]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/oom_kill.c
mm: memcontrol: add sanity checks for memcg->id.ref on get/put
[mirror_ubuntu-artful-kernel.git] / mm / oom_kill.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/oom_kill.c
3 *
4 * Copyright (C) 1998,2000 Rik van Riel
5 * Thanks go out to Claus Fischer for some serious inspiration and
6 * for goading me into coding this file...
a63d83f4
DR
7 * Copyright (C) 2010 Google, Inc.
8 * Rewritten by David Rientjes
1da177e4
LT
9 *
10 * The routines in this file are used to kill a process when
a49335cc
PJ
11 * we're seriously out of memory. This gets called from __alloc_pages()
12 * in mm/page_alloc.c when we really run out of memory.
1da177e4
LT
13 *
14 * Since we won't call these routines often (on a well-configured
15 * machine) this file will double as a 'coding guide' and a signpost
16 * for newbie kernel hackers. It features several pointers to major
17 * kernel subsystems and hints as to where to find out what things do.
18 */
19
8ac773b4 20#include <linux/oom.h>
1da177e4 21#include <linux/mm.h>
4e950f6f 22#include <linux/err.h>
5a0e3ad6 23#include <linux/gfp.h>
1da177e4
LT
24#include <linux/sched.h>
25#include <linux/swap.h>
26#include <linux/timex.h>
27#include <linux/jiffies.h>
ef08e3b4 28#include <linux/cpuset.h>
b95f1b31 29#include <linux/export.h>
8bc719d3 30#include <linux/notifier.h>
c7ba5c9e 31#include <linux/memcontrol.h>
6f48d0eb 32#include <linux/mempolicy.h>
5cd9c58f 33#include <linux/security.h>
edd45544 34#include <linux/ptrace.h>
f660daac 35#include <linux/freezer.h>
43d2b113 36#include <linux/ftrace.h>
dc3f21ea 37#include <linux/ratelimit.h>
aac45363
MH
38#include <linux/kthread.h>
39#include <linux/init.h>
40
41#include <asm/tlb.h>
42#include "internal.h"
43d2b113
KH
43
44#define CREATE_TRACE_POINTS
45#include <trace/events/oom.h>
1da177e4 46
fadd8fbd 47int sysctl_panic_on_oom;
fe071d7e 48int sysctl_oom_kill_allocating_task;
ad915c43 49int sysctl_oom_dump_tasks = 1;
dc56401f
JW
50
51DEFINE_MUTEX(oom_lock);
1da177e4 52
6f48d0eb
DR
53#ifdef CONFIG_NUMA
54/**
55 * has_intersects_mems_allowed() - check task eligiblity for kill
ad962441 56 * @start: task struct of which task to consider
6f48d0eb
DR
57 * @mask: nodemask passed to page allocator for mempolicy ooms
58 *
59 * Task eligibility is determined by whether or not a candidate task, @tsk,
60 * shares the same mempolicy nodes as current if it is bound by such a policy
61 * and whether or not it has the same set of allowed cpuset nodes.
495789a5 62 */
ad962441 63static bool has_intersects_mems_allowed(struct task_struct *start,
6f48d0eb 64 const nodemask_t *mask)
495789a5 65{
ad962441
ON
66 struct task_struct *tsk;
67 bool ret = false;
495789a5 68
ad962441 69 rcu_read_lock();
1da4db0c 70 for_each_thread(start, tsk) {
6f48d0eb
DR
71 if (mask) {
72 /*
73 * If this is a mempolicy constrained oom, tsk's
74 * cpuset is irrelevant. Only return true if its
75 * mempolicy intersects current, otherwise it may be
76 * needlessly killed.
77 */
ad962441 78 ret = mempolicy_nodemask_intersects(tsk, mask);
6f48d0eb
DR
79 } else {
80 /*
81 * This is not a mempolicy constrained oom, so only
82 * check the mems of tsk's cpuset.
83 */
ad962441 84 ret = cpuset_mems_allowed_intersects(current, tsk);
6f48d0eb 85 }
ad962441
ON
86 if (ret)
87 break;
1da4db0c 88 }
ad962441 89 rcu_read_unlock();
df1090a8 90
ad962441 91 return ret;
6f48d0eb
DR
92}
93#else
94static bool has_intersects_mems_allowed(struct task_struct *tsk,
95 const nodemask_t *mask)
96{
97 return true;
495789a5 98}
6f48d0eb 99#endif /* CONFIG_NUMA */
495789a5 100
6f48d0eb
DR
101/*
102 * The process p may have detached its own ->mm while exiting or through
103 * use_mm(), but one or more of its subthreads may still have a valid
104 * pointer. Return p, or any of its subthreads with a valid ->mm, with
105 * task_lock() held.
106 */
158e0a2d 107struct task_struct *find_lock_task_mm(struct task_struct *p)
dd8e8f40 108{
1da4db0c 109 struct task_struct *t;
dd8e8f40 110
4d4048be
ON
111 rcu_read_lock();
112
1da4db0c 113 for_each_thread(p, t) {
dd8e8f40
ON
114 task_lock(t);
115 if (likely(t->mm))
4d4048be 116 goto found;
dd8e8f40 117 task_unlock(t);
1da4db0c 118 }
4d4048be
ON
119 t = NULL;
120found:
121 rcu_read_unlock();
dd8e8f40 122
4d4048be 123 return t;
dd8e8f40
ON
124}
125
db2a0dd7
YB
126/*
127 * order == -1 means the oom kill is required by sysrq, otherwise only
128 * for display purposes.
