]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - kernel/pid.c
UBUNTU: Start new release
[mirror_ubuntu-artful-kernel.git] / kernel / pid.c
CommitLineData
1da177e4
LT
1/*
2 * Generic pidhash and scalable, time-bounded PID allocator
3 *
6d49e352
NYC
4 * (C) 2002-2003 Nadia Yvette Chambers, IBM
5 * (C) 2004 Nadia Yvette Chambers, Oracle
1da177e4
LT
6 * (C) 2002-2004 Ingo Molnar, Red Hat
7 *
8 * pid-structures are backing objects for tasks sharing a given ID to chain
9 * against. There is very little to them aside from hashing them and
10 * parking tasks using given ID's on a list.
11 *
12 * The hash is always changed with the tasklist_lock write-acquired,
13 * and the hash is only accessed with the tasklist_lock at least
14 * read-acquired, so there's no additional SMP locking needed here.
15 *
16 * We have a list of bitmap pages, which bitmaps represent the PID space.
17 * Allocating and freeing PIDs is completely lockless. The worst-case
18 * allocation scenario when all but one out of 1 million PIDs possible are
19 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
20 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
30e49c26
PE
21 *
22 * Pid namespaces:
23 * (C) 2007 Pavel Emelyanov <xemul@openvz.org>, OpenVZ, SWsoft Inc.
24 * (C) 2007 Sukadev Bhattiprolu <sukadev@us.ibm.com>, IBM
25 * Many thanks to Oleg Nesterov for comments and help
26 *
1da177e4
LT
27 */
28
29#include <linux/mm.h>
9984de1a 30#include <linux/export.h>
1da177e4
LT
31#include <linux/slab.h>
32#include <linux/init.h>
82524746 33#include <linux/rculist.h>
1da177e4
LT
34#include <linux/bootmem.h>
35#include <linux/hash.h>
61a58c6c 36#include <linux/pid_namespace.h>
820e45db 37#include <linux/init_task.h>
3eb07c8c 38#include <linux/syscalls.h>
0bb80f24 39#include <linux/proc_ns.h>
0a01f2cc 40#include <linux/proc_fs.h>
29930025 41#include <linux/sched/task.h>
1da177e4 42
8ef047aa
PE
43#define pid_hashfn(nr, ns) \
44 hash_long((unsigned long)nr + (unsigned long)ns, pidhash_shift)
92476d7f 45static struct hlist_head *pid_hash;
2c85f51d 46static unsigned int pidhash_shift = 4;
820e45db 47struct pid init_struct_pid = INIT_STRUCT_PID;
1da177e4
LT
48
49int pid_max = PID_MAX_DEFAULT;
1da177e4
LT
50
51#define RESERVED_PIDS 300
52
53int pid_max_min = RESERVED_PIDS + 1;
54int pid_max_max = PID_MAX_LIMIT;
55
61a58c6c
SB
56static inline int mk_pid(struct pid_namespace *pid_ns,
57 struct pidmap *map, int off)
3fbc9648 58{
61a58c6c 59 return (map - pid_ns->pidmap)*BITS_PER_PAGE + off;
3fbc9648
SB
60}
61
1da177e4
LT
62#define find_next_offset(map, off) \
63 find_next_zero_bit((map)->page, BITS_PER_PAGE, off)
64
65/*
66 * PID-map pages start out as NULL, they get allocated upon
67 * first use and are never deallocated. This way a low pid_max
68 * value does not cause lots of bitmaps to be allocated, but
69 * the scheme scales to up to 4 million PIDs, runtime.
70 */
61a58c6c 71struct pid_namespace init_pid_ns = {
1e24edca 72 .kref = KREF_INIT(2),
3fbc9648
SB
73 .pidmap = {
74 [ 0 ... PIDMAP_ENTRIES-1] = { ATOMIC_INIT(BITS_PER_PAGE), NULL }
75 },
84d73786 76 .last_pid = 0,
8f75af44 77 .nr_hashed = PIDNS_HASH_ADDING,
faacbfd3
PE
78 .level = 0,
79 .child_reaper = &init_task,
49f4d8b9 80 .user_ns = &init_user_ns,
435d5f4b 81 .ns.inum = PROC_PID_INIT_INO,
33c42940
AV
82#ifdef CONFIG_PID_NS
83 .ns.ops = &pidns_operations,
84#endif
3fbc9648 85};
198fe21b 86EXPORT_SYMBOL_GPL(init_pid_ns);
1da177e4 87
92476d7f
EB
88/*
89 * Note: disable interrupts while the pidmap_lock is held as an
90 * interrupt might come in and do read_lock(&tasklist_lock).
