]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/memory.c
x86/bugs/intel: Set proper CPU features and setup RDS
[mirror_ubuntu-artful-kernel.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
166f61b9 33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
1da177e4
LT
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
6e84f315 43#include <linux/sched/mm.h>
f7ccbae4 44#include <linux/sched/coredump.h>
6a3827d7 45#include <linux/sched/numa_balancing.h>
29930025 46#include <linux/sched/task.h>
1da177e4
LT
47#include <linux/hugetlb.h>
48#include <linux/mman.h>
49#include <linux/swap.h>
50#include <linux/highmem.h>
51#include <linux/pagemap.h>
9a840895 52#include <linux/ksm.h>
1da177e4 53#include <linux/rmap.h>
b95f1b31 54#include <linux/export.h>
0ff92245 55#include <linux/delayacct.h>
1da177e4 56#include <linux/init.h>
01c8f1c4 57#include <linux/pfn_t.h>
edc79b2a 58#include <linux/writeback.h>
8a9f3ccd 59#include <linux/memcontrol.h>
cddb8a5c 60#include <linux/mmu_notifier.h>
3dc14741
HD
61#include <linux/kallsyms.h>
62#include <linux/swapops.h>
63#include <linux/elf.h>
5a0e3ad6 64#include <linux/gfp.h>
4daae3b4 65#include <linux/migrate.h>
2fbc57c5 66#include <linux/string.h>
0abdd7a8 67#include <linux/dma-debug.h>
1592eef0 68#include <linux/debugfs.h>
6b251fc9 69#include <linux/userfaultfd_k.h>
bc2466e4 70#include <linux/dax.h>
6b31d595 71#include <linux/oom.h>
1da177e4 72
6952b61d 73#include <asm/io.h>
33a709b2 74#include <asm/mmu_context.h>
1da177e4 75#include <asm/pgalloc.h>
7c0f6ba6 76#include <linux/uaccess.h>
1da177e4
LT
77#include <asm/tlb.h>
78#include <asm/tlbflush.h>
79#include <asm/pgtable.h>
80
42b77728
JB
81#include "internal.h"
82
90572890
PZ
83#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
84#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
85#endif
86
d41dee36 87#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
88/* use the per-pgdat data instead for discontigmem - mbligh */
89unsigned long max_mapnr;
1da177e4 90EXPORT_SYMBOL(max_mapnr);
166f61b9
TH
91
92struct page *mem_map;
1da177e4
LT
93EXPORT_SYMBOL(mem_map);
94#endif
95
1da177e4
LT
96/*
97 * A number of key systems in x86 including ioremap() rely on the assumption
98 * that high_memory defines the upper bound on direct map memory, then end
99 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
100 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
101 * and ZONE_HIGHMEM.
102 */
166f61b9 103void *high_memory;
1da177e4 104EXPORT_SYMBOL(high_memory);
1da177e4 105
32a93233
IM
106/*
107 * Randomize the address space (stacks, mmaps, brk, etc.).
108 *
109 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
110 * as ancient (libc5 based) binaries can segfault. )
111 */
112int randomize_va_space __read_mostly =
113#ifdef CONFIG_COMPAT_BRK
114 1;
115#else
116 2;
117#endif
a62eaf15
AK
118
119static int __init disable_randmaps(char *s)
120{
121 randomize_va_space = 0;
9b41046c 122 return 1;
a62eaf15
AK
123}
124__setup("norandmaps", disable_randmaps);
125
62eede62 126unsigned long zero_pfn __read_mostly;
0b70068e
AB
127EXPORT_SYMBOL(zero_pfn);
128
166f61b9
TH
129unsigned long highest_memmap_pfn __read_mostly;
130
a13ea5b7
HD
131/*
132 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
133 */
134static int __init init_zero_pfn(void)
135{
136 zero_pfn = page_to_pfn(ZERO_PAGE(0));
137 return 0;
138}
139core_initcall(init_zero_pfn);
a62eaf15 140
d559db08 141
34e55232
KH
142#if defined(SPLIT_RSS_COUNTING)
143
ea48cf78 144void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
145{
146 int i;
147
148 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
149 if (current->rss_stat.count[i]) {
150 add_mm_counter(mm, i, current->rss_stat.count[i]);
151 current->rss_stat.count[i] = 0;
34e55232
KH
152 }
153 }
05af2e10 154 current->rss_stat.events = 0;
34e55232
KH
155}
156
157static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
158{
159 struct task_struct *task = current;
160
161 if (likely(task->mm == mm))
162 task->rss_stat.count[member] += val;
163 else
164 add_mm_counter(mm, member, val);
165}
166#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
167#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
168
169/* sync counter once per 64 page faults */
170#define TASK_RSS_EVENTS_THRESH (64)
171static void check_sync_rss_stat(struct task_struct *task)
172{
173 if (unlikely(task != current))
174 return;
175 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 176 sync_mm_rss(task->mm);
34e55232 177}
9547d01b 178#else /* SPLIT_RSS_COUNTING */
34e55232
KH
179
180#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
181#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
182
183static void check_sync_rss_stat(struct task_struct *task)
184{
185}
186
9547d01b
PZ
187#endif /* SPLIT_RSS_COUNTING */
188
189#ifdef HAVE_GENERIC_MMU_GATHER
190
ca1d6c7d 191static bool tlb_next_batch(struct mmu_gather *tlb)
9547d01b
PZ
192{
193 struct mmu_gather_batch *batch;
194
195 batch = tlb->active;
196 if (batch->next) {
197 tlb->active = batch->next;
ca1d6c7d 198 return true;
9547d01b
PZ
199 }
200
53a59fc6 201 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
ca1d6c7d 202 return false;
53a59fc6 203
9547d01b
PZ
204 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
205 if (!batch)
ca1d6c7d 206 return false;
9547d01b 207
53a59fc6 208 tlb->batch_count++;
9547d01b
PZ
209 batch->next = NULL;
210 batch->nr = 0;
211 batch->max = MAX_GATHER_BATCH;
212
213 tlb->active->next = batch;
214 tlb->active = batch;
215
ca1d6c7d 216 return true;
9547d01b
PZ
217}
218
56236a59
MK
219void arch_tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
220 unsigned long start, unsigned long end)
9547d01b
PZ
221{
222 tlb->mm = mm;
223
2b047252
LT
224 /* Is it from 0 to ~0? */
225 tlb->fullmm = !(start | (end+1));
1de14c3c 226 tlb->need_flush_all = 0;
9547d01b
PZ
227 tlb->local.next = NULL;
228 tlb->local.nr = 0;
229 tlb->local.max = ARRAY_SIZE(tlb->__pages);
230 tlb->active = &tlb->local;
53a59fc6 231 tlb->batch_count = 0;
9547d01b
PZ
232
233#ifdef CONFIG_HAVE_RCU_TABLE_FREE
234 tlb->batch = NULL;
235#endif
e77b0852 236 tlb->page_size = 0;
fb7332a9
WD
237
238 __tlb_reset_range(tlb);
9547d01b
PZ
239}
240
1cf35d47 241static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 242{
721c21c1
WD
243 if (!tlb->end)
244 return;
245
9547d01b 246 tlb_flush(tlb);
34ee645e 247 mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
9547d01b
PZ
248#ifdef CONFIG_HAVE_RCU_TABLE_FREE
249 tlb_table_flush(tlb);
34e55232 250#endif
fb7332a9 251 __tlb_reset_range(tlb);
1cf35d47
LT
252}
253
254static void tlb_flush_mmu_free(struct mmu_gather *tlb)
255{
256 struct mmu_gather_batch *batch;
34e55232 257
721c21c1 258 for (batch = &tlb->local; batch && batch->nr; batch = batch->next) {
9547d01b
PZ
259 free_pages_and_swap_cache(batch->pages, batch->nr);
260 batch->nr = 0;
261 }
262 tlb->active = &tlb->local;
263}
264
1cf35d47
LT
265void tlb_flush_mmu(struct mmu_gather *tlb)
266{
1cf35d47
LT
267 tlb_flush_mmu_tlbonly(tlb);
268 tlb_flush_mmu_free(tlb);
269}
270
9547d01b
PZ
271/* tlb_finish_mmu
272 * Called at the end of the shootdown operation to free up any resources
273 * that were required.
274 */
56236a59 275void arch_tlb_finish_mmu(struct mmu_gather *tlb,
99baac21 276 unsigned long start, unsigned long end, bool force)
9547d01b
PZ
277{
278 struct mmu_gather_batch *batch, *next;
279
99baac21
MK
280 if (force)
281 __tlb_adjust_range(tlb, start, end - start);
282
9547d01b
PZ
283 tlb_flush_mmu(tlb);
284
285 /* keep the page table cache within bounds */
286 check_pgt_cache();
287
288 for (batch = tlb->local.next; batch; batch = next) {
289 next = batch->next;
290 free_pages((unsigned long)batch, 0);
291 }
292 tlb->local.next = NULL;
293}
294
295/* __tlb_remove_page
296 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
297 * handling the additional races in SMP caused by other CPUs caching valid
298 * mappings in their TLBs. Returns the number of free page slots left.
299 * When out of page slots we must call tlb_flush_mmu().
e9d55e15 300 *returns true if the caller should flush.
9547d01b 301 */
e77b0852 302bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page, int page_size)
9547d01b
PZ
303{
304 struct mmu_gather_batch *batch;
305
fb7332a9 306 VM_BUG_ON(!tlb->end);
692a68c1 307 VM_WARN_ON(tlb->page_size != page_size);
e77b0852 308
9547d01b 309 batch = tlb->active;
692a68c1
AK
310 /*
311 * Add the page and check if we are full. If so
312 * force a flush.
313 */
314 batch->pages[batch->nr++] = page;
9547d01b
PZ
315 if (batch->nr == batch->max) {
316 if (!tlb_next_batch(tlb))
e9d55e15 317 return true;
0b43c3aa 318 batch = tlb->active;
9547d01b 319 }
309381fe 320 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b 321
e9d55e15 322 return false;
9547d01b
PZ
323}
324
325#endif /* HAVE_GENERIC_MMU_GATHER */
326
26723911
PZ
327#ifdef CONFIG_HAVE_RCU_TABLE_FREE
328
329/*
330 * See the comment near struct mmu_table_batch.
331 */
332
333static void tlb_remove_table_smp_sync(void *arg)
334{
335 /* Simply deliver the interrupt */
336}
337
338static void tlb_remove_table_one(void *table)
339{
340 /*
341 * This isn't an RCU grace period and hence the page-tables cannot be
342 * assumed to be actually RCU-freed.
343 *
344 * It is however sufficient for software page-table walkers that rely on
345 * IRQ disabling. See the comment near struct mmu_table_batch.
346 */
347 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
348 __tlb_remove_table(table);
349}
350
351static void tlb_remove_table_rcu(struct rcu_head *head)
352{
353 struct mmu_table_batch *batch;
354 int i;
355
356 batch = container_of(head, struct mmu_table_batch, rcu);
357
358 for (i = 0; i < batch->nr; i++)
359 __tlb_remove_table(batch->tables[i]);
360
361 free_page((unsigned long)batch);
362}
363
364void tlb_table_flush(struct mmu_gather *tlb)
365{
366 struct mmu_table_batch **batch = &tlb->batch;
367
368 if (*batch) {
369 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
370 *batch = NULL;
371 }
372}
373
374void tlb_remove_table(struct mmu_gather *tlb, void *table)
375{
376 struct mmu_table_batch **batch = &tlb->batch;
377
26723911
PZ
378 /*
379 * When there's less then two users of this mm there cannot be a
380 * concurrent page-table walk.
381 */
382 if (atomic_read(&tlb->mm->mm_users) < 2) {
383 __tlb_remove_table(table);
384 return;
385 }
386
387 if (*batch == NULL) {
388 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
389 if (*batch == NULL) {
390 tlb_remove_table_one(table);
391 return;
392 }
393 (*batch)->nr = 0;
394 }
395 (*batch)->tables[(*batch)->nr++] = table;
396 if ((*batch)->nr == MAX_TABLE_BATCH)
397 tlb_table_flush(tlb);
398}
399
9547d01b 400#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 401
56236a59
MK
402/* tlb_gather_mmu
403 * Called to initialize an (on-stack) mmu_gather structure for page-table
404 * tear-down from @mm. The @fullmm argument is used when @mm is without
405 * users and we're going to destroy the full address space (exit/execve).
406 */
407void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm,
408 unsigned long start, unsigned long end)
409{
410 arch_tlb_gather_mmu(tlb, mm, start, end);
99baac21 411 inc_tlb_flush_pending(tlb->mm);
56236a59
MK
412}
413
414void tlb_finish_mmu(struct mmu_gather *tlb,
415 unsigned long start, unsigned long end)
416{
99baac21
MK
417 /*
418 * If there are parallel threads are doing PTE changes on same range
419 * under non-exclusive lock(e.g., mmap_sem read-side) but defer TLB
420 * flush by batching, a thread has stable TLB entry can fail to flush
421 * the TLB by observing pte_none|!pte_dirty, for example so flush TLB
422 * forcefully if we detect parallel PTE batching threads.
423 */
424 bool force = mm_tlb_flush_nested(tlb->mm);
425
426 arch_tlb_finish_mmu(tlb, start, end, force);
427 dec_tlb_flush_pending(tlb->mm);
56236a59
MK
428}
429
1da177e4
LT
430/*
431 * Note: this doesn't free the actual pages themselves. That
432 * has been handled earlier when unmapping all the memory regions.
433 */
9e1b32ca
BH
434static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
435 unsigned long addr)
1da177e4 436{
2f569afd 437 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 438 pmd_clear(pmd);
9e1b32ca 439 pte_free_tlb(tlb, token, addr);
e1f56c89 440 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
441}
442
e0da382c
HD
443static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
444 unsigned long addr, unsigned long end,
445 unsigned long floor, unsigned long ceiling)
1da177e4
LT
446{
447 pmd_t *pmd;
448 unsigned long next;
e0da382c 449 unsigned long start;
1da177e4 450
e0da382c 451 start = addr;
1da177e4 452 pmd = pmd_offset(pud, addr);
1da177e4
LT
453 do {
454 next = pmd_addr_end(addr, end);
455 if (pmd_none_or_clear_bad(pmd))
456 continue;
9e1b32ca 457 free_pte_range(tlb, pmd, addr);
1da177e4
LT
458 } while (pmd++, addr = next, addr != end);
459
e0da382c
HD
460 start &= PUD_MASK;
461 if (start < floor)
462 return;
463 if (ceiling) {
464 ceiling &= PUD_MASK;
465 if (!ceiling)
466 return;
1da177e4 467 }
e0da382c
HD
468 if (end - 1 > ceiling - 1)
469 return;
470
471 pmd = pmd_offset(pud, start);
472 pud_clear(pud);
9e1b32ca 473 pmd_free_tlb(tlb, pmd, start);
dc6c9a35 474 mm_dec_nr_pmds(tlb->mm);
1da177e4
LT
475}
476
c2febafc 477static inline void free_pud_range(struct mmu_gather *tlb, p4d_t *p4d,
e0da382c
HD
478 unsigned long addr, unsigned long end,
479 unsigned long floor, unsigned long ceiling)
1da177e4
LT
480{
481 pud_t *pud;
482 unsigned long next;
e0da382c 483 unsigned long start;
1da177e4 484
e0da382c 485 start = addr;
c2febafc 486 pud = pud_offset(p4d, addr);
1da177e4
LT
487 do {
488 next = pud_addr_end(addr, end);
489 if (pud_none_or_clear_bad(pud))
490 continue;
e0da382c 491 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
492 } while (pud++, addr = next, addr != end);
493
c2febafc
KS
494 start &= P4D_MASK;
495 if (start < floor)
496 return;
497 if (ceiling) {
498 ceiling &= P4D_MASK;
499 if (!ceiling)
500 return;
501 }
502 if (end - 1 > ceiling - 1)
503 return;
504
505 pud = pud_offset(p4d, start);
506 p4d_clear(p4d);
507 pud_free_tlb(tlb, pud, start);
508}
509
510static inline void free_p4d_range(struct mmu_gather *tlb, pgd_t *pgd,
511 unsigned long addr, unsigned long end,
512 unsigned long floor, unsigned long ceiling)
513{
514 p4d_t *p4d;
515 unsigned long next;
516 unsigned long start;
517
518 start = addr;
519 p4d = p4d_offset(pgd, addr);
520 do {
521 next = p4d_addr_end(addr, end);
522 if (p4d_none_or_clear_bad(p4d))
523 continue;
524 free_pud_range(tlb, p4d, addr, next, floor, ceiling);
525 } while (p4d++, addr = next, addr != end);
526
e0da382c
HD
527 start &= PGDIR_MASK;
528 if (start < floor)
529 return;
530 if (ceiling) {
531 ceiling &= PGDIR_MASK;
532 if (!ceiling)
533 return;
1da177e4 534 }
e0da382c
HD
535 if (end - 1 > ceiling - 1)
536 return;
537
c2febafc 538 p4d = p4d_offset(pgd, start);
e0da382c 539 pgd_clear(pgd);
c2febafc 540 p4d_free_tlb(tlb, p4d, start);
1da177e4
LT
541}
542
543/*
e0da382c 544 * This function frees user-level page tables of a process.
1da177e4 545 */
42b77728 546void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
547 unsigned long addr, unsigned long end,
548 unsigned long floor, unsigned long ceiling)
1da177e4
LT
549{
550 pgd_t *pgd;
551 unsigned long next;
e0da382c
HD
552
553 /*
554 * The next few lines have given us lots of grief...
555 *
556 * Why are we testing PMD* at this top level? Because often
557 * there will be no work to do at all, and we'd prefer not to
558 * go all the way down to the bottom just to discover that.
559 *
560 * Why all these "- 1"s? Because 0 represents both the bottom
561 * of the address space and the top of it (using -1 for the
562 * top wouldn't help much: the masks would do the wrong thing).
563 * The rule is that addr 0 and floor 0 refer to the bottom of
564 * the address space, but end 0 and ceiling 0 refer to the top
565 * Comparisons need to use "end - 1" and "ceiling - 1" (though
566 * that end 0 case should be mythical).
567 *
568 * Wherever addr is brought up or ceiling brought down, we must
569 * be careful to reject "the opposite 0" before it confuses the
570 * subsequent tests. But what about where end is brought down
571 * by PMD_SIZE below? no, end can't go down to 0 there.
572 *
573 * Whereas we round start (addr) and ceiling down, by different
574 * masks at different levels, in order to test whether a table
575 * now has no other vmas using it, so can be freed, we don't
576 * bother to round floor or end up - the tests don't need that.
577 */
1da177e4 578
e0da382c
HD
579 addr &= PMD_MASK;
580 if (addr < floor) {
581 addr += PMD_SIZE;
582 if (!addr)
583 return;
584 }
585 if (ceiling) {
586 ceiling &= PMD_MASK;
587 if (!ceiling)
588 return;
589 }
590 if (end - 1 > ceiling - 1)
591 end -= PMD_SIZE;
592 if (addr > end - 1)
593 return;
07e32661
AK
594 /*
595 * We add page table cache pages with PAGE_SIZE,
596 * (see pte_free_tlb()), flush the tlb if we need
597 */
598 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
42b77728 599 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
600 do {
601 next = pgd_addr_end(addr, end);
602 if (pgd_none_or_clear_bad(pgd))
603 continue;
c2febafc 604 free_p4d_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 605 } while (pgd++, addr = next, addr != end);
e0da382c
HD
606}
607
42b77728 608void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 609 unsigned long floor, unsigned long ceiling)
e0da382c
HD
610{
611 while (vma) {
612 struct vm_area_struct *next = vma->vm_next;
613 unsigned long addr = vma->vm_start;
614
8f4f8c16 615 /*
25d9e2d1 616 * Hide vma from rmap and truncate_pagecache before freeing
617 * pgtables
8f4f8c16 618 */
5beb4930 619 unlink_anon_vmas(vma);
8f4f8c16
HD
620 unlink_file_vma(vma);
621
9da61aef 622 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 623 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 624 floor, next ? next->vm_start : ceiling);
3bf5ee95
HD
625 } else {
626 /*
627 * Optimization: gather nearby vmas into one call down
628 */
629 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 630 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
631 vma = next;
632 next = vma->vm_next;
5beb4930 633 unlink_anon_vmas(vma);
8f4f8c16 634 unlink_file_vma(vma);
3bf5ee95
HD
635 }
636 free_pgd_range(tlb, addr, vma->vm_end,
166f61b9 637 floor, next ? next->vm_start : ceiling);
3bf5ee95 638 }
e0da382c
HD
639 vma = next;
640 }
1da177e4
LT
641}
642
3ed3a4f0 643int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 644{
c4088ebd 645 spinlock_t *ptl;
2f569afd 646 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
647 if (!new)
648 return -ENOMEM;
649
362a61ad
NP
650 /*
651 * Ensure all pte setup (eg. pte page lock and page clearing) are
652 * visible before the pte is made visible to other CPUs by being
653 * put into page tables.
654 *
655 * The other side of the story is the pointer chasing in the page
656 * table walking code (when walking the page table without locking;
657 * ie. most of the time). Fortunately, these data accesses consist
658 * of a chain of data-dependent loads, meaning most CPUs (alpha
659 * being the notable exception) will already guarantee loads are
660 * seen in-order. See the alpha page table accessors for the
661 * smp_read_barrier_depends() barriers in page table walking code.
