]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/rmap.c
mm: convert anon_vma->lock to a mutex
[mirror_ubuntu-artful-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
98f32602 17 * Contributions by Hugh Dickins 2003, 2004
1da177e4
LT
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
3d48ae45 27 * mapping->i_mmap_mutex
2b575eb6 28 * anon_vma->mutex
82591e6e
NP
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
250df6ed 34 * inode->i_lock (in set_page_dirty's __mark_inode_dirty)
a66979ab 35 * inode_wb_list_lock (in set_page_dirty's __mark_inode_dirty)
82591e6e
NP
36 * sb_lock (within inode_lock in fs/fs-writeback.c)
37 * mapping->tree_lock (widely used, in set_page_dirty,
38 * in arch-dependent flush_dcache_mmap_lock,
a66979ab 39 * within inode_wb_list_lock in __sync_single_inode)
6a46079c
AK
40 *
41 * (code doesn't rely on that order so it could be switched around)
42 * ->tasklist_lock
2b575eb6 43 * anon_vma->mutex (memory_failure, collect_procs_anon)
6a46079c 44 * pte map lock
1da177e4
LT
45 */
46
47#include <linux/mm.h>
48#include <linux/pagemap.h>
49#include <linux/swap.h>
50#include <linux/swapops.h>
51#include <linux/slab.h>
52#include <linux/init.h>
5ad64688 53#include <linux/ksm.h>
1da177e4
LT
54#include <linux/rmap.h>
55#include <linux/rcupdate.h>
a48d07af 56#include <linux/module.h>
8a9f3ccd 57#include <linux/memcontrol.h>
cddb8a5c 58#include <linux/mmu_notifier.h>
64cdd548 59#include <linux/migrate.h>
0fe6e20b 60#include <linux/hugetlb.h>
1da177e4
LT
61
62#include <asm/tlbflush.h>
63
b291f000
NP
64#include "internal.h"
65
fdd2e5f8 66static struct kmem_cache *anon_vma_cachep;
5beb4930 67static struct kmem_cache *anon_vma_chain_cachep;
fdd2e5f8
AB
68
69static inline struct anon_vma *anon_vma_alloc(void)
70{
01d8b20d
PZ
71 struct anon_vma *anon_vma;
72
73 anon_vma = kmem_cache_alloc(anon_vma_cachep, GFP_KERNEL);
74 if (anon_vma) {
75 atomic_set(&anon_vma->refcount, 1);
76 /*
77 * Initialise the anon_vma root to point to itself. If called
78 * from fork, the root will be reset to the parents anon_vma.
79 */
80 anon_vma->root = anon_vma;
81 }
82
83 return anon_vma;
fdd2e5f8
AB
84}
85
01d8b20d 86static inline void anon_vma_free(struct anon_vma *anon_vma)
fdd2e5f8 87{
01d8b20d 88 VM_BUG_ON(atomic_read(&anon_vma->refcount));
fdd2e5f8
AB
89 kmem_cache_free(anon_vma_cachep, anon_vma);
90}
1da177e4 91
5beb4930
RR
92static inline struct anon_vma_chain *anon_vma_chain_alloc(void)
93{
94 return kmem_cache_alloc(anon_vma_chain_cachep, GFP_KERNEL);
95}
96
e574b5fd 97static void anon_vma_chain_free(struct anon_vma_chain *anon_vma_chain)
5beb4930
RR
98{
99 kmem_cache_free(anon_vma_chain_cachep, anon_vma_chain);
100}
101
d9d332e0
LT
102/**
103 * anon_vma_prepare - attach an anon_vma to a memory region
104 * @vma: the memory region in question
105 *
106 * This makes sure the memory mapping described by 'vma' has
107 * an 'anon_vma' attached to it, so that we can associate the
108 * anonymous pages mapped into it with that anon_vma.
109 *
110 * The common case will be that we already have one, but if
23a0790a 111 * not we either need to find an adjacent mapping that we
d9d332e0
LT
112 * can re-use the anon_vma from (very common when the only
113 * reason for splitting a vma has been mprotect()), or we
114 * allocate a new one.
115 *
116 * Anon-vma allocations are very subtle, because we may have
117 * optimistically looked up an anon_vma in page_lock_anon_vma()
118 * and that may actually touch the spinlock even in the newly
119 * allocated vma (it depends on RCU to make sure that the
120 * anon_vma isn't actually destroyed).
121 *
122 * As a result, we need to do proper anon_vma locking even
123 * for the new allocation. At the same time, we do not want
124 * to do any locking for the common case of already having
125 * an anon_vma.
126 *
127 * This must be called with the mmap_sem held for reading.
128 */
1da177e4
LT
129int anon_vma_prepare(struct vm_area_struct *vma)
130{
131 struct anon_vma *anon_vma = vma->anon_vma;
5beb4930 132 struct anon_vma_chain *avc;
1da177e4
LT
133
134 might_sleep();
135 if (unlikely(!anon_vma)) {
136 struct mm_struct *mm = vma->vm_mm;
d9d332e0 137 struct anon_vma *allocated;
1da177e4 138
5beb4930
RR
139 avc = anon_vma_chain_alloc();
140 if (!avc)
141 goto out_enomem;
142
1da177e4 143 anon_vma = find_mergeable_anon_vma(vma);
d9d332e0
LT
144 allocated = NULL;
145 if (!anon_vma) {
1da177e4
LT
146 anon_vma = anon_vma_alloc();
147 if (unlikely(!anon_vma))
5beb4930 148 goto out_enomem_free_avc;
1da177e4 149 allocated = anon_vma;
1da177e4
LT
150 }
151
cba48b98 152 anon_vma_lock(anon_vma);
1da177e4
LT
153 /* page_table_lock to protect against threads */
154 spin_lock(&mm->page_table_lock);
155 if (likely(!vma->anon_vma)) {
156 vma->anon_vma = anon_vma;
5beb4930
RR
157 avc->anon_vma = anon_vma;
158 avc->vma = vma;
159 list_add(&avc->same_vma, &vma->anon_vma_chain);
26ba0cb6 160 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
1da177e4 161 allocated = NULL;
31f2b0eb 162 avc = NULL;
1da177e4
LT
163 }
164 spin_unlock(&mm->page_table_lock);
cba48b98 165 anon_vma_unlock(anon_vma);
31f2b0eb
ON
166
167 if (unlikely(allocated))
01d8b20d 168 put_anon_vma(allocated);
31f2b0eb 169 if (unlikely(avc))
5beb4930 170 anon_vma_chain_free(avc);
1da177e4
LT
171 }
172 return 0;
5beb4930
RR
173
174 out_enomem_free_avc:
175 anon_vma_chain_free(avc);
176 out_enomem:
177 return -ENOMEM;
1da177e4
LT
178}
179
5beb4930
RR
180static void anon_vma_chain_link(struct vm_area_struct *vma,
181 struct anon_vma_chain *avc,
182 struct anon_vma *anon_vma)
1da177e4 183{
5beb4930
RR
184 avc->vma = vma;
185 avc->anon_vma = anon_vma;
186 list_add(&avc->same_vma, &vma->anon_vma_chain);
187
cba48b98 188 anon_vma_lock(anon_vma);
05759d38
AA
189 /*
190 * It's critical to add new vmas to the tail of the anon_vma,
191 * see comment in huge_memory.c:__split_huge_page().
192 */
5beb4930 193 list_add_tail(&avc->same_anon_vma, &anon_vma->head);
cba48b98 194 anon_vma_unlock(anon_vma);
1da177e4
LT
195}
196
5beb4930
RR
197/*
198 * Attach the anon_vmas from src to dst.
199 * Returns 0 on success, -ENOMEM on failure.
200 */
201int anon_vma_clone(struct vm_area_struct *dst, struct vm_area_struct *src)
1da177e4 202{
5beb4930
RR
203 struct anon_vma_chain *avc, *pavc;
204
646d87b4 205 list_for_each_entry_reverse(pavc, &src->anon_vma_chain, same_vma) {
5beb4930
RR
206 avc = anon_vma_chain_alloc();
207 if (!avc)
208 goto enomem_failure;
209 anon_vma_chain_link(dst, avc, pavc->anon_vma);
210 }
211 return 0;
1da177e4 212
5beb4930
RR
213 enomem_failure:
214 unlink_anon_vmas(dst);
215 return -ENOMEM;
1da177e4
LT
216}
217
5beb4930
RR
218/*
219 * Attach vma to its own anon_vma, as well as to the anon_vmas that
220 * the corresponding VMA in the parent process is attached to.
