]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slab.c
PCI / PM: Always check PME wakeup capability for runtime wakeup support
[mirror_ubuntu-artful-kernel.git] / mm / slab.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/slab.c
3 * Written by Mark Hemment, 1996/97.
4 * (markhe@nextd.demon.co.uk)
5 *
6 * kmem_cache_destroy() + some cleanup - 1999 Andrea Arcangeli
7 *
8 * Major cleanup, different bufctl logic, per-cpu arrays
9 * (c) 2000 Manfred Spraul
10 *
11 * Cleanup, make the head arrays unconditional, preparation for NUMA
12 * (c) 2002 Manfred Spraul
13 *
14 * An implementation of the Slab Allocator as described in outline in;
15 * UNIX Internals: The New Frontiers by Uresh Vahalia
16 * Pub: Prentice Hall ISBN 0-13-101908-2
17 * or with a little more detail in;
18 * The Slab Allocator: An Object-Caching Kernel Memory Allocator
19 * Jeff Bonwick (Sun Microsystems).
20 * Presented at: USENIX Summer 1994 Technical Conference
21 *
22 * The memory is organized in caches, one cache for each object type.
23 * (e.g. inode_cache, dentry_cache, buffer_head, vm_area_struct)
24 * Each cache consists out of many slabs (they are small (usually one
25 * page long) and always contiguous), and each slab contains multiple
26 * initialized objects.
27 *
28 * This means, that your constructor is used only for newly allocated
183ff22b 29 * slabs and you must pass objects with the same initializations to
1da177e4
LT
30 * kmem_cache_free.
31 *
32 * Each cache can only support one memory type (GFP_DMA, GFP_HIGHMEM,
33 * normal). If you need a special memory type, then must create a new
34 * cache for that memory type.
35 *
36 * In order to reduce fragmentation, the slabs are sorted in 3 groups:
37 * full slabs with 0 free objects
38 * partial slabs
39 * empty slabs with no allocated objects
40 *
41 * If partial slabs exist, then new allocations come from these slabs,
42 * otherwise from empty slabs or new slabs are allocated.
43 *
44 * kmem_cache_destroy() CAN CRASH if you try to allocate from the cache
45 * during kmem_cache_destroy(). The caller must prevent concurrent allocs.
46 *
47 * Each cache has a short per-cpu head array, most allocs
48 * and frees go into that array, and if that array overflows, then 1/2
49 * of the entries in the array are given back into the global cache.
50 * The head array is strictly LIFO and should improve the cache hit rates.
51 * On SMP, it additionally reduces the spinlock operations.
52 *
a737b3e2 53 * The c_cpuarray may not be read with enabled local interrupts -
1da177e4
LT
54 * it's changed with a smp_call_function().
55 *
56 * SMP synchronization:
57 * constructors and destructors are called without any locking.
343e0d7a 58 * Several members in struct kmem_cache and struct slab never change, they
1da177e4
LT
59 * are accessed without any locking.
60 * The per-cpu arrays are never accessed from the wrong cpu, no locking,
61 * and local interrupts are disabled so slab code is preempt-safe.
62 * The non-constant members are protected with a per-cache irq spinlock.
63 *
64 * Many thanks to Mark Hemment, who wrote another per-cpu slab patch
65 * in 2000 - many ideas in the current implementation are derived from
66 * his patch.
67 *
68 * Further notes from the original documentation:
69 *
70 * 11 April '97. Started multi-threading - markhe
18004c5d 71 * The global cache-chain is protected by the mutex 'slab_mutex'.
1da177e4
LT
72 * The sem is only needed when accessing/extending the cache-chain, which
73 * can never happen inside an interrupt (kmem_cache_create(),
74 * kmem_cache_shrink() and kmem_cache_reap()).
75 *
76 * At present, each engine can be growing a cache. This should be blocked.
77 *
e498be7d
CL
78 * 15 March 2005. NUMA slab allocator.
79 * Shai Fultheim <shai@scalex86.org>.
80 * Shobhit Dayal <shobhit@calsoftinc.com>
81 * Alok N Kataria <alokk@calsoftinc.com>
82 * Christoph Lameter <christoph@lameter.com>
83 *
84 * Modified the slab allocator to be node aware on NUMA systems.
85 * Each node has its own list of partial, free and full slabs.
86 * All object allocations for a node occur from node specific slab lists.
1da177e4
LT
87 */
88
1da177e4
LT
89#include <linux/slab.h>
90#include <linux/mm.h>
c9cf5528 91#include <linux/poison.h>
1da177e4
LT
92#include <linux/swap.h>
93#include <linux/cache.h>
94#include <linux/interrupt.h>
95#include <linux/init.h>
96#include <linux/compiler.h>
101a5001 97#include <linux/cpuset.h>
a0ec95a8 98#include <linux/proc_fs.h>
1da177e4
LT
99#include <linux/seq_file.h>
100#include <linux/notifier.h>
101#include <linux/kallsyms.h>
102#include <linux/cpu.h>
103#include <linux/sysctl.h>
104#include <linux/module.h>
105#include <linux/rcupdate.h>
543537bd 106#include <linux/string.h>
138ae663 107#include <linux/uaccess.h>
e498be7d 108#include <linux/nodemask.h>
d5cff635 109#include <linux/kmemleak.h>
dc85da15 110#include <linux/mempolicy.h>
fc0abb14 111#include <linux/mutex.h>
8a8b6502 112#include <linux/fault-inject.h>
e7eebaf6 113#include <linux/rtmutex.h>
6a2d7a95 114#include <linux/reciprocal_div.h>
3ac7fe5a 115#include <linux/debugobjects.h>
c175eea4 116#include <linux/kmemcheck.h>
8f9f8d9e 117#include <linux/memory.h>
268bb0ce 118#include <linux/prefetch.h>
3f8c2452 119#include <linux/sched/task_stack.h>
1da177e4 120
381760ea
MG
121#include <net/sock.h>
122
1da177e4
LT
123#include <asm/cacheflush.h>
124#include <asm/tlbflush.h>
125#include <asm/page.h>
126
4dee6b64
SR
127#include <trace/events/kmem.h>
128
072bb0aa
MG
129#include "internal.h"
130
b9ce5ef4
GC
131#include "slab.h"
132
1da177e4 133/*
50953fe9 134 * DEBUG - 1 for kmem_cache_create() to honour; SLAB_RED_ZONE & SLAB_POISON.
