]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/migrate.c
KVM: SVM: Move spec control call after restore of GS
[mirror_ubuntu-artful-kernel.git] / mm / migrate.c
CommitLineData
b20a3503 1/*
14e0f9bc 2 * Memory Migration functionality - linux/mm/migrate.c
b20a3503
CL
3 *
4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
5 *
6 * Page migration was first developed in the context of the memory hotplug
7 * project. The main authors of the migration code are:
8 *
9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
10 * Hirokazu Takahashi <taka@valinux.co.jp>
11 * Dave Hansen <haveblue@us.ibm.com>
cde53535 12 * Christoph Lameter
b20a3503
CL
13 */
14
15#include <linux/migrate.h>
b95f1b31 16#include <linux/export.h>
b20a3503 17#include <linux/swap.h>
0697212a 18#include <linux/swapops.h>
b20a3503 19#include <linux/pagemap.h>
e23ca00b 20#include <linux/buffer_head.h>
b20a3503 21#include <linux/mm_inline.h>
b488893a 22#include <linux/nsproxy.h>
b20a3503 23#include <linux/pagevec.h>
e9995ef9 24#include <linux/ksm.h>
b20a3503
CL
25#include <linux/rmap.h>
26#include <linux/topology.h>
27#include <linux/cpu.h>
28#include <linux/cpuset.h>
04e62a29 29#include <linux/writeback.h>
742755a1
CL
30#include <linux/mempolicy.h>
31#include <linux/vmalloc.h>
86c3a764 32#include <linux/security.h>
42cb14b1 33#include <linux/backing-dev.h>
bda807d4 34#include <linux/compaction.h>
4f5ca265 35#include <linux/syscalls.h>
290408d4 36#include <linux/hugetlb.h>
8e6ac7fa 37#include <linux/hugetlb_cgroup.h>
5a0e3ad6 38#include <linux/gfp.h>
bf6bddf1 39#include <linux/balloon_compaction.h>
f714f4f2 40#include <linux/mmu_notifier.h>
33c3fc71 41#include <linux/page_idle.h>
d435edca 42#include <linux/page_owner.h>
6e84f315 43#include <linux/sched/mm.h>
197e7e52 44#include <linux/ptrace.h>
b20a3503 45
0d1836c3
MN
46#include <asm/tlbflush.h>
47
7b2a2d4a
MG
48#define CREATE_TRACE_POINTS
49#include <trace/events/migrate.h>
50
b20a3503
CL
51#include "internal.h"
52
b20a3503 53/*
742755a1 54 * migrate_prep() needs to be called before we start compiling a list of pages
748446bb
MG
55 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
56 * undesirable, use migrate_prep_local()
b20a3503
CL
57 */
58int migrate_prep(void)
59{
b20a3503
CL
60 /*
61 * Clear the LRU lists so pages can be isolated.
62 * Note that pages may be moved off the LRU after we have
63 * drained them. Those pages will fail to migrate like other
64 * pages that may be busy.
65 */
66 lru_add_drain_all();
67
68 return 0;
69}
70
748446bb
MG
71/* Do the necessary work of migrate_prep but not if it involves other CPUs */
72int migrate_prep_local(void)
73{
74 lru_add_drain();
75
76 return 0;
77}
78
9e5bcd61 79int isolate_movable_page(struct page *page, isolate_mode_t mode)
bda807d4
MK
80{
81 struct address_space *mapping;
82
83 /*
84 * Avoid burning cycles with pages that are yet under __free_pages(),
85 * or just got freed under us.
86 *
87 * In case we 'win' a race for a movable page being freed under us and
88 * raise its refcount preventing __free_pages() from doing its job
89 * the put_page() at the end of this block will take care of
90 * release this page, thus avoiding a nasty leakage.
91 */
92 if (unlikely(!get_page_unless_zero(page)))
93 goto out;
94
95 /*
96 * Check PageMovable before holding a PG_lock because page's owner
97 * assumes anybody doesn't touch PG_lock of newly allocated page
98 * so unconditionally grapping the lock ruins page's owner side.
99 */
100 if (unlikely(!__PageMovable(page)))
101 goto out_putpage;
102 /*
103 * As movable pages are not isolated from LRU lists, concurrent
104 * compaction threads can race against page migration functions
105 * as well as race against the releasing a page.
106 *
107 * In order to avoid having an already isolated movable page
108 * being (wrongly) re-isolated while it is under migration,
109 * or to avoid attempting to isolate pages being released,
110 * lets be sure we have the page lock
111 * before proceeding with the movable page isolation steps.
112 */
113 if (unlikely(!trylock_page(page)))
114 goto out_putpage;
115
116 if (!PageMovable(page) || PageIsolated(page))
117 goto out_no_isolated;
118
119 mapping = page_mapping(page);
120 VM_BUG_ON_PAGE(!mapping, page);
121
122 if (!mapping->a_ops->isolate_page(page, mode))
123 goto out_no_isolated;
124
125 /* Driver shouldn't use PG_isolated bit of page->flags */
126 WARN_ON_ONCE(PageIsolated(page));
127 __SetPageIsolated(page);
128 unlock_page(page);
129
9e5bcd61 130 return 0;
bda807d4
MK
131
132out_no_isolated:
133 unlock_page(page);
134out_putpage:
135 put_page(page);
136out:
9e5bcd61 137 return -EBUSY;
bda807d4
MK
138}
139
140/* It should be called on page which is PG_movable */
141void putback_movable_page(struct page *page)
142{
143 struct address_space *mapping;
144
145 VM_BUG_ON_PAGE(!PageLocked(page), page);
146 VM_BUG_ON_PAGE(!PageMovable(page), page);
147 VM_BUG_ON_PAGE(!PageIsolated(page), page);
148
149 mapping = page_mapping(page);
150 mapping->a_ops->putback_page(page);
151 __ClearPageIsolated(page);
152}
153
5733c7d1
RA
154/*
155 * Put previously isolated pages back onto the appropriate lists
156 * from where they were once taken off for compaction/migration.
157 *
59c82b70
JK
158 * This function shall be used whenever the isolated pageset has been
159 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
160 * and isolate_huge_page().
5733c7d1
RA
161 */
162void putback_movable_pages(struct list_head *l)
163{
164 struct page *page;
165 struct page *page2;
166
b20a3503 167 list_for_each_entry_safe(page, page2, l, lru) {
31caf665
NH
168 if (unlikely(PageHuge(page))) {
169 putback_active_hugepage(page);
170 continue;
171 }
e24f0b8f 172 list_del(&page->lru);
bda807d4
MK
173 /*
174 * We isolated non-lru movable page so here we can use
175 * __PageMovable because LRU page's mapping cannot have
176 * PAGE_MAPPING_MOVABLE.
177 */
b1123ea6 178 if (unlikely(__PageMovable(page))) {
bda807d4
MK
179 VM_BUG_ON_PAGE(!PageIsolated(page), page);
180 lock_page(page);
181 if (PageMovable(page))
182 putback_movable_page(page);
183 else
184 __ClearPageIsolated(page);
185 unlock_page(page);
186 put_page(page);
187 } else {
6afcf8ef
ML
188 dec_node_page_state(page, NR_ISOLATED_ANON +
189 page_is_file_cache(page));
fc280fe8 190 putback_lru_page(page);
bda807d4 191 }
b20a3503 192 }
b20a3503
CL
193}
194
0697212a
CL
195/*
196 * Restore a potential migration pte to a working pte entry
197 */
e4b82222 198static bool remove_migration_pte(struct page *page, struct vm_area_struct *vma,
e9995ef9 199 unsigned long addr, void *old)
0697212a 200{
3fe87967
KS
201 struct page_vma_mapped_walk pvmw = {
202 .page = old,
203 .vma = vma,
204 .address = addr,
205 .flags = PVMW_SYNC | PVMW_MIGRATION,
206 };
207 struct page *new;
208 pte_t pte;
0697212a 209 swp_entry_t entry;
0697212a 210
3fe87967
KS
211 VM_BUG_ON_PAGE(PageTail(page), page);
212 while (page_vma_mapped_walk(&pvmw)) {
4b0ece6f
NH
213 if (PageKsm(page))
214 new = page;
215 else
216 new = page - pvmw.page->index +
217 linear_page_index(vma, pvmw.address);
0697212a 218
3fe87967
KS
219 get_page(new);
220 pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
221 if (pte_swp_soft_dirty(*pvmw.pte))
222 pte = pte_mksoft_dirty(pte);
0697212a 223
3fe87967
KS
224 /*
225 * Recheck VMA as permissions can change since migration started
226 */
227 entry = pte_to_swp_entry(*pvmw.pte);
228 if (is_write_migration_entry(entry))
229 pte = maybe_mkwrite(pte, vma);
d3cb8bf6 230
383321ab 231 flush_dcache_page(new);
3ef8fd7f 232#ifdef CONFIG_HUGETLB_PAGE
3fe87967
KS
233 if (PageHuge(new)) {
234 pte = pte_mkhuge(pte);
235 pte = arch_make_huge_pte(pte, vma, new, 0);
383321ab 236 set_huge_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
3fe87967
KS
237 if (PageAnon(new))
238 hugepage_add_anon_rmap(new, vma, pvmw.address);
239 else
240 page_dup_rmap(new, true);
383321ab
AK
241 } else
242#endif
243 {
244 set_pte_at(vma->vm_mm, pvmw.address, pvmw.pte, pte);
04e62a29 245
383321ab
AK
246 if (PageAnon(new))
247 page_add_anon_rmap(new, vma, pvmw.address, false);
248 else
249 page_add_file_rmap(new, false);
250 }
3fe87967
KS
251 if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
252 mlock_vma_page(new);
253
254 /* No need to invalidate - it was non-present before */
255 update_mmu_cache(vma, pvmw.address, pvmw.pte);
256 }
51afb12b 257
e4b82222 258 return true;
0697212a
CL
259}
260
04e62a29
CL
261/*
262 * Get rid of all migration entries and replace them by
263 * references to the indicated page.
