177e4
LT
476 int retval;
477 struct sem_array *sma;
7748dbfa
ND
478 key_t key = params->key;
479 int nsems = params->u.nsems;
480 int semflg = params->flg;
b97e820f 481 int i;
1da177e4
LT
482
483 if (!nsems)
484 return -EINVAL;
e3893534 485 if (ns->used_sems + nsems > ns->sc_semmns)
1da177e4
LT
486 return -ENOSPC;
487
101ede01 488 sma = sem_alloc(nsems);
3ab08fe2 489 if (!sma)
1da177e4 490 return -ENOMEM;
3ab08fe2 491
1da177e4
LT
492 sma->sem_perm.mode = (semflg & S_IRWXUGO);
493 sma->sem_perm.key = key;
494
495 sma->sem_perm.security = NULL;
496 retval = security_sem_alloc(sma);
497 if (retval) {
e2029dfe 498 kvfree(sma);
1da177e4
LT
499 return retval;
500 }
501
6062a8dc 502 for (i = 0; i < nsems; i++) {
1a233956
MS
503 INIT_LIST_HEAD(&sma->sems[i].pending_alter);
504 INIT_LIST_HEAD(&sma->sems[i].pending_const);
505 spin_lock_init(&sma->sems[i].lock);
6062a8dc 506 }
b97e820f
MS
507
508 sma->complex_count = 0;
9de5ab8a 509 sma->use_global_lock = USE_GLOBAL_LOCK_HYSTERESIS;
1a82e9e1
MS
510 INIT_LIST_HEAD(&sma->pending_alter);
511 INIT_LIST_HEAD(&sma->pending_const);
4daa28f6 512 INIT_LIST_HEAD(&sma->list_id);
1da177e4
LT
513 sma->sem_nsems = nsems;
514 sma->sem_ctime = get_seconds();
e8577d1f 515
2ec55f80
MS
516 retval = ipc_addid(&sem_ids(ns), &sma->sem_perm, ns->sc_semmni);
517 if (retval < 0) {
518 call_rcu(&sma->sem_perm.rcu, sem_rcu_free);
519 return retval;
e8577d1f
MS
520 }
521 ns->used_sems += nsems;
522
6062a8dc 523 sem_unlock(sma, -1);
6d49dab8 524 rcu_read_unlock();
1da177e4 525
7ca7e564 526 return sma->sem_perm.id;
1da177e4
LT
527}
528
7748dbfa 529
f4566f04 530/*
d9a605e4 531 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 532 */
03f02c76 533static inline int sem_security(struct kern_ipc_perm *ipcp, int semflg)
7748dbfa 534{
03f02c76
ND
535 struct sem_array *sma;
536
537 sma = container_of(ipcp, struct sem_array, sem_perm);
538 return security_sem_associate(sma, semflg);
7748dbfa
ND
539}
540
f4566f04 541/*
d9a605e4 542 * Called with sem_ids.rwsem and ipcp locked.
f4566f04 543 */
03f02c76
ND
544static inline int sem_more_checks(struct kern_ipc_perm *ipcp,
545 struct ipc_params *params)
7748dbfa 546{
03f02c76
ND
547 struct sem_array *sma;
548
549 sma = container_of(ipcp, struct sem_array, sem_perm);
550 if (params->u.nsems > sma->sem_nsems)
7748dbfa
ND
551 return -EINVAL;
552
553 return 0;
554}
555
d5460c99 556SYSCALL_DEFINE3(semget, key_t, key, int, nsems, int, semflg)
1da177e4 557{
e3893534 558 struct ipc_namespace *ns;
eb66ec44
MK
559 static const struct ipc_ops sem_ops = {
560 .getnew = newary,
561 .associate = sem_security,
562 .more_checks = sem_more_checks,
563 };
7748dbfa 564 struct ipc_params sem_params;
e3893534
KK
565
566 ns = current->nsproxy->ipc_ns;
1da177e4 567
e3893534 568 if (nsems < 0 || nsems > ns->sc_semmsl)
1da177e4 569 return -EINVAL;
7ca7e564 570
7748dbfa
ND
571 sem_params.key = key;
572 sem_params.flg = semflg;
573 sem_params.u.nsems = nsems;
1da177e4 574
7748dbfa 575 return ipcget(ns, &sem_ids(ns), &sem_ops, &sem_params);
1da177e4
LT
576}
577
78f5009c 578/**
4ce33ec2
DB
579 * perform_atomic_semop[_slow] - Attempt to perform semaphore
580 * operations on a given array.
758a6ba3 581 * @sma: semaphore array
d198cd6d 582 * @q: struct sem_queue that describes the operation
758a6ba3 583 *
4ce33ec2
DB
584 * Caller blocking are as follows, based the value
585 * indicated by the semaphore operation (sem_op):
586 *
587 * (1) >0 never blocks.
588 * (2) 0 (wait-for-zero operation): semval is non-zero.
589 * (3) <0 attempting to decrement semval to a value smaller than zero.
590 *
758a6ba3
MS
591 * Returns 0 if the operation was possible.
592 * Returns 1 if the operation is impossible, the caller must sleep.
4ce33ec2 593 * Returns <0 for error codes.
1da177e4 594 */
4ce33ec2 595static int perform_atomic_semop_slow(struct sem_array *sma, struct sem_queue *q)
1da177e4 596{
d198cd6d 597 int result, sem_op, nsops, pid;
1da177e4 598 struct sembuf *sop;
239521f3 599 struct sem *curr;
d198cd6d
MS
600 struct sembuf *sops;
601 struct sem_undo *un;
602
603 sops = q->sops;
604 nsops = q->nsops;
605 un = q->undo;
1da177e4
LT
606
607 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 608 curr = &sma->sems[sop->sem_num];
1da177e4
LT
609 sem_op = sop->sem_op;
610 result = curr->semval;
78f5009c 611
1da177e4
LT
612 if (!sem_op && result)
613 goto would_block;
614
615 result += sem_op;
616 if (result < 0)
617 goto would_block;
618 if (result > SEMVMX)
619 goto out_of_range;
78f5009c 620
1da177e4
LT
621 if (sop->sem_flg & SEM_UNDO) {
622 int undo = un->semadj[sop->sem_num] - sem_op;
78f5009c 623 /* Exceeding the undo range is an error. */
1da177e4
LT
624 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
625 goto out_of_range;
78f5009c 626 un->semadj[sop->sem_num] = undo;
1da177e4 627 }
78f5009c 628
1da177e4
LT
629 curr->semval = result;
630 }
631
632 sop--;
d198cd6d 633 pid = q->pid;
1da177e4 634 while (sop >= sops) {
1a233956 635 sma->sems[sop->sem_num].sempid = pid;
1da177e4
LT
636 sop--;
637 }
78f5009c 638
1da177e4
LT
639 return 0;
640
641out_of_range:
642 result = -ERANGE;
643 goto undo;
644
645would_block:
ed247b7c
MS
646 q->blocking = sop;
647
1da177e4
LT
648 if (sop->sem_flg & IPC_NOWAIT)
649 result = -EAGAIN;
650 else
651 result = 1;
652
653undo:
654 sop--;
655 while (sop >= sops) {
78f5009c 656 sem_op = sop->sem_op;
1a233956 657 sma->sems[sop->sem_num].semval -= sem_op;
78f5009c
PM
658 if (sop->sem_flg & SEM_UNDO)
659 un->semadj[sop->sem_num] += sem_op;
1da177e4
LT
660 sop--;
661 }
662
663 return result;
664}
665
4ce33ec2
DB
666static int perform_atomic_semop(struct sem_array *sma, struct sem_queue *q)
667{
668 int result, sem_op, nsops;
669 struct sembuf *sop;
670 struct sem *curr;
671 struct sembuf *sops;
672 struct sem_undo *un;
673
674 sops = q->sops;
675 nsops = q->nsops;
676 un = q->undo;
677
678 if (unlikely(q->dupsop))
679 return perform_atomic_semop_slow(sma, q);
680
681 /*
682 * We scan the semaphore set twice, first to ensure that the entire
683 * operation can succeed, therefore avoiding any pointless writes
684 * to shared memory and having to undo such changes in order to block
685 * until the operations can go through.
686 */
687 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 688 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
689 sem_op = sop->sem_op;
690 result = curr->semval;
691
692 if (!sem_op && result)
693 goto would_block; /* wait-for-zero */
694
695 result += sem_op;
696 if (result < 0)
697 goto would_block;
698
699 if (result > SEMVMX)
700 return -ERANGE;
701
702 if (sop->sem_flg & SEM_UNDO) {
703 int undo = un->semadj[sop->sem_num] - sem_op;
704
705 /* Exceeding the undo range is an error. */
706 if (undo < (-SEMAEM - 1) || undo > SEMAEM)
707 return -ERANGE;
708 }
709 }
710
711 for (sop = sops; sop < sops + nsops; sop++) {
1a233956 712 curr = &sma->sems[sop->sem_num];
4ce33ec2
DB
713 sem_op = sop->sem_op;
714 result = curr->semval;
715
716 if (sop->sem_flg & SEM_UNDO) {
717 int undo = un->semadj[sop->sem_num] - sem_op;
718
719 un->semadj[sop->sem_num] = undo;
720 }
721 curr->semval += sem_op;
722 curr->sempid = q->pid;
723 }
724
725 return 0;
726
727would_block:
728 q->blocking = sop;
729 return sop->sem_flg & IPC_NOWAIT ? -EAGAIN : 1;
730}
731
9ae949fa
DB
732static inline void wake_up_sem_queue_prepare(struct sem_queue *q, int error,
733 struct wake_q_head *wake_q)
0a2b9d4c 734{
9ae949fa
DB
735 wake_q_add(wake_q, q->sleeper);
736 /*
737 * Rely on the above implicit barrier, such that we can
738 * ensure that we hold reference to the task before setting
739 * q->status. Otherwise we could race with do_exit if the
740 * task is awoken by an external event before calling
741 * wake_up_process().
