]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - lib/radix-tree.c
radix-tree: tidy up __radix_tree_create()
[mirror_ubuntu-artful-kernel.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25#include <linux/errno.h>
26#include <linux/init.h>
27#include <linux/kernel.h>
8bc3bcc9 28#include <linux/export.h>
1da177e4
LT
29#include <linux/radix-tree.h>
30#include <linux/percpu.h>
31#include <linux/slab.h>
ce80b067 32#include <linux/kmemleak.h>
1da177e4
LT
33#include <linux/notifier.h>
34#include <linux/cpu.h>
1da177e4
LT
35#include <linux/string.h>
36#include <linux/bitops.h>
7cf9c2c7 37#include <linux/rcupdate.h>
92cf2118 38#include <linux/preempt.h> /* in_interrupt() */
1da177e4
LT
39
40
1da177e4
LT
41/*
42 * Radix tree node cache.
43 */
e18b890b 44static struct kmem_cache *radix_tree_node_cachep;
1da177e4 45
55368052
NP
46/*
47 * The radix tree is variable-height, so an insert operation not only has
48 * to build the branch to its corresponding item, it also has to build the
49 * branch to existing items if the size has to be increased (by
50 * radix_tree_extend).
51 *
52 * The worst case is a zero height tree with just a single item at index 0,
53 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
54 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
55 * Hence:
56 */
57#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
58
1da177e4
LT
59/*
60 * Per-cpu pool of preloaded nodes
61 */
62struct radix_tree_preload {
2fcd9005 63 unsigned nr;
9d2a8da0
KS
64 /* nodes->private_data points to next preallocated node */
65 struct radix_tree_node *nodes;
1da177e4 66};
8cef7d57 67static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 68
a4db4dce 69static inline void *node_to_entry(void *ptr)
27d20fdd 70{
30ff46cc 71 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
72}
73
a4db4dce 74#define RADIX_TREE_RETRY node_to_entry(NULL)
afe0e395 75
db050f29
MW
76#ifdef CONFIG_RADIX_TREE_MULTIORDER
77/* Sibling slots point directly to another slot in the same node */
78static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
79{
80 void **ptr = node;
81 return (parent->slots <= ptr) &&
82 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
83}
84#else
85static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
86{
87 return false;
88}
89#endif
90
91static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
92 void **slot)
93{
94 return slot - parent->slots;
95}
96
97static unsigned radix_tree_descend(struct radix_tree_node *parent,
98 struct radix_tree_node **nodep, unsigned offset)
99{
100 void **entry = rcu_dereference_raw(parent->slots[offset]);
101
102#ifdef CONFIG_RADIX_TREE_MULTIORDER
b194d16c 103 if (radix_tree_is_internal_node(entry)) {
db050f29
MW
104 unsigned long siboff = get_slot_offset(parent, entry);
105 if (siboff < RADIX_TREE_MAP_SIZE) {
106 offset = siboff;
107 entry = rcu_dereference_raw(parent->slots[offset]);
108 }
109 }
110#endif
111
112 *nodep = (void *)entry;
113 return offset;
114}
115
612d6c19
NP
116static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
117{
118 return root->gfp_mask & __GFP_BITS_MASK;
119}
120
643b52b9
NP
121static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
122 int offset)
123{
124 __set_bit(offset, node->tags[tag]);
125}
126
127static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
128 int offset)
129{
130 __clear_bit(offset, node->tags[tag]);
131}
132
133static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
134 int offset)
135{
136 return test_bit(offset, node->tags[tag]);
137}
138
139static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
140{
141 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
142}
143
2fcd9005 144static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9
NP
145{
146 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
147}
148
149static inline void root_tag_clear_all(struct radix_tree_root *root)
150{
151 root->gfp_mask &= __GFP_BITS_MASK;
152}
153
154static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
155{
2fcd9005 156 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
643b52b9
NP
157}
158
7b60e9ad
MW
159static inline unsigned root_tags_get(struct radix_tree_root *root)
160{
161 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
162}
163
643b52b9
NP
164/*
165 * Returns 1 if any slot in the node has this tag set.
166 * Otherwise returns 0.
167 */
168static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
169{
2fcd9005 170 unsigned idx;
643b52b9
NP
171 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
172 if (node->tags[tag][idx])
173 return 1;
174 }
175 return 0;
176}
78c1d784
KK
177
178/**
179 * radix_tree_find_next_bit - find the next set bit in a memory region
180 *
181 * @addr: The address to base the search on
182 * @size: The bitmap size in bits
183 * @offset: The bitnumber to start searching at
184 *
185 * Unrollable variant of find_next_bit() for constant size arrays.
186 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
187 * Returns next bit offset, or size if nothing found.
188 */
189static __always_inline unsigned long
190radix_tree_find_next_bit(const unsigned long *addr,
191 unsigned long size, unsigned long offset)
192{
193 if (!__builtin_constant_p(size))
194 return find_next_bit(addr, size, offset);
195
196 if (offset < size) {
197 unsigned long tmp;
198
199 addr += offset / BITS_PER_LONG;
200 tmp = *addr >> (offset % BITS_PER_LONG);
201 if (tmp)
202 return __ffs(tmp) + offset;
203 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
204 while (offset < size) {
205 tmp = *++addr;
206 if (tmp)
207 return __ffs(tmp) + offset;
208 offset += BITS_PER_LONG;
209 }
210 }
211 return size;
212}
213
0796c583 214#ifndef __KERNEL__
d0891265 215static void dump_node(struct radix_tree_node *node, unsigned long index)
7cf19af4 216{
0796c583 217 unsigned long i;
7cf19af4 218
c12e51b0 219 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n",
0c7fa0a8 220 node, node->offset,
0796c583 221 node->tags[0][0], node->tags[1][0], node->tags[2][0],
c12e51b0 222 node->shift, node->count, node->parent);
0796c583
RZ
223
224 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
d0891265
MW
225 unsigned long first = index | (i << node->shift);
226 unsigned long last = first | ((1UL << node->shift) - 1);
0796c583
RZ
227 void *entry = node->slots[i];
228 if (!entry)
229 continue;
230 if (is_sibling_entry(node, entry)) {
231 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
232 entry, i,
4dd6c098 233 *(void **)entry_to_node(entry),
0796c583 234 first, last);
b194d16c 235 } else if (!radix_tree_is_internal_node(entry)) {
0796c583
RZ
236 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
237 entry, i, first, last);
238 } else {
4dd6c098 239 dump_node(entry_to_node(entry), first);
0796c583
RZ
240 }
241 }
7cf19af4
MW
242}
243
244/* For debug */
245static void radix_tree_dump(struct radix_tree_root *root)
246{
d0891265
MW
247 pr_debug("radix root: %p rnode %p tags %x\n",
248 root, root->rnode,
7cf19af4 249 root->gfp_mask >> __GFP_BITS_SHIFT);
b194d16c 250 if (!radix_tree_is_internal_node(root->rnode))
7cf19af4 251 return;
4dd6c098 252 dump_node(entry_to_node(root->rnode), 0);
7cf19af4
MW
253}
254#endif
255
1da177e4
LT
256/*
257 * This assumes that the caller has performed appropriate preallocation, and
258 * that the caller has pinned this thread of control to the current CPU.