264 */
e388466d 265void remove_migration_ptes(struct page *old, struct page *new, bool locked)
04e62a29 266{
051ac83a
JK
267 struct rmap_walk_control rwc = {
268 .rmap_one = remove_migration_pte,
269 .arg = old,
270 };
271
e388466d
KS
272 if (locked)
273 rmap_walk_locked(new, &rwc);
274 else
275 rmap_walk(new, &rwc);
04e62a29
CL
276}
277
0697212a
CL
278/*
279 * Something used the pte of a page under migration. We need to
280 * get to the page and wait until migration is finished.
281 * When we return from this function the fault will be retried.
0697212a 282 */
e66f17ff 283void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
30dad309 284 spinlock_t *ptl)
0697212a 285{
30dad309 286 pte_t pte;
0697212a
CL
287 swp_entry_t entry;
288 struct page *page;
289
30dad309 290 spin_lock(ptl);
0697212a
CL
291 pte = *ptep;
292 if (!is_swap_pte(pte))
293 goto out;
294
295 entry = pte_to_swp_entry(pte);
296 if (!is_migration_entry(entry))
297 goto out;
298
299 page = migration_entry_to_page(entry);
300
e286781d
NP
301 /*
302 * Once radix-tree replacement of page migration started, page_count
303 * *must* be zero. And, we don't want to call wait_on_page_locked()
304 * against a page without get_page().
305 * So, we use get_page_unless_zero(), here. Even failed, page fault
306 * will occur again.
307 */
308 if (!get_page_unless_zero(page))
309 goto out;
0697212a
CL
310 pte_unmap_unlock(ptep, ptl);
311 wait_on_page_locked(page);
312 put_page(page);
313 return;
314out:
315 pte_unmap_unlock(ptep, ptl);
316}
317
30dad309
NH
318void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
319 unsigned long address)
320{
321 spinlock_t *ptl = pte_lockptr(mm, pmd);
322 pte_t *ptep = pte_offset_map(pmd, address);
323 __migration_entry_wait(mm, ptep, ptl);
324}
325
cb900f41
KS
326void migration_entry_wait_huge(struct vm_area_struct *vma,
327 struct mm_struct *mm, pte_t *pte)
30dad309 328{
cb900f41 329 spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
30dad309
NH
330 __migration_entry_wait(mm, pte, ptl);
331}
332
b969c4ab
MG
333#ifdef CONFIG_BLOCK
334/* Returns true if all buffers are successfully locked */
a6bc32b8
MG
335static bool buffer_migrate_lock_buffers(struct buffer_head *head,
336 enum migrate_mode mode)
b969c4ab
MG
337{
338 struct buffer_head *bh = head;
339
340 /* Simple case, sync compaction */
a6bc32b8 341 if (mode != MIGRATE_ASYNC) {
b969c4ab
MG
342 do {
343 get_bh(bh);
344 lock_buffer(bh);
345 bh = bh->b_this_page;
346
347 } while (bh != head);
348
349 return true;
350 }
351
352 /* async case, we cannot block on lock_buffer so use trylock_buffer */
353 do {
354 get_bh(bh);
355 if (!trylock_buffer(bh)) {
356 /*
357 * We failed to lock the buffer and cannot stall in
358 * async migration. Release the taken locks
359 */
360 struct buffer_head *failed_bh = bh;
361 put_bh(failed_bh);
362 bh = head;
363 while (bh != failed_bh) {
364 unlock_buffer(bh);
365 put_bh(bh);
366 bh = bh->b_this_page;
367 }
368 return false;
369 }
370
371 bh = bh->b_this_page;
372 } while (bh != head);
373 return true;
374}
375#else
376static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
a6bc32b8 377 enum migrate_mode mode)
b969c4ab
MG
378{
379 return true;
380}
381#endif /* CONFIG_BLOCK */
382
b20a3503 383/*
c3fcf8a5 384 * Replace the page in the mapping.
5b5c7120
CL
385 *
386 * The number of remaining references must be:
387 * 1 for anonymous pages without a mapping
388 * 2 for pages with a mapping
266cf658 389 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
b20a3503 390 */
36bc08cc 391int migrate_page_move_mapping(struct address_space *mapping,
b969c4ab 392 struct page *newpage, struct page *page,
8e321fef
BL
393 struct buffer_head *head, enum migrate_mode mode,
394 int extra_count)
b20a3503 395{
42cb14b1
HD
396 struct zone *oldzone, *newzone;
397 int dirty;
8e321fef 398 int expected_count = 1 + extra_count;
7cf9c2c7 399 void **pslot;
b20a3503 400
6c5240ae 401 if (!mapping) {
0e8c7d0f 402 /* Anonymous page without mapping */
8e321fef 403 if (page_count(page) != expected_count)
6c5240ae 404 return -EAGAIN;
cf4b769a
HD
405
406 /* No turning back from here */
cf4b769a
HD
407 newpage->index = page->index;
408 newpage->mapping = page->mapping;
409 if (PageSwapBacked(page))
fa9949da 410 __SetPageSwapBacked(newpage);
cf4b769a 411
78bd5209 412 return MIGRATEPAGE_SUCCESS;
6c5240ae
CL
413 }
414
42cb14b1
HD
415 oldzone = page_zone(page);
416 newzone = page_zone(newpage);
417
19fd6231 418 spin_lock_irq(&mapping->tree_lock);
b20a3503 419
7cf9c2c7
NP
420 pslot = radix_tree_lookup_slot(&mapping->page_tree,
421 page_index(page));
b20a3503 422
8e321fef 423 expected_count += 1 + page_has_private(page);
e286781d 424 if (page_count(page) != expected_count ||
29c1f677 425 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
19fd6231 426 spin_unlock_irq(&mapping->tree_lock);
e23ca00b 427 return -EAGAIN;
b20a3503
CL
428 }
429
fe896d18 430 if (!page_ref_freeze(page, expected_count)) {
19fd6231 431 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
432 return -EAGAIN;
433 }
434
b969c4ab
MG
435 /*
436 * In the async migration case of moving a page with buffers, lock the
437 * buffers using trylock before the mapping is moved. If the mapping
438 * was moved, we later failed to lock the buffers and could not move
439 * the mapping back due to an elevated page count, we would have to
440 * block waiting on other references to be dropped.
441 */
a6bc32b8
MG
442 if (mode == MIGRATE_ASYNC && head &&
443 !buffer_migrate_lock_buffers(head, mode)) {
fe896d18 444 page_ref_unfreeze(page, expected_count);
b969c4ab
MG
445 spin_unlock_irq(&mapping->tree_lock);
446 return -EAGAIN;
447 }
448
b20a3503 449 /*
cf4b769a
HD
450 * Now we know that no one else is looking at the page:
451 * no turning back from here.
b20a3503 452 */
cf4b769a
HD
453 newpage->index = page->index;
454 newpage->mapping = page->mapping;
7cf9c2c7 455 get_page(newpage); /* add cache reference */
6326fec1
NP
456 if (PageSwapBacked(page)) {
457 __SetPageSwapBacked(newpage);
458 if (PageSwapCache(page)) {
459 SetPageSwapCache(newpage);
460 set_page_private(newpage, page_private(page));
461 }
462 } else {
463 VM_BUG_ON_PAGE(PageSwapCache(page), page);
b20a3503
CL
464 }
465
42cb14b1
HD
466 /* Move dirty while page refs frozen and newpage not yet exposed */
467 dirty = PageDirty(page);
468 if (dirty) {
469 ClearPageDirty(page);
470 SetPageDirty(newpage);
471 }
472
6d75f366 473 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
7cf9c2c7
NP
474
475 /*
937a94c9
JG
476 * Drop cache reference from old page by unfreezing
477 * to one less reference.
7cf9c2c7
NP
478 * We know this isn't the last reference.
479 */
fe896d18 480 page_ref_unfreeze(page, expected_count - 1);
7cf9c2c7 481
42cb14b1
HD
482 spin_unlock(&mapping->tree_lock);
483 /* Leave irq disabled to prevent preemption while updating stats */
484
0e8c7d0f
CL
485 /*
486 * If moved to a different zone then also account
487 * the page for that zone. Other VM counters will be
488 * taken care of when we establish references to the
489 * new page and drop references to the old page.
490 *
491 * Note that anonymous pages are accounted for
4b9d0fab 492 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
0e8c7d0f
CL
493 * are mapped to swap space.
494 */
42cb14b1 495 if (newzone != oldzone) {
11fb9989
MG
496 __dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
497 __inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
42cb14b1 498 if (PageSwapBacked(page) && !PageSwapCache(page)) {
11fb9989
MG
499 __dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
500 __inc_node_state(newzone->zone_pgdat, NR_SHMEM);
42cb14b1
HD
501 }
502 if (dirty && mapping_cap_account_dirty(mapping)) {
11fb9989 503 __dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 504 __dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
11fb9989 505 __inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
5a1c84b4 506 __inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
42cb14b1 507 }
4b02108a 508 }
42cb14b1 509 local_irq_enable();
b20a3503 510
78bd5209 511 return MIGRATEPAGE_SUCCESS;
b20a3503 512}
1118dce7 513EXPORT_SYMBOL(migrate_page_move_mapping);
b20a3503 514
290408d4
NH
515/*
516 * The expected number of remaining references is the same as that
517 * of migrate_page_move_mapping().