221 * Returns 0 on success, non-zero on failure.
222 */
223int anon_vma_fork(struct vm_area_struct *vma, struct vm_area_struct *pvma)
1da177e4 224{
5beb4930
RR
225 struct anon_vma_chain *avc;
226 struct anon_vma *anon_vma;
1da177e4 227
5beb4930
RR
228 /* Don't bother if the parent process has no anon_vma here. */
229 if (!pvma->anon_vma)
230 return 0;
231
232 /*
233 * First, attach the new VMA to the parent VMA's anon_vmas,
234 * so rmap can find non-COWed pages in child processes.
235 */
236 if (anon_vma_clone(vma, pvma))
237 return -ENOMEM;
238
239 /* Then add our own anon_vma. */
240 anon_vma = anon_vma_alloc();
241 if (!anon_vma)
242 goto out_error;
243 avc = anon_vma_chain_alloc();
244 if (!avc)
245 goto out_error_free_anon_vma;
5c341ee1
RR
246
247 /*
248 * The root anon_vma's spinlock is the lock actually used when we
249 * lock any of the anon_vmas in this anon_vma tree.
250 */
251 anon_vma->root = pvma->anon_vma->root;
76545066 252 /*
01d8b20d
PZ
253 * With refcounts, an anon_vma can stay around longer than the
254 * process it belongs to. The root anon_vma needs to be pinned until
255 * this anon_vma is freed, because the lock lives in the root.
76545066
RR
256 */
257 get_anon_vma(anon_vma->root);
5beb4930
RR
258 /* Mark this anon_vma as the one where our new (COWed) pages go. */
259 vma->anon_vma = anon_vma;
5c341ee1 260 anon_vma_chain_link(vma, avc, anon_vma);
5beb4930
RR
261
262 return 0;
263
264 out_error_free_anon_vma:
01d8b20d 265 put_anon_vma(anon_vma);
5beb4930 266 out_error:
4946d54c 267 unlink_anon_vmas(vma);
5beb4930 268 return -ENOMEM;
1da177e4
LT
269}
270
5beb4930 271static void anon_vma_unlink(struct anon_vma_chain *anon_vma_chain)
1da177e4 272{
5beb4930 273 struct anon_vma *anon_vma = anon_vma_chain->anon_vma;
1da177e4
LT
274 int empty;
275
5beb4930 276 /* If anon_vma_fork fails, we can get an empty anon_vma_chain. */
1da177e4
LT
277 if (!anon_vma)
278 return;
279
cba48b98 280 anon_vma_lock(anon_vma);
5beb4930 281 list_del(&anon_vma_chain->same_anon_vma);
1da177e4
LT
282
283 /* We must garbage collect the anon_vma if it's empty */
01d8b20d 284 empty = list_empty(&anon_vma->head);
cba48b98 285 anon_vma_unlock(anon_vma);
1da177e4 286
01d8b20d
PZ
287 if (empty)
288 put_anon_vma(anon_vma);
1da177e4
LT
289}
290
5beb4930
RR
291void unlink_anon_vmas(struct vm_area_struct *vma)
292{
293 struct anon_vma_chain *avc, *next;
294
5c341ee1
RR
295 /*
296 * Unlink each anon_vma chained to the VMA. This list is ordered
297 * from newest to oldest, ensuring the root anon_vma gets freed last.
298 */
5beb4930
RR
299 list_for_each_entry_safe(avc, next, &vma->anon_vma_chain, same_vma) {
300 anon_vma_unlink(avc);
301 list_del(&avc->same_vma);
302 anon_vma_chain_free(avc);
303 }
304}
305
51cc5068 306static void anon_vma_ctor(void *data)
1da177e4 307{
a35afb83 308 struct anon_vma *anon_vma = data;
1da177e4 309
2b575eb6 310 mutex_init(&anon_vma->mutex);
83813267 311 atomic_set(&anon_vma->refcount, 0);
a35afb83 312 INIT_LIST_HEAD(&anon_vma->head);
1da177e4
LT
313}
314
315void __init anon_vma_init(void)
316{
317 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
20c2df83 318 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor);
5beb4930 319 anon_vma_chain_cachep = KMEM_CACHE(anon_vma_chain, SLAB_PANIC);
1da177e4
LT
320}
321
322/*
6111e4ca
PZ
323 * Getting a lock on a stable anon_vma from a page off the LRU is tricky!
324 *
325 * Since there is no serialization what so ever against page_remove_rmap()
326 * the best this function can do is return a locked anon_vma that might
327 * have been relevant to this page.
328 *
329 * The page might have been remapped to a different anon_vma or the anon_vma
330 * returned may already be freed (and even reused).
331 *
332 * All users of this function must be very careful when walking the anon_vma
333 * chain and verify that the page in question is indeed mapped in it
334 * [ something equivalent to page_mapped_in_vma() ].
335 *
336 * Since anon_vma's slab is DESTROY_BY_RCU and we know from page_remove_rmap()
337 * that the anon_vma pointer from page->mapping is valid if there is a
338 * mapcount, we can dereference the anon_vma after observing those.
1da177e4 339 */
746b18d4 340struct anon_vma *page_get_anon_vma(struct page *page)
1da177e4 341{
746b18d4 342 struct anon_vma *anon_vma = NULL;
1da177e4
LT
343 unsigned long anon_mapping;
344
345 rcu_read_lock();
80e14822 346 anon_mapping = (unsigned long) ACCESS_ONCE(page->mapping);
3ca7b3c5 347 if ((anon_mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
1da177e4
LT
348 goto out;
349 if (!page_mapped(page))
350 goto out;
351
352 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
746b18d4
PZ
353 if (!atomic_inc_not_zero(&anon_vma->refcount)) {
354 anon_vma = NULL;
355 goto out;
356 }
f1819427
HD
357
358 /*
359 * If this page is still mapped, then its anon_vma cannot have been
746b18d4
PZ
360 * freed. But if it has been unmapped, we have no security against the
361 * anon_vma structure being freed and reused (for another anon_vma:
362 * SLAB_DESTROY_BY_RCU guarantees that - so the atomic_inc_not_zero()
363 * above cannot corrupt).
f1819427 364 */
746b18d4
PZ
365 if (!page_mapped(page)) {
366 put_anon_vma(anon_vma);
367 anon_vma = NULL;
368 }
1da177e4
LT
369out:
370 rcu_read_unlock();
746b18d4
PZ
371
372 return anon_vma;
373}
374
375struct anon_vma *page_lock_anon_vma(struct page *page)
376{
377 struct anon_vma *anon_vma = page_get_anon_vma(page);
378
379 if (anon_vma)
380 anon_vma_lock(anon_vma);
381
382 return anon_vma;
34bbd704
ON
383}
384
10be22df 385void page_unlock_anon_vma(struct anon_vma *anon_vma)
34bbd704 386{
cba48b98 387 anon_vma_unlock(anon_vma);
746b18d4 388 put_anon_vma(anon_vma);
1da177e4
LT
389}
390
391/*
3ad33b24
LS
392 * At what user virtual address is page expected in @vma?
393 * Returns virtual address or -EFAULT if page's index/offset is not
394 * within the range mapped the @vma.
1da177e4 395 */
71e3aac0 396inline unsigned long
1da177e4
LT
397vma_address(struct page *page, struct vm_area_struct *vma)
398{
399 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
400 unsigned long address;
401
0fe6e20b
NH
402 if (unlikely(is_vm_hugetlb_page(vma)))
403 pgoff = page->index << huge_page_order(page_hstate(page));
1da177e4
LT
404 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
405 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
3ad33b24 406 /* page should be within @vma mapping range */
1da177e4
LT
407 return -EFAULT;
408 }
409 return address;
410}
411
412/*
bf89c8c8 413 * At what user virtual address is page expected in vma?
ab941e0f 414 * Caller should check the page is actually part of the vma.
1da177e4
LT
415 */
416unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
417{
21d0d443 418 if (PageAnon(page)) {
4829b906
HD
419 struct anon_vma *page__anon_vma = page_anon_vma(page);
420 /*
421 * Note: swapoff's unuse_vma() is more efficient with this
422 * check, and needs it to match anon_vma when KSM is active.
