]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/crc32.c
Merge tag 'gvt-fixes-2017-08-23' of https://github.com/01org/gvt-linux into drm-intel...
[mirror_ubuntu-artful-kernel.git] / lib / crc32.c
CommitLineData
1da177e4 1/*
78dff418
BP
2 * Aug 8, 2011 Bob Pearson with help from Joakim Tjernlund and George Spelvin
3 * cleaned up code to current version of sparse and added the slicing-by-8
4 * algorithm to the closely similar existing slicing-by-4 algorithm.
5 *
1da177e4
LT
6 * Oct 15, 2000 Matt Domsch <Matt_Domsch@dell.com>
7 * Nicer crc32 functions/docs submitted by linux@horizon.com. Thanks!
8 * Code was from the public domain, copyright abandoned. Code was
9 * subsequently included in the kernel, thus was re-licensed under the
10 * GNU GPL v2.
11 *
12 * Oct 12, 2000 Matt Domsch <Matt_Domsch@dell.com>
13 * Same crc32 function was used in 5 other places in the kernel.
14 * I made one version, and deleted the others.
15 * There are various incantations of crc32(). Some use a seed of 0 or ~0.
16 * Some xor at the end with ~0. The generic crc32() function takes
17 * seed as an argument, and doesn't xor at the end. Then individual
18 * users can do whatever they need.
19 * drivers/net/smc9194.c uses seed ~0, doesn't xor with ~0.
20 * fs/jffs2 uses seed 0, doesn't xor with ~0.
21 * fs/partitions/efi.c uses seed ~0, xor's with ~0.
22 *
23 * This source code is licensed under the GNU General Public License,
24 * Version 2. See the file COPYING for more details.
25 */
26
fbedceb1
BP
27/* see: Documentation/crc32.txt for a description of algorithms */
28
1da177e4 29#include <linux/crc32.h>
1da177e4 30#include <linux/module.h>
1da177e4 31#include <linux/types.h>
cc0ac199 32#include <linux/sched.h>
1da177e4 33#include "crc32defs.h"
60e58d5c 34
9a1dbf6a 35#if CRC_LE_BITS > 8
38b4fe5f 36# define tole(x) ((__force u32) cpu_to_le32(x))
1da177e4 37#else
4f2a9463
JT
38# define tole(x) (x)
39#endif
40
9a1dbf6a 41#if CRC_BE_BITS > 8
38b4fe5f 42# define tobe(x) ((__force u32) cpu_to_be32(x))
4f2a9463
JT
43#else
44# define tobe(x) (x)
1da177e4 45#endif
60e58d5c 46
1da177e4
LT
47#include "crc32table.h"
48
49MODULE_AUTHOR("Matt Domsch <Matt_Domsch@dell.com>");
46c5801e 50MODULE_DESCRIPTION("Various CRC32 calculations");
1da177e4
LT
51MODULE_LICENSE("GPL");
52
9a1dbf6a 53#if CRC_LE_BITS > 8 || CRC_BE_BITS > 8
ddcaccbc 54
324eb0f1 55/* implements slicing-by-4 or slicing-by-8 algorithm */
d8f1c477 56static inline u32 __pure
836e2af9 57crc32_body(u32 crc, unsigned char const *buf, size_t len, const u32 (*tab)[256])
