]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/hugetlb.c
x86/bugs: Fix the parameters alignment and missing void
[mirror_ubuntu-artful-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
174cd4b1 21#include <linux/sched/signal.h>
0fe6e20b 22#include <linux/rmap.h>
c6247f72 23#include <linux/string_helpers.h>
fd6a03ed
NH
24#include <linux/swap.h>
25#include <linux/swapops.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
1a1aad8a 36#include <linux/userfaultfd_k.h>
7835e98b 37#include "internal.h"
1da177e4 38
753162cd 39int hugepages_treat_as_movable;
a5516438 40
c3f38a38 41int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
42unsigned int default_hstate_idx;
43struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
44/*
45 * Minimum page order among possible hugepage sizes, set to a proper value
46 * at boot time.
47 */
48static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 49
53ba51d2
JT
50__initdata LIST_HEAD(huge_boot_pages);
51
e5ff2159
AK
52/* for command line parsing */
53static struct hstate * __initdata parsed_hstate;
54static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 55static unsigned long __initdata default_hstate_size;
9fee021d 56static bool __initdata parsed_valid_hugepagesz = true;
e5ff2159 57
3935baa9 58/*
31caf665
NH
59 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
60 * free_huge_pages, and surplus_huge_pages.
3935baa9 61 */
c3f38a38 62DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 63
8382d914
DB
64/*
65 * Serializes faults on the same logical page. This is used to
66 * prevent spurious OOMs when the hugepage pool is fully utilized.
67 */
68static int num_fault_mutexes;
c672c7f2 69struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 70
7ca02d0a
MK
71/* Forward declaration */
72static int hugetlb_acct_memory(struct hstate *h, long delta);
73
90481622
DG
74static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
75{
76 bool free = (spool->count == 0) && (spool->used_hpages == 0);
77
78 spin_unlock(&spool->lock);
79
80 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
81 * remain, give up any reservations mased on minimum size and
82 * free the subpool */
83 if (free) {
84 if (spool->min_hpages != -1)
85 hugetlb_acct_memory(spool->hstate,
86 -spool->min_hpages);
90481622 87 kfree(spool);
7ca02d0a 88 }
90481622
DG
89}
90
7ca02d0a
MK
91struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
92 long min_hpages)
90481622
DG
93{
94 struct hugepage_subpool *spool;
95
c6a91820 96 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
97 if (!spool)
98 return NULL;
99
100 spin_lock_init(&spool->lock);
101 spool->count = 1;
7ca02d0a
MK
102 spool->max_hpages = max_hpages;
103 spool->hstate = h;
104 spool->min_hpages = min_hpages;
105
106 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
107 kfree(spool);
108 return NULL;
109 }
110 spool->rsv_hpages = min_hpages;
90481622
DG
111
112 return spool;
113}
114
115void hugepage_put_subpool(struct hugepage_subpool *spool)
116{
117 spin_lock(&spool->lock);
118 BUG_ON(!spool->count);
119 spool->count--;
120 unlock_or_release_subpool(spool);
121}
122
1c5ecae3
MK
123/*
124 * Subpool accounting for allocating and reserving pages.
125 * Return -ENOMEM if there are not enough resources to satisfy the
126 * the request. Otherwise, return the number of pages by which the
127 * global pools must be adjusted (upward). The returned value may
128 * only be different than the passed value (delta) in the case where
129 * a subpool minimum size must be manitained.
130 */
131static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
132 long delta)
133{
1c5ecae3 134 long ret = delta;
90481622
DG
135
136 if (!spool)
1c5ecae3 137 return ret;
90481622
DG
138
139 spin_lock(&spool->lock);
1c5ecae3
MK
140
141 if (spool->max_hpages != -1) { /* maximum size accounting */
142 if ((spool->used_hpages + delta) <= spool->max_hpages)
143 spool->used_hpages += delta;
144 else {
145 ret = -ENOMEM;
146 goto unlock_ret;
147 }
90481622 148 }
90481622 149
09a95e29
MK
150 /* minimum size accounting */
151 if (spool->min_hpages != -1 && spool->rsv_hpages) {
1c5ecae3
MK
152 if (delta > spool->rsv_hpages) {
153 /*
154 * Asking for more reserves than those already taken on
155 * behalf of subpool. Return difference.
156 */
157 ret = delta - spool->rsv_hpages;
158 spool->rsv_hpages = 0;
159 } else {
160 ret = 0; /* reserves already accounted for */
161 spool->rsv_hpages -= delta;
162 }
163 }
164
165unlock_ret:
166 spin_unlock(&spool->lock);
90481622
DG
167 return ret;
168}
169
1c5ecae3
MK
170/*
171 * Subpool accounting for freeing and unreserving pages.
172 * Return the number of global page reservations that must be dropped.
173 * The return value may only be different than the passed value (delta)
174 * in the case where a subpool minimum size must be maintained.
175 */
176static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
177 long delta)
178{
1c5ecae3
MK
179 long ret = delta;
180
90481622 181 if (!spool)
1c5ecae3 182 return delta;
90481622
DG
183
184 spin_lock(&spool->lock);
1c5ecae3
MK
185
186 if (spool->max_hpages != -1) /* maximum size accounting */
187 spool->used_hpages -= delta;
188
09a95e29
MK
189 /* minimum size accounting */
190 if (spool->min_hpages != -1 && spool->used_hpages < spool->min_hpages) {
1c5ecae3
MK
191 if (spool->rsv_hpages + delta <= spool->min_hpages)
192 ret = 0;
193 else
194 ret = spool->rsv_hpages + delta - spool->min_hpages;
195
196 spool->rsv_hpages += delta;
197 if (spool->rsv_hpages > spool->min_hpages)
198 spool->rsv_hpages = spool->min_hpages;
199 }
200
201 /*
202 * If hugetlbfs_put_super couldn't free spool due to an outstanding
203 * quota reference, free it now.
204 */
90481622 205 unlock_or_release_subpool(spool);
1c5ecae3
MK
206
207 return ret;
90481622
DG
208}
209
210static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
211{
212 return HUGETLBFS_SB(inode->i_sb)->spool;
213}
214
215static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
216{
496ad9aa 217 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
218}
219
96822904
AW
220/*
221 * Region tracking -- allows tracking of reservations and instantiated pages
222 * across the pages in a mapping.
84afd99b 223 *
1dd308a7
MK
224 * The region data structures are embedded into a resv_map and protected
225 * by a resv_map's lock. The set of regions within the resv_map represent
226 * reservations for huge pages, or huge pages that have already been
227 * instantiated within the map. The from and to elements are huge page
228 * indicies into the associated mapping. from indicates the starting index
229 * of the region. to represents the first index past the end of the region.
230 *
231 * For example, a file region structure with from == 0 and to == 4 represents
232 * four huge pages in a mapping. It is important to note that the to element
233 * represents the first element past the end of the region. This is used in
234 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
235 *
236 * Interval notation of the form [from, to) will be used to indicate that
237 * the endpoint from is inclusive and to is exclusive.
96822904
AW
238 */
239struct file_region {
240 struct list_head link;
241 long from;
242 long to;
243};
244
1dd308a7
MK
245/*
246 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
247 * map. In the normal case, existing regions will be expanded
248 * to accommodate the specified range. Sufficient regions should
249 * exist for expansion due to the previous call to region_chg
250 * with the same range. However, it is possible that region_del
251 * could have been called after region_chg and modifed the map
252 * in such a way that no region exists to be expanded. In this
253 * case, pull a region descriptor from the cache associated with
254 * the map and use that for the new range.
cf3ad20b
MK
255 *
256 * Return the number of new huge pages added to the map. This
257 * number is greater than or equal to zero.
1dd308a7 258 */
1406ec9b 259static long region_add(struct resv_map *resv, long f, long t)
96822904 260{
1406ec9b 261 struct list_head *head = &resv->regions;
96822904 262 struct file_region *rg, *nrg, *trg;
cf3ad20b 263 long add = 0;
96822904 264
7b24d861 265 spin_lock(&resv->lock);
96822904
AW
266 /* Locate the region we are either in or before. */
267 list_for_each_entry(rg, head, link)
268 if (f <= rg->to)
269 break;
270
5e911373
MK
271 /*
272 * If no region exists which can be expanded to include the
273 * specified range, the list must have been modified by an
274 * interleving call to region_del(). Pull a region descriptor
275 * from the cache and use it for this range.
276 */
277 if (&rg->link == head || t < rg->from) {
278 VM_BUG_ON(resv->region_cache_count <= 0);
279
280 resv->region_cache_count--;
281 nrg = list_first_entry(&resv->region_cache, struct file_region,
282 link);
283 list_del(&nrg->link);
284
285 nrg->from = f;
286 nrg->to = t;
287 list_add(&nrg->link, rg->link.prev);
288
289 add += t - f;
290 goto out_locked;
291 }
292
96822904
AW
293 /* Round our left edge to the current segment if it encloses us. */
294 if (f > rg->from)
295 f = rg->from;
296
297 /* Check for and consume any regions we now overlap with. */
298 nrg = rg;
299 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
300 if (&rg->link == head)
301 break;
302 if (rg->from > t)
303 break;
304
305 /* If this area reaches higher then extend our area to
306 * include it completely. If this is not the first area
307 * which we intend to reuse, free it. */
308 if (rg->to > t)
309 t = rg->to;
310 if (rg != nrg) {
cf3ad20b
MK
311 /* Decrement return value by the deleted range.
312 * Another range will span this area so that by
313 * end of routine add will be >= zero
314 */
315 add -= (rg->to - rg->from);
96822904
AW
316 list_del(&rg->link);
317 kfree(rg);
318 }
319 }
cf3ad20b
MK
320
321 add += (nrg->from - f); /* Added to beginning of region */
96822904 322 nrg->from = f;
cf3ad20b 323 add += t - nrg->to; /* Added to end of region */
96822904 324 nrg->to = t;
cf3ad20b 325
5e911373
MK
326out_locked:
327 resv->adds_in_progress--;
7b24d861 328 spin_unlock(&resv->lock);
cf3ad20b
MK
329 VM_BUG_ON(add < 0);
330 return add;
96822904
AW
331}
332
1dd308a7
MK
333/*
334 * Examine the existing reserve map and determine how many
335 * huge pages in the specified range [f, t) are NOT currently
336 * represented. This routine is called before a subsequent
337 * call to region_add that will actually modify the reserve
338 * map to add the specified range [f, t). region_chg does
339 * not change the number of huge pages represented by the
340 * map. However, if the existing regions in the map can not
341 * be expanded to represent the new range, a new file_region
342 * structure is added to the map as a placeholder. This is
343 * so that the subsequent region_add call will have all the
344 * regions it needs and will not fail.
345 *
5e911373
MK
346 * Upon entry, region_chg will also examine the cache of region descriptors
347 * associated with the map. If there are not enough descriptors cached, one
348 * will be allocated for the in progress add operation.
349 *
350 * Returns the number of huge pages that need to be added to the existing
351 * reservation map for the range [f, t). This number is greater or equal to
352 * zero. -ENOMEM is returned if a new file_region structure or cache entry
353 * is needed and can not be allocated.
1dd308a7 354 */
1406ec9b 355static long region_chg(struct resv_map *resv, long f, long t)
96822904 356{
1406ec9b 357 struct list_head *head = &resv->regions;
7b24d861 358 struct file_region *rg, *nrg = NULL;
96822904
AW
359 long chg = 0;
360
7b24d861
DB
361retry:
362 spin_lock(&resv->lock);
5e911373
MK
363retry_locked:
364 resv->adds_in_progress++;
365
366 /*
367 * Check for sufficient descriptors in the cache to accommodate
368 * the number of in progress add operations.
369 */
370 if (resv->adds_in_progress > resv->region_cache_count) {
371 struct file_region *trg;
372
373 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
374 /* Must drop lock to allocate a new descriptor. */
375 resv->adds_in_progress--;
376 spin_unlock(&resv->lock);
377
378 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
379 if (!trg) {
380 kfree(nrg);
5e911373 381 return -ENOMEM;
dbe409e4 382 }
5e911373
MK
383
384 spin_lock(&resv->lock);
385 list_add(&trg->link, &resv->region_cache);
386 resv->region_cache_count++;
387 goto retry_locked;
388 }
389
96822904
AW
390 /* Locate the region we are before or in. */
391 list_for_each_entry(rg, head, link)
392 if (f <= rg->to)
393 break;
394
395 /* If we are below the current region then a new region is required.
396 * Subtle, allocate a new region at the position but make it zero
397 * size such that we can guarantee to record the reservation. */
398 if (&rg->link == head || t < rg->from) {
7b24d861 399 if (!nrg) {
5e911373 400 resv->adds_in_progress--;
7b24d861
DB
401 spin_unlock(&resv->lock);
402 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
403 if (!nrg)
404 return -ENOMEM;
405
406 nrg->from = f;
407 nrg->to = f;
408 INIT_LIST_HEAD(&nrg->link);
409 goto retry;
410 }
96822904 411
7b24d861
DB
412 list_add(&nrg->link, rg->link.prev);
413 chg = t - f;
414 goto out_nrg;
96822904
AW
415 }
416
417 /* Round our left edge to the current segment if it encloses us. */
418 if (f > rg->from)
419 f = rg->from;
420 chg = t - f;
421
422 /* Check for and consume any regions we now overlap with. */
423 list_for_each_entry(rg, rg->link.prev, link) {
424 if (&rg->link == head)
425 break;
426 if (rg->from > t)
7b24d861 427 goto out;
96822904 428
25985edc 429 /* We overlap with this area, if it extends further than
96822904
AW
430 * us then we must extend ourselves. Account for its
431 * existing reservation. */
432 if (rg->to > t) {
433 chg += rg->to - t;
434 t = rg->to;
435 }
436 chg -= rg->to - rg->from;
437 }
7b24d861
DB
438
439out:
440 spin_unlock(&resv->lock);
441 /* We already know we raced and no longer need the new region */
442 kfree(nrg);
443 return chg;
444out_nrg:
445 spin_unlock(&resv->lock);
96822904
AW
446 return chg;
447}
448
5e911373
MK
449/*
450 * Abort the in progress add operation. The adds_in_progress field
451 * of the resv_map keeps track of the operations in progress between
452 * calls to region_chg and region_add. Operations are sometimes
453 * aborted after the call to region_chg. In such cases, region_abort
454 * is called to decrement the adds_in_progress counter.
455 *
456 * NOTE: The range arguments [f, t) are not needed or used in this
457 * routine. They are kept to make reading the calling code easier as
458 * arguments will match the associated region_chg call.
459 */
460static void region_abort(struct resv_map *resv, long f, long t)
461{
462 spin_lock(&resv->lock);
463 VM_BUG_ON(!resv->region_cache_count);
464 resv->adds_in_progress--;
465 spin_unlock(&resv->lock);
466}
467
1dd308a7 468/*
feba16e2
MK
469 * Delete the specified range [f, t) from the reserve map. If the
470 * t parameter is LONG_MAX, this indicates that ALL regions after f
471 * should be deleted. Locate the regions which intersect [f, t)
472 * and either trim, delete or split the existing regions.
473 *
474 * Returns the number of huge pages deleted from the reserve map.
475 * In the normal case, the return value is zero or more. In the
476 * case where a region must be split, a new region descriptor must
477 * be allocated. If the allocation fails, -ENOMEM will be returned.
478 * NOTE: If the parameter t == LONG_MAX, then we will never split
479 * a region and possibly return -ENOMEM. Callers specifying
480 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 481 */
feba16e2 482static long region_del(struct resv_map *resv, long f, long t)
96822904 483{
1406ec9b 484 struct list_head *head = &resv->regions;
96822904 485 struct file_region *rg, *trg;
feba16e2
MK
486 struct file_region *nrg = NULL;
487 long del = 0;
96822904 488
feba16e2 489retry:
7b24d861 490 spin_lock(&resv->lock);
feba16e2 491 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
492 /*
493 * Skip regions before the range to be deleted. file_region
494 * ranges are normally of the form [from, to). However, there
495 * may be a "placeholder" entry in the map which is of the form
496 * (from, to) with from == to. Check for placeholder entries
497 * at the beginning of the range to be deleted.
498 */
499 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 500 continue;
dbe409e4 501
feba16e2 502 if (rg->from >= t)
96822904 503 break;
96822904 504
feba16e2
MK
505 if (f > rg->from && t < rg->to) { /* Must split region */
506 /*
507 * Check for an entry in the cache before dropping
508 * lock and attempting allocation.
509 */
510 if (!nrg &&
511 resv->region_cache_count > resv->adds_in_progress) {
512 nrg = list_first_entry(&resv->region_cache,
513 struct file_region,
514 link);
515 list_del(&nrg->link);
516 resv->region_cache_count--;
517 }
96822904 518
feba16e2
MK
519 if (!nrg) {
520 spin_unlock(&resv->lock);
521 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
522 if (!nrg)
523 return -ENOMEM;
524 goto retry;
525 }
526
527 del += t - f;
528
529 /* New entry for end of split region */
530 nrg->from = t;
531 nrg->to = rg->to;
532 INIT_LIST_HEAD(&nrg->link);
533
534 /* Original entry is trimmed */
535 rg->to = f;
536
537 list_add(&nrg->link, &rg->link);
538 nrg = NULL;
96822904 539 break;
feba16e2
MK
540 }
541
542 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
543 del += rg->to - rg->from;
544 list_del(&rg->link);
545 kfree(rg);
546 continue;
547 }
548
549 if (f <= rg->from) { /* Trim beginning of region */
550 del += t - rg->from;
551 rg->from = t;
552 } else { /* Trim end of region */
553 del += rg->to - f;
554 rg->to = f;
555 }
96822904 556 }
7b24d861 557
7b24d861 558 spin_unlock(&resv->lock);
feba16e2
MK
559 kfree(nrg);
560 return del;
96822904
AW
561}
562
b5cec28d
MK
563/*
564 * A rare out of memory error was encountered which prevented removal of
565 * the reserve map region for a page. The huge page itself was free'ed
566 * and removed from the page cache. This routine will adjust the subpool
567 * usage count, and the global reserve count if needed. By incrementing
568 * these counts, the reserve map entry which could not be deleted will
569 * appear as a "reserved" entry instead of simply dangling with incorrect
570 * counts.
571 */
72e2936c 572void hugetlb_fix_reserve_counts(struct inode *inode)
b5cec28d
MK
573{
574 struct hugepage_subpool *spool = subpool_inode(inode);
575 long rsv_adjust;
576
577 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
72e2936c 578 if (rsv_adjust) {
b5cec28d
MK
579 struct hstate *h = hstate_inode(inode);
580
581 hugetlb_acct_memory(h, 1);
582 }
583}
584
1dd308a7
MK
585/*
586 * Count and return the number of huge pages in the reserve map
587 * that intersect with the range [f, t).
588 */
1406ec9b 589static long region_count(struct resv_map *resv, long f, long t)
84afd99b 590{
1406ec9b 591 struct list_head *head = &resv->regions;
84afd99b
AW
592 struct file_region *rg;
593 long chg = 0;
594
7b24d861 595 spin_lock(&resv->lock);
84afd99b
AW
596 /* Locate each segment we overlap with, and count that overlap. */
597 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
598 long seg_from;
599 long seg_to;
84afd99b
AW
600
601 if (rg->to <= f)
602 continue;
603 if (rg->from >= t)
604 break;
605
606 seg_from = max(rg->from, f);
607 seg_to = min(rg->to, t);
608
609 chg += seg_to - seg_from;
610 }
7b24d861 611 spin_unlock(&resv->lock);
84afd99b
AW
612
613 return chg;
614}
615
e7c4b0bf
AW
616/*
617 * Convert the address within this vma to the page offset within
618 * the mapping, in pagecache page units; huge pages here.
619 */
a5516438
AK
620static pgoff_t vma_hugecache_offset(struct hstate *h,
621 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 622{
a5516438
AK
623 return ((address - vma->vm_start) >> huge_page_shift(h)) +
624 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
625}
626
0fe6e20b
NH
627pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
628 unsigned long address)
629{
630 return vma_hugecache_offset(hstate_vma(vma), vma, address);
631}
dee41079 632EXPORT_SYMBOL_GPL(linear_hugepage_index);
0fe6e20b 633
08fba699
MG
634/*
635 * Return the size of the pages allocated when backing a VMA. In the majority
636 * cases this will be same size as used by the page table entries.