518 */
519int migrate_huge_page_move_mapping(struct address_space *mapping,
520 struct page *newpage, struct page *page)
521{
522 int expected_count;
523 void **pslot;
524
290408d4
NH
525 spin_lock_irq(&mapping->tree_lock);
526
527 pslot = radix_tree_lookup_slot(&mapping->page_tree,
528 page_index(page));
529
530 expected_count = 2 + page_has_private(page);
531 if (page_count(page) != expected_count ||
29c1f677 532 radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
290408d4
NH
533 spin_unlock_irq(&mapping->tree_lock);
534 return -EAGAIN;
535 }
536
fe896d18 537 if (!page_ref_freeze(page, expected_count)) {
290408d4
NH
538 spin_unlock_irq(&mapping->tree_lock);
539 return -EAGAIN;
540 }
541
cf4b769a
HD
542 newpage->index = page->index;
543 newpage->mapping = page->mapping;
6a93ca8f 544
290408d4
NH
545 get_page(newpage);
546
6d75f366 547 radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
290408d4 548
fe896d18 549 page_ref_unfreeze(page, expected_count - 1);
290408d4
NH
550
551 spin_unlock_irq(&mapping->tree_lock);
6a93ca8f 552
78bd5209 553 return MIGRATEPAGE_SUCCESS;
290408d4
NH
554}
555
30b0a105
DH
556/*
557 * Gigantic pages are so large that we do not guarantee that page++ pointer
558 * arithmetic will work across the entire page. We need something more
559 * specialized.
560 */
561static void __copy_gigantic_page(struct page *dst, struct page *src,
562 int nr_pages)
563{
564 int i;
565 struct page *dst_base = dst;
566 struct page *src_base = src;
567
568 for (i = 0; i < nr_pages; ) {
569 cond_resched();
570 copy_highpage(dst, src);
571
572 i++;
573 dst = mem_map_next(dst, dst_base, i);
574 src = mem_map_next(src, src_base, i);
575 }
576}
577
578static void copy_huge_page(struct page *dst, struct page *src)
579{
580 int i;
581 int nr_pages;
582
583 if (PageHuge(src)) {
584 /* hugetlbfs page */
585 struct hstate *h = page_hstate(src);
586 nr_pages = pages_per_huge_page(h);
587
588 if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
589 __copy_gigantic_page(dst, src, nr_pages);
590 return;
591 }
592 } else {
593 /* thp page */
594 BUG_ON(!PageTransHuge(src));
595 nr_pages = hpage_nr_pages(src);
596 }
597
598 for (i = 0; i < nr_pages; i++) {
599 cond_resched();
600 copy_highpage(dst + i, src + i);
601 }
602}
603
b20a3503
CL
604/*
605 * Copy the page to its new location
606 */
290408d4 607void migrate_page_copy(struct page *newpage, struct page *page)
b20a3503 608{
7851a45c
RR
609 int cpupid;
610
b32967ff 611 if (PageHuge(page) || PageTransHuge(page))
290408d4
NH
612 copy_huge_page(newpage, page);
613 else
614 copy_highpage(newpage, page);
b20a3503
CL
615
616 if (PageError(page))
617 SetPageError(newpage);
618 if (PageReferenced(page))
619 SetPageReferenced(newpage);
620 if (PageUptodate(page))
621 SetPageUptodate(newpage);
894bc310 622 if (TestClearPageActive(page)) {
309381fe 623 VM_BUG_ON_PAGE(PageUnevictable(page), page);
b20a3503 624 SetPageActive(newpage);
418b27ef
LS
625 } else if (TestClearPageUnevictable(page))
626 SetPageUnevictable(newpage);
b20a3503
CL
627 if (PageChecked(page))
628 SetPageChecked(newpage);
629 if (PageMappedToDisk(page))
630 SetPageMappedToDisk(newpage);
631
42cb14b1
HD
632 /* Move dirty on pages not done by migrate_page_move_mapping() */
633 if (PageDirty(page))
634 SetPageDirty(newpage);
b20a3503 635
33c3fc71
VD
636 if (page_is_young(page))
637 set_page_young(newpage);
638 if (page_is_idle(page))
639 set_page_idle(newpage);
640
7851a45c
RR
641 /*
642 * Copy NUMA information to the new page, to prevent over-eager
643 * future migrations of this same page.
644 */
645 cpupid = page_cpupid_xchg_last(page, -1);
646 page_cpupid_xchg_last(newpage, cpupid);
647
e9995ef9 648 ksm_migrate_page(newpage, page);
c8d6553b
HD
649 /*
650 * Please do not reorder this without considering how mm/ksm.c's
651 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
652 */
b3b3a99c
NH
653 if (PageSwapCache(page))
654 ClearPageSwapCache(page);
b20a3503
CL
655 ClearPagePrivate(page);
656 set_page_private(page, 0);
b20a3503
CL
657
658 /*
659 * If any waiters have accumulated on the new page then
660 * wake them up.
661 */
662 if (PageWriteback(newpage))
663 end_page_writeback(newpage);
d435edca
VB
664
665 copy_page_owner(page, newpage);
74485cf2
JW
666
667 mem_cgroup_migrate(page, newpage);
b20a3503 668}
1118dce7 669EXPORT_SYMBOL(migrate_page_copy);
b20a3503 670
1d8b85cc
CL
671/************************************************************
672 * Migration functions
673 ***********************************************************/
674
b20a3503 675/*
bda807d4 676 * Common logic to directly migrate a single LRU page suitable for
266cf658 677 * pages that do not use PagePrivate/PagePrivate2.
b20a3503
CL
678 *
679 * Pages are locked upon entry and exit.
680 */
2d1db3b1 681int migrate_page(struct address_space *mapping,
a6bc32b8
MG
682 struct page *newpage, struct page *page,
683 enum migrate_mode mode)
b20a3503
CL
684{
685 int rc;
686
687 BUG_ON(PageWriteback(page)); /* Writeback must be complete */
688
8e321fef 689 rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
b20a3503 690
78bd5209 691 if (rc != MIGRATEPAGE_SUCCESS)
b20a3503
CL
692 return rc;
693
694 migrate_page_copy(newpage, page);
78bd5209 695 return MIGRATEPAGE_SUCCESS;
b20a3503
CL
696}
697EXPORT_SYMBOL(migrate_page);
698
9361401e 699#ifdef CONFIG_BLOCK
1d8b85cc
CL
700/*
701 * Migration function for pages with buffers. This function can only be used
702 * if the underlying filesystem guarantees that no other references to "page"
703 * exist.
704 */
2d1db3b1 705int buffer_migrate_page(struct address_space *mapping,
a6bc32b8 706 struct page *newpage, struct page *page, enum migrate_mode mode)
1d8b85cc 707{
1d8b85cc
CL
708 struct buffer_head *bh, *head;
709 int rc;
710
1d8b85cc 711 if (!page_has_buffers(page))
a6bc32b8 712 return migrate_page(mapping, newpage, page, mode);
1d8b85cc
CL
713
714 head = page_buffers(page);
715
8e321fef 716 rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
1d8b85cc 717
78bd5209 718 if (rc != MIGRATEPAGE_SUCCESS)
1d8b85cc
CL
719 return rc;
720
b969c4ab
MG
721 /*
722 * In the async case, migrate_page_move_mapping locked the buffers
723 * with an IRQ-safe spinlock held. In the sync case, the buffers
724 * need to be locked now
725 */
a6bc32b8
MG
726 if (mode != MIGRATE_ASYNC)
727 BUG_ON(!buffer_migrate_lock_buffers(head, mode));
1d8b85cc
CL
728
729 ClearPagePrivate(page);
730 set_page_private(newpage, page_private(page));
731 set_page_private(page, 0);
732 put_page(page);
733 get_page(newpage);
734
735 bh = head;
736 do {
737 set_bh_page(bh, newpage, bh_offset(bh));
738 bh = bh->b_this_page;
739
740 } while (bh != head);
741
742 SetPagePrivate(newpage);
743
744 migrate_page_copy(newpage, page);
745
746 bh = head;
747 do {
748 unlock_buffer(bh);
749 put_bh(bh);
750 bh = bh->b_this_page;
751
752 } while (bh != head);
753
78bd5209 754 return MIGRATEPAGE_SUCCESS;
1d8b85cc
CL
755}
756EXPORT_SYMBOL(buffer_migrate_page);
9361401e 757#endif
1d8b85cc 758
04e62a29
CL
759/*
760 * Writeback a page to clean the dirty state
761 */
762static int writeout(struct address_space *mapping, struct page *page)
8351a6e4 763{
04e62a29
CL
764 struct writeback_control wbc = {
765 .sync_mode = WB_SYNC_NONE,
766 .nr_to_write = 1,
767 .range_start = 0,
768 .range_end = LLONG_MAX,
04e62a29
CL
769 .for_reclaim = 1
770 };
771 int rc;
772
773 if (!mapping->a_ops->writepage)
774 /* No write method for the address space */
775 return -EINVAL;
776
777 if (!clear_page_dirty_for_io(page))
778 /* Someone else already triggered a write */
779 return -EAGAIN;
780
8351a6e4 781 /*
04e62a29
CL
782 * A dirty page may imply that the underlying filesystem has
783 * the page on some queue. So the page must be clean for
784 * migration. Writeout may mean we loose the lock and the
785 * page state is no longer what we checked for earlier.
786 * At this point we know that the migration attempt cannot
787 * be successful.
8351a6e4 788 */
e388466d 789 remove_migration_ptes(page, page, false);
8351a6e4 790
04e62a29 791 rc = mapping->a_ops->writepage(page, &wbc);
8351a6e4 792
04e62a29
CL
793 if (rc != AOP_WRITEPAGE_ACTIVATE)
794 /* unlocked. Relock */
795 lock_page(page);
796
bda8550d 797 return (rc < 0) ? -EIO : -EAGAIN;
04e62a29
CL
798}
799
800/*
801 * Default handling if a filesystem does not provide a migration function.