ddcaccbc 58{
0d2daf5c 59# ifdef __LITTLE_ENDIAN
5742332d 60# define DO_CRC(x) crc = t0[(crc ^ (x)) & 255] ^ (crc >> 8)
324eb0f1
BP
61# define DO_CRC4 (t3[(q) & 255] ^ t2[(q >> 8) & 255] ^ \
62 t1[(q >> 16) & 255] ^ t0[(q >> 24) & 255])
63# define DO_CRC8 (t7[(q) & 255] ^ t6[(q >> 8) & 255] ^ \
64 t5[(q >> 16) & 255] ^ t4[(q >> 24) & 255])
ddcaccbc 65# else
5742332d 66# define DO_CRC(x) crc = t0[((crc >> 24) ^ (x)) & 255] ^ (crc << 8)
324eb0f1
BP
67# define DO_CRC4 (t0[(q) & 255] ^ t1[(q >> 8) & 255] ^ \
68 t2[(q >> 16) & 255] ^ t3[(q >> 24) & 255])
69# define DO_CRC8 (t4[(q) & 255] ^ t5[(q >> 8) & 255] ^ \
70 t6[(q >> 16) & 255] ^ t7[(q >> 24) & 255])
ddcaccbc 71# endif
4f2a9463 72 const u32 *b;
ddcaccbc 73 size_t rem_len;
0292c497
BP
74# ifdef CONFIG_X86
75 size_t i;
76# endif
5742332d 77 const u32 *t0=tab[0], *t1=tab[1], *t2=tab[2], *t3=tab[3];
49ac572b 78# if CRC_LE_BITS != 32
324eb0f1 79 const u32 *t4 = tab[4], *t5 = tab[5], *t6 = tab[6], *t7 = tab[7];
49ac572b 80# endif
324eb0f1 81 u32 q;
ddcaccbc
JT
82
83 /* Align it */
4f2a9463 84 if (unlikely((long)buf & 3 && len)) {
ddcaccbc 85 do {
4f2a9463
JT
86 DO_CRC(*buf++);
87 } while ((--len) && ((long)buf)&3);
ddcaccbc 88 }
324eb0f1
BP
89
90# if CRC_LE_BITS == 32
ddcaccbc 91 rem_len = len & 3;
ddcaccbc 92 len = len >> 2;
324eb0f1
BP
93# else
94 rem_len = len & 7;
95 len = len >> 3;
96# endif
97
4f2a9463 98 b = (const u32 *)buf;
0292c497
BP
99# ifdef CONFIG_X86
100 --b;
101 for (i = 0; i < len; i++) {
102# else
ddcaccbc 103 for (--b; len; --len) {
0292c497 104# endif
324eb0f1
BP
105 q = crc ^ *++b; /* use pre increment for speed */
106# if CRC_LE_BITS == 32
107 crc = DO_CRC4;
108# else
109 crc = DO_CRC8;
110 q = *++b;
111 crc ^= DO_CRC4;
112# endif
ddcaccbc
JT
113 }
114 len = rem_len;
115 /* And the last few bytes */
116 if (len) {
117 u8 *p = (u8 *)(b + 1) - 1;
0292c497
BP
118# ifdef CONFIG_X86
119 for (i = 0; i < len; i++)
120 DO_CRC(*++p); /* use pre increment for speed */
121# else
ddcaccbc
JT
122 do {
123 DO_CRC(*++p); /* use pre increment for speed */
124 } while (--len);
0292c497 125# endif
ddcaccbc
JT
126 }
127 return crc;
4f2a9463 128#undef DO_CRC
836e2af9 129#undef DO_CRC4
324eb0f1 130#undef DO_CRC8
ddcaccbc
JT
131}
132#endif
60e58d5c 133
6e95fcaa 134
2f72100c 135/**
f2e1d2ac
GZ
136 * crc32_le_generic() - Calculate bitwise little-endian Ethernet AUTODIN II
137 * CRC32/CRC32C
138 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for other
139 * uses, or the previous crc32/crc32c value if computing incrementally.