742 */
743 WRITE_ONCE(q->status, error);
d4212093
NP
744}
745
b97e820f
MS
746static void unlink_queue(struct sem_array *sma, struct sem_queue *q)
747{
748 list_del(&q->list);
9f1bc2c9 749 if (q->nsops > 1)
b97e820f
MS
750 sma->complex_count--;
751}
752
fd5db422
MS
753/** check_restart(sma, q)
754 * @sma: semaphore array
755 * @q: the operation that just completed
756 *
757 * update_queue is O(N^2) when it restarts scanning the whole queue of
758 * waiting operations. Therefore this function checks if the restart is
759 * really necessary. It is called after a previously waiting operation
1a82e9e1
MS
760 * modified the array.
761 * Note that wait-for-zero operations are handled without restart.
fd5db422 762 */
4663d3e8 763static inline int check_restart(struct sem_array *sma, struct sem_queue *q)
fd5db422 764{
1a82e9e1
MS
765 /* pending complex alter operations are too difficult to analyse */
766 if (!list_empty(&sma->pending_alter))
fd5db422
MS
767 return 1;
768
769 /* we were a sleeping complex operation. Too difficult */
770 if (q->nsops > 1)
771 return 1;
772
1a82e9e1
MS
773 /* It is impossible that someone waits for the new value:
774 * - complex operations always restart.
775 * - wait-for-zero are handled seperately.
776 * - q is a previously sleeping simple operation that
777 * altered the array. It must be a decrement, because
778 * simple increments never sleep.
779 * - If there are older (higher priority) decrements
780 * in the queue, then they have observed the original
781 * semval value and couldn't proceed. The operation
782 * decremented to value - thus they won't proceed either.
783 */
784 return 0;
785}
fd5db422 786
1a82e9e1 787/**
8001c858 788 * wake_const_ops - wake up non-alter tasks
1a82e9e1
MS
789 * @sma: semaphore array.
790 * @semnum: semaphore that was modified.
9ae949fa 791 * @wake_q: lockless wake-queue head.
1a82e9e1
MS
792 *
793 * wake_const_ops must be called after a semaphore in a semaphore array
794 * was set to 0. If complex const operations are pending, wake_const_ops must
795 * be called with semnum = -1, as well as with the number of each modified
796 * semaphore.
9ae949fa 797 * The tasks that must be woken up are added to @wake_q. The return code
1a82e9e1
MS
798 * is stored in q->pid.
799 * The function returns 1 if at least one operation was completed successfully.
800 */
801static int wake_const_ops(struct sem_array *sma, int semnum,
9ae949fa 802 struct wake_q_head *wake_q)
1a82e9e1 803{
f150f02c 804 struct sem_queue *q, *tmp;
1a82e9e1
MS
805 struct list_head *pending_list;
806 int semop_completed = 0;
807
808 if (semnum == -1)
809 pending_list = &sma->pending_const;
810 else
1a233956 811 pending_list = &sma->sems[semnum].pending_const;
fd5db422 812
f150f02c
DB
813 list_for_each_entry_safe(q, tmp, pending_list, list) {
814 int error = perform_atomic_semop(sma, q);
1a82e9e1 815
f150f02c
DB
816 if (error > 0)
817 continue;
818 /* operation completed, remove from queue & wakeup */
819 unlink_queue(sma, q);
1a82e9e1 820
f150f02c
DB
821 wake_up_sem_queue_prepare(q, error, wake_q);
822 if (error == 0)
823 semop_completed = 1;
1a82e9e1 824 }
f150f02c 825
1a82e9e1
MS
826 return semop_completed;
827}
828
829/**
8001c858 830 * do_smart_wakeup_zero - wakeup all wait for zero tasks
1a82e9e1
MS
831 * @sma: semaphore array
832 * @sops: operations that were performed
833 * @nsops: number of operations
9ae949fa 834 * @wake_q: lockless wake-queue head
1a82e9e1 835 *
8001c858
DB
836 * Checks all required queue for wait-for-zero operations, based
837 * on the actual changes that were performed on the semaphore array.
1a82e9e1
MS
838 * The function returns 1 if at least one operation was completed successfully.
839 */
840static int do_smart_wakeup_zero(struct sem_array *sma, struct sembuf *sops,
9ae949fa 841 int nsops, struct wake_q_head *wake_q)
1a82e9e1
MS
842{
843 int i;
844 int semop_completed = 0;
845 int got_zero = 0;
846
847 /* first: the per-semaphore queues, if known */
848 if (sops) {
849 for (i = 0; i < nsops; i++) {
850 int num = sops[i].sem_num;
851
1a233956 852 if (sma->sems[num].semval == 0) {
1a82e9e1 853 got_zero = 1;
9ae949fa 854 semop_completed |= wake_const_ops(sma, num, wake_q);
1a82e9e1
MS
855 }
856 }
857 } else {
858 /*
859 * No sops means modified semaphores not known.
860 * Assume all were changed.
fd5db422 861 */
1a82e9e1 862 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 863 if (sma->sems[i].semval == 0) {
1a82e9e1 864 got_zero = 1;
9ae949fa 865 semop_completed |= wake_const_ops(sma, i, wake_q);
1a82e9e1
MS
866 }
867 }
fd5db422
MS
868 }
869 /*
1a82e9e1
MS
870 * If one of the modified semaphores got 0,
871 * then check the global queue, too.
fd5db422 872 */
1a82e9e1 873 if (got_zero)
9ae949fa 874 semop_completed |= wake_const_ops(sma, -1, wake_q);
fd5db422 875
1a82e9e1 876 return semop_completed;
fd5db422
MS
877}
878
636c6be8
MS
879
880/**
8001c858 881 * update_queue - look for tasks that can be completed.
636c6be8
MS
882 * @sma: semaphore array.
883 * @semnum: semaphore that was modified.
9ae949fa 884 * @wake_q: lockless wake-queue head.
636c6be8
MS
885 *
886 * update_queue must be called after a semaphore in a semaphore array
9f1bc2c9
RR
887 * was modified. If multiple semaphores were modified, update_queue must
888 * be called with semnum = -1, as well as with the number of each modified
889 * semaphore.
9ae949fa 890 * The tasks that must be woken up are added to @wake_q. The return code
0a2b9d4c 891 * is stored in q->pid.
1a82e9e1
MS
892 * The function internally checks if const operations can now succeed.
893 *
0a2b9d4c 894 * The function return 1 if at least one semop was completed successfully.
1da177e4 895 */
9ae949fa 896static int update_queue(struct sem_array *sma, int semnum, struct wake_q_head *wake_q)
1da177e4 897{
f150f02c 898 struct sem_queue *q, *tmp;
636c6be8 899 struct list_head *pending_list;
0a2b9d4c 900 int semop_completed = 0;
636c6be8 901
9f1bc2c9 902 if (semnum == -1)
1a82e9e1 903 pending_list = &sma->pending_alter;
9f1bc2c9 904 else
1a233956 905 pending_list = &sma->sems[semnum].pending_alter;
9cad200c
NP
906
907again:
f150f02c 908 list_for_each_entry_safe(q, tmp, pending_list, list) {
fd5db422 909 int error, restart;
636c6be8 910
d987f8b2
MS
911 /* If we are scanning the single sop, per-semaphore list of
912 * one semaphore and that semaphore is 0, then it is not
1a82e9e1 913 * necessary to scan further: simple increments
d987f8b2
MS
914 * that affect only one entry succeed immediately and cannot
915 * be in the per semaphore pending queue, and decrements
916 * cannot be successful if the value is already 0.
917 */
1a233956 918 if (semnum != -1 && sma->sems[semnum].semval == 0)
d987f8b2
MS
919 break;
920
d198cd6d 921 error = perform_atomic_semop(sma, q);
1da177e4
LT
922
923 /* Does q->sleeper still need to sleep? */
9cad200c
NP
924 if (error > 0)
925 continue;
926
b97e820f 927 unlink_queue(sma, q);
9cad200c 928
0a2b9d4c 929 if (error) {
fd5db422 930 restart = 0;
0a2b9d4c
MS
931 } else {
932 semop_completed = 1;
9ae949fa 933 do_smart_wakeup_zero(sma, q->sops, q->nsops, wake_q);
fd5db422 934 restart = check_restart(sma, q);
0a2b9d4c 935 }
fd5db422 936
9ae949fa 937 wake_up_sem_queue_prepare(q, error, wake_q);
fd5db422 938 if (restart)
9cad200c 939 goto again;
1da177e4 940 }
0a2b9d4c 941 return semop_completed;
1da177e4
LT
942}
943
0e8c6656 944/**
8001c858 945 * set_semotime - set sem_otime
0e8c6656
MS
946 * @sma: semaphore array
947 * @sops: operations that modified the array, may be NULL
948 *
949 * sem_otime is replicated to avoid cache line trashing.