129 */
130static inline bool is_sysrq_oom(struct oom_control *oc)
131{
132 return oc->order == -1;
133}
134
7c5f64f8
VD
135static inline bool is_memcg_oom(struct oom_control *oc)
136{
137 return oc->memcg != NULL;
138}
139
ab290adb 140/* return true if the task is not adequate as candidate victim task. */
e85bfd3a 141static bool oom_unkillable_task(struct task_struct *p,
2314b42d 142 struct mem_cgroup *memcg, const nodemask_t *nodemask)
ab290adb
KM
143{
144 if (is_global_init(p))
145 return true;
146 if (p->flags & PF_KTHREAD)
147 return true;
148
149 /* When mem_cgroup_out_of_memory() and p is not member of the group */
72835c86 150 if (memcg && !task_in_mem_cgroup(p, memcg))
ab290adb
KM
151 return true;
152
153 /* p may not have freeable memory in nodemask */
154 if (!has_intersects_mems_allowed(p, nodemask))
155 return true;
156
157 return false;
158}
159
1da177e4 160/**
a63d83f4 161 * oom_badness - heuristic function to determine which candidate task to kill
1da177e4 162 * @p: task struct of which task we should calculate
a63d83f4 163 * @totalpages: total present RAM allowed for page allocation
1da177e4 164 *
a63d83f4
DR
165 * The heuristic for determining which task to kill is made to be as simple and
166 * predictable as possible. The goal is to return the highest value for the
167 * task consuming the most memory to avoid subsequent oom failures.
1da177e4 168 */
a7f638f9
DR
169unsigned long oom_badness(struct task_struct *p, struct mem_cgroup *memcg,
170 const nodemask_t *nodemask, unsigned long totalpages)
1da177e4 171{
1e11ad8d 172 long points;
61eafb00 173 long adj;
28b83c51 174
72835c86 175 if (oom_unkillable_task(p, memcg, nodemask))
26ebc984 176 return 0;
1da177e4 177
dd8e8f40
ON
178 p = find_lock_task_mm(p);
179 if (!p)
1da177e4
LT
180 return 0;
181
bb8a4b7f
MH
182 /*
183 * Do not even consider tasks which are explicitly marked oom
b18dc5f2
MH
184 * unkillable or have been already oom reaped or the are in
185 * the middle of vfork
bb8a4b7f 186 */
a9c58b90 187 adj = (long)p->signal->oom_score_adj;
bb8a4b7f 188 if (adj == OOM_SCORE_ADJ_MIN ||
b18dc5f2
MH
189 test_bit(MMF_OOM_REAPED, &p->mm->flags) ||
190 in_vfork(p)) {
5aecc85a
MH
191 task_unlock(p);
192 return 0;
193 }
194
1da177e4 195 /*
a63d83f4 196 * The baseline for the badness score is the proportion of RAM that each
f755a042 197 * task's rss, pagetable and swap space use.
1da177e4 198 */
dc6c9a35
KS
199 points = get_mm_rss(p->mm) + get_mm_counter(p->mm, MM_SWAPENTS) +
200 atomic_long_read(&p->mm->nr_ptes) + mm_nr_pmds(p->mm);
a63d83f4 201 task_unlock(p);
1da177e4
LT
202
203 /*
a63d83f4
DR
204 * Root processes get 3% bonus, just like the __vm_enough_memory()
205 * implementation used by LSMs.
1da177e4 206 */
a63d83f4 207 if (has_capability_noaudit(p, CAP_SYS_ADMIN))
778c14af 208 points -= (points * 3) / 100;
1da177e4 209
61eafb00
DR
210 /* Normalize to oom_score_adj units */
211 adj *= totalpages / 1000;
212 points += adj;
1da177e4 213
f19e8aa1 214 /*
a7f638f9
DR
215 * Never return 0 for an eligible task regardless of the root bonus and
216 * oom_score_adj (oom_score_adj can't be OOM_SCORE_ADJ_MIN here).
f19e8aa1 217 */
1e11ad8d 218 return points > 0 ? points : 1;
1da177e4
LT
219}
220
7c5f64f8
VD
221enum oom_constraint {
222 CONSTRAINT_NONE,
223 CONSTRAINT_CPUSET,
224 CONSTRAINT_MEMORY_POLICY,
225 CONSTRAINT_MEMCG,
226};
227
9b0f8b04
CL
228/*
229 * Determine the type of allocation constraint.
230 */
7c5f64f8 231static enum oom_constraint constrained_alloc(struct oom_control *oc)
4365a567 232{
54a6eb5c 233 struct zone *zone;
dd1a239f 234 struct zoneref *z;
6e0fc46d 235 enum zone_type high_zoneidx = gfp_zone(oc->gfp_mask);
a63d83f4
DR
236 bool cpuset_limited = false;
237 int nid;
9b0f8b04 238
7c5f64f8
VD
239 if (is_memcg_oom(oc)) {
240 oc->totalpages = mem_cgroup_get_limit(oc->memcg) ?: 1;
241 return CONSTRAINT_MEMCG;
242 }
243
a63d83f4 244 /* Default to all available memory */
7c5f64f8
VD
245 oc->totalpages = totalram_pages + total_swap_pages;
246
247 if (!IS_ENABLED(CONFIG_NUMA))
248 return CONSTRAINT_NONE;
a63d83f4 249
6e0fc46d 250 if (!oc->zonelist)
a63d83f4 251 return CONSTRAINT_NONE;
4365a567
KH
252 /*
253 * Reach here only when __GFP_NOFAIL is used. So, we should avoid
254 * to kill current.We have to random task kill in this case.
255 * Hopefully, CONSTRAINT_THISNODE...but no way to handle it, now.
256 */
6e0fc46d 257 if (oc->gfp_mask & __GFP_THISNODE)
4365a567 258 return CONSTRAINT_NONE;
9b0f8b04 259
4365a567 260 /*
a63d83f4
DR
261 * This is not a __GFP_THISNODE allocation, so a truncated nodemask in
262 * the page allocator means a mempolicy is in effect. Cpuset policy
263 * is enforced in get_page_from_freelist().