637 */
638unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
639{
640 struct hstate *hstate;
641
642 if (!is_vm_hugetlb_page(vma))
643 return PAGE_SIZE;
644
645 hstate = hstate_vma(vma);
646
2415cf12 647 return 1UL << huge_page_shift(hstate);
08fba699 648}
f340ca0f 649EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 650
3340289d
MG
651/*
652 * Return the page size being used by the MMU to back a VMA. In the majority
653 * of cases, the page size used by the kernel matches the MMU size. On
654 * architectures where it differs, an architecture-specific version of this
655 * function is required.
656 */
657#ifndef vma_mmu_pagesize
658unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
659{
660 return vma_kernel_pagesize(vma);
661}
662#endif
663
84afd99b
AW
664/*
665 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
666 * bits of the reservation map pointer, which are always clear due to
667 * alignment.
668 */
669#define HPAGE_RESV_OWNER (1UL << 0)
670#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 671#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 672
a1e78772
MG
673/*
674 * These helpers are used to track how many pages are reserved for
675 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
676 * is guaranteed to have their future faults succeed.
677 *
678 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
679 * the reserve counters are updated with the hugetlb_lock held. It is safe
680 * to reset the VMA at fork() time as it is not in use yet and there is no
681 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
682 *
683 * The private mapping reservation is represented in a subtly different
684 * manner to a shared mapping. A shared mapping has a region map associated
685 * with the underlying file, this region map represents the backing file
686 * pages which have ever had a reservation assigned which this persists even
687 * after the page is instantiated. A private mapping has a region map
688 * associated with the original mmap which is attached to all VMAs which
689 * reference it, this region map represents those offsets which have consumed
690 * reservation ie. where pages have been instantiated.
a1e78772 691 */
e7c4b0bf
AW
692static unsigned long get_vma_private_data(struct vm_area_struct *vma)
693{
694 return (unsigned long)vma->vm_private_data;
695}
696
697static void set_vma_private_data(struct vm_area_struct *vma,
698 unsigned long value)
699{
700 vma->vm_private_data = (void *)value;
701}
702
9119a41e 703struct resv_map *resv_map_alloc(void)
84afd99b
AW
704{
705 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
706 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
707
708 if (!resv_map || !rg) {
709 kfree(resv_map);
710 kfree(rg);
84afd99b 711 return NULL;
5e911373 712 }
84afd99b
AW
713
714 kref_init(&resv_map->refs);
7b24d861 715 spin_lock_init(&resv_map->lock);
84afd99b
AW
716 INIT_LIST_HEAD(&resv_map->regions);
717
5e911373
MK
718 resv_map->adds_in_progress = 0;
719
720 INIT_LIST_HEAD(&resv_map->region_cache);
721 list_add(&rg->link, &resv_map->region_cache);
722 resv_map->region_cache_count = 1;
723
84afd99b
AW
724 return resv_map;
725}
726
9119a41e 727void resv_map_release(struct kref *ref)
84afd99b
AW
728{
729 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
730 struct list_head *head = &resv_map->region_cache;
731 struct file_region *rg, *trg;
84afd99b
AW
732
733 /* Clear out any active regions before we release the map. */
feba16e2 734 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
735
736 /* ... and any entries left in the cache */
737 list_for_each_entry_safe(rg, trg, head, link) {
738 list_del(&rg->link);
739 kfree(rg);
740 }
741
742 VM_BUG_ON(resv_map->adds_in_progress);
743
84afd99b
AW
744 kfree(resv_map);
745}
746
4e35f483
JK
747static inline struct resv_map *inode_resv_map(struct inode *inode)
748{
749 return inode->i_mapping->private_data;
750}
751
84afd99b 752static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 753{
81d1b09c 754 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
755 if (vma->vm_flags & VM_MAYSHARE) {
756 struct address_space *mapping = vma->vm_file->f_mapping;
757 struct inode *inode = mapping->host;
758
759 return inode_resv_map(inode);
760
761 } else {
84afd99b
AW
762 return (struct resv_map *)(get_vma_private_data(vma) &
763 ~HPAGE_RESV_MASK);
4e35f483 764 }
a1e78772
MG
765}
766
84afd99b 767static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 768{
81d1b09c
SL
769 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
770 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 771
84afd99b
AW
772 set_vma_private_data(vma, (get_vma_private_data(vma) &
773 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
774}
775
776static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
777{
81d1b09c
SL
778 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
779 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
780
781 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
782}
783
784static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
785{
81d1b09c 786 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
787
788 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
789}
790
04f2cbe3 791/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
792void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
793{
81d1b09c 794 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 795 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
796 vma->vm_private_data = (void *)0;
797}
798
799/* Returns true if the VMA has associated reserve pages */
559ec2f8 800static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 801{
af0ed73e
JK
802 if (vma->vm_flags & VM_NORESERVE) {
803 /*
804 * This address is already reserved by other process(chg == 0),
805 * so, we should decrement reserved count. Without decrementing,
806 * reserve count remains after releasing inode, because this
807 * allocated page will go into page cache and is regarded as
808 * coming from reserved pool in releasing step. Currently, we
809 * don't have any other solution to deal with this situation
810 * properly, so add work-around here.
811 */
812 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 813 return true;
af0ed73e 814 else
559ec2f8 815 return false;
af0ed73e 816 }
a63884e9
JK
817
818 /* Shared mappings always use reserves */
1fb1b0e9
MK
819 if (vma->vm_flags & VM_MAYSHARE) {
820 /*
821 * We know VM_NORESERVE is not set. Therefore, there SHOULD
822 * be a region map for all pages. The only situation where
823 * there is no region map is if a hole was punched via
824 * fallocate. In this case, there really are no reverves to
825 * use. This situation is indicated if chg != 0.
826 */
827 if (chg)
828 return false;
829 else
830 return true;
831 }
a63884e9
JK
832
833 /*
834 * Only the process that called mmap() has reserves for
835 * private mappings.
836 */
67961f9d
MK
837 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER)) {
838 /*
839 * Like the shared case above, a hole punch or truncate
840 * could have been performed on the private mapping.
841 * Examine the value of chg to determine if reserves
842 * actually exist or were previously consumed.
843 * Very Subtle - The value of chg comes from a previous
844 * call to vma_needs_reserves(). The reserve map for
845 * private mappings has different (opposite) semantics
846 * than that of shared mappings. vma_needs_reserves()
847 * has already taken this difference in semantics into
848 * account. Therefore, the meaning of chg is the same
849 * as in the shared case above. Code could easily be
850 * combined, but keeping it separate draws attention to
851 * subtle differences.
852 */
853 if (chg)
854 return false;
855 else
856 return true;
857 }
a63884e9 858
559ec2f8 859 return false;
a1e78772
MG
860}
861
a5516438 862static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
863{
864 int nid = page_to_nid(page);
0edaecfa 865 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
866 h->free_huge_pages++;
867 h->free_huge_pages_node[nid]++;
1da177e4
LT
868}
869
94310cbc 870static struct page *dequeue_huge_page_node_exact(struct hstate *h, int nid)
bf50bab2
NH
871{
872 struct page *page;
873
c8721bbb 874 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
243abd5b 875 if (!PageHWPoison(page))
c8721bbb
NH
876 break;
877 /*
878 * if 'non-isolated free hugepage' not found on the list,
879 * the allocation fails.
880 */
881 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 882 return NULL;
0edaecfa 883 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 884 set_page_refcounted(page);
bf50bab2
NH
885 h->free_huge_pages--;
886 h->free_huge_pages_node[nid]--;
887 return page;
888}
889
3e59fcb0
MH
890static struct page *dequeue_huge_page_nodemask(struct hstate *h, gfp_t gfp_mask, int nid,
891 nodemask_t *nmask)
94310cbc 892{
3e59fcb0
MH
893 unsigned int cpuset_mems_cookie;
894 struct zonelist *zonelist;
895 struct zone *zone;
896 struct zoneref *z;
897 int node = -1;
94310cbc 898
3e59fcb0
MH
899 zonelist = node_zonelist(nid, gfp_mask);
900
901retry_cpuset:
902 cpuset_mems_cookie = read_mems_allowed_begin();
903 for_each_zone_zonelist_nodemask(zone, z, zonelist, gfp_zone(gfp_mask), nmask) {
904 struct page *page;
905
906 if (!cpuset_zone_allowed(zone, gfp_mask))
907 continue;
908 /*
909 * no need to ask again on the same node. Pool is node rather than
910 * zone aware
911 */
912 if (zone_to_nid(zone) == node)
913 continue;
914 node = zone_to_nid(zone);
94310cbc 915
94310cbc
AK
916 page = dequeue_huge_page_node_exact(h, node);
917 if (page)
918 return page;
919 }
3e59fcb0
MH
920 if (unlikely(read_mems_allowed_retry(cpuset_mems_cookie)))
921 goto retry_cpuset;
922
94310cbc
AK
923 return NULL;
924}
925
86cdb465
NH
926/* Movability of hugepages depends on migration support. */
927static inline gfp_t htlb_alloc_mask(struct hstate *h)
928{
100873d7 929 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
930 return GFP_HIGHUSER_MOVABLE;
931 else
932 return GFP_HIGHUSER;
933}
934
a5516438
AK
935static struct page *dequeue_huge_page_vma(struct hstate *h,
936 struct vm_area_struct *vma,
af0ed73e
JK
937 unsigned long address, int avoid_reserve,
938 long chg)
1da177e4 939{
3e59fcb0 940 struct page *page;
480eccf9 941 struct mempolicy *mpol;
04ec6264 942 gfp_t gfp_mask;
3e59fcb0 943 nodemask_t *nodemask;
04ec6264 944 int nid;
1da177e4 945
a1e78772
MG
946 /*
947 * A child process with MAP_PRIVATE mappings created by their parent
948 * have no page reserves. This check ensures that reservations are
949 * not "stolen". The child may still get SIGKILLed
950 */
af0ed73e 951 if (!vma_has_reserves(vma, chg) &&
a5516438 952 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 953 goto err;
a1e78772 954
04f2cbe3 955 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 956 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 957 goto err;
04f2cbe3 958
04ec6264
VB
959 gfp_mask = htlb_alloc_mask(h);
960 nid = huge_node(vma, address, gfp_mask, &mpol, &nodemask);
3e59fcb0
MH
961 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, nodemask);
962 if (page && !avoid_reserve && vma_has_reserves(vma, chg)) {
963 SetPagePrivate(page);
964 h->resv_huge_pages--;
1da177e4 965 }
cc9a6c87 966
52cd3b07 967 mpol_cond_put(mpol);
1da177e4 968 return page;
cc9a6c87
MG
969
970err:
cc9a6c87 971 return NULL;
1da177e4
LT
972}
973
1cac6f2c
LC
974/*
975 * common helper functions for hstate_next_node_to_{alloc|free}.
976 * We may have allocated or freed a huge page based on a different
977 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
978 * be outside of *nodes_allowed. Ensure that we use an allowed
979 * node for alloc or free.
980 */
981static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
982{
0edaf86c 983 nid = next_node_in(nid, *nodes_allowed);
1cac6f2c
LC
984 VM_BUG_ON(nid >= MAX_NUMNODES);
985
986 return nid;
987}
988
989static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
990{
991 if (!node_isset(nid, *nodes_allowed))
992 nid = next_node_allowed(nid, nodes_allowed);
993 return nid;
994}
995
996/*
997 * returns the previously saved node ["this node"] from which to
998 * allocate a persistent huge page for the pool and advance the
999 * next node from which to allocate, handling wrap at end of node
1000 * mask.
1001 */
1002static int hstate_next_node_to_alloc(struct hstate *h,
1003 nodemask_t *nodes_allowed)
1004{
1005 int nid;
1006
1007 VM_BUG_ON(!nodes_allowed);
1008
1009 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
1010 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
1011
1012 return nid;
1013}
1014
1015/*
1016 * helper for free_pool_huge_page() - return the previously saved
1017 * node ["this node"] from which to free a huge page. Advance the
1018 * next node id whether or not we find a free huge page to free so
1019 * that the next attempt to free addresses the next node.
1020 */
1021static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
1022{
1023 int nid;
1024
1025 VM_BUG_ON(!nodes_allowed);
1026
1027 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
1028 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
1029
1030 return nid;
1031}
1032
1033#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
1034 for (nr_nodes = nodes_weight(*mask); \
1035 nr_nodes > 0 && \
1036 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
1037 nr_nodes--)
1038
1039#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
1040 for (nr_nodes = nodes_weight(*mask); \
1041 nr_nodes > 0 && \
1042 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1043 nr_nodes--)
1044
e1073d1e 1045#ifdef CONFIG_ARCH_HAS_GIGANTIC_PAGE
944d9fec 1046static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1047 unsigned int order)
944d9fec
LC
1048{
1049 int i;
1050 int nr_pages = 1 << order;
1051 struct page *p = page + 1;
1052
c8cc708a 1053 atomic_set(compound_mapcount_ptr(page), 0);
944d9fec 1054 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1055 clear_compound_head(p);
944d9fec 1056 set_page_refcounted(p);
944d9fec
LC
1057 }
1058
1059 set_compound_order(page, 0);
1060 __ClearPageHead(page);
1061}
1062
d00181b9 1063static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1064{
1065 free_contig_range(page_to_pfn(page), 1 << order);
1066}
1067
1068static int __alloc_gigantic_page(unsigned long start_pfn,
1069 unsigned long nr_pages)
1070{
1071 unsigned long end_pfn = start_pfn + nr_pages;
ca96b625
LS
1072 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
1073 GFP_KERNEL);
944d9fec
LC
1074}
1075
f44b2dda
JK
1076static bool pfn_range_valid_gigantic(struct zone *z,
1077 unsigned long start_pfn, unsigned long nr_pages)
944d9fec
LC
1078{
1079 unsigned long i, end_pfn = start_pfn + nr_pages;
1080 struct page *page;
1081
1082 for (i = start_pfn; i < end_pfn; i++) {
1083 if (!pfn_valid(i))
1084 return false;
1085
1086 page = pfn_to_page(i);
1087
f44b2dda
JK
1088 if (page_zone(page) != z)
1089 return false;
1090
944d9fec
LC
1091 if (PageReserved(page))
1092 return false;
1093
1094 if (page_count(page) > 0)
1095 return false;
1096
1097 if (PageHuge(page))
1098 return false;
1099 }
1100
1101 return true;
1102}
1103
1104static bool zone_spans_last_pfn(const struct zone *zone,
1105 unsigned long start_pfn, unsigned long nr_pages)
1106{
1107 unsigned long last_pfn = start_pfn + nr_pages - 1;
1108 return zone_spans_pfn(zone, last_pfn);
1109}
1110
d00181b9 1111static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1112{
1113 unsigned long nr_pages = 1 << order;
1114 unsigned long ret, pfn, flags;
1115 struct zone *z;
1116
1117 z = NODE_DATA(nid)->node_zones;
1118 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1119 spin_lock_irqsave(&z->lock, flags);
1120
1121 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1122 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
f44b2dda 1123 if (pfn_range_valid_gigantic(z, pfn, nr_pages)) {
944d9fec
LC
1124 /*
1125 * We release the zone lock here because
1126 * alloc_contig_range() will also lock the zone
1127 * at some point. If there's an allocation
1128 * spinning on this lock, it may win the race
1129 * and cause alloc_contig_range() to fail...
1130 */
1131 spin_unlock_irqrestore(&z->lock, flags);
1132 ret = __alloc_gigantic_page(pfn, nr_pages);
1133 if (!ret)
1134 return pfn_to_page(pfn);
1135 spin_lock_irqsave(&z->lock, flags);
1136 }
1137 pfn += nr_pages;
1138 }
1139
1140 spin_unlock_irqrestore(&z->lock, flags);
1141 }
1142
1143 return NULL;
1144}
1145
1146static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1147static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1148
1149static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1150{
1151 struct page *page;
1152
1153 page = alloc_gigantic_page(nid, huge_page_order(h));
1154 if (page) {
1155 prep_compound_gigantic_page(page, huge_page_order(h));
1156 prep_new_huge_page(h, page, nid);
1157 }
1158
1159 return page;
1160}
1161
1162static int alloc_fresh_gigantic_page(struct hstate *h,
1163 nodemask_t *nodes_allowed)
1164{
1165 struct page *page = NULL;
1166 int nr_nodes, node;
1167
1168 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1169 page = alloc_fresh_gigantic_page_node(h, node);
1170 if (page)
1171 return 1;
1172 }
1173
1174 return 0;
1175}
1176
e1073d1e 1177#else /* !CONFIG_ARCH_HAS_GIGANTIC_PAGE */
944d9fec 1178static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1179static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1180static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1181 unsigned int order) { }
944d9fec
LC
1182static inline int alloc_fresh_gigantic_page(struct hstate *h,
1183 nodemask_t *nodes_allowed) { return 0; }
1184#endif
1185
a5516438 1186static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1187{
1188 int i;
a5516438 1189
944d9fec
LC
1190 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1191 return;
18229df5 1192
a5516438
AK
1193 h->nr_huge_pages--;
1194 h->nr_huge_pages_node[page_to_nid(page)]--;
1195 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1196 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1197 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1198 1 << PG_active | 1 << PG_private |
1199 1 << PG_writeback);
6af2acb6 1200 }
309381fe 1201 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1202 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1203 set_page_refcounted(page);
944d9fec
LC
1204 if (hstate_is_gigantic(h)) {
1205 destroy_compound_gigantic_page(page, huge_page_order(h));
1206 free_gigantic_page(page, huge_page_order(h));
1207 } else {
944d9fec
LC
1208 __free_pages(page, huge_page_order(h));
1209 }
6af2acb6
AL
1210}
1211
e5ff2159
AK
1212struct hstate *size_to_hstate(unsigned long size)
1213{
1214 struct hstate *h;
1215
1216 for_each_hstate(h) {
1217 if (huge_page_size(h) == size)
1218 return h;
1219 }
1220 return NULL;
1221}
1222
bcc54222
NH
1223/*
1224 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1225 * to hstate->hugepage_activelist.)
1226 *
1227 * This function can be called for tail pages, but never returns true for them.
1228 */
1229bool page_huge_active(struct page *page)
1230{
1231 VM_BUG_ON_PAGE(!PageHuge(page), page);
1232 return PageHead(page) && PagePrivate(&page[1]);
1233}
1234
1235/* never called for tail page */
1236static void set_page_huge_active(struct page *page)
1237{
1238 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1239 SetPagePrivate(&page[1]);
1240}
1241
1242static void clear_page_huge_active(struct page *page)
1243{
1244 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1245 ClearPagePrivate(&page[1]);
1246}
1247
8f1d26d0 1248void free_huge_page(struct page *page)
27a85ef1 1249{
a5516438
AK
1250 /*
1251 * Can't pass hstate in here because it is called from the
1252 * compound page destructor.
1253 */
e5ff2159 1254 struct hstate *h = page_hstate(page);
7893d1d5 1255 int nid = page_to_nid(page);
90481622
DG
1256 struct hugepage_subpool *spool =
1257 (struct hugepage_subpool *)page_private(page);
07443a85 1258 bool restore_reserve;
27a85ef1 1259
e5df70ab 1260 set_page_private(page, 0);
23be7468 1261 page->mapping = NULL;
b4330afb
MK
1262 VM_BUG_ON_PAGE(page_count(page), page);
1263 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1264 restore_reserve = PagePrivate(page);
16c794b4 1265 ClearPagePrivate(page);
27a85ef1 1266
1c5ecae3
MK
1267 /*
1268 * A return code of zero implies that the subpool will be under its
1269 * minimum size if the reservation is not restored after page is free.
1270 * Therefore, force restore_reserve operation.