1da177e4
LT
135 * 0 for faster, smaller code (especially in the critical paths).
136 *
137 * STATS - 1 to collect stats for /proc/slabinfo.
138 * 0 for faster, smaller code (especially in the critical paths).
139 *
140 * FORCED_DEBUG - 1 enables SLAB_RED_ZONE and SLAB_POISON (if possible)
141 */
142
143#ifdef CONFIG_DEBUG_SLAB
144#define DEBUG 1
145#define STATS 1
146#define FORCED_DEBUG 1
147#else
148#define DEBUG 0
149#define STATS 0
150#define FORCED_DEBUG 0
151#endif
152
1da177e4
LT
153/* Shouldn't this be in a header file somewhere? */
154#define BYTES_PER_WORD sizeof(void *)
87a927c7 155#define REDZONE_ALIGN max(BYTES_PER_WORD, __alignof__(unsigned long long))
1da177e4 156
1da177e4
LT
157#ifndef ARCH_KMALLOC_FLAGS
158#define ARCH_KMALLOC_FLAGS SLAB_HWCACHE_ALIGN
159#endif
160
f315e3fa
JK
161#define FREELIST_BYTE_INDEX (((PAGE_SIZE >> BITS_PER_BYTE) \
162 <= SLAB_OBJ_MIN_SIZE) ? 1 : 0)
163
164#if FREELIST_BYTE_INDEX
165typedef unsigned char freelist_idx_t;
166#else
167typedef unsigned short freelist_idx_t;
168#endif
169
30321c7b 170#define SLAB_OBJ_MAX_NUM ((1 << sizeof(freelist_idx_t) * BITS_PER_BYTE) - 1)
f315e3fa 171
1da177e4
LT
172/*
173 * struct array_cache
174 *
1da177e4
LT
175 * Purpose:
176 * - LIFO ordering, to hand out cache-warm objects from _alloc
177 * - reduce the number of linked list operations
178 * - reduce spinlock operations
179 *
180 * The limit is stored in the per-cpu structure to reduce the data cache
181 * footprint.
182 *
183 */
184struct array_cache {
185 unsigned int avail;
186 unsigned int limit;
187 unsigned int batchcount;
188 unsigned int touched;
bda5b655 189 void *entry[]; /*
a737b3e2
AM
190 * Must have this definition in here for the proper
191 * alignment of array_cache. Also simplifies accessing
192 * the entries.
a737b3e2 193 */
1da177e4
LT
194};
195
c8522a3a
JK
196struct alien_cache {
197 spinlock_t lock;
198 struct array_cache ac;
199};
200
e498be7d
CL
201/*
202 * Need this for bootstrapping a per node allocator.
203 */
bf0dea23 204#define NUM_INIT_LISTS (2 * MAX_NUMNODES)
ce8eb6c4 205static struct kmem_cache_node __initdata init_kmem_cache_node[NUM_INIT_LISTS];
e498be7d 206#define CACHE_CACHE 0
bf0dea23 207#define SIZE_NODE (MAX_NUMNODES)
e498be7d 208
ed11d9eb 209static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 210 struct kmem_cache_node *n, int tofree);
ed11d9eb 211static void free_block(struct kmem_cache *cachep, void **objpp, int len,
97654dfa
JK
212 int node, struct list_head *list);
213static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list);
83b519e8 214static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp);
65f27f38 215static void cache_reap(struct work_struct *unused);
ed11d9eb 216
76b342bd
JK
217static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
218 void **list);
219static inline void fixup_slab_list(struct kmem_cache *cachep,
220 struct kmem_cache_node *n, struct page *page,
221 void **list);
e0a42726
IM
222static int slab_early_init = 1;
223
ce8eb6c4 224#define INDEX_NODE kmalloc_index(sizeof(struct kmem_cache_node))
1da177e4 225
ce8eb6c4 226static void kmem_cache_node_init(struct kmem_cache_node *parent)
e498be7d
CL
227{
228 INIT_LIST_HEAD(&parent->slabs_full);
229 INIT_LIST_HEAD(&parent->slabs_partial);
230 INIT_LIST_HEAD(&parent->slabs_free);
bf00bd34 231 parent->total_slabs = 0;
f728b0a5 232 parent->free_slabs = 0;
e498be7d
CL
233 parent->shared = NULL;
234 parent->alien = NULL;
2e1217cf 235 parent->colour_next = 0;
e498be7d
CL
236 spin_lock_init(&parent->list_lock);
237 parent->free_objects = 0;
238 parent->free_touched = 0;
239}
240
a737b3e2
AM
241#define MAKE_LIST(cachep, listp, slab, nodeid) \
242 do { \
243 INIT_LIST_HEAD(listp); \
18bf8541 244 list_splice(&get_node(cachep, nodeid)->slab, listp); \
e498be7d
CL
245 } while (0)
246
a737b3e2
AM
247#define MAKE_ALL_LISTS(cachep, ptr, nodeid) \
248 do { \
e498be7d
CL
249 MAKE_LIST((cachep), (&(ptr)->slabs_full), slabs_full, nodeid); \
250 MAKE_LIST((cachep), (&(ptr)->slabs_partial), slabs_partial, nodeid); \
251 MAKE_LIST((cachep), (&(ptr)->slabs_free), slabs_free, nodeid); \
252 } while (0)
1da177e4 253
b03a017b 254#define CFLGS_OBJFREELIST_SLAB (0x40000000UL)
1da177e4 255#define CFLGS_OFF_SLAB (0x80000000UL)
b03a017b 256#define OBJFREELIST_SLAB(x) ((x)->flags & CFLGS_OBJFREELIST_SLAB)
1da177e4
LT
257#define OFF_SLAB(x) ((x)->flags & CFLGS_OFF_SLAB)
258
259#define BATCHREFILL_LIMIT 16
a737b3e2
AM
260/*
261 * Optimization question: fewer reaps means less probability for unnessary
262 * cpucache drain/refill cycles.
1da177e4 263 *
dc6f3f27 264 * OTOH the cpuarrays can contain lots of objects,
1da177e4
LT
265 * which could lock up otherwise freeable slabs.