259 */
260static struct radix_tree_node *
261radix_tree_node_alloc(struct radix_tree_root *root)
262{
e2848a0e 263 struct radix_tree_node *ret = NULL;
612d6c19 264 gfp_t gfp_mask = root_gfp_mask(root);
1da177e4 265
5e4c0d97 266 /*
2fcd9005
MW
267 * Preload code isn't irq safe and it doesn't make sense to use
268 * preloading during an interrupt anyway as all the allocations have
269 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 270 */
d0164adc 271 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
272 struct radix_tree_preload *rtp;
273
58e698af
VD
274 /*
275 * Even if the caller has preloaded, try to allocate from the
276 * cache first for the new node to get accounted.
277 */
278 ret = kmem_cache_alloc(radix_tree_node_cachep,
279 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
280 if (ret)
281 goto out;
282
e2848a0e
NP
283 /*
284 * Provided the caller has preloaded here, we will always
285 * succeed in getting a node here (and never reach
286 * kmem_cache_alloc)
287 */
7c8e0181 288 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 289 if (rtp->nr) {
9d2a8da0
KS
290 ret = rtp->nodes;
291 rtp->nodes = ret->private_data;
292 ret->private_data = NULL;
1da177e4
LT
293 rtp->nr--;
294 }
ce80b067
CM
295 /*
296 * Update the allocation stack trace as this is more useful
297 * for debugging.
298 */
299 kmemleak_update_trace(ret);
58e698af 300 goto out;
1da177e4 301 }
58e698af
VD
302 ret = kmem_cache_alloc(radix_tree_node_cachep,
303 gfp_mask | __GFP_ACCOUNT);
304out:
b194d16c 305 BUG_ON(radix_tree_is_internal_node(ret));
1da177e4
LT
306 return ret;
307}
308
7cf9c2c7
NP
309static void radix_tree_node_rcu_free(struct rcu_head *head)
310{
311 struct radix_tree_node *node =
312 container_of(head, struct radix_tree_node, rcu_head);
b6dd0865 313 int i;
643b52b9
NP
314
315 /*
316 * must only free zeroed nodes into the slab. radix_tree_shrink
317 * can leave us with a non-NULL entry in the first slot, so clear
318 * that here to make sure.
319 */
b6dd0865
DC
320 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
321 tag_clear(node, i, 0);
322
643b52b9
NP
323 node->slots[0] = NULL;
324 node->count = 0;
325
7cf9c2c7
NP
326 kmem_cache_free(radix_tree_node_cachep, node);
327}
328
1da177e4
LT
329static inline void
330radix_tree_node_free(struct radix_tree_node *node)
331{
7cf9c2c7 332 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
333}
334
335/*
336 * Load up this CPU's radix_tree_node buffer with sufficient objects to
337 * ensure that the addition of a single element in the tree cannot fail. On
338 * success, return zero, with preemption disabled. On error, return -ENOMEM
339 * with preemption not disabled.
b34df792
DH
340 *
341 * To make use of this facility, the radix tree must be initialised without
d0164adc 342 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 343 */
5e4c0d97 344static int __radix_tree_preload(gfp_t gfp_mask)
1da177e4
LT
345{
346 struct radix_tree_preload *rtp;
347 struct radix_tree_node *node;
348 int ret = -ENOMEM;
349
350 preempt_disable();
7c8e0181 351 rtp = this_cpu_ptr(&radix_tree_preloads);
9d2a8da0 352 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
1da177e4 353 preempt_enable();
488514d1 354 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
355 if (node == NULL)
356 goto out;
357 preempt_disable();
7c8e0181 358 rtp = this_cpu_ptr(&radix_tree_preloads);
9d2a8da0
KS
359 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
360 node->private_data = rtp->nodes;
361 rtp->nodes = node;
362 rtp->nr++;
363 } else {
1da177e4 364 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 365 }
1da177e4
LT
366 }
367 ret = 0;
368out:
369 return ret;
370}
5e4c0d97
JK
371
372/*
373 * Load up this CPU's radix_tree_node buffer with sufficient objects to
374 * ensure that the addition of a single element in the tree cannot fail. On
375 * success, return zero, with preemption disabled. On error, return -ENOMEM
376 * with preemption not disabled.
377 *
378 * To make use of this facility, the radix tree must be initialised without
d0164adc 379 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
380 */
381int radix_tree_preload(gfp_t gfp_mask)
382{
383 /* Warn on non-sensical use... */
d0164adc 384 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
5e4c0d97
JK
385 return __radix_tree_preload(gfp_mask);
386}
d7f0923d 387EXPORT_SYMBOL(radix_tree_preload);
1da177e4 388
5e4c0d97
JK
389/*
390 * The same as above function, except we don't guarantee preloading happens.
391 * We do it, if we decide it helps. On success, return zero with preemption
392 * disabled. On error, return -ENOMEM with preemption not disabled.
393 */
394int radix_tree_maybe_preload(gfp_t gfp_mask)
395{
d0164adc 396 if (gfpflags_allow_blocking(gfp_mask))
5e4c0d97
JK
397 return __radix_tree_preload(gfp_mask);
398 /* Preloading doesn't help anything with this gfp mask, skip it */
399 preempt_disable();
400 return 0;
401}
402EXPORT_SYMBOL(radix_tree_maybe_preload);
403
1da177e4 404/*
d0891265 405 * The maximum index which can be stored in a radix tree
1da177e4 406 */
c12e51b0
MW
407static inline unsigned long shift_maxindex(unsigned int shift)
408{
409 return (RADIX_TREE_MAP_SIZE << shift) - 1;
410}
411
1456a439
MW
412static inline unsigned long node_maxindex(struct radix_tree_node *node)
413{
c12e51b0 414 return shift_maxindex(node->shift);
1456a439
MW
415}
416
417static unsigned radix_tree_load_root(struct radix_tree_root *root,
418 struct radix_tree_node **nodep, unsigned long *maxindex)
419{
420 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
421
422 *nodep = node;
423
b194d16c 424 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 425 node = entry_to_node(node);
1456a439 426 *maxindex = node_maxindex(node);
c12e51b0 427 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
428 }
429
430 *maxindex = 0;
431 return 0;
432}
433
1da177e4
LT
434/*
435 * Extend a radix tree so it can store key @index.