91 *
92 * If we don't disable interrupts there is a nasty deadlock between
93 * detach_pid()->free_pid() and another cpu that does
94 * spin_lock(&pidmap_lock) followed by an interrupt routine that does
95 * read_lock(&tasklist_lock);
96 *
97 * After we clean up the tasklist_lock and know there are no
98 * irq handlers that take it we can leave the interrupts enabled.
99 * For now it is easier to be safe than to prove it can't happen.
100 */
3fbc9648 101
1da177e4
LT
102static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
103
b7127aa4 104static void free_pidmap(struct upid *upid)
1da177e4 105{
b7127aa4
ON
106 int nr = upid->nr;
107 struct pidmap *map = upid->ns->pidmap + nr / BITS_PER_PAGE;
108 int offset = nr & BITS_PER_PAGE_MASK;
1da177e4
LT
109
110 clear_bit(offset, map->page);
111 atomic_inc(&map->nr_free);
112}
113
5fdee8c4
S
114/*
115 * If we started walking pids at 'base', is 'a' seen before 'b'?
116 */
117static int pid_before(int base, int a, int b)
118{
119 /*
120 * This is the same as saying
121 *
122 * (a - base + MAXUINT) % MAXUINT < (b - base + MAXUINT) % MAXUINT
123 * and that mapping orders 'a' and 'b' with respect to 'base'.
124 */
125 return (unsigned)(a - base) < (unsigned)(b - base);
126}
127
128/*
b8f566b0
PE
129 * We might be racing with someone else trying to set pid_ns->last_pid
130 * at the pid allocation time (there's also a sysctl for this, but racing
131 * with this one is OK, see comment in kernel/pid_namespace.c about it).
5fdee8c4
S
132 * We want the winner to have the "later" value, because if the
133 * "earlier" value prevails, then a pid may get reused immediately.
134 *
135 * Since pids rollover, it is not sufficient to just pick the bigger
136 * value. We have to consider where we started counting from.
137 *
138 * 'base' is the value of pid_ns->last_pid that we observed when
139 * we started looking for a pid.
140 *
141 * 'pid' is the pid that we eventually found.
142 */
143static void set_last_pid(struct pid_namespace *pid_ns, int base, int pid)
144{
145 int prev;
146 int last_write = base;
147 do {
148 prev = last_write;
149 last_write = cmpxchg(&pid_ns->last_pid, prev, pid);
150 } while ((prev != last_write) && (pid_before(base, last_write, pid)));
151}
152
61a58c6c 153static int alloc_pidmap(struct pid_namespace *pid_ns)
1da177e4 154{
61a58c6c 155 int i, offset, max_scan, pid, last = pid_ns->last_pid;
6a1f3b84 156 struct pidmap *map;
1da177e4
LT
157
158 pid = last + 1;
159 if (pid >= pid_max)
160 pid = RESERVED_PIDS;
161 offset = pid & BITS_PER_PAGE_MASK;
61a58c6c 162 map = &pid_ns->pidmap[pid/BITS_PER_PAGE];
c52b0b91
ON
163 /*
164 * If last_pid points into the middle of the map->page we
165 * want to scan this bitmap block twice, the second time
166 * we start with offset == 0 (or RESERVED_PIDS).