266 */
5f0985bb
JZ
267#define REAPTIMEOUT_AC (2*HZ)
268#define REAPTIMEOUT_NODE (4*HZ)
1da177e4
LT
269
270#if STATS
271#define STATS_INC_ACTIVE(x) ((x)->num_active++)
272#define STATS_DEC_ACTIVE(x) ((x)->num_active--)
273#define STATS_INC_ALLOCED(x) ((x)->num_allocations++)
274#define STATS_INC_GROWN(x) ((x)->grown++)
ed11d9eb 275#define STATS_ADD_REAPED(x,y) ((x)->reaped += (y))
a737b3e2
AM
276#define STATS_SET_HIGH(x) \
277 do { \
278 if ((x)->num_active > (x)->high_mark) \
279 (x)->high_mark = (x)->num_active; \
280 } while (0)
1da177e4
LT
281#define STATS_INC_ERR(x) ((x)->errors++)
282#define STATS_INC_NODEALLOCS(x) ((x)->node_allocs++)
e498be7d 283#define STATS_INC_NODEFREES(x) ((x)->node_frees++)
fb7faf33 284#define STATS_INC_ACOVERFLOW(x) ((x)->node_overflow++)
a737b3e2
AM
285#define STATS_SET_FREEABLE(x, i) \
286 do { \
287 if ((x)->max_freeable < i) \
288 (x)->max_freeable = i; \
289 } while (0)
1da177e4
LT
290#define STATS_INC_ALLOCHIT(x) atomic_inc(&(x)->allochit)
291#define STATS_INC_ALLOCMISS(x) atomic_inc(&(x)->allocmiss)
292#define STATS_INC_FREEHIT(x) atomic_inc(&(x)->freehit)
293#define STATS_INC_FREEMISS(x) atomic_inc(&(x)->freemiss)
294#else
295#define STATS_INC_ACTIVE(x) do { } while (0)
296#define STATS_DEC_ACTIVE(x) do { } while (0)
297#define STATS_INC_ALLOCED(x) do { } while (0)
298#define STATS_INC_GROWN(x) do { } while (0)
4e60c86b 299#define STATS_ADD_REAPED(x,y) do { (void)(y); } while (0)
1da177e4
LT
300#define STATS_SET_HIGH(x) do { } while (0)
301#define STATS_INC_ERR(x) do { } while (0)
302#define STATS_INC_NODEALLOCS(x) do { } while (0)
e498be7d 303#define STATS_INC_NODEFREES(x) do { } while (0)
fb7faf33 304#define STATS_INC_ACOVERFLOW(x) do { } while (0)
a737b3e2 305#define STATS_SET_FREEABLE(x, i) do { } while (0)
1da177e4
LT
306#define STATS_INC_ALLOCHIT(x) do { } while (0)
307#define STATS_INC_ALLOCMISS(x) do { } while (0)
308#define STATS_INC_FREEHIT(x) do { } while (0)
309#define STATS_INC_FREEMISS(x) do { } while (0)
310#endif
311
312#if DEBUG
1da177e4 313
a737b3e2
AM
314/*
315 * memory layout of objects:
1da177e4 316 * 0 : objp
3dafccf2 317 * 0 .. cachep->obj_offset - BYTES_PER_WORD - 1: padding. This ensures that
1da177e4
LT
318 * the end of an object is aligned with the end of the real
319 * allocation. Catches writes behind the end of the allocation.
3dafccf2 320 * cachep->obj_offset - BYTES_PER_WORD .. cachep->obj_offset - 1:
1da177e4 321 * redzone word.
3dafccf2 322 * cachep->obj_offset: The real object.
3b0efdfa
CL
323 * cachep->size - 2* BYTES_PER_WORD: redzone word [BYTES_PER_WORD long]
324 * cachep->size - 1* BYTES_PER_WORD: last caller address
a737b3e2 325 * [BYTES_PER_WORD long]
1da177e4 326 */
343e0d7a 327static int obj_offset(struct kmem_cache *cachep)
1da177e4 328{
3dafccf2 329 return cachep->obj_offset;
1da177e4
LT
330}
331
b46b8f19 332static unsigned long long *dbg_redzone1(struct kmem_cache *cachep, void *objp)
1da177e4
LT
333{
334 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
b46b8f19
DW
335 return (unsigned long long*) (objp + obj_offset(cachep) -
336 sizeof(unsigned long long));
1da177e4
LT
337}
338
b46b8f19 339static unsigned long long *dbg_redzone2(struct kmem_cache *cachep, void *objp)
1da177e4
LT
340{
341 BUG_ON(!(cachep->flags & SLAB_RED_ZONE));
342 if (cachep->flags & SLAB_STORE_USER)
3b0efdfa 343 return (unsigned long long *)(objp + cachep->size -
b46b8f19 344 sizeof(unsigned long long) -
87a927c7 345 REDZONE_ALIGN);
3b0efdfa 346 return (unsigned long long *) (objp + cachep->size -
b46b8f19 347 sizeof(unsigned long long));
1da177e4
LT
348}
349
343e0d7a 350static void **dbg_userword(struct kmem_cache *cachep, void *objp)
1da177e4
LT
351{
352 BUG_ON(!(cachep->flags & SLAB_STORE_USER));
3b0efdfa 353 return (void **)(objp + cachep->size - BYTES_PER_WORD);
1da177e4
LT
354}
355
356#else
357
3dafccf2 358#define obj_offset(x) 0
b46b8f19
DW
359#define dbg_redzone1(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
360#define dbg_redzone2(cachep, objp) ({BUG(); (unsigned long long *)NULL;})
1da177e4
LT
361#define dbg_userword(cachep, objp) ({BUG(); (void **)NULL;})
362
363#endif
364
03787301
JK
365#ifdef CONFIG_DEBUG_SLAB_LEAK
366
d31676df 367static inline bool is_store_user_clean(struct kmem_cache *cachep)
03787301 368{
d31676df
JK
369 return atomic_read(&cachep->store_user_clean) == 1;
370}
03787301 371
d31676df
JK
372static inline void set_store_user_clean(struct kmem_cache *cachep)
373{
374 atomic_set(&cachep->store_user_clean, 1);
375}
03787301 376
d31676df
JK
377static inline void set_store_user_dirty(struct kmem_cache *cachep)
378{
379 if (is_store_user_clean(cachep))
380 atomic_set(&cachep->store_user_clean, 0);
03787301
JK
381}
382
383#else
d31676df 384static inline void set_store_user_dirty(struct kmem_cache *cachep) {}
03787301
JK
385
386#endif
387
1da177e4 388/*
3df1cccd
DR
389 * Do not go above this order unless 0 objects fit into the slab or
390 * overridden on the command line.