950 * This function sets one instance to the current time.
951 */
952static void set_semotime(struct sem_array *sma, struct sembuf *sops)
953{
954 if (sops == NULL) {
1a233956 955 sma->sems[0].sem_otime = get_seconds();
0e8c6656 956 } else {
1a233956 957 sma->sems[sops[0].sem_num].sem_otime =
0e8c6656
MS
958 get_seconds();
959 }
960}
961
0a2b9d4c 962/**
8001c858 963 * do_smart_update - optimized update_queue
fd5db422
MS
964 * @sma: semaphore array
965 * @sops: operations that were performed
966 * @nsops: number of operations
0a2b9d4c 967 * @otime: force setting otime
9ae949fa 968 * @wake_q: lockless wake-queue head
fd5db422 969 *
1a82e9e1
MS
970 * do_smart_update() does the required calls to update_queue and wakeup_zero,
971 * based on the actual changes that were performed on the semaphore array.
0a2b9d4c 972 * Note that the function does not do the actual wake-up: the caller is
9ae949fa 973 * responsible for calling wake_up_q().
0a2b9d4c 974 * It is safe to perform this call after dropping all locks.
fd5db422 975 */
0a2b9d4c 976static void do_smart_update(struct sem_array *sma, struct sembuf *sops, int nsops,
9ae949fa 977 int otime, struct wake_q_head *wake_q)
fd5db422
MS
978{
979 int i;
980
9ae949fa 981 otime |= do_smart_wakeup_zero(sma, sops, nsops, wake_q);
1a82e9e1 982
f269f40a
MS
983 if (!list_empty(&sma->pending_alter)) {
984 /* semaphore array uses the global queue - just process it. */
9ae949fa 985 otime |= update_queue(sma, -1, wake_q);
f269f40a
MS
986 } else {
987 if (!sops) {
988 /*
989 * No sops, thus the modified semaphores are not
990 * known. Check all.
991 */
992 for (i = 0; i < sma->sem_nsems; i++)
9ae949fa 993 otime |= update_queue(sma, i, wake_q);
f269f40a
MS
994 } else {
995 /*
996 * Check the semaphores that were increased:
997 * - No complex ops, thus all sleeping ops are
998 * decrease.
999 * - if we decreased the value, then any sleeping
1000 * semaphore ops wont be able to run: If the
1001 * previous value was too small, then the new
1002 * value will be too small, too.
1003 */
1004 for (i = 0; i < nsops; i++) {
1005 if (sops[i].sem_op > 0) {
1006 otime |= update_queue(sma,
9ae949fa 1007 sops[i].sem_num, wake_q);
f269f40a 1008 }
ab465df9 1009 }
9f1bc2c9 1010 }
fd5db422 1011 }
0e8c6656
MS
1012 if (otime)
1013 set_semotime(sma, sops);
fd5db422
MS
1014}
1015
2f2ed41d 1016/*
b220c57a 1017 * check_qop: Test if a queued operation sleeps on the semaphore semnum
2f2ed41d
MS
1018 */
1019static int check_qop(struct sem_array *sma, int semnum, struct sem_queue *q,
1020 bool count_zero)
1021{
b220c57a 1022 struct sembuf *sop = q->blocking;
2f2ed41d 1023
9b44ee2e
MS
1024 /*
1025 * Linux always (since 0.99.10) reported a task as sleeping on all
1026 * semaphores. This violates SUS, therefore it was changed to the
1027 * standard compliant behavior.
1028 * Give the administrators a chance to notice that an application
1029 * might misbehave because it relies on the Linux behavior.
1030 */
1031 pr_info_once("semctl(GETNCNT/GETZCNT) is since 3.16 Single Unix Specification compliant.\n"
1032 "The task %s (%d) triggered the difference, watch for misbehavior.\n",
1033 current->comm, task_pid_nr(current));
1034
b220c57a
MS
1035 if (sop->sem_num != semnum)
1036 return 0;
2f2ed41d 1037
b220c57a
MS
1038 if (count_zero && sop->sem_op == 0)
1039 return 1;
1040 if (!count_zero && sop->sem_op < 0)
1041 return 1;
1042
1043 return 0;
2f2ed41d
MS
1044}
1045
1da177e4
LT
1046/* The following counts are associated to each semaphore:
1047 * semncnt number of tasks waiting on semval being nonzero
1048 * semzcnt number of tasks waiting on semval being zero
b220c57a
MS
1049 *
1050 * Per definition, a task waits only on the semaphore of the first semop
1051 * that cannot proceed, even if additional operation would block, too.
1da177e4 1052 */
2f2ed41d
MS
1053static int count_semcnt(struct sem_array *sma, ushort semnum,
1054 bool count_zero)
1da177e4 1055{
2f2ed41d 1056 struct list_head *l;
239521f3 1057 struct sem_queue *q;
2f2ed41d 1058 int semcnt;
1da177e4 1059
2f2ed41d
MS
1060 semcnt = 0;
1061 /* First: check the simple operations. They are easy to evaluate */
1062 if (count_zero)
1a233956 1063 l = &sma->sems[semnum].pending_const;
2f2ed41d 1064 else
1a233956 1065 l = &sma->sems[semnum].pending_alter;
1da177e4 1066
2f2ed41d
MS
1067 list_for_each_entry(q, l, list) {
1068 /* all task on a per-semaphore list sleep on exactly
1069 * that semaphore
1070 */
1071 semcnt++;
ebc2e5e6
RR
1072 }
1073
2f2ed41d 1074 /* Then: check the complex operations. */
1994862d 1075 list_for_each_entry(q, &sma->pending_alter, list) {
2f2ed41d
MS
1076 semcnt += check_qop(sma, semnum, q, count_zero);
1077 }
1078 if (count_zero) {
1079 list_for_each_entry(q, &sma->pending_const, list) {
1080 semcnt += check_qop(sma, semnum, q, count_zero);
1081 }
1994862d 1082 }
2f2ed41d 1083 return semcnt;
1da177e4
LT
1084}
1085
d9a605e4
DB
1086/* Free a semaphore set. freeary() is called with sem_ids.rwsem locked
1087 * as a writer and the spinlock for this semaphore set hold. sem_ids.rwsem
3e148c79 1088 * remains locked on exit.
1da177e4 1089 */
01b8b07a 1090static void freeary(struct ipc_namespace *ns, struct kern_ipc_perm *ipcp)
1da177e4 1091{
380af1b3
MS
1092 struct sem_undo *un, *tu;
1093 struct sem_queue *q, *tq;
01b8b07a 1094 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
9f1bc2c9 1095 int i;
9ae949fa 1096 DEFINE_WAKE_Q(wake_q);
1da177e4 1097
380af1b3 1098 /* Free the existing undo structures for this semaphore set. */
cf9d5d78 1099 ipc_assert_locked_object(&sma->sem_perm);
380af1b3
MS
1100 list_for_each_entry_safe(un, tu, &sma->list_id, list_id) {
1101 list_del(&un->list_id);
1102 spin_lock(&un->ulp->lock);
1da177e4 1103 un->semid = -1;
380af1b3
MS
1104 list_del_rcu(&un->list_proc);
1105 spin_unlock(&un->ulp->lock);
693a8b6e 1106 kfree_rcu(un, rcu);
380af1b3 1107 }
1da177e4
LT
1108
1109 /* Wake up all pending processes and let them fail with EIDRM. */
1a82e9e1
MS
1110 list_for_each_entry_safe(q, tq, &sma->pending_const, list) {
1111 unlink_queue(sma, q);
9ae949fa 1112 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1113 }
1114
1115 list_for_each_entry_safe(q, tq, &sma->pending_alter, list) {
b97e820f 1116 unlink_queue(sma, q);
9ae949fa 1117 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1da177e4 1118 }
9f1bc2c9 1119 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 1120 struct sem *sem = &sma->sems[i];
1a82e9e1
MS
1121 list_for_each_entry_safe(q, tq, &sem->pending_const, list) {
1122 unlink_queue(sma, q);
9ae949fa 1123 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
1a82e9e1
MS
1124 }
1125 list_for_each_entry_safe(q, tq, &sem->pending_alter, list) {
9f1bc2c9 1126 unlink_queue(sma, q);
9ae949fa 1127 wake_up_sem_queue_prepare(q, -EIDRM, &wake_q);
9f1bc2c9
RR
1128 }
1129 }
1da177e4 1130
7ca7e564
ND
1131 /* Remove the semaphore set from the IDR */
1132 sem_rmid(ns, sma);
6062a8dc 1133 sem_unlock(sma, -1);
6d49dab8 1134 rcu_read_unlock();
1da177e4 1135
9ae949fa 1136 wake_up_q(&wake_q);
e3893534 1137 ns->used_sems -= sma->sem_nsems;
dba4cdd3 1138 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1139}
1140
1141static unsigned long copy_semid_to_user(void __user *buf, struct semid64_ds *in, int version)