1271 */
1272 if (hugepage_subpool_put_pages(spool, 1) == 0)
1273 restore_reserve = true;
1274
27a85ef1 1275 spin_lock(&hugetlb_lock);
bcc54222 1276 clear_page_huge_active(page);
6d76dcf4
AK
1277 hugetlb_cgroup_uncharge_page(hstate_index(h),
1278 pages_per_huge_page(h), page);
07443a85
JK
1279 if (restore_reserve)
1280 h->resv_huge_pages++;
1281
944d9fec 1282 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1283 /* remove the page from active list */
1284 list_del(&page->lru);
a5516438
AK
1285 update_and_free_page(h, page);
1286 h->surplus_huge_pages--;
1287 h->surplus_huge_pages_node[nid]--;
7893d1d5 1288 } else {
5d3a551c 1289 arch_clear_hugepage_flags(page);
a5516438 1290 enqueue_huge_page(h, page);
7893d1d5 1291 }
27a85ef1
DG
1292 spin_unlock(&hugetlb_lock);
1293}
1294
a5516438 1295static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1296{
0edaecfa 1297 INIT_LIST_HEAD(&page->lru);
f1e61557 1298 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1299 spin_lock(&hugetlb_lock);
9dd540e2 1300 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1301 h->nr_huge_pages++;
1302 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1303 spin_unlock(&hugetlb_lock);
1304 put_page(page); /* free it into the hugepage allocator */
1305}
1306
d00181b9 1307static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1308{
1309 int i;
1310 int nr_pages = 1 << order;
1311 struct page *p = page + 1;
1312
1313 /* we rely on prep_new_huge_page to set the destructor */
1314 set_compound_order(page, order);
ef5a22be 1315 __ClearPageReserved(page);
de09d31d 1316 __SetPageHead(page);
20a0307c 1317 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1318 /*
1319 * For gigantic hugepages allocated through bootmem at
1320 * boot, it's safer to be consistent with the not-gigantic
1321 * hugepages and clear the PG_reserved bit from all tail pages
1322 * too. Otherwse drivers using get_user_pages() to access tail
1323 * pages may get the reference counting wrong if they see
1324 * PG_reserved set on a tail page (despite the head page not
1325 * having PG_reserved set). Enforcing this consistency between
1326 * head and tail pages allows drivers to optimize away a check
1327 * on the head page when they need know if put_page() is needed
1328 * after get_user_pages().
1329 */
1330 __ClearPageReserved(p);
58a84aa9 1331 set_page_count(p, 0);
1d798ca3 1332 set_compound_head(p, page);
20a0307c 1333 }
b4330afb 1334 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1335}
1336
7795912c
AM
1337/*
1338 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1339 * transparent huge pages. See the PageTransHuge() documentation for more
1340 * details.
1341 */
20a0307c
WF
1342int PageHuge(struct page *page)
1343{
20a0307c
WF
1344 if (!PageCompound(page))
1345 return 0;
1346
1347 page = compound_head(page);
f1e61557 1348 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1349}
43131e14
NH
1350EXPORT_SYMBOL_GPL(PageHuge);
1351
27c73ae7
AA
1352/*
1353 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1354 * normal or transparent huge pages.
1355 */
1356int PageHeadHuge(struct page *page_head)
1357{
27c73ae7
AA
1358 if (!PageHead(page_head))
1359 return 0;
1360
758f66a2 1361 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1362}
27c73ae7 1363
13d60f4b
ZY
1364pgoff_t __basepage_index(struct page *page)
1365{
1366 struct page *page_head = compound_head(page);
1367 pgoff_t index = page_index(page_head);
1368 unsigned long compound_idx;
1369
1370 if (!PageHuge(page_head))
1371 return page_index(page);
1372
1373 if (compound_order(page_head) >= MAX_ORDER)
1374 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1375 else
1376 compound_idx = page - page_head;
1377
1378 return (index << compound_order(page_head)) + compound_idx;
1379}
1380
a5516438 1381static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1382{
1da177e4 1383 struct page *page;
f96efd58 1384
96db800f 1385 page = __alloc_pages_node(nid,
86cdb465 1386 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
dcda9b04 1387 __GFP_RETRY_MAYFAIL|__GFP_NOWARN,
a5516438 1388 huge_page_order(h));
1da177e4 1389 if (page) {
a5516438 1390 prep_new_huge_page(h, page, nid);
1da177e4 1391 }
63b4613c
NA
1392
1393 return page;
1394}
1395
b2261026
JK
1396static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1397{
1398 struct page *page;
1399 int nr_nodes, node;
1400 int ret = 0;
1401
1402 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1403 page = alloc_fresh_huge_page_node(h, node);
1404 if (page) {
1405 ret = 1;
1406 break;
1407 }
1408 }
1409
1410 if (ret)
1411 count_vm_event(HTLB_BUDDY_PGALLOC);
1412 else
1413 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1414
1415 return ret;
1416}
1417
e8c5c824
LS
1418/*
1419 * Free huge page from pool from next node to free.
1420 * Attempt to keep persistent huge pages more or less
1421 * balanced over allowed nodes.
1422 * Called with hugetlb_lock locked.
1423 */
6ae11b27
LS
1424static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1425 bool acct_surplus)
e8c5c824 1426{
b2261026 1427 int nr_nodes, node;
e8c5c824
LS
1428 int ret = 0;
1429
b2261026 1430 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1431 /*
1432 * If we're returning unused surplus pages, only examine
1433 * nodes with surplus pages.
1434 */
b2261026
JK
1435 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1436 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1437 struct page *page =
b2261026 1438 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1439 struct page, lru);
1440 list_del(&page->lru);
1441 h->free_huge_pages--;
b2261026 1442 h->free_huge_pages_node[node]--;
685f3457
LS
1443 if (acct_surplus) {
1444 h->surplus_huge_pages--;
b2261026 1445 h->surplus_huge_pages_node[node]--;
685f3457 1446 }
e8c5c824
LS
1447 update_and_free_page(h, page);
1448 ret = 1;
9a76db09 1449 break;
e8c5c824 1450 }
b2261026 1451 }
e8c5c824
LS
1452
1453 return ret;
1454}
1455
c8721bbb
NH
1456/*
1457 * Dissolve a given free hugepage into free buddy pages. This function does
082d5b6b
GS
1458 * nothing for in-use (including surplus) hugepages. Returns -EBUSY if the
1459 * number of free hugepages would be reduced below the number of reserved
1460 * hugepages.
c8721bbb 1461 */
c3114a84 1462int dissolve_free_huge_page(struct page *page)
c8721bbb 1463{
082d5b6b
GS
1464 int rc = 0;
1465
c8721bbb
NH
1466 spin_lock(&hugetlb_lock);
1467 if (PageHuge(page) && !page_count(page)) {
2247bb33
GS
1468 struct page *head = compound_head(page);
1469 struct hstate *h = page_hstate(head);
1470 int nid = page_to_nid(head);
082d5b6b
GS
1471 if (h->free_huge_pages - h->resv_huge_pages == 0) {
1472 rc = -EBUSY;
1473 goto out;
1474 }
c3114a84
AK
1475 /*
1476 * Move PageHWPoison flag from head page to the raw error page,
1477 * which makes any subpages rather than the error page reusable.
1478 */
1479 if (PageHWPoison(head) && page != head) {
1480 SetPageHWPoison(page);
1481 ClearPageHWPoison(head);
1482 }
2247bb33 1483 list_del(&head->lru);
c8721bbb
NH
1484 h->free_huge_pages--;
1485 h->free_huge_pages_node[nid]--;
c1470b33 1486 h->max_huge_pages--;
2247bb33 1487 update_and_free_page(h, head);
c8721bbb 1488 }
082d5b6b 1489out:
c8721bbb 1490 spin_unlock(&hugetlb_lock);
082d5b6b 1491 return rc;
c8721bbb
NH
1492}
1493
1494/*
1495 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1496 * make specified memory blocks removable from the system.
2247bb33
GS
1497 * Note that this will dissolve a free gigantic hugepage completely, if any
1498 * part of it lies within the given range.
082d5b6b
GS
1499 * Also note that if dissolve_free_huge_page() returns with an error, all
1500 * free hugepages that were dissolved before that error are lost.
c8721bbb 1501 */
082d5b6b 1502int dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
c8721bbb 1503{
c8721bbb 1504 unsigned long pfn;
eb03aa00 1505 struct page *page;
082d5b6b 1506 int rc = 0;
c8721bbb 1507
d0177639 1508 if (!hugepages_supported())
082d5b6b 1509 return rc;
d0177639 1510
eb03aa00
GS
1511 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order) {
1512 page = pfn_to_page(pfn);
1513 if (PageHuge(page) && !page_count(page)) {
1514 rc = dissolve_free_huge_page(page);
1515 if (rc)
1516 break;
1517 }
1518 }
082d5b6b
GS
1519
1520 return rc;
c8721bbb
NH
1521}
1522
099730d6 1523static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
aaf14e40 1524 gfp_t gfp_mask, int nid, nodemask_t *nmask)
099730d6
DH
1525{
1526 int order = huge_page_order(h);
099730d6 1527
dcda9b04 1528 gfp_mask |= __GFP_COMP|__GFP_RETRY_MAYFAIL|__GFP_NOWARN;
aaf14e40
MH
1529 if (nid == NUMA_NO_NODE)
1530 nid = numa_mem_id();
1531 return __alloc_pages_nodemask(gfp_mask, order, nid, nmask);
099730d6
DH
1532}
1533
aaf14e40
MH
1534static struct page *__alloc_buddy_huge_page(struct hstate *h, gfp_t gfp_mask,
1535 int nid, nodemask_t *nmask)
7893d1d5
AL
1536{
1537 struct page *page;
bf50bab2 1538 unsigned int r_nid;
7893d1d5 1539
bae7f4ae 1540 if (hstate_is_gigantic(h))
aa888a74
AK
1541 return NULL;
1542
d1c3fb1f
NA
1543 /*
1544 * Assume we will successfully allocate the surplus page to
1545 * prevent racing processes from causing the surplus to exceed
1546 * overcommit
1547 *
1548 * This however introduces a different race, where a process B
1549 * tries to grow the static hugepage pool while alloc_pages() is
1550 * called by process A. B will only examine the per-node
1551 * counters in determining if surplus huge pages can be
1552 * converted to normal huge pages in adjust_pool_surplus(). A
1553 * won't be able to increment the per-node counter, until the
1554 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1555 * no more huge pages can be converted from surplus to normal
1556 * state (and doesn't try to convert again). Thus, we have a
1557 * case where a surplus huge page exists, the pool is grown, and
1558 * the surplus huge page still exists after, even though it
1559 * should just have been converted to a normal huge page. This
1560 * does not leak memory, though, as the hugepage will be freed
1561 * once it is out of use. It also does not allow the counters to
1562 * go out of whack in adjust_pool_surplus() as we don't modify
1563 * the node values until we've gotten the hugepage and only the
1564 * per-node value is checked there.
1565 */
1566 spin_lock(&hugetlb_lock);
a5516438 1567 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1568 spin_unlock(&hugetlb_lock);
1569 return NULL;
1570 } else {
a5516438
AK
1571 h->nr_huge_pages++;
1572 h->surplus_huge_pages++;
d1c3fb1f
NA
1573 }
1574 spin_unlock(&hugetlb_lock);
1575
aaf14e40 1576 page = __hugetlb_alloc_buddy_huge_page(h, gfp_mask, nid, nmask);
d1c3fb1f
NA
1577
1578 spin_lock(&hugetlb_lock);
7893d1d5 1579 if (page) {
0edaecfa 1580 INIT_LIST_HEAD(&page->lru);
bf50bab2 1581 r_nid = page_to_nid(page);
f1e61557 1582 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1583 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1584 /*
1585 * We incremented the global counters already
1586 */
bf50bab2
NH
1587 h->nr_huge_pages_node[r_nid]++;
1588 h->surplus_huge_pages_node[r_nid]++;
3b116300 1589 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1590 } else {
a5516438
AK
1591 h->nr_huge_pages--;
1592 h->surplus_huge_pages--;
3b116300 1593 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1594 }
d1c3fb1f 1595 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1596
1597 return page;
1598}
1599
099730d6
DH
1600/*
1601 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1602 */
e0ec90ee 1603static
099730d6
DH
1604struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1605 struct vm_area_struct *vma, unsigned long addr)
1606{
aaf14e40
MH
1607 struct page *page;
1608 struct mempolicy *mpol;
1609 gfp_t gfp_mask = htlb_alloc_mask(h);
1610 int nid;
1611 nodemask_t *nodemask;
1612
1613 nid = huge_node(vma, addr, gfp_mask, &mpol, &nodemask);
1614 page = __alloc_buddy_huge_page(h, gfp_mask, nid, nodemask);
1615 mpol_cond_put(mpol);
1616
1617 return page;
099730d6
DH
1618}
1619
bf50bab2
NH
1620/*
1621 * This allocation function is useful in the context where vma is irrelevant.
1622 * E.g. soft-offlining uses this function because it only cares physical
1623 * address of error page.
1624 */
1625struct page *alloc_huge_page_node(struct hstate *h, int nid)
1626{
aaf14e40 1627 gfp_t gfp_mask = htlb_alloc_mask(h);
4ef91848 1628 struct page *page = NULL;
bf50bab2 1629
aaf14e40
MH
1630 if (nid != NUMA_NO_NODE)
1631 gfp_mask |= __GFP_THISNODE;
1632
bf50bab2 1633 spin_lock(&hugetlb_lock);
4ef91848 1634 if (h->free_huge_pages - h->resv_huge_pages > 0)
3e59fcb0 1635 page = dequeue_huge_page_nodemask(h, gfp_mask, nid, NULL);
bf50bab2
NH
1636 spin_unlock(&hugetlb_lock);
1637
94ae8ba7 1638 if (!page)
aaf14e40 1639 page = __alloc_buddy_huge_page(h, gfp_mask, nid, NULL);
bf50bab2
NH
1640
1641 return page;
1642}
1643
3e59fcb0
MH
1644
1645struct page *alloc_huge_page_nodemask(struct hstate *h, int preferred_nid,
1646 nodemask_t *nmask)
4db9b2ef 1647{
aaf14e40 1648 gfp_t gfp_mask = htlb_alloc_mask(h);
4db9b2ef
MH
1649
1650 spin_lock(&hugetlb_lock);
1651 if (h->free_huge_pages - h->resv_huge_pages > 0) {
3e59fcb0
MH
1652 struct page *page;
1653
1654 page = dequeue_huge_page_nodemask(h, gfp_mask, preferred_nid, nmask);
1655 if (page) {
1656 spin_unlock(&hugetlb_lock);
1657 return page;
4db9b2ef
MH
1658 }
1659 }
1660 spin_unlock(&hugetlb_lock);
4db9b2ef
MH
1661
1662 /* No reservations, try to overcommit */
3e59fcb0
MH
1663
1664 return __alloc_buddy_huge_page(h, gfp_mask, preferred_nid, nmask);
4db9b2ef
MH
1665}
1666
e4e574b7 1667/*
25985edc 1668 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1669 * of size 'delta'.
1670 */
a5516438 1671static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1672{
1673 struct list_head surplus_list;
1674 struct page *page, *tmp;
1675 int ret, i;
1676 int needed, allocated;
28073b02 1677 bool alloc_ok = true;
e4e574b7 1678
a5516438 1679 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1680 if (needed <= 0) {
a5516438 1681 h->resv_huge_pages += delta;
e4e574b7 1682 return 0;
ac09b3a1 1683 }
e4e574b7
AL
1684
1685 allocated = 0;
1686 INIT_LIST_HEAD(&surplus_list);
1687
1688 ret = -ENOMEM;
1689retry:
1690 spin_unlock(&hugetlb_lock);
1691 for (i = 0; i < needed; i++) {
aaf14e40
MH
1692 page = __alloc_buddy_huge_page(h, htlb_alloc_mask(h),
1693 NUMA_NO_NODE, NULL);
28073b02
HD
1694 if (!page) {
1695 alloc_ok = false;
1696 break;
1697 }
e4e574b7 1698 list_add(&page->lru, &surplus_list);
69ed779a 1699 cond_resched();
e4e574b7 1700 }
28073b02 1701 allocated += i;
e4e574b7
AL
1702
1703 /*
1704 * After retaking hugetlb_lock, we need to recalculate 'needed'
1705 * because either resv_huge_pages or free_huge_pages may have changed.
1706 */
1707 spin_lock(&hugetlb_lock);
a5516438
AK
1708 needed = (h->resv_huge_pages + delta) -
1709 (h->free_huge_pages + allocated);
28073b02
HD
1710 if (needed > 0) {
1711 if (alloc_ok)
1712 goto retry;
1713 /*
1714 * We were not able to allocate enough pages to
1715 * satisfy the entire reservation so we free what
1716 * we've allocated so far.
1717 */
1718 goto free;
1719 }
e4e574b7
AL
1720 /*
1721 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1722 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1723 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1724 * allocator. Commit the entire reservation here to prevent another
1725 * process from stealing the pages as they are added to the pool but
1726 * before they are reserved.
e4e574b7
AL
1727 */
1728 needed += allocated;
a5516438 1729 h->resv_huge_pages += delta;
e4e574b7 1730 ret = 0;
a9869b83 1731
19fc3f0a 1732 /* Free the needed pages to the hugetlb pool */
e4e574b7 1733 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1734 if ((--needed) < 0)
1735 break;
a9869b83
NH
1736 /*
1737 * This page is now managed by the hugetlb allocator and has
1738 * no users -- drop the buddy allocator's reference.
1739 */
1740 put_page_testzero(page);
309381fe 1741 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1742 enqueue_huge_page(h, page);
19fc3f0a 1743 }
28073b02 1744free:
b0365c8d 1745 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1746
1747 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1748 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1749 put_page(page);
a9869b83 1750 spin_lock(&hugetlb_lock);
e4e574b7
AL
1751
1752 return ret;
1753}
1754
1755/*
e5bbc8a6
MK
1756 * This routine has two main purposes:
1757 * 1) Decrement the reservation count (resv_huge_pages) by the value passed
1758 * in unused_resv_pages. This corresponds to the prior adjustments made
1759 * to the associated reservation map.
1760 * 2) Free any unused surplus pages that may have been allocated to satisfy
1761 * the reservation. As many as unused_resv_pages may be freed.
1762 *
1763 * Called with hugetlb_lock held. However, the lock could be dropped (and
1764 * reacquired) during calls to cond_resched_lock. Whenever dropping the lock,
1765 * we must make sure nobody else can claim pages we are in the process of
1766 * freeing. Do this by ensuring resv_huge_page always is greater than the
1767 * number of huge pages we plan to free when dropping the lock.
e4e574b7 1768 */
a5516438
AK
1769static void return_unused_surplus_pages(struct hstate *h,
1770 unsigned long unused_resv_pages)
e4e574b7 1771{
e4e574b7
AL
1772 unsigned long nr_pages;
1773
aa888a74 1774 /* Cannot return gigantic pages currently */
bae7f4ae 1775 if (hstate_is_gigantic(h))
e5bbc8a6 1776 goto out;
aa888a74 1777
e5bbc8a6
MK
1778 /*
1779 * Part (or even all) of the reservation could have been backed
1780 * by pre-allocated pages. Only free surplus pages.
1781 */
a5516438 1782 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1783
685f3457
LS
1784 /*
1785 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1786 * evenly across all nodes with memory. Iterate across these nodes
1787 * until we can no longer free unreserved surplus pages. This occurs
1788 * when the nodes with surplus pages have no free pages.
1789 * free_pool_huge_page() will balance the the freed pages across the
1790 * on-line nodes with memory and will handle the hstate accounting.
e5bbc8a6
MK
1791 *
1792 * Note that we decrement resv_huge_pages as we free the pages. If
1793 * we drop the lock, resv_huge_pages will still be sufficiently large
1794 * to cover subsequent pages we may free.
685f3457
LS
1795 */
1796 while (nr_pages--) {
e5bbc8a6
MK
1797 h->resv_huge_pages--;
1798 unused_resv_pages--;
8cebfcd0 1799 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
e5bbc8a6 1800 goto out;
7848a4bf 1801 cond_resched_lock(&hugetlb_lock);
e4e574b7 1802 }
e5bbc8a6
MK
1803
1804out:
1805 /* Fully uncommit the reservation */
1806 h->resv_huge_pages -= unused_resv_pages;
e4e574b7
AL
1807}
1808
5e911373 1809
c37f9fb1 1810/*
feba16e2 1811 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1812 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1813 *
1814 * vma_needs_reservation is called to determine if the huge page at addr
1815 * within the vma has an associated reservation. If a reservation is
1816 * needed, the value 1 is returned. The caller is then responsible for
1817 * managing the global reservation and subpool usage counts. After
1818 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1819 * to add the page to the reservation map. If the page allocation fails,
1820 * the reservation must be ended instead of committed. vma_end_reservation
1821 * is called in such cases.
cf3ad20b
MK
1822 *
1823 * In the normal case, vma_commit_reservation returns the same value
1824 * as the preceding vma_needs_reservation call. The only time this
1825 * is not the case is if a reserve map was changed between calls. It
1826 * is the responsibility of the caller to notice the difference and
1827 * take appropriate action.
