]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
KVM: SVM: Move spec control call after restore of GS
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
8bfa3f9a
JW
42 * By default transparent hugepage support is disabled in order that avoid
43 * to risk increase the memory footprint of applications without a guaranteed
44 * benefit. When transparent hugepage support is enabled, is for all mappings,
45 * and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
6fcb52a5 65static struct page *get_huge_zero_page(void)
97ae1749
KS
66{
67 struct page *zero_page;
68retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 70 return READ_ONCE(huge_zero_page);
97ae1749
KS
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 73 HPAGE_PMD_ORDER);
d8a8e1f0
KS
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 76 return NULL;
d8a8e1f0
KS
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 79 preempt_disable();
5918d10a 80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 81 preempt_enable();
5ddacbe9 82 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
4db0c3c2 89 return READ_ONCE(huge_zero_page);
4a6c1297
KS
90}
91
6fcb52a5 92static void put_huge_zero_page(void)
4a6c1297 93{
97ae1749
KS
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
99}
100
6fcb52a5
AL
101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102{
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113}
114
115void mm_put_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119}
120
48896466
GC
121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
4a6c1297 123{
48896466
GC
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126}
97ae1749 127
48896466
GC
128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130{
97ae1749 131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
5ddacbe9 134 __free_pages(zero_page, compound_order(zero_page));
48896466 135 return HPAGE_PMD_NR;
97ae1749
KS
136 }
137
138 return 0;
4a6c1297
KS
139}
140
97ae1749 141static struct shrinker huge_zero_page_shrinker = {
48896466
GC
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
144 .seeks = DEFAULT_SEEKS,
145};
146
71e3aac0 147#ifdef CONFIG_SYSFS
71e3aac0
AA
148static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150{
444eb2a4
MG
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
71e3aac0 157}
444eb2a4 158
71e3aac0
AA
159static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162{
21440d7e 163 ssize_t ret = count;
ba76149f 164
21440d7e
DR
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
ba76149f
AA
179
180 if (ret > 0) {
b46e756f 181 int err = start_stop_khugepaged();
ba76149f
AA
182 if (err)
183 ret = err;
184 }
ba76149f 185 return ret;
71e3aac0
AA
186}
187static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
b46e756f 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193{
e27e6151
BH
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 196}
e27e6151 197
b46e756f 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202{
e27e6151
BH
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
71e3aac0 213 set_bit(flag, &transparent_hugepage_flags);
e27e6151 214 else
71e3aac0 215 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
216
217 return count;
218}
219
71e3aac0
AA
220static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222{
444eb2a4 223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 232}
21440d7e 233
71e3aac0
AA
234static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237{
21440d7e
DR
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
71e3aac0
AA
272}
273static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
79da5407
KS
276static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278{
b46e756f 279 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281}
282static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284{
b46e756f 285 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287}
288static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
290
291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293{
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295}
296static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
71e3aac0
AA
299#ifdef CONFIG_DEBUG_VM
300static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302{
b46e756f 303 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305}
306static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309{
b46e756f 310 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315#endif /* CONFIG_DEBUG_VM */
316
317static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
79da5407 320 &use_zero_page_attr.attr,
49920d28 321 &hpage_pmd_size_attr.attr,
e496cf3d 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
323 &shmem_enabled_attr.attr,
324#endif
71e3aac0
AA
325#ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327#endif
328 NULL,
329};
330
331static struct attribute_group hugepage_attr_group = {
332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
79553da2 423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
b32967ff 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
478{
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482}
483
9a982250
KS
484static inline struct list_head *page_deferred_list(struct page *page)
485{
486 /*
487 * ->lru in the tail pages is occupied by compound_head.
488 * Let's use ->mapping + ->index in the second tail page as list_head.
489 */
490 return (struct list_head *)&page[2].mapping;
491}
492
493void prep_transhuge_page(struct page *page)
494{
495 /*
496 * we use page->mapping and page->indexlru in second tail page
497 * as list_head: assuming THP order >= 2
498 */
9a982250
KS
499
500 INIT_LIST_HEAD(page_deferred_list(page));
501 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502}
503
74d2fad1
TK
504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 loff_t off, unsigned long flags, unsigned long size)
506{
507 unsigned long addr;
508 loff_t off_end = off + len;
509 loff_t off_align = round_up(off, size);
510 unsigned long len_pad;
511
512 if (off_end <= off_align || (off_end - off_align) < size)
513 return 0;
514
515 len_pad = len + size;
516 if (len_pad < len || (off + len_pad) < off)
517 return 0;
518
519 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 off >> PAGE_SHIFT, flags);
521 if (IS_ERR_VALUE(addr))
522 return 0;
523
524 addr += (off - addr) & (size - 1);
525 return addr;
526}
527
528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 unsigned long len, unsigned long pgoff, unsigned long flags)
530{
531 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532
533 if (addr)
534 goto out;
535 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 goto out;
537
538 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 if (addr)
540 return addr;
541
542 out:
543 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544}
545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546
82b0f8c3 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
bae473a4 548 gfp_t gfp)
71e3aac0 549{
82b0f8c3 550 struct vm_area_struct *vma = vmf->vma;
00501b53 551 struct mem_cgroup *memcg;
71e3aac0 552 pgtable_t pgtable;
82b0f8c3 553 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
6b31d595 554 int ret = 0;
71e3aac0 555
309381fe 556 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 557
bae473a4 558 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
559 put_page(page);
560 count_vm_event(THP_FAULT_FALLBACK);
561 return VM_FAULT_FALLBACK;
562 }
00501b53 563
bae473a4 564 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 565 if (unlikely(!pgtable)) {
6b31d595
MH
566 ret = VM_FAULT_OOM;
567 goto release;
00501b53 568 }
71e3aac0
AA
569
570 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
571 /*
572 * The memory barrier inside __SetPageUptodate makes sure that
573 * clear_huge_page writes become visible before the set_pmd_at()
574 * write.
575 */
71e3aac0
AA
576 __SetPageUptodate(page);
577
82b0f8c3
JK
578 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 580 goto unlock_release;
71e3aac0
AA
581 } else {
582 pmd_t entry;
6b251fc9 583
6b31d595
MH
584 ret = check_stable_address_space(vma->vm_mm);
585 if (ret)
586 goto unlock_release;
587
6b251fc9
AA
588 /* Deliver the page fault to userland */
589 if (userfaultfd_missing(vma)) {
590 int ret;
591
82b0f8c3 592 spin_unlock(vmf->ptl);
f627c2f5 593 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 594 put_page(page);
bae473a4 595 pte_free(vma->vm_mm, pgtable);
82b0f8c3 596 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
597 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598 return ret;
599 }
600
3122359a
KS
601 entry = mk_huge_pmd(page, vma->vm_page_prot);
602 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 603 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 604 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 605 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
606 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4
KS
608 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3 610 spin_unlock(vmf->ptl);
6b251fc9 611 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
612 }
613
aa2e878e 614 return 0;
6b31d595
MH
615unlock_release:
616 spin_unlock(vmf->ptl);
617release:
618 if (pgtable)
619 pte_free(vma->vm_mm, pgtable);
620 mem_cgroup_cancel_charge(page, memcg, true);
621 put_page(page);
622 return ret;
623
71e3aac0
AA
624}
625
444eb2a4 626/*
21440d7e
DR
627 * always: directly stall for all thp allocations
628 * defer: wake kswapd and fail if not immediately available
629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630 * fail if not immediately available
631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632 * available
633 * never: never stall for any thp allocation
444eb2a4
MG
634 */
635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
636{
21440d7e 637 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 638
21440d7e 639 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
25160354 640 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
21440d7e
DR
641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 __GFP_KSWAPD_RECLAIM);
646 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
648 0);
25160354 649 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
650}
651
c4088ebd 652/* Caller must hold page table lock. */
d295e341 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 654 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 655 struct page *zero_page)
fc9fe822
KS
656{
657 pmd_t entry;
7c414164
AM
658 if (!pmd_none(*pmd))
659 return false;
5918d10a 660 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 661 entry = pmd_mkhuge(entry);
12c9d70b
MW
662 if (pgtable)
663 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 664 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 665 atomic_long_inc(&mm->nr_ptes);
7c414164 666 return true;
fc9fe822
KS
667}
668
82b0f8c3 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 670{
82b0f8c3 671 struct vm_area_struct *vma = vmf->vma;
077fcf11 672 gfp_t gfp;
71e3aac0 673 struct page *page;
82b0f8c3 674 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 675
128ec037 676 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 677 return VM_FAULT_FALLBACK;
128ec037
KS
678 if (unlikely(anon_vma_prepare(vma)))
679 return VM_FAULT_OOM;
6d50e60c 680 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 681 return VM_FAULT_OOM;
82b0f8c3 682 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 683 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
684 transparent_hugepage_use_zero_page()) {
685 pgtable_t pgtable;
686 struct page *zero_page;
687 bool set;
6b251fc9 688 int ret;
bae473a4 689 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 690 if (unlikely(!pgtable))
ba76149f 691 return VM_FAULT_OOM;
6fcb52a5 692 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 693 if (unlikely(!zero_page)) {
bae473a4 694 pte_free(vma->vm_mm, pgtable);
81ab4201 695 count_vm_event(THP_FAULT_FALLBACK);
c0292554 696 return VM_FAULT_FALLBACK;
b9bbfbe3 697 }
82b0f8c3 698 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
699 ret = 0;
700 set = false;
82b0f8c3 701 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
702 ret = check_stable_address_space(vma->vm_mm);
703 if (ret) {
704 spin_unlock(vmf->ptl);
705 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
706 spin_unlock(vmf->ptl);
707 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
708 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709 } else {
bae473a4 710 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
711 haddr, vmf->pmd, zero_page);
712 spin_unlock(vmf->ptl);
6b251fc9
AA
713 set = true;
714 }
715 } else
82b0f8c3 716 spin_unlock(vmf->ptl);
6fcb52a5 717 if (!set)
bae473a4 718 pte_free(vma->vm_mm, pgtable);
6b251fc9 719 return ret;
71e3aac0 720 }
444eb2a4 721 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 722 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
723 if (unlikely(!page)) {
724 count_vm_event(THP_FAULT_FALLBACK);
c0292554 725 return VM_FAULT_FALLBACK;
128ec037 726 }
9a982250 727 prep_transhuge_page(page);
82b0f8c3 728 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
729}
730
ae18d6dc 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
732 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733 pgtable_t pgtable)
5cad465d
MW
734{
735 struct mm_struct *mm = vma->vm_mm;
736 pmd_t entry;
737 spinlock_t *ptl;
738
739 ptl = pmd_lock(mm, pmd);
f25748e3
DW
740 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741 if (pfn_t_devmap(pfn))
742 entry = pmd_mkdevmap(entry);
01871e59
RZ
743 if (write) {
744 entry = pmd_mkyoung(pmd_mkdirty(entry));
745 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 746 }
3b6521f5
OH
747
748 if (pgtable) {
749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 atomic_long_inc(&mm->nr_ptes);
751 }
752
01871e59
RZ
753 set_pmd_at(mm, addr, pmd, entry);
754 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 755 spin_unlock(ptl);
5cad465d
MW
756}
757
758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 759 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
760{
761 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 762 pgtable_t pgtable = NULL;
5cad465d
MW
763 /*
764 * If we had pmd_special, we could avoid all these restrictions,
765 * but we need to be consistent with PTEs and architectures that
766 * can't support a 'special' bit.