167 */
168 max_scan = DIV_ROUND_UP(pid_max, BITS_PER_PAGE) - !offset;
1da177e4
LT
169 for (i = 0; i <= max_scan; ++i) {
170 if (unlikely(!map->page)) {
3fbc9648 171 void *page = kzalloc(PAGE_SIZE, GFP_KERNEL);
1da177e4
LT
172 /*
173 * Free the page if someone raced with us
174 * installing it:
175 */
92476d7f 176 spin_lock_irq(&pidmap_lock);
7be6d991 177 if (!map->page) {
3fbc9648 178 map->page = page;
7be6d991
AGR
179 page = NULL;
180 }
92476d7f 181 spin_unlock_irq(&pidmap_lock);
7be6d991 182 kfree(page);
1da177e4 183 if (unlikely(!map->page))
35f71bc0 184 return -ENOMEM;
1da177e4
LT
185 }
186 if (likely(atomic_read(&map->nr_free))) {
8db049b3 187 for ( ; ; ) {
1da177e4
LT
188 if (!test_and_set_bit(offset, map->page)) {
189 atomic_dec(&map->nr_free);
5fdee8c4 190 set_last_pid(pid_ns, last, pid);
1da177e4
LT
191 return pid;
192 }
193 offset = find_next_offset(map, offset);
8db049b3
RC
194 if (offset >= BITS_PER_PAGE)
195 break;
61a58c6c 196 pid = mk_pid(pid_ns, map, offset);
8db049b3
RC
197 if (pid >= pid_max)
198 break;
199 }
1da177e4 200 }
61a58c6c 201 if (map < &pid_ns->pidmap[(pid_max-1)/BITS_PER_PAGE]) {
1da177e4
LT
202 ++map;
203 offset = 0;
204 } else {
61a58c6c 205 map = &pid_ns->pidmap[0];
1da177e4
LT
206 offset = RESERVED_PIDS;
207 if (unlikely(last == offset))
208 break;
209 }
61a58c6c 210 pid = mk_pid(pid_ns, map, offset);
1da177e4 211 }
35f71bc0 212 return -EAGAIN;
1da177e4
LT
213}
214
c78193e9 215int next_pidmap(struct pid_namespace *pid_ns, unsigned int last)
0804ef4b
EB
216{
217 int offset;
f40f50d3 218 struct pidmap *map, *end;
0804ef4b 219
c78193e9
LT
220 if (last >= PID_MAX_LIMIT)
221 return -1;
222
0804ef4b 223 offset = (last + 1) & BITS_PER_PAGE_MASK;
61a58c6c
SB
224 map = &pid_ns->pidmap[(last + 1)/BITS_PER_PAGE];
225 end = &pid_ns->pidmap[PIDMAP_ENTRIES];
f40f50d3 226 for (; map < end; map++, offset = 0) {
0804ef4b
EB
227 if (unlikely(!map->page))
228 continue;
229 offset = find_next_bit((map)->page, BITS_PER_PAGE, offset);
230 if (offset < BITS_PER_PAGE)
61a58c6c 231 return mk_pid(pid_ns, map, offset);
0804ef4b
EB
232 }
233 return -1;
234}
235
7ad5b3a5 236void put_pid(struct pid *pid)
92476d7f 237{
baf8f0f8
PE
238 struct pid_namespace *ns;
239
92476d7f
EB
240 if (!pid)
241 return;
baf8f0f8 242
8ef047aa 243 ns = pid->numbers[pid->level].ns;
92476d7f 244 if ((atomic_read(&pid->count) == 1) ||
8ef047aa 245 atomic_dec_and_test(&pid->count)) {
baf8f0f8 246 kmem_cache_free(ns->pid_cachep, pid);
b461cc03 247 put_pid_ns(ns);
8ef047aa 248 }
92476d7f 249}
bbf73147 250EXPORT_SYMBOL_GPL(put_pid);
92476d7f
EB
251
252static void delayed_put_pid(struct rcu_head *rhp)
253{
254 struct pid *pid = container_of(rhp, struct pid, rcu);
255 put_pid(pid);
256}
257
7ad5b3a5 258void free_pid(struct pid *pid)
92476d7f
EB
259{
260 /* We can be called with write_lock_irq(&tasklist_lock) held */
8ef047aa 261 int i;
92476d7f
EB
262 unsigned long flags;
263
264 spin_lock_irqsave(&pidmap_lock, flags);
0a01f2cc
EB
265 for (i = 0; i <= pid->level; i++) {
266 struct upid *upid = pid->numbers + i;
af4b8a83 267 struct pid_namespace *ns = upid->ns;
0a01f2cc 268 hlist_del_rcu(&upid->pid_chain);
af4b8a83 269 switch(--ns->nr_hashed) {
a6064885 270 case 2:
af4b8a83
EB
271 case 1:
272 /* When all that is left in the pid namespace
273 * is the reaper wake up the reaper. The reaper
274 * may be sleeping in zap_pid_ns_processes().