1142{
239521f3 1143 switch (version) {
1da177e4
LT
1144 case IPC_64:
1145 return copy_to_user(buf, in, sizeof(*in));
1146 case IPC_OLD:
1147 {
1148 struct semid_ds out;
1149
982f7c2b
DR
1150 memset(&out, 0, sizeof(out));
1151
1da177e4
LT
1152 ipc64_perm_to_ipc_perm(&in->sem_perm, &out.sem_perm);
1153
1154 out.sem_otime = in->sem_otime;
1155 out.sem_ctime = in->sem_ctime;
1156 out.sem_nsems = in->sem_nsems;
1157
1158 return copy_to_user(buf, &out, sizeof(out));
1159 }
1160 default:
1161 return -EINVAL;
1162 }
1163}
1164
d12e1e50
MS
1165static time_t get_semotime(struct sem_array *sma)
1166{
1167 int i;
1168 time_t res;
1169
1a233956 1170 res = sma->sems[0].sem_otime;
d12e1e50 1171 for (i = 1; i < sma->sem_nsems; i++) {
1a233956 1172 time_t to = sma->sems[i].sem_otime;
d12e1e50
MS
1173
1174 if (to > res)
1175 res = to;
1176 }
1177 return res;
1178}
1179
4b9fcb0e 1180static int semctl_nolock(struct ipc_namespace *ns, int semid,
e1fd1f49 1181 int cmd, int version, void __user *p)
1da177e4 1182{
e5cc9c7b 1183 int err;
1da177e4
LT
1184 struct sem_array *sma;
1185
239521f3 1186 switch (cmd) {
1da177e4
LT
1187 case IPC_INFO:
1188 case SEM_INFO:
1189 {
1190 struct seminfo seminfo;
1191 int max_id;
1192
1193 err = security_sem_semctl(NULL, cmd);
1194 if (err)
1195 return err;
46c0a8ca 1196
239521f3 1197 memset(&seminfo, 0, sizeof(seminfo));
e3893534
KK
1198 seminfo.semmni = ns->sc_semmni;
1199 seminfo.semmns = ns->sc_semmns;
1200 seminfo.semmsl = ns->sc_semmsl;
1201 seminfo.semopm = ns->sc_semopm;
1da177e4
LT
1202 seminfo.semvmx = SEMVMX;
1203 seminfo.semmnu = SEMMNU;
1204 seminfo.semmap = SEMMAP;
1205 seminfo.semume = SEMUME;
d9a605e4 1206 down_read(&sem_ids(ns).rwsem);
1da177e4 1207 if (cmd == SEM_INFO) {
e3893534
KK
1208 seminfo.semusz = sem_ids(ns).in_use;
1209 seminfo.semaem = ns->used_sems;
1da177e4
LT
1210 } else {
1211 seminfo.semusz = SEMUSZ;
1212 seminfo.semaem = SEMAEM;
1213 }
7ca7e564 1214 max_id = ipc_get_maxid(&sem_ids(ns));
d9a605e4 1215 up_read(&sem_ids(ns).rwsem);
46c0a8ca 1216 if (copy_to_user(p, &seminfo, sizeof(struct seminfo)))
1da177e4 1217 return -EFAULT;
239521f3 1218 return (max_id < 0) ? 0 : max_id;
1da177e4 1219 }
4b9fcb0e 1220 case IPC_STAT:
1da177e4
LT
1221 case SEM_STAT:
1222 {
1223 struct semid64_ds tbuf;
16df3674
DB
1224 int id = 0;
1225
1226 memset(&tbuf, 0, sizeof(tbuf));
1da177e4 1227
941b0304 1228 rcu_read_lock();
4b9fcb0e 1229 if (cmd == SEM_STAT) {
16df3674
DB
1230 sma = sem_obtain_object(ns, semid);
1231 if (IS_ERR(sma)) {
1232 err = PTR_ERR(sma);
1233 goto out_unlock;
1234 }
4b9fcb0e
PP
1235 id = sma->sem_perm.id;
1236 } else {
16df3674
DB
1237 sma = sem_obtain_object_check(ns, semid);
1238 if (IS_ERR(sma)) {
1239 err = PTR_ERR(sma);
1240 goto out_unlock;
1241 }
4b9fcb0e 1242 }
1da177e4
LT
1243
1244 err = -EACCES;
b0e77598 1245 if (ipcperms(ns, &sma->sem_perm, S_IRUGO))
1da177e4
LT
1246 goto out_unlock;
1247
1248 err = security_sem_semctl(sma, cmd);
1249 if (err)
1250 goto out_unlock;
1251
1da177e4 1252 kernel_to_ipc64_perm(&sma->sem_perm, &tbuf.sem_perm);
d12e1e50
MS
1253 tbuf.sem_otime = get_semotime(sma);
1254 tbuf.sem_ctime = sma->sem_ctime;
1255 tbuf.sem_nsems = sma->sem_nsems;
16df3674 1256 rcu_read_unlock();
e1fd1f49 1257 if (copy_semid_to_user(p, &tbuf, version))
1da177e4
LT
1258 return -EFAULT;
1259 return id;
1260 }
1261 default:
1262 return -EINVAL;
1263 }
1da177e4 1264out_unlock:
16df3674 1265 rcu_read_unlock();
1da177e4
LT
1266 return err;
1267}
1268
e1fd1f49
AV
1269static int semctl_setval(struct ipc_namespace *ns, int semid, int semnum,
1270 unsigned long arg)
1271{
1272 struct sem_undo *un;
1273 struct sem_array *sma;
239521f3 1274 struct sem *curr;
9ae949fa
DB
1275 int err, val;
1276 DEFINE_WAKE_Q(wake_q);
1277
e1fd1f49
AV
1278#if defined(CONFIG_64BIT) && defined(__BIG_ENDIAN)
1279 /* big-endian 64bit */
1280 val = arg >> 32;
1281#else
1282 /* 32bit or little-endian 64bit */
1283 val = arg;
1284#endif
1285
6062a8dc
RR
1286 if (val > SEMVMX || val < 0)
1287 return -ERANGE;
e1fd1f49 1288
6062a8dc
RR
1289 rcu_read_lock();
1290 sma = sem_obtain_object_check(ns, semid);
1291 if (IS_ERR(sma)) {
1292 rcu_read_unlock();
1293 return PTR_ERR(sma);
1294 }
1295
1296 if (semnum < 0 || semnum >= sma->sem_nsems) {
1297 rcu_read_unlock();
1298 return -EINVAL;
1299 }
1300
1301
1302 if (ipcperms(ns, &sma->sem_perm, S_IWUGO)) {
1303 rcu_read_unlock();
1304 return -EACCES;
1305 }
e1fd1f49
AV
1306
1307 err = security_sem_semctl(sma, SETVAL);
6062a8dc
RR
1308 if (err) {
1309 rcu_read_unlock();
1310 return -EACCES;
1311 }
e1fd1f49 1312
6062a8dc 1313 sem_lock(sma, NULL, -1);
e1fd1f49 1314
0f3d2b01 1315 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1316 sem_unlock(sma, -1);
1317 rcu_read_unlock();
1318 return -EIDRM;
1319 }
1320
1a233956 1321 curr = &sma->sems[semnum];
e1fd1f49 1322
cf9d5d78 1323 ipc_assert_locked_object(&sma->sem_perm);
e1fd1f49
AV
1324 list_for_each_entry(un, &sma->list_id, list_id)
1325 un->semadj[semnum] = 0;
1326
1327 curr->semval = val;
1328 curr->sempid = task_tgid_vnr(current);
1329 sma->sem_ctime = get_seconds();
1330 /* maybe some queued-up processes were waiting for this */
9ae949fa 1331 do_smart_update(sma, NULL, 0, 0, &wake_q);
6062a8dc 1332 sem_unlock(sma, -1);
6d49dab8 1333 rcu_read_unlock();
9ae949fa 1334 wake_up_q(&wake_q);
6062a8dc 1335 return 0;
e1fd1f49
AV
1336}
1337
e3893534 1338static int semctl_main(struct ipc_namespace *ns, int semid, int semnum,
e1fd1f49 1339 int cmd, void __user *p)
1da177e4
LT
1340{
1341 struct sem_array *sma;
239521f3 1342 struct sem *curr;
16df3674 1343 int err, nsems;
1da177e4 1344 ushort fast_sem_io[SEMMSL_FAST];
239521f3 1345 ushort *sem_io = fast_sem_io;
9ae949fa 1346 DEFINE_WAKE_Q(wake_q);
16df3674
DB
1347
1348 rcu_read_lock();
1349 sma = sem_obtain_object_check(ns, semid);
1350 if (IS_ERR(sma)) {
1351 rcu_read_unlock();
023a5355 1352 return PTR_ERR(sma);
16df3674 1353 }
1da177e4
LT
1354
1355 nsems = sma->sem_nsems;
1356
1da177e4 1357 err = -EACCES;
c728b9c8
LT
1358 if (ipcperms(ns, &sma->sem_perm, cmd == SETALL ? S_IWUGO : S_IRUGO))
1359 goto out_rcu_wakeup;
1da177e4
LT
1360
1361 err = security_sem_semctl(sma, cmd);
c728b9c8
LT
1362 if (err)
1363 goto out_rcu_wakeup;
1da177e4
LT
1364
1365 err = -EACCES;
1366 switch (cmd) {
1367 case GETALL:
1368 {
e1fd1f49 1369 ushort __user *array = p;
1da177e4
LT
1370 int i;
1371
ce857229 1372 sem_lock(sma, NULL, -1);
0f3d2b01 1373 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1374 err = -EIDRM;
1375 goto out_unlock;
1376 }
239521f3 1377 if (nsems > SEMMSL_FAST) {
dba4cdd3 1378 if (!ipc_rcu_getref(&sma->sem_perm)) {
ce857229 1379 err = -EIDRM;
6e224f94 1380 goto out_unlock;
ce857229
AV
1381 }
1382 sem_unlock(sma, -1);
6d49dab8 1383 rcu_read_unlock();
f8dbe8d2
KC
1384 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1385 GFP_KERNEL);
239521f3 1386 if (sem_io == NULL) {
dba4cdd3 1387 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1388 return -ENOMEM;
1389 }
1390
4091fd94 1391 rcu_read_lock();
6ff37972 1392 sem_lock_and_putref(sma);
0f3d2b01 1393 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1394 err = -EIDRM;
6e224f94 1395 goto out_unlock;
1da177e4 1396 }