767 */
768 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770 (VM_PFNMAP|VM_MIXEDMAP));
771 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 772 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
773
774 if (addr < vma->vm_start || addr >= vma->vm_end)
775 return VM_FAULT_SIGBUS;
308a047c 776
3b6521f5
OH
777 if (arch_needs_pgtable_deposit()) {
778 pgtable = pte_alloc_one(vma->vm_mm, addr);
779 if (!pgtable)
780 return VM_FAULT_OOM;
781 }
782
308a047c
BP
783 track_pfn_insert(vma, &pgprot, pfn);
784
3b6521f5 785 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 786 return VM_FAULT_NOPAGE;
5cad465d 787}
dee41079 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 789
a00cc7d9
MW
790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
792{
793 if (likely(vma->vm_flags & VM_WRITE))
794 pud = pud_mkwrite(pud);
795 return pud;
796}
797
798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
800{
801 struct mm_struct *mm = vma->vm_mm;
802 pud_t entry;
803 spinlock_t *ptl;
804
805 ptl = pud_lock(mm, pud);
806 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807 if (pfn_t_devmap(pfn))
808 entry = pud_mkdevmap(entry);
809 if (write) {
810 entry = pud_mkyoung(pud_mkdirty(entry));
811 entry = maybe_pud_mkwrite(entry, vma);
812 }
813 set_pud_at(mm, addr, pud, entry);
814 update_mmu_cache_pud(vma, addr, pud);
815 spin_unlock(ptl);
816}
817
818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819 pud_t *pud, pfn_t pfn, bool write)
820{
821 pgprot_t pgprot = vma->vm_page_prot;
822 /*
823 * If we had pud_special, we could avoid all these restrictions,
824 * but we need to be consistent with PTEs and architectures that
825 * can't support a 'special' bit.
826 */
827 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829 (VM_PFNMAP|VM_MIXEDMAP));
830 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831 BUG_ON(!pfn_t_devmap(pfn));
832
833 if (addr < vma->vm_start || addr >= vma->vm_end)
834 return VM_FAULT_SIGBUS;
835
836 track_pfn_insert(vma, &pgprot, pfn);
837
838 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839 return VM_FAULT_NOPAGE;
840}
841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
843
3565fce3 844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
188b13a8 845 pmd_t *pmd, int flags)
3565fce3
DW
846{
847 pmd_t _pmd;
848
188b13a8
KS
849 _pmd = pmd_mkyoung(*pmd);
850 if (flags & FOLL_WRITE)
851 _pmd = pmd_mkdirty(_pmd);
3565fce3 852 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
188b13a8 853 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
854 update_mmu_cache_pmd(vma, addr, pmd);
855}
856
857struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
858 pmd_t *pmd, int flags)
859{
860 unsigned long pfn = pmd_pfn(*pmd);
861 struct mm_struct *mm = vma->vm_mm;
862 struct dev_pagemap *pgmap;
863 struct page *page;
864
865 assert_spin_locked(pmd_lockptr(mm, pmd));
866
8310d48b
KF
867 /*
868 * When we COW a devmap PMD entry, we split it into PTEs, so we should
869 * not be in this function with `flags & FOLL_COW` set.
870 */
871 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
872
3565fce3
DW
873 if (flags & FOLL_WRITE && !pmd_write(*pmd))
874 return NULL;
875
876 if (pmd_present(*pmd) && pmd_devmap(*pmd))
877 /* pass */;
878 else
879 return NULL;
880
881 if (flags & FOLL_TOUCH)
188b13a8 882 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
883
884 /*
885 * device mapped pages can only be returned if the
886 * caller will manage the page reference count.
887 */
888 if (!(flags & FOLL_GET))
889 return ERR_PTR(-EEXIST);
890
891 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
892 pgmap = get_dev_pagemap(pfn, NULL);
893 if (!pgmap)
894 return ERR_PTR(-EFAULT);
895 page = pfn_to_page(pfn);
896 get_page(page);
897 put_dev_pagemap(pgmap);
898
899 return page;
900}
901
71e3aac0
AA
902int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
903 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
904 struct vm_area_struct *vma)
905{
c4088ebd 906 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
907 struct page *src_page;
908 pmd_t pmd;
12c9d70b 909 pgtable_t pgtable = NULL;
628d47ce 910 int ret = -ENOMEM;
71e3aac0 911
628d47ce
KS
912 /* Skip if can be re-fill on fault */
913 if (!vma_is_anonymous(vma))
914 return 0;
915
916 pgtable = pte_alloc_one(dst_mm, addr);
917 if (unlikely(!pgtable))
918 goto out;
71e3aac0 919
c4088ebd
KS
920 dst_ptl = pmd_lock(dst_mm, dst_pmd);
921 src_ptl = pmd_lockptr(src_mm, src_pmd);
922 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
923
924 ret = -EAGAIN;
925 pmd = *src_pmd;
628d47ce 926 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
927 pte_free(dst_mm, pgtable);
928 goto out_unlock;
929 }
fc9fe822 930 /*
c4088ebd 931 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
932 * under splitting since we don't split the page itself, only pmd to
933 * a page table.
934 */
935 if (is_huge_zero_pmd(pmd)) {
5918d10a 936 struct page *zero_page;
97ae1749
KS
937 /*
938 * get_huge_zero_page() will never allocate a new page here,
939 * since we already have a zero page to copy. It just takes a
940 * reference.
941 */
6fcb52a5 942 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 943 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 944 zero_page);
fc9fe822
KS
945 ret = 0;
946 goto out_unlock;
947 }
de466bd6 948
628d47ce
KS
949 src_page = pmd_page(pmd);
950 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
951 get_page(src_page);
952 page_dup_rmap(src_page, true);
953 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
954 atomic_long_inc(&dst_mm->nr_ptes);
955 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
956
957 pmdp_set_wrprotect(src_mm, addr, src_pmd);
958 pmd = pmd_mkold(pmd_wrprotect(pmd));
959 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
960
961 ret = 0;
962out_unlock:
c4088ebd
KS
963 spin_unlock(src_ptl);
964 spin_unlock(dst_ptl);
71e3aac0
AA
965out:
966 return ret;
967}
968
a00cc7d9
MW
969#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
970static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
188b13a8 971 pud_t *pud, int flags)
a00cc7d9
MW
972{
973 pud_t _pud;
974
188b13a8
KS
975 _pud = pud_mkyoung(*pud);
976 if (flags & FOLL_WRITE)
977 _pud = pud_mkdirty(_pud);
a00cc7d9 978 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
188b13a8 979 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
980 update_mmu_cache_pud(vma, addr, pud);
981}
982
983struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
984 pud_t *pud, int flags)
985{
986 unsigned long pfn = pud_pfn(*pud);
987 struct mm_struct *mm = vma->vm_mm;
988 struct dev_pagemap *pgmap;
989 struct page *page;
990
991 assert_spin_locked(pud_lockptr(mm, pud));
992
993 if (flags & FOLL_WRITE && !pud_write(*pud))
994 return NULL;
995
996 if (pud_present(*pud) && pud_devmap(*pud))
997 /* pass */;
998 else
999 return NULL;
1000
1001 if (flags & FOLL_TOUCH)
188b13a8 1002 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1003
1004 /*
1005 * device mapped pages can only be returned if the
1006 * caller will manage the page reference count.