140 * @p: pointer to buffer over which CRC32/CRC32C is run
2f72100c 141 * @len: length of buffer @p
f2e1d2ac
GZ
142 * @tab: little-endian Ethernet table
143 * @polynomial: CRC32/CRC32c LE polynomial
2f72100c 144 */
46c5801e
DW
145static inline u32 __pure crc32_le_generic(u32 crc, unsigned char const *p,
146 size_t len, const u32 (*tab)[256],
147 u32 polynomial)
1da177e4 148{
60e58d5c 149#if CRC_LE_BITS == 1
1da177e4
LT
150 int i;
151 while (len--) {
152 crc ^= *p++;
153 for (i = 0; i < 8; i++)
46c5801e 154 crc = (crc >> 1) ^ ((crc & 1) ? polynomial : 0);
1da177e4 155 }
60e58d5c 156# elif CRC_LE_BITS == 2
1da177e4
LT
157 while (len--) {
158 crc ^= *p++;
46c5801e
DW
159 crc = (crc >> 2) ^ tab[0][crc & 3];
160 crc = (crc >> 2) ^ tab[0][crc & 3];
161 crc = (crc >> 2) ^ tab[0][crc & 3];
162 crc = (crc >> 2) ^ tab[0][crc & 3];
1da177e4 163 }
60e58d5c 164# elif CRC_LE_BITS == 4
1da177e4
LT
165 while (len--) {
166 crc ^= *p++;
46c5801e
DW
167 crc = (crc >> 4) ^ tab[0][crc & 15];
168 crc = (crc >> 4) ^ tab[0][crc & 15];
1da177e4 169 }
60e58d5c 170# elif CRC_LE_BITS == 8
9a1dbf6a
BP
171 /* aka Sarwate algorithm */
172 while (len--) {
173 crc ^= *p++;
46c5801e 174 crc = (crc >> 8) ^ tab[0][crc & 255];
9a1dbf6a
BP
175 }
176# else
ce4320dd 177 crc = (__force u32) __cpu_to_le32(crc);
60e58d5c 178 crc = crc32_body(crc, p, len, tab);
ce4320dd 179 crc = __le32_to_cpu((__force __le32)crc);
60e58d5c 180#endif
1da177e4 181 return crc;
1da177e4 182}
46c5801e
DW
183
184#if CRC_LE_BITS == 1
185u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
186{
187 return crc32_le_generic(crc, p, len, NULL, CRCPOLY_LE);
188}
189u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len)
190{
191 return crc32_le_generic(crc, p, len, NULL, CRC32C_POLY_LE);
192}
193#else
194u32 __pure crc32_le(u32 crc, unsigned char const *p, size_t len)
195{
8f243af4
JM
196 return crc32_le_generic(crc, p, len,
197 (const u32 (*)[256])crc32table_le, CRCPOLY_LE);
46c5801e
DW
198}
199u32 __pure __crc32c_le(u32 crc, unsigned char const *p, size_t len)
200{
8f243af4
JM
201 return crc32_le_generic(crc, p, len,
202 (const u32 (*)[256])crc32ctable_le, CRC32C_POLY_LE);
46c5801e
DW
203}
204#endif
6d514b4e
GS
205EXPORT_SYMBOL(crc32_le);
206EXPORT_SYMBOL(__crc32c_le);
207
208/*
209 * This multiplies the polynomials x and y modulo the given modulus.
210 * This follows the "little-endian" CRC convention that the lsbit
211 * represents the highest power of x, and the msbit represents x^0.
212 */
213static u32 __attribute_const__ gf2_multiply(u32 x, u32 y, u32 modulus)
214{
215 u32 product = x & 1 ? y : 0;
216 int i;
217
218 for (i = 0; i < 31; i++) {
219 product = (product >> 1) ^ (product & 1 ? modulus : 0);
220 x >>= 1;
221 product ^= x & 1 ? y : 0;
222 }
223
224 return product;
225}
226
227/**
228 * crc32_generic_shift - Append len 0 bytes to crc, in logarithmic time
229 * @crc: The original little-endian CRC (i.e. lsbit is x^31 coefficient)
230 * @len: The number of bytes. @crc is multiplied by x^(8*@len)
231 * @polynomial: The modulus used to reduce the result to 32 bits.
232 *
233 * It's possible to parallelize CRC computations by computing a CRC
234 * over separate ranges of a buffer, then summing them.
235 * This shifts the given CRC by 8*len bits (i.e. produces the same effect
236 * as appending len bytes of zero to the data), in time proportional
237 * to log(len).