ce857229 1397 }
1da177e4 1398 for (i = 0; i < sma->sem_nsems; i++)
1a233956 1399 sem_io[i] = sma->sems[i].semval;
6062a8dc 1400 sem_unlock(sma, -1);
6d49dab8 1401 rcu_read_unlock();
1da177e4 1402 err = 0;
239521f3 1403 if (copy_to_user(array, sem_io, nsems*sizeof(ushort)))
1da177e4
LT
1404 err = -EFAULT;
1405 goto out_free;
1406 }
1407 case SETALL:
1408 {
1409 int i;
1410 struct sem_undo *un;
1411
dba4cdd3 1412 if (!ipc_rcu_getref(&sma->sem_perm)) {
6e224f94
MS
1413 err = -EIDRM;
1414 goto out_rcu_wakeup;
6062a8dc 1415 }
16df3674 1416 rcu_read_unlock();
1da177e4 1417
239521f3 1418 if (nsems > SEMMSL_FAST) {
f8dbe8d2
KC
1419 sem_io = kvmalloc_array(nsems, sizeof(ushort),
1420 GFP_KERNEL);
239521f3 1421 if (sem_io == NULL) {
dba4cdd3 1422 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1423 return -ENOMEM;
1424 }
1425 }
1426
239521f3 1427 if (copy_from_user(sem_io, p, nsems*sizeof(ushort))) {
dba4cdd3 1428 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1429 err = -EFAULT;
1430 goto out_free;
1431 }
1432
1433 for (i = 0; i < nsems; i++) {
1434 if (sem_io[i] > SEMVMX) {
dba4cdd3 1435 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1436 err = -ERANGE;
1437 goto out_free;
1438 }
1439 }
4091fd94 1440 rcu_read_lock();
6ff37972 1441 sem_lock_and_putref(sma);
0f3d2b01 1442 if (!ipc_valid_object(&sma->sem_perm)) {
1da177e4 1443 err = -EIDRM;
6e224f94 1444 goto out_unlock;
1da177e4
LT
1445 }
1446
a5f4db87 1447 for (i = 0; i < nsems; i++) {
1a233956
MS
1448 sma->sems[i].semval = sem_io[i];
1449 sma->sems[i].sempid = task_tgid_vnr(current);
a5f4db87 1450 }
4daa28f6 1451
cf9d5d78 1452 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1453 list_for_each_entry(un, &sma->list_id, list_id) {
1da177e4
LT
1454 for (i = 0; i < nsems; i++)
1455 un->semadj[i] = 0;
4daa28f6 1456 }
1da177e4
LT
1457 sma->sem_ctime = get_seconds();
1458 /* maybe some queued-up processes were waiting for this */
9ae949fa 1459 do_smart_update(sma, NULL, 0, 0, &wake_q);
1da177e4
LT
1460 err = 0;
1461 goto out_unlock;
1462 }
e1fd1f49 1463 /* GETVAL, GETPID, GETNCTN, GETZCNT: fall-through */
1da177e4
LT
1464 }
1465 err = -EINVAL;
c728b9c8
LT
1466 if (semnum < 0 || semnum >= nsems)
1467 goto out_rcu_wakeup;
1da177e4 1468
6062a8dc 1469 sem_lock(sma, NULL, -1);
0f3d2b01 1470 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
1471 err = -EIDRM;
1472 goto out_unlock;
1473 }
1a233956 1474 curr = &sma->sems[semnum];
1da177e4
LT
1475
1476 switch (cmd) {
1477 case GETVAL:
1478 err = curr->semval;
1479 goto out_unlock;
1480 case GETPID:
1481 err = curr->sempid;
1482 goto out_unlock;
1483 case GETNCNT:
2f2ed41d 1484 err = count_semcnt(sma, semnum, 0);
1da177e4
LT
1485 goto out_unlock;
1486 case GETZCNT:
2f2ed41d 1487 err = count_semcnt(sma, semnum, 1);
1da177e4 1488 goto out_unlock;
1da177e4 1489 }
16df3674 1490
1da177e4 1491out_unlock:
6062a8dc 1492 sem_unlock(sma, -1);
c728b9c8 1493out_rcu_wakeup:
6d49dab8 1494 rcu_read_unlock();
9ae949fa 1495 wake_up_q(&wake_q);
1da177e4 1496out_free:
239521f3 1497 if (sem_io != fast_sem_io)
f8dbe8d2 1498 kvfree(sem_io);
1da177e4
LT
1499 return err;
1500}
1501
016d7132
PP
1502static inline unsigned long
1503copy_semid_from_user(struct semid64_ds *out, void __user *buf, int version)
1da177e4 1504{
239521f3 1505 switch (version) {
1da177e4 1506 case IPC_64:
016d7132 1507 if (copy_from_user(out, buf, sizeof(*out)))
1da177e4 1508 return -EFAULT;
1da177e4 1509 return 0;
1da177e4
LT
1510 case IPC_OLD:
1511 {
1512 struct semid_ds tbuf_old;
1513
239521f3 1514 if (copy_from_user(&tbuf_old, buf, sizeof(tbuf_old)))
1da177e4
LT
1515 return -EFAULT;
1516
016d7132
PP
1517 out->sem_perm.uid = tbuf_old.sem_perm.uid;
1518 out->sem_perm.gid = tbuf_old.sem_perm.gid;
1519 out->sem_perm.mode = tbuf_old.sem_perm.mode;
1da177e4
LT
1520
1521 return 0;
1522 }
1523 default:
1524 return -EINVAL;
1525 }
1526}
1527
522bb2a2 1528/*
d9a605e4 1529 * This function handles some semctl commands which require the rwsem
522bb2a2 1530 * to be held in write mode.
d9a605e4 1531 * NOTE: no locks must be held, the rwsem is taken inside this function.
522bb2a2 1532 */
21a4826a 1533static int semctl_down(struct ipc_namespace *ns, int semid,
e1fd1f49 1534 int cmd, int version, void __user *p)
1da177e4
LT
1535{
1536 struct sem_array *sma;
1537 int err;
016d7132 1538 struct semid64_ds semid64;
1da177e4
LT
1539 struct kern_ipc_perm *ipcp;
1540
239521f3 1541 if (cmd == IPC_SET) {
e1fd1f49 1542 if (copy_semid_from_user(&semid64, p, version))
1da177e4 1543 return -EFAULT;
1da177e4 1544 }
073115d6 1545
d9a605e4 1546 down_write(&sem_ids(ns).rwsem);
7b4cc5d8
DB
1547 rcu_read_lock();
1548
16df3674
DB
1549 ipcp = ipcctl_pre_down_nolock(ns, &sem_ids(ns), semid, cmd,
1550 &semid64.sem_perm, 0);
7b4cc5d8
DB
1551 if (IS_ERR(ipcp)) {
1552 err = PTR_ERR(ipcp);
7b4cc5d8
DB
1553 goto out_unlock1;
1554 }
073115d6 1555
a5f75e7f 1556 sma = container_of(ipcp, struct sem_array, sem_perm);
1da177e4
LT
1557
1558 err = security_sem_semctl(sma, cmd);
7b4cc5d8
DB
1559 if (err)
1560 goto out_unlock1;
1da177e4 1561
7b4cc5d8 1562 switch (cmd) {
1da177e4 1563 case IPC_RMID:
6062a8dc 1564 sem_lock(sma, NULL, -1);
7b4cc5d8 1565 /* freeary unlocks the ipc object and rcu */
01b8b07a 1566 freeary(ns, ipcp);
522bb2a2 1567 goto out_up;
1da177e4 1568 case IPC_SET:
6062a8dc 1569 sem_lock(sma, NULL, -1);
1efdb69b
EB
1570 err = ipc_update_perm(&semid64.sem_perm, ipcp);
1571 if (err)
7b4cc5d8 1572 goto out_unlock0;
1da177e4 1573 sma->sem_ctime = get_seconds();
1da177e4
LT
1574 break;
1575 default:
1da177e4 1576 err = -EINVAL;
7b4cc5d8 1577 goto out_unlock1;
1da177e4 1578 }
1da177e4 1579
7b4cc5d8 1580out_unlock0:
6062a8dc 1581 sem_unlock(sma, -1);
7b4cc5d8 1582out_unlock1:
6d49dab8 1583 rcu_read_unlock();
522bb2a2 1584out_up:
d9a605e4 1585 up_write(&sem_ids(ns).rwsem);
1da177e4
LT
1586 return err;
1587}
1588
e1fd1f49 1589SYSCALL_DEFINE4(semctl, int, semid, int, semnum, int, cmd, unsigned long, arg)
1da177e4 1590{
1da177e4 1591 int version;
e3893534 1592 struct ipc_namespace *ns;
e1fd1f49 1593 void __user *p = (void __user *)arg;
1da177e4
LT
1594
1595 if (semid < 0)
1596 return -EINVAL;
1597
1598 version = ipc_parse_version(&cmd);
e3893534 1599 ns = current->nsproxy->ipc_ns;
1da177e4 1600
239521f3 1601 switch (cmd) {
1da177e4
LT
1602 case IPC_INFO:
1603 case SEM_INFO:
4b9fcb0e 1604 case IPC_STAT:
1da177e4 1605 case SEM_STAT:
e1fd1f49 1606 return semctl_nolock(ns, semid, cmd, version, p);
1da177e4
LT
1607 case GETALL:
1608 case GETVAL:
1609 case GETPID:
1610 case GETNCNT:
1611 case GETZCNT:
1da177e4 1612 case SETALL:
e1fd1f49
AV
1613 return semctl_main(ns, semid, semnum, cmd, p);
1614 case SETVAL:
1615 return semctl_setval(ns, semid, semnum, arg);
1da177e4
LT
1616 case IPC_RMID:
1617 case IPC_SET:
e1fd1f49 1618 return semctl_down(ns, semid, cmd, version, p);
1da177e4
LT
1619 default:
1620 return -EINVAL;
1621 }
1622}
1623
1da177e4
LT
1624/* If the task doesn't already have a undo_list, then allocate one
1625 * here. We guarantee there is only one thread using this undo list,
1626 * and current is THE ONE
1627 *
1628 * If this allocation and assignment succeeds, but later
1629 * portions of this code fail, there is no need to free the sem_undo_list.