802 */
803static int fallback_migrate_page(struct address_space *mapping,
a6bc32b8 804 struct page *newpage, struct page *page, enum migrate_mode mode)
04e62a29 805{
b969c4ab 806 if (PageDirty(page)) {
a6bc32b8
MG
807 /* Only writeback pages in full synchronous migration */
808 if (mode != MIGRATE_SYNC)
b969c4ab 809 return -EBUSY;
04e62a29 810 return writeout(mapping, page);
b969c4ab 811 }
8351a6e4
CL
812
813 /*
814 * Buffers may be managed in a filesystem specific way.
815 * We must have no buffers or drop them.
816 */
266cf658 817 if (page_has_private(page) &&
8351a6e4
CL
818 !try_to_release_page(page, GFP_KERNEL))
819 return -EAGAIN;
820
a6bc32b8 821 return migrate_page(mapping, newpage, page, mode);
8351a6e4
CL
822}
823
e24f0b8f
CL
824/*
825 * Move a page to a newly allocated page
826 * The page is locked and all ptes have been successfully removed.
827 *
828 * The new page will have replaced the old page if this function
829 * is successful.
894bc310
LS
830 *
831 * Return value:
832 * < 0 - error code
78bd5209 833 * MIGRATEPAGE_SUCCESS - success
e24f0b8f 834 */
3fe2011f 835static int move_to_new_page(struct page *newpage, struct page *page,
5c3f9a67 836 enum migrate_mode mode)
e24f0b8f
CL
837{
838 struct address_space *mapping;
bda807d4
MK
839 int rc = -EAGAIN;
840 bool is_lru = !__PageMovable(page);
e24f0b8f 841
7db7671f
HD
842 VM_BUG_ON_PAGE(!PageLocked(page), page);
843 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
e24f0b8f 844
e24f0b8f 845 mapping = page_mapping(page);
bda807d4
MK
846
847 if (likely(is_lru)) {
848 if (!mapping)
849 rc = migrate_page(mapping, newpage, page, mode);
850 else if (mapping->a_ops->migratepage)
851 /*
852 * Most pages have a mapping and most filesystems
853 * provide a migratepage callback. Anonymous pages
854 * are part of swap space which also has its own
855 * migratepage callback. This is the most common path
856 * for page migration.
857 */
858 rc = mapping->a_ops->migratepage(mapping, newpage,
859 page, mode);
860 else
861 rc = fallback_migrate_page(mapping, newpage,
862 page, mode);
863 } else {
e24f0b8f 864 /*
bda807d4
MK
865 * In case of non-lru page, it could be released after
866 * isolation step. In that case, we shouldn't try migration.
e24f0b8f 867 */
bda807d4
MK
868 VM_BUG_ON_PAGE(!PageIsolated(page), page);
869 if (!PageMovable(page)) {
870 rc = MIGRATEPAGE_SUCCESS;
871 __ClearPageIsolated(page);
872 goto out;
873 }
874
875 rc = mapping->a_ops->migratepage(mapping, newpage,
876 page, mode);
877 WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
878 !PageIsolated(page));
879 }
e24f0b8f 880
5c3f9a67
HD
881 /*
882 * When successful, old pagecache page->mapping must be cleared before
883 * page is freed; but stats require that PageAnon be left as PageAnon.
884 */
885 if (rc == MIGRATEPAGE_SUCCESS) {
bda807d4
MK
886 if (__PageMovable(page)) {
887 VM_BUG_ON_PAGE(!PageIsolated(page), page);
888
889 /*
890 * We clear PG_movable under page_lock so any compactor
891 * cannot try to migrate this page.
892 */
893 __ClearPageIsolated(page);
894 }
895
896 /*
897 * Anonymous and movable page->mapping will be cleard by
898 * free_pages_prepare so don't reset it here for keeping
899 * the type to work PageAnon, for example.
900 */
901 if (!PageMappingFlags(page))
5c3f9a67 902 page->mapping = NULL;
3fe2011f 903 }
bda807d4 904out:
e24f0b8f
CL
905 return rc;
906}
907
0dabec93 908static int __unmap_and_move(struct page *page, struct page *newpage,
9c620e2b 909 int force, enum migrate_mode mode)
e24f0b8f 910{
0dabec93 911 int rc = -EAGAIN;
2ebba6b7 912 int page_was_mapped = 0;
3f6c8272 913 struct anon_vma *anon_vma = NULL;
bda807d4 914 bool is_lru = !__PageMovable(page);
95a402c3 915
529ae9aa 916 if (!trylock_page(page)) {
a6bc32b8 917 if (!force || mode == MIGRATE_ASYNC)
0dabec93 918 goto out;
3e7d3449
MG
919
920 /*
921 * It's not safe for direct compaction to call lock_page.
922 * For example, during page readahead pages are added locked
923 * to the LRU. Later, when the IO completes the pages are
924 * marked uptodate and unlocked. However, the queueing
925 * could be merging multiple pages for one bio (e.g.
926 * mpage_readpages). If an allocation happens for the
927 * second or third page, the process can end up locking
928 * the same page twice and deadlocking. Rather than
929 * trying to be clever about what pages can be locked,
930 * avoid the use of lock_page for direct compaction
931 * altogether.
932 */
933 if (current->flags & PF_MEMALLOC)
0dabec93 934 goto out;
3e7d3449 935
e24f0b8f
CL
936 lock_page(page);
937 }
938
939 if (PageWriteback(page)) {
11bc82d6 940 /*
fed5b64a 941 * Only in the case of a full synchronous migration is it
a6bc32b8
MG
942 * necessary to wait for PageWriteback. In the async case,
943 * the retry loop is too short and in the sync-light case,
944 * the overhead of stalling is too much
11bc82d6 945 */
a6bc32b8 946 if (mode != MIGRATE_SYNC) {
11bc82d6 947 rc = -EBUSY;
0a31bc97 948 goto out_unlock;
11bc82d6
AA
949 }
950 if (!force)
0a31bc97 951 goto out_unlock;
e24f0b8f
CL
952 wait_on_page_writeback(page);
953 }
03f15c86 954
e24f0b8f 955 /*
dc386d4d
KH
956 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
957 * we cannot notice that anon_vma is freed while we migrates a page.
1ce82b69 958 * This get_anon_vma() delays freeing anon_vma pointer until the end
dc386d4d 959 * of migration. File cache pages are no problem because of page_lock()
989f89c5
KH
960 * File Caches may use write_page() or lock_page() in migration, then,
961 * just care Anon page here.
03f15c86
HD
962 *
963 * Only page_get_anon_vma() understands the subtleties of
964 * getting a hold on an anon_vma from outside one of its mms.
965 * But if we cannot get anon_vma, then we won't need it anyway,
966 * because that implies that the anon page is no longer mapped
967 * (and cannot be remapped so long as we hold the page lock).
dc386d4d 968 */
03f15c86 969 if (PageAnon(page) && !PageKsm(page))
746b18d4 970 anon_vma = page_get_anon_vma(page);
62e1c553 971
7db7671f
HD
972 /*
973 * Block others from accessing the new page when we get around to
974 * establishing additional references. We are usually the only one
975 * holding a reference to newpage at this point. We used to have a BUG
976 * here if trylock_page(newpage) fails, but would like to allow for
977 * cases where there might be a race with the previous use of newpage.
978 * This is much like races on refcount of oldpage: just don't BUG().
979 */
980 if (unlikely(!trylock_page(newpage)))
981 goto out_unlock;
982
bda807d4
MK
983 if (unlikely(!is_lru)) {
984 rc = move_to_new_page(newpage, page, mode);
985 goto out_unlock_both;
986 }
987
dc386d4d 988 /*
62e1c553
SL
989 * Corner case handling:
990 * 1. When a new swap-cache page is read into, it is added to the LRU
991 * and treated as swapcache but it has no rmap yet.
992 * Calling try_to_unmap() against a page->mapping==NULL page will
993 * trigger a BUG. So handle it here.
994 * 2. An orphaned page (see truncate_complete_page) might have
995 * fs-private metadata. The page can be picked up due to memory
996 * offlining. Everywhere else except page reclaim, the page is
997 * invisible to the vm, so the page can not be migrated. So try to
998 * free the metadata, so the page can be freed.
e24f0b8f 999 */
62e1c553 1000 if (!page->mapping) {
309381fe 1001 VM_BUG_ON_PAGE(PageAnon(page), page);
1ce82b69 1002 if (page_has_private(page)) {
62e1c553 1003 try_to_free_buffers(page);
7db7671f 1004 goto out_unlock_both;
62e1c553 1005 }
7db7671f
HD
1006 } else if (page_mapped(page)) {
1007 /* Establish migration ptes */
03f15c86
HD
1008 VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1009 page);
2ebba6b7 1010 try_to_unmap(page,
da1b13cc 1011 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
2ebba6b7
HD
1012 page_was_mapped = 1;
1013 }
dc386d4d 1014
e6a1530d 1015 if (!page_mapped(page))
5c3f9a67 1016 rc = move_to_new_page(newpage, page, mode);
e24f0b8f 1017
5c3f9a67
HD
1018 if (page_was_mapped)
1019 remove_migration_ptes(page,
e388466d 1020 rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
3f6c8272 1021
7db7671f
HD
1022out_unlock_both:
1023 unlock_page(newpage);
1024out_unlock:
3f6c8272 1025 /* Drop an anon_vma reference if we took one */
76545066 1026 if (anon_vma)
9e60109f 1027 put_anon_vma(anon_vma);
e24f0b8f 1028 unlock_page(page);
0dabec93 1029out:
c6c919eb
MK
1030 /*
1031 * If migration is successful, decrease refcount of the newpage
1032 * which will not free the page because new page owner increased
1033 * refcounter. As well, if it is LRU page, add the page to LRU
1034 * list in here.