238 */
239static u32 __attribute_const__ crc32_generic_shift(u32 crc, size_t len,
240 u32 polynomial)
241{
242 u32 power = polynomial; /* CRC of x^32 */
243 int i;
244
245 /* Shift up to 32 bits in the simple linear way */
246 for (i = 0; i < 8 * (int)(len & 3); i++)
247 crc = (crc >> 1) ^ (crc & 1 ? polynomial : 0);
248
249 len >>= 2;
250 if (!len)
251 return crc;
252
253 for (;;) {
254 /* "power" is x^(2^i), modulo the polynomial */
255 if (len & 1)
256 crc = gf2_multiply(crc, power, polynomial);
257
258 len >>= 1;
259 if (!len)
260 break;
261
262 /* Square power, advancing to x^(2^(i+1)) */
263 power = gf2_multiply(power, power, polynomial);
264 }
265
266 return crc;
267}
268
269u32 __attribute_const__ crc32_le_shift(u32 crc, size_t len)
6e95fcaa 270{
6d514b4e 271 return crc32_generic_shift(crc, len, CRCPOLY_LE);
6e95fcaa
DB
272}
273
6d514b4e 274u32 __attribute_const__ __crc32c_le_shift(u32 crc, size_t len)
6e95fcaa 275{
6d514b4e 276 return crc32_generic_shift(crc, len, CRC32C_POLY_LE);
6e95fcaa 277}
6d514b4e
GS
278EXPORT_SYMBOL(crc32_le_shift);
279EXPORT_SYMBOL(__crc32c_le_shift);
1da177e4 280
2f72100c 281/**
f2e1d2ac 282 * crc32_be_generic() - Calculate bitwise big-endian Ethernet AUTODIN II CRC32
2f72100c
RD
283 * @crc: seed value for computation. ~0 for Ethernet, sometimes 0 for
284 * other uses, or the previous crc32 value if computing incrementally.
f2e1d2ac 285 * @p: pointer to buffer over which CRC32 is run
2f72100c 286 * @len: length of buffer @p
f2e1d2ac
GZ
287 * @tab: big-endian Ethernet table
288 * @polynomial: CRC32 BE polynomial
2f72100c 289 */
46c5801e
DW
290static inline u32 __pure crc32_be_generic(u32 crc, unsigned char const *p,
291 size_t len, const u32 (*tab)[256],
292 u32 polynomial)
1da177e4 293{
60e58d5c 294#if CRC_BE_BITS == 1
1da177e4
LT
295 int i;
296 while (len--) {
297 crc ^= *p++ << 24;
298 for (i = 0; i < 8; i++)
299 crc =
46c5801e 300 (crc << 1) ^ ((crc & 0x80000000) ? polynomial :
1da177e4
LT
301 0);
302 }
60e58d5c 303# elif CRC_BE_BITS == 2
1da177e4
LT
304 while (len--) {
305 crc ^= *p++ << 24;
46c5801e
DW
306 crc = (crc << 2) ^ tab[0][crc >> 30];
307 crc = (crc << 2) ^ tab[0][crc >> 30];
308 crc = (crc << 2) ^ tab[0][crc >> 30];
309 crc = (crc << 2) ^ tab[0][crc >> 30];
1da177e4 310 }
60e58d5c 311# elif CRC_BE_BITS == 4
1da177e4
LT
312 while (len--) {
313 crc ^= *p++ << 24;
46c5801e
DW
314 crc = (crc << 4) ^ tab[0][crc >> 28];
315 crc = (crc << 4) ^ tab[0][crc >> 28];
1da177e4 316 }
60e58d5c 317# elif CRC_BE_BITS == 8
9a1dbf6a
BP
318 while (len--) {
319 crc ^= *p++ << 24;
46c5801e 320 crc = (crc << 8) ^ tab[0][crc >> 24];
9a1dbf6a
BP
321 }
322# else
ce4320dd 323 crc = (__force u32) __cpu_to_be32(crc);
60e58d5c 324 crc = crc32_body(crc, p, len, tab);
ce4320dd 325 crc = __be32_to_cpu((__force __be32)crc);
1da177e4 326# endif
60e58d5c 327 return crc;
1da177e4 328}
46c5801e
DW
329
330#if CRC_LE_BITS == 1
331u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
332{
333 return crc32_be_generic(crc, p, len, NULL, CRCPOLY_BE);
334}
335#else
336u32 __pure crc32_be(u32 crc, unsigned char const *p, size_t len)
337{
8f243af4
JM
338 return crc32_be_generic(crc, p, len,
339 (const u32 (*)[256])crc32table_be, CRCPOLY_BE);
46c5801e
DW
340}
341#endif
1da177e4 342EXPORT_SYMBOL(crc32_be);