96b96a96
MK
1828 *
1829 * vma_add_reservation is used in error paths where a reservation must
1830 * be restored when a newly allocated huge page must be freed. It is
1831 * to be called after calling vma_needs_reservation to determine if a
1832 * reservation exists.
c37f9fb1 1833 */
5e911373
MK
1834enum vma_resv_mode {
1835 VMA_NEEDS_RESV,
1836 VMA_COMMIT_RESV,
feba16e2 1837 VMA_END_RESV,
96b96a96 1838 VMA_ADD_RESV,
5e911373 1839};
cf3ad20b
MK
1840static long __vma_reservation_common(struct hstate *h,
1841 struct vm_area_struct *vma, unsigned long addr,
5e911373 1842 enum vma_resv_mode mode)
c37f9fb1 1843{
4e35f483
JK
1844 struct resv_map *resv;
1845 pgoff_t idx;
cf3ad20b 1846 long ret;
c37f9fb1 1847
4e35f483
JK
1848 resv = vma_resv_map(vma);
1849 if (!resv)
84afd99b 1850 return 1;
c37f9fb1 1851
4e35f483 1852 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1853 switch (mode) {
1854 case VMA_NEEDS_RESV:
cf3ad20b 1855 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1856 break;
1857 case VMA_COMMIT_RESV:
1858 ret = region_add(resv, idx, idx + 1);
1859 break;
feba16e2 1860 case VMA_END_RESV:
5e911373
MK
1861 region_abort(resv, idx, idx + 1);
1862 ret = 0;
1863 break;
96b96a96
MK
1864 case VMA_ADD_RESV:
1865 if (vma->vm_flags & VM_MAYSHARE)
1866 ret = region_add(resv, idx, idx + 1);
1867 else {
1868 region_abort(resv, idx, idx + 1);
1869 ret = region_del(resv, idx, idx + 1);
1870 }
1871 break;
5e911373
MK
1872 default:
1873 BUG();
1874 }
84afd99b 1875
4e35f483 1876 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1877 return ret;
67961f9d
MK
1878 else if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) && ret >= 0) {
1879 /*
1880 * In most cases, reserves always exist for private mappings.
1881 * However, a file associated with mapping could have been
1882 * hole punched or truncated after reserves were consumed.
1883 * As subsequent fault on such a range will not use reserves.
1884 * Subtle - The reserve map for private mappings has the
1885 * opposite meaning than that of shared mappings. If NO
1886 * entry is in the reserve map, it means a reservation exists.
1887 * If an entry exists in the reserve map, it means the
1888 * reservation has already been consumed. As a result, the
1889 * return value of this routine is the opposite of the
1890 * value returned from reserve map manipulation routines above.
1891 */
1892 if (ret)
1893 return 0;
1894 else
1895 return 1;
1896 }
4e35f483 1897 else
cf3ad20b 1898 return ret < 0 ? ret : 0;
c37f9fb1 1899}
cf3ad20b
MK
1900
1901static long vma_needs_reservation(struct hstate *h,
a5516438 1902 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1903{
5e911373 1904 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1905}
84afd99b 1906
cf3ad20b
MK
1907static long vma_commit_reservation(struct hstate *h,
1908 struct vm_area_struct *vma, unsigned long addr)
1909{
5e911373
MK
1910 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1911}
1912
feba16e2 1913static void vma_end_reservation(struct hstate *h,
5e911373
MK
1914 struct vm_area_struct *vma, unsigned long addr)
1915{
feba16e2 1916 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1917}
1918
96b96a96
MK
1919static long vma_add_reservation(struct hstate *h,
1920 struct vm_area_struct *vma, unsigned long addr)
1921{
1922 return __vma_reservation_common(h, vma, addr, VMA_ADD_RESV);
1923}
1924
1925/*
1926 * This routine is called to restore a reservation on error paths. In the
1927 * specific error paths, a huge page was allocated (via alloc_huge_page)
1928 * and is about to be freed. If a reservation for the page existed,
1929 * alloc_huge_page would have consumed the reservation and set PagePrivate
1930 * in the newly allocated page. When the page is freed via free_huge_page,
1931 * the global reservation count will be incremented if PagePrivate is set.
1932 * However, free_huge_page can not adjust the reserve map. Adjust the
1933 * reserve map here to be consistent with global reserve count adjustments
1934 * to be made by free_huge_page.
1935 */
1936static void restore_reserve_on_error(struct hstate *h,
1937 struct vm_area_struct *vma, unsigned long address,
1938 struct page *page)
1939{
1940 if (unlikely(PagePrivate(page))) {
1941 long rc = vma_needs_reservation(h, vma, address);
1942
1943 if (unlikely(rc < 0)) {
1944 /*
1945 * Rare out of memory condition in reserve map
1946 * manipulation. Clear PagePrivate so that
1947 * global reserve count will not be incremented
1948 * by free_huge_page. This will make it appear
1949 * as though the reservation for this page was
1950 * consumed. This may prevent the task from
1951 * faulting in the page at a later time. This
1952 * is better than inconsistent global huge page
1953 * accounting of reserve counts.
1954 */
1955 ClearPagePrivate(page);
1956 } else if (rc) {
1957 rc = vma_add_reservation(h, vma, address);
1958 if (unlikely(rc < 0))
1959 /*
1960 * See above comment about rare out of
1961 * memory condition.
1962 */
1963 ClearPagePrivate(page);
1964 } else
1965 vma_end_reservation(h, vma, address);
1966 }
1967}
1968
70c3547e 1969struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1970 unsigned long addr, int avoid_reserve)
1da177e4 1971{
90481622 1972 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1973 struct hstate *h = hstate_vma(vma);
348ea204 1974 struct page *page;
d85f69b0
MK
1975 long map_chg, map_commit;
1976 long gbl_chg;
6d76dcf4
AK
1977 int ret, idx;
1978 struct hugetlb_cgroup *h_cg;
a1e78772 1979
6d76dcf4 1980 idx = hstate_index(h);
a1e78772 1981 /*
d85f69b0
MK
1982 * Examine the region/reserve map to determine if the process
1983 * has a reservation for the page to be allocated. A return
1984 * code of zero indicates a reservation exists (no change).
a1e78772 1985 */
d85f69b0
MK
1986 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1987 if (map_chg < 0)
76dcee75 1988 return ERR_PTR(-ENOMEM);
d85f69b0
MK
1989
1990 /*
1991 * Processes that did not create the mapping will have no
1992 * reserves as indicated by the region/reserve map. Check
1993 * that the allocation will not exceed the subpool limit.
1994 * Allocations for MAP_NORESERVE mappings also need to be
1995 * checked against any subpool limit.
1996 */
1997 if (map_chg || avoid_reserve) {
1998 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1999 if (gbl_chg < 0) {
feba16e2 2000 vma_end_reservation(h, vma, addr);
76dcee75 2001 return ERR_PTR(-ENOSPC);
5e911373 2002 }
1da177e4 2003
d85f69b0
MK
2004 /*
2005 * Even though there was no reservation in the region/reserve
2006 * map, there could be reservations associated with the
2007 * subpool that can be used. This would be indicated if the
2008 * return value of hugepage_subpool_get_pages() is zero.
2009 * However, if avoid_reserve is specified we still avoid even
2010 * the subpool reservations.
2011 */
2012 if (avoid_reserve)
2013 gbl_chg = 1;
2014 }
2015
6d76dcf4 2016 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
2017 if (ret)
2018 goto out_subpool_put;
2019
1da177e4 2020 spin_lock(&hugetlb_lock);
d85f69b0
MK
2021 /*
2022 * glb_chg is passed to indicate whether or not a page must be taken
2023 * from the global free pool (global change). gbl_chg == 0 indicates
2024 * a reservation exists for the allocation.
2025 */
2026 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 2027 if (!page) {
94ae8ba7 2028 spin_unlock(&hugetlb_lock);
099730d6 2029 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
2030 if (!page)
2031 goto out_uncharge_cgroup;
a88c7695
NH
2032 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
2033 SetPagePrivate(page);
2034 h->resv_huge_pages--;
2035 }
79dbb236
AK
2036 spin_lock(&hugetlb_lock);
2037 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 2038 /* Fall through */
68842c9b 2039 }
81a6fcae
JK
2040 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
2041 spin_unlock(&hugetlb_lock);
348ea204 2042
90481622 2043 set_page_private(page, (unsigned long)spool);
90d8b7e6 2044
d85f69b0
MK
2045 map_commit = vma_commit_reservation(h, vma, addr);
2046 if (unlikely(map_chg > map_commit)) {
33039678
MK
2047 /*
2048 * The page was added to the reservation map between
2049 * vma_needs_reservation and vma_commit_reservation.
2050 * This indicates a race with hugetlb_reserve_pages.
2051 * Adjust for the subpool count incremented above AND
2052 * in hugetlb_reserve_pages for the same page. Also,
2053 * the reservation count added in hugetlb_reserve_pages
2054 * no longer applies.
2055 */
2056 long rsv_adjust;
2057
2058 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
2059 hugetlb_acct_memory(h, -rsv_adjust);
2060 }
90d8b7e6 2061 return page;
8f34af6f
JZ
2062
2063out_uncharge_cgroup:
2064 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
2065out_subpool_put:
d85f69b0 2066 if (map_chg || avoid_reserve)
8f34af6f 2067 hugepage_subpool_put_pages(spool, 1);
feba16e2 2068 vma_end_reservation(h, vma, addr);
8f34af6f 2069 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
2070}
2071
74060e4d
NH
2072/*
2073 * alloc_huge_page()'s wrapper which simply returns the page if allocation
2074 * succeeds, otherwise NULL. This function is called from new_vma_page(),
2075 * where no ERR_VALUE is expected to be returned.
2076 */
2077struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
2078 unsigned long addr, int avoid_reserve)
2079{
2080 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
2081 if (IS_ERR(page))
2082 page = NULL;
2083 return page;
2084}
2085
1a60acf5
AK
2086int alloc_bootmem_huge_page(struct hstate *h)
2087 __attribute__ ((weak, alias("__alloc_bootmem_huge_page")));
2088int __alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
2089{
2090 struct huge_bootmem_page *m;
b2261026 2091 int nr_nodes, node;
aa888a74 2092
b2261026 2093 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
2094 void *addr;
2095
8b89a116
GS
2096 addr = memblock_virt_alloc_try_nid_nopanic(
2097 huge_page_size(h), huge_page_size(h),
2098 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
2099 if (addr) {
2100 /*
2101 * Use the beginning of the huge page to store the
2102 * huge_bootmem_page struct (until gather_bootmem
2103 * puts them into the mem_map).
2104 */
2105 m = addr;
91f47662 2106 goto found;
aa888a74 2107 }
aa888a74
AK
2108 }
2109 return 0;
2110
2111found:
df994ead 2112 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
2113 /* Put them into a private list first because mem_map is not up yet */
2114 list_add(&m->list, &huge_boot_pages);
2115 m->hstate = h;
2116 return 1;
2117}
2118
d00181b9
KS
2119static void __init prep_compound_huge_page(struct page *page,
2120 unsigned int order)
18229df5
AW
2121{
2122 if (unlikely(order > (MAX_ORDER - 1)))
2123 prep_compound_gigantic_page(page, order);
2124 else
2125 prep_compound_page(page, order);
2126}
2127
aa888a74
AK
2128/* Put bootmem huge pages into the standard lists after mem_map is up */
2129static void __init gather_bootmem_prealloc(void)
2130{
2131 struct huge_bootmem_page *m;
2132
2133 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 2134 struct hstate *h = m->hstate;
ee8f248d
BB
2135 struct page *page;
2136
2137#ifdef CONFIG_HIGHMEM
2138 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2139 memblock_free_late(__pa(m),
2140 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2141#else
2142 page = virt_to_page(m);
2143#endif
aa888a74 2144 WARN_ON(page_count(page) != 1);
18229df5 2145 prep_compound_huge_page(page, h->order);
ef5a22be 2146 WARN_ON(PageReserved(page));
aa888a74 2147 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2148 /*
2149 * If we had gigantic hugepages allocated at boot time, we need
2150 * to restore the 'stolen' pages to totalram_pages in order to
2151 * fix confusing memory reports from free(1) and another
2152 * side-effects, like CommitLimit going negative.
2153 */
bae7f4ae 2154 if (hstate_is_gigantic(h))
3dcc0571 2155 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2156 }
2157}
2158
8faa8b07 2159static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2160{
2161 unsigned long i;
a5516438 2162
e5ff2159 2163 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2164 if (hstate_is_gigantic(h)) {
aa888a74
AK
2165 if (!alloc_bootmem_huge_page(h))
2166 break;
9b5e5d0f 2167 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2168 &node_states[N_MEMORY]))
1da177e4 2169 break;
69ed779a 2170 cond_resched();
1da177e4 2171 }
d715cf80
LH
2172 if (i < h->max_huge_pages) {
2173 char buf[32];
2174
c6247f72 2175 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
d715cf80
LH
2176 pr_warn("HugeTLB: allocating %lu of page size %s failed. Only allocated %lu hugepages.\n",
2177 h->max_huge_pages, buf, i);
2178 h->max_huge_pages = i;
2179 }
e5ff2159
AK
2180}
2181
2182static void __init hugetlb_init_hstates(void)
2183{
2184 struct hstate *h;
2185
2186 for_each_hstate(h) {
641844f5
NH
2187 if (minimum_order > huge_page_order(h))
2188 minimum_order = huge_page_order(h);
2189
8faa8b07 2190 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2191 if (!hstate_is_gigantic(h))
8faa8b07 2192 hugetlb_hstate_alloc_pages(h);
e5ff2159 2193 }
641844f5 2194 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2195}
2196
2197static void __init report_hugepages(void)
2198{
2199 struct hstate *h;
2200
2201 for_each_hstate(h) {
4abd32db 2202 char buf[32];
c6247f72
MW
2203
2204 string_get_size(huge_page_size(h), 1, STRING_UNITS_2, buf, 32);
ffb22af5 2205 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
c6247f72 2206 buf, h->free_huge_pages);
e5ff2159
AK
2207 }
2208}
2209
1da177e4 2210#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2211static void try_to_free_low(struct hstate *h, unsigned long count,
2212 nodemask_t *nodes_allowed)
1da177e4 2213{
4415cc8d
CL
2214 int i;
2215
bae7f4ae 2216 if (hstate_is_gigantic(h))
aa888a74
AK
2217 return;
2218
6ae11b27 2219 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2220 struct page *page, *next;
a5516438
AK
2221 struct list_head *freel = &h->hugepage_freelists[i];
2222 list_for_each_entry_safe(page, next, freel, lru) {
2223 if (count >= h->nr_huge_pages)
6b0c880d 2224 return;
1da177e4
LT
2225 if (PageHighMem(page))
2226 continue;
2227 list_del(&page->lru);
e5ff2159 2228 update_and_free_page(h, page);
a5516438
AK
2229 h->free_huge_pages--;
2230 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2231 }
2232 }
2233}
2234#else
6ae11b27
LS
2235static inline void try_to_free_low(struct hstate *h, unsigned long count,
2236 nodemask_t *nodes_allowed)
1da177e4
LT
2237{
2238}
2239#endif
2240
20a0307c
WF
2241/*
2242 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2243 * balanced by operating on them in a round-robin fashion.
2244 * Returns 1 if an adjustment was made.
2245 */
6ae11b27
LS
2246static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2247 int delta)
20a0307c 2248{
b2261026 2249 int nr_nodes, node;
20a0307c
WF
2250
2251 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2252
b2261026
JK
2253 if (delta < 0) {
2254 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2255 if (h->surplus_huge_pages_node[node])
2256 goto found;
e8c5c824 2257 }
b2261026
JK
2258 } else {
2259 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2260 if (h->surplus_huge_pages_node[node] <
2261 h->nr_huge_pages_node[node])
2262 goto found;
e8c5c824 2263 }
b2261026
JK
2264 }
2265 return 0;
20a0307c 2266
b2261026
JK
2267found:
2268 h->surplus_huge_pages += delta;
2269 h->surplus_huge_pages_node[node] += delta;
2270 return 1;
20a0307c
WF
2271}
2272
a5516438 2273#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2274static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2275 nodemask_t *nodes_allowed)
1da177e4 2276{
7893d1d5 2277 unsigned long min_count, ret;
1da177e4 2278
944d9fec 2279 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2280 return h->max_huge_pages;
2281
7893d1d5
AL
2282 /*
2283 * Increase the pool size
2284 * First take pages out of surplus state. Then make up the
2285 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2286 *
d15c7c09 2287 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2288 * to convert a surplus huge page to a normal huge page. That is
2289 * not critical, though, it just means the overall size of the
2290 * pool might be one hugepage larger than it needs to be, but
2291 * within all the constraints specified by the sysctls.
7893d1d5 2292 */
1da177e4 2293 spin_lock(&hugetlb_lock);
a5516438 2294 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2295 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2296 break;
2297 }
2298
a5516438 2299 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2300 /*
2301 * If this allocation races such that we no longer need the
2302 * page, free_huge_page will handle it by freeing the page
2303 * and reducing the surplus.
2304 */
2305 spin_unlock(&hugetlb_lock);
649920c6
JH
2306
2307 /* yield cpu to avoid soft lockup */
2308 cond_resched();
2309
944d9fec
LC
2310 if (hstate_is_gigantic(h))
2311 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2312 else
2313 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2314 spin_lock(&hugetlb_lock);
2315 if (!ret)
2316 goto out;
2317
536240f2
MG
2318 /* Bail for signals. Probably ctrl-c from user */
2319 if (signal_pending(current))
2320 goto out;
7893d1d5 2321 }
7893d1d5
AL
2322
2323 /*
2324 * Decrease the pool size
2325 * First return free pages to the buddy allocator (being careful
2326 * to keep enough around to satisfy reservations). Then place
2327 * pages into surplus state as needed so the pool will shrink
2328 * to the desired size as pages become free.
d1c3fb1f
NA
2329 *
2330 * By placing pages into the surplus state independent of the
2331 * overcommit value, we are allowing the surplus pool size to
2332 * exceed overcommit. There are few sane options here. Since
d15c7c09 2333 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2334 * though, we'll note that we're not allowed to exceed surplus
2335 * and won't grow the pool anywhere else. Not until one of the
2336 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2337 */
a5516438 2338 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2339 min_count = max(count, min_count);
6ae11b27 2340 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2341 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2342 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2343 break;
55f67141 2344 cond_resched_lock(&hugetlb_lock);
1da177e4 2345 }
a5516438 2346 while (count < persistent_huge_pages(h)) {
6ae11b27 2347 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2348 break;
2349 }
2350out:
a5516438 2351 ret = persistent_huge_pages(h);
1da177e4 2352 spin_unlock(&hugetlb_lock);
7893d1d5 2353 return ret;
1da177e4
LT
2354}
2355
a3437870
NA
2356#define HSTATE_ATTR_RO(_name) \
2357 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2358
2359#define HSTATE_ATTR(_name) \
2360 static struct kobj_attribute _name##_attr = \
2361 __ATTR(_name, 0644, _name##_show, _name##_store)
2362
2363static struct kobject *hugepages_kobj;
2364static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2365
9a305230
LS
2366static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2367
2368static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2369{
2370 int i;
9a305230 2371
a3437870 2372 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2373 if (hstate_kobjs[i] == kobj) {
2374 if (nidp)
2375 *nidp = NUMA_NO_NODE;
a3437870 2376 return &hstates[i];
9a305230
LS
2377 }
2378
2379 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2380}
2381
06808b08 2382static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2383 struct kobj_attribute *attr, char *buf)
2384{
9a305230
LS
2385 struct hstate *h;
2386 unsigned long nr_huge_pages;
2387 int nid;
2388
2389 h = kobj_to_hstate(kobj, &nid);
2390 if (nid == NUMA_NO_NODE)
2391 nr_huge_pages = h->nr_huge_pages;
2392 else
2393 nr_huge_pages = h->nr_huge_pages_node[nid];
2394
2395 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2396}
adbe8726 2397
238d3c13
DR
2398static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2399 struct hstate *h, int nid,
2400 unsigned long count, size_t len)
a3437870
NA
2401{
2402 int err;
bad44b5b 2403 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2404
944d9fec 2405 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2406 err = -EINVAL;
2407 goto out;
2408 }
2409
9a305230
LS
2410 if (nid == NUMA_NO_NODE) {
2411 /*
2412 * global hstate attribute
2413 */
2414 if (!(obey_mempolicy &&
2415 init_nodemask_of_mempolicy(nodes_allowed))) {
2416 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2417 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2418 }
2419 } else if (nodes_allowed) {
2420 /*
2421 * per node hstate attribute: adjust count to global,
2422 * but restrict alloc/free to the specified node.