423 */
424 if (!vma->anon_vma || !page__anon_vma ||
425 vma->anon_vma->root != page__anon_vma->root)
21d0d443
AA
426 return -EFAULT;
427 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
428 if (!vma->vm_file ||
429 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
430 return -EFAULT;
431 } else
432 return -EFAULT;
433 return vma_address(page, vma);
434}
435
81b4082d
ND
436/*
437 * Check that @page is mapped at @address into @mm.
438 *
479db0bf
NP
439 * If @sync is false, page_check_address may perform a racy check to avoid
440 * the page table lock when the pte is not present (helpful when reclaiming
441 * highly shared pages).
442 *
b8072f09 443 * On success returns with pte mapped and locked.
81b4082d 444 */
e9a81a82 445pte_t *__page_check_address(struct page *page, struct mm_struct *mm,
479db0bf 446 unsigned long address, spinlock_t **ptlp, int sync)
81b4082d
ND
447{
448 pgd_t *pgd;
449 pud_t *pud;
450 pmd_t *pmd;
451 pte_t *pte;
c0718806 452 spinlock_t *ptl;
81b4082d 453
0fe6e20b
NH
454 if (unlikely(PageHuge(page))) {
455 pte = huge_pte_offset(mm, address);
456 ptl = &mm->page_table_lock;
457 goto check;
458 }
459
81b4082d 460 pgd = pgd_offset(mm, address);
c0718806
HD
461 if (!pgd_present(*pgd))
462 return NULL;
463
464 pud = pud_offset(pgd, address);
465 if (!pud_present(*pud))
466 return NULL;
467
468 pmd = pmd_offset(pud, address);
469 if (!pmd_present(*pmd))
470 return NULL;
71e3aac0
AA
471 if (pmd_trans_huge(*pmd))
472 return NULL;
c0718806
HD
473
474 pte = pte_offset_map(pmd, address);
475 /* Make a quick check before getting the lock */
479db0bf 476 if (!sync && !pte_present(*pte)) {
c0718806
HD
477 pte_unmap(pte);
478 return NULL;
479 }
480
4c21e2f2 481 ptl = pte_lockptr(mm, pmd);
0fe6e20b 482check:
c0718806
HD
483 spin_lock(ptl);
484 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
485 *ptlp = ptl;
486 return pte;
81b4082d 487 }
c0718806
HD
488 pte_unmap_unlock(pte, ptl);
489 return NULL;
81b4082d
ND
490}
491
b291f000
NP
492/**
493 * page_mapped_in_vma - check whether a page is really mapped in a VMA
494 * @page: the page to test
495 * @vma: the VMA to test
496 *
497 * Returns 1 if the page is mapped into the page tables of the VMA, 0
498 * if the page is not mapped into the page tables of this VMA. Only
499 * valid for normal file or anonymous VMAs.
500 */
6a46079c 501int page_mapped_in_vma(struct page *page, struct vm_area_struct *vma)
b291f000
NP
502{
503 unsigned long address;
504 pte_t *pte;
505 spinlock_t *ptl;
506
507 address = vma_address(page, vma);
508 if (address == -EFAULT) /* out of vma range */
509 return 0;
510 pte = page_check_address(page, vma->vm_mm, address, &ptl, 1);
511 if (!pte) /* the page is not in this mm */
512 return 0;
513 pte_unmap_unlock(pte, ptl);
514
515 return 1;
516}
517
1da177e4
LT
518/*
519 * Subfunctions of page_referenced: page_referenced_one called
520 * repeatedly from either page_referenced_anon or page_referenced_file.
521 */
5ad64688
HD
522int page_referenced_one(struct page *page, struct vm_area_struct *vma,
523 unsigned long address, unsigned int *mapcount,
524 unsigned long *vm_flags)
1da177e4
LT
525{
526 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
527 int referenced = 0;
528
71e3aac0
AA
529 if (unlikely(PageTransHuge(page))) {
530 pmd_t *pmd;
531
532 spin_lock(&mm->page_table_lock);
2da28bfd
AA
533 /*
534 * rmap might return false positives; we must filter
535 * these out using page_check_address_pmd().
536 */
71e3aac0
AA
537 pmd = page_check_address_pmd(page, mm, address,
538 PAGE_CHECK_ADDRESS_PMD_FLAG);
2da28bfd
AA
539 if (!pmd) {
540 spin_unlock(&mm->page_table_lock);
541 goto out;
542 }
543
544 if (vma->vm_flags & VM_LOCKED) {
545 spin_unlock(&mm->page_table_lock);
546 *mapcount = 0; /* break early from loop */
547 *vm_flags |= VM_LOCKED;
548 goto out;
549 }
550
551 /* go ahead even if the pmd is pmd_trans_splitting() */
552 if (pmdp_clear_flush_young_notify(vma, address, pmd))
71e3aac0
AA
553 referenced++;
554 spin_unlock(&mm->page_table_lock);
555 } else {
556 pte_t *pte;
557 spinlock_t *ptl;
558
2da28bfd
AA
559 /*
560 * rmap might return false positives; we must filter
561 * these out using page_check_address().
562 */
71e3aac0
AA
563 pte = page_check_address(page, mm, address, &ptl, 0);
564 if (!pte)
565 goto out;
566
2da28bfd
AA
567 if (vma->vm_flags & VM_LOCKED) {
568 pte_unmap_unlock(pte, ptl);
569 *mapcount = 0; /* break early from loop */
570 *vm_flags |= VM_LOCKED;
571 goto out;
572 }
573
71e3aac0
AA
574 if (ptep_clear_flush_young_notify(vma, address, pte)) {
575 /*
576 * Don't treat a reference through a sequentially read
577 * mapping as such. If the page has been used in
578 * another mapping, we will catch it; if this other
579 * mapping is already gone, the unmap path will have
580 * set PG_referenced or activated the page.
581 */
582 if (likely(!VM_SequentialReadHint(vma)))
583 referenced++;
584 }
585 pte_unmap_unlock(pte, ptl);
586 }
587
2da28bfd
AA
588 /* Pretend the page is referenced if the task has the
589 swap token and is in the middle of a page fault. */
590 if (mm != current->mm && has_swap_token(mm) &&
591 rwsem_is_locked(&mm->mmap_sem))
592 referenced++;
593
c0718806 594 (*mapcount)--;
273f047e 595
6fe6b7e3
WF
596 if (referenced)
597 *vm_flags |= vma->vm_flags;
273f047e 598out:
1da177e4
LT
599 return referenced;
600}
601
bed7161a 602static int page_referenced_anon(struct page *page,
6fe6b7e3
WF
603 struct mem_cgroup *mem_cont,
604 unsigned long *vm_flags)
1da177e4
LT
605{
606 unsigned int mapcount;
607 struct anon_vma *anon_vma;
5beb4930 608 struct anon_vma_chain *avc;
1da177e4
LT
609 int referenced = 0;
610
611 anon_vma = page_lock_anon_vma(page);
612 if (!anon_vma)
613 return referenced;
614
615 mapcount = page_mapcount(page);
5beb4930
RR
616 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
617 struct vm_area_struct *vma = avc->vma;
1cb1729b
HD
618 unsigned long address = vma_address(page, vma);
619 if (address == -EFAULT)
620 continue;
bed7161a
BS
621 /*
622 * If we are reclaiming on behalf of a cgroup, skip
623 * counting on behalf of references from different
624 * cgroups
625 */
bd845e38 626 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 627 continue;
1cb1729b 628 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 629 &mapcount, vm_flags);
1da177e4
LT
630 if (!mapcount)
631 break;
632 }
34bbd704
ON
633
634 page_unlock_anon_vma(anon_vma);
1da177e4
LT
635 return referenced;
636}
637
638/**
639 * page_referenced_file - referenced check for object-based rmap
640 * @page: the page we're checking references on.
43d8eac4 641 * @mem_cont: target memory controller
6fe6b7e3 642 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
643 *
644 * For an object-based mapped page, find all the places it is mapped and
645 * check/clear the referenced flag. This is done by following the page->mapping
646 * pointer, then walking the chain of vmas it holds. It returns the number
647 * of references it found.
648 *
649 * This function is only called from page_referenced for object-based pages.
650 */
bed7161a 651static int page_referenced_file(struct page *page,
6fe6b7e3
WF
652 struct mem_cgroup *mem_cont,
653 unsigned long *vm_flags)
1da177e4
LT
654{
655 unsigned int mapcount;
656 struct address_space *mapping = page->mapping;
657 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
658 struct vm_area_struct *vma;
659 struct prio_tree_iter iter;
660 int referenced = 0;
661
662 /*
663 * The caller's checks on page->mapping and !PageAnon have made
664 * sure that this is a file page: the check for page->mapping
665 * excludes the case just before it gets set on an anon page.