1da177e4 391 */
543585cc
DR
392#define SLAB_MAX_ORDER_HI 1
393#define SLAB_MAX_ORDER_LO 0
394static int slab_max_order = SLAB_MAX_ORDER_LO;
3df1cccd 395static bool slab_max_order_set __initdata;
1da177e4 396
6ed5eb22
PE
397static inline struct kmem_cache *virt_to_cache(const void *obj)
398{
b49af68f 399 struct page *page = virt_to_head_page(obj);
35026088 400 return page->slab_cache;
6ed5eb22
PE
401}
402
8456a648 403static inline void *index_to_obj(struct kmem_cache *cache, struct page *page,
8fea4e96
PE
404 unsigned int idx)
405{
8456a648 406 return page->s_mem + cache->size * idx;
8fea4e96
PE
407}
408
6a2d7a95 409/*
3b0efdfa
CL
410 * We want to avoid an expensive divide : (offset / cache->size)
411 * Using the fact that size is a constant for a particular cache,
412 * we can replace (offset / cache->size) by
6a2d7a95
ED
413 * reciprocal_divide(offset, cache->reciprocal_buffer_size)
414 */
415static inline unsigned int obj_to_index(const struct kmem_cache *cache,
8456a648 416 const struct page *page, void *obj)
8fea4e96 417{
8456a648 418 u32 offset = (obj - page->s_mem);
6a2d7a95 419 return reciprocal_divide(offset, cache->reciprocal_buffer_size);
8fea4e96
PE
420}
421
6fb92430 422#define BOOT_CPUCACHE_ENTRIES 1
1da177e4 423/* internal cache of cache description objs */
9b030cb8 424static struct kmem_cache kmem_cache_boot = {
b28a02de
PE
425 .batchcount = 1,
426 .limit = BOOT_CPUCACHE_ENTRIES,
427 .shared = 1,
3b0efdfa 428 .size = sizeof(struct kmem_cache),
b28a02de 429 .name = "kmem_cache",
1da177e4
LT
430};
431
1871e52c 432static DEFINE_PER_CPU(struct delayed_work, slab_reap_work);
1da177e4 433
343e0d7a 434static inline struct array_cache *cpu_cache_get(struct kmem_cache *cachep)
1da177e4 435{
bf0dea23 436 return this_cpu_ptr(cachep->cpu_cache);
1da177e4
LT
437}
438
a737b3e2
AM
439/*
440 * Calculate the number of objects and left-over bytes for a given buffer size.
441 */
70f75067
JK
442static unsigned int cache_estimate(unsigned long gfporder, size_t buffer_size,
443 unsigned long flags, size_t *left_over)
fbaccacf 444{
70f75067 445 unsigned int num;
fbaccacf 446 size_t slab_size = PAGE_SIZE << gfporder;
1da177e4 447
fbaccacf
SR
448 /*
449 * The slab management structure can be either off the slab or
450 * on it. For the latter case, the memory allocated for a
451 * slab is used for:
452 *
fbaccacf 453 * - @buffer_size bytes for each object
2e6b3602
JK
454 * - One freelist_idx_t for each object
455 *
456 * We don't need to consider alignment of freelist because
457 * freelist will be at the end of slab page. The objects will be
458 * at the correct alignment.
fbaccacf
SR
459 *
460 * If the slab management structure is off the slab, then the
461 * alignment will already be calculated into the size. Because
462 * the slabs are all pages aligned, the objects will be at the
463 * correct alignment when allocated.
464 */
b03a017b 465 if (flags & (CFLGS_OBJFREELIST_SLAB | CFLGS_OFF_SLAB)) {
70f75067 466 num = slab_size / buffer_size;
2e6b3602 467 *left_over = slab_size % buffer_size;
fbaccacf 468 } else {
70f75067 469 num = slab_size / (buffer_size + sizeof(freelist_idx_t));
2e6b3602
JK
470 *left_over = slab_size %
471 (buffer_size + sizeof(freelist_idx_t));
fbaccacf 472 }
70f75067
JK
473
474 return num;
1da177e4
LT
475}
476
f28510d3 477#if DEBUG
d40cee24 478#define slab_error(cachep, msg) __slab_error(__func__, cachep, msg)
1da177e4 479
a737b3e2
AM
480static void __slab_error(const char *function, struct kmem_cache *cachep,
481 char *msg)
1da177e4 482{
1170532b 483 pr_err("slab error in %s(): cache `%s': %s\n",
b28a02de 484 function, cachep->name, msg);
1da177e4 485 dump_stack();
373d4d09 486 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4 487}
f28510d3 488#endif
1da177e4 489
3395ee05
PM
490/*
491 * By default on NUMA we use alien caches to stage the freeing of
492 * objects allocated from other nodes. This causes massive memory
493 * inefficiencies when using fake NUMA setup to split memory into a
494 * large number of small nodes, so it can be disabled on the command
495 * line
496 */
497
498static int use_alien_caches __read_mostly = 1;
499static int __init noaliencache_setup(char *s)
500{
501 use_alien_caches = 0;
502 return 1;
503}
504__setup("noaliencache", noaliencache_setup);
505
3df1cccd
DR
506static int __init slab_max_order_setup(char *str)
507{
508 get_option(&str, &slab_max_order);
509 slab_max_order = slab_max_order < 0 ? 0 :
510 min(slab_max_order, MAX_ORDER - 1);
511 slab_max_order_set = true;
512
513 return 1;
514}
515__setup("slab_max_order=", slab_max_order_setup);
516
8fce4d8e
CL
517#ifdef CONFIG_NUMA
518/*
519 * Special reaping functions for NUMA systems called from cache_reap().
520 * These take care of doing round robin flushing of alien caches (containing
521 * objects freed on different nodes from which they were allocated) and the
522 * flushing of remote pcps by calling drain_node_pages.