2423 */
2424 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2425 init_nodemask_of_node(nodes_allowed, nid);
2426 } else
8cebfcd0 2427 nodes_allowed = &node_states[N_MEMORY];
9a305230 2428
06808b08 2429 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2430
8cebfcd0 2431 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2432 NODEMASK_FREE(nodes_allowed);
2433
2434 return len;
adbe8726
EM
2435out:
2436 NODEMASK_FREE(nodes_allowed);
2437 return err;
06808b08
LS
2438}
2439
238d3c13
DR
2440static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2441 struct kobject *kobj, const char *buf,
2442 size_t len)
2443{
2444 struct hstate *h;
2445 unsigned long count;
2446 int nid;
2447 int err;
2448
2449 err = kstrtoul(buf, 10, &count);
2450 if (err)
2451 return err;
2452
2453 h = kobj_to_hstate(kobj, &nid);
2454 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2455}
2456
06808b08
LS
2457static ssize_t nr_hugepages_show(struct kobject *kobj,
2458 struct kobj_attribute *attr, char *buf)
2459{
2460 return nr_hugepages_show_common(kobj, attr, buf);
2461}
2462
2463static ssize_t nr_hugepages_store(struct kobject *kobj,
2464 struct kobj_attribute *attr, const char *buf, size_t len)
2465{
238d3c13 2466 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2467}
2468HSTATE_ATTR(nr_hugepages);
2469
06808b08
LS
2470#ifdef CONFIG_NUMA
2471
2472/*
2473 * hstate attribute for optionally mempolicy-based constraint on persistent
2474 * huge page alloc/free.
2475 */
2476static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2477 struct kobj_attribute *attr, char *buf)
2478{
2479 return nr_hugepages_show_common(kobj, attr, buf);
2480}
2481
2482static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2483 struct kobj_attribute *attr, const char *buf, size_t len)
2484{
238d3c13 2485 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2486}
2487HSTATE_ATTR(nr_hugepages_mempolicy);
2488#endif
2489
2490
a3437870
NA
2491static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2492 struct kobj_attribute *attr, char *buf)
2493{
9a305230 2494 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2495 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2496}
adbe8726 2497
a3437870
NA
2498static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2499 struct kobj_attribute *attr, const char *buf, size_t count)
2500{
2501 int err;
2502 unsigned long input;
9a305230 2503 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2504
bae7f4ae 2505 if (hstate_is_gigantic(h))
adbe8726
EM
2506 return -EINVAL;
2507
3dbb95f7 2508 err = kstrtoul(buf, 10, &input);
a3437870 2509 if (err)
73ae31e5 2510 return err;
a3437870
NA
2511
2512 spin_lock(&hugetlb_lock);
2513 h->nr_overcommit_huge_pages = input;
2514 spin_unlock(&hugetlb_lock);
2515
2516 return count;
2517}
2518HSTATE_ATTR(nr_overcommit_hugepages);
2519
2520static ssize_t free_hugepages_show(struct kobject *kobj,
2521 struct kobj_attribute *attr, char *buf)
2522{
9a305230
LS
2523 struct hstate *h;
2524 unsigned long free_huge_pages;
2525 int nid;
2526
2527 h = kobj_to_hstate(kobj, &nid);
2528 if (nid == NUMA_NO_NODE)
2529 free_huge_pages = h->free_huge_pages;
2530 else
2531 free_huge_pages = h->free_huge_pages_node[nid];
2532
2533 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2534}
2535HSTATE_ATTR_RO(free_hugepages);
2536
2537static ssize_t resv_hugepages_show(struct kobject *kobj,
2538 struct kobj_attribute *attr, char *buf)
2539{
9a305230 2540 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2541 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2542}
2543HSTATE_ATTR_RO(resv_hugepages);
2544
2545static ssize_t surplus_hugepages_show(struct kobject *kobj,
2546 struct kobj_attribute *attr, char *buf)
2547{
9a305230
LS
2548 struct hstate *h;
2549 unsigned long surplus_huge_pages;
2550 int nid;
2551
2552 h = kobj_to_hstate(kobj, &nid);
2553 if (nid == NUMA_NO_NODE)
2554 surplus_huge_pages = h->surplus_huge_pages;
2555 else
2556 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2557
2558 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2559}
2560HSTATE_ATTR_RO(surplus_hugepages);
2561
2562static struct attribute *hstate_attrs[] = {
2563 &nr_hugepages_attr.attr,
2564 &nr_overcommit_hugepages_attr.attr,
2565 &free_hugepages_attr.attr,
2566 &resv_hugepages_attr.attr,
2567 &surplus_hugepages_attr.attr,
06808b08
LS
2568#ifdef CONFIG_NUMA
2569 &nr_hugepages_mempolicy_attr.attr,
2570#endif
a3437870
NA
2571 NULL,
2572};
2573
2574static struct attribute_group hstate_attr_group = {
2575 .attrs = hstate_attrs,
2576};
2577
094e9539
JM
2578static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2579 struct kobject **hstate_kobjs,
2580 struct attribute_group *hstate_attr_group)
a3437870
NA
2581{
2582 int retval;
972dc4de 2583 int hi = hstate_index(h);
a3437870 2584
9a305230
LS
2585 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2586 if (!hstate_kobjs[hi])
a3437870
NA
2587 return -ENOMEM;
2588
9a305230 2589 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2590 if (retval)
9a305230 2591 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2592
2593 return retval;
2594}
2595
2596static void __init hugetlb_sysfs_init(void)
2597{
2598 struct hstate *h;
2599 int err;
2600
2601 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2602 if (!hugepages_kobj)
2603 return;
2604
2605 for_each_hstate(h) {
9a305230
LS
2606 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2607 hstate_kobjs, &hstate_attr_group);
a3437870 2608 if (err)
ffb22af5 2609 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2610 }
2611}
2612
9a305230
LS
2613#ifdef CONFIG_NUMA
2614
2615/*
2616 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2617 * with node devices in node_devices[] using a parallel array. The array
2618 * index of a node device or _hstate == node id.
2619 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2620 * the base kernel, on the hugetlb module.
2621 */
2622struct node_hstate {
2623 struct kobject *hugepages_kobj;
2624 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2625};
b4e289a6 2626static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2627
2628/*
10fbcf4c 2629 * A subset of global hstate attributes for node devices
9a305230
LS
2630 */
2631static struct attribute *per_node_hstate_attrs[] = {
2632 &nr_hugepages_attr.attr,
2633 &free_hugepages_attr.attr,
2634 &surplus_hugepages_attr.attr,
2635 NULL,
2636};
2637
2638static struct attribute_group per_node_hstate_attr_group = {
2639 .attrs = per_node_hstate_attrs,
2640};
2641
2642/*
10fbcf4c 2643 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2644 * Returns node id via non-NULL nidp.
2645 */
2646static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2647{
2648 int nid;
2649
2650 for (nid = 0; nid < nr_node_ids; nid++) {
2651 struct node_hstate *nhs = &node_hstates[nid];
2652 int i;
2653 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2654 if (nhs->hstate_kobjs[i] == kobj) {
2655 if (nidp)
2656 *nidp = nid;
2657 return &hstates[i];
2658 }
2659 }
2660
2661 BUG();
2662 return NULL;
2663}
2664
2665/*
10fbcf4c 2666 * Unregister hstate attributes from a single node device.
9a305230
LS
2667 * No-op if no hstate attributes attached.
2668 */
3cd8b44f 2669static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2670{
2671 struct hstate *h;
10fbcf4c 2672 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2673
2674 if (!nhs->hugepages_kobj)
9b5e5d0f 2675 return; /* no hstate attributes */
9a305230 2676
972dc4de
AK
2677 for_each_hstate(h) {
2678 int idx = hstate_index(h);
2679 if (nhs->hstate_kobjs[idx]) {
2680 kobject_put(nhs->hstate_kobjs[idx]);
2681 nhs->hstate_kobjs[idx] = NULL;
9a305230 2682 }
972dc4de 2683 }
9a305230
LS
2684
2685 kobject_put(nhs->hugepages_kobj);
2686 nhs->hugepages_kobj = NULL;
2687}
2688
9a305230
LS
2689
2690/*
10fbcf4c 2691 * Register hstate attributes for a single node device.
9a305230
LS
2692 * No-op if attributes already registered.
2693 */
3cd8b44f 2694static void hugetlb_register_node(struct node *node)
9a305230
LS
2695{
2696 struct hstate *h;
10fbcf4c 2697 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2698 int err;
2699
2700 if (nhs->hugepages_kobj)
2701 return; /* already allocated */
2702
2703 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2704 &node->dev.kobj);
9a305230
LS
2705 if (!nhs->hugepages_kobj)
2706 return;
2707
2708 for_each_hstate(h) {
2709 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2710 nhs->hstate_kobjs,
2711 &per_node_hstate_attr_group);
2712 if (err) {
ffb22af5
AM
2713 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2714 h->name, node->dev.id);
9a305230
LS
2715 hugetlb_unregister_node(node);
2716 break;
2717 }
2718 }
2719}
2720
2721/*
9b5e5d0f 2722 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2723 * devices of nodes that have memory. All on-line nodes should have
2724 * registered their associated device by this time.
9a305230 2725 */
7d9ca000 2726static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2727{
2728 int nid;
2729
8cebfcd0 2730 for_each_node_state(nid, N_MEMORY) {
8732794b 2731 struct node *node = node_devices[nid];
10fbcf4c 2732 if (node->dev.id == nid)
9a305230
LS
2733 hugetlb_register_node(node);
2734 }
2735
2736 /*
10fbcf4c 2737 * Let the node device driver know we're here so it can
9a305230
LS
2738 * [un]register hstate attributes on node hotplug.
2739 */
2740 register_hugetlbfs_with_node(hugetlb_register_node,
2741 hugetlb_unregister_node);
2742}
2743#else /* !CONFIG_NUMA */
2744
2745static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2746{
2747 BUG();
2748 if (nidp)
2749 *nidp = -1;
2750 return NULL;
2751}
2752
9a305230
LS
2753static void hugetlb_register_all_nodes(void) { }
2754
2755#endif
2756
a3437870
NA
2757static int __init hugetlb_init(void)
2758{
8382d914
DB
2759 int i;
2760
457c1b27 2761 if (!hugepages_supported())
0ef89d25 2762 return 0;
a3437870 2763
e11bfbfc 2764 if (!size_to_hstate(default_hstate_size)) {
d715cf80
LH
2765 if (default_hstate_size != 0) {
2766 pr_err("HugeTLB: unsupported default_hugepagesz %lu. Reverting to %lu\n",
2767 default_hstate_size, HPAGE_SIZE);
2768 }
2769
e11bfbfc
NP
2770 default_hstate_size = HPAGE_SIZE;
2771 if (!size_to_hstate(default_hstate_size))
2772 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2773 }
972dc4de 2774 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2775 if (default_hstate_max_huge_pages) {
2776 if (!default_hstate.max_huge_pages)
2777 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2778 }
a3437870
NA
2779
2780 hugetlb_init_hstates();
aa888a74 2781 gather_bootmem_prealloc();
a3437870
NA
2782 report_hugepages();
2783
2784 hugetlb_sysfs_init();
9a305230 2785 hugetlb_register_all_nodes();
7179e7bf 2786 hugetlb_cgroup_file_init();
9a305230 2787
8382d914
DB
2788#ifdef CONFIG_SMP
2789 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2790#else
2791 num_fault_mutexes = 1;
2792#endif
c672c7f2 2793 hugetlb_fault_mutex_table =
8382d914 2794 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2795 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2796
2797 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2798 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2799 return 0;
2800}
3e89e1c5 2801subsys_initcall(hugetlb_init);
a3437870
NA
2802
2803/* Should be called on processing a hugepagesz=... option */
9fee021d
VT
2804void __init hugetlb_bad_size(void)
2805{
2806 parsed_valid_hugepagesz = false;
2807}
2808
d00181b9 2809void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2810{
2811 struct hstate *h;
8faa8b07
AK
2812 unsigned long i;
2813
a3437870 2814 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2815 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2816 return;
2817 }
47d38344 2818 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2819 BUG_ON(order == 0);
47d38344 2820 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2821 h->order = order;
2822 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2823 h->nr_huge_pages = 0;
2824 h->free_huge_pages = 0;
2825 for (i = 0; i < MAX_NUMNODES; ++i)
2826 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2827 INIT_LIST_HEAD(&h->hugepage_activelist);
54f18d35
AM
2828 h->next_nid_to_alloc = first_memory_node;
2829 h->next_nid_to_free = first_memory_node;
a3437870
NA
2830 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2831 huge_page_size(h)/1024);
8faa8b07 2832
a3437870
NA
2833 parsed_hstate = h;
2834}
2835
e11bfbfc 2836static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2837{
2838 unsigned long *mhp;
8faa8b07 2839 static unsigned long *last_mhp;
a3437870 2840
9fee021d
VT
2841 if (!parsed_valid_hugepagesz) {
2842 pr_warn("hugepages = %s preceded by "
2843 "an unsupported hugepagesz, ignoring\n", s);
2844 parsed_valid_hugepagesz = true;
2845 return 1;
2846 }
a3437870 2847 /*
47d38344 2848 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2849 * so this hugepages= parameter goes to the "default hstate".
2850 */
9fee021d 2851 else if (!hugetlb_max_hstate)
a3437870
NA
2852 mhp = &default_hstate_max_huge_pages;
2853 else
2854 mhp = &parsed_hstate->max_huge_pages;
2855
8faa8b07 2856 if (mhp == last_mhp) {
598d8091 2857 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2858 return 1;
2859 }
2860
a3437870
NA
2861 if (sscanf(s, "%lu", mhp) <= 0)
2862 *mhp = 0;
2863
8faa8b07
AK
2864 /*
2865 * Global state is always initialized later in hugetlb_init.
2866 * But we need to allocate >= MAX_ORDER hstates here early to still
2867 * use the bootmem allocator.
2868 */
47d38344 2869 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2870 hugetlb_hstate_alloc_pages(parsed_hstate);
2871
2872 last_mhp = mhp;
2873
a3437870
NA
2874 return 1;
2875}
e11bfbfc
NP
2876__setup("hugepages=", hugetlb_nrpages_setup);
2877
2878static int __init hugetlb_default_setup(char *s)
2879{
2880 default_hstate_size = memparse(s, &s);
2881 return 1;
2882}
2883__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2884
8a213460
NA
2885static unsigned int cpuset_mems_nr(unsigned int *array)
2886{
2887 int node;
2888 unsigned int nr = 0;
2889
2890 for_each_node_mask(node, cpuset_current_mems_allowed)
2891 nr += array[node];
2892
2893 return nr;
2894}
2895
2896#ifdef CONFIG_SYSCTL
06808b08
LS
2897static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2898 struct ctl_table *table, int write,
2899 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2900{
e5ff2159 2901 struct hstate *h = &default_hstate;
238d3c13 2902 unsigned long tmp = h->max_huge_pages;
08d4a246 2903 int ret;
e5ff2159 2904
457c1b27 2905 if (!hugepages_supported())
86613628 2906 return -EOPNOTSUPP;
457c1b27 2907
e5ff2159
AK
2908 table->data = &tmp;
2909 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2910 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2911 if (ret)
2912 goto out;
e5ff2159 2913
238d3c13
DR
2914 if (write)
2915 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2916 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2917out:
2918 return ret;
1da177e4 2919}
396faf03 2920
06808b08
LS
2921int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2922 void __user *buffer, size_t *length, loff_t *ppos)
2923{
2924
2925 return hugetlb_sysctl_handler_common(false, table, write,
2926 buffer, length, ppos);
2927}
2928
2929#ifdef CONFIG_NUMA
2930int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2931 void __user *buffer, size_t *length, loff_t *ppos)
2932{
2933 return hugetlb_sysctl_handler_common(true, table, write,
2934 buffer, length, ppos);
2935}
2936#endif /* CONFIG_NUMA */
2937
a3d0c6aa 2938int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2939 void __user *buffer,
a3d0c6aa
NA
2940 size_t *length, loff_t *ppos)
2941{
a5516438 2942 struct hstate *h = &default_hstate;
e5ff2159 2943 unsigned long tmp;
08d4a246 2944 int ret;
e5ff2159 2945
457c1b27 2946 if (!hugepages_supported())
86613628 2947 return -EOPNOTSUPP;
457c1b27 2948
c033a93c 2949 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2950
bae7f4ae 2951 if (write && hstate_is_gigantic(h))
adbe8726
EM
2952 return -EINVAL;
2953
e5ff2159
AK
2954 table->data = &tmp;
2955 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2956 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2957 if (ret)
2958 goto out;
e5ff2159
AK
2959
2960 if (write) {
2961 spin_lock(&hugetlb_lock);
2962 h->nr_overcommit_huge_pages = tmp;
2963 spin_unlock(&hugetlb_lock);
2964 }
08d4a246
MH
2965out:
2966 return ret;
a3d0c6aa
NA
2967}
2968
1da177e4
LT
2969#endif /* CONFIG_SYSCTL */
2970
e1759c21 2971void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2972{
a5516438 2973 struct hstate *h = &default_hstate;
457c1b27
NA
2974 if (!hugepages_supported())
2975 return;
e1759c21 2976 seq_printf(m,
4f98a2fe
RR
2977 "HugePages_Total: %5lu\n"
2978 "HugePages_Free: %5lu\n"
2979 "HugePages_Rsvd: %5lu\n"
2980 "HugePages_Surp: %5lu\n"
2981 "Hugepagesize: %8lu kB\n",
a5516438
AK
2982 h->nr_huge_pages,
2983 h->free_huge_pages,
2984 h->resv_huge_pages,
2985 h->surplus_huge_pages,
2986 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2987}
2988
2989int hugetlb_report_node_meminfo(int nid, char *buf)
2990{
a5516438 2991 struct hstate *h = &default_hstate;
457c1b27
NA
2992 if (!hugepages_supported())
2993 return 0;
1da177e4
LT
2994 return sprintf(buf,
2995 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2996 "Node %d HugePages_Free: %5u\n"
2997 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2998 nid, h->nr_huge_pages_node[nid],
2999 nid, h->free_huge_pages_node[nid],
3000 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
3001}
3002
949f7ec5
DR
3003void hugetlb_show_meminfo(void)
3004{
3005 struct hstate *h;
3006 int nid;
3007
457c1b27
NA
3008 if (!hugepages_supported())
3009 return;
3010
949f7ec5
DR
3011 for_each_node_state(nid, N_MEMORY)
3012 for_each_hstate(h)
3013 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
3014 nid,
3015 h->nr_huge_pages_node[nid],
3016 h->free_huge_pages_node[nid],
3017 h->surplus_huge_pages_node[nid],
3018 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
3019}
3020
5d317b2b
NH
3021void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
3022{
3023 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
3024 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
3025}
3026
1da177e4
LT
3027/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
3028unsigned long hugetlb_total_pages(void)
3029{
d0028588
WL
3030 struct hstate *h;
3031 unsigned long nr_total_pages = 0;
3032
3033 for_each_hstate(h)
3034 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
3035 return nr_total_pages;
1da177e4 3036}
1da177e4 3037
a5516438 3038static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
3039{
3040 int ret = -ENOMEM;
3041
3042 spin_lock(&hugetlb_lock);
3043 /*
3044 * When cpuset is configured, it breaks the strict hugetlb page
3045 * reservation as the accounting is done on a global variable. Such
3046 * reservation is completely rubbish in the presence of cpuset because
3047 * the reservation is not checked against page availability for the
3048 * current cpuset. Application can still potentially OOM'ed by kernel
3049 * with lack of free htlb page in cpuset that the task is in.