1007 */
1008 if (!(flags & FOLL_GET))
1009 return ERR_PTR(-EEXIST);
1010
1011 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1012 pgmap = get_dev_pagemap(pfn, NULL);
1013 if (!pgmap)
1014 return ERR_PTR(-EFAULT);
1015 page = pfn_to_page(pfn);
1016 get_page(page);
1017 put_dev_pagemap(pgmap);
1018
1019 return page;
1020}
1021
1022int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1023 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1024 struct vm_area_struct *vma)
1025{
1026 spinlock_t *dst_ptl, *src_ptl;
1027 pud_t pud;
1028 int ret;
1029
1030 dst_ptl = pud_lock(dst_mm, dst_pud);
1031 src_ptl = pud_lockptr(src_mm, src_pud);
1032 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1033
1034 ret = -EAGAIN;
1035 pud = *src_pud;
1036 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1037 goto out_unlock;
1038
1039 /*
1040 * When page table lock is held, the huge zero pud should not be
1041 * under splitting since we don't split the page itself, only pud to
1042 * a page table.
1043 */
1044 if (is_huge_zero_pud(pud)) {
1045 /* No huge zero pud yet */
1046 }
1047
1048 pudp_set_wrprotect(src_mm, addr, src_pud);
1049 pud = pud_mkold(pud_wrprotect(pud));
1050 set_pud_at(dst_mm, addr, dst_pud, pud);
1051
1052 ret = 0;
1053out_unlock:
1054 spin_unlock(src_ptl);
1055 spin_unlock(dst_ptl);
1056 return ret;
1057}
1058
1059void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1060{
1061 pud_t entry;
1062 unsigned long haddr;
1063 bool write = vmf->flags & FAULT_FLAG_WRITE;
1064
1065 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1066 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1067 goto unlock;
1068
1069 entry = pud_mkyoung(orig_pud);
1070 if (write)
1071 entry = pud_mkdirty(entry);
1072 haddr = vmf->address & HPAGE_PUD_MASK;
1073 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1074 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1075
1076unlock:
1077 spin_unlock(vmf->ptl);
1078}
1079#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1080
82b0f8c3 1081void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1082{
1083 pmd_t entry;
1084 unsigned long haddr;
20f664aa 1085 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1086
82b0f8c3
JK
1087 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1088 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1089 goto unlock;
1090
1091 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1092 if (write)
1093 entry = pmd_mkdirty(entry);
82b0f8c3 1094 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1095 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1096 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1097
1098unlock:
82b0f8c3 1099 spin_unlock(vmf->ptl);
a1dd450b
WD
1100}
1101
82b0f8c3 1102static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
bae473a4 1103 struct page *page)
71e3aac0 1104{
82b0f8c3
JK
1105 struct vm_area_struct *vma = vmf->vma;
1106 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1107 struct mem_cgroup *memcg;
71e3aac0
AA
1108 pgtable_t pgtable;
1109 pmd_t _pmd;
1110 int ret = 0, i;
1111 struct page **pages;
2ec74c3e
SG
1112 unsigned long mmun_start; /* For mmu_notifiers */
1113 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1114
1115 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1116 GFP_KERNEL);
1117 if (unlikely(!pages)) {
1118 ret |= VM_FAULT_OOM;
1119 goto out;
1120 }
1121
1122 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1123 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1124 vmf->address, page_to_nid(page));
b9bbfbe3 1125 if (unlikely(!pages[i] ||
bae473a4
KS
1126 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1127 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1128 if (pages[i])
71e3aac0 1129 put_page(pages[i]);
b9bbfbe3 1130 while (--i >= 0) {
00501b53
JW
1131 memcg = (void *)page_private(pages[i]);
1132 set_page_private(pages[i], 0);
f627c2f5
KS
1133 mem_cgroup_cancel_charge(pages[i], memcg,
1134 false);
b9bbfbe3
AA
1135 put_page(pages[i]);
1136 }
71e3aac0
AA
1137 kfree(pages);
1138 ret |= VM_FAULT_OOM;
1139 goto out;
1140 }
00501b53 1141 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1142 }
1143
1144 for (i = 0; i < HPAGE_PMD_NR; i++) {
1145 copy_user_highpage(pages[i], page + i,
0089e485 1146 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1147 __SetPageUptodate(pages[i]);
1148 cond_resched();
1149 }
1150
2ec74c3e
SG
1151 mmun_start = haddr;
1152 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1153 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1154
82b0f8c3
JK
1155 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1156 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1157 goto out_free_pages;
309381fe 1158 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1159
82b0f8c3 1160 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0
AA
1161 /* leave pmd empty until pte is filled */
1162
82b0f8c3 1163 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1164 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1165
1166 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1167 pte_t entry;
71e3aac0
AA
1168 entry = mk_pte(pages[i], vma->vm_page_prot);
1169 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1170 memcg = (void *)page_private(pages[i]);
1171 set_page_private(pages[i], 0);
82b0f8c3 1172 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1173 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1174 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1175 vmf->pte = pte_offset_map(&_pmd, haddr);
1176 VM_BUG_ON(!pte_none(*vmf->pte));
1177 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1178 pte_unmap(vmf->pte);
71e3aac0
AA
1179 }
1180 kfree(pages);
1181
71e3aac0 1182 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1183 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1184 page_remove_rmap(page, true);
82b0f8c3 1185 spin_unlock(vmf->ptl);
71e3aac0 1186
bae473a4 1187 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1188
71e3aac0
AA
1189 ret |= VM_FAULT_WRITE;
1190 put_page(page);
1191
1192out:
1193 return ret;
1194
1195out_free_pages:
82b0f8c3 1196 spin_unlock(vmf->ptl);
bae473a4 1197 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1198 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1199 memcg = (void *)page_private(pages[i]);
1200 set_page_private(pages[i], 0);
f627c2f5 1201 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1202 put_page(pages[i]);
b9bbfbe3 1203 }
71e3aac0
AA
1204 kfree(pages);
1205 goto out;
1206}
1207
82b0f8c3 1208int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1209{
82b0f8c3 1210 struct vm_area_struct *vma = vmf->vma;
93b4796d 1211 struct page *page = NULL, *new_page;
00501b53 1212 struct mem_cgroup *memcg;
82b0f8c3 1213 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1214 unsigned long mmun_start; /* For mmu_notifiers */
1215 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1216 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1217 int ret = 0;
71e3aac0 1218
82b0f8c3 1219 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1220 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1221 if (is_huge_zero_pmd(orig_pmd))
1222 goto alloc;
82b0f8c3
JK
1223 spin_lock(vmf->ptl);
1224 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1225 goto out_unlock;
1226
1227 page = pmd_page(orig_pmd);
309381fe 1228 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1229 /*
1230 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1231 * part.
1f25fe20 1232 */
6d0a07ed 1233 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
1234 pmd_t entry;
1235 entry = pmd_mkyoung(orig_pmd);
1236 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1237 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1238 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0
AA
1239 ret |= VM_FAULT_WRITE;
1240 goto out_unlock;
1241 }
ddc58f27 1242 get_page(page);
82b0f8c3 1243 spin_unlock(vmf->ptl);
93b4796d 1244alloc:
71e3aac0 1245 if (transparent_hugepage_enabled(vma) &&
077fcf11 1246 !transparent_hugepage_debug_cow()) {
444eb2a4 1247 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1248 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1249 } else
71e3aac0
AA
1250 new_page = NULL;
1251
9a982250
KS
1252 if (likely(new_page)) {
1253 prep_transhuge_page(new_page);
1254 } else {
eecc1e42 1255 if (!page) {
82b0f8c3 1256 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1257 ret |= VM_FAULT_FALLBACK;
93b4796d 1258 } else {
82b0f8c3 1259 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1260 if (ret & VM_FAULT_OOM) {
82b0f8c3 1261 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1262 ret |= VM_FAULT_FALLBACK;
1263 }
ddc58f27 1264 put_page(page);
93b4796d 1265 }
17766dde 1266 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1267 goto out;
1268 }
1269
bae473a4
KS
1270 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1271 huge_gfp, &memcg, true))) {
b9bbfbe3 1272 put_page(new_page);
82b0f8c3 1273 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1274 if (page)
ddc58f27 1275 put_page(page);
9845cbbd 1276 ret |= VM_FAULT_FALLBACK;
17766dde 1277 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1278 goto out;
1279 }
1280
17766dde
DR
1281 count_vm_event(THP_FAULT_ALLOC);
1282
eecc1e42 1283 if (!page)
93b4796d
KS
1284 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1285 else
1286 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1287 __SetPageUptodate(new_page);
1288
2ec74c3e
SG
1289 mmun_start = haddr;
1290 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1291 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1292
82b0f8c3 1293 spin_lock(vmf->ptl);
93b4796d 1294 if (page)
ddc58f27 1295 put_page(page);
82b0f8c3
JK
1296 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1297 spin_unlock(vmf->ptl);
f627c2f5 1298 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1299 put_page(new_page);
2ec74c3e 1300 goto out_mn;
b9bbfbe3 1301 } else {
71e3aac0 1302 pmd_t entry;
3122359a
KS
1303 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1304 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1305 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1306 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1307 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1308 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1309 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1310 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1311 if (!page) {
bae473a4 1312 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1313 } else {
309381fe 1314 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1315 page_remove_rmap(page, true);
93b4796d
KS
1316 put_page(page);
1317 }
71e3aac0
AA
1318 ret |= VM_FAULT_WRITE;
1319 }
82b0f8c3 1320 spin_unlock(vmf->ptl);
2ec74c3e 1321out_mn:
bae473a4 1322 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1323out:
1324 return ret;
2ec74c3e 1325out_unlock:
82b0f8c3 1326 spin_unlock(vmf->ptl);
2ec74c3e 1327 return ret;
71e3aac0
AA
1328}
1329
8310d48b
KF
1330/*
1331 * FOLL_FORCE can write to even unwritable pmd's, but only
1332 * after we've gone through a COW cycle and they are dirty.