523 */
1871e52c 524static DEFINE_PER_CPU(unsigned long, slab_reap_node);
8fce4d8e
CL
525
526static void init_reap_node(int cpu)
527{
0edaf86c
AM
528 per_cpu(slab_reap_node, cpu) = next_node_in(cpu_to_mem(cpu),
529 node_online_map);
8fce4d8e
CL
530}
531
532static void next_reap_node(void)
533{
909ea964 534 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 535
0edaf86c 536 node = next_node_in(node, node_online_map);
909ea964 537 __this_cpu_write(slab_reap_node, node);
8fce4d8e
CL
538}
539
540#else
541#define init_reap_node(cpu) do { } while (0)
542#define next_reap_node(void) do { } while (0)
543#endif
544
1da177e4
LT
545/*
546 * Initiate the reap timer running on the target CPU. We run at around 1 to 2Hz
547 * via the workqueue/eventd.
548 * Add the CPU number into the expiration time to minimize the possibility of
549 * the CPUs getting into lockstep and contending for the global cache chain
550 * lock.
551 */
0db0628d 552static void start_cpu_timer(int cpu)
1da177e4 553{
1871e52c 554 struct delayed_work *reap_work = &per_cpu(slab_reap_work, cpu);
1da177e4 555
eac0337a 556 if (reap_work->work.func == NULL) {
8fce4d8e 557 init_reap_node(cpu);
203b42f7 558 INIT_DEFERRABLE_WORK(reap_work, cache_reap);
2b284214
AV
559 schedule_delayed_work_on(cpu, reap_work,
560 __round_jiffies_relative(HZ, cpu));
1da177e4
LT
561 }
562}
563
1fe00d50 564static void init_arraycache(struct array_cache *ac, int limit, int batch)
1da177e4 565{
d5cff635
CM
566 /*
567 * The array_cache structures contain pointers to free object.
25985edc 568 * However, when such objects are allocated or transferred to another
d5cff635
CM
569 * cache the pointers are not cleared and they could be counted as
570 * valid references during a kmemleak scan. Therefore, kmemleak must
571 * not scan such objects.
572 */
1fe00d50
JK
573 kmemleak_no_scan(ac);
574 if (ac) {
575 ac->avail = 0;
576 ac->limit = limit;
577 ac->batchcount = batch;
578 ac->touched = 0;
1da177e4 579 }
1fe00d50
JK
580}
581
582static struct array_cache *alloc_arraycache(int node, int entries,
583 int batchcount, gfp_t gfp)
584{
5e804789 585 size_t memsize = sizeof(void *) * entries + sizeof(struct array_cache);
1fe00d50
JK
586 struct array_cache *ac = NULL;
587
588 ac = kmalloc_node(memsize, gfp, node);
589 init_arraycache(ac, entries, batchcount);
590 return ac;
1da177e4
LT
591}
592
f68f8ddd
JK
593static noinline void cache_free_pfmemalloc(struct kmem_cache *cachep,
594 struct page *page, void *objp)
072bb0aa 595{
f68f8ddd
JK
596 struct kmem_cache_node *n;
597 int page_node;
598 LIST_HEAD(list);
072bb0aa 599
f68f8ddd
JK
600 page_node = page_to_nid(page);
601 n = get_node(cachep, page_node);
381760ea 602
f68f8ddd
JK
603 spin_lock(&n->list_lock);
604 free_block(cachep, &objp, 1, page_node, &list);
605 spin_unlock(&n->list_lock);
381760ea 606
f68f8ddd 607 slabs_destroy(cachep, &list);
072bb0aa
MG
608}
609
3ded175a
CL
610/*
611 * Transfer objects in one arraycache to another.
612 * Locking must be handled by the caller.
613 *
614 * Return the number of entries transferred.
615 */
616static int transfer_objects(struct array_cache *to,
617 struct array_cache *from, unsigned int max)
618{
619 /* Figure out how many entries to transfer */
732eacc0 620 int nr = min3(from->avail, max, to->limit - to->avail);
3ded175a
CL
621
622 if (!nr)
623 return 0;
624
625 memcpy(to->entry + to->avail, from->entry + from->avail -nr,
626 sizeof(void *) *nr);
627
628 from->avail -= nr;
629 to->avail += nr;
3ded175a
CL
630 return nr;
631}
632
765c4507
CL
633#ifndef CONFIG_NUMA
634
635#define drain_alien_cache(cachep, alien) do { } while (0)
ce8eb6c4 636#define reap_alien(cachep, n) do { } while (0)
765c4507 637
c8522a3a
JK
638static inline struct alien_cache **alloc_alien_cache(int node,
639 int limit, gfp_t gfp)
765c4507 640{
8888177e 641 return NULL;
765c4507
CL
642}
643
c8522a3a 644static inline void free_alien_cache(struct alien_cache **ac_ptr)
765c4507
CL
645{
646}
647
648static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
649{
650 return 0;
651}
652
653static inline void *alternate_node_alloc(struct kmem_cache *cachep,
654 gfp_t flags)
655{
656 return NULL;
657}
658
8b98c169 659static inline void *____cache_alloc_node(struct kmem_cache *cachep,
765c4507
CL
660 gfp_t flags, int nodeid)
661{
662 return NULL;
663}
664
4167e9b2
DR
665static inline gfp_t gfp_exact_node(gfp_t flags)
666{
444eb2a4 667 return flags & ~__GFP_NOFAIL;
4167e9b2
DR
668}
669
765c4507
CL
670#else /* CONFIG_NUMA */
671
8b98c169 672static void *____cache_alloc_node(struct kmem_cache *, gfp_t, int);
c61afb18 673static void *alternate_node_alloc(struct kmem_cache *, gfp_t);
dc85da15 674
c8522a3a
JK
675static struct alien_cache *__alloc_alien_cache(int node, int entries,
676 int batch, gfp_t gfp)
677{