436 */
e6145236 437static int radix_tree_extend(struct radix_tree_root *root,
d0891265 438 unsigned long index, unsigned int shift)
1da177e4 439{
e2bdb933 440 struct radix_tree_node *slot;
d0891265 441 unsigned int maxshift;
1da177e4
LT
442 int tag;
443
d0891265
MW
444 /* Figure out what the shift should be. */
445 maxshift = shift;
446 while (index > shift_maxindex(maxshift))
447 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 448
d0891265
MW
449 slot = root->rnode;
450 if (!slot)
1da177e4 451 goto out;
1da177e4 452
1da177e4 453 do {
2fcd9005
MW
454 struct radix_tree_node *node = radix_tree_node_alloc(root);
455
456 if (!node)
1da177e4
LT
457 return -ENOMEM;
458
1da177e4 459 /* Propagate the aggregated tag info into the new root */
daff89f3 460 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
612d6c19 461 if (root_tag_get(root, tag))
1da177e4
LT
462 tag_set(node, tag, 0);
463 }
464
d0891265
MW
465 BUG_ON(shift > BITS_PER_LONG);
466 node->shift = shift;
0c7fa0a8 467 node->offset = 0;
1da177e4 468 node->count = 1;
e2bdb933 469 node->parent = NULL;
b194d16c 470 if (radix_tree_is_internal_node(slot))
4dd6c098 471 entry_to_node(slot)->parent = node;
e2bdb933 472 node->slots[0] = slot;
a4db4dce
MW
473 slot = node_to_entry(node);
474 rcu_assign_pointer(root->rnode, slot);
d0891265 475 shift += RADIX_TREE_MAP_SHIFT;
d0891265 476 } while (shift <= maxshift);
1da177e4 477out:
d0891265 478 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
479}
480
481/**
139e5616 482 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
483 * @root: radix tree root
484 * @index: index key
e6145236 485 * @order: index occupies 2^order aligned slots
139e5616
JW
486 * @nodep: returns node
487 * @slotp: returns slot
1da177e4 488 *
139e5616
JW
489 * Create, if necessary, and return the node and slot for an item
490 * at position @index in the radix tree @root.
491 *
492 * Until there is more than one item in the tree, no nodes are
493 * allocated and @root->rnode is used as a direct slot instead of
494 * pointing to a node, in which case *@nodep will be NULL.
495 *
496 * Returns -ENOMEM, or 0 for success.
1da177e4 497 */
139e5616 498int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
e6145236
MW
499 unsigned order, struct radix_tree_node **nodep,
500 void ***slotp)
1da177e4 501{
89148aa4
MW
502 struct radix_tree_node *node = NULL, *child;
503 void **slot = (void **)&root->rnode;
49ea6ebc 504 unsigned long maxindex;
89148aa4 505 unsigned int shift, offset = 0;
49ea6ebc
MW
506 unsigned long max = index | ((1UL << order) - 1);
507
89148aa4 508 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
509
510 /* Make sure the tree is high enough. */
49ea6ebc 511 if (max > maxindex) {
d0891265 512 int error = radix_tree_extend(root, max, shift);
49ea6ebc 513 if (error < 0)
1da177e4 514 return error;
49ea6ebc 515 shift = error;
89148aa4 516 child = root->rnode;
d0891265 517 if (order == shift)
49ea6ebc 518 shift += RADIX_TREE_MAP_SHIFT;
1da177e4
LT
519 }
520
e6145236 521 while (shift > order) {
c12e51b0 522 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 523 if (child == NULL) {
1da177e4 524 /* Have to add a child node. */
89148aa4
MW
525 child = radix_tree_node_alloc(root);
526 if (!child)
1da177e4 527 return -ENOMEM;
89148aa4
MW
528 child->shift = shift;
529 child->offset = offset;
530 child->parent = node;
531 rcu_assign_pointer(*slot, node_to_entry(child));
532 if (node)
1da177e4 533 node->count++;
89148aa4 534 } else if (!radix_tree_is_internal_node(child))
e6145236 535 break;
1da177e4
LT
536
537 /* Go a level down */
89148aa4 538 node = entry_to_node(child);
8a14f4d8 539 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
89148aa4
MW
540 offset = radix_tree_descend(node, &child, offset);
541 slot = &node->slots[offset];
e6145236
MW
542 }
543
57578c2e 544#ifdef CONFIG_RADIX_TREE_MULTIORDER
e6145236 545 /* Insert pointers to the canonical entry */
3b8c00f6 546 if (order > shift) {
89148aa4 547 unsigned i, n = 1 << (order - shift);
e6145236 548 offset = offset & ~(n - 1);
89148aa4
MW
549 slot = &node->slots[offset];
550 child = node_to_entry(slot);
e6145236 551 for (i = 0; i < n; i++) {
89148aa4 552 if (slot[i])
e6145236
MW
553 return -EEXIST;
554 }
555
556 for (i = 1; i < n; i++) {
89148aa4 557 rcu_assign_pointer(slot[i], child);
e6145236
MW
558 node->count++;
559 }
612d6c19 560 }
57578c2e 561#endif
1da177e4 562
139e5616
JW
563 if (nodep)
564 *nodep = node;
565 if (slotp)
89148aa4 566 *slotp = slot;
139e5616
JW
567 return 0;
568}
569
570/**
e6145236 571 * __radix_tree_insert - insert into a radix tree
139e5616
JW
572 * @root: radix tree root
573 * @index: index key
e6145236 574 * @order: key covers the 2^order indices around index
139e5616
JW
575 * @item: item to insert
576 *
577 * Insert an item into the radix tree at position @index.
578 */
e6145236
MW
579int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
580 unsigned order, void *item)
139e5616
JW
581{
582 struct radix_tree_node *node;
583 void **slot;
584 int error;
585
b194d16c 586 BUG_ON(radix_tree_is_internal_node(item));
139e5616 587
e6145236 588 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
589 if (error)
590 return error;
591 if (*slot != NULL)
1da177e4 592 return -EEXIST;
139e5616 593 rcu_assign_pointer(*slot, item);
201b6264 594
612d6c19 595 if (node) {
7b60e9ad 596 unsigned offset = get_slot_offset(node, slot);
612d6c19 597 node->count++;
7b60e9ad
MW
598 BUG_ON(tag_get(node, 0, offset));
599 BUG_ON(tag_get(node, 1, offset));
600 BUG_ON(tag_get(node, 2, offset));
612d6c19 601 } else {
7b60e9ad 602 BUG_ON(root_tags_get(root));
612d6c19 603 }
1da177e4 604
1da177e4
LT
605 return 0;
606}
e6145236 607EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 608
139e5616
JW
609/**
610 * __radix_tree_lookup - lookup an item in a radix tree
611 * @root: radix tree root
612 * @index: index key
613 * @nodep: returns node
614 * @slotp: returns slot
615 *
616 * Lookup and return the item at position @index in the radix
617 * tree @root.
618 *
619 * Until there is more than one item in the tree, no nodes are
620 * allocated and @root->rnode is used as a direct slot instead of
621 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 622 */
139e5616
JW
623void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
624 struct radix_tree_node **nodep, void ***slotp)
1da177e4 625{
139e5616 626 struct radix_tree_node *node, *parent;
85829954
MW
627 unsigned long maxindex;
628 unsigned int shift;
139e5616 629 void **slot;
612d6c19 630
85829954
MW
631 restart:
632 parent = NULL;
633 slot = (void **)&root->rnode;
634 shift = radix_tree_load_root(root, &node, &maxindex);
635 if (index > maxindex)
1da177e4
LT
636 return NULL;
637
b194d16c 638 while (radix_tree_is_internal_node(node)) {
85829954 639 unsigned offset;
1da177e4 640
85829954
MW
641 if (node == RADIX_TREE_RETRY)
642 goto restart;
4dd6c098 643 parent = entry_to_node(node);
1da177e4 644 shift -= RADIX_TREE_MAP_SHIFT;
85829954
MW
645 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
646 offset = radix_tree_descend(parent, &node, offset);
647 slot = parent->slots + offset;
648 }
1da177e4 649
139e5616
JW
650 if (nodep)
651 *nodep = parent;
652 if (slotp)
653 *slotp = slot;
654 return node;
b72b71c6
HS
655}
656
657/**
658 * radix_tree_lookup_slot - lookup a slot in a radix tree
659 * @root: radix tree root
660 * @index: index key
661 *
662 * Returns: the slot corresponding to the position @index in the
663 * radix tree @root. This is useful for update-if-exists operations.