4365a567 264 */
6e0fc46d
DR
265 if (oc->nodemask &&
266 !nodes_subset(node_states[N_MEMORY], *oc->nodemask)) {
7c5f64f8 267 oc->totalpages = total_swap_pages;
6e0fc46d 268 for_each_node_mask(nid, *oc->nodemask)
7c5f64f8 269 oc->totalpages += node_spanned_pages(nid);
9b0f8b04 270 return CONSTRAINT_MEMORY_POLICY;
a63d83f4 271 }
4365a567
KH
272
273 /* Check this allocation failure is caused by cpuset's wall function */
6e0fc46d
DR
274 for_each_zone_zonelist_nodemask(zone, z, oc->zonelist,
275 high_zoneidx, oc->nodemask)
276 if (!cpuset_zone_allowed(zone, oc->gfp_mask))
a63d83f4 277 cpuset_limited = true;
9b0f8b04 278
a63d83f4 279 if (cpuset_limited) {
7c5f64f8 280 oc->totalpages = total_swap_pages;
a63d83f4 281 for_each_node_mask(nid, cpuset_current_mems_allowed)
7c5f64f8 282 oc->totalpages += node_spanned_pages(nid);
a63d83f4
DR
283 return CONSTRAINT_CPUSET;
284 }
9b0f8b04
CL
285 return CONSTRAINT_NONE;
286}
287
7c5f64f8 288static int oom_evaluate_task(struct task_struct *task, void *arg)
462607ec 289{
7c5f64f8
VD
290 struct oom_control *oc = arg;
291 unsigned long points;
292
6e0fc46d 293 if (oom_unkillable_task(task, NULL, oc->nodemask))
7c5f64f8 294 goto next;
462607ec
DR
295
296 /*
297 * This task already has access to memory reserves and is being killed.
a373966d
MH
298 * Don't allow any other task to have access to the reserves unless
299 * the task has MMF_OOM_REAPED because chances that it would release
300 * any memory is quite low.
462607ec 301 */
a373966d
MH
302 if (!is_sysrq_oom(oc) && atomic_read(&task->signal->oom_victims)) {
303 struct task_struct *p = find_lock_task_mm(task);
7c5f64f8 304 bool reaped = false;
a373966d
MH
305
306 if (p) {
7c5f64f8 307 reaped = test_bit(MMF_OOM_REAPED, &p->mm->flags);
a373966d
MH
308 task_unlock(p);
309 }
7c5f64f8
VD
310 if (reaped)
311 goto next;
312 goto abort;
a373966d 313 }
462607ec 314
e1e12d2f
DR
315 /*
316 * If task is allocating a lot of memory and has been marked to be
317 * killed first if it triggers an oom, then select it.
318 */
7c5f64f8
VD
319 if (oom_task_origin(task)) {
320 points = ULONG_MAX;
321 goto select;
322 }
e1e12d2f 323
7c5f64f8
VD
324 points = oom_badness(task, NULL, oc->nodemask, oc->totalpages);
325 if (!points || points < oc->chosen_points)
326 goto next;
327
328 /* Prefer thread group leaders for display purposes */
329 if (points == oc->chosen_points && thread_group_leader(oc->chosen))
330 goto next;
331select:
332 if (oc->chosen)
333 put_task_struct(oc->chosen);
334 get_task_struct(task);
335 oc->chosen = task;
336 oc->chosen_points = points;
337next:
338 return 0;
339abort:
340 if (oc->chosen)
341 put_task_struct(oc->chosen);
342 oc->chosen = (void *)-1UL;
343 return 1;
462607ec
DR
344}
345
1da177e4 346/*
7c5f64f8
VD
347 * Simple selection loop. We choose the process with the highest number of
348 * 'points'. In case scan was aborted, oc->chosen is set to -1.
1da177e4 349 */
7c5f64f8 350static void select_bad_process(struct oom_control *oc)
1da177e4 351{
7c5f64f8
VD
352 if (is_memcg_oom(oc))
353 mem_cgroup_scan_tasks(oc->memcg, oom_evaluate_task, oc);
354 else {
355 struct task_struct *p;
d49ad935 356
7c5f64f8
VD
357 rcu_read_lock();
358 for_each_process(p)
359 if (oom_evaluate_task(p, oc))
360 break;
361 rcu_read_unlock();
1da4db0c 362 }
972c4ea5 363
7c5f64f8 364 oc->chosen_points = oc->chosen_points * 1000 / oc->totalpages;
1da177e4
LT
365}
366
fef1bdd6 367/**
1b578df0 368 * dump_tasks - dump current memory state of all system tasks
dad7557e 369 * @memcg: current's memory controller, if constrained
e85bfd3a 370 * @nodemask: nodemask passed to page allocator for mempolicy ooms
1b578df0 371 *
e85bfd3a
DR
372 * Dumps the current memory state of all eligible tasks. Tasks not in the same
373 * memcg, not in the same cpuset, or bound to a disjoint set of mempolicy nodes
374 * are not shown.
de34d965
DR
375 * State information includes task's pid, uid, tgid, vm size, rss, nr_ptes,
376 * swapents, oom_score_adj value, and name.
fef1bdd6 377 */
2314b42d 378static void dump_tasks(struct mem_cgroup *memcg, const nodemask_t *nodemask)
fef1bdd6 379{
c55db957
KM
380 struct task_struct *p;
381 struct task_struct *task;
fef1bdd6 382
dc6c9a35 383 pr_info("[ pid ] uid tgid total_vm rss nr_ptes nr_pmds swapents oom_score_adj name\n");
6b0c81b3 384 rcu_read_lock();
c55db957 385 for_each_process(p) {
72835c86 386 if (oom_unkillable_task(p, memcg, nodemask))
b4416d2b 387 continue;
fef1bdd6 388
c55db957
KM
389 task = find_lock_task_mm(p);
390 if (!task) {
6d2661ed 391 /*
74ab7f1d
DR
392 * This is a kthread or all of p's threads have already
393 * detached their mm's. There's no need to report
c55db957 394 * them; they can't be oom killed anyway.