662 */
663 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
664
c4088ebd 665 ptl = pmd_lock(mm, pmd);
8ac1f832 666 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 667 atomic_long_inc(&mm->nr_ptes);
1da177e4 668 pmd_populate(mm, pmd, new);
2f569afd 669 new = NULL;
4b471e88 670 }
c4088ebd 671 spin_unlock(ptl);
2f569afd
MS
672 if (new)
673 pte_free(mm, new);
1bb3630e 674 return 0;
1da177e4
LT
675}
676
1bb3630e 677int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 678{
1bb3630e
HD
679 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
680 if (!new)
681 return -ENOMEM;
682
362a61ad
NP
683 smp_wmb(); /* See comment in __pte_alloc */
684
1bb3630e 685 spin_lock(&init_mm.page_table_lock);
8ac1f832 686 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 687 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 688 new = NULL;
4b471e88 689 }
1bb3630e 690 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
691 if (new)
692 pte_free_kernel(&init_mm, new);
1bb3630e 693 return 0;
1da177e4
LT
694}
695
d559db08
KH
696static inline void init_rss_vec(int *rss)
697{
698 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
699}
700
701static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 702{
d559db08
KH
703 int i;
704
34e55232 705 if (current->mm == mm)
05af2e10 706 sync_mm_rss(mm);
d559db08
KH
707 for (i = 0; i < NR_MM_COUNTERS; i++)
708 if (rss[i])
709 add_mm_counter(mm, i, rss[i]);
ae859762
HD
710}
711
b5810039 712/*
6aab341e
LT
713 * This function is called to print an error when a bad pte
714 * is found. For example, we might have a PFN-mapped pte in
715 * a region that doesn't allow it.
b5810039
NP
716 *
717 * The calling function must still handle the error.
718 */
3dc14741
HD
719static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
720 pte_t pte, struct page *page)
b5810039 721{
3dc14741 722 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
c2febafc
KS
723 p4d_t *p4d = p4d_offset(pgd, addr);
724 pud_t *pud = pud_offset(p4d, addr);
3dc14741
HD
725 pmd_t *pmd = pmd_offset(pud, addr);
726 struct address_space *mapping;
727 pgoff_t index;
d936cf9b
HD
728 static unsigned long resume;
729 static unsigned long nr_shown;
730 static unsigned long nr_unshown;
731
732 /*
733 * Allow a burst of 60 reports, then keep quiet for that minute;
734 * or allow a steady drip of one report per second.
735 */
736 if (nr_shown == 60) {
737 if (time_before(jiffies, resume)) {
738 nr_unshown++;
739 return;
740 }
741 if (nr_unshown) {
1170532b
JP
742 pr_alert("BUG: Bad page map: %lu messages suppressed\n",
743 nr_unshown);
d936cf9b
HD
744 nr_unshown = 0;
745 }
746 nr_shown = 0;
747 }
748 if (nr_shown++ == 0)
749 resume = jiffies + 60 * HZ;
3dc14741
HD
750
751 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
752 index = linear_page_index(vma, addr);
753
1170532b
JP
754 pr_alert("BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
755 current->comm,
756 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 757 if (page)
f0b791a3 758 dump_page(page, "bad pte");
1170532b
JP
759 pr_alert("addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
760 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
3dc14741
HD
761 /*
762 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
763 */
2682582a
KK
764 pr_alert("file:%pD fault:%pf mmap:%pf readpage:%pf\n",
765 vma->vm_file,
766 vma->vm_ops ? vma->vm_ops->fault : NULL,
767 vma->vm_file ? vma->vm_file->f_op->mmap : NULL,
768 mapping ? mapping->a_ops->readpage : NULL);
b5810039 769 dump_stack();
373d4d09 770 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
771}
772
ee498ed7 773/*
7e675137 774 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 775 *
7e675137
NP
776 * "Special" mappings do not wish to be associated with a "struct page" (either
777 * it doesn't exist, or it exists but they don't want to touch it). In this
778 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 779 *
7e675137
NP
780 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
781 * pte bit, in which case this function is trivial. Secondly, an architecture
782 * may not have a spare pte bit, which requires a more complicated scheme,
783 * described below.
784 *
785 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
786 * special mapping (even if there are underlying and valid "struct pages").
787 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 788 *
b379d790
JH
789 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
790 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
791 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
792 * mapping will always honor the rule
6aab341e
LT
793 *
794 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
795 *
7e675137
NP
796 * And for normal mappings this is false.
797 *
798 * This restricts such mappings to be a linear translation from virtual address
799 * to pfn. To get around this restriction, we allow arbitrary mappings so long
800 * as the vma is not a COW mapping; in that case, we know that all ptes are
801 * special (because none can have been COWed).
b379d790 802 *
b379d790 803 *
7e675137 804 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
805 *
806 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
807 * page" backing, however the difference is that _all_ pages with a struct
808 * page (that is, those where pfn_valid is true) are refcounted and considered
809 * normal pages by the VM. The disadvantage is that pages are refcounted
810 * (which can be slower and simply not an option for some PFNMAP users). The
811 * advantage is that we don't have to follow the strict linearity rule of
812 * PFNMAP mappings in order to support COWable mappings.
813 *
ee498ed7 814 */
7e675137
NP
815#ifdef __HAVE_ARCH_PTE_SPECIAL
816# define HAVE_PTE_SPECIAL 1
817#else
818# define HAVE_PTE_SPECIAL 0
819#endif
820struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
821 pte_t pte)
ee498ed7 822{
22b31eec 823 unsigned long pfn = pte_pfn(pte);
7e675137
NP
824
825 if (HAVE_PTE_SPECIAL) {
b38af472 826 if (likely(!pte_special(pte)))
22b31eec 827 goto check_pfn;
667a0a06
DV
828 if (vma->vm_ops && vma->vm_ops->find_special_page)
829 return vma->vm_ops->find_special_page(vma, addr);
a13ea5b7
HD
830 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
831 return NULL;
62eede62 832 if (!is_zero_pfn(pfn))
22b31eec 833 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
834 return NULL;
835 }
836
837 /* !HAVE_PTE_SPECIAL case follows: */
838
b379d790
JH
839 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
840 if (vma->vm_flags & VM_MIXEDMAP) {
841 if (!pfn_valid(pfn))
842 return NULL;
843 goto out;
844 } else {
7e675137
NP
845 unsigned long off;
846 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
847 if (pfn == vma->vm_pgoff + off)
848 return NULL;
849 if (!is_cow_mapping(vma->vm_flags))
850 return NULL;
851 }
6aab341e
LT
852 }
853
b38af472
HD
854 if (is_zero_pfn(pfn))
855 return NULL;
22b31eec
HD
856check_pfn:
857 if (unlikely(pfn > highest_memmap_pfn)) {
858 print_bad_pte(vma, addr, pte, NULL);
859 return NULL;
860 }
6aab341e
LT
861
862 /*
7e675137 863 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 864 * eg. VDSO mappings can cause them to exist.
6aab341e 865 */
b379d790 866out:
6aab341e 867 return pfn_to_page(pfn);
ee498ed7
HD
868}
869
28093f9f
GS
870#ifdef CONFIG_TRANSPARENT_HUGEPAGE
871struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
872 pmd_t pmd)
873{
874 unsigned long pfn = pmd_pfn(pmd);
875
876 /*
877 * There is no pmd_special() but there may be special pmds, e.g.
878 * in a direct-access (dax) mapping, so let's just replicate the
879 * !HAVE_PTE_SPECIAL case from vm_normal_page() here.
880 */
881 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
882 if (vma->vm_flags & VM_MIXEDMAP) {
883 if (!pfn_valid(pfn))
884 return NULL;
885 goto out;
886 } else {
887 unsigned long off;
888 off = (addr - vma->vm_start) >> PAGE_SHIFT;
889 if (pfn == vma->vm_pgoff + off)
890 return NULL;
891 if (!is_cow_mapping(vma->vm_flags))
892 return NULL;
893 }
894 }
895
896 if (is_zero_pfn(pfn))
897 return NULL;
898 if (unlikely(pfn > highest_memmap_pfn))
899 return NULL;
900
901 /*
902 * NOTE! We still have PageReserved() pages in the page tables.
903 * eg. VDSO mappings can cause them to exist.
904 */
905out:
906 return pfn_to_page(pfn);
907}
908#endif
909
1da177e4
LT
910/*
911 * copy one vm_area from one task to the other. Assumes the page tables
912 * already present in the new task to be cleared in the whole range
913 * covered by this vma.
1da177e4
LT
914 */
915
570a335b 916static inline unsigned long
1da177e4 917copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 918 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 919 unsigned long addr, int *rss)
1da177e4 920{
b5810039 921 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
922 pte_t pte = *src_pte;
923 struct page *page;
1da177e4
LT
924
925 /* pte contains position in swap or file, so copy. */
926 if (unlikely(!pte_present(pte))) {
0661a336
KS
927 swp_entry_t entry = pte_to_swp_entry(pte);
928
929 if (likely(!non_swap_entry(entry))) {
930 if (swap_duplicate(entry) < 0)
931 return entry.val;
932
933 /* make sure dst_mm is on swapoff's mmlist. */
934 if (unlikely(list_empty(&dst_mm->mmlist))) {
935 spin_lock(&mmlist_lock);
936 if (list_empty(&dst_mm->mmlist))
937 list_add(&dst_mm->mmlist,
938 &src_mm->mmlist);
939 spin_unlock(&mmlist_lock);
940 }
941 rss[MM_SWAPENTS]++;
942 } else if (is_migration_entry(entry)) {
943 page = migration_entry_to_page(entry);
944
eca56ff9 945 rss[mm_counter(page)]++;
0661a336
KS
946
947 if (is_write_migration_entry(entry) &&
948 is_cow_mapping(vm_flags)) {
949 /*
950 * COW mappings require pages in both
951 * parent and child to be set to read.
952 */
953 make_migration_entry_read(&entry);
954 pte = swp_entry_to_pte(entry);
955 if (pte_swp_soft_dirty(*src_pte))
956 pte = pte_swp_mksoft_dirty(pte);
957 set_pte_at(src_mm, addr, src_pte, pte);
0697212a 958 }
1da177e4 959 }
ae859762 960 goto out_set_pte;
1da177e4
LT
961 }
962
1da177e4
LT
963 /*
964 * If it's a COW mapping, write protect it both
965 * in the parent and the child
966 */
67121172 967 if (is_cow_mapping(vm_flags)) {
1da177e4 968 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 969 pte = pte_wrprotect(pte);
1da177e4
LT
970 }
971
972 /*
973 * If it's a shared mapping, mark it clean in
974 * the child
975 */
976 if (vm_flags & VM_SHARED)
977 pte = pte_mkclean(pte);
978 pte = pte_mkold(pte);
6aab341e
LT
979
980 page = vm_normal_page(vma, addr, pte);
981 if (page) {
982 get_page(page);
53f9263b 983 page_dup_rmap(page, false);
eca56ff9 984 rss[mm_counter(page)]++;
6aab341e 985 }
ae859762
HD
986
987out_set_pte:
988 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 989 return 0;
1da177e4
LT
990}
991
21bda264 992static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
993 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
994 unsigned long addr, unsigned long end)
1da177e4 995{
c36987e2 996 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 997 pte_t *src_pte, *dst_pte;
c74df32c 998 spinlock_t *src_ptl, *dst_ptl;
e040f218 999 int progress = 0;
d559db08 1000 int rss[NR_MM_COUNTERS];
570a335b 1001 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
1002
1003again:
d559db08
KH
1004 init_rss_vec(rss);
1005
c74df32c 1006 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
1007 if (!dst_pte)
1008 return -ENOMEM;
ece0e2b6 1009 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 1010 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 1011 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
1012 orig_src_pte = src_pte;
1013 orig_dst_pte = dst_pte;
6606c3e0 1014 arch_enter_lazy_mmu_mode();
1da177e4 1015
1da177e4
LT
1016 do {
1017 /*
1018 * We are holding two locks at this point - either of them
1019 * could generate latencies in another task on another CPU.
1020 */
e040f218
HD
1021 if (progress >= 32) {
1022 progress = 0;
1023 if (need_resched() ||
95c354fe 1024 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
1025 break;
1026 }
1da177e4
LT
1027 if (pte_none(*src_pte)) {
1028 progress++;
1029 continue;
1030 }
570a335b
HD
1031 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
1032 vma, addr, rss);
1033 if (entry.val)
1034 break;
1da177e4
LT
1035 progress += 8;
1036 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 1037
6606c3e0 1038 arch_leave_lazy_mmu_mode();
c74df32c 1039 spin_unlock(src_ptl);
ece0e2b6 1040 pte_unmap(orig_src_pte);
d559db08 1041 add_mm_rss_vec(dst_mm, rss);
c36987e2 1042 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 1043 cond_resched();
570a335b
HD
1044
1045 if (entry.val) {
1046 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
1047 return -ENOMEM;
1048 progress = 0;
1049 }
1da177e4
LT
1050 if (addr != end)
1051 goto again;
1052 return 0;
1053}
1054
1055static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1056 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
1057 unsigned long addr, unsigned long end)
1058{
1059 pmd_t *src_pmd, *dst_pmd;
1060 unsigned long next;
1061
1062 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
1063 if (!dst_pmd)
1064 return -ENOMEM;
1065 src_pmd = pmd_offset(src_pud, addr);
1066 do {
1067 next = pmd_addr_end(addr, end);
5c7fb56e 1068 if (pmd_trans_huge(*src_pmd) || pmd_devmap(*src_pmd)) {
71e3aac0 1069 int err;
a00cc7d9 1070 VM_BUG_ON_VMA(next-addr != HPAGE_PMD_SIZE, vma);
71e3aac0
AA
1071 err = copy_huge_pmd(dst_mm, src_mm,
1072 dst_pmd, src_pmd, addr, vma);
1073 if (err == -ENOMEM)
1074 return -ENOMEM;
1075 if (!err)
1076 continue;
1077 /* fall through */
1078 }
1da177e4
LT
1079 if (pmd_none_or_clear_bad(src_pmd))
1080 continue;
1081 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
1082 vma, addr, next))
1083 return -ENOMEM;
1084 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
1085 return 0;
1086}
1087
1088static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
c2febafc 1089 p4d_t *dst_p4d, p4d_t *src_p4d, struct vm_area_struct *vma,
1da177e4
LT
1090 unsigned long addr, unsigned long end)
1091{
1092 pud_t *src_pud, *dst_pud;
1093 unsigned long next;
1094
c2febafc 1095 dst_pud = pud_alloc(dst_mm, dst_p4d, addr);
1da177e4
LT
1096 if (!dst_pud)
1097 return -ENOMEM;
c2febafc 1098 src_pud = pud_offset(src_p4d, addr);
1da177e4
LT
1099 do {
1100 next = pud_addr_end(addr, end);
a00cc7d9
MW
1101 if (pud_trans_huge(*src_pud) || pud_devmap(*src_pud)) {
1102 int err;
1103
1104 VM_BUG_ON_VMA(next-addr != HPAGE_PUD_SIZE, vma);
1105 err = copy_huge_pud(dst_mm, src_mm,
1106 dst_pud, src_pud, addr, vma);
1107 if (err == -ENOMEM)
1108 return -ENOMEM;
1109 if (!err)
1110 continue;
1111 /* fall through */
1112 }
1da177e4
LT
1113 if (pud_none_or_clear_bad(src_pud))
1114 continue;
1115 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1116 vma, addr, next))
1117 return -ENOMEM;
1118 } while (dst_pud++, src_pud++, addr = next, addr != end);
1119 return 0;
1120}
1121
c2febafc
KS
1122static inline int copy_p4d_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1123 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
1124 unsigned long addr, unsigned long end)
1125{
1126 p4d_t *src_p4d, *dst_p4d;
1127 unsigned long next;
1128
1129 dst_p4d = p4d_alloc(dst_mm, dst_pgd, addr);
1130 if (!dst_p4d)
1131 return -ENOMEM;
1132 src_p4d = p4d_offset(src_pgd, addr);
1133 do {
1134 next = p4d_addr_end(addr, end);
1135 if (p4d_none_or_clear_bad(src_p4d))
1136 continue;
1137 if (copy_pud_range(dst_mm, src_mm, dst_p4d, src_p4d,
1138 vma, addr, next))
1139 return -ENOMEM;
1140 } while (dst_p4d++, src_p4d++, addr = next, addr != end);
1141 return 0;
1142}
1143
1da177e4
LT
1144int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1145 struct vm_area_struct *vma)
1146{
1147 pgd_t *src_pgd, *dst_pgd;
1148 unsigned long next;
1149 unsigned long addr = vma->vm_start;
1150 unsigned long end = vma->vm_end;
2ec74c3e
SG
1151 unsigned long mmun_start; /* For mmu_notifiers */
1152 unsigned long mmun_end; /* For mmu_notifiers */
1153 bool is_cow;
cddb8a5c 1154 int ret;
1da177e4 1155
d992895b
NP
1156 /*
1157 * Don't copy ptes where a page fault will fill them correctly.
1158 * Fork becomes much lighter when there are big shared or private
1159 * readonly mappings. The tradeoff is that copy_page_range is more
1160 * efficient than faulting.
1161 */
0661a336
KS
1162 if (!(vma->vm_flags & (VM_HUGETLB | VM_PFNMAP | VM_MIXEDMAP)) &&
1163 !vma->anon_vma)
1164 return 0;
d992895b 1165
1da177e4
LT
1166 if (is_vm_hugetlb_page(vma))
1167 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1168
b3b9c293 1169 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1170 /*
1171 * We do not free on error cases below as remove_vma
1172 * gets called on error from higher level routine
1173 */
5180da41 1174 ret = track_pfn_copy(vma);
2ab64037 1175 if (ret)
1176 return ret;
1177 }
1178
cddb8a5c
AA
1179 /*
1180 * We need to invalidate the secondary MMU mappings only when
1181 * there could be a permission downgrade on the ptes of the
1182 * parent mm. And a permission downgrade will only happen if
1183 * is_cow_mapping() returns true.
1184 */
2ec74c3e
SG
1185 is_cow = is_cow_mapping(vma->vm_flags);
1186 mmun_start = addr;
1187 mmun_end = end;
1188 if (is_cow)
1189 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1190 mmun_end);
cddb8a5c
AA
1191
1192 ret = 0;
1da177e4
LT
1193 dst_pgd = pgd_offset(dst_mm, addr);
1194 src_pgd = pgd_offset(src_mm, addr);
1195 do {
1196 next = pgd_addr_end(addr, end);
1197 if (pgd_none_or_clear_bad(src_pgd))
1198 continue;
c2febafc 1199 if (unlikely(copy_p4d_range(dst_mm, src_mm, dst_pgd, src_pgd,
cddb8a5c
AA
1200 vma, addr, next))) {
1201 ret = -ENOMEM;
1202 break;
1203 }
1da177e4 1204 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1205
2ec74c3e
SG
1206 if (is_cow)
1207 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1208 return ret;
1da177e4
LT
1209}
1210
51c6f666 1211static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1212 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1213 unsigned long addr, unsigned long end,
97a89413 1214 struct zap_details *details)
1da177e4 1215{
b5810039 1216 struct mm_struct *mm = tlb->mm;
d16dfc55 1217 int force_flush = 0;
d559db08 1218 int rss[NR_MM_COUNTERS];
97a89413 1219 spinlock_t *ptl;
5f1a1907 1220 pte_t *start_pte;
97a89413 1221 pte_t *pte;
8a5f14a2 1222 swp_entry_t entry;
d559db08 1223
07e32661 1224 tlb_remove_check_page_size_change(tlb, PAGE_SIZE);
d16dfc55 1225again:
e303297e 1226 init_rss_vec(rss);
5f1a1907
SR
1227 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1228 pte = start_pte;
3ea27719 1229 flush_tlb_batched_pending(mm);
6606c3e0 1230 arch_enter_lazy_mmu_mode();
1da177e4
LT
1231 do {
1232 pte_t ptent = *pte;
166f61b9 1233 if (pte_none(ptent))
1da177e4 1234 continue;
6f5e6b9e 1235
1da177e4 1236 if (pte_present(ptent)) {
ee498ed7 1237 struct page *page;
51c6f666 1238
6aab341e 1239 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1240 if (unlikely(details) && page) {
1241 /*
1242 * unmap_shared_mapping_pages() wants to
1243 * invalidate cache without truncating:
1244 * unmap shared but keep private pages.
1245 */
1246 if (details->check_mapping &&
800d8c63 1247 details->check_mapping != page_rmapping(page))
1da177e4 1248 continue;
1da177e4 1249 }
b5810039 1250 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1251 tlb->fullmm);
1da177e4
LT
1252 tlb_remove_tlb_entry(tlb, pte, addr);
1253 if (unlikely(!page))
1254 continue;
eca56ff9
JM
1255
1256 if (!PageAnon(page)) {
1cf35d47
LT
1257 if (pte_dirty(ptent)) {
1258 force_flush = 1;
6237bcd9 1259 set_page_dirty(page);
1cf35d47 1260 }
4917e5d0 1261 if (pte_young(ptent) &&
64363aad 1262 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1263 mark_page_accessed(page);
6237bcd9 1264 }
eca56ff9 1265 rss[mm_counter(page)]--;
d281ee61 1266 page_remove_rmap(page, false);
3dc14741
HD
1267 if (unlikely(page_mapcount(page) < 0))
1268 print_bad_pte(vma, addr, ptent, page);
e9d55e15 1269 if (unlikely(__tlb_remove_page(tlb, page))) {
1cf35d47 1270 force_flush = 1;
ce9ec37b 1271 addr += PAGE_SIZE;
d16dfc55 1272 break;
1cf35d47 1273 }
1da177e4
LT
1274 continue;
1275 }
3e8715fd
KS
1276 /* If details->check_mapping, we leave swap entries. */
1277 if (unlikely(details))
1da177e4 1278 continue;
b084d435 1279
8a5f14a2
KS
1280 entry = pte_to_swp_entry(ptent);
1281 if (!non_swap_entry(entry))
1282 rss[MM_SWAPENTS]--;
1283 else if (is_migration_entry(entry)) {
1284 struct page *page;
9f9f1acd 1285
8a5f14a2 1286 page = migration_entry_to_page(entry);
eca56ff9 1287 rss[mm_counter(page)]--;
b084d435 1288 }
8a5f14a2
KS
1289 if (unlikely(!free_swap_and_cache(entry)))
1290 print_bad_pte(vma, addr, ptent, NULL);
9888a1ca 1291 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1292 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1293
d559db08 1294 add_mm_rss_vec(mm, rss);
6606c3e0 1295 arch_leave_lazy_mmu_mode();
51c6f666 1296
1cf35d47 1297 /* Do the actual TLB flush before dropping ptl */
fb7332a9 1298 if (force_flush)
1cf35d47 1299 tlb_flush_mmu_tlbonly(tlb);
1cf35d47
LT
1300 pte_unmap_unlock(start_pte, ptl);
1301
1302 /*
1303 * If we forced a TLB flush (either due to running out of
1304 * batch buffers or because we needed to flush dirty TLB
1305 * entries before releasing the ptl), free the batched
1306 * memory too. Restart if we didn't do everything.