5e804789 678 size_t memsize = sizeof(void *) * entries + sizeof(struct alien_cache);
c8522a3a
JK
679 struct alien_cache *alc = NULL;
680
681 alc = kmalloc_node(memsize, gfp, node);
682 init_arraycache(&alc->ac, entries, batch);
49dfc304 683 spin_lock_init(&alc->lock);
c8522a3a
JK
684 return alc;
685}
686
687static struct alien_cache **alloc_alien_cache(int node, int limit, gfp_t gfp)
e498be7d 688{
c8522a3a 689 struct alien_cache **alc_ptr;
5e804789 690 size_t memsize = sizeof(void *) * nr_node_ids;
e498be7d
CL
691 int i;
692
693 if (limit > 1)
694 limit = 12;
c8522a3a
JK
695 alc_ptr = kzalloc_node(memsize, gfp, node);
696 if (!alc_ptr)
697 return NULL;
698
699 for_each_node(i) {
700 if (i == node || !node_online(i))
701 continue;
702 alc_ptr[i] = __alloc_alien_cache(node, limit, 0xbaadf00d, gfp);
703 if (!alc_ptr[i]) {
704 for (i--; i >= 0; i--)
705 kfree(alc_ptr[i]);
706 kfree(alc_ptr);
707 return NULL;
e498be7d
CL
708 }
709 }
c8522a3a 710 return alc_ptr;
e498be7d
CL
711}
712
c8522a3a 713static void free_alien_cache(struct alien_cache **alc_ptr)
e498be7d
CL
714{
715 int i;
716
c8522a3a 717 if (!alc_ptr)
e498be7d 718 return;
e498be7d 719 for_each_node(i)
c8522a3a
JK
720 kfree(alc_ptr[i]);
721 kfree(alc_ptr);
e498be7d
CL
722}
723
343e0d7a 724static void __drain_alien_cache(struct kmem_cache *cachep,
833b706c
JK
725 struct array_cache *ac, int node,
726 struct list_head *list)
e498be7d 727{
18bf8541 728 struct kmem_cache_node *n = get_node(cachep, node);
e498be7d
CL
729
730 if (ac->avail) {
ce8eb6c4 731 spin_lock(&n->list_lock);
e00946fe
CL
732 /*
733 * Stuff objects into the remote nodes shared array first.
734 * That way we could avoid the overhead of putting the objects
735 * into the free lists and getting them back later.
736 */
ce8eb6c4
CL
737 if (n->shared)
738 transfer_objects(n->shared, ac, ac->limit);
e00946fe 739
833b706c 740 free_block(cachep, ac->entry, ac->avail, node, list);
e498be7d 741 ac->avail = 0;
ce8eb6c4 742 spin_unlock(&n->list_lock);
e498be7d
CL
743 }
744}
745
8fce4d8e
CL
746/*
747 * Called from cache_reap() to regularly drain alien caches round robin.
748 */
ce8eb6c4 749static void reap_alien(struct kmem_cache *cachep, struct kmem_cache_node *n)
8fce4d8e 750{
909ea964 751 int node = __this_cpu_read(slab_reap_node);
8fce4d8e 752
ce8eb6c4 753 if (n->alien) {
c8522a3a
JK
754 struct alien_cache *alc = n->alien[node];
755 struct array_cache *ac;
756
757 if (alc) {
758 ac = &alc->ac;
49dfc304 759 if (ac->avail && spin_trylock_irq(&alc->lock)) {
833b706c
JK
760 LIST_HEAD(list);
761
762 __drain_alien_cache(cachep, ac, node, &list);
49dfc304 763 spin_unlock_irq(&alc->lock);
833b706c 764 slabs_destroy(cachep, &list);
c8522a3a 765 }
8fce4d8e
CL
766 }
767 }
768}
769
a737b3e2 770static void drain_alien_cache(struct kmem_cache *cachep,
c8522a3a 771 struct alien_cache **alien)
e498be7d 772{
b28a02de 773 int i = 0;
c8522a3a 774 struct alien_cache *alc;
e498be7d
CL
775 struct array_cache *ac;
776 unsigned long flags;
777
778 for_each_online_node(i) {
c8522a3a
JK
779 alc = alien[i];
780 if (alc) {
833b706c
JK
781 LIST_HEAD(list);
782
c8522a3a 783 ac = &alc->ac;
49dfc304 784 spin_lock_irqsave(&alc->lock, flags);
833b706c 785 __drain_alien_cache(cachep, ac, i, &list);
49dfc304 786 spin_unlock_irqrestore(&alc->lock, flags);
833b706c 787 slabs_destroy(cachep, &list);
e498be7d
CL
788 }
789 }
790}
729bd0b7 791
25c4f304
JK
792static int __cache_free_alien(struct kmem_cache *cachep, void *objp,
793 int node, int page_node)
729bd0b7 794{
ce8eb6c4 795 struct kmem_cache_node *n;
c8522a3a
JK
796 struct alien_cache *alien = NULL;
797 struct array_cache *ac;
97654dfa 798 LIST_HEAD(list);
1ca4cb24 799
18bf8541 800 n = get_node(cachep, node);
729bd0b7 801 STATS_INC_NODEFREES(cachep);
25c4f304
JK
802 if (n->alien && n->alien[page_node]) {
803 alien = n->alien[page_node];
c8522a3a 804 ac = &alien->ac;
49dfc304 805 spin_lock(&alien->lock);
c8522a3a 806 if (unlikely(ac->avail == ac->limit)) {
729bd0b7 807 STATS_INC_ACOVERFLOW(cachep);
25c4f304 808 __drain_alien_cache(cachep, ac, page_node, &list);
729bd0b7 809 }
f68f8ddd 810 ac->entry[ac->avail++] = objp;
49dfc304 811 spin_unlock(&alien->lock);
833b706c 812 slabs_destroy(cachep, &list);
729bd0b7 813 } else {
25c4f304 814 n = get_node(cachep, page_node);
18bf8541 815 spin_lock(&n->list_lock);
25c4f304 816 free_block(cachep, &objp, 1, page_node, &list);
18bf8541 817 spin_unlock(&n->list_lock);
97654dfa 818 slabs_destroy(cachep, &list);
729bd0b7
PE
819 }
820 return 1;
821}
25c4f304
JK
822
823static inline int cache_free_alien(struct kmem_cache *cachep, void *objp)
824{
825 int page_node = page_to_nid(virt_to_page(objp));
826 int node = numa_mem_id();
827 /*
828 * Make sure we are not freeing a object from another node to the array
829 * cache on this cpu.