275 */
276 wake_up_process(ns->child_reaper);
277 break;
314a8ad0
ON
278 case PIDNS_HASH_ADDING:
279 /* Handle a fork failure of the first process */
280 WARN_ON(ns->child_reaper);
281 ns->nr_hashed = 0;
282 /* fall through */
af4b8a83 283 case 0:
af4b8a83
EB
284 schedule_work(&ns->proc_work);
285 break;
5e1182de 286 }
0a01f2cc 287 }
92476d7f
EB
288 spin_unlock_irqrestore(&pidmap_lock, flags);
289
8ef047aa 290 for (i = 0; i <= pid->level; i++)
b7127aa4 291 free_pidmap(pid->numbers + i);
8ef047aa 292
92476d7f
EB
293 call_rcu(&pid->rcu, delayed_put_pid);
294}
295
8ef047aa 296struct pid *alloc_pid(struct pid_namespace *ns)
92476d7f
EB
297{
298 struct pid *pid;
299 enum pid_type type;
8ef047aa
PE
300 int i, nr;
301 struct pid_namespace *tmp;
198fe21b 302 struct upid *upid;
35f71bc0 303 int retval = -ENOMEM;
92476d7f 304
baf8f0f8 305 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
92476d7f 306 if (!pid)
35f71bc0 307 return ERR_PTR(retval);
92476d7f 308
8ef047aa 309 tmp = ns;
0a01f2cc 310 pid->level = ns->level;
8ef047aa
PE
311 for (i = ns->level; i >= 0; i--) {
312 nr = alloc_pidmap(tmp);
287980e4 313 if (nr < 0) {
35f71bc0 314 retval = nr;
8ef047aa 315 goto out_free;
35f71bc0 316 }
92476d7f 317
8ef047aa
PE
318 pid->numbers[i].nr = nr;
319 pid->numbers[i].ns = tmp;
320 tmp = tmp->parent;
321 }
322
0a01f2cc 323 if (unlikely(is_child_reaper(pid))) {
8896c23d
KT
324 if (pid_ns_prepare_proc(ns)) {
325 disable_pid_allocation(ns);
0a01f2cc 326 goto out_free;
8896c23d 327 }
0a01f2cc
EB
328 }
329
b461cc03 330 get_pid_ns(ns);
92476d7f 331 atomic_set(&pid->count, 1);
92476d7f
EB
332 for (type = 0; type < PIDTYPE_MAX; ++type)
333 INIT_HLIST_HEAD(&pid->tasks[type]);
334
417e3152 335 upid = pid->numbers + ns->level;
92476d7f 336 spin_lock_irq(&pidmap_lock);
c876ad76 337 if (!(ns->nr_hashed & PIDNS_HASH_ADDING))
5e1182de 338 goto out_unlock;
0a01f2cc 339 for ( ; upid >= pid->numbers; --upid) {
198fe21b
PE
340 hlist_add_head_rcu(&upid->pid_chain,
341 &pid_hash[pid_hashfn(upid->nr, upid->ns)]);
0a01f2cc
EB
342 upid->ns->nr_hashed++;
343 }
92476d7f
EB
344 spin_unlock_irq(&pidmap_lock);
345
92476d7f
EB
346 return pid;
347
5e1182de 348out_unlock:
6e666884 349 spin_unlock_irq(&pidmap_lock);
24c037eb
ON
350 put_pid_ns(ns);
351
92476d7f 352out_free:
b7127aa4
ON
353 while (++i <= ns->level)
354 free_pidmap(pid->numbers + i);
8ef047aa 355
baf8f0f8 356 kmem_cache_free(ns->pid_cachep, pid);
35f71bc0 357 return ERR_PTR(retval);
92476d7f
EB
358}
359
c876ad76
EB
360void disable_pid_allocation(struct pid_namespace *ns)
361{
362 spin_lock_irq(&pidmap_lock);
363 ns->nr_hashed &= ~PIDNS_HASH_ADDING;
364 spin_unlock_irq(&pidmap_lock);
365}
366
7ad5b3a5 367struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
1da177e4 368{
198fe21b
PE
369 struct upid *pnr;
370
b67bfe0d 371 hlist_for_each_entry_rcu(pnr,
198fe21b
PE
372 &pid_hash[pid_hashfn(nr, ns)], pid_chain)
373 if (pnr->nr == nr && pnr->ns == ns)
374 return container_of(pnr, struct pid,
375 numbers[ns->level]);
1da177e4 376
1da177e4
LT
377 return NULL;
378}
198fe21b 379EXPORT_SYMBOL_GPL(find_pid_ns);
1da177e4 380
8990571e
PE
381struct pid *find_vpid(int nr)
382{
17cf22c3 383 return find_pid_ns(nr, task_active_pid_ns(current));
8990571e
PE
384}
385EXPORT_SYMBOL_GPL(find_vpid);
386
e713d0da
SB
387/*
388 * attach_pid() must be called with the tasklist_lock write-held.