6d2661ed 395 */
6d2661ed
DR
396 continue;
397 }
c55db957 398
dc6c9a35 399 pr_info("[%5d] %5d %5d %8lu %8lu %7ld %7ld %8lu %5hd %s\n",
078de5f7
EB
400 task->pid, from_kuid(&init_user_ns, task_uid(task)),
401 task->tgid, task->mm->total_vm, get_mm_rss(task->mm),
e1f56c89 402 atomic_long_read(&task->mm->nr_ptes),
dc6c9a35 403 mm_nr_pmds(task->mm),
de34d965 404 get_mm_counter(task->mm, MM_SWAPENTS),
a63d83f4 405 task->signal->oom_score_adj, task->comm);
c55db957
KM
406 task_unlock(task);
407 }
6b0c81b3 408 rcu_read_unlock();
fef1bdd6
DR
409}
410
2a966b77 411static void dump_header(struct oom_control *oc, struct task_struct *p)
1b604d75 412{
756a025f 413 pr_warn("%s invoked oom-killer: gfp_mask=%#x(%pGg), order=%d, oom_score_adj=%hd\n",
a0795cd4 414 current->comm, oc->gfp_mask, &oc->gfp_mask, oc->order,
a63d83f4 415 current->signal->oom_score_adj);
a0795cd4 416
da39da3a 417 cpuset_print_current_mems_allowed();
1b604d75 418 dump_stack();
2a966b77
VD
419 if (oc->memcg)
420 mem_cgroup_print_oom_info(oc->memcg, p);
58cf188e
SZ
421 else
422 show_mem(SHOW_MEM_FILTER_NODES);
1b604d75 423 if (sysctl_oom_dump_tasks)
2a966b77 424 dump_tasks(oc->memcg, oc->nodemask);
1b604d75
DR
425}
426
5695be14 427/*
c32b3cbe 428 * Number of OOM victims in flight
5695be14 429 */
c32b3cbe
MH
430static atomic_t oom_victims = ATOMIC_INIT(0);
431static DECLARE_WAIT_QUEUE_HEAD(oom_victims_wait);
5695be14 432
7c5f64f8 433static bool oom_killer_disabled __read_mostly;
5695be14 434
bc448e89
MH
435#define K(x) ((x) << (PAGE_SHIFT-10))
436
3ef22dff
MH
437/*
438 * task->mm can be NULL if the task is the exited group leader. So to
439 * determine whether the task is using a particular mm, we examine all the
440 * task's threads: if one of those is using this mm then this task was also
441 * using it.
442 */
44a70ade 443bool process_shares_mm(struct task_struct *p, struct mm_struct *mm)
3ef22dff
MH
444{
445 struct task_struct *t;
446
447 for_each_thread(p, t) {
448 struct mm_struct *t_mm = READ_ONCE(t->mm);
449 if (t_mm)
450 return t_mm == mm;
451 }
452 return false;
453}
454
455
aac45363
MH
456#ifdef CONFIG_MMU
457/*
458 * OOM Reaper kernel thread which tries to reap the memory used by the OOM
459 * victim (if that is possible) to help the OOM killer to move on.
460 */
461static struct task_struct *oom_reaper_th;
aac45363 462static DECLARE_WAIT_QUEUE_HEAD(oom_reaper_wait);
29c696e1 463static struct task_struct *oom_reaper_list;
03049269
MH
464static DEFINE_SPINLOCK(oom_reaper_lock);
465
36324a99 466static bool __oom_reap_task(struct task_struct *tsk)
aac45363
MH
467{
468 struct mmu_gather tlb;
469 struct vm_area_struct *vma;
e2fe1456 470 struct mm_struct *mm = NULL;
36324a99 471 struct task_struct *p;
aac45363
MH
472 struct zap_details details = {.check_swap_entries = true,
473 .ignore_dirty = true};
474 bool ret = true;
475
e2fe1456
MH
476 /*
477 * We have to make sure to not race with the victim exit path
478 * and cause premature new oom victim selection:
479 * __oom_reap_task exit_mm
e5e3f4c4 480 * mmget_not_zero
e2fe1456
MH
481 * mmput
482 * atomic_dec_and_test
483 * exit_oom_victim
484 * [...]
485 * out_of_memory
486 * select_bad_process
487 * # no TIF_MEMDIE task selects new victim
488 * unmap_page_range # frees some memory
489 */
490 mutex_lock(&oom_lock);
491
36324a99
MH
492 /*
493 * Make sure we find the associated mm_struct even when the particular
494 * thread has already terminated and cleared its mm.
495 * We might have race with exit path so consider our work done if there
496 * is no mm.
497 */
498 p = find_lock_task_mm(tsk);
499 if (!p)
e2fe1456 500 goto unlock_oom;
36324a99 501 mm = p->mm;
e5e3f4c4 502 atomic_inc(&mm->mm_count);
36324a99 503 task_unlock(p);
aac45363
MH
504
505 if (!down_read_trylock(&mm->mmap_sem)) {
506 ret = false;
e5e3f4c4
MH
507 goto mm_drop;
508 }
509
510 /*
511 * increase mm_users only after we know we will reap something so
512 * that the mmput_async is called only when we have reaped something
513 * and delayed __mmput doesn't matter that much
514 */
515 if (!mmget_not_zero(mm)) {
516 up_read(&mm->mmap_sem);
517 goto mm_drop;
aac45363
MH
518 }
519
520 tlb_gather_mmu(&tlb, mm, 0, -1);
521 for (vma = mm->mmap ; vma; vma = vma->vm_next) {
522 if (is_vm_hugetlb_page(vma))
523 continue;
524
525 /*
526 * mlocked VMAs require explicit munlocking before unmap.
527 * Let's keep it simple here and skip such VMAs.
528 */
529 if (vma->vm_flags & VM_LOCKED)
530 continue;
531
532 /*
533 * Only anonymous pages have a good chance to be dropped
534 * without additional steps which we cannot afford as we
535 * are OOM already.
536 *
537 * We do not even care about fs backed pages because all
538 * which are reclaimable have already been reclaimed and
539 * we do not want to block exit_mmap by keeping mm ref
540 * count elevated without a good reason.