1307 */
1308 if (force_flush) {
1309 force_flush = 0;
1310 tlb_flush_mmu_free(tlb);
2b047252 1311 if (addr != end)
d16dfc55
PZ
1312 goto again;
1313 }
1314
51c6f666 1315 return addr;
1da177e4
LT
1316}
1317
51c6f666 1318static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1319 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1320 unsigned long addr, unsigned long end,
97a89413 1321 struct zap_details *details)
1da177e4
LT
1322{
1323 pmd_t *pmd;
1324 unsigned long next;
1325
1326 pmd = pmd_offset(pud, addr);
1327 do {
1328 next = pmd_addr_end(addr, end);
5c7fb56e 1329 if (pmd_trans_huge(*pmd) || pmd_devmap(*pmd)) {
1a5a9906 1330 if (next - addr != HPAGE_PMD_SIZE) {
68428398
HD
1331 VM_BUG_ON_VMA(vma_is_anonymous(vma) &&
1332 !rwsem_is_locked(&tlb->mm->mmap_sem), vma);
fd60775a 1333 __split_huge_pmd(vma, pmd, addr, false, NULL);
f21760b1 1334 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1335 goto next;
71e3aac0
AA
1336 /* fall through */
1337 }
1a5a9906
AA
1338 /*
1339 * Here there can be other concurrent MADV_DONTNEED or
1340 * trans huge page faults running, and if the pmd is
1341 * none or trans huge it can change under us. This is
1342 * because MADV_DONTNEED holds the mmap_sem in read
1343 * mode.
1344 */
1345 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1346 goto next;
97a89413 1347 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1348next:
97a89413
PZ
1349 cond_resched();
1350 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1351
1352 return addr;
1da177e4
LT
1353}
1354
51c6f666 1355static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
c2febafc 1356 struct vm_area_struct *vma, p4d_t *p4d,
1da177e4 1357 unsigned long addr, unsigned long end,
97a89413 1358 struct zap_details *details)
1da177e4
LT
1359{
1360 pud_t *pud;
1361 unsigned long next;
1362
c2febafc 1363 pud = pud_offset(p4d, addr);
1da177e4
LT
1364 do {
1365 next = pud_addr_end(addr, end);
a00cc7d9
MW
1366 if (pud_trans_huge(*pud) || pud_devmap(*pud)) {
1367 if (next - addr != HPAGE_PUD_SIZE) {
1368 VM_BUG_ON_VMA(!rwsem_is_locked(&tlb->mm->mmap_sem), vma);
1369 split_huge_pud(vma, pud, addr);
1370 } else if (zap_huge_pud(tlb, vma, pud, addr))
1371 goto next;
1372 /* fall through */
1373 }
97a89413 1374 if (pud_none_or_clear_bad(pud))
1da177e4 1375 continue;
97a89413 1376 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
a00cc7d9
MW
1377next:
1378 cond_resched();
97a89413 1379 } while (pud++, addr = next, addr != end);
51c6f666
RH
1380
1381 return addr;
1da177e4
LT
1382}
1383
c2febafc
KS
1384static inline unsigned long zap_p4d_range(struct mmu_gather *tlb,
1385 struct vm_area_struct *vma, pgd_t *pgd,
1386 unsigned long addr, unsigned long end,
1387 struct zap_details *details)
1388{
1389 p4d_t *p4d;
1390 unsigned long next;
1391
1392 p4d = p4d_offset(pgd, addr);
1393 do {
1394 next = p4d_addr_end(addr, end);
1395 if (p4d_none_or_clear_bad(p4d))
1396 continue;
1397 next = zap_pud_range(tlb, vma, p4d, addr, next, details);
1398 } while (p4d++, addr = next, addr != end);
1399
1400 return addr;
1401}
1402
aac45363 1403void unmap_page_range(struct mmu_gather *tlb,
038c7aa1
AV
1404 struct vm_area_struct *vma,
1405 unsigned long addr, unsigned long end,
1406 struct zap_details *details)
1da177e4
LT
1407{
1408 pgd_t *pgd;
1409 unsigned long next;
1410
1da177e4
LT
1411 BUG_ON(addr >= end);
1412 tlb_start_vma(tlb, vma);
1413 pgd = pgd_offset(vma->vm_mm, addr);
1414 do {
1415 next = pgd_addr_end(addr, end);
97a89413 1416 if (pgd_none_or_clear_bad(pgd))
1da177e4 1417 continue;
c2febafc 1418 next = zap_p4d_range(tlb, vma, pgd, addr, next, details);
97a89413 1419 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1420 tlb_end_vma(tlb, vma);
1421}
51c6f666 1422
f5cc4eef
AV
1423
1424static void unmap_single_vma(struct mmu_gather *tlb,
1425 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1426 unsigned long end_addr,
f5cc4eef
AV
1427 struct zap_details *details)
1428{
1429 unsigned long start = max(vma->vm_start, start_addr);
1430 unsigned long end;
1431
1432 if (start >= vma->vm_end)
1433 return;
1434 end = min(vma->vm_end, end_addr);
1435 if (end <= vma->vm_start)
1436 return;
1437
cbc91f71
SD
1438 if (vma->vm_file)
1439 uprobe_munmap(vma, start, end);
1440
b3b9c293 1441 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1442 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1443
1444 if (start != end) {
1445 if (unlikely(is_vm_hugetlb_page(vma))) {
1446 /*
1447 * It is undesirable to test vma->vm_file as it
1448 * should be non-null for valid hugetlb area.
1449 * However, vm_file will be NULL in the error
7aa6b4ad 1450 * cleanup path of mmap_region. When
f5cc4eef 1451 * hugetlbfs ->mmap method fails,
7aa6b4ad 1452 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1453 * before calling this function to clean up.
1454 * Since no pte has actually been setup, it is
1455 * safe to do nothing in this case.
1456 */
24669e58 1457 if (vma->vm_file) {
83cde9e8 1458 i_mmap_lock_write(vma->vm_file->f_mapping);
d833352a 1459 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
83cde9e8 1460 i_mmap_unlock_write(vma->vm_file->f_mapping);
24669e58 1461 }
f5cc4eef
AV
1462 } else
1463 unmap_page_range(tlb, vma, start, end, details);
1464 }
1da177e4
LT
1465}
1466
1da177e4
LT
1467/**
1468 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1469 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1470 * @vma: the starting vma
1471 * @start_addr: virtual address at which to start unmapping
1472 * @end_addr: virtual address at which to end unmapping
1da177e4 1473 *
508034a3 1474 * Unmap all pages in the vma list.
1da177e4 1475 *
1da177e4
LT
1476 * Only addresses between `start' and `end' will be unmapped.
1477 *
1478 * The VMA list must be sorted in ascending virtual address order.
1479 *
1480 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1481 * range after unmap_vmas() returns. So the only responsibility here is to
1482 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1483 * drops the lock and schedules.
1484 */
6e8bb019 1485void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1486 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1487 unsigned long end_addr)
1da177e4 1488{
cddb8a5c 1489 struct mm_struct *mm = vma->vm_mm;
1da177e4 1490
cddb8a5c 1491 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1492 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1493 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1494 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1495}
1496
1497/**
1498 * zap_page_range - remove user pages in a given range
1499 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1500 * @start: starting address of pages to zap
1da177e4 1501 * @size: number of bytes to zap
f5cc4eef
AV
1502 *
1503 * Caller must protect the VMA list
1da177e4 1504 */
7e027b14 1505void zap_page_range(struct vm_area_struct *vma, unsigned long start,
ecf1385d 1506 unsigned long size)
1da177e4
LT
1507{
1508 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1509 struct mmu_gather tlb;
7e027b14 1510 unsigned long end = start + size;
1da177e4 1511
1da177e4 1512 lru_add_drain();
2b047252 1513 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1514 update_hiwater_rss(mm);
7e027b14
LT
1515 mmu_notifier_invalidate_range_start(mm, start, end);
1516 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
ecf1385d 1517 unmap_single_vma(&tlb, vma, start, end, NULL);
7e027b14
LT
1518 mmu_notifier_invalidate_range_end(mm, start, end);
1519 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1520}
1521
f5cc4eef
AV
1522/**
1523 * zap_page_range_single - remove user pages in a given range
1524 * @vma: vm_area_struct holding the applicable pages
1525 * @address: starting address of pages to zap
1526 * @size: number of bytes to zap
8a5f14a2 1527 * @details: details of shared cache invalidation
f5cc4eef
AV
1528 *
1529 * The range must fit into one VMA.
1da177e4 1530 */
f5cc4eef 1531static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1532 unsigned long size, struct zap_details *details)
1533{
1534 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1535 struct mmu_gather tlb;
1da177e4 1536 unsigned long end = address + size;
1da177e4 1537
1da177e4 1538 lru_add_drain();
2b047252 1539 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1540 update_hiwater_rss(mm);
f5cc4eef 1541 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1542 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1543 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1544 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1545}
1546
c627f9cc
JS
1547/**
1548 * zap_vma_ptes - remove ptes mapping the vma
1549 * @vma: vm_area_struct holding ptes to be zapped
1550 * @address: starting address of pages to zap
1551 * @size: number of bytes to zap
1552 *
1553 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1554 *
1555 * The entire address range must be fully contained within the vma.
1556 *
1557 * Returns 0 if successful.
1558 */
1559int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1560 unsigned long size)
1561{
1562 if (address < vma->vm_start || address + size > vma->vm_end ||
1563 !(vma->vm_flags & VM_PFNMAP))
1564 return -1;
f5cc4eef 1565 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1566 return 0;
1567}
1568EXPORT_SYMBOL_GPL(zap_vma_ptes);
1569
25ca1d6c 1570pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1571 spinlock_t **ptl)
c9cfcddf 1572{
c2febafc
KS
1573 pgd_t *pgd;
1574 p4d_t *p4d;
1575 pud_t *pud;
1576 pmd_t *pmd;
1577
1578 pgd = pgd_offset(mm, addr);
1579 p4d = p4d_alloc(mm, pgd, addr);
1580 if (!p4d)
1581 return NULL;
1582 pud = pud_alloc(mm, p4d, addr);
1583 if (!pud)
1584 return NULL;
1585 pmd = pmd_alloc(mm, pud, addr);
1586 if (!pmd)
1587 return NULL;
1588
1589 VM_BUG_ON(pmd_trans_huge(*pmd));
1590 return pte_alloc_map_lock(mm, pmd, addr, ptl);
c9cfcddf
LT
1591}
1592
238f58d8
LT
1593/*
1594 * This is the old fallback for page remapping.
1595 *
1596 * For historical reasons, it only allows reserved pages. Only
1597 * old drivers should use this, and they needed to mark their
1598 * pages reserved for the old functions anyway.
1599 */
423bad60
NP
1600static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1601 struct page *page, pgprot_t prot)
238f58d8 1602{
423bad60 1603 struct mm_struct *mm = vma->vm_mm;
238f58d8 1604 int retval;
c9cfcddf 1605 pte_t *pte;
8a9f3ccd
BS
1606 spinlock_t *ptl;
1607
238f58d8 1608 retval = -EINVAL;
a145dd41 1609 if (PageAnon(page))
5b4e655e 1610 goto out;
238f58d8
LT
1611 retval = -ENOMEM;
1612 flush_dcache_page(page);
c9cfcddf 1613 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1614 if (!pte)
5b4e655e 1615 goto out;
238f58d8
LT
1616 retval = -EBUSY;
1617 if (!pte_none(*pte))
1618 goto out_unlock;
1619
1620 /* Ok, finally just insert the thing.. */
1621 get_page(page);
eca56ff9 1622 inc_mm_counter_fast(mm, mm_counter_file(page));
dd78fedd 1623 page_add_file_rmap(page, false);
238f58d8
LT
1624 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1625
1626 retval = 0;
8a9f3ccd
BS
1627 pte_unmap_unlock(pte, ptl);
1628 return retval;
238f58d8
LT
1629out_unlock:
1630 pte_unmap_unlock(pte, ptl);
1631out:
1632 return retval;
1633}
1634
bfa5bf6d
REB
1635/**
1636 * vm_insert_page - insert single page into user vma
1637 * @vma: user vma to map to
1638 * @addr: target user address of this page
1639 * @page: source kernel page
1640 *
a145dd41
LT
1641 * This allows drivers to insert individual pages they've allocated
1642 * into a user vma.
1643 *
1644 * The page has to be a nice clean _individual_ kernel allocation.
1645 * If you allocate a compound page, you need to have marked it as
1646 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1647 * (see split_page()).
a145dd41
LT
1648 *
1649 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1650 * took an arbitrary page protection parameter. This doesn't allow
1651 * that. Your vma protection will have to be set up correctly, which
1652 * means that if you want a shared writable mapping, you'd better
1653 * ask for a shared writable mapping!
1654 *
1655 * The page does not need to be reserved.
4b6e1e37
KK
1656 *
1657 * Usually this function is called from f_op->mmap() handler
1658 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1659 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1660 * function from other places, for example from page-fault handler.
a145dd41 1661 */
423bad60
NP
1662int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1663 struct page *page)
a145dd41
LT
1664{
1665 if (addr < vma->vm_start || addr >= vma->vm_end)
1666 return -EFAULT;
1667 if (!page_count(page))
1668 return -EINVAL;
4b6e1e37
KK
1669 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1670 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1671 BUG_ON(vma->vm_flags & VM_PFNMAP);
1672 vma->vm_flags |= VM_MIXEDMAP;
1673 }
423bad60 1674 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1675}
e3c3374f 1676EXPORT_SYMBOL(vm_insert_page);
a145dd41 1677
423bad60 1678static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
a9342b2f 1679 pfn_t pfn, pgprot_t prot, bool mkwrite)
423bad60
NP
1680{
1681 struct mm_struct *mm = vma->vm_mm;
1682 int retval;
1683 pte_t *pte, entry;
1684 spinlock_t *ptl;
1685
1686 retval = -ENOMEM;
1687 pte = get_locked_pte(mm, addr, &ptl);
1688 if (!pte)
1689 goto out;
1690 retval = -EBUSY;
a9342b2f
RZ
1691 if (!pte_none(*pte)) {
1692 if (mkwrite) {
1693 /*
1694 * For read faults on private mappings the PFN passed
1695 * in may not match the PFN we have mapped if the
1696 * mapped PFN is a writeable COW page. In the mkwrite
1697 * case we are creating a writable PTE for a shared
1698 * mapping and we expect the PFNs to match.
1699 */
1700 if (WARN_ON_ONCE(pte_pfn(*pte) != pfn_t_to_pfn(pfn)))
1701 goto out_unlock;
1702 entry = *pte;
1703 goto out_mkwrite;
1704 } else
1705 goto out_unlock;
1706 }
423bad60
NP
1707
1708 /* Ok, finally just insert the thing.. */
01c8f1c4
DW
1709 if (pfn_t_devmap(pfn))
1710 entry = pte_mkdevmap(pfn_t_pte(pfn, prot));
1711 else
1712 entry = pte_mkspecial(pfn_t_pte(pfn, prot));
a9342b2f
RZ
1713
1714out_mkwrite:
1715 if (mkwrite) {
1716 entry = pte_mkyoung(entry);
1717 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1718 }
1719
423bad60 1720 set_pte_at(mm, addr, pte, entry);
4b3073e1 1721 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1722
1723 retval = 0;
1724out_unlock:
1725 pte_unmap_unlock(pte, ptl);
1726out:
1727 return retval;
1728}
1729
e0dc0d8f
NP
1730/**
1731 * vm_insert_pfn - insert single pfn into user vma
1732 * @vma: user vma to map to
1733 * @addr: target user address of this page
1734 * @pfn: source kernel pfn
1735 *
c462f179 1736 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1737 * they've allocated into a user vma. Same comments apply.
1738 *
1739 * This function should only be called from a vm_ops->fault handler, and
1740 * in that case the handler should return NULL.
0d71d10a
NP
1741 *
1742 * vma cannot be a COW mapping.
1743 *
1744 * As this is called only for pages that do not currently exist, we
1745 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1746 */
1747int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1748 unsigned long pfn)
1745cbc5
AL
1749{
1750 return vm_insert_pfn_prot(vma, addr, pfn, vma->vm_page_prot);
1751}
1752EXPORT_SYMBOL(vm_insert_pfn);
1753
1754/**
1755 * vm_insert_pfn_prot - insert single pfn into user vma with specified pgprot
1756 * @vma: user vma to map to
1757 * @addr: target user address of this page
1758 * @pfn: source kernel pfn
1759 * @pgprot: pgprot flags for the inserted page
1760 *
1761 * This is exactly like vm_insert_pfn, except that it allows drivers to
1762 * to override pgprot on a per-page basis.
1763 *
1764 * This only makes sense for IO mappings, and it makes no sense for
1765 * cow mappings. In general, using multiple vmas is preferable;
1766 * vm_insert_pfn_prot should only be used if using multiple VMAs is
1767 * impractical.
1768 */
1769int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
1770 unsigned long pfn, pgprot_t pgprot)
e0dc0d8f 1771{
2ab64037 1772 int ret;
7e675137
NP
1773 /*
1774 * Technically, architectures with pte_special can avoid all these
1775 * restrictions (same for remap_pfn_range). However we would like
1776 * consistency in testing and feature parity among all, so we should
1777 * try to keep these invariants in place for everybody.
1778 */
b379d790
JH
1779 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1780 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1781 (VM_PFNMAP|VM_MIXEDMAP));
1782 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1783 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1784
423bad60
NP
1785 if (addr < vma->vm_start || addr >= vma->vm_end)
1786 return -EFAULT;
308a047c
BP
1787
1788 track_pfn_insert(vma, &pgprot, __pfn_to_pfn_t(pfn, PFN_DEV));
2ab64037 1789
a9342b2f
RZ
1790 ret = insert_pfn(vma, addr, __pfn_to_pfn_t(pfn, PFN_DEV), pgprot,
1791 false);
2ab64037 1792
2ab64037 1793 return ret;
423bad60 1794}
1745cbc5 1795EXPORT_SYMBOL(vm_insert_pfn_prot);
e0dc0d8f 1796
a9342b2f
RZ
1797static int __vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1798 pfn_t pfn, bool mkwrite)
423bad60 1799{
87744ab3
DW
1800 pgprot_t pgprot = vma->vm_page_prot;
1801
423bad60 1802 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1803
423bad60
NP
1804 if (addr < vma->vm_start || addr >= vma->vm_end)
1805 return -EFAULT;
308a047c
BP
1806
1807 track_pfn_insert(vma, &pgprot, pfn);
e0dc0d8f 1808
423bad60
NP
1809 /*
1810 * If we don't have pte special, then we have to use the pfn_valid()
1811 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1812 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1813 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1814 * without pte special, it would there be refcounted as a normal page.
423bad60 1815 */
03fc2da6 1816 if (!HAVE_PTE_SPECIAL && !pfn_t_devmap(pfn) && pfn_t_valid(pfn)) {
423bad60
NP
1817 struct page *page;
1818
03fc2da6
DW
1819 /*
1820 * At this point we are committed to insert_page()
1821 * regardless of whether the caller specified flags that
1822 * result in pfn_t_has_page() == false.