1035 */
1036 if (rc == MIGRATEPAGE_SUCCESS) {
b1123ea6 1037 if (unlikely(__PageMovable(newpage)))
c6c919eb
MK
1038 put_page(newpage);
1039 else
1040 putback_lru_page(newpage);
1041 }
1042
0dabec93
MK
1043 return rc;
1044}
95a402c3 1045
ef2a5153
GU
1046/*
1047 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move(). Work
1048 * around it.
1049 */
1050#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1051#define ICE_noinline noinline
1052#else
1053#define ICE_noinline
1054#endif
1055
0dabec93
MK
1056/*
1057 * Obtain the lock on page, remove all ptes and migrate the page
1058 * to the newly allocated page in newpage.
1059 */
ef2a5153
GU
1060static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1061 free_page_t put_new_page,
1062 unsigned long private, struct page *page,
add05cec
NH
1063 int force, enum migrate_mode mode,
1064 enum migrate_reason reason)
0dabec93 1065{
2def7424 1066 int rc = MIGRATEPAGE_SUCCESS;
0dabec93 1067 int *result = NULL;
2def7424 1068 struct page *newpage;
0dabec93 1069
2def7424 1070 newpage = get_new_page(page, private, &result);
0dabec93
MK
1071 if (!newpage)
1072 return -ENOMEM;
1073
1074 if (page_count(page) == 1) {
1075 /* page was freed from under us. So we are done. */
c6c919eb
MK
1076 ClearPageActive(page);
1077 ClearPageUnevictable(page);
bda807d4
MK
1078 if (unlikely(__PageMovable(page))) {
1079 lock_page(page);
1080 if (!PageMovable(page))
1081 __ClearPageIsolated(page);
1082 unlock_page(page);
1083 }
c6c919eb
MK
1084 if (put_new_page)
1085 put_new_page(newpage, private);
1086 else
1087 put_page(newpage);
0dabec93
MK
1088 goto out;
1089 }
1090
4d2fa965
KS
1091 if (unlikely(PageTransHuge(page))) {
1092 lock_page(page);
1093 rc = split_huge_page(page);
1094 unlock_page(page);
1095 if (rc)
0dabec93 1096 goto out;
4d2fa965 1097 }
0dabec93 1098
9c620e2b 1099 rc = __unmap_and_move(page, newpage, force, mode);
c6c919eb 1100 if (rc == MIGRATEPAGE_SUCCESS)
7cd12b4a 1101 set_page_owner_migrate_reason(newpage, reason);
bf6bddf1 1102
0dabec93 1103out:
e24f0b8f 1104 if (rc != -EAGAIN) {
0dabec93
MK
1105 /*
1106 * A page that has been migrated has all references
1107 * removed and will be freed. A page that has not been
1108 * migrated will have kepts its references and be
1109 * restored.
1110 */
1111 list_del(&page->lru);
6afcf8ef
ML
1112
1113 /*
1114 * Compaction can migrate also non-LRU pages which are
1115 * not accounted to NR_ISOLATED_*. They can be recognized
1116 * as __PageMovable
1117 */
1118 if (likely(!__PageMovable(page)))
1119 dec_node_page_state(page, NR_ISOLATED_ANON +
1120 page_is_file_cache(page));
c6c919eb
MK
1121 }
1122
1123 /*
1124 * If migration is successful, releases reference grabbed during
1125 * isolation. Otherwise, restore the page to right list unless
1126 * we want to retry.
1127 */
1128 if (rc == MIGRATEPAGE_SUCCESS) {
1129 put_page(page);
1130 if (reason == MR_MEMORY_FAILURE) {
d7e69488 1131 /*
c6c919eb
MK
1132 * Set PG_HWPoison on just freed page
1133 * intentionally. Although it's rather weird,
1134 * it's how HWPoison flag works at the moment.
d7e69488 1135 */
da1b13cc
WL
1136 if (!test_set_page_hwpoison(page))
1137 num_poisoned_pages_inc();
c6c919eb
MK
1138 }
1139 } else {
bda807d4
MK
1140 if (rc != -EAGAIN) {
1141 if (likely(!__PageMovable(page))) {
1142 putback_lru_page(page);
1143 goto put_new;
1144 }
1145
1146 lock_page(page);
1147 if (PageMovable(page))
1148 putback_movable_page(page);
1149 else
1150 __ClearPageIsolated(page);
1151 unlock_page(page);
1152 put_page(page);
1153 }
1154put_new:
c6c919eb
MK
1155 if (put_new_page)
1156 put_new_page(newpage, private);
1157 else
1158 put_page(newpage);
e24f0b8f 1159 }
68711a74 1160
742755a1
CL
1161 if (result) {
1162 if (rc)
1163 *result = rc;
1164 else
1165 *result = page_to_nid(newpage);
1166 }
e24f0b8f
CL
1167 return rc;
1168}
1169
290408d4
NH
1170/*
1171 * Counterpart of unmap_and_move_page() for hugepage migration.
1172 *
1173 * This function doesn't wait the completion of hugepage I/O
1174 * because there is no race between I/O and migration for hugepage.
1175 * Note that currently hugepage I/O occurs only in direct I/O
1176 * where no lock is held and PG_writeback is irrelevant,
1177 * and writeback status of all subpages are counted in the reference
1178 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1179 * under direct I/O, the reference of the head page is 512 and a bit more.)
1180 * This means that when we try to migrate hugepage whose subpages are
1181 * doing direct I/O, some references remain after try_to_unmap() and
1182 * hugepage migration fails without data corruption.
1183 *
1184 * There is also no race when direct I/O is issued on the page under migration,
1185 * because then pte is replaced with migration swap entry and direct I/O code
1186 * will wait in the page fault for migration to complete.
1187 */
1188static int unmap_and_move_huge_page(new_page_t get_new_page,
68711a74
DR
1189 free_page_t put_new_page, unsigned long private,
1190 struct page *hpage, int force,
7cd12b4a 1191 enum migrate_mode mode, int reason)
290408d4 1192{
2def7424 1193 int rc = -EAGAIN;
290408d4 1194 int *result = NULL;
2ebba6b7 1195 int page_was_mapped = 0;
32665f2b 1196 struct page *new_hpage;
290408d4
NH
1197 struct anon_vma *anon_vma = NULL;
1198
83467efb
NH
1199 /*
1200 * Movability of hugepages depends on architectures and hugepage size.
1201 * This check is necessary because some callers of hugepage migration
1202 * like soft offline and memory hotremove don't walk through page
1203 * tables or check whether the hugepage is pmd-based or not before
1204 * kicking migration.
1205 */
100873d7 1206 if (!hugepage_migration_supported(page_hstate(hpage))) {
32665f2b 1207 putback_active_hugepage(hpage);
83467efb 1208 return -ENOSYS;
32665f2b 1209 }
83467efb 1210
32665f2b 1211 new_hpage = get_new_page(hpage, private, &result);
290408d4
NH
1212 if (!new_hpage)
1213 return -ENOMEM;
1214
290408d4 1215 if (!trylock_page(hpage)) {
a6bc32b8 1216 if (!force || mode != MIGRATE_SYNC)
290408d4
NH
1217 goto out;
1218 lock_page(hpage);
1219 }
1220
746b18d4
PZ
1221 if (PageAnon(hpage))
1222 anon_vma = page_get_anon_vma(hpage);
290408d4 1223
7db7671f
HD
1224 if (unlikely(!trylock_page(new_hpage)))
1225 goto put_anon;
1226
2ebba6b7
HD
1227 if (page_mapped(hpage)) {
1228 try_to_unmap(hpage,
1229 TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1230 page_was_mapped = 1;
1231 }
290408d4
NH
1232
1233 if (!page_mapped(hpage))
5c3f9a67 1234 rc = move_to_new_page(new_hpage, hpage, mode);
290408d4 1235
5c3f9a67
HD
1236 if (page_was_mapped)
1237 remove_migration_ptes(hpage,
e388466d 1238 rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
290408d4 1239
7db7671f
HD
1240 unlock_page(new_hpage);
1241
1242put_anon:
fd4a4663 1243 if (anon_vma)
9e60109f 1244 put_anon_vma(anon_vma);
8e6ac7fa 1245
2def7424 1246 if (rc == MIGRATEPAGE_SUCCESS) {
8e6ac7fa 1247 hugetlb_cgroup_migrate(hpage, new_hpage);
2def7424 1248 put_new_page = NULL;
7cd12b4a 1249 set_page_owner_migrate_reason(new_hpage, reason);
2def7424 1250 }
8e6ac7fa 1251
290408d4 1252 unlock_page(hpage);
09761333 1253out:
b8ec1cee
NH
1254 if (rc != -EAGAIN)
1255 putback_active_hugepage(hpage);
c3114a84
AK
1256 if (reason == MR_MEMORY_FAILURE && !test_set_page_hwpoison(hpage))
1257 num_poisoned_pages_inc();
68711a74
DR
1258
1259 /*
1260 * If migration was not successful and there's a freeing callback, use
1261 * it. Otherwise, put_page() will drop the reference grabbed during
1262 * isolation.