1333 */
1334static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1335{
1336 return pmd_write(pmd) ||
1337 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1338}
1339
b676b293 1340struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1341 unsigned long addr,
1342 pmd_t *pmd,
1343 unsigned int flags)
1344{
b676b293 1345 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1346 struct page *page = NULL;
1347
c4088ebd 1348 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1349
8310d48b 1350 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1351 goto out;
1352
85facf25
KS
1353 /* Avoid dumping huge zero page */
1354 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1355 return ERR_PTR(-EFAULT);
1356
2b4847e7 1357 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1358 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1359 goto out;
1360
71e3aac0 1361 page = pmd_page(*pmd);
ca120cf6 1362 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1363 if (flags & FOLL_TOUCH)
188b13a8 1364 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1365 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1366 /*
1367 * We don't mlock() pte-mapped THPs. This way we can avoid
1368 * leaking mlocked pages into non-VM_LOCKED VMAs.
1369 *
9a73f61b
KS
1370 * For anon THP:
1371 *
e90309c9
KS
1372 * In most cases the pmd is the only mapping of the page as we
1373 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1374 * writable private mappings in populate_vma_page_range().
1375 *
1376 * The only scenario when we have the page shared here is if we
1377 * mlocking read-only mapping shared over fork(). We skip
1378 * mlocking such pages.
9a73f61b
KS
1379 *
1380 * For file THP:
1381 *
1382 * We can expect PageDoubleMap() to be stable under page lock:
1383 * for file pages we set it in page_add_file_rmap(), which
1384 * requires page to be locked.
e90309c9 1385 */
9a73f61b
KS
1386
1387 if (PageAnon(page) && compound_mapcount(page) != 1)
1388 goto skip_mlock;
1389 if (PageDoubleMap(page) || !page->mapping)
1390 goto skip_mlock;
1391 if (!trylock_page(page))
1392 goto skip_mlock;
1393 lru_add_drain();
1394 if (page->mapping && !PageDoubleMap(page))
1395 mlock_vma_page(page);
1396 unlock_page(page);
b676b293 1397 }
9a73f61b 1398skip_mlock:
71e3aac0 1399 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1400 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1401 if (flags & FOLL_GET)
ddc58f27 1402 get_page(page);
71e3aac0
AA
1403
1404out:
1405 return page;
1406}
1407
d10e63f2 1408/* NUMA hinting page fault entry point for trans huge pmds */
82b0f8c3 1409int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1410{
82b0f8c3 1411 struct vm_area_struct *vma = vmf->vma;
b8916634 1412 struct anon_vma *anon_vma = NULL;
b32967ff 1413 struct page *page;
82b0f8c3 1414 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1415 int page_nid = -1, this_nid = numa_node_id();
90572890 1416 int target_nid, last_cpupid = -1;
8191acbd
MG
1417 bool page_locked;
1418 bool migrated = false;
b191f9b1 1419 bool was_writable;
6688cc05 1420 int flags = 0;
d10e63f2 1421
82b0f8c3
JK
1422 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1423 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1424 goto out_unlock;
1425
de466bd6
MG
1426 /*
1427 * If there are potential migrations, wait for completion and retry
1428 * without disrupting NUMA hinting information. Do not relock and
1429 * check_same as the page may no longer be mapped.
1430 */
82b0f8c3
JK
1431 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1432 page = pmd_page(*vmf->pmd);
3c226c63
MR
1433 if (!get_page_unless_zero(page))
1434 goto out_unlock;
82b0f8c3 1435 spin_unlock(vmf->ptl);
5d833062 1436 wait_on_page_locked(page);
3c226c63 1437 put_page(page);
de466bd6
MG
1438 goto out;
1439 }
1440
d10e63f2 1441 page = pmd_page(pmd);
a1a46184 1442 BUG_ON(is_huge_zero_page(page));
8191acbd 1443 page_nid = page_to_nid(page);
90572890 1444 last_cpupid = page_cpupid_last(page);
03c5a6e1 1445 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1446 if (page_nid == this_nid) {
03c5a6e1 1447 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1448 flags |= TNF_FAULT_LOCAL;
1449 }
4daae3b4 1450
bea66fbd 1451 /* See similar comment in do_numa_page for explanation */
288bc549 1452 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1453 flags |= TNF_NO_GROUP;
1454
ff9042b1
MG
1455 /*
1456 * Acquire the page lock to serialise THP migrations but avoid dropping
1457 * page_table_lock if at all possible
1458 */
b8916634
MG
1459 page_locked = trylock_page(page);
1460 target_nid = mpol_misplaced(page, vma, haddr);
1461 if (target_nid == -1) {
1462 /* If the page was locked, there are no parallel migrations */
a54a407f 1463 if (page_locked)
b8916634 1464 goto clear_pmdnuma;
2b4847e7 1465 }
4daae3b4 1466
de466bd6 1467 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1468 if (!page_locked) {
3c226c63
MR
1469 page_nid = -1;
1470 if (!get_page_unless_zero(page))
1471 goto out_unlock;
82b0f8c3 1472 spin_unlock(vmf->ptl);
b8916634 1473 wait_on_page_locked(page);
3c226c63 1474 put_page(page);
b8916634
MG
1475 goto out;
1476 }
1477
2b4847e7
MG
1478 /*
1479 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1480 * to serialises splits
1481 */
b8916634 1482 get_page(page);
82b0f8c3 1483 spin_unlock(vmf->ptl);
b8916634 1484 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1485
c69307d5 1486 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1487 spin_lock(vmf->ptl);
1488 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1489 unlock_page(page);
1490 put_page(page);
a54a407f 1491 page_nid = -1;
4daae3b4 1492 goto out_unlock;
b32967ff 1493 }
ff9042b1 1494
c3a489ca
MG
1495 /* Bail if we fail to protect against THP splits for any reason */
1496 if (unlikely(!anon_vma)) {
1497 put_page(page);
1498 page_nid = -1;
1499 goto clear_pmdnuma;
1500 }
1501
a9b80250
NA
1502 /*
1503 * The page_table_lock above provides a memory barrier
1504 * with change_protection_range.
1505 */
1506 if (mm_tlb_flush_pending(vma->vm_mm))
1507 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
1508
a54a407f
MG
1509 /*
1510 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1511 * and access rights restored.
a54a407f 1512 */
82b0f8c3 1513 spin_unlock(vmf->ptl);
bae473a4 1514 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1515 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1516 if (migrated) {
1517 flags |= TNF_MIGRATED;
8191acbd 1518 page_nid = target_nid;
074c2381
MG
1519 } else
1520 flags |= TNF_MIGRATE_FAIL;
b32967ff 1521
8191acbd 1522 goto out;
b32967ff 1523clear_pmdnuma:
a54a407f 1524 BUG_ON(!PageLocked(page));
288bc549 1525 was_writable = pmd_savedwrite(pmd);
4d942466 1526 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1527 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1528 if (was_writable)
1529 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1530 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1531 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1532 unlock_page(page);
d10e63f2 1533out_unlock:
82b0f8c3 1534 spin_unlock(vmf->ptl);
b8916634
MG
1535
1536out:
1537 if (anon_vma)
1538 page_unlock_anon_vma_read(anon_vma);
1539
8191acbd 1540 if (page_nid != -1)
82b0f8c3 1541 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1542 flags);
8191acbd 1543
d10e63f2
MG
1544 return 0;
1545}
1546
319904ad
HY
1547/*
1548 * Return true if we do MADV_FREE successfully on entire pmd page.
1549 * Otherwise, return false.
1550 */
1551bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1552 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1553{
1554 spinlock_t *ptl;
1555 pmd_t orig_pmd;
1556 struct page *page;
1557 struct mm_struct *mm = tlb->mm;
319904ad 1558 bool ret = false;
b8d3c4c3 1559
07e32661
AK
1560 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1561
b6ec57f4
KS
1562 ptl = pmd_trans_huge_lock(pmd, vma);
1563 if (!ptl)
25eedabe 1564 goto out_unlocked;
b8d3c4c3
MK
1565
1566 orig_pmd = *pmd;
319904ad 1567 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1568 goto out;
b8d3c4c3
MK
1569
1570 page = pmd_page(orig_pmd);
1571 /*
1572 * If other processes are mapping this page, we couldn't discard
1573 * the page unless they all do MADV_FREE so let's skip the page.