830 */
831 if (likely(node == page_node))
832 return 0;
833
834 return __cache_free_alien(cachep, objp, node, page_node);
835}
4167e9b2
DR
836
837/*
444eb2a4
MG
838 * Construct gfp mask to allocate from a specific node but do not reclaim or
839 * warn about failures.
4167e9b2
DR
840 */
841static inline gfp_t gfp_exact_node(gfp_t flags)
842{
444eb2a4 843 return (flags | __GFP_THISNODE | __GFP_NOWARN) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
4167e9b2 844}
e498be7d
CL
845#endif
846
ded0ecf6
JK
847static int init_cache_node(struct kmem_cache *cachep, int node, gfp_t gfp)
848{
849 struct kmem_cache_node *n;
850
851 /*
852 * Set up the kmem_cache_node for cpu before we can
853 * begin anything. Make sure some other cpu on this
854 * node has not already allocated this
855 */
856 n = get_node(cachep, node);
857 if (n) {
858 spin_lock_irq(&n->list_lock);
859 n->free_limit = (1 + nr_cpus_node(node)) * cachep->batchcount +
860 cachep->num;
861 spin_unlock_irq(&n->list_lock);
862
863 return 0;
864 }
865
866 n = kmalloc_node(sizeof(struct kmem_cache_node), gfp, node);
867 if (!n)
868 return -ENOMEM;
869
870 kmem_cache_node_init(n);
871 n->next_reap = jiffies + REAPTIMEOUT_NODE +
872 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
873
874 n->free_limit =
875 (1 + nr_cpus_node(node)) * cachep->batchcount + cachep->num;
876
877 /*
878 * The kmem_cache_nodes don't come and go as CPUs
879 * come and go. slab_mutex is sufficient
880 * protection here.
881 */
882 cachep->node[node] = n;
883
884 return 0;
885}
886
6731d4f1 887#if (defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)) || defined(CONFIG_SMP)
8f9f8d9e 888/*
6a67368c 889 * Allocates and initializes node for a node on each slab cache, used for
ce8eb6c4 890 * either memory or cpu hotplug. If memory is being hot-added, the kmem_cache_node
8f9f8d9e 891 * will be allocated off-node since memory is not yet online for the new node.
6a67368c 892 * When hotplugging memory or a cpu, existing node are not replaced if
8f9f8d9e
DR
893 * already in use.
894 *
18004c5d 895 * Must hold slab_mutex.
8f9f8d9e 896 */
6a67368c 897static int init_cache_node_node(int node)
8f9f8d9e 898{
ded0ecf6 899 int ret;
8f9f8d9e 900 struct kmem_cache *cachep;
8f9f8d9e 901
18004c5d 902 list_for_each_entry(cachep, &slab_caches, list) {
ded0ecf6
JK
903 ret = init_cache_node(cachep, node, GFP_KERNEL);
904 if (ret)
905 return ret;
8f9f8d9e 906 }
ded0ecf6 907
8f9f8d9e
DR
908 return 0;
909}
6731d4f1 910#endif
8f9f8d9e 911
c3d332b6
JK
912static int setup_kmem_cache_node(struct kmem_cache *cachep,
913 int node, gfp_t gfp, bool force_change)
914{
915 int ret = -ENOMEM;
916 struct kmem_cache_node *n;
917 struct array_cache *old_shared = NULL;
918 struct array_cache *new_shared = NULL;
919 struct alien_cache **new_alien = NULL;
920 LIST_HEAD(list);
921
922 if (use_alien_caches) {
923 new_alien = alloc_alien_cache(node, cachep->limit, gfp);
924 if (!new_alien)
925 goto fail;
926 }
927
928 if (cachep->shared) {
929 new_shared = alloc_arraycache(node,
930 cachep->shared * cachep->batchcount, 0xbaadf00d, gfp);
931 if (!new_shared)
932 goto fail;
933 }
934
935 ret = init_cache_node(cachep, node, gfp);
936 if (ret)
937 goto fail;
938
939 n = get_node(cachep, node);
940 spin_lock_irq(&n->list_lock);
941 if (n->shared && force_change) {
942 free_block(cachep, n->shared->entry,
943 n->shared->avail, node, &list);
944 n->shared->avail = 0;
945 }
946
947 if (!n->shared || force_change) {
948 old_shared = n->shared;
949 n->shared = new_shared;
950 new_shared = NULL;
951 }
952
953 if (!n->alien) {
954 n->alien = new_alien;
955 new_alien = NULL;
956 }
957
958 spin_unlock_irq(&n->list_lock);
959 slabs_destroy(cachep, &list);
960
801faf0d
JK
961 /*
962 * To protect lockless access to n->shared during irq disabled context.
963 * If n->shared isn't NULL in irq disabled context, accessing to it is
964 * guaranteed to be valid until irq is re-enabled, because it will be
965 * freed after synchronize_sched().