3050 * Attempt to enforce strict accounting with cpuset is almost
3051 * impossible (or too ugly) because cpuset is too fluid that
3052 * task or memory node can be dynamically moved between cpusets.
3053 *
3054 * The change of semantics for shared hugetlb mapping with cpuset is
3055 * undesirable. However, in order to preserve some of the semantics,
3056 * we fall back to check against current free page availability as
3057 * a best attempt and hopefully to minimize the impact of changing
3058 * semantics that cpuset has.
3059 */
3060 if (delta > 0) {
a5516438 3061 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
3062 goto out;
3063
a5516438
AK
3064 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
3065 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
3066 goto out;
3067 }
3068 }
3069
3070 ret = 0;
3071 if (delta < 0)
a5516438 3072 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
3073
3074out:
3075 spin_unlock(&hugetlb_lock);
3076 return ret;
3077}
3078
84afd99b
AW
3079static void hugetlb_vm_op_open(struct vm_area_struct *vma)
3080{
f522c3ac 3081 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
3082
3083 /*
3084 * This new VMA should share its siblings reservation map if present.
3085 * The VMA will only ever have a valid reservation map pointer where
3086 * it is being copied for another still existing VMA. As that VMA
25985edc 3087 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
3088 * after this open call completes. It is therefore safe to take a
3089 * new reference here without additional locking.
3090 */
4e35f483 3091 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 3092 kref_get(&resv->refs);
84afd99b
AW
3093}
3094
a1e78772
MG
3095static void hugetlb_vm_op_close(struct vm_area_struct *vma)
3096{
a5516438 3097 struct hstate *h = hstate_vma(vma);
f522c3ac 3098 struct resv_map *resv = vma_resv_map(vma);
90481622 3099 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 3100 unsigned long reserve, start, end;
1c5ecae3 3101 long gbl_reserve;
84afd99b 3102
4e35f483
JK
3103 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3104 return;
84afd99b 3105
4e35f483
JK
3106 start = vma_hugecache_offset(h, vma, vma->vm_start);
3107 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 3108
4e35f483 3109 reserve = (end - start) - region_count(resv, start, end);
84afd99b 3110
4e35f483
JK
3111 kref_put(&resv->refs, resv_map_release);
3112
3113 if (reserve) {
1c5ecae3
MK
3114 /*
3115 * Decrement reserve counts. The global reserve count may be
3116 * adjusted if the subpool has a minimum size.
3117 */
3118 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
3119 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 3120 }
a1e78772
MG
3121}
3122
1da177e4
LT
3123/*
3124 * We cannot handle pagefaults against hugetlb pages at all. They cause
3125 * handle_mm_fault() to try to instantiate regular-sized pages in the
3126 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
3127 * this far.
3128 */
11bac800 3129static int hugetlb_vm_op_fault(struct vm_fault *vmf)
1da177e4
LT
3130{
3131 BUG();
d0217ac0 3132 return 0;
1da177e4
LT
3133}
3134
f0f37e2f 3135const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 3136 .fault = hugetlb_vm_op_fault,
84afd99b 3137 .open = hugetlb_vm_op_open,
a1e78772 3138 .close = hugetlb_vm_op_close,
1da177e4
LT
3139};
3140
1e8f889b
DG
3141static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
3142 int writable)
63551ae0
DG
3143{
3144 pte_t entry;
3145
1e8f889b 3146 if (writable) {
106c992a
GS
3147 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
3148 vma->vm_page_prot)));
63551ae0 3149 } else {
106c992a
GS
3150 entry = huge_pte_wrprotect(mk_huge_pte(page,
3151 vma->vm_page_prot));
63551ae0
DG
3152 }
3153 entry = pte_mkyoung(entry);
3154 entry = pte_mkhuge(entry);
d9ed9faa 3155 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3156
3157 return entry;
3158}
3159
1e8f889b
DG
3160static void set_huge_ptep_writable(struct vm_area_struct *vma,
3161 unsigned long address, pte_t *ptep)
3162{
3163 pte_t entry;
3164
106c992a 3165 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3166 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3167 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3168}
3169
d5ed7444 3170bool is_hugetlb_entry_migration(pte_t pte)
4a705fef
NH
3171{
3172 swp_entry_t swp;
3173
3174 if (huge_pte_none(pte) || pte_present(pte))
d5ed7444 3175 return false;
4a705fef
NH
3176 swp = pte_to_swp_entry(pte);
3177 if (non_swap_entry(swp) && is_migration_entry(swp))
d5ed7444 3178 return true;
4a705fef 3179 else
d5ed7444 3180 return false;
4a705fef
NH
3181}
3182
3183static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3184{
3185 swp_entry_t swp;
3186
3187 if (huge_pte_none(pte) || pte_present(pte))
3188 return 0;
3189 swp = pte_to_swp_entry(pte);
3190 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3191 return 1;
3192 else
3193 return 0;
3194}
1e8f889b 3195
63551ae0
DG
3196int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3197 struct vm_area_struct *vma)
3198{
3199 pte_t *src_pte, *dst_pte, entry;
3200 struct page *ptepage;
1c59827d 3201 unsigned long addr;
1e8f889b 3202 int cow;
a5516438
AK
3203 struct hstate *h = hstate_vma(vma);
3204 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3205 unsigned long mmun_start; /* For mmu_notifiers */
3206 unsigned long mmun_end; /* For mmu_notifiers */
3207 int ret = 0;
1e8f889b
DG
3208
3209 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3210
e8569dd2
AS
3211 mmun_start = vma->vm_start;
3212 mmun_end = vma->vm_end;
3213 if (cow)
3214 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3215
a5516438 3216 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3217 spinlock_t *src_ptl, *dst_ptl;
7868a208 3218 src_pte = huge_pte_offset(src, addr, sz);
c74df32c
HD
3219 if (!src_pte)
3220 continue;
a5516438 3221 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3222 if (!dst_pte) {
3223 ret = -ENOMEM;
3224 break;
3225 }
c5c99429
LW
3226
3227 /* If the pagetables are shared don't copy or take references */
3228 if (dst_pte == src_pte)
3229 continue;
3230
cb900f41
KS
3231 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3232 src_ptl = huge_pte_lockptr(h, src, src_pte);
3233 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3234 entry = huge_ptep_get(src_pte);
3235 if (huge_pte_none(entry)) { /* skip none entry */
3236 ;
3237 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3238 is_hugetlb_entry_hwpoisoned(entry))) {
3239 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3240
3241 if (is_write_migration_entry(swp_entry) && cow) {
3242 /*
3243 * COW mappings require pages in both
3244 * parent and child to be set to read.
3245 */
3246 make_migration_entry_read(&swp_entry);
3247 entry = swp_entry_to_pte(swp_entry);
e5251fd4
PA
3248 set_huge_swap_pte_at(src, addr, src_pte,
3249 entry, sz);
4a705fef 3250 }
e5251fd4 3251 set_huge_swap_pte_at(dst, addr, dst_pte, entry, sz);
4a705fef 3252 } else {
34ee645e 3253 if (cow) {
7f2e9525 3254 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3255 mmu_notifier_invalidate_range(src, mmun_start,
3256 mmun_end);
3257 }
0253d634 3258 entry = huge_ptep_get(src_pte);
1c59827d
HD
3259 ptepage = pte_page(entry);
3260 get_page(ptepage);
53f9263b 3261 page_dup_rmap(ptepage, true);
1c59827d 3262 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3263 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3264 }
cb900f41
KS
3265 spin_unlock(src_ptl);
3266 spin_unlock(dst_ptl);
63551ae0 3267 }
63551ae0 3268
e8569dd2
AS
3269 if (cow)
3270 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3271
3272 return ret;
63551ae0
DG
3273}
3274
24669e58
AK
3275void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3276 unsigned long start, unsigned long end,
3277 struct page *ref_page)
63551ae0
DG
3278{
3279 struct mm_struct *mm = vma->vm_mm;
3280 unsigned long address;
c7546f8f 3281 pte_t *ptep;
63551ae0 3282 pte_t pte;
cb900f41 3283 spinlock_t *ptl;
63551ae0 3284 struct page *page;
a5516438
AK
3285 struct hstate *h = hstate_vma(vma);
3286 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3287 const unsigned long mmun_start = start; /* For mmu_notifiers */
3288 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3289
63551ae0 3290 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3291 BUG_ON(start & ~huge_page_mask(h));
3292 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3293
07e32661
AK
3294 /*
3295 * This is a hugetlb vma, all the pte entries should point
3296 * to huge page.
3297 */
3298 tlb_remove_check_page_size_change(tlb, sz);
24669e58 3299 tlb_start_vma(tlb, vma);
2ec74c3e 3300 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3301 address = start;
569f48b8 3302 for (; address < end; address += sz) {
7868a208 3303 ptep = huge_pte_offset(mm, address, sz);
4c887265 3304 if (!ptep)
c7546f8f
DG
3305 continue;
3306
cb900f41 3307 ptl = huge_pte_lock(h, mm, ptep);
31d49da5
AK
3308 if (huge_pmd_unshare(mm, &address, ptep)) {
3309 spin_unlock(ptl);
3310 continue;
3311 }
39dde65c 3312
6629326b 3313 pte = huge_ptep_get(ptep);
31d49da5
AK
3314 if (huge_pte_none(pte)) {
3315 spin_unlock(ptl);
3316 continue;
3317 }
6629326b
HD
3318
3319 /*
9fbc1f63
NH
3320 * Migrating hugepage or HWPoisoned hugepage is already
3321 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3322 */
9fbc1f63 3323 if (unlikely(!pte_present(pte))) {
9386fac3 3324 huge_pte_clear(mm, address, ptep, sz);
31d49da5
AK
3325 spin_unlock(ptl);
3326 continue;
8c4894c6 3327 }
6629326b
HD
3328
3329 page = pte_page(pte);
04f2cbe3
MG
3330 /*
3331 * If a reference page is supplied, it is because a specific
3332 * page is being unmapped, not a range. Ensure the page we
3333 * are about to unmap is the actual page of interest.
3334 */
3335 if (ref_page) {
31d49da5
AK
3336 if (page != ref_page) {
3337 spin_unlock(ptl);
3338 continue;
3339 }
04f2cbe3
MG
3340 /*
3341 * Mark the VMA as having unmapped its page so that
3342 * future faults in this VMA will fail rather than
3343 * looking like data was lost
3344 */
3345 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3346 }
3347
c7546f8f 3348 pte = huge_ptep_get_and_clear(mm, address, ptep);
b528e4b6 3349 tlb_remove_huge_tlb_entry(h, tlb, ptep, address);
106c992a 3350 if (huge_pte_dirty(pte))
6649a386 3351 set_page_dirty(page);
9e81130b 3352
5d317b2b 3353 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3354 page_remove_rmap(page, true);
31d49da5 3355
cb900f41 3356 spin_unlock(ptl);
e77b0852 3357 tlb_remove_page_size(tlb, page, huge_page_size(h));
31d49da5
AK
3358 /*
3359 * Bail out after unmapping reference page if supplied
3360 */
3361 if (ref_page)
3362 break;
fe1668ae 3363 }
2ec74c3e 3364 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3365 tlb_end_vma(tlb, vma);
1da177e4 3366}
63551ae0 3367
d833352a
MG
3368void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3369 struct vm_area_struct *vma, unsigned long start,
3370 unsigned long end, struct page *ref_page)
3371{
3372 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3373
3374 /*
3375 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3376 * test will fail on a vma being torn down, and not grab a page table
3377 * on its way out. We're lucky that the flag has such an appropriate
3378 * name, and can in fact be safely cleared here. We could clear it
3379 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3380 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3381 * because in the context this is called, the VMA is about to be
c8c06efa 3382 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3383 */
3384 vma->vm_flags &= ~VM_MAYSHARE;
3385}
3386
502717f4 3387void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3388 unsigned long end, struct page *ref_page)
502717f4 3389{
24669e58
AK
3390 struct mm_struct *mm;
3391 struct mmu_gather tlb;
3392
3393 mm = vma->vm_mm;
3394
2b047252 3395 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3396 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3397 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
3398}
3399
04f2cbe3
MG
3400/*
3401 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3402 * mappping it owns the reserve page for. The intention is to unmap the page
3403 * from other VMAs and let the children be SIGKILLed if they are faulting the
3404 * same region.
3405 */
2f4612af
DB
3406static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3407 struct page *page, unsigned long address)
04f2cbe3 3408{
7526674d 3409 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3410 struct vm_area_struct *iter_vma;
3411 struct address_space *mapping;
04f2cbe3
MG
3412 pgoff_t pgoff;
3413
3414 /*
3415 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3416 * from page cache lookup which is in HPAGE_SIZE units.
3417 */
7526674d 3418 address = address & huge_page_mask(h);
36e4f20a
MH
3419 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3420 vma->vm_pgoff;
93c76a3d 3421 mapping = vma->vm_file->f_mapping;
04f2cbe3 3422
4eb2b1dc
MG
3423 /*
3424 * Take the mapping lock for the duration of the table walk. As
3425 * this mapping should be shared between all the VMAs,
3426 * __unmap_hugepage_range() is called as the lock is already held
3427 */
83cde9e8 3428 i_mmap_lock_write(mapping);
6b2dbba8 3429 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3430 /* Do not unmap the current VMA */
3431 if (iter_vma == vma)
3432 continue;
3433
2f84a899
MG
3434 /*
3435 * Shared VMAs have their own reserves and do not affect
3436 * MAP_PRIVATE accounting but it is possible that a shared
3437 * VMA is using the same page so check and skip such VMAs.
3438 */
3439 if (iter_vma->vm_flags & VM_MAYSHARE)
3440 continue;
3441
04f2cbe3
MG
3442 /*
3443 * Unmap the page from other VMAs without their own reserves.
3444 * They get marked to be SIGKILLed if they fault in these
3445 * areas. This is because a future no-page fault on this VMA
3446 * could insert a zeroed page instead of the data existing
3447 * from the time of fork. This would look like data corruption
3448 */
3449 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3450 unmap_hugepage_range(iter_vma, address,
3451 address + huge_page_size(h), page);
04f2cbe3 3452 }
83cde9e8 3453 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3454}
3455
0fe6e20b
NH
3456/*
3457 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3458 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3459 * cannot race with other handlers or page migration.
3460 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3461 */
1e8f889b 3462static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
3999f52e
AK
3463 unsigned long address, pte_t *ptep,
3464 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3465{
3999f52e 3466 pte_t pte;
a5516438 3467 struct hstate *h = hstate_vma(vma);
1e8f889b 3468 struct page *old_page, *new_page;
ad4404a2 3469 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3470 unsigned long mmun_start; /* For mmu_notifiers */
3471 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b 3472
3999f52e 3473 pte = huge_ptep_get(ptep);
1e8f889b
DG
3474 old_page = pte_page(pte);
3475
04f2cbe3 3476retry_avoidcopy:
1e8f889b
DG
3477 /* If no-one else is actually using this page, avoid the copy
3478 * and just make the page writable */
37a2140d 3479 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
5a49973d 3480 page_move_anon_rmap(old_page, vma);
1e8f889b 3481 set_huge_ptep_writable(vma, address, ptep);
83c54070 3482 return 0;
1e8f889b
DG
3483 }
3484
04f2cbe3
MG
3485 /*
3486 * If the process that created a MAP_PRIVATE mapping is about to
3487 * perform a COW due to a shared page count, attempt to satisfy
3488 * the allocation without using the existing reserves. The pagecache
3489 * page is used to determine if the reserve at this address was
3490 * consumed or not. If reserves were used, a partial faulted mapping
3491 * at the time of fork() could consume its reserves on COW instead
3492 * of the full address range.
3493 */
5944d011 3494 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3495 old_page != pagecache_page)
3496 outside_reserve = 1;
3497
09cbfeaf 3498 get_page(old_page);
b76c8cfb 3499
ad4404a2
DB
3500 /*
3501 * Drop page table lock as buddy allocator may be called. It will
3502 * be acquired again before returning to the caller, as expected.
3503 */
cb900f41 3504 spin_unlock(ptl);
04f2cbe3 3505 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3506
2fc39cec 3507 if (IS_ERR(new_page)) {
04f2cbe3
MG
3508 /*
3509 * If a process owning a MAP_PRIVATE mapping fails to COW,
3510 * it is due to references held by a child and an insufficient
3511 * huge page pool. To guarantee the original mappers
3512 * reliability, unmap the page from child processes. The child
3513 * may get SIGKILLed if it later faults.
3514 */
3515 if (outside_reserve) {
09cbfeaf 3516 put_page(old_page);
04f2cbe3 3517 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3518 unmap_ref_private(mm, vma, old_page, address);
3519 BUG_ON(huge_pte_none(pte));
3520 spin_lock(ptl);
7868a208
PA
3521 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3522 huge_page_size(h));
2f4612af
DB
3523 if (likely(ptep &&
3524 pte_same(huge_ptep_get(ptep), pte)))
3525 goto retry_avoidcopy;
3526 /*
3527 * race occurs while re-acquiring page table
3528 * lock, and our job is done.
3529 */
3530 return 0;
04f2cbe3
MG
3531 }
3532
ad4404a2
DB
3533 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3534 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3535 goto out_release_old;
1e8f889b
DG
3536 }
3537
0fe6e20b
NH
3538 /*
3539 * When the original hugepage is shared one, it does not have
3540 * anon_vma prepared.
3541 */
44e2aa93 3542 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3543 ret = VM_FAULT_OOM;
3544 goto out_release_all;
44e2aa93 3545 }
0fe6e20b 3546
47ad8475
AA
3547 copy_user_huge_page(new_page, old_page, address, vma,
3548 pages_per_huge_page(h));
0ed361de 3549 __SetPageUptodate(new_page);
bcc54222 3550 set_page_huge_active(new_page);
1e8f889b 3551
2ec74c3e
SG
3552 mmun_start = address & huge_page_mask(h);
3553 mmun_end = mmun_start + huge_page_size(h);
3554 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3555
b76c8cfb 3556 /*
cb900f41 3557 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3558 * before the page tables are altered
3559 */
cb900f41 3560 spin_lock(ptl);
7868a208
PA
3561 ptep = huge_pte_offset(mm, address & huge_page_mask(h),
3562 huge_page_size(h));
a9af0c5d 3563 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3564 ClearPagePrivate(new_page);
3565
1e8f889b 3566 /* Break COW */
8fe627ec 3567 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3568 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3569 set_huge_pte_at(mm, address, ptep,
3570 make_huge_pte(vma, new_page, 1));
d281ee61 3571 page_remove_rmap(old_page, true);
cd67f0d2 3572 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3573 /* Make the old page be freed below */
3574 new_page = old_page;
3575 }
cb900f41 3576 spin_unlock(ptl);
2ec74c3e 3577 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3578out_release_all:
96b96a96 3579 restore_reserve_on_error(h, vma, address, new_page);
09cbfeaf 3580 put_page(new_page);
ad4404a2 3581out_release_old:
09cbfeaf 3582 put_page(old_page);
8312034f 3583
ad4404a2
DB
3584 spin_lock(ptl); /* Caller expects lock to be held */
3585 return ret;
1e8f889b
DG
3586}
3587
04f2cbe3 3588/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3589static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3590 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3591{
3592 struct address_space *mapping;
e7c4b0bf 3593 pgoff_t idx;
04f2cbe3
MG
3594
3595 mapping = vma->vm_file->f_mapping;
a5516438 3596 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3597
3598 return find_lock_page(mapping, idx);
3599}
3600
3ae77f43
HD
3601/*
3602 * Return whether there is a pagecache page to back given address within VMA.