1574 */
1575 if (page_mapcount(page) != 1)
1576 goto out;
1577
1578 if (!trylock_page(page))
1579 goto out;
1580
1581 /*
1582 * If user want to discard part-pages of THP, split it so MADV_FREE
1583 * will deactivate only them.
1584 */
1585 if (next - addr != HPAGE_PMD_SIZE) {
1586 get_page(page);
1587 spin_unlock(ptl);
9818b8cd 1588 split_huge_page(page);
b8d3c4c3 1589 unlock_page(page);
bbf29ffc 1590 put_page(page);
b8d3c4c3
MK
1591 goto out_unlocked;
1592 }
1593
1594 if (PageDirty(page))
1595 ClearPageDirty(page);
1596 unlock_page(page);
1597
b8d3c4c3 1598 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1599 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1600 orig_pmd = pmd_mkold(orig_pmd);
1601 orig_pmd = pmd_mkclean(orig_pmd);
1602
1603 set_pmd_at(mm, addr, pmd, orig_pmd);
1604 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1605 }
802a3a92
SL
1606
1607 mark_page_lazyfree(page);
319904ad 1608 ret = true;
b8d3c4c3
MK
1609out:
1610 spin_unlock(ptl);
1611out_unlocked:
1612 return ret;
1613}
1614
953c66c2
AK
1615static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1616{
1617 pgtable_t pgtable;
1618
1619 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1620 pte_free(mm, pgtable);
1621 atomic_long_dec(&mm->nr_ptes);
1622}
1623
71e3aac0 1624int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1625 pmd_t *pmd, unsigned long addr)
71e3aac0 1626{
da146769 1627 pmd_t orig_pmd;
bf929152 1628 spinlock_t *ptl;
71e3aac0 1629
07e32661
AK
1630 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1631
b6ec57f4
KS
1632 ptl = __pmd_trans_huge_lock(pmd, vma);
1633 if (!ptl)
da146769
KS
1634 return 0;
1635 /*
1636 * For architectures like ppc64 we look at deposited pgtable
1637 * when calling pmdp_huge_get_and_clear. So do the
1638 * pgtable_trans_huge_withdraw after finishing pmdp related
1639 * operations.
1640 */
1641 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1642 tlb->fullmm);
1643 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1644 if (vma_is_dax(vma)) {
3b6521f5
OH
1645 if (arch_needs_pgtable_deposit())
1646 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1647 spin_unlock(ptl);
1648 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1649 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1650 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1651 zap_deposited_table(tlb->mm, pmd);
da146769 1652 spin_unlock(ptl);
c0f2e176 1653 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769
KS
1654 } else {
1655 struct page *page = pmd_page(orig_pmd);
d281ee61 1656 page_remove_rmap(page, true);
da146769 1657 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
da146769 1658 VM_BUG_ON_PAGE(!PageHead(page), page);
b5072380 1659 if (PageAnon(page)) {
c14a6eb4 1660 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1661 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1662 } else {
953c66c2
AK
1663 if (arch_needs_pgtable_deposit())
1664 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1665 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1666 }
da146769 1667 spin_unlock(ptl);
e77b0852 1668 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1669 }
da146769 1670 return 1;
71e3aac0
AA
1671}
1672
1dd38b6c
AK
1673#ifndef pmd_move_must_withdraw
1674static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1675 spinlock_t *old_pmd_ptl,
1676 struct vm_area_struct *vma)
1677{
1678 /*
1679 * With split pmd lock we also need to move preallocated
1680 * PTE page table if new_pmd is on different PMD page table.
1681 *
1682 * We also don't deposit and withdraw tables for file pages.
1683 */
1684 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1685}
1686#endif
1687
bf8616d5 1688bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1689 unsigned long new_addr, unsigned long old_end,
5d190420 1690 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
37a1c49a 1691{
bf929152 1692 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1693 pmd_t pmd;
37a1c49a 1694 struct mm_struct *mm = vma->vm_mm;
5d190420 1695 bool force_flush = false;
37a1c49a
AA
1696
1697 if ((old_addr & ~HPAGE_PMD_MASK) ||
1698 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1699 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1700 return false;
37a1c49a
AA
1701
1702 /*
1703 * The destination pmd shouldn't be established, free_pgtables()
1704 * should have release it.
1705 */
1706 if (WARN_ON(!pmd_none(*new_pmd))) {
1707 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1708 return false;
37a1c49a
AA
1709 }
1710
bf929152
KS
1711 /*
1712 * We don't have to worry about the ordering of src and dst
1713 * ptlocks because exclusive mmap_sem prevents deadlock.
1714 */
b6ec57f4
KS
1715 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1716 if (old_ptl) {
bf929152
KS
1717 new_ptl = pmd_lockptr(mm, new_pmd);
1718 if (new_ptl != old_ptl)
1719 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1720 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
a2ce2666
AL
1721 if (pmd_present(pmd) && pmd_dirty(pmd))
1722 force_flush = true;
025c5b24 1723 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1724
1dd38b6c 1725 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1726 pgtable_t pgtable;
3592806c
KS
1727 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1728 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1729 }
b3084f4d
AK
1730 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1731 if (new_ptl != old_ptl)
1732 spin_unlock(new_ptl);
5d190420
AL
1733 if (force_flush)
1734 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1735 else
1736 *need_flush = true;
bf929152 1737 spin_unlock(old_ptl);
4b471e88 1738 return true;
37a1c49a 1739 }
4b471e88 1740 return false;
37a1c49a
AA
1741}
1742
f123d74a
MG
1743/*
1744 * Returns
1745 * - 0 if PMD could not be locked
1746 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1747 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1748 */
cd7548ab 1749int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1750 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1751{
1752 struct mm_struct *mm = vma->vm_mm;
bf929152 1753 spinlock_t *ptl;
0a85e51d
KS
1754 pmd_t entry;
1755 bool preserve_write;
1756 int ret;
cd7548ab 1757
b6ec57f4 1758 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1759 if (!ptl)
1760 return 0;
e944fd67 1761
0a85e51d
KS
1762 preserve_write = prot_numa && pmd_write(*pmd);
1763 ret = 1;
e944fd67 1764
0a85e51d
KS
1765 /*
1766 * Avoid trapping faults against the zero page. The read-only
1767 * data is likely to be read-cached on the local CPU and
1768 * local/remote hits to the zero page are not interesting.
1769 */
1770 if (prot_numa && is_huge_zero_pmd(*pmd))
1771 goto unlock;
025c5b24 1772
0a85e51d
KS
1773 if (prot_numa && pmd_protnone(*pmd))
1774 goto unlock;
1775
ced10803
KS
1776 /*
1777 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1778 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1779 * which is also under down_read(mmap_sem):
1780 *
1781 * CPU0: CPU1:
1782 * change_huge_pmd(prot_numa=1)
1783 * pmdp_huge_get_and_clear_notify()
1784 * madvise_dontneed()
1785 * zap_pmd_range()
1786 * pmd_trans_huge(*pmd) == 0 (without ptl)
1787 * // skip the pmd
1788 * set_pmd_at();
1789 * // pmd is re-established
1790 *
1791 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1792 * which may break userspace.
1793 *
1794 * pmdp_invalidate() is required to make sure we don't miss
1795 * dirty/young flags set by hardware.
1796 */
1797 entry = *pmd;
1798 pmdp_invalidate(vma, addr, pmd);
1799
1800 /*
1801 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1802 * corrupt them.
1803 */
1804 if (pmd_dirty(*pmd))
1805 entry = pmd_mkdirty(entry);
1806 if (pmd_young(*pmd))
1807 entry = pmd_mkyoung(entry);
1808
0a85e51d
KS
1809 entry = pmd_modify(entry, newprot);
1810 if (preserve_write)
1811 entry = pmd_mk_savedwrite(entry);
1812 ret = HPAGE_PMD_NR;
1813 set_pmd_at(mm, addr, pmd, entry);
1814 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1815unlock:
1816 spin_unlock(ptl);
025c5b24
NH
1817 return ret;
1818}
1819
1820/*
8f19b0c0 1821 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1822 *
8f19b0c0
HY
1823 * Note that if it returns page table lock pointer, this routine returns without
1824 * unlocking page table lock. So callers must unlock it.
025c5b24 1825 */
b6ec57f4 1826spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1827{
b6ec57f4
KS
1828 spinlock_t *ptl;
1829 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1830 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1831 return ptl;
1832 spin_unlock(ptl);
1833 return NULL;
cd7548ab
JW
1834}
1835
a00cc7d9
MW
1836/*
1837 * Returns true if a given pud maps a thp, false otherwise.
1838 *
1839 * Note that if it returns true, this routine returns without unlocking page
1840 * table lock. So callers must unlock it.
1841 */
1842spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1843{
1844 spinlock_t *ptl;
1845
1846 ptl = pud_lock(vma->vm_mm, pud);
1847 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1848 return ptl;
1849 spin_unlock(ptl);
1850 return NULL;
1851}
1852
1853#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1854int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1855 pud_t *pud, unsigned long addr)
1856{
1857 pud_t orig_pud;
1858 spinlock_t *ptl;
1859
1860 ptl = __pud_trans_huge_lock(pud, vma);
1861 if (!ptl)
1862 return 0;
1863 /*
1864 * For architectures like ppc64 we look at deposited pgtable
1865 * when calling pudp_huge_get_and_clear. So do the
1866 * pgtable_trans_huge_withdraw after finishing pudp related
1867 * operations.