664 *
665 * This function can be called under rcu_read_lock iff the slot is not
666 * modified by radix_tree_replace_slot, otherwise it must be called
667 * exclusive from other writers. Any dereference of the slot must be done
668 * using radix_tree_deref_slot.
669 */
670void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
671{
139e5616
JW
672 void **slot;
673
674 if (!__radix_tree_lookup(root, index, NULL, &slot))
675 return NULL;
676 return slot;
a4331366 677}
a4331366
HR
678EXPORT_SYMBOL(radix_tree_lookup_slot);
679
680/**
681 * radix_tree_lookup - perform lookup operation on a radix tree
682 * @root: radix tree root
683 * @index: index key
684 *
685 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
686 *
687 * This function can be called under rcu_read_lock, however the caller
688 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
689 * them safely). No RCU barriers are required to access or modify the
690 * returned item, however.
a4331366
HR
691 */
692void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
693{
139e5616 694 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
695}
696EXPORT_SYMBOL(radix_tree_lookup);
697
698/**
699 * radix_tree_tag_set - set a tag on a radix tree node
700 * @root: radix tree root
701 * @index: index key
2fcd9005 702 * @tag: tag index
1da177e4 703 *
daff89f3
JC
704 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
705 * corresponding to @index in the radix tree. From
1da177e4
LT
706 * the root all the way down to the leaf node.
707 *
2fcd9005 708 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
709 * item is a bug.
710 */
711void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 712 unsigned long index, unsigned int tag)
1da177e4 713{
fb969909
RZ
714 struct radix_tree_node *node, *parent;
715 unsigned long maxindex;
716 unsigned int shift;
1da177e4 717
fb969909
RZ
718 shift = radix_tree_load_root(root, &node, &maxindex);
719 BUG_ON(index > maxindex);
1da177e4 720
b194d16c 721 while (radix_tree_is_internal_node(node)) {
fb969909 722 unsigned offset;
1da177e4 723
1da177e4 724 shift -= RADIX_TREE_MAP_SHIFT;
fb969909
RZ
725 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
726
4dd6c098 727 parent = entry_to_node(node);
fb969909
RZ
728 offset = radix_tree_descend(parent, &node, offset);
729 BUG_ON(!node);
730
731 if (!tag_get(parent, tag, offset))
732 tag_set(parent, tag, offset);
1da177e4
LT
733 }
734
612d6c19 735 /* set the root's tag bit */
fb969909 736 if (!root_tag_get(root, tag))
612d6c19
NP
737 root_tag_set(root, tag);
738
fb969909 739 return node;
1da177e4
LT
740}
741EXPORT_SYMBOL(radix_tree_tag_set);
742
743/**
744 * radix_tree_tag_clear - clear a tag on a radix tree node
745 * @root: radix tree root
746 * @index: index key
2fcd9005 747 * @tag: tag index
1da177e4 748 *
daff89f3 749 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
750 * corresponding to @index in the radix tree. If this causes
751 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
752 * next-to-leaf node, etc.
753 *
754 * Returns the address of the tagged item on success, else NULL. ie:
755 * has the same return value and semantics as radix_tree_lookup().
756 */
757void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 758 unsigned long index, unsigned int tag)
1da177e4 759{
00f47b58
RZ
760 struct radix_tree_node *node, *parent;
761 unsigned long maxindex;
762 unsigned int shift;
e2bdb933 763 int uninitialized_var(offset);
1da177e4 764
00f47b58
RZ
765 shift = radix_tree_load_root(root, &node, &maxindex);
766 if (index > maxindex)
767 return NULL;
1da177e4 768
00f47b58 769 parent = NULL;
1da177e4 770
b194d16c 771 while (radix_tree_is_internal_node(node)) {
e2bdb933 772 shift -= RADIX_TREE_MAP_SHIFT;
1da177e4 773 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
00f47b58 774
4dd6c098 775 parent = entry_to_node(node);
00f47b58 776 offset = radix_tree_descend(parent, &node, offset);
1da177e4
LT
777 }
778
00f47b58 779 if (node == NULL)
1da177e4
LT
780 goto out;
781
00f47b58
RZ
782 index >>= shift;
783
784 while (parent) {
785 if (!tag_get(parent, tag, offset))
d5274261 786 goto out;
00f47b58
RZ
787 tag_clear(parent, tag, offset);
788 if (any_tag_set(parent, tag))
6e954b9e 789 goto out;
e2bdb933
HD
790
791 index >>= RADIX_TREE_MAP_SHIFT;
792 offset = index & RADIX_TREE_MAP_MASK;
00f47b58 793 parent = parent->parent;
612d6c19
NP
794 }
795
796 /* clear the root's tag bit */
797 if (root_tag_get(root, tag))
798 root_tag_clear(root, tag);
799
1da177e4 800out:
00f47b58 801 return node;
1da177e4
LT
802}
803EXPORT_SYMBOL(radix_tree_tag_clear);
804
1da177e4 805/**
32605a18
MT
806 * radix_tree_tag_get - get a tag on a radix tree node
807 * @root: radix tree root
808 * @index: index key
2fcd9005 809 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 810 *
32605a18 811 * Return values:
1da177e4 812 *
612d6c19
NP
813 * 0: tag not present or not set
814 * 1: tag set
ce82653d
DH
815 *
816 * Note that the return value of this function may not be relied on, even if
817 * the RCU lock is held, unless tag modification and node deletion are excluded
818 * from concurrency.