1630 * Just let it stay associated with the task, and it'll be freed later
1631 * at exit time.
1632 *
1633 * This can block, so callers must hold no locks.
1634 */
1635static inline int get_undo_list(struct sem_undo_list **undo_listp)
1636{
1637 struct sem_undo_list *undo_list;
1da177e4
LT
1638
1639 undo_list = current->sysvsem.undo_list;
1640 if (!undo_list) {
2453a306 1641 undo_list = kzalloc(sizeof(*undo_list), GFP_KERNEL);
1da177e4
LT
1642 if (undo_list == NULL)
1643 return -ENOMEM;
00a5dfdb 1644 spin_lock_init(&undo_list->lock);
1da177e4 1645 atomic_set(&undo_list->refcnt, 1);
4daa28f6
MS
1646 INIT_LIST_HEAD(&undo_list->list_proc);
1647
1da177e4
LT
1648 current->sysvsem.undo_list = undo_list;
1649 }
1650 *undo_listp = undo_list;
1651 return 0;
1652}
1653
bf17bb71 1654static struct sem_undo *__lookup_undo(struct sem_undo_list *ulp, int semid)
1da177e4 1655{
bf17bb71 1656 struct sem_undo *un;
4daa28f6 1657
bf17bb71
NP
1658 list_for_each_entry_rcu(un, &ulp->list_proc, list_proc) {
1659 if (un->semid == semid)
1660 return un;
1da177e4 1661 }
4daa28f6 1662 return NULL;
1da177e4
LT
1663}
1664
bf17bb71
NP
1665static struct sem_undo *lookup_undo(struct sem_undo_list *ulp, int semid)
1666{
1667 struct sem_undo *un;
1668
239521f3 1669 assert_spin_locked(&ulp->lock);
bf17bb71
NP
1670
1671 un = __lookup_undo(ulp, semid);
1672 if (un) {
1673 list_del_rcu(&un->list_proc);
1674 list_add_rcu(&un->list_proc, &ulp->list_proc);
1675 }
1676 return un;
1677}
1678
4daa28f6 1679/**
8001c858 1680 * find_alloc_undo - lookup (and if not present create) undo array
4daa28f6
MS
1681 * @ns: namespace
1682 * @semid: semaphore array id
1683 *
1684 * The function looks up (and if not present creates) the undo structure.
1685 * The size of the undo structure depends on the size of the semaphore
1686 * array, thus the alloc path is not that straightforward.
380af1b3
MS
1687 * Lifetime-rules: sem_undo is rcu-protected, on success, the function
1688 * performs a rcu_read_lock().
4daa28f6
MS
1689 */
1690static struct sem_undo *find_alloc_undo(struct ipc_namespace *ns, int semid)
1da177e4
LT
1691{
1692 struct sem_array *sma;
1693 struct sem_undo_list *ulp;
1694 struct sem_undo *un, *new;
6062a8dc 1695 int nsems, error;
1da177e4
LT
1696
1697 error = get_undo_list(&ulp);
1698 if (error)
1699 return ERR_PTR(error);
1700
380af1b3 1701 rcu_read_lock();
c530c6ac 1702 spin_lock(&ulp->lock);
1da177e4 1703 un = lookup_undo(ulp, semid);
c530c6ac 1704 spin_unlock(&ulp->lock);
239521f3 1705 if (likely(un != NULL))
1da177e4
LT
1706 goto out;
1707
1708 /* no undo structure around - allocate one. */
4daa28f6 1709 /* step 1: figure out the size of the semaphore array */
16df3674
DB
1710 sma = sem_obtain_object_check(ns, semid);
1711 if (IS_ERR(sma)) {
1712 rcu_read_unlock();
4de85cd6 1713 return ERR_CAST(sma);
16df3674 1714 }
023a5355 1715
1da177e4 1716 nsems = sma->sem_nsems;
dba4cdd3 1717 if (!ipc_rcu_getref(&sma->sem_perm)) {
6062a8dc
RR
1718 rcu_read_unlock();
1719 un = ERR_PTR(-EIDRM);
1720 goto out;
1721 }
16df3674 1722 rcu_read_unlock();
1da177e4 1723
4daa28f6 1724 /* step 2: allocate new undo structure */
4668edc3 1725 new = kzalloc(sizeof(struct sem_undo) + sizeof(short)*nsems, GFP_KERNEL);
1da177e4 1726 if (!new) {
dba4cdd3 1727 ipc_rcu_putref(&sma->sem_perm, sem_rcu_free);
1da177e4
LT
1728 return ERR_PTR(-ENOMEM);
1729 }
1da177e4 1730
380af1b3 1731 /* step 3: Acquire the lock on semaphore array */
4091fd94 1732 rcu_read_lock();
6ff37972 1733 sem_lock_and_putref(sma);
0f3d2b01 1734 if (!ipc_valid_object(&sma->sem_perm)) {
6062a8dc 1735 sem_unlock(sma, -1);
6d49dab8 1736 rcu_read_unlock();
1da177e4
LT
1737 kfree(new);
1738 un = ERR_PTR(-EIDRM);
1739 goto out;
1740 }
380af1b3
MS
1741 spin_lock(&ulp->lock);
1742
1743 /*
1744 * step 4: check for races: did someone else allocate the undo struct?
1745 */
1746 un = lookup_undo(ulp, semid);
1747 if (un) {
1748 kfree(new);
1749 goto success;
1750 }
4daa28f6
MS
1751 /* step 5: initialize & link new undo structure */
1752 new->semadj = (short *) &new[1];
380af1b3 1753 new->ulp = ulp;
4daa28f6
MS
1754 new->semid = semid;
1755 assert_spin_locked(&ulp->lock);
380af1b3 1756 list_add_rcu(&new->list_proc, &ulp->list_proc);
cf9d5d78 1757 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6 1758 list_add(&new->list_id, &sma->list_id);
380af1b3 1759 un = new;
4daa28f6 1760
380af1b3 1761success:
c530c6ac 1762 spin_unlock(&ulp->lock);
6062a8dc 1763 sem_unlock(sma, -1);
1da177e4
LT
1764out:
1765 return un;
1766}
1767
d5460c99
HC
1768SYSCALL_DEFINE4(semtimedop, int, semid, struct sembuf __user *, tsops,
1769 unsigned, nsops, const struct timespec __user *, timeout)
1da177e4
LT
1770{
1771 int error = -EINVAL;
1772 struct sem_array *sma;
1773 struct sembuf fast_sops[SEMOPM_FAST];
239521f3 1774 struct sembuf *sops = fast_sops, *sop;
1da177e4 1775 struct sem_undo *un;
4ce33ec2
DB
1776 int max, locknum;
1777 bool undos = false, alter = false, dupsop = false;
1da177e4 1778 struct sem_queue queue;
4ce33ec2 1779 unsigned long dup = 0, jiffies_left = 0;
e3893534
KK
1780 struct ipc_namespace *ns;
1781
1782 ns = current->nsproxy->ipc_ns;
1da177e4
LT
1783
1784 if (nsops < 1 || semid < 0)
1785 return -EINVAL;
e3893534 1786 if (nsops > ns->sc_semopm)
1da177e4 1787 return -E2BIG;
239521f3
MS
1788 if (nsops > SEMOPM_FAST) {
1789 sops = kmalloc(sizeof(*sops)*nsops, GFP_KERNEL);
1790 if (sops == NULL)
1da177e4
LT
1791 return -ENOMEM;
1792 }
4ce33ec2 1793
239521f3
MS
1794 if (copy_from_user(sops, tsops, nsops * sizeof(*tsops))) {
1795 error = -EFAULT;
1da177e4
LT
1796 goto out_free;
1797 }
4ce33ec2 1798
1da177e4
LT
1799 if (timeout) {
1800 struct timespec _timeout;
1801 if (copy_from_user(&_timeout, timeout, sizeof(*timeout))) {
1802 error = -EFAULT;
1803 goto out_free;
1804 }
1805 if (_timeout.tv_sec < 0 || _timeout.tv_nsec < 0 ||
1806 _timeout.tv_nsec >= 1000000000L) {
1807 error = -EINVAL;
1808 goto out_free;
1809 }
1810 jiffies_left = timespec_to_jiffies(&_timeout);
1811 }
4ce33ec2 1812
1da177e4
LT
1813 max = 0;
1814 for (sop = sops; sop < sops + nsops; sop++) {
4ce33ec2
DB
1815 unsigned long mask = 1ULL << ((sop->sem_num) % BITS_PER_LONG);
1816
1da177e4
LT
1817 if (sop->sem_num >= max)
1818 max = sop->sem_num;
1819 if (sop->sem_flg & SEM_UNDO)
4ce33ec2
DB
1820 undos = true;
1821 if (dup & mask) {
1822 /*
1823 * There was a previous alter access that appears
1824 * to have accessed the same semaphore, thus use
1825 * the dupsop logic. "appears", because the detection
1826 * can only check % BITS_PER_LONG.