541 */
542 if (vma_is_anonymous(vma) || !(vma->vm_flags & VM_SHARED))
543 unmap_page_range(&tlb, vma, vma->vm_start, vma->vm_end,
544 &details);
545 }
546 tlb_finish_mmu(&tlb, 0, -1);
bc448e89
MH
547 pr_info("oom_reaper: reaped process %d (%s), now anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
548 task_pid_nr(tsk), tsk->comm,
549 K(get_mm_counter(mm, MM_ANONPAGES)),
550 K(get_mm_counter(mm, MM_FILEPAGES)),
551 K(get_mm_counter(mm, MM_SHMEMPAGES)));
aac45363 552 up_read(&mm->mmap_sem);
36324a99
MH
553
554 /*
449d777d
MH
555 * This task can be safely ignored because we cannot do much more
556 * to release its memory.
36324a99 557 */
bb8a4b7f 558 set_bit(MMF_OOM_REAPED, &mm->flags);
ec8d7c14
MH
559 /*
560 * Drop our reference but make sure the mmput slow path is called from a
561 * different context because we shouldn't risk we get stuck there and
562 * put the oom_reaper out of the way.
563 */
e5e3f4c4
MH
564 mmput_async(mm);
565mm_drop:
566 mmdrop(mm);
567unlock_oom:
568 mutex_unlock(&oom_lock);
aac45363
MH
569 return ret;
570}
571
bc448e89 572#define MAX_OOM_REAP_RETRIES 10
36324a99 573static void oom_reap_task(struct task_struct *tsk)
aac45363
MH
574{
575 int attempts = 0;
576
577 /* Retry the down_read_trylock(mmap_sem) a few times */
bc448e89 578 while (attempts++ < MAX_OOM_REAP_RETRIES && !__oom_reap_task(tsk))
aac45363
MH
579 schedule_timeout_idle(HZ/10);
580
bc448e89 581 if (attempts > MAX_OOM_REAP_RETRIES) {
11a410d5
MH
582 struct task_struct *p;
583
bc448e89
MH
584 pr_info("oom_reaper: unable to reap pid:%d (%s)\n",
585 task_pid_nr(tsk), tsk->comm);
11a410d5
MH
586
587 /*
588 * If we've already tried to reap this task in the past and
589 * failed it probably doesn't make much sense to try yet again
590 * so hide the mm from the oom killer so that it can move on
591 * to another task with a different mm struct.
592 */
593 p = find_lock_task_mm(tsk);
594 if (p) {
595 if (test_and_set_bit(MMF_OOM_NOT_REAPABLE, &p->mm->flags)) {
596 pr_info("oom_reaper: giving up pid:%d (%s)\n",
597 task_pid_nr(tsk), tsk->comm);
598 set_bit(MMF_OOM_REAPED, &p->mm->flags);
599 }
600 task_unlock(p);
601 }
602
bc448e89
MH
603 debug_show_all_locks();
604 }
605
449d777d
MH
606 /*
607 * Clear TIF_MEMDIE because the task shouldn't be sitting on a
608 * reasonably reclaimable memory anymore or it is not a good candidate
609 * for the oom victim right now because it cannot release its memory
610 * itself nor by the oom reaper.
611 */
612 tsk->oom_reaper_list = NULL;
613 exit_oom_victim(tsk);
614
aac45363 615 /* Drop a reference taken by wake_oom_reaper */
36324a99 616 put_task_struct(tsk);
aac45363
MH
617}
618
619static int oom_reaper(void *unused)
620{
e2679606
MH
621 set_freezable();
622
aac45363 623 while (true) {
03049269 624 struct task_struct *tsk = NULL;
aac45363 625
29c696e1 626 wait_event_freezable(oom_reaper_wait, oom_reaper_list != NULL);
03049269 627 spin_lock(&oom_reaper_lock);
29c696e1
VD
628 if (oom_reaper_list != NULL) {
629 tsk = oom_reaper_list;
630 oom_reaper_list = tsk->oom_reaper_list;
03049269
MH
631 }
632 spin_unlock(&oom_reaper_lock);
633
634 if (tsk)
635 oom_reap_task(tsk);
aac45363
MH
636 }
637
638 return 0;
639}
640
7c5f64f8 641static void wake_oom_reaper(struct task_struct *tsk)
aac45363 642{
af8e15cc
MH
643 if (!oom_reaper_th)
644 return;
645
646 /* tsk is already queued? */
647 if (tsk == oom_reaper_list || tsk->oom_reaper_list)
aac45363
MH
648 return;
649
36324a99 650 get_task_struct(tsk);
aac45363 651
03049269 652 spin_lock(&oom_reaper_lock);
29c696e1
VD
653 tsk->oom_reaper_list = oom_reaper_list;
654 oom_reaper_list = tsk;
03049269
MH
655 spin_unlock(&oom_reaper_lock);
656 wake_up(&oom_reaper_wait);
aac45363
MH
657}
658
659static int __init oom_init(void)
660{
661 oom_reaper_th = kthread_run(oom_reaper, NULL, "oom_reaper");
662 if (IS_ERR(oom_reaper_th)) {
663 pr_err("Unable to start OOM reaper %ld. Continuing regardless\n",
664 PTR_ERR(oom_reaper_th));
665 oom_reaper_th = NULL;
666 }
667 return 0;
668}
669subsys_initcall(oom_init)
7c5f64f8
VD
670#else
671static inline void wake_oom_reaper(struct task_struct *tsk)
672{
673}
674#endif /* CONFIG_MMU */
aac45363 675
49550b60 676/**
16e95196 677 * mark_oom_victim - mark the given task as OOM victim
49550b60 678 * @tsk: task to mark
c32b3cbe 679 *
dc56401f 680 * Has to be called with oom_lock held and never after
c32b3cbe 681 * oom has been disabled already.
49550b60 682 */
7c5f64f8 683static void mark_oom_victim(struct task_struct *tsk)
49550b60 684{
c32b3cbe
MH
685 WARN_ON(oom_killer_disabled);
686 /* OOM killer might race with memcg OOM */
687 if (test_and_set_tsk_thread_flag(tsk, TIF_MEMDIE))
688 return;
f44666b0 689 atomic_inc(&tsk->signal->oom_victims);
63a8ca9b
MH
690 /*
691 * Make sure that the task is woken up from uninterruptible sleep
692 * if it is frozen because OOM killer wouldn't be able to free
693 * any memory and livelock. freezing_slow_path will tell the freezer
694 * that TIF_MEMDIE tasks should be ignored.