389 */
81907739 390void attach_pid(struct task_struct *task, enum pid_type type)
1da177e4 391{
81907739
ON
392 struct pid_link *link = &task->pids[type];
393 hlist_add_head_rcu(&link->node, &link->pid->tasks[type]);
1da177e4
LT
394}
395
24336eae
ON
396static void __change_pid(struct task_struct *task, enum pid_type type,
397 struct pid *new)
1da177e4 398{
92476d7f
EB
399 struct pid_link *link;
400 struct pid *pid;
401 int tmp;
1da177e4 402
92476d7f
EB
403 link = &task->pids[type];
404 pid = link->pid;
1da177e4 405
92476d7f 406 hlist_del_rcu(&link->node);
24336eae 407 link->pid = new;
1da177e4 408
92476d7f
EB
409 for (tmp = PIDTYPE_MAX; --tmp >= 0; )
410 if (!hlist_empty(&pid->tasks[tmp]))
411 return;
1da177e4 412
92476d7f 413 free_pid(pid);
1da177e4
LT
414}
415
24336eae
ON
416void detach_pid(struct task_struct *task, enum pid_type type)
417{
418 __change_pid(task, type, NULL);
419}
420
421void change_pid(struct task_struct *task, enum pid_type type,
422 struct pid *pid)
423{
424 __change_pid(task, type, pid);
81907739 425 attach_pid(task, type);
24336eae
ON
426}
427
c18258c6 428/* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
7ad5b3a5 429void transfer_pid(struct task_struct *old, struct task_struct *new,
c18258c6
EB
430 enum pid_type type)
431{
432 new->pids[type].pid = old->pids[type].pid;
433 hlist_replace_rcu(&old->pids[type].node, &new->pids[type].node);
c18258c6
EB
434}
435
7ad5b3a5 436struct task_struct *pid_task(struct pid *pid, enum pid_type type)
1da177e4 437{
92476d7f
EB
438 struct task_struct *result = NULL;
439 if (pid) {
440 struct hlist_node *first;
67bdbffd 441 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
db1466b3 442 lockdep_tasklist_lock_is_held());
92476d7f
EB
443 if (first)
444 result = hlist_entry(first, struct task_struct, pids[(type)].node);
445 }
446 return result;
447}
eccba068 448EXPORT_SYMBOL(pid_task);
1da177e4 449
92476d7f 450/*
9728e5d6 451 * Must be called under rcu_read_lock().
92476d7f 452 */
17f98dcf 453struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
92476d7f 454{
f78f5b90
PM
455 RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
456 "find_task_by_pid_ns() needs rcu_read_lock() protection");
17f98dcf 457 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
92476d7f 458}
1da177e4 459
228ebcbe
PE
460struct task_struct *find_task_by_vpid(pid_t vnr)
461{
17cf22c3 462 return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
228ebcbe 463}
228ebcbe 464
1a657f78
ON
465struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
466{
467 struct pid *pid;
468 rcu_read_lock();
2ae448ef
ON
469 if (type != PIDTYPE_PID)
470 task = task->group_leader;
81b1a832 471 pid = get_pid(rcu_dereference(task->pids[type].pid));
1a657f78
ON
472 rcu_read_unlock();
473 return pid;
474}
77c100c8 475EXPORT_SYMBOL_GPL(get_task_pid);
1a657f78 476
7ad5b3a5 477struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
92476d7f
EB
478{
479 struct task_struct *result;
480 rcu_read_lock();
481 result = pid_task(pid, type);
482 if (result)
483 get_task_struct(result);
484 rcu_read_unlock();
485 return result;
1da177e4 486}
77c100c8 487EXPORT_SYMBOL_GPL(get_pid_task);
1da177e4 488
92476d7f 489struct pid *find_get_pid(pid_t nr)
1da177e4
LT
490{
491 struct pid *pid;
492
92476d7f 493 rcu_read_lock();
198fe21b 494 pid = get_pid(find_vpid(nr));