1263 */
2def7424 1264 if (put_new_page)
68711a74
DR
1265 put_new_page(new_hpage, private);
1266 else
3aaa76e1 1267 putback_active_hugepage(new_hpage);
68711a74 1268
290408d4
NH
1269 if (result) {
1270 if (rc)
1271 *result = rc;
1272 else
1273 *result = page_to_nid(new_hpage);
1274 }
1275 return rc;
1276}
1277
b20a3503 1278/*
c73e5c9c
SB
1279 * migrate_pages - migrate the pages specified in a list, to the free pages
1280 * supplied as the target for the page migration
b20a3503 1281 *
c73e5c9c
SB
1282 * @from: The list of pages to be migrated.
1283 * @get_new_page: The function used to allocate free pages to be used
1284 * as the target of the page migration.
68711a74
DR
1285 * @put_new_page: The function used to free target pages if migration
1286 * fails, or NULL if no special handling is necessary.
c73e5c9c
SB
1287 * @private: Private data to be passed on to get_new_page()
1288 * @mode: The migration mode that specifies the constraints for
1289 * page migration, if any.
1290 * @reason: The reason for page migration.
b20a3503 1291 *
c73e5c9c
SB
1292 * The function returns after 10 attempts or if no pages are movable any more
1293 * because the list has become empty or no retryable pages exist any more.
14e0f9bc 1294 * The caller should call putback_movable_pages() to return pages to the LRU
28bd6578 1295 * or free list only if ret != 0.
b20a3503 1296 *
c73e5c9c 1297 * Returns the number of pages that were not migrated, or an error code.
b20a3503 1298 */
9c620e2b 1299int migrate_pages(struct list_head *from, new_page_t get_new_page,
68711a74
DR
1300 free_page_t put_new_page, unsigned long private,
1301 enum migrate_mode mode, int reason)
b20a3503 1302{
e24f0b8f 1303 int retry = 1;
b20a3503 1304 int nr_failed = 0;
5647bc29 1305 int nr_succeeded = 0;
b20a3503
CL
1306 int pass = 0;
1307 struct page *page;
1308 struct page *page2;
1309 int swapwrite = current->flags & PF_SWAPWRITE;
1310 int rc;
1311
1312 if (!swapwrite)
1313 current->flags |= PF_SWAPWRITE;
1314
e24f0b8f
CL
1315 for(pass = 0; pass < 10 && retry; pass++) {
1316 retry = 0;
b20a3503 1317
e24f0b8f 1318 list_for_each_entry_safe(page, page2, from, lru) {
e24f0b8f 1319 cond_resched();
2d1db3b1 1320
31caf665
NH
1321 if (PageHuge(page))
1322 rc = unmap_and_move_huge_page(get_new_page,
68711a74 1323 put_new_page, private, page,
7cd12b4a 1324 pass > 2, mode, reason);
31caf665 1325 else
68711a74 1326 rc = unmap_and_move(get_new_page, put_new_page,
add05cec
NH
1327 private, page, pass > 2, mode,
1328 reason);
2d1db3b1 1329
e24f0b8f 1330 switch(rc) {
95a402c3 1331 case -ENOMEM:
dfef2ef4 1332 nr_failed++;
95a402c3 1333 goto out;
e24f0b8f 1334 case -EAGAIN:
2d1db3b1 1335 retry++;
e24f0b8f 1336 break;
78bd5209 1337 case MIGRATEPAGE_SUCCESS:
5647bc29 1338 nr_succeeded++;
e24f0b8f
CL
1339 break;
1340 default:
354a3363
NH
1341 /*
1342 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1343 * unlike -EAGAIN case, the failed page is
1344 * removed from migration page list and not
1345 * retried in the next outer loop.
1346 */
2d1db3b1 1347 nr_failed++;
e24f0b8f 1348 break;
2d1db3b1 1349 }
b20a3503
CL
1350 }
1351 }
f2f81fb2
VB
1352 nr_failed += retry;
1353 rc = nr_failed;
95a402c3 1354out:
5647bc29
MG
1355 if (nr_succeeded)
1356 count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1357 if (nr_failed)
1358 count_vm_events(PGMIGRATE_FAIL, nr_failed);
7b2a2d4a
MG
1359 trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1360
b20a3503
CL
1361 if (!swapwrite)
1362 current->flags &= ~PF_SWAPWRITE;
1363
78bd5209 1364 return rc;
b20a3503 1365}
95a402c3 1366
742755a1
CL
1367#ifdef CONFIG_NUMA
1368/*
1369 * Move a list of individual pages
1370 */
1371struct page_to_node {
1372 unsigned long addr;
1373 struct page *page;
1374 int node;
1375 int status;
1376};
1377
1378static struct page *new_page_node(struct page *p, unsigned long private,
1379 int **result)
1380{
1381 struct page_to_node *pm = (struct page_to_node *)private;
1382
1383 while (pm->node != MAX_NUMNODES && pm->page != p)
1384 pm++;
1385
1386 if (pm->node == MAX_NUMNODES)
1387 return NULL;
1388
1389 *result = &pm->status;
1390
e632a938
NH
1391 if (PageHuge(p))
1392 return alloc_huge_page_node(page_hstate(compound_head(p)),
1393 pm->node);
1394 else
96db800f 1395 return __alloc_pages_node(pm->node,
e97ca8e5 1396 GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
742755a1
CL
1397}
1398
1399/*
1400 * Move a set of pages as indicated in the pm array. The addr
1401 * field must be set to the virtual address of the page to be moved
1402 * and the node number must contain a valid target node.
5e9a0f02 1403 * The pm array ends with node = MAX_NUMNODES.
742755a1 1404 */
5e9a0f02
BG
1405static int do_move_page_to_node_array(struct mm_struct *mm,
1406 struct page_to_node *pm,
1407 int migrate_all)
742755a1
CL
1408{
1409 int err;
1410 struct page_to_node *pp;
1411 LIST_HEAD(pagelist);
1412
1413 down_read(&mm->mmap_sem);
1414
1415 /*
1416 * Build a list of pages to migrate
1417 */
742755a1
CL
1418 for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1419 struct vm_area_struct *vma;
1420 struct page *page;
1421
742755a1
CL
1422 err = -EFAULT;
1423 vma = find_vma(mm, pp->addr);
70384dc6 1424 if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
742755a1
CL
1425 goto set_status;
1426
d899844e
KS
1427 /* FOLL_DUMP to ignore special (like zero) pages */
1428 page = follow_page(vma, pp->addr,
1429 FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
89f5b7da
LT
1430
1431 err = PTR_ERR(page);
1432 if (IS_ERR(page))
1433 goto set_status;
1434
742755a1
CL
1435 err = -ENOENT;
1436 if (!page)
1437 goto set_status;
1438
742755a1
CL
1439 pp->page = page;
1440 err = page_to_nid(page);
1441
1442 if (err == pp->node)
1443 /*
1444 * Node already in the right place
1445 */
1446 goto put_and_set;
1447
1448 err = -EACCES;
1449 if (page_mapcount(page) > 1 &&
1450 !migrate_all)
1451 goto put_and_set;
1452
e632a938 1453 if (PageHuge(page)) {
e66f17ff
NH
1454 if (PageHead(page))
1455 isolate_huge_page(page, &pagelist);
e632a938
NH
1456 goto put_and_set;
1457 }
1458
62695a84 1459 err = isolate_lru_page(page);
6d9c285a 1460 if (!err) {
62695a84 1461 list_add_tail(&page->lru, &pagelist);
599d0c95 1462 inc_node_page_state(page, NR_ISOLATED_ANON +
6d9c285a
KM
1463 page_is_file_cache(page));
1464 }
742755a1
CL
1465put_and_set:
1466 /*
1467 * Either remove the duplicate refcount from
1468 * isolate_lru_page() or drop the page ref if it was
1469 * not isolated.
1470 */
1471 put_page(page);
1472set_status:
1473 pp->status = err;
1474 }
1475
e78bbfa8 1476 err = 0;
cf608ac1 1477 if (!list_empty(&pagelist)) {
68711a74 1478 err = migrate_pages(&pagelist, new_page_node, NULL,
9c620e2b 1479 (unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
cf608ac1 1480 if (err)
e632a938 1481 putback_movable_pages(&pagelist);
cf608ac1 1482 }
742755a1
CL
1483
1484 up_read(&mm->mmap_sem);
1485 return err;
1486}
1487
5e9a0f02
BG
1488/*
1489 * Migrate an array of page address onto an array of nodes and fill
1490 * the corresponding array of status.