695 */
696 __thaw_task(tsk);
c32b3cbe 697 atomic_inc(&oom_victims);
49550b60
MH
698}
699
700/**
16e95196 701 * exit_oom_victim - note the exit of an OOM victim
49550b60 702 */
36324a99 703void exit_oom_victim(struct task_struct *tsk)
49550b60 704{
36324a99
MH
705 if (!test_and_clear_tsk_thread_flag(tsk, TIF_MEMDIE))
706 return;
f44666b0 707 atomic_dec(&tsk->signal->oom_victims);
c32b3cbe 708
c38f1025 709 if (!atomic_dec_return(&oom_victims))
c32b3cbe 710 wake_up_all(&oom_victims_wait);
c32b3cbe
MH
711}
712
713/**
714 * oom_killer_disable - disable OOM killer
715 *
716 * Forces all page allocations to fail rather than trigger OOM killer.
717 * Will block and wait until all OOM victims are killed.
718 *
719 * The function cannot be called when there are runnable user tasks because
720 * the userspace would see unexpected allocation failures as a result. Any
721 * new usage of this function should be consulted with MM people.
722 *
723 * Returns true if successful and false if the OOM killer cannot be
724 * disabled.
725 */
726bool oom_killer_disable(void)
727{
728 /*
6afcf289
TH
729 * Make sure to not race with an ongoing OOM killer. Check that the
730 * current is not killed (possibly due to sharing the victim's memory).
c32b3cbe 731 */
6afcf289 732 if (mutex_lock_killable(&oom_lock))
c32b3cbe 733 return false;
c32b3cbe 734 oom_killer_disabled = true;
dc56401f 735 mutex_unlock(&oom_lock);
c32b3cbe
MH
736
737 wait_event(oom_victims_wait, !atomic_read(&oom_victims));
738
739 return true;
740}
741
742/**
743 * oom_killer_enable - enable OOM killer
744 */
745void oom_killer_enable(void)
746{
c32b3cbe 747 oom_killer_disabled = false;
49550b60
MH
748}
749
1af8bb43
MH
750static inline bool __task_will_free_mem(struct task_struct *task)
751{
752 struct signal_struct *sig = task->signal;
753
754 /*
755 * A coredumping process may sleep for an extended period in exit_mm(),
756 * so the oom killer cannot assume that the process will promptly exit
757 * and release memory.
758 */
759 if (sig->flags & SIGNAL_GROUP_COREDUMP)
760 return false;
761
762 if (sig->flags & SIGNAL_GROUP_EXIT)
763 return true;
764
765 if (thread_group_empty(task) && (task->flags & PF_EXITING))
766 return true;
767
768 return false;
769}
770
771/*
772 * Checks whether the given task is dying or exiting and likely to
773 * release its address space. This means that all threads and processes
774 * sharing the same mm have to be killed or exiting.
091f362c
MH
775 * Caller has to make sure that task->mm is stable (hold task_lock or
776 * it operates on the current).
1af8bb43 777 */
7c5f64f8 778static bool task_will_free_mem(struct task_struct *task)
1af8bb43 779{
091f362c 780 struct mm_struct *mm = task->mm;
1af8bb43 781 struct task_struct *p;
f33e6f06 782 bool ret = true;
1af8bb43 783
1af8bb43 784 /*
091f362c
MH
785 * Skip tasks without mm because it might have passed its exit_mm and
786 * exit_oom_victim. oom_reaper could have rescued that but do not rely
787 * on that for now. We can consider find_lock_task_mm in future.
1af8bb43 788 */
091f362c 789 if (!mm)
1af8bb43
MH
790 return false;
791
091f362c
MH
792 if (!__task_will_free_mem(task))
793 return false;
696453e6
MH
794
795 /*
796 * This task has already been drained by the oom reaper so there are
797 * only small chances it will free some more
798 */
091f362c 799 if (test_bit(MMF_OOM_REAPED, &mm->flags))
696453e6 800 return false;
696453e6 801
091f362c 802 if (atomic_read(&mm->mm_users) <= 1)
1af8bb43 803 return true;
1af8bb43
MH
804
805 /*
806 * This is really pessimistic but we do not have any reliable way
807 * to check that external processes share with our mm
808 */
809 rcu_read_lock();
810 for_each_process(p) {
811 if (!process_shares_mm(p, mm))
812 continue;
813 if (same_thread_group(task, p))
814 continue;
815 ret = __task_will_free_mem(p);
816 if (!ret)
817 break;
818 }
819 rcu_read_unlock();
1af8bb43
MH
820
821 return ret;
822}
823
7c5f64f8 824static void oom_kill_process(struct oom_control *oc, const char *message)
1da177e4 825{
7c5f64f8
VD
826 struct task_struct *p = oc->chosen;
827 unsigned int points = oc->chosen_points;
52d3c036 828 struct task_struct *victim = p;
5e9d834a 829 struct task_struct *child;
1da4db0c 830 struct task_struct *t;
647f2bdf 831 struct mm_struct *mm;
52d3c036 832 unsigned int victim_points = 0;
dc3f21ea
DR
833 static DEFINE_RATELIMIT_STATE(oom_rs, DEFAULT_RATELIMIT_INTERVAL,
834 DEFAULT_RATELIMIT_BURST);
bb29902a 835 bool can_oom_reap = true;
1da177e4 836
50ec3bbf
NP
837 /*
838 * If the task is already exiting, don't alarm the sysadmin or kill
839 * its children or threads, just set TIF_MEMDIE so it can die quickly
840 */
091f362c 841 task_lock(p);
1af8bb43 842 if (task_will_free_mem(p)) {
16e95196 843 mark_oom_victim(p);
1af8bb43 844 wake_oom_reaper(p);
091f362c 845 task_unlock(p);
6b0c81b3 846 put_task_struct(p);
2a1c9b1f 847 return;
50ec3bbf 848 }
091f362c 849 task_unlock(p);
50ec3bbf 850
dc3f21ea 851 if (__ratelimit(&oom_rs))
2a966b77 852 dump_header(oc, p);
8447d950 853
f0d6647e 854 pr_err("%s: Kill process %d (%s) score %u or sacrifice child\n",
5e9d834a 855 message, task_pid_nr(p), p->comm, points);
f3af38d3 856
5e9d834a
DR
857 /*
858 * If any of p's children has a different mm and is eligible for kill,
11239836 859 * the one with the highest oom_badness() score is sacrificed for its
5e9d834a
DR
860 * parent. This attempts to lose the minimal amount of work done while
861 * still freeing memory.