666 */
667 BUG_ON(PageAnon(page));
668
669 /*
670 * The page lock not only makes sure that page->mapping cannot
671 * suddenly be NULLified by truncation, it makes sure that the
672 * structure at mapping cannot be freed and reused yet,
3d48ae45 673 * so we can safely take mapping->i_mmap_mutex.
1da177e4
LT
674 */
675 BUG_ON(!PageLocked(page));
676
3d48ae45 677 mutex_lock(&mapping->i_mmap_mutex);
1da177e4
LT
678
679 /*
3d48ae45 680 * i_mmap_mutex does not stabilize mapcount at all, but mapcount
1da177e4
LT
681 * is more likely to be accurate if we note it after spinning.
682 */
683 mapcount = page_mapcount(page);
684
685 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
686 unsigned long address = vma_address(page, vma);
687 if (address == -EFAULT)
688 continue;
bed7161a
BS
689 /*
690 * If we are reclaiming on behalf of a cgroup, skip
691 * counting on behalf of references from different
692 * cgroups
693 */
bd845e38 694 if (mem_cont && !mm_match_cgroup(vma->vm_mm, mem_cont))
bed7161a 695 continue;
1cb1729b 696 referenced += page_referenced_one(page, vma, address,
6fe6b7e3 697 &mapcount, vm_flags);
1da177e4
LT
698 if (!mapcount)
699 break;
700 }
701
3d48ae45 702 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
703 return referenced;
704}
705
706/**
707 * page_referenced - test if the page was referenced
708 * @page: the page to test
709 * @is_locked: caller holds lock on the page
43d8eac4 710 * @mem_cont: target memory controller
6fe6b7e3 711 * @vm_flags: collect encountered vma->vm_flags who actually referenced the page
1da177e4
LT
712 *
713 * Quick test_and_clear_referenced for all mappings to a page,
714 * returns the number of ptes which referenced the page.
715 */
6fe6b7e3
WF
716int page_referenced(struct page *page,
717 int is_locked,
718 struct mem_cgroup *mem_cont,
719 unsigned long *vm_flags)
1da177e4
LT
720{
721 int referenced = 0;
5ad64688 722 int we_locked = 0;
1da177e4 723
6fe6b7e3 724 *vm_flags = 0;
3ca7b3c5 725 if (page_mapped(page) && page_rmapping(page)) {
5ad64688
HD
726 if (!is_locked && (!PageAnon(page) || PageKsm(page))) {
727 we_locked = trylock_page(page);
728 if (!we_locked) {
729 referenced++;
730 goto out;
731 }
732 }
733 if (unlikely(PageKsm(page)))
734 referenced += page_referenced_ksm(page, mem_cont,
735 vm_flags);
736 else if (PageAnon(page))
6fe6b7e3
WF
737 referenced += page_referenced_anon(page, mem_cont,
738 vm_flags);
5ad64688 739 else if (page->mapping)
6fe6b7e3
WF
740 referenced += page_referenced_file(page, mem_cont,
741 vm_flags);
5ad64688 742 if (we_locked)
1da177e4 743 unlock_page(page);
1da177e4 744 }
5ad64688 745out:
2d42552d 746 if (page_test_and_clear_young(page_to_pfn(page)))
5b7baf05
CB
747 referenced++;
748
1da177e4
LT
749 return referenced;
750}
751
1cb1729b
HD
752static int page_mkclean_one(struct page *page, struct vm_area_struct *vma,
753 unsigned long address)
d08b3851
PZ
754{
755 struct mm_struct *mm = vma->vm_mm;
c2fda5fe 756 pte_t *pte;
d08b3851
PZ
757 spinlock_t *ptl;
758 int ret = 0;
759
479db0bf 760 pte = page_check_address(page, mm, address, &ptl, 1);
d08b3851
PZ
761 if (!pte)
762 goto out;
763
c2fda5fe
PZ
764 if (pte_dirty(*pte) || pte_write(*pte)) {
765 pte_t entry;
d08b3851 766
c2fda5fe 767 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 768 entry = ptep_clear_flush_notify(vma, address, pte);
c2fda5fe
PZ
769 entry = pte_wrprotect(entry);
770 entry = pte_mkclean(entry);
d6e88e67 771 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
772 ret = 1;
773 }
d08b3851 774
d08b3851
PZ
775 pte_unmap_unlock(pte, ptl);
776out:
777 return ret;
778}
779
780static int page_mkclean_file(struct address_space *mapping, struct page *page)
781{
782 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
783 struct vm_area_struct *vma;
784 struct prio_tree_iter iter;
785 int ret = 0;
786
787 BUG_ON(PageAnon(page));
788
3d48ae45 789 mutex_lock(&mapping->i_mmap_mutex);
d08b3851 790 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
791 if (vma->vm_flags & VM_SHARED) {
792 unsigned long address = vma_address(page, vma);
793 if (address == -EFAULT)
794 continue;
795 ret += page_mkclean_one(page, vma, address);
796 }
d08b3851 797 }
3d48ae45 798 mutex_unlock(&mapping->i_mmap_mutex);
d08b3851
PZ
799 return ret;
800}
801
802int page_mkclean(struct page *page)
803{
804 int ret = 0;
805
806 BUG_ON(!PageLocked(page));
807
808 if (page_mapped(page)) {
809 struct address_space *mapping = page_mapping(page);
ce7e9fae 810 if (mapping) {
d08b3851 811 ret = page_mkclean_file(mapping, page);
2d42552d 812 if (page_test_and_clear_dirty(page_to_pfn(page), 1))
ce7e9fae 813 ret = 1;
6c210482 814 }
d08b3851
PZ
815 }
816
817 return ret;
818}
60b59bea 819EXPORT_SYMBOL_GPL(page_mkclean);
d08b3851 820
c44b6743
RR
821/**
822 * page_move_anon_rmap - move a page to our anon_vma
823 * @page: the page to move to our anon_vma
824 * @vma: the vma the page belongs to
825 * @address: the user virtual address mapped
826 *
827 * When a page belongs exclusively to one process after a COW event,
828 * that page can be moved into the anon_vma that belongs to just that
829 * process, so the rmap code will not search the parent or sibling
830 * processes.
831 */
832void page_move_anon_rmap(struct page *page,
833 struct vm_area_struct *vma, unsigned long address)
834{
835 struct anon_vma *anon_vma = vma->anon_vma;
836
837 VM_BUG_ON(!PageLocked(page));
838 VM_BUG_ON(!anon_vma);
839 VM_BUG_ON(page->index != linear_page_index(vma, address));
840
841 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
842 page->mapping = (struct address_space *) anon_vma;
843}
844
9617d95e 845/**
4e1c1975
AK
846 * __page_set_anon_rmap - set up new anonymous rmap
847 * @page: Page to add to rmap
848 * @vma: VM area to add page to.
849 * @address: User virtual address of the mapping
e8a03feb 850 * @exclusive: the page is exclusively owned by the current process
9617d95e
NP
851 */
852static void __page_set_anon_rmap(struct page *page,
e8a03feb 853 struct vm_area_struct *vma, unsigned long address, int exclusive)
9617d95e 854{
e8a03feb 855 struct anon_vma *anon_vma = vma->anon_vma;
ea90002b 856
e8a03feb 857 BUG_ON(!anon_vma);
ea90002b 858
4e1c1975
AK
859 if (PageAnon(page))
860 return;
861
ea90002b 862 /*
e8a03feb
RR
863 * If the page isn't exclusively mapped into this vma,
864 * we must use the _oldest_ possible anon_vma for the
865 * page mapping!
ea90002b 866 */
4e1c1975 867 if (!exclusive)
288468c3 868 anon_vma = anon_vma->root;
9617d95e 869
9617d95e
NP
870 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
871 page->mapping = (struct address_space *) anon_vma;
9617d95e 872 page->index = linear_page_index(vma, address);
9617d95e
NP
873}
874
c97a9e10 875/**
43d8eac4 876 * __page_check_anon_rmap - sanity check anonymous rmap addition
c97a9e10
NP
877 * @page: the page to add the mapping to
878 * @vma: the vm area in which the mapping is added
879 * @address: the user virtual address mapped
880 */
881static void __page_check_anon_rmap(struct page *page,
882 struct vm_area_struct *vma, unsigned long address)
883{
884#ifdef CONFIG_DEBUG_VM
885 /*
886 * The page's anon-rmap details (mapping and index) are guaranteed to
887 * be set up correctly at this point.