1491 */
3268c63e 1492static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
5e9a0f02
BG
1493 unsigned long nr_pages,
1494 const void __user * __user *pages,
1495 const int __user *nodes,
1496 int __user *status, int flags)
1497{
3140a227 1498 struct page_to_node *pm;
3140a227
BG
1499 unsigned long chunk_nr_pages;
1500 unsigned long chunk_start;
1501 int err;
5e9a0f02 1502
3140a227
BG
1503 err = -ENOMEM;
1504 pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1505 if (!pm)
5e9a0f02 1506 goto out;
35282a2d
BG
1507
1508 migrate_prep();
1509
5e9a0f02 1510 /*
3140a227
BG
1511 * Store a chunk of page_to_node array in a page,
1512 * but keep the last one as a marker
5e9a0f02 1513 */
3140a227 1514 chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
5e9a0f02 1515
3140a227
BG
1516 for (chunk_start = 0;
1517 chunk_start < nr_pages;
1518 chunk_start += chunk_nr_pages) {
1519 int j;
5e9a0f02 1520
3140a227
BG
1521 if (chunk_start + chunk_nr_pages > nr_pages)
1522 chunk_nr_pages = nr_pages - chunk_start;
1523
1524 /* fill the chunk pm with addrs and nodes from user-space */
1525 for (j = 0; j < chunk_nr_pages; j++) {
1526 const void __user *p;
5e9a0f02
BG
1527 int node;
1528
3140a227
BG
1529 err = -EFAULT;
1530 if (get_user(p, pages + j + chunk_start))
1531 goto out_pm;
1532 pm[j].addr = (unsigned long) p;
1533
1534 if (get_user(node, nodes + j + chunk_start))
5e9a0f02
BG
1535 goto out_pm;
1536
1537 err = -ENODEV;
6f5a55f1
LT
1538 if (node < 0 || node >= MAX_NUMNODES)
1539 goto out_pm;
1540
389162c2 1541 if (!node_state(node, N_MEMORY))
5e9a0f02
BG
1542 goto out_pm;
1543
1544 err = -EACCES;
1545 if (!node_isset(node, task_nodes))
1546 goto out_pm;
1547
3140a227
BG
1548 pm[j].node = node;
1549 }
1550
1551 /* End marker for this chunk */
1552 pm[chunk_nr_pages].node = MAX_NUMNODES;
1553
1554 /* Migrate this chunk */
1555 err = do_move_page_to_node_array(mm, pm,
1556 flags & MPOL_MF_MOVE_ALL);
1557 if (err < 0)
1558 goto out_pm;
5e9a0f02 1559
5e9a0f02 1560 /* Return status information */
3140a227
BG
1561 for (j = 0; j < chunk_nr_pages; j++)
1562 if (put_user(pm[j].status, status + j + chunk_start)) {
5e9a0f02 1563 err = -EFAULT;
3140a227
BG
1564 goto out_pm;
1565 }
1566 }
1567 err = 0;
5e9a0f02
BG
1568
1569out_pm:
3140a227 1570 free_page((unsigned long)pm);
5e9a0f02
BG
1571out:
1572 return err;
1573}
1574
742755a1 1575/*
2f007e74 1576 * Determine the nodes of an array of pages and store it in an array of status.
742755a1 1577 */
80bba129
BG
1578static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1579 const void __user **pages, int *status)
742755a1 1580{
2f007e74 1581 unsigned long i;
2f007e74 1582
742755a1
CL
1583 down_read(&mm->mmap_sem);
1584
2f007e74 1585 for (i = 0; i < nr_pages; i++) {
80bba129 1586 unsigned long addr = (unsigned long)(*pages);
742755a1
CL
1587 struct vm_area_struct *vma;
1588 struct page *page;
c095adbc 1589 int err = -EFAULT;
2f007e74
BG
1590
1591 vma = find_vma(mm, addr);
70384dc6 1592 if (!vma || addr < vma->vm_start)
742755a1
CL
1593 goto set_status;
1594
d899844e
KS
1595 /* FOLL_DUMP to ignore special (like zero) pages */
1596 page = follow_page(vma, addr, FOLL_DUMP);
89f5b7da
LT
1597
1598 err = PTR_ERR(page);
1599 if (IS_ERR(page))
1600 goto set_status;
1601
d899844e 1602 err = page ? page_to_nid(page) : -ENOENT;
742755a1 1603set_status:
80bba129
BG
1604 *status = err;
1605
1606 pages++;
1607 status++;
1608 }
1609
1610 up_read(&mm->mmap_sem);
1611}
1612
1613/*
1614 * Determine the nodes of a user array of pages and store it in
1615 * a user array of status.
1616 */
1617static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1618 const void __user * __user *pages,
1619 int __user *status)
1620{
1621#define DO_PAGES_STAT_CHUNK_NR 16
1622 const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1623 int chunk_status[DO_PAGES_STAT_CHUNK_NR];
80bba129 1624
87b8d1ad
PA
1625 while (nr_pages) {
1626 unsigned long chunk_nr;
80bba129 1627
87b8d1ad
PA
1628 chunk_nr = nr_pages;
1629 if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1630 chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1631
1632 if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1633 break;
80bba129
BG
1634
1635 do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1636
87b8d1ad
PA
1637 if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1638 break;
742755a1 1639
87b8d1ad
PA
1640 pages += chunk_nr;
1641 status += chunk_nr;
1642 nr_pages -= chunk_nr;
1643 }
1644 return nr_pages ? -EFAULT : 0;
742755a1
CL
1645}
1646
1647/*
1648 * Move a list of pages in the address space of the currently executing
1649 * process.
1650 */
938bb9f5
HC
1651SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1652 const void __user * __user *, pages,
1653 const int __user *, nodes,
1654 int __user *, status, int, flags)
742755a1 1655{
742755a1 1656 struct task_struct *task;
742755a1 1657 struct mm_struct *mm;
5e9a0f02 1658 int err;
3268c63e 1659 nodemask_t task_nodes;
742755a1
CL
1660
1661 /* Check flags */
1662 if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1663 return -EINVAL;
1664
1665 if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1666 return -EPERM;
1667
1668 /* Find the mm_struct */
a879bf58 1669 rcu_read_lock();
228ebcbe 1670 task = pid ? find_task_by_vpid(pid) : current;
742755a1 1671 if (!task) {
a879bf58 1672 rcu_read_unlock();
742755a1
CL
1673 return -ESRCH;
1674 }
3268c63e 1675 get_task_struct(task);
742755a1
CL
1676
1677 /*
1678 * Check if this process has the right to modify the specified
197e7e52 1679 * process. Use the regular "ptrace_may_access()" checks.
742755a1 1680 */
197e7e52 1681 if (!ptrace_may_access(task, PTRACE_MODE_READ_REALCREDS)) {
c69e8d9c 1682 rcu_read_unlock();
742755a1 1683 err = -EPERM;
5e9a0f02 1684 goto out;
742755a1 1685 }
c69e8d9c 1686 rcu_read_unlock();
742755a1 1687
86c3a764
DQ
1688 err = security_task_movememory(task);
1689 if (err)
5e9a0f02 1690 goto out;
86c3a764 1691
3268c63e
CL
1692 task_nodes = cpuset_mems_allowed(task);
1693 mm = get_task_mm(task);
1694 put_task_struct(task);
1695
6e8b09ea
SL
1696 if (!mm)
1697 return -EINVAL;
1698
1699 if (nodes)
1700 err = do_pages_move(mm, task_nodes, nr_pages, pages,
1701 nodes, status, flags);
1702 else
1703 err = do_pages_stat(mm, nr_pages, pages, status);
742755a1 1704
742755a1
CL
1705 mmput(mm);
1706 return err;
3268c63e
CL
1707
1708out:
1709 put_task_struct(task);
1710 return err;
742755a1 1711}
742755a1 1712
7039e1db
PZ
1713#ifdef CONFIG_NUMA_BALANCING
1714/*
1715 * Returns true if this is a safe migration target node for misplaced NUMA
1716 * pages. Currently it only checks the watermarks which crude
1717 */
1718static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
3abef4e6 1719 unsigned long nr_migrate_pages)
7039e1db
PZ
1720{
1721 int z;
599d0c95 1722
7039e1db
PZ
1723 for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1724 struct zone *zone = pgdat->node_zones + z;
1725
1726 if (!populated_zone(zone))
1727 continue;
1728
7039e1db
PZ
1729 /* Avoid waking kswapd by allocating pages_to_migrate pages. */
1730 if (!zone_watermark_ok(zone, 0,
1731 high_wmark_pages(zone) +
1732 nr_migrate_pages,
1733 0, 0))
1734 continue;
1735 return true;
1736 }
1737 return false;
1738}
1739
1740static struct page *alloc_misplaced_dst_page(struct page *page,
1741 unsigned long data,
1742 int **result)
1743{
1744 int nid = (int) data;
1745 struct page *newpage;
1746
96db800f 1747 newpage = __alloc_pages_node(nid,
e97ca8e5
JW
1748 (GFP_HIGHUSER_MOVABLE |
1749 __GFP_THISNODE | __GFP_NOMEMALLOC |
1750 __GFP_NORETRY | __GFP_NOWARN) &
8479eba7 1751 ~__GFP_RECLAIM, 0);
bac0382c 1752
7039e1db
PZ
1753 return newpage;
1754}
1755
a8f60772
MG
1756/*
1757 * page migration rate limiting control.
1758 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1759 * window of time. Default here says do not migrate more than 1280M per second.
1760 */
1761static unsigned int migrate_interval_millisecs __read_mostly = 100;
1762static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1763
b32967ff 1764/* Returns true if the node is migrate rate-limited after the update */
1c30e017
MG
1765static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1766 unsigned long nr_pages)
7039e1db 1767{
a8f60772
MG
1768 /*
1769 * Rate-limit the amount of data that is being migrated to a node.
1770 * Optimal placement is no good if the memory bus is saturated and
1771 * all the time is being spent migrating!
1772 */
a8f60772 1773 if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1c5e9c27 1774 spin_lock(&pgdat->numabalancing_migrate_lock);
a8f60772
MG
1775 pgdat->numabalancing_migrate_nr_pages = 0;
1776 pgdat->numabalancing_migrate_next_window = jiffies +
1777 msecs_to_jiffies(migrate_interval_millisecs);
1c5e9c27 1778 spin_unlock(&pgdat->numabalancing_migrate_lock);
a8f60772 1779 }
af1839d7
MG
1780 if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1781 trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1782 nr_pages);
1c5e9c27 1783 return true;
af1839d7 1784 }
1c5e9c27
MG
1785
1786 /*
1787 * This is an unlocked non-atomic update so errors are possible.
1788 * The consequences are failing to migrate when we potentiall should
1789 * have which is not severe enough to warrant locking. If it is ever
1790 * a problem, it can be converted to a per-cpu counter.