862 */
6b0c81b3 863 read_lock(&tasklist_lock);
1da4db0c 864 for_each_thread(p, t) {
5e9d834a 865 list_for_each_entry(child, &t->children, sibling) {
a63d83f4 866 unsigned int child_points;
5e9d834a 867
4d7b3394 868 if (process_shares_mm(child, p->mm))
edd45544 869 continue;
a63d83f4
DR
870 /*
871 * oom_badness() returns 0 if the thread is unkillable
872 */
2a966b77 873 child_points = oom_badness(child,
7c5f64f8 874 oc->memcg, oc->nodemask, oc->totalpages);
5e9d834a 875 if (child_points > victim_points) {
6b0c81b3 876 put_task_struct(victim);
5e9d834a
DR
877 victim = child;
878 victim_points = child_points;
6b0c81b3 879 get_task_struct(victim);
5e9d834a 880 }
dd8e8f40 881 }
1da4db0c 882 }
6b0c81b3 883 read_unlock(&tasklist_lock);
dd8e8f40 884
6b0c81b3
DR
885 p = find_lock_task_mm(victim);
886 if (!p) {
6b0c81b3 887 put_task_struct(victim);
647f2bdf 888 return;
6b0c81b3
DR
889 } else if (victim != p) {
890 get_task_struct(p);
891 put_task_struct(victim);
892 victim = p;
893 }
647f2bdf 894
880b7689 895 /* Get a reference to safely compare mm after task_unlock(victim) */
647f2bdf 896 mm = victim->mm;
880b7689 897 atomic_inc(&mm->mm_count);
426fb5e7
TH
898 /*
899 * We should send SIGKILL before setting TIF_MEMDIE in order to prevent
900 * the OOM victim from depleting the memory reserves from the user
901 * space under its control.
902 */
903 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, victim, true);
16e95196 904 mark_oom_victim(victim);
eca56ff9 905 pr_err("Killed process %d (%s) total-vm:%lukB, anon-rss:%lukB, file-rss:%lukB, shmem-rss:%lukB\n",
647f2bdf
DR
906 task_pid_nr(victim), victim->comm, K(victim->mm->total_vm),
907 K(get_mm_counter(victim->mm, MM_ANONPAGES)),
eca56ff9
JM
908 K(get_mm_counter(victim->mm, MM_FILEPAGES)),
909 K(get_mm_counter(victim->mm, MM_SHMEMPAGES)));
647f2bdf
DR
910 task_unlock(victim);
911
912 /*
913 * Kill all user processes sharing victim->mm in other thread groups, if
914 * any. They don't get access to memory reserves, though, to avoid
915 * depletion of all memory. This prevents mm->mmap_sem livelock when an
916 * oom killed thread cannot exit because it requires the semaphore and
917 * its contended by another thread trying to allocate memory itself.
918 * That thread will now get access to memory reserves since it has a
919 * pending fatal signal.
920 */
4d4048be 921 rcu_read_lock();
c319025a 922 for_each_process(p) {
4d7b3394 923 if (!process_shares_mm(p, mm))
c319025a
ON
924 continue;
925 if (same_thread_group(p, victim))
926 continue;
97fd49c2 927 if (unlikely(p->flags & PF_KTHREAD) || is_global_init(p)) {
aac45363
MH
928 /*
929 * We cannot use oom_reaper for the mm shared by this
930 * process because it wouldn't get killed and so the
a373966d
MH
931 * memory might be still used. Hide the mm from the oom
932 * killer to guarantee OOM forward progress.
aac45363
MH
933 */
934 can_oom_reap = false;
a373966d
MH
935 set_bit(MMF_OOM_REAPED, &mm->flags);
936 pr_info("oom killer %d (%s) has mm pinned by %d (%s)\n",
937 task_pid_nr(victim), victim->comm,
938 task_pid_nr(p), p->comm);
c319025a 939 continue;
aac45363 940 }
c319025a
ON
941 do_send_sig_info(SIGKILL, SEND_SIG_FORCED, p, true);
942 }
6b0c81b3 943 rcu_read_unlock();
647f2bdf 944
aac45363 945 if (can_oom_reap)
36324a99 946 wake_oom_reaper(victim);
aac45363 947
880b7689 948 mmdrop(mm);
6b0c81b3 949 put_task_struct(victim);
1da177e4 950}
647f2bdf 951#undef K
1da177e4 952
309ed882
DR
953/*
954 * Determines whether the kernel must panic because of the panic_on_oom sysctl.
955 */
7c5f64f8
VD
956static void check_panic_on_oom(struct oom_control *oc,
957 enum oom_constraint constraint)
309ed882
DR
958{
959 if (likely(!sysctl_panic_on_oom))
960 return;
961 if (sysctl_panic_on_oom != 2) {
962 /*
963 * panic_on_oom == 1 only affects CONSTRAINT_NONE, the kernel
964 * does not panic for cpuset, mempolicy, or memcg allocation
965 * failures.