1827 */
1828 dupsop = true;
1829 }
1830 if (sop->sem_op != 0) {
1831 alter = true;
1832 dup |= mask;
1833 }
1da177e4 1834 }
1da177e4 1835
1da177e4 1836 if (undos) {
6062a8dc 1837 /* On success, find_alloc_undo takes the rcu_read_lock */
4daa28f6 1838 un = find_alloc_undo(ns, semid);
1da177e4
LT
1839 if (IS_ERR(un)) {
1840 error = PTR_ERR(un);
1841 goto out_free;
1842 }
6062a8dc 1843 } else {
1da177e4 1844 un = NULL;
6062a8dc
RR
1845 rcu_read_lock();
1846 }
1da177e4 1847
16df3674 1848 sma = sem_obtain_object_check(ns, semid);
023a5355 1849 if (IS_ERR(sma)) {
6062a8dc 1850 rcu_read_unlock();
023a5355 1851 error = PTR_ERR(sma);
1da177e4 1852 goto out_free;
023a5355
ND
1853 }
1854
16df3674 1855 error = -EFBIG;
248e7357
DB
1856 if (max >= sma->sem_nsems) {
1857 rcu_read_unlock();
1858 goto out_free;
1859 }
16df3674
DB
1860
1861 error = -EACCES;
248e7357
DB
1862 if (ipcperms(ns, &sma->sem_perm, alter ? S_IWUGO : S_IRUGO)) {
1863 rcu_read_unlock();
1864 goto out_free;
1865 }
16df3674
DB
1866
1867 error = security_sem_semop(sma, sops, nsops, alter);
248e7357
DB
1868 if (error) {
1869 rcu_read_unlock();
1870 goto out_free;
1871 }
16df3674 1872
6e224f94
MS
1873 error = -EIDRM;
1874 locknum = sem_lock(sma, sops, nsops);
0f3d2b01
RA
1875 /*
1876 * We eventually might perform the following check in a lockless
1877 * fashion, considering ipc_valid_object() locking constraints.
1878 * If nsops == 1 and there is no contention for sem_perm.lock, then
1879 * only a per-semaphore lock is held and it's OK to proceed with the
1880 * check below. More details on the fine grained locking scheme
1881 * entangled here and why it's RMID race safe on comments at sem_lock()
1882 */
1883 if (!ipc_valid_object(&sma->sem_perm))
6e224f94 1884 goto out_unlock_free;
1da177e4 1885 /*
4daa28f6 1886 * semid identifiers are not unique - find_alloc_undo may have
1da177e4 1887 * allocated an undo structure, it was invalidated by an RMID
4daa28f6 1888 * and now a new array with received the same id. Check and fail.
25985edc 1889 * This case can be detected checking un->semid. The existence of
380af1b3 1890 * "un" itself is guaranteed by rcu.
1da177e4 1891 */
6062a8dc
RR
1892 if (un && un->semid == -1)
1893 goto out_unlock_free;
4daa28f6 1894
d198cd6d
MS
1895 queue.sops = sops;
1896 queue.nsops = nsops;
1897 queue.undo = un;
1898 queue.pid = task_tgid_vnr(current);
1899 queue.alter = alter;
4ce33ec2 1900 queue.dupsop = dupsop;
d198cd6d
MS
1901
1902 error = perform_atomic_semop(sma, &queue);
9ae949fa
DB
1903 if (error == 0) { /* non-blocking succesfull path */
1904 DEFINE_WAKE_Q(wake_q);
1905
1906 /*
1907 * If the operation was successful, then do
0e8c6656
MS
1908 * the required updates.
1909 */
1910 if (alter)
9ae949fa 1911 do_smart_update(sma, sops, nsops, 1, &wake_q);
0e8c6656
MS
1912 else
1913 set_semotime(sma, sops);
9ae949fa
DB
1914
1915 sem_unlock(sma, locknum);
1916 rcu_read_unlock();
1917 wake_up_q(&wake_q);
1918
1919 goto out_free;
1da177e4 1920 }
9ae949fa 1921 if (error < 0) /* non-blocking error path */
0e8c6656 1922 goto out_unlock_free;
1da177e4 1923
9ae949fa
DB
1924 /*
1925 * We need to sleep on this operation, so we put the current
1da177e4
LT
1926 * task into the pending queue and go to sleep.
1927 */
b97e820f
MS
1928 if (nsops == 1) {
1929 struct sem *curr;
1a233956 1930 curr = &sma->sems[sops->sem_num];
b97e820f 1931
f269f40a
MS
1932 if (alter) {
1933 if (sma->complex_count) {
1934 list_add_tail(&queue.list,
1935 &sma->pending_alter);
1936 } else {
1937
1938 list_add_tail(&queue.list,
1939 &curr->pending_alter);
1940 }
1941 } else {
1a82e9e1 1942 list_add_tail(&queue.list, &curr->pending_const);
f269f40a 1943 }
b97e820f 1944 } else {
f269f40a
MS
1945 if (!sma->complex_count)
1946 merge_queues(sma);
1947
9f1bc2c9 1948 if (alter)
1a82e9e1 1949 list_add_tail(&queue.list, &sma->pending_alter);
9f1bc2c9 1950 else
1a82e9e1
MS
1951 list_add_tail(&queue.list, &sma->pending_const);
1952
b97e820f
MS
1953 sma->complex_count++;
1954 }
1955
b5fa01a2
DB
1956 do {
1957 queue.status = -EINTR;
1958 queue.sleeper = current;
0b0577f6 1959
b5fa01a2
DB
1960 __set_current_state(TASK_INTERRUPTIBLE);
1961 sem_unlock(sma, locknum);
1962 rcu_read_unlock();
1da177e4 1963
b5fa01a2
DB
1964 if (timeout)
1965 jiffies_left = schedule_timeout(jiffies_left);
1966 else
1967 schedule();
1da177e4 1968
9ae949fa 1969 /*
b5fa01a2
DB
1970 * fastpath: the semop has completed, either successfully or
1971 * not, from the syscall pov, is quite irrelevant to us at this
1972 * point; we're done.
1973 *
1974 * We _do_ care, nonetheless, about being awoken by a signal or
1975 * spuriously. The queue.status is checked again in the
1976 * slowpath (aka after taking sem_lock), such that we can detect
1977 * scenarios where we were awakened externally, during the
1978 * window between wake_q_add() and wake_up_q().
c61284e9 1979 */
b5fa01a2
DB
1980 error = READ_ONCE(queue.status);
1981 if (error != -EINTR) {
1982 /*
1983 * User space could assume that semop() is a memory
1984 * barrier: Without the mb(), the cpu could
1985 * speculatively read in userspace stale data that was
1986 * overwritten by the previous owner of the semaphore.
1987 */
1988 smp_mb();
1989 goto out_free;
1990 }
d694ad62 1991
b5fa01a2 1992 rcu_read_lock();
c626bc46 1993 locknum = sem_lock(sma, sops, nsops);
1da177e4 1994
370b262c
DB
1995 if (!ipc_valid_object(&sma->sem_perm))
1996 goto out_unlock_free;
1997
1998 error = READ_ONCE(queue.status);
1da177e4 1999
b5fa01a2
DB
2000 /*
2001 * If queue.status != -EINTR we are woken up by another process.
2002 * Leave without unlink_queue(), but with sem_unlock().
2003 */
2004 if (error != -EINTR)
2005 goto out_unlock_free;
0b0577f6 2006
b5fa01a2
DB
2007 /*
2008 * If an interrupt occurred we have to clean up the queue.