1791 */
1792 pgdat->numabalancing_migrate_nr_pages += nr_pages;
1793 return false;
b32967ff
MG
1794}
1795
1c30e017 1796static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
b32967ff 1797{
340ef390 1798 int page_lru;
a8f60772 1799
309381fe 1800 VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
3abef4e6 1801
7039e1db 1802 /* Avoid migrating to a node that is nearly full */
340ef390
HD
1803 if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1804 return 0;
7039e1db 1805
340ef390
HD
1806 if (isolate_lru_page(page))
1807 return 0;
7039e1db 1808
340ef390
HD
1809 /*
1810 * migrate_misplaced_transhuge_page() skips page migration's usual
1811 * check on page_count(), so we must do it here, now that the page
1812 * has been isolated: a GUP pin, or any other pin, prevents migration.
1813 * The expected page count is 3: 1 for page's mapcount and 1 for the
1814 * caller's pin and 1 for the reference taken by isolate_lru_page().
1815 */
1816 if (PageTransHuge(page) && page_count(page) != 3) {
1817 putback_lru_page(page);
1818 return 0;
7039e1db
PZ
1819 }
1820
340ef390 1821 page_lru = page_is_file_cache(page);
599d0c95 1822 mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
340ef390
HD
1823 hpage_nr_pages(page));
1824
149c33e1 1825 /*
340ef390
HD
1826 * Isolating the page has taken another reference, so the
1827 * caller's reference can be safely dropped without the page
1828 * disappearing underneath us during migration.
149c33e1
MG
1829 */
1830 put_page(page);
340ef390 1831 return 1;
b32967ff
MG
1832}
1833
de466bd6
MG
1834bool pmd_trans_migrating(pmd_t pmd)
1835{
1836 struct page *page = pmd_page(pmd);
1837 return PageLocked(page);
1838}
1839
b32967ff
MG
1840/*
1841 * Attempt to migrate a misplaced page to the specified destination
1842 * node. Caller is expected to have an elevated reference count on
1843 * the page that will be dropped by this function before returning.
1844 */
1bc115d8
MG
1845int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1846 int node)
b32967ff
MG
1847{
1848 pg_data_t *pgdat = NODE_DATA(node);
340ef390 1849 int isolated;
b32967ff
MG
1850 int nr_remaining;
1851 LIST_HEAD(migratepages);
1852
1853 /*
1bc115d8
MG
1854 * Don't migrate file pages that are mapped in multiple processes
1855 * with execute permissions as they are probably shared libraries.
b32967ff 1856 */
1bc115d8
MG
1857 if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1858 (vma->vm_flags & VM_EXEC))
b32967ff 1859 goto out;
b32967ff
MG
1860
1861 /*
1862 * Rate-limit the amount of data that is being migrated to a node.
1863 * Optimal placement is no good if the memory bus is saturated and
1864 * all the time is being spent migrating!
1865 */
340ef390 1866 if (numamigrate_update_ratelimit(pgdat, 1))
b32967ff 1867 goto out;
b32967ff
MG
1868
1869 isolated = numamigrate_isolate_page(pgdat, page);
1870 if (!isolated)
1871 goto out;
1872
1873 list_add(&page->lru, &migratepages);
9c620e2b 1874 nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
68711a74
DR
1875 NULL, node, MIGRATE_ASYNC,
1876 MR_NUMA_MISPLACED);
b32967ff 1877 if (nr_remaining) {
59c82b70
JK
1878 if (!list_empty(&migratepages)) {
1879 list_del(&page->lru);
599d0c95 1880 dec_node_page_state(page, NR_ISOLATED_ANON +
59c82b70
JK
1881 page_is_file_cache(page));
1882 putback_lru_page(page);
1883 }
b32967ff
MG
1884 isolated = 0;
1885 } else
1886 count_vm_numa_event(NUMA_PAGE_MIGRATE);
7039e1db 1887 BUG_ON(!list_empty(&migratepages));
7039e1db 1888 return isolated;
340ef390
HD
1889
1890out:
1891 put_page(page);
1892 return 0;
7039e1db 1893}
220018d3 1894#endif /* CONFIG_NUMA_BALANCING */
b32967ff 1895
220018d3 1896#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
340ef390
HD
1897/*
1898 * Migrates a THP to a given target node. page must be locked and is unlocked
1899 * before returning.
1900 */
b32967ff
MG
1901int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1902 struct vm_area_struct *vma,
1903 pmd_t *pmd, pmd_t entry,
1904 unsigned long address,
1905 struct page *page, int node)
1906{
c4088ebd 1907 spinlock_t *ptl;
b32967ff
MG
1908 pg_data_t *pgdat = NODE_DATA(node);
1909 int isolated = 0;
1910 struct page *new_page = NULL;
b32967ff 1911 int page_lru = page_is_file_cache(page);
f714f4f2
MG
1912 unsigned long mmun_start = address & HPAGE_PMD_MASK;
1913 unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
b32967ff 1914
b32967ff
MG
1915 /*
1916 * Rate-limit the amount of data that is being migrated to a node.
1917 * Optimal placement is no good if the memory bus is saturated and
1918 * all the time is being spent migrating!
1919 */
d28d4335 1920 if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
b32967ff
MG
1921 goto out_dropref;
1922
1923 new_page = alloc_pages_node(node,
25160354 1924 (GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
e97ca8e5 1925 HPAGE_PMD_ORDER);
340ef390
HD
1926 if (!new_page)
1927 goto out_fail;
9a982250 1928 prep_transhuge_page(new_page);
340ef390 1929
b32967ff 1930 isolated = numamigrate_isolate_page(pgdat, page);
340ef390 1931 if (!isolated) {
b32967ff 1932 put_page(new_page);
340ef390 1933 goto out_fail;
b32967ff 1934 }
b0943d61 1935
b32967ff 1936 /* Prepare a page as a migration target */
48c935ad 1937 __SetPageLocked(new_page);
d44d363f
SL
1938 if (PageSwapBacked(page))
1939 __SetPageSwapBacked(new_page);
b32967ff
MG
1940
1941 /* anon mapping, we can simply copy page->mapping to the new page: */
1942 new_page->mapping = page->mapping;
1943 new_page->index = page->index;
1944 migrate_page_copy(new_page, page);
1945 WARN_ON(PageLRU(new_page));
1946
1947 /* Recheck the target PMD */
f714f4f2 1948 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 1949 ptl = pmd_lock(mm, pmd);
f4e177d1 1950 if (unlikely(!pmd_same(*pmd, entry) || !page_ref_freeze(page, 2))) {
c4088ebd 1951 spin_unlock(ptl);
f714f4f2 1952 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff
MG
1953
1954 /* Reverse changes made by migrate_page_copy() */
1955 if (TestClearPageActive(new_page))
1956 SetPageActive(page);
1957 if (TestClearPageUnevictable(new_page))
1958 SetPageUnevictable(page);
b32967ff
MG
1959
1960 unlock_page(new_page);
1961 put_page(new_page); /* Free it */
1962
a54a407f
MG
1963 /* Retake the callers reference and putback on LRU */
1964 get_page(page);
b32967ff 1965 putback_lru_page(page);
599d0c95 1966 mod_node_page_state(page_pgdat(page),
a54a407f 1967 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
eb4489f6
MG
1968
1969 goto out_unlock;
b32967ff
MG
1970 }
1971
10102459 1972 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
2b4847e7 1973 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
b32967ff 1974
2b4847e7
MG
1975 /*
1976 * Clear the old entry under pagetable lock and establish the new PTE.
1977 * Any parallel GUP will either observe the old page blocking on the
1978 * page lock, block on the page table lock or observe the new page.
1979 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1980 * guarantee the copy is visible before the pagetable update.
1981 */
f714f4f2 1982 flush_cache_range(vma, mmun_start, mmun_end);
d281ee61 1983 page_add_anon_rmap(new_page, vma, mmun_start, true);
8809aa2d 1984 pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
f714f4f2 1985 set_pmd_at(mm, mmun_start, pmd, entry);
ce4a9cc5 1986 update_mmu_cache_pmd(vma, address, &entry);
2b4847e7 1987
f4e177d1 1988 page_ref_unfreeze(page, 2);
51afb12b 1989 mlock_migrate_page(new_page, page);
d281ee61 1990 page_remove_rmap(page, true);
7cd12b4a 1991 set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2b4847e7 1992
c4088ebd 1993 spin_unlock(ptl);
f714f4f2 1994 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b32967ff 1995
11de9927
MG
1996 /* Take an "isolate" reference and put new page on the LRU. */
1997 get_page(new_page);
1998 putback_lru_page(new_page);
1999
b32967ff
MG
2000 unlock_page(new_page);
2001 unlock_page(page);
2002 put_page(page); /* Drop the rmap reference */
2003 put_page(page); /* Drop the LRU isolation reference */
2004
2005 count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2006 count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2007
599d0c95 2008 mod_node_page_state(page_pgdat(page),
b32967ff
MG
2009 NR_ISOLATED_ANON + page_lru,
2010 -HPAGE_PMD_NR);
2011 return isolated;
2012
340ef390
HD
2013out_fail:
2014 count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
b32967ff 2015out_dropref:
2b4847e7
MG
2016 ptl = pmd_lock(mm, pmd);
2017 if (pmd_same(*pmd, entry)) {
4d942466 2018 entry = pmd_modify(entry, vma->vm_page_prot);
f714f4f2 2019 set_pmd_at(mm, mmun_start, pmd, entry);
2b4847e7
MG
2020 update_mmu_cache_pmd(vma, address, &entry);
2021 }
2022 spin_unlock(ptl);
a54a407f 2023
eb4489f6 2024out_unlock:
340ef390 2025 unlock_page(page);
b32967ff 2026 put_page(page);
b32967ff
MG
2027 return 0;
2028}
7039e1db
PZ
2029#endif /* CONFIG_NUMA_BALANCING */
2030
2031#endif /* CONFIG_NUMA */