1868 */
1869 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1870 tlb->fullmm);
1871 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1872 if (vma_is_dax(vma)) {
1873 spin_unlock(ptl);
1874 /* No zero page support yet */
1875 } else {
1876 /* No support for anonymous PUD pages yet */
1877 BUG();
1878 }
1879 return 1;
1880}
1881
1882static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1883 unsigned long haddr)
1884{
1885 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1886 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1887 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1888 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1889
ce9311cf 1890 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1891
1892 pudp_huge_clear_flush_notify(vma, haddr, pud);
1893}
1894
1895void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1896 unsigned long address)
1897{
1898 spinlock_t *ptl;
1899 struct mm_struct *mm = vma->vm_mm;
1900 unsigned long haddr = address & HPAGE_PUD_MASK;
1901
1902 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
1903 ptl = pud_lock(mm, pud);
1904 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1905 goto out;
1906 __split_huge_pud_locked(vma, pud, haddr);
1907
1908out:
1909 spin_unlock(ptl);
1910 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
1911}
1912#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1913
eef1b3ba
KS
1914static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1915 unsigned long haddr, pmd_t *pmd)
1916{
1917 struct mm_struct *mm = vma->vm_mm;
1918 pgtable_t pgtable;
1919 pmd_t _pmd;
1920 int i;
1921
1922 /* leave pmd empty until pte is filled */
1923 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1924
1925 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1926 pmd_populate(mm, &_pmd, pgtable);
1927
1928 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1929 pte_t *pte, entry;
1930 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1931 entry = pte_mkspecial(entry);
1932 pte = pte_offset_map(&_pmd, haddr);
1933 VM_BUG_ON(!pte_none(*pte));
1934 set_pte_at(mm, haddr, pte, entry);
1935 pte_unmap(pte);
1936 }
1937 smp_wmb(); /* make pte visible before pmd */
1938 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
1939}
1940
1941static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 1942 unsigned long haddr, bool freeze)
eef1b3ba
KS
1943{
1944 struct mm_struct *mm = vma->vm_mm;
1945 struct page *page;
1946 pgtable_t pgtable;
1947 pmd_t _pmd;
804dd150 1948 bool young, write, dirty, soft_dirty;
2ac015e2 1949 unsigned long addr;
eef1b3ba
KS
1950 int i;
1951
1952 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1953 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1954 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 1955 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
1956
1957 count_vm_event(THP_SPLIT_PMD);
1958
d21b9e57
KS
1959 if (!vma_is_anonymous(vma)) {
1960 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
1961 /*
1962 * We are going to unmap this huge page. So
1963 * just go ahead and zap it
1964 */
1965 if (arch_needs_pgtable_deposit())
1966 zap_deposited_table(mm, pmd);
d21b9e57
KS
1967 if (vma_is_dax(vma))
1968 return;
1969 page = pmd_page(_pmd);
1970 if (!PageReferenced(page) && pmd_young(_pmd))
1971 SetPageReferenced(page);
1972 page_remove_rmap(page, true);
1973 put_page(page);
1974 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
1975 return;
1976 } else if (is_huge_zero_pmd(*pmd)) {
1977 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1978 }
1979
1980 page = pmd_page(*pmd);
1981 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 1982 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
1983 write = pmd_write(*pmd);
1984 young = pmd_young(*pmd);
b8d3c4c3 1985 dirty = pmd_dirty(*pmd);
804dd150 1986 soft_dirty = pmd_soft_dirty(*pmd);
eef1b3ba 1987
c777e2a8 1988 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
1989 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1990 pmd_populate(mm, &_pmd, pgtable);
1991
2ac015e2 1992 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
1993 pte_t entry, *pte;
1994 /*
1995 * Note that NUMA hinting access restrictions are not
1996 * transferred to avoid any possibility of altering
1997 * permissions across VMAs.
1998 */
ba988280
KS
1999 if (freeze) {
2000 swp_entry_t swp_entry;
2001 swp_entry = make_migration_entry(page + i, write);
2002 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2003 if (soft_dirty)
2004 entry = pte_swp_mksoft_dirty(entry);
ba988280 2005 } else {
6d2329f8 2006 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2007 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2008 if (!write)
2009 entry = pte_wrprotect(entry);
2010 if (!young)
2011 entry = pte_mkold(entry);
804dd150
AA
2012 if (soft_dirty)
2013 entry = pte_mksoft_dirty(entry);
ba988280 2014 }
b8d3c4c3
MK
2015 if (dirty)
2016 SetPageDirty(page + i);
2ac015e2 2017 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2018 BUG_ON(!pte_none(*pte));
2ac015e2 2019 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2020 atomic_inc(&page[i]._mapcount);
2021 pte_unmap(pte);
2022 }
2023
2024 /*
2025 * Set PG_double_map before dropping compound_mapcount to avoid
2026 * false-negative page_mapped().
2027 */
2028 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2029 for (i = 0; i < HPAGE_PMD_NR; i++)
2030 atomic_inc(&page[i]._mapcount);
2031 }
2032
2033 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2034 /* Last compound_mapcount is gone. */
11fb9989 2035 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2036 if (TestClearPageDoubleMap(page)) {
2037 /* No need in mapcount reference anymore */
2038 for (i = 0; i < HPAGE_PMD_NR; i++)
2039 atomic_dec(&page[i]._mapcount);
2040 }
2041 }
2042
2043 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2044 /*
2045 * Up to this point the pmd is present and huge and userland has the
2046 * whole access to the hugepage during the split (which happens in
2047 * place). If we overwrite the pmd with the not-huge version pointing
2048 * to the pte here (which of course we could if all CPUs were bug
2049 * free), userland could trigger a small page size TLB miss on the
2050 * small sized TLB while the hugepage TLB entry is still established in
2051 * the huge TLB. Some CPU doesn't like that.
2052 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2053 * 383 on page 93. Intel should be safe but is also warns that it's
2054 * only safe if the permission and cache attributes of the two entries
2055 * loaded in the two TLB is identical (which should be the case here).
2056 * But it is generally safer to never allow small and huge TLB entries
2057 * for the same virtual address to be loaded simultaneously. So instead
2058 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2059 * current pmd notpresent (atomically because here the pmd_trans_huge
2060 * and pmd_trans_splitting must remain set at all times on the pmd
2061 * until the split is complete for this pmd), then we flush the SMP TLB
2062 * and finally we write the non-huge version of the pmd entry with
2063 * pmd_populate.
2064 */
2065 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2066 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2067
2068 if (freeze) {
2ac015e2 2069 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2070 page_remove_rmap(page + i, false);
2071 put_page(page + i);
2072 }
2073 }
eef1b3ba
KS
2074}
2075
2076void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2077 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2078{
2079 spinlock_t *ptl;
2080 struct mm_struct *mm = vma->vm_mm;
2081 unsigned long haddr = address & HPAGE_PMD_MASK;
2082
2083 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2084 ptl = pmd_lock(mm, pmd);
33f4751e
NH
2085
2086 /*
2087 * If caller asks to setup a migration entries, we need a page to check
2088 * pmd against. Otherwise we can end up replacing wrong page.
2089 */
2090 VM_BUG_ON(freeze && !page);
2091 if (page && page != pmd_page(*pmd))
2092 goto out;
2093
5c7fb56e 2094 if (pmd_trans_huge(*pmd)) {
33f4751e 2095 page = pmd_page(*pmd);
5c7fb56e 2096 if (PageMlocked(page))
5f737714 2097 clear_page_mlock(page);
5c7fb56e 2098 } else if (!pmd_devmap(*pmd))
e90309c9 2099 goto out;
fec89c10 2100 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2101out:
eef1b3ba
KS
2102 spin_unlock(ptl);
2103 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2104}
2105
fec89c10
KS
2106void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2107 bool freeze, struct page *page)
94fcc585 2108{
f72e7dcd 2109 pgd_t *pgd;
c2febafc 2110 p4d_t *p4d;
f72e7dcd 2111 pud_t *pud;
94fcc585
AA
2112 pmd_t *pmd;
2113
78ddc534 2114 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2115 if (!pgd_present(*pgd))
2116 return;
2117
c2febafc
KS
2118 p4d = p4d_offset(pgd, address);
2119 if (!p4d_present(*p4d))
2120 return;
2121
2122 pud = pud_offset(p4d, address);
f72e7dcd
HD
2123 if (!pud_present(*pud))
2124 return;
2125
2126 pmd = pmd_offset(pud, address);
fec89c10 2127
33f4751e 2128 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2129}
2130
e1b9996b 2131void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2132 unsigned long start,
2133 unsigned long end,
2134 long adjust_next)
2135{
2136 /*
2137 * If the new start address isn't hpage aligned and it could
2138 * previously contain an hugepage: check if we need to split
2139 * an huge pmd.
2140 */
2141 if (start & ~HPAGE_PMD_MASK &&
2142 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2143 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2144 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2145
2146 /*
2147 * If the new end address isn't hpage aligned and it could
2148 * previously contain an hugepage: check if we need to split
2149 * an huge pmd.