1823 */
1824 page = pfn_to_page(pfn_t_to_pfn(pfn));
87744ab3 1825 return insert_page(vma, addr, page, pgprot);
423bad60 1826 }
a9342b2f
RZ
1827 return insert_pfn(vma, addr, pfn, pgprot, mkwrite);
1828}
1829
1830int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1831 pfn_t pfn)
1832{
1833 return __vm_insert_mixed(vma, addr, pfn, false);
1834
e0dc0d8f 1835}
423bad60 1836EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1837
a9342b2f
RZ
1838int vm_insert_mixed_mkwrite(struct vm_area_struct *vma, unsigned long addr,
1839 pfn_t pfn)
1840{
1841 return __vm_insert_mixed(vma, addr, pfn, true);
1842}
1843EXPORT_SYMBOL(vm_insert_mixed_mkwrite);
1844
1da177e4
LT
1845/*
1846 * maps a range of physical memory into the requested pages. the old
1847 * mappings are removed. any references to nonexistent pages results
1848 * in null mappings (currently treated as "copy-on-access")
1849 */
1850static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1851 unsigned long addr, unsigned long end,
1852 unsigned long pfn, pgprot_t prot)
1853{
1854 pte_t *pte;
c74df32c 1855 spinlock_t *ptl;
1da177e4 1856
c74df32c 1857 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1858 if (!pte)
1859 return -ENOMEM;
6606c3e0 1860 arch_enter_lazy_mmu_mode();
1da177e4
LT
1861 do {
1862 BUG_ON(!pte_none(*pte));
7e675137 1863 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1864 pfn++;
1865 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1866 arch_leave_lazy_mmu_mode();
c74df32c 1867 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1868 return 0;
1869}
1870
1871static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1872 unsigned long addr, unsigned long end,
1873 unsigned long pfn, pgprot_t prot)
1874{
1875 pmd_t *pmd;
1876 unsigned long next;
1877
1878 pfn -= addr >> PAGE_SHIFT;
1879 pmd = pmd_alloc(mm, pud, addr);
1880 if (!pmd)
1881 return -ENOMEM;
f66055ab 1882 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1883 do {
1884 next = pmd_addr_end(addr, end);
1885 if (remap_pte_range(mm, pmd, addr, next,
1886 pfn + (addr >> PAGE_SHIFT), prot))
1887 return -ENOMEM;
1888 } while (pmd++, addr = next, addr != end);
1889 return 0;
1890}
1891
c2febafc 1892static inline int remap_pud_range(struct mm_struct *mm, p4d_t *p4d,
1da177e4
LT
1893 unsigned long addr, unsigned long end,
1894 unsigned long pfn, pgprot_t prot)
1895{
1896 pud_t *pud;
1897 unsigned long next;
1898
1899 pfn -= addr >> PAGE_SHIFT;
c2febafc 1900 pud = pud_alloc(mm, p4d, addr);
1da177e4
LT
1901 if (!pud)
1902 return -ENOMEM;
1903 do {
1904 next = pud_addr_end(addr, end);
1905 if (remap_pmd_range(mm, pud, addr, next,
1906 pfn + (addr >> PAGE_SHIFT), prot))
1907 return -ENOMEM;
1908 } while (pud++, addr = next, addr != end);
1909 return 0;
1910}
1911
c2febafc
KS
1912static inline int remap_p4d_range(struct mm_struct *mm, pgd_t *pgd,
1913 unsigned long addr, unsigned long end,
1914 unsigned long pfn, pgprot_t prot)
1915{
1916 p4d_t *p4d;
1917 unsigned long next;
1918
1919 pfn -= addr >> PAGE_SHIFT;
1920 p4d = p4d_alloc(mm, pgd, addr);
1921 if (!p4d)
1922 return -ENOMEM;
1923 do {
1924 next = p4d_addr_end(addr, end);
1925 if (remap_pud_range(mm, p4d, addr, next,
1926 pfn + (addr >> PAGE_SHIFT), prot))
1927 return -ENOMEM;
1928 } while (p4d++, addr = next, addr != end);
1929 return 0;
1930}
1931
bfa5bf6d
REB
1932/**
1933 * remap_pfn_range - remap kernel memory to userspace
1934 * @vma: user vma to map to
1935 * @addr: target user address to start at
1936 * @pfn: physical address of kernel memory
1937 * @size: size of map area
1938 * @prot: page protection flags for this mapping
1939 *
1940 * Note: this is only safe if the mm semaphore is held when called.
1941 */
1da177e4
LT
1942int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1943 unsigned long pfn, unsigned long size, pgprot_t prot)
1944{
1945 pgd_t *pgd;
1946 unsigned long next;
2d15cab8 1947 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4 1948 struct mm_struct *mm = vma->vm_mm;
d5957d2f 1949 unsigned long remap_pfn = pfn;
1da177e4
LT
1950 int err;
1951
1952 /*
1953 * Physically remapped pages are special. Tell the
1954 * rest of the world about it:
1955 * VM_IO tells people not to look at these pages
1956 * (accesses can have side effects).
6aab341e
LT
1957 * VM_PFNMAP tells the core MM that the base pages are just
1958 * raw PFN mappings, and do not have a "struct page" associated
1959 * with them.
314e51b9
KK
1960 * VM_DONTEXPAND
1961 * Disable vma merging and expanding with mremap().
1962 * VM_DONTDUMP
1963 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1964 *
1965 * There's a horrible special case to handle copy-on-write
1966 * behaviour that some programs depend on. We mark the "original"
1967 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1968 * See vm_normal_page() for details.
1da177e4 1969 */
b3b9c293
KK
1970 if (is_cow_mapping(vma->vm_flags)) {
1971 if (addr != vma->vm_start || end != vma->vm_end)
1972 return -EINVAL;
fb155c16 1973 vma->vm_pgoff = pfn;
b3b9c293
KK
1974 }
1975
d5957d2f 1976 err = track_pfn_remap(vma, &prot, remap_pfn, addr, PAGE_ALIGN(size));
b3b9c293 1977 if (err)
3c8bb73a 1978 return -EINVAL;
fb155c16 1979
314e51b9 1980 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1981
1982 BUG_ON(addr >= end);
1983 pfn -= addr >> PAGE_SHIFT;
1984 pgd = pgd_offset(mm, addr);
1985 flush_cache_range(vma, addr, end);
1da177e4
LT
1986 do {
1987 next = pgd_addr_end(addr, end);
c2febafc 1988 err = remap_p4d_range(mm, pgd, addr, next,
1da177e4
LT
1989 pfn + (addr >> PAGE_SHIFT), prot);
1990 if (err)
1991 break;
1992 } while (pgd++, addr = next, addr != end);
2ab64037 1993
1994 if (err)
d5957d2f 1995 untrack_pfn(vma, remap_pfn, PAGE_ALIGN(size));
2ab64037 1996
1da177e4
LT
1997 return err;
1998}
1999EXPORT_SYMBOL(remap_pfn_range);
2000
b4cbb197
LT
2001/**
2002 * vm_iomap_memory - remap memory to userspace
2003 * @vma: user vma to map to
2004 * @start: start of area
2005 * @len: size of area
2006 *
2007 * This is a simplified io_remap_pfn_range() for common driver use. The
2008 * driver just needs to give us the physical memory range to be mapped,
2009 * we'll figure out the rest from the vma information.
2010 *
2011 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
2012 * whatever write-combining details or similar.
2013 */
2014int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
2015{
2016 unsigned long vm_len, pfn, pages;
2017
2018 /* Check that the physical memory area passed in looks valid */
2019 if (start + len < start)
2020 return -EINVAL;
2021 /*
2022 * You *really* shouldn't map things that aren't page-aligned,
2023 * but we've historically allowed it because IO memory might
2024 * just have smaller alignment.
2025 */
2026 len += start & ~PAGE_MASK;
2027 pfn = start >> PAGE_SHIFT;
2028 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
2029 if (pfn + pages < pfn)
2030 return -EINVAL;
2031
2032 /* We start the mapping 'vm_pgoff' pages into the area */
2033 if (vma->vm_pgoff > pages)
2034 return -EINVAL;
2035 pfn += vma->vm_pgoff;
2036 pages -= vma->vm_pgoff;
2037
2038 /* Can we fit all of the mapping? */
2039 vm_len = vma->vm_end - vma->vm_start;
2040 if (vm_len >> PAGE_SHIFT > pages)
2041 return -EINVAL;
2042
2043 /* Ok, let it rip */
2044 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
2045}
2046EXPORT_SYMBOL(vm_iomap_memory);
2047
aee16b3c
JF
2048static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
2049 unsigned long addr, unsigned long end,
2050 pte_fn_t fn, void *data)
2051{
2052 pte_t *pte;
2053 int err;
2f569afd 2054 pgtable_t token;
94909914 2055 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
2056
2057 pte = (mm == &init_mm) ?
2058 pte_alloc_kernel(pmd, addr) :
2059 pte_alloc_map_lock(mm, pmd, addr, &ptl);
2060 if (!pte)
2061 return -ENOMEM;
2062
2063 BUG_ON(pmd_huge(*pmd));
2064
38e0edb1
JF
2065 arch_enter_lazy_mmu_mode();
2066
2f569afd 2067 token = pmd_pgtable(*pmd);
aee16b3c
JF
2068
2069 do {
c36987e2 2070 err = fn(pte++, token, addr, data);
aee16b3c
JF
2071 if (err)
2072 break;
c36987e2 2073 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 2074
38e0edb1
JF
2075 arch_leave_lazy_mmu_mode();
2076
aee16b3c
JF
2077 if (mm != &init_mm)
2078 pte_unmap_unlock(pte-1, ptl);
2079 return err;
2080}
2081
2082static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
2083 unsigned long addr, unsigned long end,
2084 pte_fn_t fn, void *data)
2085{
2086 pmd_t *pmd;
2087 unsigned long next;
2088 int err;
2089
ceb86879
AK
2090 BUG_ON(pud_huge(*pud));
2091
aee16b3c
JF
2092 pmd = pmd_alloc(mm, pud, addr);
2093 if (!pmd)
2094 return -ENOMEM;
2095 do {
2096 next = pmd_addr_end(addr, end);
2097 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
2098 if (err)
2099 break;
2100 } while (pmd++, addr = next, addr != end);
2101 return err;
2102}
2103
c2febafc 2104static int apply_to_pud_range(struct mm_struct *mm, p4d_t *p4d,
aee16b3c
JF
2105 unsigned long addr, unsigned long end,
2106 pte_fn_t fn, void *data)
2107{
2108 pud_t *pud;
2109 unsigned long next;
2110 int err;
2111
c2febafc 2112 pud = pud_alloc(mm, p4d, addr);
aee16b3c
JF
2113 if (!pud)
2114 return -ENOMEM;
2115 do {
2116 next = pud_addr_end(addr, end);
2117 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
2118 if (err)
2119 break;
2120 } while (pud++, addr = next, addr != end);
2121 return err;
2122}
2123
c2febafc
KS
2124static int apply_to_p4d_range(struct mm_struct *mm, pgd_t *pgd,
2125 unsigned long addr, unsigned long end,
2126 pte_fn_t fn, void *data)
2127{
2128 p4d_t *p4d;
2129 unsigned long next;
2130 int err;
2131
2132 p4d = p4d_alloc(mm, pgd, addr);
2133 if (!p4d)
2134 return -ENOMEM;
2135 do {
2136 next = p4d_addr_end(addr, end);
2137 err = apply_to_pud_range(mm, p4d, addr, next, fn, data);
2138 if (err)
2139 break;
2140 } while (p4d++, addr = next, addr != end);
2141 return err;
2142}
2143
aee16b3c
JF
2144/*
2145 * Scan a region of virtual memory, filling in page tables as necessary
2146 * and calling a provided function on each leaf page table.
2147 */
2148int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
2149 unsigned long size, pte_fn_t fn, void *data)
2150{
2151 pgd_t *pgd;
2152 unsigned long next;
57250a5b 2153 unsigned long end = addr + size;
aee16b3c
JF
2154 int err;
2155
9cb65bc3
MP
2156 if (WARN_ON(addr >= end))
2157 return -EINVAL;
2158
aee16b3c
JF
2159 pgd = pgd_offset(mm, addr);
2160 do {
2161 next = pgd_addr_end(addr, end);
c2febafc 2162 err = apply_to_p4d_range(mm, pgd, addr, next, fn, data);
aee16b3c
JF
2163 if (err)
2164 break;
2165 } while (pgd++, addr = next, addr != end);
57250a5b 2166
aee16b3c
JF
2167 return err;
2168}
2169EXPORT_SYMBOL_GPL(apply_to_page_range);
2170
8f4e2101 2171/*
9b4bdd2f
KS
2172 * handle_pte_fault chooses page fault handler according to an entry which was
2173 * read non-atomically. Before making any commitment, on those architectures
2174 * or configurations (e.g. i386 with PAE) which might give a mix of unmatched
2175 * parts, do_swap_page must check under lock before unmapping the pte and
2176 * proceeding (but do_wp_page is only called after already making such a check;
a335b2e1 2177 * and do_anonymous_page can safely check later on).
8f4e2101 2178 */
4c21e2f2 2179static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
2180 pte_t *page_table, pte_t orig_pte)
2181{
2182 int same = 1;
2183#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
2184 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
2185 spinlock_t *ptl = pte_lockptr(mm, pmd);
2186 spin_lock(ptl);
8f4e2101 2187 same = pte_same(*page_table, orig_pte);
4c21e2f2 2188 spin_unlock(ptl);
8f4e2101
HD
2189 }
2190#endif
2191 pte_unmap(page_table);
2192 return same;
2193}
2194
9de455b2 2195static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 2196{
0abdd7a8
DW
2197 debug_dma_assert_idle(src);
2198
6aab341e
LT
2199 /*
2200 * If the source page was a PFN mapping, we don't have
2201 * a "struct page" for it. We do a best-effort copy by
2202 * just copying from the original user address. If that
2203 * fails, we just zero-fill it. Live with it.
2204 */
2205 if (unlikely(!src)) {
9b04c5fe 2206 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
2207 void __user *uaddr = (void __user *)(va & PAGE_MASK);
2208
2209 /*
2210 * This really shouldn't fail, because the page is there
2211 * in the page tables. But it might just be unreadable,
2212 * in which case we just give up and fill the result with
2213 * zeroes.
2214 */
2215 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 2216 clear_page(kaddr);
9b04c5fe 2217 kunmap_atomic(kaddr);
c4ec7b0d 2218 flush_dcache_page(dst);
0ed361de
NP
2219 } else
2220 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
2221}
2222
c20cd45e
MH
2223static gfp_t __get_fault_gfp_mask(struct vm_area_struct *vma)
2224{
2225 struct file *vm_file = vma->vm_file;
2226
2227 if (vm_file)
2228 return mapping_gfp_mask(vm_file->f_mapping) | __GFP_FS | __GFP_IO;
2229
2230 /*
2231 * Special mappings (e.g. VDSO) do not have any file so fake
2232 * a default GFP_KERNEL for them.
2233 */
2234 return GFP_KERNEL;
2235}
2236
fb09a464
KS
2237/*
2238 * Notify the address space that the page is about to become writable so that
2239 * it can prohibit this or wait for the page to get into an appropriate state.
2240 *
2241 * We do this without the lock held, so that it can sleep if it needs to.
2242 */
38b8cb7f 2243static int do_page_mkwrite(struct vm_fault *vmf)
fb09a464 2244{
fb09a464 2245 int ret;
38b8cb7f
JK
2246 struct page *page = vmf->page;
2247 unsigned int old_flags = vmf->flags;
fb09a464 2248
38b8cb7f 2249 vmf->flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
fb09a464 2250
11bac800 2251 ret = vmf->vma->vm_ops->page_mkwrite(vmf);
38b8cb7f
JK
2252 /* Restore original flags so that caller is not surprised */
2253 vmf->flags = old_flags;
fb09a464
KS
2254 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2255 return ret;
2256 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2257 lock_page(page);
2258 if (!page->mapping) {
2259 unlock_page(page);
2260 return 0; /* retry */
2261 }
2262 ret |= VM_FAULT_LOCKED;
2263 } else
2264 VM_BUG_ON_PAGE(!PageLocked(page), page);
2265 return ret;
2266}
2267
97ba0c2b
JK
2268/*
2269 * Handle dirtying of a page in shared file mapping on a write fault.
2270 *
2271 * The function expects the page to be locked and unlocks it.
2272 */
2273static void fault_dirty_shared_page(struct vm_area_struct *vma,
2274 struct page *page)
2275{
2276 struct address_space *mapping;
2277 bool dirtied;
2278 bool page_mkwrite = vma->vm_ops && vma->vm_ops->page_mkwrite;
2279
2280 dirtied = set_page_dirty(page);
2281 VM_BUG_ON_PAGE(PageAnon(page), page);
2282 /*
2283 * Take a local copy of the address_space - page.mapping may be zeroed
2284 * by truncate after unlock_page(). The address_space itself remains
2285 * pinned by vma->vm_file's reference. We rely on unlock_page()'s
2286 * release semantics to prevent the compiler from undoing this copying.
2287 */
2288 mapping = page_rmapping(page);
2289 unlock_page(page);
2290
2291 if ((dirtied || page_mkwrite) && mapping) {
2292 /*
2293 * Some device drivers do not set page.mapping
2294 * but still dirty their pages
2295 */
2296 balance_dirty_pages_ratelimited(mapping);
2297 }
2298
2299 if (!page_mkwrite)
2300 file_update_time(vma->vm_file);
2301}
2302
4e047f89
SR
2303/*
2304 * Handle write page faults for pages that can be reused in the current vma
2305 *
2306 * This can happen either due to the mapping being with the VM_SHARED flag,
2307 * or due to us being the last reference standing to the page. In either
2308 * case, all we need to do here is to mark the page as writable and update
2309 * any related book-keeping.
2310 */
997dd98d 2311static inline void wp_page_reuse(struct vm_fault *vmf)
82b0f8c3 2312 __releases(vmf->ptl)
4e047f89 2313{
82b0f8c3 2314 struct vm_area_struct *vma = vmf->vma;
a41b70d6 2315 struct page *page = vmf->page;
4e047f89
SR
2316 pte_t entry;
2317 /*
2318 * Clear the pages cpupid information as the existing
2319 * information potentially belongs to a now completely
2320 * unrelated process.
2321 */
2322 if (page)
2323 page_cpupid_xchg_last(page, (1 << LAST_CPUPID_SHIFT) - 1);
2324
2994302b
JK
2325 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2326 entry = pte_mkyoung(vmf->orig_pte);
4e047f89 2327 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
82b0f8c3
JK
2328 if (ptep_set_access_flags(vma, vmf->address, vmf->pte, entry, 1))
2329 update_mmu_cache(vma, vmf->address, vmf->pte);
2330 pte_unmap_unlock(vmf->pte, vmf->ptl);
4e047f89
SR
2331}
2332
2f38ab2c
SR
2333/*
2334 * Handle the case of a page which we actually need to copy to a new page.
2335 *
2336 * Called with mmap_sem locked and the old page referenced, but
2337 * without the ptl held.
2338 *
2339 * High level logic flow:
2340 *
2341 * - Allocate a page, copy the content of the old page to the new one.
2342 * - Handle book keeping and accounting - cgroups, mmu-notifiers, etc.
2343 * - Take the PTL. If the pte changed, bail out and release the allocated page
2344 * - If the pte is still the way we remember it, update the page table and all
2345 * relevant references. This includes dropping the reference the page-table
2346 * held to the old page, as well as updating the rmap.
2347 * - In any case, unlock the PTL and drop the reference we took to the old page.
2348 */
a41b70d6 2349static int wp_page_copy(struct vm_fault *vmf)
2f38ab2c 2350{
82b0f8c3 2351 struct vm_area_struct *vma = vmf->vma;
bae473a4 2352 struct mm_struct *mm = vma->vm_mm;
a41b70d6 2353 struct page *old_page = vmf->page;
2f38ab2c 2354 struct page *new_page = NULL;
2f38ab2c
SR
2355 pte_t entry;
2356 int page_copied = 0;
82b0f8c3 2357 const unsigned long mmun_start = vmf->address & PAGE_MASK;
bae473a4 2358 const unsigned long mmun_end = mmun_start + PAGE_SIZE;
2f38ab2c
SR
2359 struct mem_cgroup *memcg;
2360
2361 if (unlikely(anon_vma_prepare(vma)))
2362 goto oom;
2363
2994302b 2364 if (is_zero_pfn(pte_pfn(vmf->orig_pte))) {
82b0f8c3
JK
2365 new_page = alloc_zeroed_user_highpage_movable(vma,
2366 vmf->address);
2f38ab2c
SR
2367 if (!new_page)
2368 goto oom;
2369 } else {
bae473a4 2370 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 2371 vmf->address);
2f38ab2c
SR
2372 if (!new_page)
2373 goto oom;
82b0f8c3 2374 cow_user_page(new_page, old_page, vmf->address, vma);
2f38ab2c 2375 }
2f38ab2c 2376
f627c2f5 2377 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg, false))
2f38ab2c
SR
2378 goto oom_free_new;
2379
eb3c24f3
MG
2380 __SetPageUptodate(new_page);
2381
2f38ab2c
SR
2382 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2383
2384 /*
2385 * Re-check the pte - we dropped the lock
2386 */
82b0f8c3 2387 vmf->pte = pte_offset_map_lock(mm, vmf->pmd, vmf->address, &vmf->ptl);
2994302b 2388 if (likely(pte_same(*vmf->pte, vmf->orig_pte))) {
2f38ab2c
SR
2389 if (old_page) {
2390 if (!PageAnon(old_page)) {
eca56ff9
JM
2391 dec_mm_counter_fast(mm,
2392 mm_counter_file(old_page));
2f38ab2c
SR
2393 inc_mm_counter_fast(mm, MM_ANONPAGES);
2394 }
2395 } else {
2396 inc_mm_counter_fast(mm, MM_ANONPAGES);
2397 }
2994302b 2398 flush_cache_page(vma, vmf->address, pte_pfn(vmf->orig_pte));
2f38ab2c
SR
2399 entry = mk_pte(new_page, vma->vm_page_prot);
2400 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2401 /*
2402 * Clear the pte entry and flush it first, before updating the
2403 * pte with the new entry. This will avoid a race condition
2404 * seen in the presence of one thread doing SMC and another
2405 * thread doing COW.
2406 */
82b0f8c3
JK
2407 ptep_clear_flush_notify(vma, vmf->address, vmf->pte);
2408 page_add_new_anon_rmap(new_page, vma, vmf->address, false);
f627c2f5 2409 mem_cgroup_commit_charge(new_page, memcg, false, false);
2f38ab2c
SR
2410 lru_cache_add_active_or_unevictable(new_page, vma);
2411 /*
2412 * We call the notify macro here because, when using secondary
2413 * mmu page tables (such as kvm shadow page tables), we want the
2414 * new page to be mapped directly into the secondary page table.
2415 */
82b0f8c3
JK
2416 set_pte_at_notify(mm, vmf->address, vmf->pte, entry);
2417 update_mmu_cache(vma, vmf->address, vmf->pte);
2f38ab2c
SR
2418 if (old_page) {
2419 /*
2420 * Only after switching the pte to the new page may
2421 * we remove the mapcount here. Otherwise another
2422 * process may come and find the rmap count decremented
2423 * before the pte is switched to the new page, and
2424 * "reuse" the old page writing into it while our pte
2425 * here still points into it and can be read by other
2426 * threads.
2427 *
2428 * The critical issue is to order this
2429 * page_remove_rmap with the ptp_clear_flush above.
2430 * Those stores are ordered by (if nothing else,)
2431 * the barrier present in the atomic_add_negative
2432 * in page_remove_rmap.
2433 *
2434 * Then the TLB flush in ptep_clear_flush ensures that
2435 * no process can access the old page before the
2436 * decremented mapcount is visible. And the old page
2437 * cannot be reused until after the decremented
2438 * mapcount is visible. So transitively, TLBs to
2439 * old page will be flushed before it can be reused.