888 *
889 * We have exclusion against page_add_anon_rmap because the caller
890 * always holds the page locked, except if called from page_dup_rmap,
891 * in which case the page is already known to be setup.
892 *
893 * We have exclusion against page_add_new_anon_rmap because those pages
894 * are initially only visible via the pagetables, and the pte is locked
895 * over the call to page_add_new_anon_rmap.
896 */
44ab57a0 897 BUG_ON(page_anon_vma(page)->root != vma->anon_vma->root);
c97a9e10
NP
898 BUG_ON(page->index != linear_page_index(vma, address));
899#endif
900}
901
1da177e4
LT
902/**
903 * page_add_anon_rmap - add pte mapping to an anonymous page
904 * @page: the page to add the mapping to
905 * @vma: the vm area in which the mapping is added
906 * @address: the user virtual address mapped
907 *
5ad64688 908 * The caller needs to hold the pte lock, and the page must be locked in
80e14822
HD
909 * the anon_vma case: to serialize mapping,index checking after setting,
910 * and to ensure that PageAnon is not being upgraded racily to PageKsm
911 * (but PageKsm is never downgraded to PageAnon).
1da177e4
LT
912 */
913void page_add_anon_rmap(struct page *page,
914 struct vm_area_struct *vma, unsigned long address)
ad8c2ee8
RR
915{
916 do_page_add_anon_rmap(page, vma, address, 0);
917}
918
919/*
920 * Special version of the above for do_swap_page, which often runs
921 * into pages that are exclusively owned by the current process.
922 * Everybody else should continue to use page_add_anon_rmap above.
923 */
924void do_page_add_anon_rmap(struct page *page,
925 struct vm_area_struct *vma, unsigned long address, int exclusive)
1da177e4 926{
5ad64688 927 int first = atomic_inc_and_test(&page->_mapcount);
79134171
AA
928 if (first) {
929 if (!PageTransHuge(page))
930 __inc_zone_page_state(page, NR_ANON_PAGES);
931 else
932 __inc_zone_page_state(page,
933 NR_ANON_TRANSPARENT_HUGEPAGES);
934 }
5ad64688
HD
935 if (unlikely(PageKsm(page)))
936 return;
937
c97a9e10
NP
938 VM_BUG_ON(!PageLocked(page));
939 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
5ad64688 940 if (first)
ad8c2ee8 941 __page_set_anon_rmap(page, vma, address, exclusive);
69029cd5 942 else
c97a9e10 943 __page_check_anon_rmap(page, vma, address);
1da177e4
LT
944}
945
43d8eac4 946/**
9617d95e
NP
947 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
948 * @page: the page to add the mapping to
949 * @vma: the vm area in which the mapping is added
950 * @address: the user virtual address mapped
951 *
952 * Same as page_add_anon_rmap but must only be called on *new* pages.
953 * This means the inc-and-test can be bypassed.
c97a9e10 954 * Page does not have to be locked.
9617d95e
NP
955 */
956void page_add_new_anon_rmap(struct page *page,
957 struct vm_area_struct *vma, unsigned long address)
958{
b5934c53 959 VM_BUG_ON(address < vma->vm_start || address >= vma->vm_end);
cbf84b7a
HD
960 SetPageSwapBacked(page);
961 atomic_set(&page->_mapcount, 0); /* increment count (starts at -1) */
79134171
AA
962 if (!PageTransHuge(page))
963 __inc_zone_page_state(page, NR_ANON_PAGES);
964 else
965 __inc_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
e8a03feb 966 __page_set_anon_rmap(page, vma, address, 1);
b5934c53 967 if (page_evictable(page, vma))
cbf84b7a 968 lru_cache_add_lru(page, LRU_ACTIVE_ANON);
b5934c53
HD
969 else
970 add_page_to_unevictable_list(page);
9617d95e
NP
971}
972
1da177e4
LT
973/**
974 * page_add_file_rmap - add pte mapping to a file page
975 * @page: the page to add the mapping to
976 *
b8072f09 977 * The caller needs to hold the pte lock.
1da177e4
LT
978 */
979void page_add_file_rmap(struct page *page)
980{
d69b042f 981 if (atomic_inc_and_test(&page->_mapcount)) {
65ba55f5 982 __inc_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 983 mem_cgroup_inc_page_stat(page, MEMCG_NR_FILE_MAPPED);
d69b042f 984 }
1da177e4
LT
985}
986
987/**
988 * page_remove_rmap - take down pte mapping from a page
989 * @page: page to remove mapping from
990 *
b8072f09 991 * The caller needs to hold the pte lock.
1da177e4 992 */
edc315fd 993void page_remove_rmap(struct page *page)
1da177e4 994{
b904dcfe
KM
995 /* page still mapped by someone else? */
996 if (!atomic_add_negative(-1, &page->_mapcount))
997 return;
998
999 /*
1000 * Now that the last pte has gone, s390 must transfer dirty
1001 * flag from storage key to struct page. We can usually skip
1002 * this if the page is anon, so about to be freed; but perhaps
1003 * not if it's in swapcache - there might be another pte slot
1004 * containing the swap entry, but page not yet written to swap.
1005 */
2d42552d
MS
1006 if ((!PageAnon(page) || PageSwapCache(page)) &&
1007 page_test_and_clear_dirty(page_to_pfn(page), 1))
b904dcfe 1008 set_page_dirty(page);
0fe6e20b
NH
1009 /*
1010 * Hugepages are not counted in NR_ANON_PAGES nor NR_FILE_MAPPED
1011 * and not charged by memcg for now.
1012 */
1013 if (unlikely(PageHuge(page)))
1014 return;
b904dcfe
KM
1015 if (PageAnon(page)) {
1016 mem_cgroup_uncharge_page(page);
79134171
AA
1017 if (!PageTransHuge(page))
1018 __dec_zone_page_state(page, NR_ANON_PAGES);
1019 else
1020 __dec_zone_page_state(page,
1021 NR_ANON_TRANSPARENT_HUGEPAGES);
b904dcfe
KM
1022 } else {
1023 __dec_zone_page_state(page, NR_FILE_MAPPED);
2a7106f2 1024 mem_cgroup_dec_page_stat(page, MEMCG_NR_FILE_MAPPED);
b904dcfe 1025 }
b904dcfe
KM
1026 /*
1027 * It would be tidy to reset the PageAnon mapping here,
1028 * but that might overwrite a racing page_add_anon_rmap
1029 * which increments mapcount after us but sets mapping
1030 * before us: so leave the reset to free_hot_cold_page,
1031 * and remember that it's only reliable while mapped.
1032 * Leaving it set also helps swapoff to reinstate ptes
1033 * faster for those pages still in swapcache.
1034 */
1da177e4
LT
1035}
1036
1037/*
1038 * Subfunctions of try_to_unmap: try_to_unmap_one called
1039 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
1040 */
5ad64688
HD
1041int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
1042 unsigned long address, enum ttu_flags flags)
1da177e4
LT
1043{
1044 struct mm_struct *mm = vma->vm_mm;
1da177e4
LT
1045 pte_t *pte;
1046 pte_t pteval;
c0718806 1047 spinlock_t *ptl;
1da177e4
LT
1048 int ret = SWAP_AGAIN;
1049
479db0bf 1050 pte = page_check_address(page, mm, address, &ptl, 0);
c0718806 1051 if (!pte)
81b4082d 1052 goto out;
1da177e4
LT
1053
1054 /*
1055 * If the page is mlock()d, we cannot swap it out.
1056 * If it's recently referenced (perhaps page_referenced
1057 * skipped over this mm) then we should reactivate it.