2150 */
2151 if (end & ~HPAGE_PMD_MASK &&
2152 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2153 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2154 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2155
2156 /*
2157 * If we're also updating the vma->vm_next->vm_start, if the new
2158 * vm_next->vm_start isn't page aligned and it could previously
2159 * contain an hugepage: check if we need to split an huge pmd.
2160 */
2161 if (adjust_next > 0) {
2162 struct vm_area_struct *next = vma->vm_next;
2163 unsigned long nstart = next->vm_start;
2164 nstart += adjust_next << PAGE_SHIFT;
2165 if (nstart & ~HPAGE_PMD_MASK &&
2166 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2167 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2168 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2169 }
2170}
e9b61f19 2171
fec89c10 2172static void freeze_page(struct page *page)
e9b61f19 2173{
baa355fd 2174 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2175 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2176 bool unmap_success;
e9b61f19
KS
2177
2178 VM_BUG_ON_PAGE(!PageHead(page), page);
2179
baa355fd
KS
2180 if (PageAnon(page))
2181 ttu_flags |= TTU_MIGRATION;
2182
666e5a40
MK
2183 unmap_success = try_to_unmap(page, ttu_flags);
2184 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2185}
2186
fec89c10 2187static void unfreeze_page(struct page *page)
e9b61f19 2188{
fec89c10 2189 int i;
ace71a19
KS
2190 if (PageTransHuge(page)) {
2191 remove_migration_ptes(page, page, true);
2192 } else {
2193 for (i = 0; i < HPAGE_PMD_NR; i++)
2194 remove_migration_ptes(page + i, page + i, true);
2195 }
e9b61f19
KS
2196}
2197
8df651c7 2198static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2199 struct lruvec *lruvec, struct list_head *list)
2200{
e9b61f19
KS
2201 struct page *page_tail = head + tail;
2202
8df651c7 2203 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 2204 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
2205
2206 /*
0139aa7b 2207 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 2208 * get_page_unless_zero() may be running from under us on the
baa355fd
KS
2209 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2210 * atomic_add(), we would then run atomic_set() concurrently with
e9b61f19
KS
2211 * get_page_unless_zero(), and atomic_set() is implemented in C not
2212 * using locked ops. spin_unlock on x86 sometime uses locked ops
2213 * because of PPro errata 66, 92, so unless somebody can guarantee
2214 * atomic_set() here would be safe on all archs (and not only on x86),
baa355fd 2215 * it's safer to use atomic_inc()/atomic_add().
e9b61f19 2216 */
38d8b4e6 2217 if (PageAnon(head) && !PageSwapCache(head)) {
baa355fd
KS
2218 page_ref_inc(page_tail);
2219 } else {
2220 /* Additional pin to radix tree */
2221 page_ref_add(page_tail, 2);
2222 }
e9b61f19
KS
2223
2224 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2225 page_tail->flags |= (head->flags &
2226 ((1L << PG_referenced) |
2227 (1L << PG_swapbacked) |
38d8b4e6 2228 (1L << PG_swapcache) |
e9b61f19
KS
2229 (1L << PG_mlocked) |
2230 (1L << PG_uptodate) |
2231 (1L << PG_active) |
2232 (1L << PG_locked) |
b8d3c4c3
MK
2233 (1L << PG_unevictable) |
2234 (1L << PG_dirty)));
e9b61f19
KS
2235
2236 /*
2237 * After clearing PageTail the gup refcount can be released.
2238 * Page flags also must be visible before we make the page non-compound.
2239 */
2240 smp_wmb();
2241
2242 clear_compound_head(page_tail);
2243
2244 if (page_is_young(head))
2245 set_page_young(page_tail);
2246 if (page_is_idle(head))
2247 set_page_idle(page_tail);
2248
2249 /* ->mapping in first tail page is compound_mapcount */
9a982250 2250 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
2251 page_tail);
2252 page_tail->mapping = head->mapping;
2253
2254 page_tail->index = head->index + tail;
2255 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2256 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2257}
2258
baa355fd
KS
2259static void __split_huge_page(struct page *page, struct list_head *list,
2260 unsigned long flags)
e9b61f19
KS
2261{
2262 struct page *head = compound_head(page);
2263 struct zone *zone = page_zone(head);
2264 struct lruvec *lruvec;
baa355fd 2265 pgoff_t end = -1;
8df651c7 2266 int i;
e9b61f19 2267
599d0c95 2268 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2269
2270 /* complete memcg works before add pages to LRU */
2271 mem_cgroup_split_huge_fixup(head);
2272
baa355fd
KS
2273 if (!PageAnon(page))
2274 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2275
2276 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2277 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2278 /* Some pages can be beyond i_size: drop them from page cache */
2279 if (head[i].index >= end) {
2280 __ClearPageDirty(head + i);
2281 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2282 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2283 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2284 put_page(head + i);
2285 }
2286 }
e9b61f19
KS
2287
2288 ClearPageCompound(head);
baa355fd
KS
2289 /* See comment in __split_huge_page_tail() */
2290 if (PageAnon(head)) {
38d8b4e6
HY
2291 /* Additional pin to radix tree of swap cache */
2292 if (PageSwapCache(head))
2293 page_ref_add(head, 2);
2294 else
2295 page_ref_inc(head);
baa355fd
KS
2296 } else {
2297 /* Additional pin to radix tree */
2298 page_ref_add(head, 2);
2299 spin_unlock(&head->mapping->tree_lock);
2300 }
2301
a52633d8 2302 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2303
fec89c10 2304 unfreeze_page(head);
e9b61f19
KS
2305
2306 for (i = 0; i < HPAGE_PMD_NR; i++) {
2307 struct page *subpage = head + i;
2308 if (subpage == page)
2309 continue;
2310 unlock_page(subpage);
2311
2312 /*
2313 * Subpages may be freed if there wasn't any mapping
2314 * like if add_to_swap() is running on a lru page that
2315 * had its mapping zapped. And freeing these pages
2316 * requires taking the lru_lock so we do the put_page
2317 * of the tail pages after the split is complete.
2318 */
2319 put_page(subpage);
2320 }
2321}
2322
b20ce5e0
KS
2323int total_mapcount(struct page *page)
2324{
dd78fedd 2325 int i, compound, ret;
b20ce5e0
KS
2326
2327 VM_BUG_ON_PAGE(PageTail(page), page);
2328
2329 if (likely(!PageCompound(page)))
2330 return atomic_read(&page->_mapcount) + 1;
2331
dd78fedd 2332 compound = compound_mapcount(page);
b20ce5e0 2333 if (PageHuge(page))
dd78fedd
KS
2334 return compound;
2335 ret = compound;
b20ce5e0
KS
2336 for (i = 0; i < HPAGE_PMD_NR; i++)
2337 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2338 /* File pages has compound_mapcount included in _mapcount */
2339 if (!PageAnon(page))
2340 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2341 if (PageDoubleMap(page))
2342 ret -= HPAGE_PMD_NR;
2343 return ret;
2344}
2345
6d0a07ed
AA
2346/*
2347 * This calculates accurately how many mappings a transparent hugepage
2348 * has (unlike page_mapcount() which isn't fully accurate). This full
2349 * accuracy is primarily needed to know if copy-on-write faults can
2350 * reuse the page and change the mapping to read-write instead of
2351 * copying them. At the same time this returns the total_mapcount too.
2352 *
2353 * The function returns the highest mapcount any one of the subpages
2354 * has. If the return value is one, even if different processes are
2355 * mapping different subpages of the transparent hugepage, they can
2356 * all reuse it, because each process is reusing a different subpage.
2357 *
2358 * The total_mapcount is instead counting all virtual mappings of the
2359 * subpages. If the total_mapcount is equal to "one", it tells the
2360 * caller all mappings belong to the same "mm" and in turn the
2361 * anon_vma of the transparent hugepage can become the vma->anon_vma
2362 * local one as no other process may be mapping any of the subpages.
2363 *
2364 * It would be more accurate to replace page_mapcount() with
2365 * page_trans_huge_mapcount(), however we only use
2366 * page_trans_huge_mapcount() in the copy-on-write faults where we
2367 * need full accuracy to avoid breaking page pinning, because
2368 * page_trans_huge_mapcount() is slower than page_mapcount().
2369 */
2370int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2371{
2372 int i, ret, _total_mapcount, mapcount;
2373
2374 /* hugetlbfs shouldn't call it */
2375 VM_BUG_ON_PAGE(PageHuge(page), page);
2376
2377 if (likely(!PageTransCompound(page))) {
2378 mapcount = atomic_read(&page->_mapcount) + 1;
2379 if (total_mapcount)
2380 *total_mapcount = mapcount;
2381 return mapcount;
2382 }
2383
2384 page = compound_head(page);
2385
2386 _total_mapcount = ret = 0;
2387 for (i = 0; i < HPAGE_PMD_NR; i++) {
2388 mapcount = atomic_read(&page[i]._mapcount) + 1;
2389 ret = max(ret, mapcount);
2390 _total_mapcount += mapcount;
2391 }
2392 if (PageDoubleMap(page)) {
2393 ret -= 1;
2394 _total_mapcount -= HPAGE_PMD_NR;
2395 }
2396 mapcount = compound_mapcount(page);
2397 ret += mapcount;
2398 _total_mapcount += mapcount;
2399 if (total_mapcount)
2400 *total_mapcount = _total_mapcount;
2401 return ret;
2402}
2403
b8f593cd
HY
2404/* Racy check whether the huge page can be split */
2405bool can_split_huge_page(struct page *page, int *pextra_pins)
2406{
2407 int extra_pins;
2408
2409 /* Additional pins from radix tree */
2410 if (PageAnon(page))
2411 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2412 else
2413 extra_pins = HPAGE_PMD_NR;
2414 if (pextra_pins)
2415 *pextra_pins = extra_pins;
2416 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2417}
2418
e9b61f19
KS
2419/*
2420 * This function splits huge page into normal pages. @page can point to any
2421 * subpage of huge page to split. Split doesn't change the position of @page.