1da177e4
LT
819 */
820int radix_tree_tag_get(struct radix_tree_root *root,
daff89f3 821 unsigned long index, unsigned int tag)
1da177e4 822{
4589ba6d
RZ
823 struct radix_tree_node *node, *parent;
824 unsigned long maxindex;
825 unsigned int shift;
1da177e4 826
612d6c19
NP
827 if (!root_tag_get(root, tag))
828 return 0;
829
4589ba6d
RZ
830 shift = radix_tree_load_root(root, &node, &maxindex);
831 if (index > maxindex)
832 return 0;
7cf9c2c7
NP
833 if (node == NULL)
834 return 0;
835
b194d16c 836 while (radix_tree_is_internal_node(node)) {
4589ba6d 837 int offset;
612d6c19 838
4589ba6d
RZ
839 shift -= RADIX_TREE_MAP_SHIFT;
840 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1da177e4 841
4dd6c098 842 parent = entry_to_node(node);
4589ba6d 843 offset = radix_tree_descend(parent, &node, offset);
1da177e4 844
4589ba6d 845 if (!node)
1da177e4 846 return 0;
4589ba6d 847 if (!tag_get(parent, tag, offset))
3fa36acb 848 return 0;
4589ba6d
RZ
849 if (node == RADIX_TREE_RETRY)
850 break;
1da177e4 851 }
4589ba6d
RZ
852
853 return 1;
1da177e4
LT
854}
855EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 856
21ef5339
RZ
857static inline void __set_iter_shift(struct radix_tree_iter *iter,
858 unsigned int shift)
859{
860#ifdef CONFIG_RADIX_TREE_MULTIORDER
861 iter->shift = shift;
862#endif
863}
864
78c1d784
KK
865/**
866 * radix_tree_next_chunk - find next chunk of slots for iteration
867 *
868 * @root: radix tree root
869 * @iter: iterator state
870 * @flags: RADIX_TREE_ITER_* flags and tag index
871 * Returns: pointer to chunk first slot, or NULL if iteration is over
872 */
873void **radix_tree_next_chunk(struct radix_tree_root *root,
874 struct radix_tree_iter *iter, unsigned flags)
875{
876 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 877 struct radix_tree_node *node, *child;
21ef5339 878 unsigned long index, offset, maxindex;
78c1d784
KK
879
880 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
881 return NULL;
882
883 /*
884 * Catch next_index overflow after ~0UL. iter->index never overflows
885 * during iterating; it can be zero only at the beginning.
886 * And we cannot overflow iter->next_index in a single step,
887 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
888 *
889 * This condition also used by radix_tree_next_slot() to stop
890 * contiguous iterating, and forbid swithing to the next chunk.
78c1d784
KK
891 */
892 index = iter->next_index;
893 if (!index && iter->index)
894 return NULL;
895
21ef5339 896 restart:
8c1244de 897 shift = radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
898 if (index > maxindex)
899 return NULL;
8c1244de
MW
900 if (!child)
901 return NULL;
21ef5339 902
8c1244de 903 if (!radix_tree_is_internal_node(child)) {
78c1d784 904 /* Single-slot tree */
21ef5339
RZ
905 iter->index = index;
906 iter->next_index = maxindex + 1;
78c1d784 907 iter->tags = 1;
8c1244de 908 __set_iter_shift(iter, 0);
78c1d784 909 return (void **)&root->rnode;
8c1244de 910 }
21ef5339 911
8c1244de
MW
912 do {
913 node = entry_to_node(child);
914 shift -= RADIX_TREE_MAP_SHIFT;
915 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
916 offset = radix_tree_descend(node, &child, offset);
21ef5339 917
78c1d784 918 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 919 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
920 /* Hole detected */
921 if (flags & RADIX_TREE_ITER_CONTIG)
922 return NULL;
923
924 if (flags & RADIX_TREE_ITER_TAGGED)
925 offset = radix_tree_find_next_bit(
926 node->tags[tag],
927 RADIX_TREE_MAP_SIZE,
928 offset + 1);
929 else
930 while (++offset < RADIX_TREE_MAP_SIZE) {
21ef5339
RZ
931 void *slot = node->slots[offset];
932 if (is_sibling_entry(node, slot))
933 continue;
934 if (slot)
78c1d784
KK
935 break;
936 }
8c1244de 937 index &= ~node_maxindex(node);
78c1d784
KK
938 index += offset << shift;
939 /* Overflow after ~0UL */
940 if (!index)
941 return NULL;
942 if (offset == RADIX_TREE_MAP_SIZE)
943 goto restart;
8c1244de 944 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
945 }
946
8c1244de 947 if ((child == NULL) || (child == RADIX_TREE_RETRY))
78c1d784 948 goto restart;
8c1244de 949 } while (radix_tree_is_internal_node(child));
78c1d784
KK
950
951 /* Update the iterator state */
8c1244de
MW
952 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
953 iter->next_index = (index | node_maxindex(node)) + 1;
21ef5339 954 __set_iter_shift(iter, shift);
78c1d784
KK
955
956 /* Construct iter->tags bit-mask from node->tags[tag] array */
957 if (flags & RADIX_TREE_ITER_TAGGED) {
958 unsigned tag_long, tag_bit;
959
960 tag_long = offset / BITS_PER_LONG;
961 tag_bit = offset % BITS_PER_LONG;
962 iter->tags = node->tags[tag][tag_long] >> tag_bit;
963 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
964 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
965 /* Pick tags from next element */
966 if (tag_bit)
967 iter->tags |= node->tags[tag][tag_long + 1] <<
968 (BITS_PER_LONG - tag_bit);
969 /* Clip chunk size, here only BITS_PER_LONG tags */
970 iter->next_index = index + BITS_PER_LONG;
971 }
972 }
973
974 return node->slots + offset;
975}
976EXPORT_SYMBOL(radix_tree_next_chunk);
977
ebf8aa44
JK
978/**
979 * radix_tree_range_tag_if_tagged - for each item in given range set given
980 * tag if item has another tag set
981 * @root: radix tree root
982 * @first_indexp: pointer to a starting index of a range to scan
983 * @last_index: last index of a range to scan
984 * @nr_to_tag: maximum number items to tag
985 * @iftag: tag index to test
986 * @settag: tag index to set if tested tag is set
987 *
988 * This function scans range of radix tree from first_index to last_index
989 * (inclusive). For each item in the range if iftag is set, the function sets
990 * also settag. The function stops either after tagging nr_to_tag items or
991 * after reaching last_index.
992 *
144dcfc0
DC
993 * The tags must be set from the leaf level only and propagated back up the
994 * path to the root. We must do this so that we resolve the full path before
995 * setting any tags on intermediate nodes. If we set tags as we descend, then
996 * we can get to the leaf node and find that the index that has the iftag
997 * set is outside the range we are scanning. This reults in dangling tags and
998 * can lead to problems with later tag operations (e.g. livelocks on lookups).
999 *
2fcd9005 1000 * The function returns the number of leaves where the tag was set and sets
ebf8aa44 1001 * *first_indexp to the first unscanned index.
d5ed3a4a
JK
1002 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1003 * be prepared to handle that.