3603 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3604 */
3605static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3606 struct vm_area_struct *vma, unsigned long address)
3607{
3608 struct address_space *mapping;
3609 pgoff_t idx;
3610 struct page *page;
3611
3612 mapping = vma->vm_file->f_mapping;
3613 idx = vma_hugecache_offset(h, vma, address);
3614
3615 page = find_get_page(mapping, idx);
3616 if (page)
3617 put_page(page);
3618 return page != NULL;
3619}
3620
ab76ad54
MK
3621int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3622 pgoff_t idx)
3623{
3624 struct inode *inode = mapping->host;
3625 struct hstate *h = hstate_inode(inode);
3626 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3627
3628 if (err)
3629 return err;
3630 ClearPagePrivate(page);
3631
3632 spin_lock(&inode->i_lock);
3633 inode->i_blocks += blocks_per_huge_page(h);
3634 spin_unlock(&inode->i_lock);
3635 return 0;
3636}
3637
a1ed3dda 3638static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3639 struct address_space *mapping, pgoff_t idx,
3640 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3641{
a5516438 3642 struct hstate *h = hstate_vma(vma);
ac9b9c66 3643 int ret = VM_FAULT_SIGBUS;
409eb8c2 3644 int anon_rmap = 0;
4c887265 3645 unsigned long size;
4c887265 3646 struct page *page;
1e8f889b 3647 pte_t new_pte;
cb900f41 3648 spinlock_t *ptl;
4c887265 3649
04f2cbe3
MG
3650 /*
3651 * Currently, we are forced to kill the process in the event the
3652 * original mapper has unmapped pages from the child due to a failed
25985edc 3653 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3654 */
3655 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3656 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3657 current->pid);
04f2cbe3
MG
3658 return ret;
3659 }
3660
4c887265
AL
3661 /*
3662 * Use page lock to guard against racing truncation
3663 * before we get page_table_lock.
3664 */
6bda666a
CL
3665retry:
3666 page = find_lock_page(mapping, idx);
3667 if (!page) {
a5516438 3668 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3669 if (idx >= size)
3670 goto out;
1a1aad8a
MK
3671
3672 /*
3673 * Check for page in userfault range
3674 */
3675 if (userfaultfd_missing(vma)) {
3676 u32 hash;
3677 struct vm_fault vmf = {
3678 .vma = vma,
3679 .address = address,
3680 .flags = flags,
3681 /*
3682 * Hard to debug if it ends up being
3683 * used by a callee that assumes
3684 * something about the other
3685 * uninitialized fields... same as in
3686 * memory.c
3687 */
3688 };
3689
3690 /*
3691 * hugetlb_fault_mutex must be dropped before
3692 * handling userfault. Reacquire after handling
3693 * fault to make calling code simpler.
3694 */
3695 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping,
3696 idx, address);
3697 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
3698 ret = handle_userfault(&vmf, VM_UFFD_MISSING);
3699 mutex_lock(&hugetlb_fault_mutex_table[hash]);
3700 goto out;
3701 }
3702
04f2cbe3 3703 page = alloc_huge_page(vma, address, 0);
2fc39cec 3704 if (IS_ERR(page)) {
76dcee75
AK
3705 ret = PTR_ERR(page);
3706 if (ret == -ENOMEM)
3707 ret = VM_FAULT_OOM;
3708 else
3709 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3710 goto out;
3711 }
47ad8475 3712 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3713 __SetPageUptodate(page);
bcc54222 3714 set_page_huge_active(page);
ac9b9c66 3715
f83a275d 3716 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3717 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3718 if (err) {
3719 put_page(page);
6bda666a
CL
3720 if (err == -EEXIST)
3721 goto retry;
3722 goto out;
3723 }
23be7468 3724 } else {
6bda666a 3725 lock_page(page);
0fe6e20b
NH
3726 if (unlikely(anon_vma_prepare(vma))) {
3727 ret = VM_FAULT_OOM;
3728 goto backout_unlocked;
3729 }
409eb8c2 3730 anon_rmap = 1;
23be7468 3731 }
0fe6e20b 3732 } else {
998b4382
NH
3733 /*
3734 * If memory error occurs between mmap() and fault, some process
3735 * don't have hwpoisoned swap entry for errored virtual address.
3736 * So we need to block hugepage fault by PG_hwpoison bit check.
3737 */
3738 if (unlikely(PageHWPoison(page))) {
32f84528 3739 ret = VM_FAULT_HWPOISON |
972dc4de 3740 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3741 goto backout_unlocked;
3742 }
6bda666a 3743 }
1e8f889b 3744
57303d80
AW
3745 /*
3746 * If we are going to COW a private mapping later, we examine the
3747 * pending reservations for this page now. This will ensure that
3748 * any allocations necessary to record that reservation occur outside
3749 * the spinlock.
3750 */
5e911373 3751 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3752 if (vma_needs_reservation(h, vma, address) < 0) {
3753 ret = VM_FAULT_OOM;
3754 goto backout_unlocked;
3755 }
5e911373 3756 /* Just decrements count, does not deallocate */
feba16e2 3757 vma_end_reservation(h, vma, address);
5e911373 3758 }
57303d80 3759
8bea8052 3760 ptl = huge_pte_lock(h, mm, ptep);
a5516438 3761 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3762 if (idx >= size)
3763 goto backout;
3764
83c54070 3765 ret = 0;
7f2e9525 3766 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3767 goto backout;
3768
07443a85
JK
3769 if (anon_rmap) {
3770 ClearPagePrivate(page);
409eb8c2 3771 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3772 } else
53f9263b 3773 page_dup_rmap(page, true);
1e8f889b
DG
3774 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3775 && (vma->vm_flags & VM_SHARED)));
3776 set_huge_pte_at(mm, address, ptep, new_pte);
3777
5d317b2b 3778 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3779 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3780 /* Optimization, do the COW without a second fault */
3999f52e 3781 ret = hugetlb_cow(mm, vma, address, ptep, page, ptl);
1e8f889b
DG
3782 }
3783
cb900f41 3784 spin_unlock(ptl);
4c887265
AL
3785 unlock_page(page);
3786out:
ac9b9c66 3787 return ret;
4c887265
AL
3788
3789backout:
cb900f41 3790 spin_unlock(ptl);
2b26736c 3791backout_unlocked:
4c887265 3792 unlock_page(page);
96b96a96 3793 restore_reserve_on_error(h, vma, address, page);
4c887265
AL
3794 put_page(page);
3795 goto out;
ac9b9c66
HD
3796}
3797
8382d914 3798#ifdef CONFIG_SMP
c672c7f2 3799u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3800 struct vm_area_struct *vma,
3801 struct address_space *mapping,
3802 pgoff_t idx, unsigned long address)
3803{
3804 unsigned long key[2];
3805 u32 hash;
3806
3807 if (vma->vm_flags & VM_SHARED) {
3808 key[0] = (unsigned long) mapping;
3809 key[1] = idx;
3810 } else {
3811 key[0] = (unsigned long) mm;
3812 key[1] = address >> huge_page_shift(h);
3813 }
3814
3815 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3816
3817 return hash & (num_fault_mutexes - 1);
3818}
3819#else
3820/*
3821 * For uniprocesor systems we always use a single mutex, so just
3822 * return 0 and avoid the hashing overhead.
3823 */
c672c7f2 3824u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3825 struct vm_area_struct *vma,
3826 struct address_space *mapping,
3827 pgoff_t idx, unsigned long address)
3828{
3829 return 0;
3830}
3831#endif
3832
86e5216f 3833int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3834 unsigned long address, unsigned int flags)
86e5216f 3835{
8382d914 3836 pte_t *ptep, entry;
cb900f41 3837 spinlock_t *ptl;
1e8f889b 3838 int ret;
8382d914
DB
3839 u32 hash;
3840 pgoff_t idx;
0fe6e20b 3841 struct page *page = NULL;
57303d80 3842 struct page *pagecache_page = NULL;
a5516438 3843 struct hstate *h = hstate_vma(vma);
8382d914 3844 struct address_space *mapping;
0f792cf9 3845 int need_wait_lock = 0;
86e5216f 3846
1e16a539
KH
3847 address &= huge_page_mask(h);
3848
7868a208 3849 ptep = huge_pte_offset(mm, address, huge_page_size(h));
fd6a03ed
NH
3850 if (ptep) {
3851 entry = huge_ptep_get(ptep);
290408d4 3852 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3853 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3854 return 0;
3855 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3856 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3857 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3858 } else {
3859 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3860 if (!ptep)
3861 return VM_FAULT_OOM;
fd6a03ed
NH
3862 }
3863
8382d914
DB
3864 mapping = vma->vm_file->f_mapping;
3865 idx = vma_hugecache_offset(h, vma, address);
3866
3935baa9
DG
3867 /*
3868 * Serialize hugepage allocation and instantiation, so that we don't
3869 * get spurious allocation failures if two CPUs race to instantiate
3870 * the same page in the page cache.
3871 */
c672c7f2
MK
3872 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3873 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3874
7f2e9525
GS
3875 entry = huge_ptep_get(ptep);
3876 if (huge_pte_none(entry)) {
8382d914 3877 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3878 goto out_mutex;
3935baa9 3879 }
86e5216f 3880
83c54070 3881 ret = 0;
1e8f889b 3882
0f792cf9
NH
3883 /*
3884 * entry could be a migration/hwpoison entry at this point, so this
3885 * check prevents the kernel from going below assuming that we have
3886 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3887 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3888 * handle it.
3889 */
3890 if (!pte_present(entry))
3891 goto out_mutex;
3892
57303d80
AW
3893 /*
3894 * If we are going to COW the mapping later, we examine the pending
3895 * reservations for this page now. This will ensure that any
3896 * allocations necessary to record that reservation occur outside the
3897 * spinlock. For private mappings, we also lookup the pagecache
3898 * page now as it is used to determine if a reservation has been
3899 * consumed.
3900 */
106c992a 3901 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3902 if (vma_needs_reservation(h, vma, address) < 0) {
3903 ret = VM_FAULT_OOM;
b4d1d99f 3904 goto out_mutex;
2b26736c 3905 }
5e911373 3906 /* Just decrements count, does not deallocate */
feba16e2 3907 vma_end_reservation(h, vma, address);
57303d80 3908
f83a275d 3909 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3910 pagecache_page = hugetlbfs_pagecache_page(h,
3911 vma, address);
3912 }
3913
0f792cf9
NH
3914 ptl = huge_pte_lock(h, mm, ptep);
3915
3916 /* Check for a racing update before calling hugetlb_cow */
3917 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3918 goto out_ptl;
3919
56c9cfb1
NH
3920 /*
3921 * hugetlb_cow() requires page locks of pte_page(entry) and
3922 * pagecache_page, so here we need take the former one
3923 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3924 */
3925 page = pte_page(entry);
3926 if (page != pagecache_page)
0f792cf9
NH
3927 if (!trylock_page(page)) {
3928 need_wait_lock = 1;
3929 goto out_ptl;
3930 }
b4d1d99f 3931
0f792cf9 3932 get_page(page);
b4d1d99f 3933
788c7df4 3934 if (flags & FAULT_FLAG_WRITE) {
106c992a 3935 if (!huge_pte_write(entry)) {
3999f52e
AK
3936 ret = hugetlb_cow(mm, vma, address, ptep,
3937 pagecache_page, ptl);
0f792cf9 3938 goto out_put_page;
b4d1d99f 3939 }
106c992a 3940 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3941 }
3942 entry = pte_mkyoung(entry);
788c7df4
HD
3943 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3944 flags & FAULT_FLAG_WRITE))
4b3073e1 3945 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3946out_put_page:
3947 if (page != pagecache_page)
3948 unlock_page(page);
3949 put_page(page);
cb900f41
KS
3950out_ptl:
3951 spin_unlock(ptl);
57303d80
AW
3952
3953 if (pagecache_page) {
3954 unlock_page(pagecache_page);
3955 put_page(pagecache_page);
3956 }
b4d1d99f 3957out_mutex:
c672c7f2 3958 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3959 /*
3960 * Generally it's safe to hold refcount during waiting page lock. But
3961 * here we just wait to defer the next page fault to avoid busy loop and
3962 * the page is not used after unlocked before returning from the current
3963 * page fault. So we are safe from accessing freed page, even if we wait
3964 * here without taking refcount.
3965 */
3966 if (need_wait_lock)
3967 wait_on_page_locked(page);
1e8f889b 3968 return ret;
86e5216f
AL
3969}
3970
8fb5debc
MK
3971/*
3972 * Used by userfaultfd UFFDIO_COPY. Based on mcopy_atomic_pte with
3973 * modifications for huge pages.
3974 */
3975int hugetlb_mcopy_atomic_pte(struct mm_struct *dst_mm,
3976 pte_t *dst_pte,
3977 struct vm_area_struct *dst_vma,
3978 unsigned long dst_addr,
3979 unsigned long src_addr,
3980 struct page **pagep)
3981{
8bc55c46
AA
3982 struct address_space *mapping;
3983 pgoff_t idx;
3984 unsigned long size;
1c9e8def 3985 int vm_shared = dst_vma->vm_flags & VM_SHARED;
8fb5debc
MK
3986 struct hstate *h = hstate_vma(dst_vma);
3987 pte_t _dst_pte;
3988 spinlock_t *ptl;
3989 int ret;
3990 struct page *page;
3991
3992 if (!*pagep) {
3993 ret = -ENOMEM;
3994 page = alloc_huge_page(dst_vma, dst_addr, 0);
3995 if (IS_ERR(page))
3996 goto out;
3997
3998 ret = copy_huge_page_from_user(page,
3999 (const void __user *) src_addr,
810a56b9 4000 pages_per_huge_page(h), false);
8fb5debc
MK
4001
4002 /* fallback to copy_from_user outside mmap_sem */
4003 if (unlikely(ret)) {
4004 ret = -EFAULT;
4005 *pagep = page;
4006 /* don't free the page */
4007 goto out;
4008 }
4009 } else {
4010 page = *pagep;
4011 *pagep = NULL;
4012 }
4013
4014 /*
4015 * The memory barrier inside __SetPageUptodate makes sure that
4016 * preceding stores to the page contents become visible before
4017 * the set_pte_at() write.
4018 */
4019 __SetPageUptodate(page);
4020 set_page_huge_active(page);
4021
8bc55c46
AA
4022 mapping = dst_vma->vm_file->f_mapping;
4023 idx = vma_hugecache_offset(h, dst_vma, dst_addr);
4024
1c9e8def
MK
4025 /*
4026 * If shared, add to page cache
4027 */
4028 if (vm_shared) {
8bc55c46
AA
4029 size = i_size_read(mapping->host) >> huge_page_shift(h);
4030 ret = -EFAULT;
4031 if (idx >= size)
4032 goto out_release_nounlock;
1c9e8def 4033
8bc55c46
AA
4034 /*
4035 * Serialization between remove_inode_hugepages() and
4036 * huge_add_to_page_cache() below happens through the
4037 * hugetlb_fault_mutex_table that here must be hold by
4038 * the caller.
4039 */
1c9e8def
MK
4040 ret = huge_add_to_page_cache(page, mapping, idx);
4041 if (ret)
4042 goto out_release_nounlock;
4043 }
4044
8fb5debc
MK
4045 ptl = huge_pte_lockptr(h, dst_mm, dst_pte);
4046 spin_lock(ptl);
4047
8bc55c46
AA
4048 /*
4049 * Recheck the i_size after holding PT lock to make sure not
4050 * to leave any page mapped (as page_mapped()) beyond the end
4051 * of the i_size (remove_inode_hugepages() is strict about
4052 * enforcing that). If we bail out here, we'll also leave a
4053 * page in the radix tree in the vm_shared case beyond the end
4054 * of the i_size, but remove_inode_hugepages() will take care
4055 * of it as soon as we drop the hugetlb_fault_mutex_table.
4056 */
4057 size = i_size_read(mapping->host) >> huge_page_shift(h);
4058 ret = -EFAULT;
4059 if (idx >= size)
4060 goto out_release_unlock;
4061
8fb5debc
MK
4062 ret = -EEXIST;
4063 if (!huge_pte_none(huge_ptep_get(dst_pte)))
4064 goto out_release_unlock;
4065
1c9e8def
MK
4066 if (vm_shared) {
4067 page_dup_rmap(page, true);
4068 } else {
4069 ClearPagePrivate(page);
4070 hugepage_add_new_anon_rmap(page, dst_vma, dst_addr);
4071 }
8fb5debc
MK
4072
4073 _dst_pte = make_huge_pte(dst_vma, page, dst_vma->vm_flags & VM_WRITE);
4074 if (dst_vma->vm_flags & VM_WRITE)
4075 _dst_pte = huge_pte_mkdirty(_dst_pte);
4076 _dst_pte = pte_mkyoung(_dst_pte);
4077
4078 set_huge_pte_at(dst_mm, dst_addr, dst_pte, _dst_pte);
4079
4080 (void)huge_ptep_set_access_flags(dst_vma, dst_addr, dst_pte, _dst_pte,
4081 dst_vma->vm_flags & VM_WRITE);
4082 hugetlb_count_add(pages_per_huge_page(h), dst_mm);
4083
4084 /* No need to invalidate - it was non-present before */
4085 update_mmu_cache(dst_vma, dst_addr, dst_pte);
4086
4087 spin_unlock(ptl);
1c9e8def
MK
4088 if (vm_shared)
4089 unlock_page(page);
8fb5debc
MK
4090 ret = 0;
4091out:
4092 return ret;
4093out_release_unlock:
4094 spin_unlock(ptl);
1c9e8def
MK
4095 if (vm_shared)
4096 unlock_page(page);
5af10dfd 4097out_release_nounlock:
8fb5debc
MK
4098 put_page(page);
4099 goto out;
4100}
4101
28a35716
ML
4102long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
4103 struct page **pages, struct vm_area_struct **vmas,
4104 unsigned long *position, unsigned long *nr_pages,
87ffc118 4105 long i, unsigned int flags, int *nonblocking)
63551ae0 4106{
d5d4b0aa
KC
4107 unsigned long pfn_offset;
4108 unsigned long vaddr = *position;
28a35716 4109 unsigned long remainder = *nr_pages;
a5516438 4110 struct hstate *h = hstate_vma(vma);
2be7cfed 4111 int err = -EFAULT;
63551ae0 4112
63551ae0 4113 while (vaddr < vma->vm_end && remainder) {
4c887265 4114 pte_t *pte;
cb900f41 4115 spinlock_t *ptl = NULL;
2a15efc9 4116 int absent;
4c887265 4117 struct page *page;
63551ae0 4118
02057967
DR
4119 /*
4120 * If we have a pending SIGKILL, don't keep faulting pages and
4121 * potentially allocating memory.
4122 */
4123 if (unlikely(fatal_signal_pending(current))) {
4124 remainder = 0;
4125 break;
4126 }
4127
4c887265
AL
4128 /*
4129 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 4130 * each hugepage. We have to make sure we get the
4c887265 4131 * first, for the page indexing below to work.
cb900f41
KS
4132 *
4133 * Note that page table lock is not held when pte is null.
4c887265 4134 */
7868a208
PA
4135 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h),
4136 huge_page_size(h));
cb900f41
KS
4137 if (pte)
4138 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
4139 absent = !pte || huge_pte_none(huge_ptep_get(pte));
4140
4141 /*
4142 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
4143 * an error where there's an empty slot with no huge pagecache
4144 * to back it. This way, we avoid allocating a hugepage, and
4145 * the sparse dumpfile avoids allocating disk blocks, but its
4146 * huge holes still show up with zeroes where they need to be.
2a15efc9 4147 */
3ae77f43
HD
4148 if (absent && (flags & FOLL_DUMP) &&
4149 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
4150 if (pte)
4151 spin_unlock(ptl);
2a15efc9
HD
4152 remainder = 0;
4153 break;
4154 }
63551ae0 4155
9cc3a5bd
NH
4156 /*
4157 * We need call hugetlb_fault for both hugepages under migration
4158 * (in which case hugetlb_fault waits for the migration,) and
4159 * hwpoisoned hugepages (in which case we need to prevent the
4160 * caller from accessing to them.) In order to do this, we use
4161 * here is_swap_pte instead of is_hugetlb_entry_migration and
4162 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
4163 * both cases, and because we can't follow correct pages
4164 * directly from any kind of swap entries.