1058 */
14fa31b8 1059 if (!(flags & TTU_IGNORE_MLOCK)) {
caed0f48
KM
1060 if (vma->vm_flags & VM_LOCKED)
1061 goto out_mlock;
1062
af8e3354 1063 if (TTU_ACTION(flags) == TTU_MUNLOCK)
53f79acb 1064 goto out_unmap;
14fa31b8
AK
1065 }
1066 if (!(flags & TTU_IGNORE_ACCESS)) {
b291f000
NP
1067 if (ptep_clear_flush_young_notify(vma, address, pte)) {
1068 ret = SWAP_FAIL;
1069 goto out_unmap;
1070 }
1071 }
1da177e4 1072
1da177e4
LT
1073 /* Nuke the page table entry. */
1074 flush_cache_page(vma, address, page_to_pfn(page));
cddb8a5c 1075 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1076
1077 /* Move the dirty bit to the physical page now the pte is gone. */
1078 if (pte_dirty(pteval))
1079 set_page_dirty(page);
1080
365e9c87
HD
1081 /* Update high watermark before we lower rss */
1082 update_hiwater_rss(mm);
1083
888b9f7c
AK
1084 if (PageHWPoison(page) && !(flags & TTU_IGNORE_HWPOISON)) {
1085 if (PageAnon(page))
d559db08 1086 dec_mm_counter(mm, MM_ANONPAGES);
888b9f7c 1087 else
d559db08 1088 dec_mm_counter(mm, MM_FILEPAGES);
888b9f7c
AK
1089 set_pte_at(mm, address, pte,
1090 swp_entry_to_pte(make_hwpoison_entry(page)));
1091 } else if (PageAnon(page)) {
4c21e2f2 1092 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
1093
1094 if (PageSwapCache(page)) {
1095 /*
1096 * Store the swap location in the pte.
1097 * See handle_pte_fault() ...
1098 */
570a335b
HD
1099 if (swap_duplicate(entry) < 0) {
1100 set_pte_at(mm, address, pte, pteval);
1101 ret = SWAP_FAIL;
1102 goto out_unmap;
1103 }
0697212a
CL
1104 if (list_empty(&mm->mmlist)) {
1105 spin_lock(&mmlist_lock);
1106 if (list_empty(&mm->mmlist))
1107 list_add(&mm->mmlist, &init_mm.mmlist);
1108 spin_unlock(&mmlist_lock);
1109 }
d559db08 1110 dec_mm_counter(mm, MM_ANONPAGES);
b084d435 1111 inc_mm_counter(mm, MM_SWAPENTS);
64cdd548 1112 } else if (PAGE_MIGRATION) {
0697212a
CL
1113 /*
1114 * Store the pfn of the page in a special migration
1115 * pte. do_swap_page() will wait until the migration
1116 * pte is removed and then restart fault handling.
1117 */
14fa31b8 1118 BUG_ON(TTU_ACTION(flags) != TTU_MIGRATION);
0697212a 1119 entry = make_migration_entry(page, pte_write(pteval));
1da177e4
LT
1120 }
1121 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1122 BUG_ON(pte_file(*pte));
14fa31b8 1123 } else if (PAGE_MIGRATION && (TTU_ACTION(flags) == TTU_MIGRATION)) {
04e62a29
CL
1124 /* Establish migration entry for a file page */
1125 swp_entry_t entry;
1126 entry = make_migration_entry(page, pte_write(pteval));
1127 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
1128 } else
d559db08 1129 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4 1130
edc315fd 1131 page_remove_rmap(page);
1da177e4
LT
1132 page_cache_release(page);
1133
1134out_unmap:
c0718806 1135 pte_unmap_unlock(pte, ptl);
caed0f48
KM
1136out:
1137 return ret;
53f79acb 1138
caed0f48
KM
1139out_mlock:
1140 pte_unmap_unlock(pte, ptl);
1141
1142
1143 /*
1144 * We need mmap_sem locking, Otherwise VM_LOCKED check makes
1145 * unstable result and race. Plus, We can't wait here because
2b575eb6 1146 * we now hold anon_vma->mutex or mapping->i_mmap_mutex.
caed0f48
KM
1147 * if trylock failed, the page remain in evictable lru and later
1148 * vmscan could retry to move the page to unevictable lru if the
1149 * page is actually mlocked.
1150 */
1151 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
1152 if (vma->vm_flags & VM_LOCKED) {
1153 mlock_vma_page(page);
1154 ret = SWAP_MLOCK;
53f79acb 1155 }
caed0f48 1156 up_read(&vma->vm_mm->mmap_sem);
53f79acb 1157 }
1da177e4
LT
1158 return ret;
1159}
1160
1161/*
1162 * objrmap doesn't work for nonlinear VMAs because the assumption that
1163 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
1164 * Consequently, given a particular page and its ->index, we cannot locate the
1165 * ptes which are mapping that page without an exhaustive linear search.
1166 *
1167 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
1168 * maps the file to which the target page belongs. The ->vm_private_data field
1169 * holds the current cursor into that scan. Successive searches will circulate
1170 * around the vma's virtual address space.
1171 *
1172 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
1173 * more scanning pressure is placed against them as well. Eventually pages
1174 * will become fully unmapped and are eligible for eviction.
1175 *
1176 * For very sparsely populated VMAs this is a little inefficient - chances are
1177 * there there won't be many ptes located within the scan cluster. In this case
1178 * maybe we could scan further - to the end of the pte page, perhaps.
b291f000
NP
1179 *
1180 * Mlocked pages: check VM_LOCKED under mmap_sem held for read, if we can
1181 * acquire it without blocking. If vma locked, mlock the pages in the cluster,
1182 * rather than unmapping them. If we encounter the "check_page" that vmscan is
1183 * trying to unmap, return SWAP_MLOCK, else default SWAP_AGAIN.
1da177e4
LT
1184 */
1185#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
1186#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
1187
b291f000
NP
1188static int try_to_unmap_cluster(unsigned long cursor, unsigned int *mapcount,
1189 struct vm_area_struct *vma, struct page *check_page)
1da177e4
LT
1190{
1191 struct mm_struct *mm = vma->vm_mm;
1192 pgd_t *pgd;
1193 pud_t *pud;
1194 pmd_t *pmd;
c0718806 1195 pte_t *pte;
1da177e4 1196 pte_t pteval;
c0718806 1197 spinlock_t *ptl;
1da177e4
LT
1198 struct page *page;
1199 unsigned long address;
1200 unsigned long end;
b291f000
NP
1201 int ret = SWAP_AGAIN;
1202 int locked_vma = 0;
1da177e4 1203
1da177e4
LT
1204 address = (vma->vm_start + cursor) & CLUSTER_MASK;
1205 end = address + CLUSTER_SIZE;
1206 if (address < vma->vm_start)
1207 address = vma->vm_start;
1208 if (end > vma->vm_end)
1209 end = vma->vm_end;
1210
1211 pgd = pgd_offset(mm, address);
1212 if (!pgd_present(*pgd))
b291f000 1213 return ret;
1da177e4
LT
1214
1215 pud = pud_offset(pgd, address);
1216 if (!pud_present(*pud))
b291f000 1217 return ret;
1da177e4
LT
1218
1219 pmd = pmd_offset(pud, address);
1220 if (!pmd_present(*pmd))
b291f000
NP
1221 return ret;
1222
1223 /*
af8e3354 1224 * If we can acquire the mmap_sem for read, and vma is VM_LOCKED,
b291f000
NP
1225 * keep the sem while scanning the cluster for mlocking pages.