ebf8aa44
JK
1004 */
1005unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1006 unsigned long *first_indexp, unsigned long last_index,
1007 unsigned long nr_to_tag,
1008 unsigned int iftag, unsigned int settag)
1009{
a8e4da25 1010 struct radix_tree_node *parent, *node, *child;
070c5ac2 1011 unsigned long maxindex;
a8e4da25 1012 unsigned int shift = radix_tree_load_root(root, &child, &maxindex);
144dcfc0
DC
1013 unsigned long tagged = 0;
1014 unsigned long index = *first_indexp;
ebf8aa44 1015
070c5ac2 1016 last_index = min(last_index, maxindex);
ebf8aa44
JK
1017 if (index > last_index)
1018 return 0;
1019 if (!nr_to_tag)
1020 return 0;
1021 if (!root_tag_get(root, iftag)) {
1022 *first_indexp = last_index + 1;
1023 return 0;
1024 }
a8e4da25 1025 if (!radix_tree_is_internal_node(child)) {
ebf8aa44
JK
1026 *first_indexp = last_index + 1;
1027 root_tag_set(root, settag);
1028 return 1;
1029 }
1030
a8e4da25 1031 node = entry_to_node(child);
070c5ac2 1032 shift -= RADIX_TREE_MAP_SHIFT;
ebf8aa44
JK
1033
1034 for (;;) {
a8e4da25
MW
1035 unsigned offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1036 offset = radix_tree_descend(node, &child, offset);
1037 if (!child)
ebf8aa44 1038 goto next;
070c5ac2 1039 if (!tag_get(node, iftag, offset))
ebf8aa44 1040 goto next;
070c5ac2 1041 /* Sibling slots never have tags set on them */
a8e4da25
MW
1042 if (radix_tree_is_internal_node(child)) {
1043 node = entry_to_node(child);
070c5ac2
MW
1044 shift -= RADIX_TREE_MAP_SHIFT;
1045 continue;
144dcfc0
DC
1046 }
1047
1048 /* tag the leaf */
070c5ac2
MW
1049 tagged++;
1050 tag_set(node, settag, offset);
144dcfc0
DC
1051
1052 /* walk back up the path tagging interior nodes */
a8e4da25
MW
1053 parent = node;
1054 for (;;) {
1055 offset = parent->offset;
1056 parent = parent->parent;
1057 if (!parent)
1058 break;
144dcfc0 1059 /* stop if we find a node with the tag already set */
a8e4da25 1060 if (tag_get(parent, settag, offset))
144dcfc0 1061 break;
a8e4da25 1062 tag_set(parent, settag, offset);
ebf8aa44 1063 }
070c5ac2 1064 next:
ebf8aa44
JK
1065 /* Go to next item at level determined by 'shift' */
1066 index = ((index >> shift) + 1) << shift;
d5ed3a4a
JK
1067 /* Overflow can happen when last_index is ~0UL... */
1068 if (index > last_index || !index)
ebf8aa44 1069 break;
070c5ac2
MW
1070 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1071 while (offset == 0) {
ebf8aa44
JK
1072 /*
1073 * We've fully scanned this node. Go up. Because
1074 * last_index is guaranteed to be in the tree, what
1075 * we do below cannot wander astray.
1076 */
070c5ac2 1077 node = node->parent;
ebf8aa44 1078 shift += RADIX_TREE_MAP_SHIFT;
070c5ac2 1079 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
ebf8aa44 1080 }
070c5ac2
MW
1081 if (is_sibling_entry(node, node->slots[offset]))
1082 goto next;
1083 if (tagged >= nr_to_tag)
1084 break;
ebf8aa44
JK
1085 }
1086 /*
ac15ee69
TO
1087 * We need not to tag the root tag if there is no tag which is set with
1088 * settag within the range from *first_indexp to last_index.
ebf8aa44 1089 */
ac15ee69
TO
1090 if (tagged > 0)
1091 root_tag_set(root, settag);
ebf8aa44
JK
1092 *first_indexp = index;
1093
1094 return tagged;
1095}
1096EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1097
1da177e4
LT
1098/**
1099 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1100 * @root: radix tree root
1101 * @results: where the results of the lookup are placed
1102 * @first_index: start the lookup from this key
1103 * @max_items: place up to this many items at *results
1104 *
1105 * Performs an index-ascending scan of the tree for present items. Places
1106 * them at *@results and returns the number of items which were placed at
1107 * *@results.
1108 *
1109 * The implementation is naive.
7cf9c2c7
NP
1110 *
1111 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1112 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1113 * an atomic snapshot of the tree at a single point in time, the
1114 * semantics of an RCU protected gang lookup are as though multiple
1115 * radix_tree_lookups have been issued in individual locks, and results
1116 * stored in 'results'.
1da177e4
LT
1117 */
1118unsigned int
1119radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1120 unsigned long first_index, unsigned int max_items)
1121{
cebbd29e
KK
1122 struct radix_tree_iter iter;
1123 void **slot;
1124 unsigned int ret = 0;
7cf9c2c7 1125
cebbd29e 1126 if (unlikely(!max_items))
7cf9c2c7 1127 return 0;
1da177e4 1128
cebbd29e 1129 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1130 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1131 if (!results[ret])
1132 continue;
b194d16c 1133 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1134 slot = radix_tree_iter_retry(&iter);
1135 continue;
1136 }
cebbd29e 1137 if (++ret == max_items)
1da177e4 1138 break;
1da177e4 1139 }
7cf9c2c7 1140
1da177e4
LT
1141 return ret;
1142}
1143EXPORT_SYMBOL(radix_tree_gang_lookup);
1144
47feff2c
NP
1145/**
1146 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1147 * @root: radix tree root
1148 * @results: where the results of the lookup are placed
6328650b 1149 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1150 * @first_index: start the lookup from this key
1151 * @max_items: place up to this many items at *results
1152 *
1153 * Performs an index-ascending scan of the tree for present items. Places
1154 * their slots at *@results and returns the number of items which were
1155 * placed at *@results.
1156 *
1157 * The implementation is naive.
1158 *
1159 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1160 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1161 * protection, radix_tree_deref_slot may fail requiring a retry.
1162 */
1163unsigned int
6328650b
HD
1164radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1165 void ***results, unsigned long *indices,
47feff2c
NP
1166 unsigned long first_index, unsigned int max_items)
1167{
cebbd29e
KK
1168 struct radix_tree_iter iter;
1169 void **slot;
1170 unsigned int ret = 0;
47feff2c 1171
cebbd29e 1172 if (unlikely(!max_items))
47feff2c
NP
1173 return 0;
1174
cebbd29e
KK
1175 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1176 results[ret] = slot;
6328650b 1177 if (indices)
cebbd29e
KK
1178 indices[ret] = iter.index;
1179 if (++ret == max_items)
47feff2c 1180 break;
47feff2c
NP
1181 }
1182
1183 return ret;
1184}
1185EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1186
1da177e4
LT
1187/**
1188 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1189 * based on a tag
1190 * @root: radix tree root
1191 * @results: where the results of the lookup are placed
1192 * @first_index: start the lookup from this key
1193 * @max_items: place up to this many items at *results
daff89f3 1194 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1195 *
1196 * Performs an index-ascending scan of the tree for present items which
1197 * have the tag indexed by @tag set. Places the items at *@results and
1198 * returns the number of items which were placed at *@results.
1199 */
1200unsigned int
1201radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
daff89f3
JC
1202 unsigned long first_index, unsigned int max_items,
1203 unsigned int tag)
1da177e4 1204{
cebbd29e
KK
1205 struct radix_tree_iter iter;
1206 void **slot;
1207 unsigned int ret = 0;
612d6c19 1208
cebbd29e 1209 if (unlikely(!max_items))
7cf9c2c7
NP
1210 return 0;
1211
cebbd29e 1212 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1213 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1214 if (!results[ret])
1215 continue;
b194d16c 1216 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1217 slot = radix_tree_iter_retry(&iter);
1218 continue;
1219 }
cebbd29e 1220 if (++ret == max_items)
1da177e4 1221 break;
1da177e4 1222 }
7cf9c2c7 1223
1da177e4
LT
1224 return ret;
1225}
1226EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1227
47feff2c
NP
1228/**
1229 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1230 * radix tree based on a tag
1231 * @root: radix tree root
1232 * @results: where the results of the lookup are placed
1233 * @first_index: start the lookup from this key
1234 * @max_items: place up to this many items at *results
1235 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1236 *
1237 * Performs an index-ascending scan of the tree for present items which
1238 * have the tag indexed by @tag set. Places the slots at *@results and
1239 * returns the number of slots which were placed at *@results.