92476d7f 495 rcu_read_unlock();
1da177e4 496
92476d7f 497 return pid;
1da177e4 498}
339caf2a 499EXPORT_SYMBOL_GPL(find_get_pid);
1da177e4 500
7af57294
PE
501pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
502{
503 struct upid *upid;
504 pid_t nr = 0;
505
506 if (pid && ns->level <= pid->level) {
507 upid = &pid->numbers[ns->level];
508 if (upid->ns == ns)
509 nr = upid->nr;
510 }
511 return nr;
512}
4f82f457 513EXPORT_SYMBOL_GPL(pid_nr_ns);
7af57294 514
44c4e1b2
EB
515pid_t pid_vnr(struct pid *pid)
516{
17cf22c3 517 return pid_nr_ns(pid, task_active_pid_ns(current));
44c4e1b2
EB
518}
519EXPORT_SYMBOL_GPL(pid_vnr);
520
52ee2dfd
ON
521pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
522 struct pid_namespace *ns)
2f2a3a46 523{
52ee2dfd
ON
524 pid_t nr = 0;
525
526 rcu_read_lock();
527 if (!ns)
17cf22c3 528 ns = task_active_pid_ns(current);
52ee2dfd 529 if (likely(pid_alive(task))) {
dd1c1f2f
ON
530 if (type != PIDTYPE_PID) {
531 if (type == __PIDTYPE_TGID)
532 type = PIDTYPE_PID;
52ee2dfd 533 task = task->group_leader;
dd1c1f2f 534 }
81b1a832 535 nr = pid_nr_ns(rcu_dereference(task->pids[type].pid), ns);
52ee2dfd
ON
536 }
537 rcu_read_unlock();
538
539 return nr;
2f2a3a46 540}
52ee2dfd 541EXPORT_SYMBOL(__task_pid_nr_ns);
2f2a3a46 542
61bce0f1
EB
543struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
544{
545 return ns_of_pid(task_pid(tsk));
546}
547EXPORT_SYMBOL_GPL(task_active_pid_ns);
548
0804ef4b 549/*
025dfdaf 550 * Used by proc to find the first pid that is greater than or equal to nr.
0804ef4b 551 *
e49859e7 552 * If there is a pid at nr this function is exactly the same as find_pid_ns.
0804ef4b 553 */
198fe21b 554struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
0804ef4b
EB
555{
556 struct pid *pid;
557
558 do {
198fe21b 559 pid = find_pid_ns(nr, ns);
0804ef4b
EB
560 if (pid)
561 break;
198fe21b 562 nr = next_pidmap(ns, nr);
0804ef4b
EB
563 } while (nr > 0);
564
565 return pid;
566}
567
1da177e4
LT
568/*
569 * The pid hash table is scaled according to the amount of memory in the
570 * machine. From a minimum of 16 slots up to 4096 slots at one gigabyte or
571 * more.
572 */
573void __init pidhash_init(void)
574{
2c85f51d 575 pid_hash = alloc_large_system_hash("PID", sizeof(*pid_hash), 0, 18,
3d375d78 576 HASH_EARLY | HASH_SMALL | HASH_ZERO,
31fe62b9
TB
577 &pidhash_shift, NULL,
578 0, 4096);
1da177e4
LT
579}
580
581void __init pidmap_init(void)
582{
840d6fe7 583 /* Verify no one has done anything silly: */
c876ad76
EB
584 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_HASH_ADDING);
585
72680a19
HB
586 /* bump default and minimum pid_max based on number of cpus */
587 pid_max = min(pid_max_max, max_t(int, pid_max,
588 PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
589 pid_max_min = max_t(int, pid_max_min,
590 PIDS_PER_CPU_MIN * num_possible_cpus());
591 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
592
61a58c6c 593 init_pid_ns.pidmap[0].page = kzalloc(PAGE_SIZE, GFP_KERNEL);
73b9ebfe 594 /* Reserve PID 0. We never call free_pidmap(0) */
61a58c6c
SB
595 set_bit(0, init_pid_ns.pidmap[0].page);
596 atomic_dec(&init_pid_ns.pidmap[0].nr_free);
92476d7f 597
74bd59bb 598 init_pid_ns.pid_cachep = KMEM_CACHE(pid,
5d097056 599 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT);
1da177e4 600}