2422 *
2423 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2424 * The huge page must be locked.
2425 *
2426 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2427 *
2428 * Both head page and tail pages will inherit mapping, flags, and so on from
2429 * the hugepage.
2430 *
2431 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2432 * they are not mapped.
2433 *
2434 * Returns 0 if the hugepage is split successfully.
2435 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2436 * us.
2437 */
2438int split_huge_page_to_list(struct page *page, struct list_head *list)
2439{
2440 struct page *head = compound_head(page);
a3d0a918 2441 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2442 struct anon_vma *anon_vma = NULL;
2443 struct address_space *mapping = NULL;
2444 int count, mapcount, extra_pins, ret;
d9654322 2445 bool mlocked;
0b9b6fff 2446 unsigned long flags;
e9b61f19
KS
2447
2448 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2449 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2450 VM_BUG_ON_PAGE(!PageCompound(page), page);
2451
baa355fd
KS
2452 if (PageAnon(head)) {
2453 /*
2454 * The caller does not necessarily hold an mmap_sem that would
2455 * prevent the anon_vma disappearing so we first we take a
2456 * reference to it and then lock the anon_vma for write. This
2457 * is similar to page_lock_anon_vma_read except the write lock
2458 * is taken to serialise against parallel split or collapse
2459 * operations.
2460 */
2461 anon_vma = page_get_anon_vma(head);
2462 if (!anon_vma) {
2463 ret = -EBUSY;
2464 goto out;
2465 }
baa355fd
KS
2466 mapping = NULL;
2467 anon_vma_lock_write(anon_vma);
2468 } else {
2469 mapping = head->mapping;
2470
2471 /* Truncated ? */
2472 if (!mapping) {
2473 ret = -EBUSY;
2474 goto out;
2475 }
2476
baa355fd
KS
2477 anon_vma = NULL;
2478 i_mmap_lock_read(mapping);
e9b61f19 2479 }
e9b61f19
KS
2480
2481 /*
2482 * Racy check if we can split the page, before freeze_page() will
2483 * split PMDs
2484 */
b8f593cd 2485 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2486 ret = -EBUSY;
2487 goto out_unlock;
2488 }
2489
d9654322 2490 mlocked = PageMlocked(page);
fec89c10 2491 freeze_page(head);
e9b61f19
KS
2492 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2493
d9654322
KS
2494 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2495 if (mlocked)
2496 lru_add_drain();
2497
baa355fd 2498 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2499 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2500
2501 if (mapping) {
2502 void **pslot;
2503
2504 spin_lock(&mapping->tree_lock);
2505 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2506 page_index(head));
2507 /*
2508 * Check if the head page is present in radix tree.
2509 * We assume all tail are present too, if head is there.
2510 */
2511 if (radix_tree_deref_slot_protected(pslot,
2512 &mapping->tree_lock) != head)
2513 goto fail;
2514 }
2515
0139aa7b 2516 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2517 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2518 count = page_count(head);
2519 mapcount = total_mapcount(head);
baa355fd 2520 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2521 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2522 pgdata->split_queue_len--;
9a982250
KS
2523 list_del(page_deferred_list(head));
2524 }
65c45377 2525 if (mapping)
11fb9989 2526 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2527 spin_unlock(&pgdata->split_queue_lock);
2528 __split_huge_page(page, list, flags);
e9b61f19 2529 ret = 0;
e9b61f19 2530 } else {
baa355fd
KS
2531 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2532 pr_alert("total_mapcount: %u, page_count(): %u\n",
2533 mapcount, count);
2534 if (PageTail(page))
2535 dump_page(head, NULL);
2536 dump_page(page, "total_mapcount(head) > 0");
2537 BUG();
2538 }
2539 spin_unlock(&pgdata->split_queue_lock);
2540fail: if (mapping)
2541 spin_unlock(&mapping->tree_lock);
a52633d8 2542 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
fec89c10 2543 unfreeze_page(head);
e9b61f19
KS
2544 ret = -EBUSY;
2545 }
2546
2547out_unlock:
baa355fd
KS
2548 if (anon_vma) {
2549 anon_vma_unlock_write(anon_vma);
2550 put_anon_vma(anon_vma);
2551 }
2552 if (mapping)
2553 i_mmap_unlock_read(mapping);
e9b61f19
KS
2554out:
2555 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2556 return ret;
2557}
9a982250
KS
2558
2559void free_transhuge_page(struct page *page)
2560{
a3d0a918 2561 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2562 unsigned long flags;
2563
a3d0a918 2564 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2565 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2566 pgdata->split_queue_len--;
9a982250
KS
2567 list_del(page_deferred_list(page));
2568 }
a3d0a918 2569 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2570 free_compound_page(page);
2571}
2572
2573void deferred_split_huge_page(struct page *page)
2574{
a3d0a918 2575 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2576 unsigned long flags;
2577
2578 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2579
a3d0a918 2580 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2581 if (list_empty(page_deferred_list(page))) {
f9719a03 2582 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2583 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2584 pgdata->split_queue_len++;
9a982250 2585 }
a3d0a918 2586 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2587}
2588
2589static unsigned long deferred_split_count(struct shrinker *shrink,
2590 struct shrink_control *sc)
2591{
a3d0a918 2592 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 2593 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
2594}
2595
2596static unsigned long deferred_split_scan(struct shrinker *shrink,
2597 struct shrink_control *sc)
2598{
a3d0a918 2599 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2600 unsigned long flags;
2601 LIST_HEAD(list), *pos, *next;
2602 struct page *page;
2603 int split = 0;
2604
a3d0a918 2605 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2606 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2607 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2608 page = list_entry((void *)pos, struct page, mapping);
2609 page = compound_head(page);
e3ae1953
KS
2610 if (get_page_unless_zero(page)) {
2611 list_move(page_deferred_list(page), &list);
2612 } else {
2613 /* We lost race with put_compound_page() */
9a982250 2614 list_del_init(page_deferred_list(page));
a3d0a918 2615 pgdata->split_queue_len--;
9a982250 2616 }
e3ae1953
KS
2617 if (!--sc->nr_to_scan)
2618 break;
9a982250 2619 }
a3d0a918 2620 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2621
2622 list_for_each_safe(pos, next, &list) {
2623 page = list_entry((void *)pos, struct page, mapping);
2624 lock_page(page);
2625 /* split_huge_page() removes page from list on success */
2626 if (!split_huge_page(page))
2627 split++;
2628 unlock_page(page);
2629 put_page(page);
2630 }
2631
a3d0a918
KS
2632 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2633 list_splice_tail(&list, &pgdata->split_queue);
2634 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2635
cb8d68ec
KS
2636 /*
2637 * Stop shrinker if we didn't split any page, but the queue is empty.
2638 * This can happen if pages were freed under us.
2639 */
2640 if (!split && list_empty(&pgdata->split_queue))
2641 return SHRINK_STOP;
2642 return split;
9a982250
KS
2643}
2644
2645static struct shrinker deferred_split_shrinker = {
2646 .count_objects = deferred_split_count,
2647 .scan_objects = deferred_split_scan,
2648 .seeks = DEFAULT_SEEKS,
a3d0a918 2649 .flags = SHRINKER_NUMA_AWARE,
9a982250 2650};
49071d43
KS
2651
2652#ifdef CONFIG_DEBUG_FS
2653static int split_huge_pages_set(void *data, u64 val)
2654{
2655 struct zone *zone;
2656 struct page *page;
2657 unsigned long pfn, max_zone_pfn;
2658 unsigned long total = 0, split = 0;
2659
2660 if (val != 1)
2661 return -EINVAL;
2662
2663 for_each_populated_zone(zone) {
2664 max_zone_pfn = zone_end_pfn(zone);
2665 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2666 if (!pfn_valid(pfn))
2667 continue;
2668
2669 page = pfn_to_page(pfn);
2670 if (!get_page_unless_zero(page))
2671 continue;
2672
2673 if (zone != page_zone(page))
2674 goto next;
2675
baa355fd 2676 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2677 goto next;
2678
2679 total++;
2680 lock_page(page);
2681 if (!split_huge_page(page))
2682 split++;
2683 unlock_page(page);
2684next:
2685 put_page(page);
2686 }
2687 }
2688
145bdaa1 2689 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2690
2691 return 0;
2692}
2693DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2694 "%llu\n");
2695
2696static int __init split_huge_pages_debugfs(void)
2697{
2698 void *ret;
2699
145bdaa1 2700 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2701 &split_huge_pages_fops);
2702 if (!ret)
2703 pr_warn("Failed to create split_huge_pages in debugfs");
2704 return 0;
2705}
2706late_initcall(split_huge_pages_debugfs);
2707#endif