4165 */
4166 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
4167 ((flags & FOLL_WRITE) &&
4168 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 4169 int ret;
87ffc118 4170 unsigned int fault_flags = 0;
63551ae0 4171
cb900f41
KS
4172 if (pte)
4173 spin_unlock(ptl);
87ffc118
AA
4174 if (flags & FOLL_WRITE)
4175 fault_flags |= FAULT_FLAG_WRITE;
4176 if (nonblocking)
4177 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4178 if (flags & FOLL_NOWAIT)
4179 fault_flags |= FAULT_FLAG_ALLOW_RETRY |
4180 FAULT_FLAG_RETRY_NOWAIT;
4181 if (flags & FOLL_TRIED) {
4182 VM_WARN_ON_ONCE(fault_flags &
4183 FAULT_FLAG_ALLOW_RETRY);
4184 fault_flags |= FAULT_FLAG_TRIED;
4185 }
4186 ret = hugetlb_fault(mm, vma, vaddr, fault_flags);
4187 if (ret & VM_FAULT_ERROR) {
2be7cfed 4188 err = vm_fault_to_errno(ret, flags);
87ffc118
AA
4189 remainder = 0;
4190 break;
4191 }
4192 if (ret & VM_FAULT_RETRY) {
4193 if (nonblocking)
4194 *nonblocking = 0;
4195 *nr_pages = 0;
4196 /*
4197 * VM_FAULT_RETRY must not return an
4198 * error, it will return zero
4199 * instead.
4200 *
4201 * No need to update "position" as the
4202 * caller will not check it after
4203 * *nr_pages is set to 0.
4204 */
4205 return i;
4206 }
4207 continue;
4c887265
AL
4208 }
4209
a5516438 4210 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 4211 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 4212same_page:
d6692183 4213 if (pages) {
2a15efc9 4214 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 4215 get_page(pages[i]);
d6692183 4216 }
63551ae0
DG
4217
4218 if (vmas)
4219 vmas[i] = vma;
4220
4221 vaddr += PAGE_SIZE;
d5d4b0aa 4222 ++pfn_offset;
63551ae0
DG
4223 --remainder;
4224 ++i;
d5d4b0aa 4225 if (vaddr < vma->vm_end && remainder &&
a5516438 4226 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
4227 /*
4228 * We use pfn_offset to avoid touching the pageframes
4229 * of this compound page.
4230 */
4231 goto same_page;
4232 }
cb900f41 4233 spin_unlock(ptl);
63551ae0 4234 }
28a35716 4235 *nr_pages = remainder;
87ffc118
AA
4236 /*
4237 * setting position is actually required only if remainder is
4238 * not zero but it's faster not to add a "if (remainder)"
4239 * branch.
4240 */
63551ae0
DG
4241 *position = vaddr;
4242
2be7cfed 4243 return i ? i : err;
63551ae0 4244}
8f860591 4245
5491ae7b
AK
4246#ifndef __HAVE_ARCH_FLUSH_HUGETLB_TLB_RANGE
4247/*
4248 * ARCHes with special requirements for evicting HUGETLB backing TLB entries can
4249 * implement this.
4250 */
4251#define flush_hugetlb_tlb_range(vma, addr, end) flush_tlb_range(vma, addr, end)
4252#endif
4253
7da4d641 4254unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
4255 unsigned long address, unsigned long end, pgprot_t newprot)
4256{
4257 struct mm_struct *mm = vma->vm_mm;
4258 unsigned long start = address;
4259 pte_t *ptep;
4260 pte_t pte;
a5516438 4261 struct hstate *h = hstate_vma(vma);
7da4d641 4262 unsigned long pages = 0;
8f860591
ZY
4263
4264 BUG_ON(address >= end);
4265 flush_cache_range(vma, address, end);
4266
a5338093 4267 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 4268 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 4269 for (; address < end; address += huge_page_size(h)) {
cb900f41 4270 spinlock_t *ptl;
7868a208 4271 ptep = huge_pte_offset(mm, address, huge_page_size(h));
8f860591
ZY
4272 if (!ptep)
4273 continue;
cb900f41 4274 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
4275 if (huge_pmd_unshare(mm, &address, ptep)) {
4276 pages++;
cb900f41 4277 spin_unlock(ptl);
39dde65c 4278 continue;
7da4d641 4279 }
a8bda28d
NH
4280 pte = huge_ptep_get(ptep);
4281 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
4282 spin_unlock(ptl);
4283 continue;
4284 }
4285 if (unlikely(is_hugetlb_entry_migration(pte))) {
4286 swp_entry_t entry = pte_to_swp_entry(pte);
4287
4288 if (is_write_migration_entry(entry)) {
4289 pte_t newpte;
4290
4291 make_migration_entry_read(&entry);
4292 newpte = swp_entry_to_pte(entry);
e5251fd4
PA
4293 set_huge_swap_pte_at(mm, address, ptep,
4294 newpte, huge_page_size(h));
a8bda28d
NH
4295 pages++;
4296 }
4297 spin_unlock(ptl);
4298 continue;
4299 }
4300 if (!huge_pte_none(pte)) {
8f860591 4301 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 4302 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 4303 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 4304 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 4305 pages++;
8f860591 4306 }
cb900f41 4307 spin_unlock(ptl);
8f860591 4308 }
d833352a 4309 /*
c8c06efa 4310 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 4311 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 4312 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
4313 * and that page table be reused and filled with junk.
4314 */
5491ae7b 4315 flush_hugetlb_tlb_range(vma, start, end);
34ee645e 4316 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 4317 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 4318 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
4319
4320 return pages << h->order;
8f860591
ZY
4321}
4322
a1e78772
MG
4323int hugetlb_reserve_pages(struct inode *inode,
4324 long from, long to,
5a6fe125 4325 struct vm_area_struct *vma,
ca16d140 4326 vm_flags_t vm_flags)
e4e574b7 4327{
17c9d12e 4328 long ret, chg;
a5516438 4329 struct hstate *h = hstate_inode(inode);
90481622 4330 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 4331 struct resv_map *resv_map;
1c5ecae3 4332 long gbl_reserve;
e4e574b7 4333
17c9d12e
MG
4334 /*
4335 * Only apply hugepage reservation if asked. At fault time, an
4336 * attempt will be made for VM_NORESERVE to allocate a page
90481622 4337 * without using reserves
17c9d12e 4338 */
ca16d140 4339 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
4340 return 0;
4341
a1e78772
MG
4342 /*
4343 * Shared mappings base their reservation on the number of pages that
4344 * are already allocated on behalf of the file. Private mappings need
4345 * to reserve the full area even if read-only as mprotect() may be
4346 * called to make the mapping read-write. Assume !vma is a shm mapping
4347 */
9119a41e 4348 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 4349 resv_map = inode_resv_map(inode);
9119a41e 4350
1406ec9b 4351 chg = region_chg(resv_map, from, to);
9119a41e
JK
4352
4353 } else {
4354 resv_map = resv_map_alloc();
17c9d12e
MG
4355 if (!resv_map)
4356 return -ENOMEM;
4357
a1e78772 4358 chg = to - from;
84afd99b 4359
17c9d12e
MG
4360 set_vma_resv_map(vma, resv_map);
4361 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4362 }
4363
c50ac050
DH
4364 if (chg < 0) {
4365 ret = chg;
4366 goto out_err;
4367 }
8a630112 4368
1c5ecae3
MK
4369 /*
4370 * There must be enough pages in the subpool for the mapping. If
4371 * the subpool has a minimum size, there may be some global
4372 * reservations already in place (gbl_reserve).
4373 */
4374 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4375 if (gbl_reserve < 0) {
c50ac050
DH
4376 ret = -ENOSPC;
4377 goto out_err;
4378 }
5a6fe125
MG
4379
4380 /*
17c9d12e 4381 * Check enough hugepages are available for the reservation.
90481622 4382 * Hand the pages back to the subpool if there are not
5a6fe125 4383 */
1c5ecae3 4384 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4385 if (ret < 0) {
1c5ecae3
MK
4386 /* put back original number of pages, chg */
4387 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4388 goto out_err;
68842c9b 4389 }
17c9d12e
MG
4390
4391 /*
4392 * Account for the reservations made. Shared mappings record regions
4393 * that have reservations as they are shared by multiple VMAs.
4394 * When the last VMA disappears, the region map says how much
4395 * the reservation was and the page cache tells how much of
4396 * the reservation was consumed. Private mappings are per-VMA and
4397 * only the consumed reservations are tracked. When the VMA
4398 * disappears, the original reservation is the VMA size and the
4399 * consumed reservations are stored in the map. Hence, nothing
4400 * else has to be done for private mappings here
4401 */
33039678
MK
4402 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4403 long add = region_add(resv_map, from, to);
4404
4405 if (unlikely(chg > add)) {
4406 /*
4407 * pages in this range were added to the reserve
4408 * map between region_chg and region_add. This
4409 * indicates a race with alloc_huge_page. Adjust
4410 * the subpool and reserve counts modified above
4411 * based on the difference.
4412 */
4413 long rsv_adjust;
4414
4415 rsv_adjust = hugepage_subpool_put_pages(spool,
4416 chg - add);
4417 hugetlb_acct_memory(h, -rsv_adjust);
4418 }
4419 }
a43a8c39 4420 return 0;
c50ac050 4421out_err:
5e911373 4422 if (!vma || vma->vm_flags & VM_MAYSHARE)
ff8c0c53
MK
4423 /* Don't call region_abort if region_chg failed */
4424 if (chg >= 0)
4425 region_abort(resv_map, from, to);
f031dd27
JK
4426 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4427 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4428 return ret;
a43a8c39
KC
4429}
4430
b5cec28d
MK
4431long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4432 long freed)
a43a8c39 4433{
a5516438 4434 struct hstate *h = hstate_inode(inode);
4e35f483 4435 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4436 long chg = 0;
90481622 4437 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4438 long gbl_reserve;
45c682a6 4439
b5cec28d
MK
4440 if (resv_map) {
4441 chg = region_del(resv_map, start, end);
4442 /*
4443 * region_del() can fail in the rare case where a region
4444 * must be split and another region descriptor can not be
4445 * allocated. If end == LONG_MAX, it will not fail.
4446 */
4447 if (chg < 0)
4448 return chg;
4449 }
4450
45c682a6 4451 spin_lock(&inode->i_lock);
e4c6f8be 4452 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4453 spin_unlock(&inode->i_lock);
4454
1c5ecae3
MK
4455 /*
4456 * If the subpool has a minimum size, the number of global
4457 * reservations to be released may be adjusted.
4458 */
4459 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4460 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4461
4462 return 0;
a43a8c39 4463}
93f70f90 4464
3212b535
SC
4465#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4466static unsigned long page_table_shareable(struct vm_area_struct *svma,
4467 struct vm_area_struct *vma,
4468 unsigned long addr, pgoff_t idx)
4469{
4470 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4471 svma->vm_start;
4472 unsigned long sbase = saddr & PUD_MASK;
4473 unsigned long s_end = sbase + PUD_SIZE;
4474
4475 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4476 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4477 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4478
4479 /*
4480 * match the virtual addresses, permission and the alignment of the
4481 * page table page.
4482 */
4483 if (pmd_index(addr) != pmd_index(saddr) ||
4484 vm_flags != svm_flags ||
4485 sbase < svma->vm_start || svma->vm_end < s_end)
4486 return 0;
4487
4488 return saddr;
4489}
4490
31aafb45 4491static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4492{
4493 unsigned long base = addr & PUD_MASK;
4494 unsigned long end = base + PUD_SIZE;
4495
4496 /*
4497 * check on proper vm_flags and page table alignment
4498 */
4499 if (vma->vm_flags & VM_MAYSHARE &&
4500 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4501 return true;
4502 return false;
3212b535
SC
4503}
4504
4505/*
4506 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4507 * and returns the corresponding pte. While this is not necessary for the
4508 * !shared pmd case because we can allocate the pmd later as well, it makes the
4509 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4510 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4511 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4512 * bad pmd for sharing.
4513 */
4514pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4515{
4516 struct vm_area_struct *vma = find_vma(mm, addr);
4517 struct address_space *mapping = vma->vm_file->f_mapping;
4518 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4519 vma->vm_pgoff;
4520 struct vm_area_struct *svma;
4521 unsigned long saddr;
4522 pte_t *spte = NULL;
4523 pte_t *pte;
cb900f41 4524 spinlock_t *ptl;
3212b535
SC
4525
4526 if (!vma_shareable(vma, addr))
4527 return (pte_t *)pmd_alloc(mm, pud, addr);
4528
83cde9e8 4529 i_mmap_lock_write(mapping);
3212b535
SC
4530 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4531 if (svma == vma)
4532 continue;
4533
4534 saddr = page_table_shareable(svma, vma, addr, idx);
4535 if (saddr) {
7868a208
PA
4536 spte = huge_pte_offset(svma->vm_mm, saddr,
4537 vma_mmu_pagesize(svma));
3212b535
SC
4538 if (spte) {
4539 get_page(virt_to_page(spte));
4540 break;
4541 }
4542 }
4543 }
4544
4545 if (!spte)
4546 goto out;
4547
8bea8052 4548 ptl = huge_pte_lock(hstate_vma(vma), mm, spte);
dc6c9a35 4549 if (pud_none(*pud)) {
3212b535
SC
4550 pud_populate(mm, pud,
4551 (pmd_t *)((unsigned long)spte & PAGE_MASK));
c17b1f42 4552 mm_inc_nr_pmds(mm);
dc6c9a35 4553 } else {
3212b535 4554 put_page(virt_to_page(spte));
dc6c9a35 4555 }
cb900f41 4556 spin_unlock(ptl);
3212b535
SC
4557out:
4558 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4559 i_mmap_unlock_write(mapping);
3212b535
SC
4560 return pte;
4561}
4562
4563/*
4564 * unmap huge page backed by shared pte.
4565 *
4566 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4567 * indicated by page_count > 1, unmap is achieved by clearing pud and
4568 * decrementing the ref count. If count == 1, the pte page is not shared.
4569 *
cb900f41 4570 * called with page table lock held.
3212b535
SC
4571 *
4572 * returns: 1 successfully unmapped a shared pte page
4573 * 0 the underlying pte page is not shared, or it is the last user
4574 */
4575int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4576{
4577 pgd_t *pgd = pgd_offset(mm, *addr);
c2febafc
KS
4578 p4d_t *p4d = p4d_offset(pgd, *addr);
4579 pud_t *pud = pud_offset(p4d, *addr);
3212b535
SC
4580
4581 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4582 if (page_count(virt_to_page(ptep)) == 1)
4583 return 0;
4584
4585 pud_clear(pud);
4586 put_page(virt_to_page(ptep));
dc6c9a35 4587 mm_dec_nr_pmds(mm);
3212b535
SC
4588 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4589 return 1;
4590}
9e5fc74c
SC
4591#define want_pmd_share() (1)
4592#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4593pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4594{
4595 return NULL;
4596}
e81f2d22
ZZ
4597
4598int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4599{
4600 return 0;
4601}
9e5fc74c 4602#define want_pmd_share() (0)
3212b535
SC
4603#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4604
9e5fc74c
SC
4605#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4606pte_t *huge_pte_alloc(struct mm_struct *mm,
4607 unsigned long addr, unsigned long sz)
4608{
4609 pgd_t *pgd;
c2febafc 4610 p4d_t *p4d;
9e5fc74c
SC
4611 pud_t *pud;
4612 pte_t *pte = NULL;
4613
4614 pgd = pgd_offset(mm, addr);
c2febafc
KS
4615 p4d = p4d_offset(pgd, addr);
4616 pud = pud_alloc(mm, p4d, addr);
9e5fc74c
SC
4617 if (pud) {
4618 if (sz == PUD_SIZE) {
4619 pte = (pte_t *)pud;
4620 } else {
4621 BUG_ON(sz != PMD_SIZE);
4622 if (want_pmd_share() && pud_none(*pud))
4623 pte = huge_pmd_share(mm, addr, pud);
4624 else
4625 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4626 }
4627 }
4e666314 4628 BUG_ON(pte && pte_present(*pte) && !pte_huge(*pte));
9e5fc74c
SC
4629
4630 return pte;
4631}
4632
7868a208
PA
4633pte_t *huge_pte_offset(struct mm_struct *mm,
4634 unsigned long addr, unsigned long sz)
9e5fc74c
SC
4635{
4636 pgd_t *pgd;
c2febafc 4637 p4d_t *p4d;
9e5fc74c 4638 pud_t *pud;
c2febafc 4639 pmd_t *pmd;
9e5fc74c
SC
4640
4641 pgd = pgd_offset(mm, addr);
c2febafc
KS
4642 if (!pgd_present(*pgd))
4643 return NULL;
4644 p4d = p4d_offset(pgd, addr);
4645 if (!p4d_present(*p4d))
4646 return NULL;
4647 pud = pud_offset(p4d, addr);
4648 if (!pud_present(*pud))
4649 return NULL;
4650 if (pud_huge(*pud))
4651 return (pte_t *)pud;
4652 pmd = pmd_offset(pud, addr);
9e5fc74c
SC
4653 return (pte_t *) pmd;
4654}
4655
61f77eda
NH
4656#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4657
4658/*
4659 * These functions are overwritable if your architecture needs its own
4660 * behavior.
4661 */
4662struct page * __weak
4663follow_huge_addr(struct mm_struct *mm, unsigned long address,
4664 int write)
4665{
4666 return ERR_PTR(-EINVAL);
4667}
4668
4dc71451
AK
4669struct page * __weak
4670follow_huge_pd(struct vm_area_struct *vma,
4671 unsigned long address, hugepd_t hpd, int flags, int pdshift)
4672{
4673 WARN(1, "hugepd follow called with no support for hugepage directory format\n");
4674 return NULL;
4675}
4676
61f77eda 4677struct page * __weak
9e5fc74c 4678follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4679 pmd_t *pmd, int flags)
9e5fc74c 4680{
e66f17ff
NH
4681 struct page *page = NULL;
4682 spinlock_t *ptl;
c9d398fa 4683 pte_t pte;
e66f17ff
NH
4684retry:
4685 ptl = pmd_lockptr(mm, pmd);
4686 spin_lock(ptl);
4687 /*
4688 * make sure that the address range covered by this pmd is not
4689 * unmapped from other threads.
4690 */
4691 if (!pmd_huge(*pmd))
4692 goto out;
c9d398fa
NH
4693 pte = huge_ptep_get((pte_t *)pmd);
4694 if (pte_present(pte)) {
97534127 4695 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4696 if (flags & FOLL_GET)
4697 get_page(page);
4698 } else {
c9d398fa 4699 if (is_hugetlb_entry_migration(pte)) {
e66f17ff
NH
4700 spin_unlock(ptl);
4701 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4702 goto retry;
4703 }
4704 /*
4705 * hwpoisoned entry is treated as no_page_table in
4706 * follow_page_mask().
4707 */
4708 }
4709out:
4710 spin_unlock(ptl);
9e5fc74c
SC
4711 return page;
4712}
4713
61f77eda 4714struct page * __weak
9e5fc74c 4715follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4716 pud_t *pud, int flags)
9e5fc74c 4717{
e66f17ff
NH
4718 if (flags & FOLL_GET)
4719 return NULL;
9e5fc74c 4720
e66f17ff 4721 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4722}
4723
faaa5b62
AK
4724struct page * __weak
4725follow_huge_pgd(struct mm_struct *mm, unsigned long address, pgd_t *pgd, int flags)
4726{
4727 if (flags & FOLL_GET)
4728 return NULL;
4729
4730 return pte_page(*(pte_t *)pgd) + ((address & ~PGDIR_MASK) >> PAGE_SHIFT);
4731}
4732
31caf665
NH
4733bool isolate_huge_page(struct page *page, struct list_head *list)
4734{
bcc54222
NH
4735 bool ret = true;
4736
309381fe 4737 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4738 spin_lock(&hugetlb_lock);
bcc54222
NH
4739 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4740 ret = false;
4741 goto unlock;
4742 }
4743 clear_page_huge_active(page);
31caf665 4744 list_move_tail(&page->lru, list);
bcc54222 4745unlock:
31caf665 4746 spin_unlock(&hugetlb_lock);
bcc54222 4747 return ret;
31caf665
NH
4748}
4749
4750void putback_active_hugepage(struct page *page)
4751{
309381fe 4752 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4753 spin_lock(&hugetlb_lock);
bcc54222 4754 set_page_huge_active(page);
31caf665
NH
4755 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4756 spin_unlock(&hugetlb_lock);
4757 put_page(page);
4758}