2009 */
2010 if (timeout && jiffies_left == 0)
2011 error = -EAGAIN;
2012 } while (error == -EINTR && !signal_pending(current)); /* spurious */
0b0577f6 2013
b97e820f 2014 unlink_queue(sma, &queue);
1da177e4
LT
2015
2016out_unlock_free:
6062a8dc 2017 sem_unlock(sma, locknum);
6d49dab8 2018 rcu_read_unlock();
1da177e4 2019out_free:
239521f3 2020 if (sops != fast_sops)
1da177e4
LT
2021 kfree(sops);
2022 return error;
2023}
2024
d5460c99
HC
2025SYSCALL_DEFINE3(semop, int, semid, struct sembuf __user *, tsops,
2026 unsigned, nsops)
1da177e4
LT
2027{
2028 return sys_semtimedop(semid, tsops, nsops, NULL);
2029}
2030
2031/* If CLONE_SYSVSEM is set, establish sharing of SEM_UNDO state between
2032 * parent and child tasks.
1da177e4
LT
2033 */
2034
2035int copy_semundo(unsigned long clone_flags, struct task_struct *tsk)
2036{
2037 struct sem_undo_list *undo_list;
2038 int error;
2039
2040 if (clone_flags & CLONE_SYSVSEM) {
2041 error = get_undo_list(&undo_list);
2042 if (error)
2043 return error;
1da177e4
LT
2044 atomic_inc(&undo_list->refcnt);
2045 tsk->sysvsem.undo_list = undo_list;
46c0a8ca 2046 } else
1da177e4
LT
2047 tsk->sysvsem.undo_list = NULL;
2048
2049 return 0;
2050}
2051
2052/*
2053 * add semadj values to semaphores, free undo structures.
2054 * undo structures are not freed when semaphore arrays are destroyed
2055 * so some of them may be out of date.
2056 * IMPLEMENTATION NOTE: There is some confusion over whether the
2057 * set of adjustments that needs to be done should be done in an atomic
2058 * manner or not. That is, if we are attempting to decrement the semval
2059 * should we queue up and wait until we can do so legally?
2060 * The original implementation attempted to do this (queue and wait).
2061 * The current implementation does not do so. The POSIX standard
2062 * and SVID should be consulted to determine what behavior is mandated.
2063 */
2064void exit_sem(struct task_struct *tsk)
2065{
4daa28f6 2066 struct sem_undo_list *ulp;
1da177e4 2067
4daa28f6
MS
2068 ulp = tsk->sysvsem.undo_list;
2069 if (!ulp)
1da177e4 2070 return;
9edff4ab 2071 tsk->sysvsem.undo_list = NULL;
1da177e4 2072
4daa28f6 2073 if (!atomic_dec_and_test(&ulp->refcnt))
1da177e4
LT
2074 return;
2075
380af1b3 2076 for (;;) {
1da177e4 2077 struct sem_array *sma;
380af1b3 2078 struct sem_undo *un;
6062a8dc 2079 int semid, i;
9ae949fa 2080 DEFINE_WAKE_Q(wake_q);
4daa28f6 2081
2a1613a5
NB
2082 cond_resched();
2083
380af1b3 2084 rcu_read_lock();
05725f7e
JP
2085 un = list_entry_rcu(ulp->list_proc.next,
2086 struct sem_undo, list_proc);
602b8593
HK
2087 if (&un->list_proc == &ulp->list_proc) {
2088 /*
2089 * We must wait for freeary() before freeing this ulp,
2090 * in case we raced with last sem_undo. There is a small
2091 * possibility where we exit while freeary() didn't
2092 * finish unlocking sem_undo_list.
2093 */
2094 spin_unlock_wait(&ulp->lock);
2095 rcu_read_unlock();
2096 break;
2097 }
2098 spin_lock(&ulp->lock);
2099 semid = un->semid;
2100 spin_unlock(&ulp->lock);
4daa28f6 2101
602b8593 2102 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2103 if (semid == -1) {
2104 rcu_read_unlock();
602b8593 2105 continue;
6062a8dc 2106 }
1da177e4 2107
602b8593 2108 sma = sem_obtain_object_check(tsk->nsproxy->ipc_ns, semid);
380af1b3 2109 /* exit_sem raced with IPC_RMID, nothing to do */
6062a8dc
RR
2110 if (IS_ERR(sma)) {
2111 rcu_read_unlock();
380af1b3 2112 continue;
6062a8dc 2113 }
1da177e4 2114
6062a8dc 2115 sem_lock(sma, NULL, -1);
6e224f94 2116 /* exit_sem raced with IPC_RMID, nothing to do */
0f3d2b01 2117 if (!ipc_valid_object(&sma->sem_perm)) {
6e224f94
MS
2118 sem_unlock(sma, -1);
2119 rcu_read_unlock();
2120 continue;
2121 }
bf17bb71 2122 un = __lookup_undo(ulp, semid);
380af1b3
MS
2123 if (un == NULL) {
2124 /* exit_sem raced with IPC_RMID+semget() that created
2125 * exactly the same semid. Nothing to do.
2126 */
6062a8dc 2127 sem_unlock(sma, -1);
6d49dab8 2128 rcu_read_unlock();
380af1b3
MS
2129 continue;
2130 }
2131
2132 /* remove un from the linked lists */
cf9d5d78 2133 ipc_assert_locked_object(&sma->sem_perm);
4daa28f6
MS
2134 list_del(&un->list_id);
2135
a9795584
HK
2136 /* we are the last process using this ulp, acquiring ulp->lock
2137 * isn't required. Besides that, we are also protected against
2138 * IPC_RMID as we hold sma->sem_perm lock now
2139 */
380af1b3 2140 list_del_rcu(&un->list_proc);
380af1b3 2141
4daa28f6
MS
2142 /* perform adjustments registered in un */
2143 for (i = 0; i < sma->sem_nsems; i++) {
1a233956 2144 struct sem *semaphore = &sma->sems[i];
4daa28f6
MS
2145 if (un->semadj[i]) {
2146 semaphore->semval += un->semadj[i];
1da177e4
LT
2147 /*
2148 * Range checks of the new semaphore value,
2149 * not defined by sus:
2150 * - Some unices ignore the undo entirely
2151 * (e.g. HP UX 11i 11.22, Tru64 V5.1)
2152 * - some cap the value (e.g. FreeBSD caps
2153 * at 0, but doesn't enforce SEMVMX)
2154 *
2155 * Linux caps the semaphore value, both at 0
2156 * and at SEMVMX.
2157 *
239521f3 2158 * Manfred <manfred@colorfullife.com>
1da177e4 2159 */
5f921ae9
IM
2160 if (semaphore->semval < 0)
2161 semaphore->semval = 0;
2162 if (semaphore->semval > SEMVMX)
2163 semaphore->semval = SEMVMX;
b488893a 2164 semaphore->sempid = task_tgid_vnr(current);
1da177e4
LT
2165 }
2166 }
1da177e4 2167 /* maybe some queued-up processes were waiting for this */
9ae949fa 2168 do_smart_update(sma, NULL, 0, 1, &wake_q);
6062a8dc 2169 sem_unlock(sma, -1);
6d49dab8 2170 rcu_read_unlock();
9ae949fa 2171 wake_up_q(&wake_q);
380af1b3 2172
693a8b6e 2173 kfree_rcu(un, rcu);
1da177e4 2174 }
4daa28f6 2175 kfree(ulp);
1da177e4
LT
2176}
2177
2178#ifdef CONFIG_PROC_FS
19b4946c 2179static int sysvipc_sem_proc_show(struct seq_file *s, void *it)
1da177e4 2180{
1efdb69b 2181 struct user_namespace *user_ns = seq_user_ns(s);
ade9f91b
KC
2182 struct kern_ipc_perm *ipcp = it;
2183 struct sem_array *sma = container_of(ipcp, struct sem_array, sem_perm);
d12e1e50
MS
2184 time_t sem_otime;
2185
d8c63376
MS
2186 /*
2187 * The proc interface isn't aware of sem_lock(), it calls
2188 * ipc_lock_object() directly (in sysvipc_find_ipc).
5864a2fd
MS
2189 * In order to stay compatible with sem_lock(), we must
2190 * enter / leave complex_mode.
d8c63376 2191 */
5864a2fd 2192 complexmode_enter(sma);
d8c63376 2193
d12e1e50 2194 sem_otime = get_semotime(sma);
19b4946c 2195
7f032d6e
JP
2196 seq_printf(s,
2197 "%10d %10d %4o %10u %5u %5u %5u %5u %10lu %10lu\n",
2198 sma->sem_perm.key,
2199 sma->sem_perm.id,
2200 sma->sem_perm.mode,
2201 sma->sem_nsems,
2202 from_kuid_munged(user_ns, sma->sem_perm.uid),
2203 from_kgid_munged(user_ns, sma->sem_perm.gid),
2204 from_kuid_munged(user_ns, sma->sem_perm.cuid),
2205 from_kgid_munged(user_ns, sma->sem_perm.cgid),
2206 sem_otime,
2207 sma->sem_ctime);
2208
5864a2fd
MS
2209 complexmode_tryleave(sma);
2210
7f032d6e 2211 return 0;
1da177e4
LT
2212}
2213#endif