1226 */
af8e3354 1227 if (down_read_trylock(&vma->vm_mm->mmap_sem)) {
b291f000
NP
1228 locked_vma = (vma->vm_flags & VM_LOCKED);
1229 if (!locked_vma)
1230 up_read(&vma->vm_mm->mmap_sem); /* don't need it */
1231 }
c0718806
HD
1232
1233 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 1234
365e9c87
HD
1235 /* Update high watermark before we lower rss */
1236 update_hiwater_rss(mm);
1237
c0718806 1238 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
1239 if (!pte_present(*pte))
1240 continue;
6aab341e
LT
1241 page = vm_normal_page(vma, address, *pte);
1242 BUG_ON(!page || PageAnon(page));
1da177e4 1243
b291f000
NP
1244 if (locked_vma) {
1245 mlock_vma_page(page); /* no-op if already mlocked */
1246 if (page == check_page)
1247 ret = SWAP_MLOCK;
1248 continue; /* don't unmap */
1249 }
1250
cddb8a5c 1251 if (ptep_clear_flush_young_notify(vma, address, pte))
1da177e4
LT
1252 continue;
1253
1254 /* Nuke the page table entry. */
eca35133 1255 flush_cache_page(vma, address, pte_pfn(*pte));
cddb8a5c 1256 pteval = ptep_clear_flush_notify(vma, address, pte);
1da177e4
LT
1257
1258 /* If nonlinear, store the file page offset in the pte. */
1259 if (page->index != linear_page_index(vma, address))
1260 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
1261
1262 /* Move the dirty bit to the physical page now the pte is gone. */
1263 if (pte_dirty(pteval))
1264 set_page_dirty(page);
1265
edc315fd 1266 page_remove_rmap(page);
1da177e4 1267 page_cache_release(page);
d559db08 1268 dec_mm_counter(mm, MM_FILEPAGES);
1da177e4
LT
1269 (*mapcount)--;
1270 }
c0718806 1271 pte_unmap_unlock(pte - 1, ptl);
b291f000
NP
1272 if (locked_vma)
1273 up_read(&vma->vm_mm->mmap_sem);
1274 return ret;
1da177e4
LT
1275}
1276
71e3aac0 1277bool is_vma_temporary_stack(struct vm_area_struct *vma)
a8bef8ff
MG
1278{
1279 int maybe_stack = vma->vm_flags & (VM_GROWSDOWN | VM_GROWSUP);
1280
1281 if (!maybe_stack)
1282 return false;
1283
1284 if ((vma->vm_flags & VM_STACK_INCOMPLETE_SETUP) ==
1285 VM_STACK_INCOMPLETE_SETUP)
1286 return true;
1287
1288 return false;
1289}
1290
b291f000
NP
1291/**
1292 * try_to_unmap_anon - unmap or unlock anonymous page using the object-based
1293 * rmap method
1294 * @page: the page to unmap/unlock
8051be5e 1295 * @flags: action and flags
b291f000
NP
1296 *
1297 * Find all the mappings of a page using the mapping pointer and the vma chains
1298 * contained in the anon_vma struct it points to.
1299 *
1300 * This function is only called from try_to_unmap/try_to_munlock for
1301 * anonymous pages.
1302 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1303 * where the page was found will be held for write. So, we won't recheck
1304 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1305 * 'LOCKED.
1306 */
14fa31b8 1307static int try_to_unmap_anon(struct page *page, enum ttu_flags flags)
1da177e4
LT
1308{
1309 struct anon_vma *anon_vma;
5beb4930 1310 struct anon_vma_chain *avc;
1da177e4 1311 int ret = SWAP_AGAIN;
b291f000 1312
1da177e4
LT
1313 anon_vma = page_lock_anon_vma(page);
1314 if (!anon_vma)
1315 return ret;
1316
5beb4930
RR
1317 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1318 struct vm_area_struct *vma = avc->vma;
a8bef8ff
MG
1319 unsigned long address;
1320
1321 /*
1322 * During exec, a temporary VMA is setup and later moved.
1323 * The VMA is moved under the anon_vma lock but not the
1324 * page tables leading to a race where migration cannot
1325 * find the migration ptes. Rather than increasing the
1326 * locking requirements of exec(), migration skips
1327 * temporary VMAs until after exec() completes.
1328 */
1329 if (PAGE_MIGRATION && (flags & TTU_MIGRATION) &&
1330 is_vma_temporary_stack(vma))
1331 continue;
1332
1333 address = vma_address(page, vma);
1cb1729b
HD
1334 if (address == -EFAULT)
1335 continue;
1336 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1337 if (ret != SWAP_AGAIN || !page_mapped(page))
1338 break;
1da177e4 1339 }
34bbd704
ON
1340
1341 page_unlock_anon_vma(anon_vma);
1da177e4
LT
1342 return ret;
1343}
1344
1345/**
b291f000
NP
1346 * try_to_unmap_file - unmap/unlock file page using the object-based rmap method
1347 * @page: the page to unmap/unlock
14fa31b8 1348 * @flags: action and flags
1da177e4
LT
1349 *
1350 * Find all the mappings of a page using the mapping pointer and the vma chains
1351 * contained in the address_space struct it points to.
1352 *
b291f000
NP
1353 * This function is only called from try_to_unmap/try_to_munlock for
1354 * object-based pages.
1355 * When called from try_to_munlock(), the mmap_sem of the mm containing the vma
1356 * where the page was found will be held for write. So, we won't recheck
1357 * vm_flags for that VMA. That should be OK, because that vma shouldn't be
1358 * 'LOCKED.
1da177e4 1359 */
14fa31b8 1360static int try_to_unmap_file(struct page *page, enum ttu_flags flags)
1da177e4
LT
1361{
1362 struct address_space *mapping = page->mapping;
1363 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1364 struct vm_area_struct *vma;
1365 struct prio_tree_iter iter;
1366 int ret = SWAP_AGAIN;
1367 unsigned long cursor;
1368 unsigned long max_nl_cursor = 0;
1369 unsigned long max_nl_size = 0;
1370 unsigned int mapcount;
1371
3d48ae45 1372 mutex_lock(&mapping->i_mmap_mutex);
1da177e4 1373 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1cb1729b
HD
1374 unsigned long address = vma_address(page, vma);
1375 if (address == -EFAULT)
1376 continue;
1377 ret = try_to_unmap_one(page, vma, address, flags);
53f79acb
HD
1378 if (ret != SWAP_AGAIN || !page_mapped(page))
1379 goto out;
1da177e4
LT
1380 }
1381
1382 if (list_empty(&mapping->i_mmap_nonlinear))
1383 goto out;
1384
53f79acb
HD
1385 /*
1386 * We don't bother to try to find the munlocked page in nonlinears.
1387 * It's costly. Instead, later, page reclaim logic may call
1388 * try_to_unmap(TTU_MUNLOCK) and recover PG_mlocked lazily.
1389 */
1390 if (TTU_ACTION(flags) == TTU_MUNLOCK)
1391 goto out;
1392
1da177e4
LT
1393 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1394 shared.vm_set.list) {
1da177e4
LT
1395 cursor = (unsigned long) vma->vm_private_data;
1396 if (cursor > max_nl_cursor)
1397 max_nl_cursor = cursor;
1398 cursor = vma->vm_end - vma->vm_start;
1399 if (cursor > max_nl_size)
1400 max_nl_size = cursor;
1401 }
1402
b291f000 1403 if (max_nl_size == 0) { /* all nonlinears locked or reserved ? */
1da177e4
LT
1404 ret = SWAP_FAIL;
1405 goto out;
1406 }
1407
1408 /*
1409 * We don't try to search for this page in the nonlinear vmas,
1410 * and page_referenced wouldn't have found it anyway. Instead
1411 * just walk the nonlinear vmas trying to age and unmap some.
1412 * The mapcount of the page we came in with is irrelevant,
1413 * but even so use it as a guide to how hard we should try?
1414 */
1415 mapcount = page_mapcount(page);
1416 if (!mapcount)
1417 goto out;
3d48ae45 1418 cond_resched();
1da177e4
LT
1419
1420 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
1421 if (max_nl_cursor == 0)
1422 max_nl_cursor = CLUSTER_SIZE;
1423
1424 do {
1425 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
1426 shared.vm_set.list) {
1da177e4 1427 cursor = (unsigned long) vma->vm_private_data;
839b9685 1428 while ( cursor < max_nl_cursor &&
1da177e4 1429 cursor < vma->vm_end - vma->vm_start) {
53f79acb
HD
1430 if (try_to_unmap_cluster(cursor, &mapcount,
1431 vma, page) == SWAP_MLOCK)
1432 ret = SWAP_MLOCK;
1da177e4
LT
1433 cursor += CLUSTER_SIZE;
1434 vma->vm_private_data = (void *) cursor;
1435 if ((int)mapcount <= 0)
1436 goto out;
1437 }
1438 vma->vm_private_data = (void *) max_nl_cursor;
1439 }
3d48ae45 1440 cond_resched();
1da177e4
LT
1441 max_nl_cursor += CLUSTER_SIZE;
1442 } while (max_nl_cursor <= max_nl_size);
1443
1444 /*
1445 * Don't loop forever (perhaps all the remaining pages are
1446 * in locked vmas). Reset cursor on all unreserved nonlinear
1447 * vmas, now forgetting on which ones it had fallen behind.
1448 */
101d2be7
HD
1449 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
1450 vma->vm_private_data = NULL;
1da177e4 1451out:
3d48ae45 1452 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
1453 return ret;
1454}
1455
1456/**
1457 * try_to_unmap - try to remove all page table mappings to a page
1458 * @page: the page to get unmapped
14fa31b8 1459 * @flags: action and flags
1da177e4
LT
1460 *
1461 * Tries to remove all the page table entries which are mapping this
1462 * page, used in the pageout path. Caller must hold the page lock.