2440 */
d281ee61 2441 page_remove_rmap(old_page, false);
2f38ab2c
SR
2442 }
2443
2444 /* Free the old page.. */
2445 new_page = old_page;
2446 page_copied = 1;
2447 } else {
f627c2f5 2448 mem_cgroup_cancel_charge(new_page, memcg, false);
2f38ab2c
SR
2449 }
2450
2451 if (new_page)
09cbfeaf 2452 put_page(new_page);
2f38ab2c 2453
82b0f8c3 2454 pte_unmap_unlock(vmf->pte, vmf->ptl);
2f38ab2c
SR
2455 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2456 if (old_page) {
2457 /*
2458 * Don't let another task, with possibly unlocked vma,
2459 * keep the mlocked page.
2460 */
2461 if (page_copied && (vma->vm_flags & VM_LOCKED)) {
2462 lock_page(old_page); /* LRU manipulation */
e90309c9
KS
2463 if (PageMlocked(old_page))
2464 munlock_vma_page(old_page);
2f38ab2c
SR
2465 unlock_page(old_page);
2466 }
09cbfeaf 2467 put_page(old_page);
2f38ab2c
SR
2468 }
2469 return page_copied ? VM_FAULT_WRITE : 0;
2470oom_free_new:
09cbfeaf 2471 put_page(new_page);
2f38ab2c
SR
2472oom:
2473 if (old_page)
09cbfeaf 2474 put_page(old_page);
2f38ab2c
SR
2475 return VM_FAULT_OOM;
2476}
2477
66a6197c
JK
2478/**
2479 * finish_mkwrite_fault - finish page fault for a shared mapping, making PTE
2480 * writeable once the page is prepared
2481 *
2482 * @vmf: structure describing the fault
2483 *
2484 * This function handles all that is needed to finish a write page fault in a
2485 * shared mapping due to PTE being read-only once the mapped page is prepared.
2486 * It handles locking of PTE and modifying it. The function returns
2487 * VM_FAULT_WRITE on success, 0 when PTE got changed before we acquired PTE
2488 * lock.
2489 *
2490 * The function expects the page to be locked or other protection against
2491 * concurrent faults / writeback (such as DAX radix tree locks).
2492 */
2493int finish_mkwrite_fault(struct vm_fault *vmf)
2494{
2495 WARN_ON_ONCE(!(vmf->vma->vm_flags & VM_SHARED));
2496 vmf->pte = pte_offset_map_lock(vmf->vma->vm_mm, vmf->pmd, vmf->address,
2497 &vmf->ptl);
2498 /*
2499 * We might have raced with another page fault while we released the
2500 * pte_offset_map_lock.
2501 */
2502 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
2503 pte_unmap_unlock(vmf->pte, vmf->ptl);
a19e2553 2504 return VM_FAULT_NOPAGE;
66a6197c
JK
2505 }
2506 wp_page_reuse(vmf);
a19e2553 2507 return 0;
66a6197c
JK
2508}
2509
dd906184
BH
2510/*
2511 * Handle write page faults for VM_MIXEDMAP or VM_PFNMAP for a VM_SHARED
2512 * mapping
2513 */
2994302b 2514static int wp_pfn_shared(struct vm_fault *vmf)
dd906184 2515{
82b0f8c3 2516 struct vm_area_struct *vma = vmf->vma;
bae473a4 2517
dd906184 2518 if (vma->vm_ops && vma->vm_ops->pfn_mkwrite) {
dd906184
BH
2519 int ret;
2520
82b0f8c3 2521 pte_unmap_unlock(vmf->pte, vmf->ptl);
fe82221f 2522 vmf->flags |= FAULT_FLAG_MKWRITE;
11bac800 2523 ret = vma->vm_ops->pfn_mkwrite(vmf);
2f89dc12 2524 if (ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))
dd906184 2525 return ret;
66a6197c 2526 return finish_mkwrite_fault(vmf);
dd906184 2527 }
997dd98d
JK
2528 wp_page_reuse(vmf);
2529 return VM_FAULT_WRITE;
dd906184
BH
2530}
2531
a41b70d6 2532static int wp_page_shared(struct vm_fault *vmf)
82b0f8c3 2533 __releases(vmf->ptl)
93e478d4 2534{
82b0f8c3 2535 struct vm_area_struct *vma = vmf->vma;
93e478d4 2536
a41b70d6 2537 get_page(vmf->page);
93e478d4 2538
93e478d4
SR
2539 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
2540 int tmp;
2541
82b0f8c3 2542 pte_unmap_unlock(vmf->pte, vmf->ptl);
38b8cb7f 2543 tmp = do_page_mkwrite(vmf);
93e478d4
SR
2544 if (unlikely(!tmp || (tmp &
2545 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
a41b70d6 2546 put_page(vmf->page);
93e478d4
SR
2547 return tmp;
2548 }
66a6197c 2549 tmp = finish_mkwrite_fault(vmf);
a19e2553 2550 if (unlikely(tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE))) {
a41b70d6 2551 unlock_page(vmf->page);
a41b70d6 2552 put_page(vmf->page);
66a6197c 2553 return tmp;
93e478d4 2554 }
66a6197c
JK
2555 } else {
2556 wp_page_reuse(vmf);
997dd98d 2557 lock_page(vmf->page);
93e478d4 2558 }
997dd98d
JK
2559 fault_dirty_shared_page(vma, vmf->page);
2560 put_page(vmf->page);
93e478d4 2561
997dd98d 2562 return VM_FAULT_WRITE;
93e478d4
SR
2563}
2564
1da177e4
LT
2565/*
2566 * This routine handles present pages, when users try to write
2567 * to a shared page. It is done by copying the page to a new address
2568 * and decrementing the shared-page counter for the old page.
2569 *
1da177e4
LT
2570 * Note that this routine assumes that the protection checks have been
2571 * done by the caller (the low-level page fault routine in most cases).
2572 * Thus we can safely just mark it writable once we've done any necessary
2573 * COW.
2574 *
2575 * We also mark the page dirty at this point even though the page will
2576 * change only once the write actually happens. This avoids a few races,
2577 * and potentially makes it more efficient.
2578 *
8f4e2101
HD
2579 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2580 * but allow concurrent faults), with pte both mapped and locked.
2581 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2582 */
2994302b 2583static int do_wp_page(struct vm_fault *vmf)
82b0f8c3 2584 __releases(vmf->ptl)
1da177e4 2585{
82b0f8c3 2586 struct vm_area_struct *vma = vmf->vma;
1da177e4 2587
a41b70d6
JK
2588 vmf->page = vm_normal_page(vma, vmf->address, vmf->orig_pte);
2589 if (!vmf->page) {
251b97f5 2590 /*
64e45507
PF
2591 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2592 * VM_PFNMAP VMA.
251b97f5
PZ
2593 *
2594 * We should not cow pages in a shared writeable mapping.
dd906184 2595 * Just mark the pages writable and/or call ops->pfn_mkwrite.
251b97f5
PZ
2596 */
2597 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2598 (VM_WRITE|VM_SHARED))
2994302b 2599 return wp_pfn_shared(vmf);
2f38ab2c 2600
82b0f8c3 2601 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2602 return wp_page_copy(vmf);
251b97f5 2603 }
1da177e4 2604
d08b3851 2605 /*
ee6a6457
PZ
2606 * Take out anonymous pages first, anonymous shared vmas are
2607 * not dirty accountable.
d08b3851 2608 */
a41b70d6 2609 if (PageAnon(vmf->page) && !PageKsm(vmf->page)) {
6d0a07ed 2610 int total_mapcount;
a41b70d6
JK
2611 if (!trylock_page(vmf->page)) {
2612 get_page(vmf->page);
82b0f8c3 2613 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2614 lock_page(vmf->page);
82b0f8c3
JK
2615 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2616 vmf->address, &vmf->ptl);
2994302b 2617 if (!pte_same(*vmf->pte, vmf->orig_pte)) {
a41b70d6 2618 unlock_page(vmf->page);
82b0f8c3 2619 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2620 put_page(vmf->page);
28766805 2621 return 0;
ab967d86 2622 }
a41b70d6 2623 put_page(vmf->page);
ee6a6457 2624 }
a41b70d6 2625 if (reuse_swap_page(vmf->page, &total_mapcount)) {
6d0a07ed
AA
2626 if (total_mapcount == 1) {
2627 /*
2628 * The page is all ours. Move it to
2629 * our anon_vma so the rmap code will
2630 * not search our parent or siblings.
2631 * Protected against the rmap code by
2632 * the page lock.
2633 */
a41b70d6 2634 page_move_anon_rmap(vmf->page, vma);
6d0a07ed 2635 }
a41b70d6 2636 unlock_page(vmf->page);
997dd98d
JK
2637 wp_page_reuse(vmf);
2638 return VM_FAULT_WRITE;
b009c024 2639 }
a41b70d6 2640 unlock_page(vmf->page);
ee6a6457 2641 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2642 (VM_WRITE|VM_SHARED))) {
a41b70d6 2643 return wp_page_shared(vmf);
1da177e4 2644 }
1da177e4
LT
2645
2646 /*
2647 * Ok, we need to copy. Oh, well..
2648 */
a41b70d6 2649 get_page(vmf->page);
28766805 2650
82b0f8c3 2651 pte_unmap_unlock(vmf->pte, vmf->ptl);
a41b70d6 2652 return wp_page_copy(vmf);
1da177e4
LT
2653}
2654
97a89413 2655static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2656 unsigned long start_addr, unsigned long end_addr,
2657 struct zap_details *details)
2658{
f5cc4eef 2659 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2660}
2661
6b2dbba8 2662static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2663 struct zap_details *details)
2664{
2665 struct vm_area_struct *vma;
1da177e4
LT
2666 pgoff_t vba, vea, zba, zea;
2667
6b2dbba8 2668 vma_interval_tree_foreach(vma, root,
1da177e4 2669 details->first_index, details->last_index) {
1da177e4
LT
2670
2671 vba = vma->vm_pgoff;
d6e93217 2672 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2673 zba = details->first_index;
2674 if (zba < vba)
2675 zba = vba;
2676 zea = details->last_index;
2677 if (zea > vea)
2678 zea = vea;
2679
97a89413 2680 unmap_mapping_range_vma(vma,
1da177e4
LT
2681 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2682 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2683 details);
1da177e4
LT
2684 }
2685}
2686
1da177e4 2687/**
8a5f14a2
KS
2688 * unmap_mapping_range - unmap the portion of all mmaps in the specified
2689 * address_space corresponding to the specified page range in the underlying
2690 * file.
2691 *
3d41088f 2692 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2693 * @holebegin: byte in first page to unmap, relative to the start of
2694 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2695 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2696 * must keep the partial page. In contrast, we must get rid of
2697 * partial pages.
2698 * @holelen: size of prospective hole in bytes. This will be rounded
2699 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2700 * end of the file.
2701 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2702 * but 0 when invalidating pagecache, don't throw away private data.
2703 */
2704void unmap_mapping_range(struct address_space *mapping,
2705 loff_t const holebegin, loff_t const holelen, int even_cows)
2706{
aac45363 2707 struct zap_details details = { };
1da177e4
LT
2708 pgoff_t hba = holebegin >> PAGE_SHIFT;
2709 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2710
2711 /* Check for overflow. */
2712 if (sizeof(holelen) > sizeof(hlen)) {
2713 long long holeend =
2714 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2715 if (holeend & ~(long long)ULONG_MAX)
2716 hlen = ULONG_MAX - hba + 1;
2717 }
2718
166f61b9 2719 details.check_mapping = even_cows ? NULL : mapping;
1da177e4
LT
2720 details.first_index = hba;
2721 details.last_index = hba + hlen - 1;
2722 if (details.last_index < details.first_index)
2723 details.last_index = ULONG_MAX;
1da177e4 2724
46c043ed 2725 i_mmap_lock_write(mapping);
6b2dbba8 2726 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4 2727 unmap_mapping_range_tree(&mapping->i_mmap, &details);
46c043ed 2728 i_mmap_unlock_write(mapping);
1da177e4
LT
2729}
2730EXPORT_SYMBOL(unmap_mapping_range);
2731
1da177e4 2732/*
8f4e2101
HD
2733 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2734 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2735 * We return with pte unmapped and unlocked.
2736 *
2737 * We return with the mmap_sem locked or unlocked in the same cases
2738 * as does filemap_fault().
1da177e4 2739 */
2994302b 2740int do_swap_page(struct vm_fault *vmf)
1da177e4 2741{
82b0f8c3 2742 struct vm_area_struct *vma = vmf->vma;
56f31801 2743 struct page *page, *swapcache;
00501b53 2744 struct mem_cgroup *memcg;
65500d23 2745 swp_entry_t entry;
1da177e4 2746 pte_t pte;
d065bd81 2747 int locked;
ad8c2ee8 2748 int exclusive = 0;
83c54070 2749 int ret = 0;
1da177e4 2750
2994302b 2751 if (!pte_unmap_same(vma->vm_mm, vmf->pmd, vmf->pte, vmf->orig_pte))
8f4e2101 2752 goto out;
65500d23 2753
2994302b 2754 entry = pte_to_swp_entry(vmf->orig_pte);
d1737fdb
AK
2755 if (unlikely(non_swap_entry(entry))) {
2756 if (is_migration_entry(entry)) {
82b0f8c3
JK
2757 migration_entry_wait(vma->vm_mm, vmf->pmd,
2758 vmf->address);
d1737fdb
AK
2759 } else if (is_hwpoison_entry(entry)) {
2760 ret = VM_FAULT_HWPOISON;
2761 } else {
2994302b 2762 print_bad_pte(vma, vmf->address, vmf->orig_pte, NULL);
d99be1a8 2763 ret = VM_FAULT_SIGBUS;
d1737fdb 2764 }
0697212a
CL
2765 goto out;
2766 }
0ff92245 2767 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2768 page = lookup_swap_cache(entry);
2769 if (!page) {
82b0f8c3
JK
2770 page = swapin_readahead(entry, GFP_HIGHUSER_MOVABLE, vma,
2771 vmf->address);
1da177e4
LT
2772 if (!page) {
2773 /*
8f4e2101
HD
2774 * Back out if somebody else faulted in this pte
2775 * while we released the pte lock.
1da177e4 2776 */
82b0f8c3
JK
2777 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2778 vmf->address, &vmf->ptl);
2994302b 2779 if (likely(pte_same(*vmf->pte, vmf->orig_pte)))
1da177e4 2780 ret = VM_FAULT_OOM;
0ff92245 2781 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2782 goto unlock;
1da177e4
LT
2783 }
2784
2785 /* Had to read the page from swap area: Major fault */
2786 ret = VM_FAULT_MAJOR;
f8891e5e 2787 count_vm_event(PGMAJFAULT);
2262185c 2788 count_memcg_event_mm(vma->vm_mm, PGMAJFAULT);
d1737fdb 2789 } else if (PageHWPoison(page)) {
71f72525
WF
2790 /*
2791 * hwpoisoned dirty swapcache pages are kept for killing
2792 * owner processes (which may be unknown at hwpoison time)
2793 */
d1737fdb
AK
2794 ret = VM_FAULT_HWPOISON;
2795 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2796 swapcache = page;
4779cb31 2797 goto out_release;
1da177e4
LT
2798 }
2799
56f31801 2800 swapcache = page;
82b0f8c3 2801 locked = lock_page_or_retry(page, vma->vm_mm, vmf->flags);
e709ffd6 2802
073e587e 2803 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2804 if (!locked) {
2805 ret |= VM_FAULT_RETRY;
2806 goto out_release;
2807 }
073e587e 2808
4969c119 2809 /*
31c4a3d3
HD
2810 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2811 * release the swapcache from under us. The page pin, and pte_same
2812 * test below, are not enough to exclude that. Even if it is still
2813 * swapcache, we need to check that the page's swap has not changed.
4969c119 2814 */
31c4a3d3 2815 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2816 goto out_page;
2817
82b0f8c3 2818 page = ksm_might_need_to_copy(page, vma, vmf->address);
cbf86cfe
HD
2819 if (unlikely(!page)) {
2820 ret = VM_FAULT_OOM;
2821 page = swapcache;
cbf86cfe 2822 goto out_page;
5ad64688
HD
2823 }
2824
bae473a4
KS
2825 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
2826 &memcg, false)) {
8a9f3ccd 2827 ret = VM_FAULT_OOM;
bc43f75c 2828 goto out_page;
8a9f3ccd
BS
2829 }
2830
1da177e4 2831 /*
8f4e2101 2832 * Back out if somebody else already faulted in this pte.
1da177e4 2833 */
82b0f8c3
JK
2834 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2835 &vmf->ptl);
2994302b 2836 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte)))
b8107480 2837 goto out_nomap;
b8107480
KK
2838
2839 if (unlikely(!PageUptodate(page))) {
2840 ret = VM_FAULT_SIGBUS;
2841 goto out_nomap;
1da177e4
LT
2842 }
2843
8c7c6e34
KH
2844 /*
2845 * The page isn't present yet, go ahead with the fault.
2846 *
2847 * Be careful about the sequence of operations here.
2848 * To get its accounting right, reuse_swap_page() must be called
2849 * while the page is counted on swap but not yet in mapcount i.e.
2850 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2851 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2852 */
1da177e4 2853
bae473a4
KS
2854 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2855 dec_mm_counter_fast(vma->vm_mm, MM_SWAPENTS);
1da177e4 2856 pte = mk_pte(page, vma->vm_page_prot);
82b0f8c3 2857 if ((vmf->flags & FAULT_FLAG_WRITE) && reuse_swap_page(page, NULL)) {
1da177e4 2858 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
82b0f8c3 2859 vmf->flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2860 ret |= VM_FAULT_WRITE;
d281ee61 2861 exclusive = RMAP_EXCLUSIVE;
1da177e4 2862 }
1da177e4 2863 flush_icache_page(vma, page);
2994302b 2864 if (pte_swp_soft_dirty(vmf->orig_pte))
179ef71c 2865 pte = pte_mksoft_dirty(pte);
82b0f8c3 2866 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, pte);
2994302b 2867 vmf->orig_pte = pte;
00501b53 2868 if (page == swapcache) {
82b0f8c3 2869 do_page_add_anon_rmap(page, vma, vmf->address, exclusive);
f627c2f5 2870 mem_cgroup_commit_charge(page, memcg, true, false);
1a8018fb 2871 activate_page(page);
00501b53 2872 } else { /* ksm created a completely new copy */
82b0f8c3 2873 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 2874 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
2875 lru_cache_add_active_or_unevictable(page, vma);
2876 }
1da177e4 2877
c475a8ab 2878 swap_free(entry);
5ccc5aba
VD
2879 if (mem_cgroup_swap_full(page) ||
2880 (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2881 try_to_free_swap(page);
c475a8ab 2882 unlock_page(page);
56f31801 2883 if (page != swapcache) {
4969c119
AA
2884 /*
2885 * Hold the lock to avoid the swap entry to be reused
2886 * until we take the PT lock for the pte_same() check
2887 * (to avoid false positives from pte_same). For
2888 * further safety release the lock after the swap_free
2889 * so that the swap count won't change under a
2890 * parallel locked swapcache.
2891 */
2892 unlock_page(swapcache);
09cbfeaf 2893 put_page(swapcache);
4969c119 2894 }
c475a8ab 2895
82b0f8c3 2896 if (vmf->flags & FAULT_FLAG_WRITE) {
2994302b 2897 ret |= do_wp_page(vmf);
61469f1d
HD
2898 if (ret & VM_FAULT_ERROR)
2899 ret &= VM_FAULT_ERROR;
1da177e4
LT
2900 goto out;
2901 }
2902
2903 /* No need to invalidate - it was non-present before */
82b0f8c3 2904 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 2905unlock:
82b0f8c3 2906 pte_unmap_unlock(vmf->pte, vmf->ptl);
1da177e4
LT
2907out:
2908 return ret;
b8107480 2909out_nomap:
f627c2f5 2910 mem_cgroup_cancel_charge(page, memcg, false);
82b0f8c3 2911 pte_unmap_unlock(vmf->pte, vmf->ptl);
bc43f75c 2912out_page:
b8107480 2913 unlock_page(page);
4779cb31 2914out_release:
09cbfeaf 2915 put_page(page);
56f31801 2916 if (page != swapcache) {
4969c119 2917 unlock_page(swapcache);
09cbfeaf 2918 put_page(swapcache);
4969c119 2919 }
65500d23 2920 return ret;
1da177e4
LT
2921}
2922
2923/*
8f4e2101
HD
2924 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2925 * but allow concurrent faults), and pte mapped but not yet locked.
2926 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2927 */
82b0f8c3 2928static int do_anonymous_page(struct vm_fault *vmf)
1da177e4 2929{
82b0f8c3 2930 struct vm_area_struct *vma = vmf->vma;
00501b53 2931 struct mem_cgroup *memcg;
8f4e2101 2932 struct page *page;
6b31d595 2933 int ret = 0;
1da177e4 2934 pte_t entry;
1da177e4 2935
6b7339f4
KS
2936 /* File mapping without ->vm_ops ? */
2937 if (vma->vm_flags & VM_SHARED)
2938 return VM_FAULT_SIGBUS;
2939
7267ec00
KS
2940 /*
2941 * Use pte_alloc() instead of pte_alloc_map(). We can't run
2942 * pte_offset_map() on pmds where a huge pmd might be created
2943 * from a different thread.
2944 *
2945 * pte_alloc_map() is safe to use under down_write(mmap_sem) or when
2946 * parallel threads are excluded by other means.
2947 *
2948 * Here we only have down_read(mmap_sem).