1240 */
1241unsigned int
1242radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1243 unsigned long first_index, unsigned int max_items,
1244 unsigned int tag)
1245{
cebbd29e
KK
1246 struct radix_tree_iter iter;
1247 void **slot;
1248 unsigned int ret = 0;
47feff2c 1249
cebbd29e 1250 if (unlikely(!max_items))
47feff2c
NP
1251 return 0;
1252
cebbd29e
KK
1253 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1254 results[ret] = slot;
1255 if (++ret == max_items)
47feff2c 1256 break;
47feff2c
NP
1257 }
1258
1259 return ret;
1260}
1261EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1262
e504f3fd
HD
1263#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1264#include <linux/sched.h> /* for cond_resched() */
1265
0a2efc6c
MW
1266struct locate_info {
1267 unsigned long found_index;
1268 bool stop;
1269};
1270
e504f3fd
HD
1271/*
1272 * This linear search is at present only useful to shmem_unuse_inode().
1273 */
1274static unsigned long __locate(struct radix_tree_node *slot, void *item,
0a2efc6c 1275 unsigned long index, struct locate_info *info)
e504f3fd 1276{
0c7fa0a8 1277 unsigned int shift;
e504f3fd
HD
1278 unsigned long i;
1279
c12e51b0 1280 shift = slot->shift + RADIX_TREE_MAP_SHIFT;
e504f3fd 1281
0a2efc6c
MW
1282 do {
1283 shift -= RADIX_TREE_MAP_SHIFT;
e504f3fd 1284
0a2efc6c
MW
1285 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1286 i < RADIX_TREE_MAP_SIZE;
1287 i++, index += (1UL << shift)) {
1288 struct radix_tree_node *node =
1289 rcu_dereference_raw(slot->slots[i]);
1290 if (node == RADIX_TREE_RETRY)
1291 goto out;
b194d16c 1292 if (!radix_tree_is_internal_node(node)) {
0a2efc6c
MW
1293 if (node == item) {
1294 info->found_index = index;
1295 info->stop = true;
1296 goto out;
1297 }
1298 continue;
e6145236 1299 }
4dd6c098 1300 node = entry_to_node(node);
0a2efc6c
MW
1301 if (is_sibling_entry(slot, node))
1302 continue;
1303 slot = node;
1304 break;
e6145236 1305 }
0a2efc6c
MW
1306 if (i == RADIX_TREE_MAP_SIZE)
1307 break;
1308 } while (shift);
e504f3fd 1309
e504f3fd 1310out:
0a2efc6c
MW
1311 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1312 info->stop = true;
e504f3fd
HD
1313 return index;
1314}
1315
1316/**
1317 * radix_tree_locate_item - search through radix tree for item
1318 * @root: radix tree root
1319 * @item: item to be found
1320 *
1321 * Returns index where item was found, or -1 if not found.
1322 * Caller must hold no lock (since this time-consuming function needs
1323 * to be preemptible), and must check afterwards if item is still there.
1324 */
1325unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1326{
1327 struct radix_tree_node *node;
1328 unsigned long max_index;
1329 unsigned long cur_index = 0;
0a2efc6c
MW
1330 struct locate_info info = {
1331 .found_index = -1,
1332 .stop = false,
1333 };
e504f3fd
HD
1334
1335 do {
1336 rcu_read_lock();
1337 node = rcu_dereference_raw(root->rnode);
b194d16c 1338 if (!radix_tree_is_internal_node(node)) {
e504f3fd
HD
1339 rcu_read_unlock();
1340 if (node == item)
0a2efc6c 1341 info.found_index = 0;
e504f3fd
HD
1342 break;
1343 }
1344
4dd6c098 1345 node = entry_to_node(node);
0a2efc6c
MW
1346
1347 max_index = node_maxindex(node);
5f30fc94
HD
1348 if (cur_index > max_index) {
1349 rcu_read_unlock();
e504f3fd 1350 break;
5f30fc94 1351 }
e504f3fd 1352
0a2efc6c 1353 cur_index = __locate(node, item, cur_index, &info);
e504f3fd
HD
1354 rcu_read_unlock();
1355 cond_resched();
0a2efc6c 1356 } while (!info.stop && cur_index <= max_index);
e504f3fd 1357
0a2efc6c 1358 return info.found_index;
e504f3fd
HD
1359}
1360#else
1361unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1362{
1363 return -1;
1364}
1365#endif /* CONFIG_SHMEM && CONFIG_SWAP */
47feff2c 1366
a5f51c96 1367/**
d0891265 1368 * radix_tree_shrink - shrink radix tree to minimum height
a5f51c96
NP
1369 * @root radix tree root
1370 */
fb209019 1371static inline bool radix_tree_shrink(struct radix_tree_root *root)
a5f51c96 1372{
fb209019
MW
1373 bool shrunk = false;
1374
d0891265 1375 for (;;) {
af49a63e
MW
1376 struct radix_tree_node *node = root->rnode;
1377 struct radix_tree_node *child;
a5f51c96 1378
af49a63e 1379 if (!radix_tree_is_internal_node(node))
d0891265 1380 break;
af49a63e 1381 node = entry_to_node(node);
c0bc9875
NP
1382
1383 /*
1384 * The candidate node has more than one child, or its child
d0891265
MW
1385 * is not at the leftmost slot, or the child is a multiorder
1386 * entry, we cannot shrink.
c0bc9875 1387 */
af49a63e 1388 if (node->count != 1)
c0bc9875 1389 break;
af49a63e
MW
1390 child = node->slots[0];
1391 if (!child)
c0bc9875 1392 break;
af49a63e 1393 if (!radix_tree_is_internal_node(child) && node->shift)
afe0e395
MW
1394 break;
1395
af49a63e
MW
1396 if (radix_tree_is_internal_node(child))
1397 entry_to_node(child)->parent = NULL;
c0bc9875 1398
7cf9c2c7
NP
1399 /*
1400 * We don't need rcu_assign_pointer(), since we are simply
27d20fdd
NP
1401 * moving the node from one part of the tree to another: if it
1402 * was safe to dereference the old pointer to it
af49a63e 1403 * (node->slots[0]), it will be safe to dereference the new
27d20fdd 1404 * one (root->rnode) as far as dependent read barriers go.
7cf9c2c7 1405 */
af49a63e 1406 root->rnode = child;
27d20fdd
NP
1407
1408 /*
1409 * We have a dilemma here. The node's slot[0] must not be
1410 * NULLed in case there are concurrent lookups expecting to
1411 * find the item. However if this was a bottom-level node,
1412 * then it may be subject to the slot pointer being visible
1413 * to callers dereferencing it. If item corresponding to
1414 * slot[0] is subsequently deleted, these callers would expect
1415 * their slot to become empty sooner or later.