1463 * Return values are:
1464 *
1465 * SWAP_SUCCESS - we succeeded in removing all mappings
1466 * SWAP_AGAIN - we missed a mapping, try again later
1467 * SWAP_FAIL - the page is unswappable
b291f000 1468 * SWAP_MLOCK - page is mlocked.
1da177e4 1469 */
14fa31b8 1470int try_to_unmap(struct page *page, enum ttu_flags flags)
1da177e4
LT
1471{
1472 int ret;
1473
1da177e4 1474 BUG_ON(!PageLocked(page));
91600e9e 1475 VM_BUG_ON(!PageHuge(page) && PageTransHuge(page));
1da177e4 1476
5ad64688
HD
1477 if (unlikely(PageKsm(page)))
1478 ret = try_to_unmap_ksm(page, flags);
1479 else if (PageAnon(page))
14fa31b8 1480 ret = try_to_unmap_anon(page, flags);
1da177e4 1481 else
14fa31b8 1482 ret = try_to_unmap_file(page, flags);
b291f000 1483 if (ret != SWAP_MLOCK && !page_mapped(page))
1da177e4
LT
1484 ret = SWAP_SUCCESS;
1485 return ret;
1486}
81b4082d 1487
b291f000
NP
1488/**
1489 * try_to_munlock - try to munlock a page
1490 * @page: the page to be munlocked
1491 *
1492 * Called from munlock code. Checks all of the VMAs mapping the page
1493 * to make sure nobody else has this page mlocked. The page will be
1494 * returned with PG_mlocked cleared if no other vmas have it mlocked.
1495 *
1496 * Return values are:
1497 *
53f79acb 1498 * SWAP_AGAIN - no vma is holding page mlocked, or,
b291f000 1499 * SWAP_AGAIN - page mapped in mlocked vma -- couldn't acquire mmap sem
5ad64688 1500 * SWAP_FAIL - page cannot be located at present
b291f000
NP
1501 * SWAP_MLOCK - page is now mlocked.
1502 */
1503int try_to_munlock(struct page *page)
1504{
1505 VM_BUG_ON(!PageLocked(page) || PageLRU(page));
1506
5ad64688
HD
1507 if (unlikely(PageKsm(page)))
1508 return try_to_unmap_ksm(page, TTU_MUNLOCK);
1509 else if (PageAnon(page))
14fa31b8 1510 return try_to_unmap_anon(page, TTU_MUNLOCK);
b291f000 1511 else
14fa31b8 1512 return try_to_unmap_file(page, TTU_MUNLOCK);
b291f000 1513}
e9995ef9 1514
01d8b20d 1515void __put_anon_vma(struct anon_vma *anon_vma)
76545066 1516{
01d8b20d 1517 struct anon_vma *root = anon_vma->root;
76545066 1518
01d8b20d
PZ
1519 if (root != anon_vma && atomic_dec_and_test(&root->refcount))
1520 anon_vma_free(root);
76545066 1521
01d8b20d 1522 anon_vma_free(anon_vma);
76545066 1523}
76545066 1524
e9995ef9
HD
1525#ifdef CONFIG_MIGRATION
1526/*
1527 * rmap_walk() and its helpers rmap_walk_anon() and rmap_walk_file():
1528 * Called by migrate.c to remove migration ptes, but might be used more later.
1529 */
1530static int rmap_walk_anon(struct page *page, int (*rmap_one)(struct page *,
1531 struct vm_area_struct *, unsigned long, void *), void *arg)
1532{
1533 struct anon_vma *anon_vma;
5beb4930 1534 struct anon_vma_chain *avc;
e9995ef9
HD
1535 int ret = SWAP_AGAIN;
1536
1537 /*
1538 * Note: remove_migration_ptes() cannot use page_lock_anon_vma()
1539 * because that depends on page_mapped(); but not all its usages
3f6c8272
MG
1540 * are holding mmap_sem. Users without mmap_sem are required to
1541 * take a reference count to prevent the anon_vma disappearing
e9995ef9
HD
1542 */
1543 anon_vma = page_anon_vma(page);
1544 if (!anon_vma)
1545 return ret;
cba48b98 1546 anon_vma_lock(anon_vma);
5beb4930
RR
1547 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1548 struct vm_area_struct *vma = avc->vma;
e9995ef9
HD
1549 unsigned long address = vma_address(page, vma);
1550 if (address == -EFAULT)
1551 continue;
1552 ret = rmap_one(page, vma, address, arg);
1553 if (ret != SWAP_AGAIN)
1554 break;
1555 }
cba48b98 1556 anon_vma_unlock(anon_vma);
e9995ef9
HD
1557 return ret;
1558}
1559
1560static int rmap_walk_file(struct page *page, int (*rmap_one)(struct page *,
1561 struct vm_area_struct *, unsigned long, void *), void *arg)
1562{
1563 struct address_space *mapping = page->mapping;
1564 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1565 struct vm_area_struct *vma;
1566 struct prio_tree_iter iter;
1567 int ret = SWAP_AGAIN;
1568
1569 if (!mapping)
1570 return ret;
3d48ae45 1571 mutex_lock(&mapping->i_mmap_mutex);
e9995ef9
HD
1572 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
1573 unsigned long address = vma_address(page, vma);
1574 if (address == -EFAULT)
1575 continue;
1576 ret = rmap_one(page, vma, address, arg);
1577 if (ret != SWAP_AGAIN)
1578 break;
1579 }
1580 /*
1581 * No nonlinear handling: being always shared, nonlinear vmas
1582 * never contain migration ptes. Decide what to do about this
1583 * limitation to linear when we need rmap_walk() on nonlinear.
1584 */
3d48ae45 1585 mutex_unlock(&mapping->i_mmap_mutex);
e9995ef9
HD
1586 return ret;
1587}
1588
1589int rmap_walk(struct page *page, int (*rmap_one)(struct page *,
1590 struct vm_area_struct *, unsigned long, void *), void *arg)
1591{
1592 VM_BUG_ON(!PageLocked(page));
1593
1594 if (unlikely(PageKsm(page)))
1595 return rmap_walk_ksm(page, rmap_one, arg);
1596 else if (PageAnon(page))
1597 return rmap_walk_anon(page, rmap_one, arg);
1598 else
1599 return rmap_walk_file(page, rmap_one, arg);
1600}
1601#endif /* CONFIG_MIGRATION */
0fe6e20b 1602
e3390f67 1603#ifdef CONFIG_HUGETLB_PAGE
0fe6e20b
NH
1604/*
1605 * The following three functions are for anonymous (private mapped) hugepages.
1606 * Unlike common anonymous pages, anonymous hugepages have no accounting code
1607 * and no lru code, because we handle hugepages differently from common pages.
1608 */
1609static void __hugepage_set_anon_rmap(struct page *page,
1610 struct vm_area_struct *vma, unsigned long address, int exclusive)
1611{
1612 struct anon_vma *anon_vma = vma->anon_vma;
433abed6 1613
0fe6e20b 1614 BUG_ON(!anon_vma);
433abed6
NH
1615
1616 if (PageAnon(page))
1617 return;
1618 if (!exclusive)
1619 anon_vma = anon_vma->root;
1620
0fe6e20b
NH
1621 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
1622 page->mapping = (struct address_space *) anon_vma;
1623 page->index = linear_page_index(vma, address);
1624}
1625
1626void hugepage_add_anon_rmap(struct page *page,
1627 struct vm_area_struct *vma, unsigned long address)
1628{
1629 struct anon_vma *anon_vma = vma->anon_vma;
1630 int first;
a850ea30
NH
1631
1632 BUG_ON(!PageLocked(page));
0fe6e20b
NH
1633 BUG_ON(!anon_vma);
1634 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1635 first = atomic_inc_and_test(&page->_mapcount);
1636 if (first)
1637 __hugepage_set_anon_rmap(page, vma, address, 0);
1638}
1639
1640void hugepage_add_new_anon_rmap(struct page *page,
1641 struct vm_area_struct *vma, unsigned long address)
1642{
1643 BUG_ON(address < vma->vm_start || address >= vma->vm_end);
1644 atomic_set(&page->_mapcount, 0);
1645 __hugepage_set_anon_rmap(page, vma, address, 1);
1646}
e3390f67 1647#endif /* CONFIG_HUGETLB_PAGE */