2949 */
82b0f8c3 2950 if (pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))
7267ec00
KS
2951 return VM_FAULT_OOM;
2952
2953 /* See the comment in pte_alloc_one_map() */
82b0f8c3 2954 if (unlikely(pmd_trans_unstable(vmf->pmd)))
7267ec00
KS
2955 return 0;
2956
11ac5524 2957 /* Use the zero-page for reads */
82b0f8c3 2958 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 2959 !mm_forbids_zeropage(vma->vm_mm)) {
82b0f8c3 2960 entry = pte_mkspecial(pfn_pte(my_zero_pfn(vmf->address),
62eede62 2961 vma->vm_page_prot));
82b0f8c3
JK
2962 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd,
2963 vmf->address, &vmf->ptl);
2964 if (!pte_none(*vmf->pte))
a13ea5b7 2965 goto unlock;
6b31d595
MH
2966 ret = check_stable_address_space(vma->vm_mm);
2967 if (ret)
2968 goto unlock;
6b251fc9
AA
2969 /* Deliver the page fault to userland, check inside PT lock */
2970 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
2971 pte_unmap_unlock(vmf->pte, vmf->ptl);
2972 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9 2973 }
a13ea5b7
HD
2974 goto setpte;
2975 }
2976
557ed1fa 2977 /* Allocate our own private page. */
557ed1fa
NP
2978 if (unlikely(anon_vma_prepare(vma)))
2979 goto oom;
82b0f8c3 2980 page = alloc_zeroed_user_highpage_movable(vma, vmf->address);
557ed1fa
NP
2981 if (!page)
2982 goto oom;
eb3c24f3 2983
bae473a4 2984 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL, &memcg, false))
eb3c24f3
MG
2985 goto oom_free_page;
2986
52f37629
MK
2987 /*
2988 * The memory barrier inside __SetPageUptodate makes sure that
2989 * preceeding stores to the page contents become visible before
2990 * the set_pte_at() write.
2991 */
0ed361de 2992 __SetPageUptodate(page);
8f4e2101 2993
557ed1fa 2994 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2995 if (vma->vm_flags & VM_WRITE)
2996 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2997
82b0f8c3
JK
2998 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
2999 &vmf->ptl);
3000 if (!pte_none(*vmf->pte))
557ed1fa 3001 goto release;
9ba69294 3002
6b31d595
MH
3003 ret = check_stable_address_space(vma->vm_mm);
3004 if (ret)
3005 goto release;
3006
6b251fc9
AA
3007 /* Deliver the page fault to userland, check inside PT lock */
3008 if (userfaultfd_missing(vma)) {
82b0f8c3 3009 pte_unmap_unlock(vmf->pte, vmf->ptl);
f627c2f5 3010 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3011 put_page(page);
82b0f8c3 3012 return handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
3013 }
3014
bae473a4 3015 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3016 page_add_new_anon_rmap(page, vma, vmf->address, false);
f627c2f5 3017 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53 3018 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 3019setpte:
82b0f8c3 3020 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
1da177e4
LT
3021
3022 /* No need to invalidate - it was non-present before */
82b0f8c3 3023 update_mmu_cache(vma, vmf->address, vmf->pte);
65500d23 3024unlock:
82b0f8c3 3025 pte_unmap_unlock(vmf->pte, vmf->ptl);
6b31d595 3026 return ret;
8f4e2101 3027release:
f627c2f5 3028 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 3029 put_page(page);
8f4e2101 3030 goto unlock;
8a9f3ccd 3031oom_free_page:
09cbfeaf 3032 put_page(page);
65500d23 3033oom:
1da177e4
LT
3034 return VM_FAULT_OOM;
3035}
3036
9a95f3cf
PC
3037/*
3038 * The mmap_sem must have been held on entry, and may have been
3039 * released depending on flags and vma->vm_ops->fault() return value.
3040 * See filemap_fault() and __lock_page_retry().
3041 */
936ca80d 3042static int __do_fault(struct vm_fault *vmf)
7eae74af 3043{
82b0f8c3 3044 struct vm_area_struct *vma = vmf->vma;
7eae74af
KS
3045 int ret;
3046
11bac800 3047 ret = vma->vm_ops->fault(vmf);
3917048d 3048 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY |
b1aa812b 3049 VM_FAULT_DONE_COW)))
bc2466e4 3050 return ret;
7eae74af 3051
667240e0 3052 if (unlikely(PageHWPoison(vmf->page))) {
7eae74af 3053 if (ret & VM_FAULT_LOCKED)
667240e0
JK
3054 unlock_page(vmf->page);
3055 put_page(vmf->page);
936ca80d 3056 vmf->page = NULL;
7eae74af
KS
3057 return VM_FAULT_HWPOISON;
3058 }
3059
3060 if (unlikely(!(ret & VM_FAULT_LOCKED)))
667240e0 3061 lock_page(vmf->page);
7eae74af 3062 else
667240e0 3063 VM_BUG_ON_PAGE(!PageLocked(vmf->page), vmf->page);
7eae74af 3064
7eae74af
KS
3065 return ret;
3066}
3067
d0f0931d
RZ
3068/*
3069 * The ordering of these checks is important for pmds with _PAGE_DEVMAP set.
3070 * If we check pmd_trans_unstable() first we will trip the bad_pmd() check
3071 * inside of pmd_none_or_trans_huge_or_clear_bad(). This will end up correctly
3072 * returning 1 but not before it spams dmesg with the pmd_clear_bad() output.
3073 */
3074static int pmd_devmap_trans_unstable(pmd_t *pmd)
3075{
3076 return pmd_devmap(*pmd) || pmd_trans_unstable(pmd);
3077}
3078
82b0f8c3 3079static int pte_alloc_one_map(struct vm_fault *vmf)
7267ec00 3080{
82b0f8c3 3081 struct vm_area_struct *vma = vmf->vma;
7267ec00 3082
82b0f8c3 3083 if (!pmd_none(*vmf->pmd))
7267ec00 3084 goto map_pte;
82b0f8c3
JK
3085 if (vmf->prealloc_pte) {
3086 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3087 if (unlikely(!pmd_none(*vmf->pmd))) {
3088 spin_unlock(vmf->ptl);
7267ec00
KS
3089 goto map_pte;
3090 }
3091
3092 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3
JK
3093 pmd_populate(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
3094 spin_unlock(vmf->ptl);
7f2b6ce8 3095 vmf->prealloc_pte = NULL;
82b0f8c3 3096 } else if (unlikely(pte_alloc(vma->vm_mm, vmf->pmd, vmf->address))) {
7267ec00
KS
3097 return VM_FAULT_OOM;
3098 }
3099map_pte:
3100 /*
3101 * If a huge pmd materialized under us just retry later. Use
d0f0931d
RZ
3102 * pmd_trans_unstable() via pmd_devmap_trans_unstable() instead of
3103 * pmd_trans_huge() to ensure the pmd didn't become pmd_trans_huge
3104 * under us and then back to pmd_none, as a result of MADV_DONTNEED
3105 * running immediately after a huge pmd fault in a different thread of
3106 * this mm, in turn leading to a misleading pmd_trans_huge() retval.
3107 * All we have to ensure is that it is a regular pmd that we can walk
3108 * with pte_offset_map() and we can do that through an atomic read in
3109 * C, which is what pmd_trans_unstable() provides.
7267ec00 3110 */
d0f0931d 3111 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3112 return VM_FAULT_NOPAGE;
3113
d0f0931d
RZ
3114 /*
3115 * At this point we know that our vmf->pmd points to a page of ptes
3116 * and it cannot become pmd_none(), pmd_devmap() or pmd_trans_huge()
3117 * for the duration of the fault. If a racing MADV_DONTNEED runs and
3118 * we zap the ptes pointed to by our vmf->pmd, the vmf->ptl will still
3119 * be valid and we will re-check to make sure the vmf->pte isn't
3120 * pte_none() under vmf->ptl protection when we return to
3121 * alloc_set_pte().
3122 */
82b0f8c3
JK
3123 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, vmf->address,
3124 &vmf->ptl);
7267ec00
KS
3125 return 0;
3126}
3127
e496cf3d 3128#ifdef CONFIG_TRANSPARENT_HUGE_PAGECACHE
10102459
KS
3129
3130#define HPAGE_CACHE_INDEX_MASK (HPAGE_PMD_NR - 1)
3131static inline bool transhuge_vma_suitable(struct vm_area_struct *vma,
3132 unsigned long haddr)
3133{
3134 if (((vma->vm_start >> PAGE_SHIFT) & HPAGE_CACHE_INDEX_MASK) !=
3135 (vma->vm_pgoff & HPAGE_CACHE_INDEX_MASK))
3136 return false;
3137 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
3138 return false;
3139 return true;
3140}
3141
82b0f8c3 3142static void deposit_prealloc_pte(struct vm_fault *vmf)
953c66c2 3143{
82b0f8c3 3144 struct vm_area_struct *vma = vmf->vma;
953c66c2 3145
82b0f8c3 3146 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, vmf->prealloc_pte);
953c66c2
AK
3147 /*
3148 * We are going to consume the prealloc table,
3149 * count that as nr_ptes.
3150 */
3151 atomic_long_inc(&vma->vm_mm->nr_ptes);
7f2b6ce8 3152 vmf->prealloc_pte = NULL;
953c66c2
AK
3153}
3154
82b0f8c3 3155static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459 3156{
82b0f8c3
JK
3157 struct vm_area_struct *vma = vmf->vma;
3158 bool write = vmf->flags & FAULT_FLAG_WRITE;
3159 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
10102459
KS
3160 pmd_t entry;
3161 int i, ret;
3162
3163 if (!transhuge_vma_suitable(vma, haddr))
3164 return VM_FAULT_FALLBACK;
3165
3166 ret = VM_FAULT_FALLBACK;
3167 page = compound_head(page);
3168
953c66c2
AK
3169 /*
3170 * Archs like ppc64 need additonal space to store information
3171 * related to pte entry. Use the preallocated table for that.
3172 */
82b0f8c3
JK
3173 if (arch_needs_pgtable_deposit() && !vmf->prealloc_pte) {
3174 vmf->prealloc_pte = pte_alloc_one(vma->vm_mm, vmf->address);
3175 if (!vmf->prealloc_pte)
953c66c2
AK
3176 return VM_FAULT_OOM;
3177 smp_wmb(); /* See comment in __pte_alloc() */
3178 }
3179
82b0f8c3
JK
3180 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
3181 if (unlikely(!pmd_none(*vmf->pmd)))
10102459
KS
3182 goto out;
3183
3184 for (i = 0; i < HPAGE_PMD_NR; i++)
3185 flush_icache_page(vma, page + i);
3186
3187 entry = mk_huge_pmd(page, vma->vm_page_prot);
3188 if (write)
3189 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3190
3191 add_mm_counter(vma->vm_mm, MM_FILEPAGES, HPAGE_PMD_NR);
3192 page_add_file_rmap(page, true);
953c66c2
AK
3193 /*
3194 * deposit and withdraw with pmd lock held
3195 */
3196 if (arch_needs_pgtable_deposit())
82b0f8c3 3197 deposit_prealloc_pte(vmf);
10102459 3198
82b0f8c3 3199 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
10102459 3200
82b0f8c3 3201 update_mmu_cache_pmd(vma, haddr, vmf->pmd);
10102459
KS
3202
3203 /* fault is handled */
3204 ret = 0;
95ecedcd 3205 count_vm_event(THP_FILE_MAPPED);
10102459 3206out:
82b0f8c3 3207 spin_unlock(vmf->ptl);
10102459
KS
3208 return ret;
3209}
3210#else
82b0f8c3 3211static int do_set_pmd(struct vm_fault *vmf, struct page *page)
10102459
KS
3212{
3213 BUILD_BUG();
3214 return 0;
3215}
3216#endif
3217
8c6e50b0 3218/**
7267ec00
KS
3219 * alloc_set_pte - setup new PTE entry for given page and add reverse page
3220 * mapping. If needed, the fucntion allocates page table or use pre-allocated.
8c6e50b0 3221 *
82b0f8c3 3222 * @vmf: fault environment
7267ec00 3223 * @memcg: memcg to charge page (only for private mappings)
8c6e50b0 3224 * @page: page to map
8c6e50b0 3225 *
82b0f8c3
JK
3226 * Caller must take care of unlocking vmf->ptl, if vmf->pte is non-NULL on
3227 * return.
8c6e50b0
KS
3228 *
3229 * Target users are page handler itself and implementations of
3230 * vm_ops->map_pages.
3231 */
82b0f8c3 3232int alloc_set_pte(struct vm_fault *vmf, struct mem_cgroup *memcg,
7267ec00 3233 struct page *page)
3bb97794 3234{
82b0f8c3
JK
3235 struct vm_area_struct *vma = vmf->vma;
3236 bool write = vmf->flags & FAULT_FLAG_WRITE;
3bb97794 3237 pte_t entry;
10102459
KS
3238 int ret;
3239
82b0f8c3 3240 if (pmd_none(*vmf->pmd) && PageTransCompound(page) &&
e496cf3d 3241 IS_ENABLED(CONFIG_TRANSPARENT_HUGE_PAGECACHE)) {
10102459
KS
3242 /* THP on COW? */
3243 VM_BUG_ON_PAGE(memcg, page);
3244
82b0f8c3 3245 ret = do_set_pmd(vmf, page);
10102459 3246 if (ret != VM_FAULT_FALLBACK)
b0b9b3df 3247 return ret;
10102459 3248 }
3bb97794 3249
82b0f8c3
JK
3250 if (!vmf->pte) {
3251 ret = pte_alloc_one_map(vmf);
7267ec00 3252 if (ret)
b0b9b3df 3253 return ret;
7267ec00
KS
3254 }
3255
3256 /* Re-check under ptl */
b0b9b3df
HD
3257 if (unlikely(!pte_none(*vmf->pte)))
3258 return VM_FAULT_NOPAGE;
7267ec00 3259
3bb97794
KS
3260 flush_icache_page(vma, page);
3261 entry = mk_pte(page, vma->vm_page_prot);
3262 if (write)
3263 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
bae473a4
KS
3264 /* copy-on-write page */
3265 if (write && !(vma->vm_flags & VM_SHARED)) {
3bb97794 3266 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
82b0f8c3 3267 page_add_new_anon_rmap(page, vma, vmf->address, false);
7267ec00
KS
3268 mem_cgroup_commit_charge(page, memcg, false, false);
3269 lru_cache_add_active_or_unevictable(page, vma);
3bb97794 3270 } else {
eca56ff9 3271 inc_mm_counter_fast(vma->vm_mm, mm_counter_file(page));
dd78fedd 3272 page_add_file_rmap(page, false);
3bb97794 3273 }
82b0f8c3 3274 set_pte_at(vma->vm_mm, vmf->address, vmf->pte, entry);
3bb97794
KS
3275
3276 /* no need to invalidate: a not-present page won't be cached */
82b0f8c3 3277 update_mmu_cache(vma, vmf->address, vmf->pte);
7267ec00 3278
b0b9b3df 3279 return 0;
3bb97794
KS
3280}
3281
9118c0cb
JK
3282
3283/**
3284 * finish_fault - finish page fault once we have prepared the page to fault
3285 *
3286 * @vmf: structure describing the fault
3287 *
3288 * This function handles all that is needed to finish a page fault once the
3289 * page to fault in is prepared. It handles locking of PTEs, inserts PTE for
3290 * given page, adds reverse page mapping, handles memcg charges and LRU
3291 * addition. The function returns 0 on success, VM_FAULT_ code in case of
3292 * error.
3293 *
3294 * The function expects the page to be locked and on success it consumes a
3295 * reference of a page being mapped (for the PTE which maps it).
3296 */
3297int finish_fault(struct vm_fault *vmf)
3298{
3299 struct page *page;
6b31d595 3300 int ret = 0;
9118c0cb
JK
3301
3302 /* Did we COW the page? */
3303 if ((vmf->flags & FAULT_FLAG_WRITE) &&
3304 !(vmf->vma->vm_flags & VM_SHARED))
3305 page = vmf->cow_page;
3306 else
3307 page = vmf->page;
6b31d595
MH
3308
3309 /*
3310 * check even for read faults because we might have lost our CoWed
3311 * page
3312 */
3313 if (!(vmf->vma->vm_flags & VM_SHARED))
3314 ret = check_stable_address_space(vmf->vma->vm_mm);
3315 if (!ret)
3316 ret = alloc_set_pte(vmf, vmf->memcg, page);
9118c0cb
JK
3317 if (vmf->pte)
3318 pte_unmap_unlock(vmf->pte, vmf->ptl);
3319 return ret;
3320}
3321
3a91053a
KS
3322static unsigned long fault_around_bytes __read_mostly =
3323 rounddown_pow_of_two(65536);
a9b0f861 3324
a9b0f861
KS
3325#ifdef CONFIG_DEBUG_FS
3326static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 3327{
a9b0f861 3328 *val = fault_around_bytes;
1592eef0
KS
3329 return 0;
3330}
3331
b4903d6e
AR
3332/*
3333 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
3334 * rounded down to nearest page order. It's what do_fault_around() expects to
3335 * see.
3336 */
a9b0f861 3337static int fault_around_bytes_set(void *data, u64 val)
1592eef0 3338{
a9b0f861 3339 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 3340 return -EINVAL;
b4903d6e
AR
3341 if (val > PAGE_SIZE)
3342 fault_around_bytes = rounddown_pow_of_two(val);
3343 else
3344 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
3345 return 0;
3346}
0a1345f8 3347DEFINE_DEBUGFS_ATTRIBUTE(fault_around_bytes_fops,
a9b0f861 3348 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
3349
3350static int __init fault_around_debugfs(void)
3351{
3352 void *ret;
3353
0a1345f8 3354 ret = debugfs_create_file_unsafe("fault_around_bytes", 0644, NULL, NULL,
a9b0f861 3355 &fault_around_bytes_fops);
1592eef0 3356 if (!ret)
a9b0f861 3357 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
3358 return 0;
3359}
3360late_initcall(fault_around_debugfs);
1592eef0 3361#endif
8c6e50b0 3362
1fdb412b
KS
3363/*
3364 * do_fault_around() tries to map few pages around the fault address. The hope
3365 * is that the pages will be needed soon and this will lower the number of
3366 * faults to handle.
3367 *
3368 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
3369 * not ready to be mapped: not up-to-date, locked, etc.
3370 *
3371 * This function is called with the page table lock taken. In the split ptlock
3372 * case the page table lock only protects only those entries which belong to
3373 * the page table corresponding to the fault address.
3374 *
3375 * This function doesn't cross the VMA boundaries, in order to call map_pages()
3376 * only once.
3377 *
3378 * fault_around_pages() defines how many pages we'll try to map.
3379 * do_fault_around() expects it to return a power of two less than or equal to
3380 * PTRS_PER_PTE.
3381 *
3382 * The virtual address of the area that we map is naturally aligned to the
3383 * fault_around_pages() value (and therefore to page order). This way it's
3384 * easier to guarantee that we don't cross page table boundaries.
3385 */
0721ec8b 3386static int do_fault_around(struct vm_fault *vmf)
8c6e50b0 3387{
82b0f8c3 3388 unsigned long address = vmf->address, nr_pages, mask;
0721ec8b 3389 pgoff_t start_pgoff = vmf->pgoff;
bae473a4 3390 pgoff_t end_pgoff;
7267ec00 3391 int off, ret = 0;
8c6e50b0 3392
4db0c3c2 3393 nr_pages = READ_ONCE(fault_around_bytes) >> PAGE_SHIFT;
aecd6f44
KS
3394 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
3395
82b0f8c3
JK
3396 vmf->address = max(address & mask, vmf->vma->vm_start);
3397 off = ((address - vmf->address) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
bae473a4 3398 start_pgoff -= off;
8c6e50b0
KS
3399
3400 /*
bae473a4
KS
3401 * end_pgoff is either end of page table or end of vma
3402 * or fault_around_pages() from start_pgoff, depending what is nearest.
8c6e50b0 3403 */
bae473a4 3404 end_pgoff = start_pgoff -
82b0f8c3 3405 ((vmf->address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
8c6e50b0 3406 PTRS_PER_PTE - 1;
82b0f8c3 3407 end_pgoff = min3(end_pgoff, vma_pages(vmf->vma) + vmf->vma->vm_pgoff - 1,
bae473a4 3408 start_pgoff + nr_pages - 1);
8c6e50b0 3409
82b0f8c3
JK
3410 if (pmd_none(*vmf->pmd)) {
3411 vmf->prealloc_pte = pte_alloc_one(vmf->vma->vm_mm,
3412 vmf->address);
3413 if (!vmf->prealloc_pte)
c5f88bd2 3414 goto out;
7267ec00 3415 smp_wmb(); /* See comment in __pte_alloc() */
8c6e50b0
KS
3416 }
3417
82b0f8c3 3418 vmf->vma->vm_ops->map_pages(vmf, start_pgoff, end_pgoff);
7267ec00 3419
7267ec00 3420 /* Huge page is mapped? Page fault is solved */
82b0f8c3 3421 if (pmd_trans_huge(*vmf->pmd)) {
7267ec00
KS
3422 ret = VM_FAULT_NOPAGE;
3423 goto out;
3424 }
3425
3426 /* ->map_pages() haven't done anything useful. Cold page cache? */
82b0f8c3 3427 if (!vmf->pte)
7267ec00
KS
3428 goto out;
3429
3430 /* check if the page fault is solved */
82b0f8c3
JK
3431 vmf->pte -= (vmf->address >> PAGE_SHIFT) - (address >> PAGE_SHIFT);
3432 if (!pte_none(*vmf->pte))
7267ec00 3433 ret = VM_FAULT_NOPAGE;
82b0f8c3 3434 pte_unmap_unlock(vmf->pte, vmf->ptl);
bae473a4 3435out:
82b0f8c3
JK
3436 vmf->address = address;
3437 vmf->pte = NULL;
7267ec00 3438 return ret;
8c6e50b0
KS
3439}
3440
0721ec8b 3441static int do_read_fault(struct vm_fault *vmf)
e655fb29 3442{
82b0f8c3 3443 struct vm_area_struct *vma = vmf->vma;
8c6e50b0
KS
3444 int ret = 0;
3445
3446 /*
3447 * Let's call ->map_pages() first and use ->fault() as fallback
3448 * if page by the offset is not ready to be mapped (cold cache or
3449 * something).