1416 *
1417 * For example, lockless pagecache will look up a slot, deref
2fcd9005 1418 * the page pointer, and if the page has 0 refcount it means it
27d20fdd
NP
1419 * was concurrently deleted from pagecache so try the deref
1420 * again. Fortunately there is already a requirement for logic
1421 * to retry the entire slot lookup -- the indirect pointer
1422 * problem (replacing direct root node with an indirect pointer
1423 * also results in a stale slot). So tag the slot as indirect
1424 * to force callers to retry.
1425 */
af49a63e
MW
1426 if (!radix_tree_is_internal_node(child))
1427 node->slots[0] = RADIX_TREE_RETRY;
27d20fdd 1428
af49a63e 1429 radix_tree_node_free(node);
fb209019 1430 shrunk = true;
a5f51c96 1431 }
fb209019
MW
1432
1433 return shrunk;
a5f51c96
NP
1434}
1435
139e5616
JW
1436/**
1437 * __radix_tree_delete_node - try to free node after clearing a slot
1438 * @root: radix tree root
139e5616
JW
1439 * @node: node containing @index
1440 *
1441 * After clearing the slot at @index in @node from radix tree
1442 * rooted at @root, call this function to attempt freeing the
1443 * node and shrinking the tree.
1444 *
1445 * Returns %true if @node was freed, %false otherwise.
1446 */
449dd698 1447bool __radix_tree_delete_node(struct radix_tree_root *root,
139e5616
JW
1448 struct radix_tree_node *node)
1449{
1450 bool deleted = false;
1451
1452 do {
1453 struct radix_tree_node *parent;
1454
1455 if (node->count) {
4dd6c098 1456 if (node == entry_to_node(root->rnode))
fb209019 1457 deleted |= radix_tree_shrink(root);
139e5616
JW
1458 return deleted;
1459 }
1460
1461 parent = node->parent;
1462 if (parent) {
0c7fa0a8 1463 parent->slots[node->offset] = NULL;
139e5616
JW
1464 parent->count--;
1465 } else {
1466 root_tag_clear_all(root);
139e5616
JW
1467 root->rnode = NULL;
1468 }
1469
1470 radix_tree_node_free(node);
1471 deleted = true;
1472
1473 node = parent;
1474 } while (node);
1475
1476 return deleted;
1477}
1478
57578c2e
MW
1479static inline void delete_sibling_entries(struct radix_tree_node *node,
1480 void *ptr, unsigned offset)
1481{
1482#ifdef CONFIG_RADIX_TREE_MULTIORDER
1483 int i;
1484 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1485 if (node->slots[offset + i] != ptr)
1486 break;
1487 node->slots[offset + i] = NULL;
1488 node->count--;
1489 }
1490#endif
1491}
1492
1da177e4 1493/**
53c59f26 1494 * radix_tree_delete_item - delete an item from a radix tree
1da177e4
LT
1495 * @root: radix tree root
1496 * @index: index key
53c59f26 1497 * @item: expected item
1da177e4 1498 *
53c59f26 1499 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 1500 *
53c59f26
JW
1501 * Returns the address of the deleted item, or NULL if it was not present
1502 * or the entry at the given @index was not @item.
1da177e4 1503 */
53c59f26
JW
1504void *radix_tree_delete_item(struct radix_tree_root *root,
1505 unsigned long index, void *item)
1da177e4 1506{
139e5616 1507 struct radix_tree_node *node;
57578c2e 1508 unsigned int offset;
139e5616
JW
1509 void **slot;
1510 void *entry;
d5274261 1511 int tag;
1da177e4 1512
139e5616
JW
1513 entry = __radix_tree_lookup(root, index, &node, &slot);
1514 if (!entry)
1515 return NULL;
1da177e4 1516
139e5616
JW
1517 if (item && entry != item)
1518 return NULL;
1519
1520 if (!node) {
612d6c19
NP
1521 root_tag_clear_all(root);
1522 root->rnode = NULL;
139e5616 1523 return entry;
612d6c19 1524 }
1da177e4 1525
29e0967c 1526 offset = get_slot_offset(node, slot);
53c59f26 1527
1da177e4 1528 /*
e2bdb933
HD
1529 * Clear all tags associated with the item to be deleted.
1530 * This way of doing it would be inefficient, but seldom is any set.
1da177e4 1531 */
daff89f3 1532 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
e2bdb933 1533 if (tag_get(node, tag, offset))
612d6c19 1534 radix_tree_tag_clear(root, index, tag);
d5274261 1535 }
1da177e4 1536
a4db4dce 1537 delete_sibling_entries(node, node_to_entry(slot), offset);
139e5616
JW
1538 node->slots[offset] = NULL;
1539 node->count--;
e2bdb933 1540
449dd698 1541 __radix_tree_delete_node(root, node);
612d6c19 1542
139e5616 1543 return entry;
1da177e4 1544}
53c59f26
JW
1545EXPORT_SYMBOL(radix_tree_delete_item);
1546
1547/**
1548 * radix_tree_delete - delete an item from a radix tree
1549 * @root: radix tree root
1550 * @index: index key
1551 *
1552 * Remove the item at @index from the radix tree rooted at @root.
1553 *
1554 * Returns the address of the deleted item, or NULL if it was not present.
1555 */
1556void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1557{
1558 return radix_tree_delete_item(root, index, NULL);
1559}
1da177e4
LT
1560EXPORT_SYMBOL(radix_tree_delete);
1561
1562/**
1563 * radix_tree_tagged - test whether any items in the tree are tagged
1564 * @root: radix tree root
1565 * @tag: tag to test
1566 */
daff89f3 1567int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1da177e4 1568{
612d6c19 1569 return root_tag_get(root, tag);
1da177e4
LT
1570}
1571EXPORT_SYMBOL(radix_tree_tagged);
1572
1573static void
449dd698 1574radix_tree_node_ctor(void *arg)
1da177e4 1575{
449dd698
JW
1576 struct radix_tree_node *node = arg;
1577
1578 memset(node, 0, sizeof(*node));
1579 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
1580}
1581
1da177e4 1582static int radix_tree_callback(struct notifier_block *nfb,
2fcd9005 1583 unsigned long action, void *hcpu)
1da177e4 1584{
2fcd9005
MW
1585 int cpu = (long)hcpu;
1586 struct radix_tree_preload *rtp;
1587 struct radix_tree_node *node;
1588
1589 /* Free per-cpu pool of preloaded nodes */
1590 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1591 rtp = &per_cpu(radix_tree_preloads, cpu);
1592 while (rtp->nr) {
9d2a8da0
KS
1593 node = rtp->nodes;
1594 rtp->nodes = node->private_data;
1595 kmem_cache_free(radix_tree_node_cachep, node);
1596 rtp->nr--;
2fcd9005
MW
1597 }
1598 }
1599 return NOTIFY_OK;
1da177e4 1600}
1da177e4
LT
1601
1602void __init radix_tree_init(void)
1603{
1604 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1605 sizeof(struct radix_tree_node), 0,
488514d1
CL
1606 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1607 radix_tree_node_ctor);
1da177e4
LT
1608 hotcpu_notifier(radix_tree_callback, 0);
1609}