966 */
967 if (constraint != CONSTRAINT_NONE)
968 return;
969 }
071a4bef 970 /* Do not panic for oom kills triggered by sysrq */
db2a0dd7 971 if (is_sysrq_oom(oc))
071a4bef 972 return;
2a966b77 973 dump_header(oc, NULL);
309ed882
DR
974 panic("Out of memory: %s panic_on_oom is enabled\n",
975 sysctl_panic_on_oom == 2 ? "compulsory" : "system-wide");
976}
977
8bc719d3
MS
978static BLOCKING_NOTIFIER_HEAD(oom_notify_list);
979
980int register_oom_notifier(struct notifier_block *nb)
981{
982 return blocking_notifier_chain_register(&oom_notify_list, nb);
983}
984EXPORT_SYMBOL_GPL(register_oom_notifier);
985
986int unregister_oom_notifier(struct notifier_block *nb)
987{
988 return blocking_notifier_chain_unregister(&oom_notify_list, nb);
989}
990EXPORT_SYMBOL_GPL(unregister_oom_notifier);
991
1da177e4 992/**
6e0fc46d
DR
993 * out_of_memory - kill the "best" process when we run out of memory
994 * @oc: pointer to struct oom_control
1da177e4
LT
995 *
996 * If we run out of memory, we have the choice between either
997 * killing a random task (bad), letting the system crash (worse)
998 * OR try to be smart about which process to kill. Note that we
999 * don't have to be perfect here, we just have to be good.
1000 */
6e0fc46d 1001bool out_of_memory(struct oom_control *oc)
1da177e4 1002{
8bc719d3 1003 unsigned long freed = 0;
e3658932 1004 enum oom_constraint constraint = CONSTRAINT_NONE;
8bc719d3 1005
dc56401f
JW
1006 if (oom_killer_disabled)
1007 return false;
1008
7c5f64f8
VD
1009 if (!is_memcg_oom(oc)) {
1010 blocking_notifier_call_chain(&oom_notify_list, 0, &freed);
1011 if (freed > 0)
1012 /* Got some memory back in the last second. */
1013 return true;
1014 }
1da177e4 1015
7b98c2e4 1016 /*
9ff4868e
DR
1017 * If current has a pending SIGKILL or is exiting, then automatically
1018 * select it. The goal is to allow it to allocate so that it may
1019 * quickly exit and free its memory.
7b98c2e4 1020 */
091f362c 1021 if (task_will_free_mem(current)) {
16e95196 1022 mark_oom_victim(current);
1af8bb43 1023 wake_oom_reaper(current);
75e8f8b2 1024 return true;
7b98c2e4
DR
1025 }
1026
3da88fb3
MH
1027 /*
1028 * The OOM killer does not compensate for IO-less reclaim.
1029 * pagefault_out_of_memory lost its gfp context so we have to
1030 * make sure exclude 0 mask - all other users should have at least
1031 * ___GFP_DIRECT_RECLAIM to get here.
1032 */
1033 if (oc->gfp_mask && !(oc->gfp_mask & (__GFP_FS|__GFP_NOFAIL)))
1034 return true;
1035
9b0f8b04
CL
1036 /*
1037 * Check if there were limitations on the allocation (only relevant for
7c5f64f8 1038 * NUMA and memcg) that may require different handling.
9b0f8b04 1039 */
7c5f64f8 1040 constraint = constrained_alloc(oc);
6e0fc46d
DR
1041 if (constraint != CONSTRAINT_MEMORY_POLICY)
1042 oc->nodemask = NULL;
2a966b77 1043 check_panic_on_oom(oc, constraint);
0aad4b31 1044
7c5f64f8
VD
1045 if (!is_memcg_oom(oc) && sysctl_oom_kill_allocating_task &&
1046 current->mm && !oom_unkillable_task(current, NULL, oc->nodemask) &&
121d1ba0 1047 current->signal->oom_score_adj != OOM_SCORE_ADJ_MIN) {
6b0c81b3 1048 get_task_struct(current);
7c5f64f8
VD
1049 oc->chosen = current;
1050 oom_kill_process(oc, "Out of memory (oom_kill_allocating_task)");
75e8f8b2 1051 return true;
0aad4b31
DR
1052 }
1053
7c5f64f8 1054 select_bad_process(oc);
0aad4b31 1055 /* Found nothing?!?! Either we hang forever, or we panic. */
7c5f64f8 1056 if (!oc->chosen && !is_sysrq_oom(oc) && !is_memcg_oom(oc)) {
2a966b77 1057 dump_header(oc, NULL);
0aad4b31
DR
1058 panic("Out of memory and no killable processes...\n");
1059 }
7c5f64f8
VD
1060 if (oc->chosen && oc->chosen != (void *)-1UL) {
1061 oom_kill_process(oc, !is_memcg_oom(oc) ? "Out of memory" :
1062 "Memory cgroup out of memory");
75e8f8b2
DR
1063 /*
1064 * Give the killed process a good chance to exit before trying
1065 * to allocate memory again.
1066 */
4f774b91 1067 schedule_timeout_killable(1);
75e8f8b2 1068 }
7c5f64f8 1069 return !!oc->chosen;
c32b3cbe
MH
1070}
1071
e3658932
DR
1072/*
1073 * The pagefault handler calls here because it is out of memory, so kill a
798fd756
VD
1074 * memory-hogging task. If oom_lock is held by somebody else, a parallel oom
1075 * killing is already in progress so do nothing.
e3658932
DR
1076 */
1077void pagefault_out_of_memory(void)
1078{
6e0fc46d
DR
1079 struct oom_control oc = {
1080 .zonelist = NULL,
1081 .nodemask = NULL,
2a966b77 1082 .memcg = NULL,
6e0fc46d
DR
1083 .gfp_mask = 0,
1084 .order = 0,
6e0fc46d
DR
1085 };
1086
49426420 1087 if (mem_cgroup_oom_synchronize(true))
dc56401f 1088 return;
3812c8c8 1089
dc56401f
JW
1090 if (!mutex_trylock(&oom_lock))
1091 return;
c32b3cbe 1092
6e0fc46d 1093 if (!out_of_memory(&oc)) {
dc56401f
JW
1094 /*
1095 * There shouldn't be any user tasks runnable while the
1096 * OOM killer is disabled, so the current task has to
1097 * be a racing OOM victim for which oom_killer_disable()
1098 * is waiting for.
1099 */
1100 WARN_ON(test_thread_flag(TIF_MEMDIE));
e3658932 1101 }
dc56401f
JW
1102
1103 mutex_unlock(&oom_lock);
e3658932 1104}