3450 */
9b4bdd2f 3451 if (vma->vm_ops->map_pages && fault_around_bytes >> PAGE_SHIFT > 1) {
0721ec8b 3452 ret = do_fault_around(vmf);
7267ec00
KS
3453 if (ret)
3454 return ret;
8c6e50b0 3455 }
e655fb29 3456
936ca80d 3457 ret = __do_fault(vmf);
e655fb29
KS
3458 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3459 return ret;
3460
9118c0cb 3461 ret |= finish_fault(vmf);
936ca80d 3462 unlock_page(vmf->page);
7267ec00 3463 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
936ca80d 3464 put_page(vmf->page);
e655fb29
KS
3465 return ret;
3466}
3467
0721ec8b 3468static int do_cow_fault(struct vm_fault *vmf)
ec47c3b9 3469{
82b0f8c3 3470 struct vm_area_struct *vma = vmf->vma;
ec47c3b9
KS
3471 int ret;
3472
3473 if (unlikely(anon_vma_prepare(vma)))
3474 return VM_FAULT_OOM;
3475
936ca80d
JK
3476 vmf->cow_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, vmf->address);
3477 if (!vmf->cow_page)
ec47c3b9
KS
3478 return VM_FAULT_OOM;
3479
936ca80d 3480 if (mem_cgroup_try_charge(vmf->cow_page, vma->vm_mm, GFP_KERNEL,
3917048d 3481 &vmf->memcg, false)) {
936ca80d 3482 put_page(vmf->cow_page);
ec47c3b9
KS
3483 return VM_FAULT_OOM;
3484 }
3485
936ca80d 3486 ret = __do_fault(vmf);
ec47c3b9
KS
3487 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3488 goto uncharge_out;
3917048d
JK
3489 if (ret & VM_FAULT_DONE_COW)
3490 return ret;
ec47c3b9 3491
b1aa812b 3492 copy_user_highpage(vmf->cow_page, vmf->page, vmf->address, vma);
936ca80d 3493 __SetPageUptodate(vmf->cow_page);
ec47c3b9 3494
9118c0cb 3495 ret |= finish_fault(vmf);
b1aa812b
JK
3496 unlock_page(vmf->page);
3497 put_page(vmf->page);
7267ec00
KS
3498 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
3499 goto uncharge_out;
ec47c3b9
KS
3500 return ret;
3501uncharge_out:
3917048d 3502 mem_cgroup_cancel_charge(vmf->cow_page, vmf->memcg, false);
936ca80d 3503 put_page(vmf->cow_page);
ec47c3b9
KS
3504 return ret;
3505}
3506
0721ec8b 3507static int do_shared_fault(struct vm_fault *vmf)
1da177e4 3508{
82b0f8c3 3509 struct vm_area_struct *vma = vmf->vma;
f0c6d4d2 3510 int ret, tmp;
1d65f86d 3511
936ca80d 3512 ret = __do_fault(vmf);
7eae74af 3513 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 3514 return ret;
1da177e4
LT
3515
3516 /*
f0c6d4d2
KS
3517 * Check if the backing address space wants to know that the page is
3518 * about to become writable
1da177e4 3519 */
fb09a464 3520 if (vma->vm_ops->page_mkwrite) {
936ca80d 3521 unlock_page(vmf->page);
38b8cb7f 3522 tmp = do_page_mkwrite(vmf);
fb09a464
KS
3523 if (unlikely(!tmp ||
3524 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
936ca80d 3525 put_page(vmf->page);
fb09a464 3526 return tmp;
4294621f 3527 }
fb09a464
KS
3528 }
3529
9118c0cb 3530 ret |= finish_fault(vmf);
7267ec00
KS
3531 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE |
3532 VM_FAULT_RETRY))) {
936ca80d
JK
3533 unlock_page(vmf->page);
3534 put_page(vmf->page);
f0c6d4d2 3535 return ret;
1da177e4 3536 }
b827e496 3537
97ba0c2b 3538 fault_dirty_shared_page(vma, vmf->page);
1d65f86d 3539 return ret;
54cb8821 3540}
d00806b1 3541
9a95f3cf
PC
3542/*
3543 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3544 * but allow concurrent faults).
3545 * The mmap_sem may have been released depending on flags and our
3546 * return value. See filemap_fault() and __lock_page_or_retry().
3547 */
82b0f8c3 3548static int do_fault(struct vm_fault *vmf)
54cb8821 3549{
82b0f8c3 3550 struct vm_area_struct *vma = vmf->vma;
b0b9b3df 3551 int ret;
54cb8821 3552
6b7339f4
KS
3553 /* The VMA was not fully populated on mmap() or missing VM_DONTEXPAND */
3554 if (!vma->vm_ops->fault)
b0b9b3df
HD
3555 ret = VM_FAULT_SIGBUS;
3556 else if (!(vmf->flags & FAULT_FLAG_WRITE))
3557 ret = do_read_fault(vmf);
3558 else if (!(vma->vm_flags & VM_SHARED))
3559 ret = do_cow_fault(vmf);
3560 else
3561 ret = do_shared_fault(vmf);
3562
3563 /* preallocated pagetable is unused: free it */
3564 if (vmf->prealloc_pte) {
3565 pte_free(vma->vm_mm, vmf->prealloc_pte);
7f2b6ce8 3566 vmf->prealloc_pte = NULL;
b0b9b3df
HD
3567 }
3568 return ret;
54cb8821
NP
3569}
3570
b19a9939 3571static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3572 unsigned long addr, int page_nid,
3573 int *flags)
9532fec1
MG
3574{
3575 get_page(page);
3576
3577 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3578 if (page_nid == numa_node_id()) {
9532fec1 3579 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3580 *flags |= TNF_FAULT_LOCAL;
3581 }
9532fec1
MG
3582
3583 return mpol_misplaced(page, vma, addr);
3584}
3585
2994302b 3586static int do_numa_page(struct vm_fault *vmf)
d10e63f2 3587{
82b0f8c3 3588 struct vm_area_struct *vma = vmf->vma;
4daae3b4 3589 struct page *page = NULL;
8191acbd 3590 int page_nid = -1;
90572890 3591 int last_cpupid;
cbee9f88 3592 int target_nid;
b8593bfd 3593 bool migrated = false;
cee216a6 3594 pte_t pte;
288bc549 3595 bool was_writable = pte_savedwrite(vmf->orig_pte);
6688cc05 3596 int flags = 0;
d10e63f2
MG
3597
3598 /*
166f61b9
TH
3599 * The "pte" at this point cannot be used safely without
3600 * validation through pte_unmap_same(). It's of NUMA type but
3601 * the pfn may be screwed if the read is non atomic.
166f61b9 3602 */
82b0f8c3
JK
3603 vmf->ptl = pte_lockptr(vma->vm_mm, vmf->pmd);
3604 spin_lock(vmf->ptl);
cee216a6 3605 if (unlikely(!pte_same(*vmf->pte, vmf->orig_pte))) {
82b0f8c3 3606 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4
MG
3607 goto out;
3608 }
3609
cee216a6
AK
3610 /*
3611 * Make it present again, Depending on how arch implementes non
3612 * accessible ptes, some can allow access by kernel mode.
3613 */
3614 pte = ptep_modify_prot_start(vma->vm_mm, vmf->address, vmf->pte);
4d942466
MG
3615 pte = pte_modify(pte, vma->vm_page_prot);
3616 pte = pte_mkyoung(pte);
b191f9b1
MG
3617 if (was_writable)
3618 pte = pte_mkwrite(pte);
cee216a6 3619 ptep_modify_prot_commit(vma->vm_mm, vmf->address, vmf->pte, pte);
82b0f8c3 3620 update_mmu_cache(vma, vmf->address, vmf->pte);
d10e63f2 3621
82b0f8c3 3622 page = vm_normal_page(vma, vmf->address, pte);
d10e63f2 3623 if (!page) {
82b0f8c3 3624 pte_unmap_unlock(vmf->pte, vmf->ptl);
d10e63f2
MG
3625 return 0;
3626 }
3627
e81c4802
KS
3628 /* TODO: handle PTE-mapped THP */
3629 if (PageCompound(page)) {
82b0f8c3 3630 pte_unmap_unlock(vmf->pte, vmf->ptl);
e81c4802
KS
3631 return 0;
3632 }
3633
6688cc05 3634 /*
bea66fbd
MG
3635 * Avoid grouping on RO pages in general. RO pages shouldn't hurt as
3636 * much anyway since they can be in shared cache state. This misses
3637 * the case where a mapping is writable but the process never writes
3638 * to it but pte_write gets cleared during protection updates and
3639 * pte_dirty has unpredictable behaviour between PTE scan updates,
3640 * background writeback, dirty balancing and application behaviour.
6688cc05 3641 */
d59dc7bc 3642 if (!pte_write(pte))
6688cc05
PZ
3643 flags |= TNF_NO_GROUP;
3644
dabe1d99
RR
3645 /*
3646 * Flag if the page is shared between multiple address spaces. This
3647 * is later used when determining whether to group tasks together
3648 */
3649 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3650 flags |= TNF_SHARED;
3651
90572890 3652 last_cpupid = page_cpupid_last(page);
8191acbd 3653 page_nid = page_to_nid(page);
82b0f8c3 3654 target_nid = numa_migrate_prep(page, vma, vmf->address, page_nid,
bae473a4 3655 &flags);
82b0f8c3 3656 pte_unmap_unlock(vmf->pte, vmf->ptl);
4daae3b4 3657 if (target_nid == -1) {
4daae3b4
MG
3658 put_page(page);
3659 goto out;
3660 }
3661
3662 /* Migrate to the requested node */
1bc115d8 3663 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3664 if (migrated) {
8191acbd 3665 page_nid = target_nid;
6688cc05 3666 flags |= TNF_MIGRATED;
074c2381
MG
3667 } else
3668 flags |= TNF_MIGRATE_FAIL;
4daae3b4
MG
3669
3670out:
8191acbd 3671 if (page_nid != -1)
6688cc05 3672 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3673 return 0;
3674}
3675
91a90140 3676static inline int create_huge_pmd(struct vm_fault *vmf)
b96375f7 3677{
f4200391 3678 if (vma_is_anonymous(vmf->vma))
82b0f8c3 3679 return do_huge_pmd_anonymous_page(vmf);
a2d58167 3680 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3681 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
b96375f7
MW
3682 return VM_FAULT_FALLBACK;
3683}
3684
82b0f8c3 3685static int wp_huge_pmd(struct vm_fault *vmf, pmd_t orig_pmd)
b96375f7 3686{
82b0f8c3
JK
3687 if (vma_is_anonymous(vmf->vma))
3688 return do_huge_pmd_wp_page(vmf, orig_pmd);
a2d58167 3689 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3690 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PMD);
af9e4d5f
KS
3691
3692 /* COW handled on pte level: split pmd */
82b0f8c3
JK
3693 VM_BUG_ON_VMA(vmf->vma->vm_flags & VM_SHARED, vmf->vma);
3694 __split_huge_pmd(vmf->vma, vmf->pmd, vmf->address, false, NULL);
af9e4d5f 3695
b96375f7
MW
3696 return VM_FAULT_FALLBACK;
3697}
3698
38e08854
LS
3699static inline bool vma_is_accessible(struct vm_area_struct *vma)
3700{
3701 return vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE);
3702}
3703
a00cc7d9
MW
3704static int create_huge_pud(struct vm_fault *vmf)
3705{
3706#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3707 /* No support for anonymous transparent PUD pages yet */
3708 if (vma_is_anonymous(vmf->vma))
3709 return VM_FAULT_FALLBACK;
3710 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3711 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3712#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3713 return VM_FAULT_FALLBACK;
3714}
3715
3716static int wp_huge_pud(struct vm_fault *vmf, pud_t orig_pud)
3717{
3718#ifdef CONFIG_TRANSPARENT_HUGEPAGE
3719 /* No support for anonymous transparent PUD pages yet */
3720 if (vma_is_anonymous(vmf->vma))
3721 return VM_FAULT_FALLBACK;
3722 if (vmf->vma->vm_ops->huge_fault)
c791ace1 3723 return vmf->vma->vm_ops->huge_fault(vmf, PE_SIZE_PUD);
a00cc7d9
MW
3724#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
3725 return VM_FAULT_FALLBACK;
3726}
3727
1da177e4
LT
3728/*
3729 * These routines also need to handle stuff like marking pages dirty
3730 * and/or accessed for architectures that don't do it in hardware (most
3731 * RISC architectures). The early dirtying is also good on the i386.
3732 *
3733 * There is also a hook called "update_mmu_cache()" that architectures
3734 * with external mmu caches can use to update those (ie the Sparc or
3735 * PowerPC hashed page tables that act as extended TLBs).
3736 *
7267ec00
KS
3737 * We enter with non-exclusive mmap_sem (to exclude vma changes, but allow
3738 * concurrent faults).
9a95f3cf 3739 *
7267ec00
KS
3740 * The mmap_sem may have been released depending on flags and our return value.
3741 * See filemap_fault() and __lock_page_or_retry().
1da177e4 3742 */
82b0f8c3 3743static int handle_pte_fault(struct vm_fault *vmf)
1da177e4
LT
3744{
3745 pte_t entry;
3746
82b0f8c3 3747 if (unlikely(pmd_none(*vmf->pmd))) {
7267ec00
KS
3748 /*
3749 * Leave __pte_alloc() until later: because vm_ops->fault may
3750 * want to allocate huge page, and if we expose page table
3751 * for an instant, it will be difficult to retract from
3752 * concurrent faults and from rmap lookups.
3753 */
82b0f8c3 3754 vmf->pte = NULL;
7267ec00
KS
3755 } else {
3756 /* See comment in pte_alloc_one_map() */
d0f0931d 3757 if (pmd_devmap_trans_unstable(vmf->pmd))
7267ec00
KS
3758 return 0;
3759 /*
3760 * A regular pmd is established and it can't morph into a huge
3761 * pmd from under us anymore at this point because we hold the
3762 * mmap_sem read mode and khugepaged takes it in write mode.
3763 * So now it's safe to run pte_offset_map().
3764 */
82b0f8c3 3765 vmf->pte = pte_offset_map(vmf->pmd, vmf->address);
2994302b 3766 vmf->orig_pte = *vmf->pte;
7267ec00
KS
3767
3768 /*
3769 * some architectures can have larger ptes than wordsize,
3770 * e.g.ppc44x-defconfig has CONFIG_PTE_64BIT=y and
3771 * CONFIG_32BIT=y, so READ_ONCE or ACCESS_ONCE cannot guarantee
3772 * atomic accesses. The code below just needs a consistent
3773 * view for the ifs and we later double check anyway with the
3774 * ptl lock held. So here a barrier will do.
3775 */
3776 barrier();
2994302b 3777 if (pte_none(vmf->orig_pte)) {
82b0f8c3
JK
3778 pte_unmap(vmf->pte);
3779 vmf->pte = NULL;
65500d23 3780 }
1da177e4
LT
3781 }
3782
82b0f8c3
JK
3783 if (!vmf->pte) {
3784 if (vma_is_anonymous(vmf->vma))
3785 return do_anonymous_page(vmf);
7267ec00 3786 else
82b0f8c3 3787 return do_fault(vmf);
7267ec00
KS
3788 }
3789
2994302b
JK
3790 if (!pte_present(vmf->orig_pte))
3791 return do_swap_page(vmf);
7267ec00 3792
2994302b
JK
3793 if (pte_protnone(vmf->orig_pte) && vma_is_accessible(vmf->vma))
3794 return do_numa_page(vmf);
d10e63f2 3795
82b0f8c3
JK
3796 vmf->ptl = pte_lockptr(vmf->vma->vm_mm, vmf->pmd);
3797 spin_lock(vmf->ptl);
2994302b 3798 entry = vmf->orig_pte;
82b0f8c3 3799 if (unlikely(!pte_same(*vmf->pte, entry)))
8f4e2101 3800 goto unlock;
82b0f8c3 3801 if (vmf->flags & FAULT_FLAG_WRITE) {
1da177e4 3802 if (!pte_write(entry))
2994302b 3803 return do_wp_page(vmf);
1da177e4
LT
3804 entry = pte_mkdirty(entry);
3805 }
3806 entry = pte_mkyoung(entry);
82b0f8c3
JK
3807 if (ptep_set_access_flags(vmf->vma, vmf->address, vmf->pte, entry,
3808 vmf->flags & FAULT_FLAG_WRITE)) {
3809 update_mmu_cache(vmf->vma, vmf->address, vmf->pte);
1a44e149
AA
3810 } else {
3811 /*
3812 * This is needed only for protection faults but the arch code
3813 * is not yet telling us if this is a protection fault or not.
3814 * This still avoids useless tlb flushes for .text page faults
3815 * with threads.
3816 */
82b0f8c3
JK
3817 if (vmf->flags & FAULT_FLAG_WRITE)
3818 flush_tlb_fix_spurious_fault(vmf->vma, vmf->address);
1a44e149 3819 }
8f4e2101 3820unlock:
82b0f8c3 3821 pte_unmap_unlock(vmf->pte, vmf->ptl);
83c54070 3822 return 0;
1da177e4
LT
3823}
3824
3825/*
3826 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3827 *
3828 * The mmap_sem may have been released depending on flags and our
3829 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3830 */
dcddffd4
KS
3831static int __handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3832 unsigned int flags)
1da177e4 3833{
82b0f8c3 3834 struct vm_fault vmf = {
bae473a4 3835 .vma = vma,
1a29d85e 3836 .address = address & PAGE_MASK,
bae473a4 3837 .flags = flags,
0721ec8b 3838 .pgoff = linear_page_index(vma, address),
667240e0 3839 .gfp_mask = __get_fault_gfp_mask(vma),
bae473a4 3840 };
dcddffd4 3841 struct mm_struct *mm = vma->vm_mm;
1da177e4 3842 pgd_t *pgd;
c2febafc 3843 p4d_t *p4d;
a2d58167 3844 int ret;
1da177e4 3845
1da177e4 3846 pgd = pgd_offset(mm, address);
c2febafc
KS
3847 p4d = p4d_alloc(mm, pgd, address);
3848 if (!p4d)
3849 return VM_FAULT_OOM;
a00cc7d9 3850
c2febafc 3851 vmf.pud = pud_alloc(mm, p4d, address);
a00cc7d9 3852 if (!vmf.pud)
c74df32c 3853 return VM_FAULT_OOM;
a00cc7d9 3854 if (pud_none(*vmf.pud) && transparent_hugepage_enabled(vma)) {
a00cc7d9
MW
3855 ret = create_huge_pud(&vmf);
3856 if (!(ret & VM_FAULT_FALLBACK))
3857 return ret;
3858 } else {
3859 pud_t orig_pud = *vmf.pud;
3860
3861 barrier();
3862 if (pud_trans_huge(orig_pud) || pud_devmap(orig_pud)) {
3863 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3864
a00cc7d9
MW
3865 /* NUMA case for anonymous PUDs would go here */
3866
3867 if (dirty && !pud_write(orig_pud)) {
3868 ret = wp_huge_pud(&vmf, orig_pud);
3869 if (!(ret & VM_FAULT_FALLBACK))
3870 return ret;
3871 } else {
3872 huge_pud_set_accessed(&vmf, orig_pud);
3873 return 0;
3874 }
3875 }
3876 }
3877
3878 vmf.pmd = pmd_alloc(mm, vmf.pud, address);
82b0f8c3 3879 if (!vmf.pmd)
c74df32c 3880 return VM_FAULT_OOM;
82b0f8c3 3881 if (pmd_none(*vmf.pmd) && transparent_hugepage_enabled(vma)) {
a2d58167 3882 ret = create_huge_pmd(&vmf);
c0292554
KS
3883 if (!(ret & VM_FAULT_FALLBACK))
3884 return ret;
71e3aac0 3885 } else {
82b0f8c3 3886 pmd_t orig_pmd = *vmf.pmd;
1f1d06c3 3887
71e3aac0 3888 barrier();
5c7fb56e 3889 if (pmd_trans_huge(orig_pmd) || pmd_devmap(orig_pmd)) {
38e08854 3890 if (pmd_protnone(orig_pmd) && vma_is_accessible(vma))
82b0f8c3 3891 return do_huge_pmd_numa_page(&vmf, orig_pmd);
d10e63f2 3892
82b0f8c3 3893 if ((vmf.flags & FAULT_FLAG_WRITE) &&
bae473a4 3894 !pmd_write(orig_pmd)) {
82b0f8c3 3895 ret = wp_huge_pmd(&vmf, orig_pmd);
9845cbbd
KS
3896 if (!(ret & VM_FAULT_FALLBACK))
3897 return ret;
a1dd450b 3898 } else {
82b0f8c3 3899 huge_pmd_set_accessed(&vmf, orig_pmd);
9845cbbd 3900 return 0;
1f1d06c3 3901 }
71e3aac0
AA
3902 }
3903 }
3904
82b0f8c3 3905 return handle_pte_fault(&vmf);
1da177e4
LT
3906}
3907
9a95f3cf
PC
3908/*
3909 * By the time we get here, we already hold the mm semaphore
3910 *
3911 * The mmap_sem may have been released depending on flags and our
3912 * return value. See filemap_fault() and __lock_page_or_retry().
3913 */
dcddffd4
KS
3914int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
3915 unsigned int flags)
519e5247
JW
3916{
3917 int ret;
3918
3919 __set_current_state(TASK_RUNNING);
3920
3921 count_vm_event(PGFAULT);
2262185c 3922 count_memcg_event_mm(vma->vm_mm, PGFAULT);
519e5247
JW
3923
3924 /* do counter updates before entering really critical section. */
3925 check_sync_rss_stat(current);
3926
652d00e4
LD
3927 if (!arch_vma_access_permitted(vma, flags & FAULT_FLAG_WRITE,
3928 flags & FAULT_FLAG_INSTRUCTION,
3929 flags & FAULT_FLAG_REMOTE))
3930 return VM_FAULT_SIGSEGV;
3931
519e5247
JW
3932 /*
3933 * Enable the memcg OOM handling for faults triggered in user
3934 * space. Kernel faults are handled more gracefully.
3935 */
3936 if (flags & FAULT_FLAG_USER)
49426420 3937 mem_cgroup_oom_enable();
519e5247 3938
bae473a4
KS
3939 if (unlikely(is_vm_hugetlb_page(vma)))
3940 ret = hugetlb_fault(vma->vm_mm, vma, address, flags);
3941 else
3942 ret = __handle_mm_fault(vma, address, flags);
519e5247 3943
49426420
JW
3944 if (flags & FAULT_FLAG_USER) {
3945 mem_cgroup_oom_disable();
166f61b9
TH
3946 /*
3947 * The task may have entered a memcg OOM situation but
3948 * if the allocation error was handled gracefully (no
3949 * VM_FAULT_OOM), there is no need to kill anything.
3950 * Just clean up the OOM state peacefully.
3951 */
3952 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3953 mem_cgroup_oom_synchronize(false);
49426420 3954 }
3812c8c8 3955
519e5247
JW
3956 return ret;
3957}
e1d6d01a 3958EXPORT_SYMBOL_GPL(handle_mm_fault);
519e5247 3959
90eceff1
KS
3960#ifndef __PAGETABLE_P4D_FOLDED
3961/*
3962 * Allocate p4d page table.
3963 * We've already handled the fast-path in-line.
3964 */
3965int __p4d_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
3966{
3967 p4d_t *new = p4d_alloc_one(mm, address);
3968 if (!new)
3969 return -ENOMEM;
3970
3971 smp_wmb(); /* See comment in __pte_alloc */
3972
3973 spin_lock(&mm->page_table_lock);
3974 if (pgd_present(*pgd)) /* Another has populated it */
3975 p4d_free(mm, new);
3976 else
3977 pgd_populate(mm, pgd, new);
3978 spin_unlock(&mm->page_table_lock);
3979 return 0;
3980}
3981#endif /* __PAGETABLE_P4D_FOLDED */
3982
1da177e4
LT
3983#ifndef __PAGETABLE_PUD_FOLDED
3984/*
3985 * Allocate page upper directory.
872fec16 3986 * We've already handled the fast-path in-line.
1da177e4 3987 */
c2febafc 3988int __pud_alloc(struct mm_struct *mm, p4d_t *p4d, unsigned long address)
1da177e4 3989{
c74df32c
HD
3990 pud_t *new = pud_alloc_one(mm, address);
3991 if (!new)
1bb3630e 3992 return -ENOMEM;
1da177e4 3993
362a61ad
NP
3994 smp_wmb(); /* See comment in __pte_alloc */
3995
872fec16 3996 spin_lock(&mm->page_table_lock);
c2febafc
KS
3997#ifndef __ARCH_HAS_5LEVEL_HACK
3998 if (p4d_present(*p4d)) /* Another has populated it */
5e541973 3999 pud_free(mm, new);
1bb3630e 4000 else
c2febafc
KS
4001 p4d_populate(mm, p4d, new);
4002#else
4003 if (pgd_present(*p4d)) /* Another has populated it */
5e541973 4004 pud_free(mm, new);
1bb3630e 4005 else
c2febafc
KS
4006 pgd_populate(mm, p4d, new);
4007#endif /* __ARCH_HAS_5LEVEL_HACK */
c74df32c 4008 spin_unlock(&mm->page_table_lock);
1bb3630e 4009 return 0;
1da177e4
LT
4010}
4011#endif /* __PAGETABLE_PUD_FOLDED */
4012
4013#ifndef __PAGETABLE_PMD_FOLDED
4014/*
4015 * Allocate page middle directory.
872fec16 4016 * We've already handled the fast-path in-line.
1da177e4 4017 */
1bb3630e 4018int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 4019{
a00cc7d9 4020 spinlock_t *ptl;
c74df32c
HD
4021 pmd_t *new = pmd_alloc_one(mm, address);
4022 if (!new)
1bb3630e 4023 return -ENOMEM;
1da177e4 4024
362a61ad
NP
4025 smp_wmb(); /* See comment in __pte_alloc */
4026
a00cc7d9 4027 ptl = pud_lock(mm, pud);
1da177e4 4028#ifndef __ARCH_HAS_4LEVEL_HACK
dc6c9a35
KS
4029 if (!pud_present(*pud)) {
4030 mm_inc_nr_pmds(mm);
1bb3630e 4031 pud_populate(mm, pud, new);
dc6c9a35 4032 } else /* Another has populated it */
5e541973 4033 pmd_free(mm, new);
dc6c9a35
KS
4034#else
4035 if (!pgd_present(*pud)) {
4036 mm_inc_nr_pmds(mm);
1bb3630e 4037 pgd_populate(mm, pud, new);
dc6c9a35
KS
4038 } else /* Another has populated it */
4039 pmd_free(mm, new);
1da177e4 4040#endif /* __ARCH_HAS_4LEVEL_HACK */
a00cc7d9 4041 spin_unlock(ptl);
1bb3630e 4042 return 0;
e0f39591 4043}
1da177e4
LT
4044#endif /* __PAGETABLE_PMD_FOLDED */
4045
09796395 4046static int __follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885
JG
4047 unsigned long *start, unsigned long *end,
4048 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
f8ad0f49
JW
4049{
4050 pgd_t *pgd;
c2febafc 4051 p4d_t *p4d;
f8ad0f49
JW
4052 pud_t *pud;
4053 pmd_t *pmd;
4054 pte_t *ptep;
4055
4056 pgd = pgd_offset(mm, address);
4057 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
4058 goto out;
4059
c2febafc
KS
4060 p4d = p4d_offset(pgd, address);
4061 if (p4d_none(*p4d) || unlikely(p4d_bad(*p4d)))
4062 goto out;
4063
4064 pud = pud_offset(p4d, address);
f8ad0f49
JW
4065 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
4066 goto out;
4067
4068 pmd = pmd_offset(pud, address);
f66055ab 4069 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49 4070
09796395
RZ
4071 if (pmd_huge(*pmd)) {
4072 if (!pmdpp)
4073 goto out;
4074
a4d1a885
JG
4075 if (start && end) {
4076 *start = address & PMD_MASK;
4077 *end = *start + PMD_SIZE;
4078 mmu_notifier_invalidate_range_start(mm, *start, *end);
4079 }
09796395
RZ
4080 *ptlp = pmd_lock(mm, pmd);
4081 if (pmd_huge(*pmd)) {
4082 *pmdpp = pmd;
4083 return 0;
4084 }
4085 spin_unlock(*ptlp);
a4d1a885
JG
4086 if (start && end)
4087 mmu_notifier_invalidate_range_end(mm, *start, *end);
09796395
RZ
4088 }
4089
4090 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
f8ad0f49
JW
4091 goto out;
4092
a4d1a885
JG
4093 if (start && end) {
4094 *start = address & PAGE_MASK;
4095 *end = *start + PAGE_SIZE;
4096 mmu_notifier_invalidate_range_start(mm, *start, *end);
4097 }
f8ad0f49 4098 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
f8ad0f49
JW
4099 if (!pte_present(*ptep))
4100 goto unlock;
4101 *ptepp = ptep;
4102 return 0;
4103unlock:
4104 pte_unmap_unlock(ptep, *ptlp);
a4d1a885
JG
4105 if (start && end)
4106 mmu_notifier_invalidate_range_end(mm, *start, *end);
f8ad0f49
JW
4107out:
4108 return -EINVAL;
4109}
4110
f729c8c9
RZ
4111static inline int follow_pte(struct mm_struct *mm, unsigned long address,
4112 pte_t **ptepp, spinlock_t **ptlp)
1b36ba81
NK
4113{
4114 int res;
4115
4116 /* (void) is needed to make gcc happy */
4117 (void) __cond_lock(*ptlp,
a4d1a885
JG
4118 !(res = __follow_pte_pmd(mm, address, NULL, NULL,
4119 ptepp, NULL, ptlp)));
09796395
RZ
4120 return res;
4121}
4122
4123int follow_pte_pmd(struct mm_struct *mm, unsigned long address,
a4d1a885 4124 unsigned long *start, unsigned long *end,
09796395
RZ
4125 pte_t **ptepp, pmd_t **pmdpp, spinlock_t **ptlp)
4126{
4127 int res;
4128
4129 /* (void) is needed to make gcc happy */
4130 (void) __cond_lock(*ptlp,
a4d1a885
JG
4131 !(res = __follow_pte_pmd(mm, address, start, end,
4132 ptepp, pmdpp, ptlp)));
1b36ba81
NK
4133 return res;
4134}
09796395 4135EXPORT_SYMBOL(follow_pte_pmd);
1b36ba81 4136
3b6748e2
JW
4137/**
4138 * follow_pfn - look up PFN at a user virtual address
4139 * @vma: memory mapping
4140 * @address: user virtual address
4141 * @pfn: location to store found PFN
4142 *
4143 * Only IO mappings and raw PFN mappings are allowed.
4144 *
4145 * Returns zero and the pfn at @pfn on success, -ve otherwise.
4146 */
4147int follow_pfn(struct vm_area_struct *vma, unsigned long address,
4148 unsigned long *pfn)
4149{
4150 int ret = -EINVAL;
4151 spinlock_t *ptl;
4152 pte_t *ptep;
4153
4154 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4155 return ret;
4156
4157 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
4158 if (ret)
4159 return ret;
4160 *pfn = pte_pfn(*ptep);
4161 pte_unmap_unlock(ptep, ptl);
4162 return 0;
4163}
4164EXPORT_SYMBOL(follow_pfn);
4165
28b2ee20 4166#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 4167int follow_phys(struct vm_area_struct *vma,
4168 unsigned long address, unsigned int flags,
4169 unsigned long *prot, resource_size_t *phys)
28b2ee20 4170{
03668a4d 4171 int ret = -EINVAL;
28b2ee20
RR
4172 pte_t *ptep, pte;
4173 spinlock_t *ptl;
28b2ee20 4174
d87fe660 4175 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
4176 goto out;
28b2ee20 4177
03668a4d 4178 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 4179 goto out;
28b2ee20 4180 pte = *ptep;
03668a4d 4181
28b2ee20
RR
4182 if ((flags & FOLL_WRITE) && !pte_write(pte))
4183 goto unlock;
28b2ee20
RR
4184
4185 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 4186 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 4187
03668a4d 4188 ret = 0;
28b2ee20
RR
4189unlock:
4190 pte_unmap_unlock(ptep, ptl);
4191out:
d87fe660 4192 return ret;
28b2ee20
RR
4193}
4194
4195int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
4196 void *buf, int len, int write)
4197{
4198 resource_size_t phys_addr;
4199 unsigned long prot = 0;
2bc7273b 4200 void __iomem *maddr;
28b2ee20
RR
4201 int offset = addr & (PAGE_SIZE-1);
4202
d87fe660 4203 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
4204 return -EINVAL;
4205
9cb12d7b 4206 maddr = ioremap_prot(phys_addr, PAGE_ALIGN(len + offset), prot);
28b2ee20
RR
4207 if (write)
4208 memcpy_toio(maddr + offset, buf, len);
4209 else
4210 memcpy_fromio(buf, maddr + offset, len);
4211 iounmap(maddr);
4212
4213 return len;
4214}
5a73633e 4215EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
4216#endif
4217
0ec76a11 4218/*
206cb636
SW
4219 * Access another process' address space as given in mm. If non-NULL, use the
4220 * given task for page fault accounting.
0ec76a11 4221 */
84d77d3f 4222int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
442486ec 4223 unsigned long addr, void *buf, int len, unsigned int gup_flags)
0ec76a11 4224{
0ec76a11 4225 struct vm_area_struct *vma;
0ec76a11 4226 void *old_buf = buf;
442486ec 4227 int write = gup_flags & FOLL_WRITE;
0ec76a11 4228
0ec76a11 4229 down_read(&mm->mmap_sem);
183ff22b 4230 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
4231 while (len) {
4232 int bytes, ret, offset;
4233 void *maddr;
28b2ee20 4234 struct page *page = NULL;
0ec76a11 4235
1e987790 4236 ret = get_user_pages_remote(tsk, mm, addr, 1,
5b56d49f 4237 gup_flags, &page, &vma, NULL);
28b2ee20 4238 if (ret <= 0) {
dbffcd03
RR
4239#ifndef CONFIG_HAVE_IOREMAP_PROT
4240 break;
4241#else
28b2ee20
RR
4242 /*
4243 * Check if this is a VM_IO | VM_PFNMAP VMA, which
4244 * we can access using slightly different code.
4245 */
28b2ee20 4246 vma = find_vma(mm, addr);
fe936dfc 4247 if (!vma || vma->vm_start > addr)
28b2ee20
RR
4248 break;
4249 if (vma->vm_ops && vma->vm_ops->access)
4250 ret = vma->vm_ops->access(vma, addr, buf,
4251 len, write);
4252 if (ret <= 0)
28b2ee20
RR
4253 break;
4254 bytes = ret;
dbffcd03 4255#endif
0ec76a11 4256 } else {
28b2ee20
RR
4257 bytes = len;
4258 offset = addr & (PAGE_SIZE-1);
4259 if (bytes > PAGE_SIZE-offset)
4260 bytes = PAGE_SIZE-offset;
4261
4262 maddr = kmap(page);
4263 if (write) {
4264 copy_to_user_page(vma, page, addr,
4265 maddr + offset, buf, bytes);
4266 set_page_dirty_lock(page);
4267 } else {
4268 copy_from_user_page(vma, page, addr,
4269 buf, maddr + offset, bytes);
4270 }
4271 kunmap(page);
09cbfeaf 4272 put_page(page);
0ec76a11 4273 }
0ec76a11
DH
4274 len -= bytes;
4275 buf += bytes;
4276 addr += bytes;
4277 }
4278 up_read(&mm->mmap_sem);
0ec76a11
DH
4279
4280 return buf - old_buf;
4281}
03252919 4282
5ddd36b9 4283/**
ae91dbfc 4284 * access_remote_vm - access another process' address space
5ddd36b9
SW
4285 * @mm: the mm_struct of the target address space
4286 * @addr: start address to access
4287 * @buf: source or destination buffer
4288 * @len: number of bytes to transfer
6347e8d5 4289 * @gup_flags: flags modifying lookup behaviour
5ddd36b9
SW
4290 *
4291 * The caller must hold a reference on @mm.
4292 */
4293int access_remote_vm(struct mm_struct *mm, unsigned long addr,
6347e8d5 4294 void *buf, int len, unsigned int gup_flags)
5ddd36b9 4295{
6347e8d5 4296 return __access_remote_vm(NULL, mm, addr, buf, len, gup_flags);
5ddd36b9
SW
4297}
4298
206cb636
SW
4299/*
4300 * Access another process' address space.
4301 * Source/target buffer must be kernel space,
4302 * Do not walk the page table directly, use get_user_pages
4303 */
4304int access_process_vm(struct task_struct *tsk, unsigned long addr,
f307ab6d 4305 void *buf, int len, unsigned int gup_flags)
206cb636
SW
4306{
4307 struct mm_struct *mm;
4308 int ret;
4309
4310 mm = get_task_mm(tsk);
4311 if (!mm)
4312 return 0;
4313
f307ab6d 4314 ret = __access_remote_vm(tsk, mm, addr, buf, len, gup_flags);
442486ec 4315
206cb636
SW
4316 mmput(mm);
4317
4318 return ret;
4319}
fcd35857 4320EXPORT_SYMBOL_GPL(access_process_vm);
206cb636 4321
03252919
AK
4322/*
4323 * Print the name of a VMA.
4324 */
4325void print_vma_addr(char *prefix, unsigned long ip)
4326{
4327 struct mm_struct *mm = current->mm;
4328 struct vm_area_struct *vma;
4329
e8bff74a
IM
4330 /*
4331 * Do not print if we are in atomic
4332 * contexts (in exception stacks, etc.):
4333 */
4334 if (preempt_count())
4335 return;
4336
03252919
AK
4337 down_read(&mm->mmap_sem);
4338 vma = find_vma(mm, ip);
4339 if (vma && vma->vm_file) {
4340 struct file *f = vma->vm_file;
4341 char *buf = (char *)__get_free_page(GFP_KERNEL);
4342 if (buf) {
2fbc57c5 4343 char *p;
03252919 4344
9bf39ab2 4345 p = file_path(f, buf, PAGE_SIZE);
03252919
AK
4346 if (IS_ERR(p))
4347 p = "?";
2fbc57c5 4348 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
4349 vma->vm_start,
4350 vma->vm_end - vma->vm_start);
4351 free_page((unsigned long)buf);
4352 }
4353 }
51a07e50 4354 up_read(&mm->mmap_sem);
03252919 4355}
3ee1afa3 4356
662bbcb2 4357#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
9ec23531 4358void __might_fault(const char *file, int line)
3ee1afa3 4359{
95156f00
PZ
4360 /*
4361 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
4362 * holding the mmap_sem, this is safe because kernel memory doesn't
4363 * get paged out, therefore we'll never actually fault, and the
4364 * below annotations will generate false positives.
4365 */
db68ce10 4366 if (uaccess_kernel())
95156f00 4367 return;
9ec23531 4368 if (pagefault_disabled())
662bbcb2 4369 return;
9ec23531
DH
4370 __might_sleep(file, line, 0);
4371#if defined(CONFIG_DEBUG_ATOMIC_SLEEP)
662bbcb2 4372 if (current->mm)
3ee1afa3 4373 might_lock_read(&current->mm->mmap_sem);
9ec23531 4374#endif
3ee1afa3 4375}
9ec23531 4376EXPORT_SYMBOL(__might_fault);
3ee1afa3 4377#endif
47ad8475
AA
4378
4379#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
4380static void clear_gigantic_page(struct page *page,
4381 unsigned long addr,
4382 unsigned int pages_per_huge_page)
4383{
4384 int i;
4385 struct page *p = page;
4386
4387 might_sleep();
4388 for (i = 0; i < pages_per_huge_page;
4389 i++, p = mem_map_next(p, page, i)) {
4390 cond_resched();
4391 clear_user_highpage(p, addr + i * PAGE_SIZE);
4392 }
4393}
4394void clear_huge_page(struct page *page,
4395 unsigned long addr, unsigned int pages_per_huge_page)
4396{
4397 int i;
4398
4399 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4400 clear_gigantic_page(page, addr, pages_per_huge_page);
4401 return;
4402 }
4403
4404 might_sleep();
4405 for (i = 0; i < pages_per_huge_page; i++) {
4406 cond_resched();
4407 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
4408 }
4409}
4410
4411static void copy_user_gigantic_page(struct page *dst, struct page *src,
4412 unsigned long addr,
4413 struct vm_area_struct *vma,
4414 unsigned int pages_per_huge_page)
4415{
4416 int i;
4417 struct page *dst_base = dst;
4418 struct page *src_base = src;
4419
4420 for (i = 0; i < pages_per_huge_page; ) {
4421 cond_resched();
4422 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
4423
4424 i++;
4425 dst = mem_map_next(dst, dst_base, i);
4426 src = mem_map_next(src, src_base, i);
4427 }
4428}
4429
4430void copy_user_huge_page(struct page *dst, struct page *src,
4431 unsigned long addr, struct vm_area_struct *vma,
4432 unsigned int pages_per_huge_page)
4433{
4434 int i;
4435
4436 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
4437 copy_user_gigantic_page(dst, src, addr, vma,
4438 pages_per_huge_page);
4439 return;
4440 }
4441
4442 might_sleep();
4443 for (i = 0; i < pages_per_huge_page; i++) {
4444 cond_resched();
4445 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
4446 }
4447}
fa4d75c1
MK
4448
4449long copy_huge_page_from_user(struct page *dst_page,
4450 const void __user *usr_src,
810a56b9
MK
4451 unsigned int pages_per_huge_page,
4452 bool allow_pagefault)
fa4d75c1
MK
4453{
4454 void *src = (void *)usr_src;
4455 void *page_kaddr;
4456 unsigned long i, rc = 0;
4457 unsigned long ret_val = pages_per_huge_page * PAGE_SIZE;
4458
4459 for (i = 0; i < pages_per_huge_page; i++) {
810a56b9
MK
4460 if (allow_pagefault)
4461 page_kaddr = kmap(dst_page + i);
4462 else
4463 page_kaddr = kmap_atomic(dst_page + i);
fa4d75c1
MK
4464 rc = copy_from_user(page_kaddr,
4465 (const void __user *)(src + i * PAGE_SIZE),
4466 PAGE_SIZE);
810a56b9
MK
4467 if (allow_pagefault)
4468 kunmap(dst_page + i);
4469 else
4470 kunmap_atomic(page_kaddr);
fa4d75c1
MK
4471
4472 ret_val -= (PAGE_SIZE - rc);
4473 if (rc)
4474 break;
4475
4476 cond_resched();
4477 }
4478 return ret_val;
4479}
47ad8475 4480#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 4481
40b64acd 4482#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
4483
4484static struct kmem_cache *page_ptl_cachep;
4485
4486void __init ptlock_cache_init(void)
4487{
4488 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
4489 SLAB_PANIC, NULL);
4490}
4491
539edb58 4492bool ptlock_alloc(struct page *page)
49076ec2
KS
4493{
4494 spinlock_t *ptl;
4495
b35f1819 4496 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
4497 if (!ptl)
4498 return false;
539edb58 4499 page->ptl = ptl;
49076ec2
KS
4500 return true;
4501}
4502
539edb58 4503void ptlock_free(struct page *page)
49076ec2 4504{
b35f1819 4505 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
4506}
4507#endif