966 */
86d9f485 967 if (old_shared && force_change)
801faf0d
JK
968 synchronize_sched();
969
c3d332b6
JK
970fail:
971 kfree(old_shared);
972 kfree(new_shared);
973 free_alien_cache(new_alien);
974
975 return ret;
976}
977
6731d4f1
SAS
978#ifdef CONFIG_SMP
979
0db0628d 980static void cpuup_canceled(long cpu)
fbf1e473
AM
981{
982 struct kmem_cache *cachep;
ce8eb6c4 983 struct kmem_cache_node *n = NULL;
7d6e6d09 984 int node = cpu_to_mem(cpu);
a70f7302 985 const struct cpumask *mask = cpumask_of_node(node);
fbf1e473 986
18004c5d 987 list_for_each_entry(cachep, &slab_caches, list) {
fbf1e473
AM
988 struct array_cache *nc;
989 struct array_cache *shared;
c8522a3a 990 struct alien_cache **alien;
97654dfa 991 LIST_HEAD(list);
fbf1e473 992
18bf8541 993 n = get_node(cachep, node);
ce8eb6c4 994 if (!n)
bf0dea23 995 continue;
fbf1e473 996
ce8eb6c4 997 spin_lock_irq(&n->list_lock);
fbf1e473 998
ce8eb6c4
CL
999 /* Free limit for this kmem_cache_node */
1000 n->free_limit -= cachep->batchcount;
bf0dea23
JK
1001
1002 /* cpu is dead; no one can alloc from it. */
1003 nc = per_cpu_ptr(cachep->cpu_cache, cpu);
1004 if (nc) {
97654dfa 1005 free_block(cachep, nc->entry, nc->avail, node, &list);
bf0dea23
JK
1006 nc->avail = 0;
1007 }
fbf1e473 1008
58463c1f 1009 if (!cpumask_empty(mask)) {
ce8eb6c4 1010 spin_unlock_irq(&n->list_lock);
bf0dea23 1011 goto free_slab;
fbf1e473
AM
1012 }
1013
ce8eb6c4 1014 shared = n->shared;
fbf1e473
AM
1015 if (shared) {
1016 free_block(cachep, shared->entry,
97654dfa 1017 shared->avail, node, &list);
ce8eb6c4 1018 n->shared = NULL;
fbf1e473
AM
1019 }
1020
ce8eb6c4
CL
1021 alien = n->alien;
1022 n->alien = NULL;
fbf1e473 1023
ce8eb6c4 1024 spin_unlock_irq(&n->list_lock);
fbf1e473
AM
1025
1026 kfree(shared);
1027 if (alien) {
1028 drain_alien_cache(cachep, alien);
1029 free_alien_cache(alien);
1030 }
bf0dea23
JK
1031
1032free_slab:
97654dfa 1033 slabs_destroy(cachep, &list);
fbf1e473
AM
1034 }
1035 /*
1036 * In the previous loop, all the objects were freed to
1037 * the respective cache's slabs, now we can go ahead and
1038 * shrink each nodelist to its limit.
1039 */
18004c5d 1040 list_for_each_entry(cachep, &slab_caches, list) {
18bf8541 1041 n = get_node(cachep, node);
ce8eb6c4 1042 if (!n)
fbf1e473 1043 continue;
a5aa63a5 1044 drain_freelist(cachep, n, INT_MAX);
fbf1e473
AM
1045 }
1046}
1047
0db0628d 1048static int cpuup_prepare(long cpu)
1da177e4 1049{
343e0d7a 1050 struct kmem_cache *cachep;
7d6e6d09 1051 int node = cpu_to_mem(cpu);
8f9f8d9e 1052 int err;
1da177e4 1053
fbf1e473
AM
1054 /*
1055 * We need to do this right in the beginning since
1056 * alloc_arraycache's are going to use this list.
1057 * kmalloc_node allows us to add the slab to the right
ce8eb6c4 1058 * kmem_cache_node and not this cpu's kmem_cache_node
fbf1e473 1059 */
6a67368c 1060 err = init_cache_node_node(node);
8f9f8d9e
DR
1061 if (err < 0)
1062 goto bad;
fbf1e473
AM
1063
1064 /*
1065 * Now we can go ahead with allocating the shared arrays and
1066 * array caches
1067 */
18004c5d 1068 list_for_each_entry(cachep, &slab_caches, list) {
c3d332b6
JK
1069 err = setup_kmem_cache_node(cachep, node, GFP_KERNEL, false);
1070 if (err)
1071 goto bad;
fbf1e473 1072 }
ce79ddc8 1073
fbf1e473
AM
1074 return 0;
1075bad:
12d00f6a 1076 cpuup_canceled(cpu);
fbf1e473
AM
1077 return -ENOMEM;
1078}
1079
6731d4f1 1080int slab_prepare_cpu(unsigned int cpu)
fbf1e473 1081{
6731d4f1 1082 int err;
fbf1e473 1083
6731d4f1
SAS
1084 mutex_lock(&slab_mutex);
1085 err = cpuup_prepare(cpu);
1086 mutex_unlock(&slab_mutex);
1087 return err;
1088}
1089
1090/*
1091 * This is called for a failed online attempt and for a successful
1092 * offline.
1093 *
1094 * Even if all the cpus of a node are down, we don't free the
1095 * kmem_list3 of any cache. This to avoid a race between cpu_down, and
1096 * a kmalloc allocation from another cpu for memory from the node of
1097 * the cpu going down. The list3 structure is usually allocated from
1098 * kmem_cache_create() and gets destroyed at kmem_cache_destroy().
1099 */
1100int slab_dead_cpu(unsigned int cpu)
1101{
1102 mutex_lock(&slab_mutex);
1103 cpuup_canceled(cpu);
1104 mutex_unlock(&slab_mutex);
1105 return 0;
1106}
8f5be20b 1107#endif
6731d4f1
SAS
1108
1109static int slab_online_cpu(unsigned int cpu)
1110{
1111 start_cpu_timer(cpu);
1112 return 0;
1da177e4
LT
1113}
1114
6731d4f1
SAS
1115static int slab_offline_cpu(unsigned int cpu)
1116{
1117 /*
1118 * Shutdown cache reaper. Note that the slab_mutex is held so
1119 * that if cache_reap() is invoked it cannot do anything
1120 * expensive but will only modify reap_work and reschedule the
1121 * timer.
1122 */
1123 cancel_delayed_work_sync(&per_cpu(slab_reap_work, cpu));
1124 /* Now the cache_reaper is guaranteed to be not running. */
1125 per_cpu(slab_reap_work, cpu).work.func = NULL;
1126 return 0;
1127}
1da177e4 1128
8f9f8d9e
DR
1129#if defined(CONFIG_NUMA) && defined(CONFIG_MEMORY_HOTPLUG)
1130/*
1131 * Drains freelist for a node on each slab cache, used for memory hot-remove.
1132 * Returns -EBUSY if all objects cannot be drained so that the node is not
1133 * removed.
1134 *
18004c5d 1135 * Must hold slab_mutex.
8f9f8d9e 1136 */
6a67368c 1137static int __meminit drain_cache_node_node(int node)
8f9f8d9e
DR
1138{
1139 struct kmem_cache *cachep;
1140 int ret = 0;
1141
18004c5d 1142 list_for_each_entry(cachep, &slab_caches, list) {
ce8eb6c4 1143 struct kmem_cache_node *n;
8f9f8d9e 1144
18bf8541 1145 n = get_node(cachep, node);
ce8eb6c4 1146 if (!n)
8f9f8d9e
DR
1147 continue;
1148
a5aa63a5 1149 drain_freelist(cachep, n, INT_MAX);
8f9f8d9e 1150
ce8eb6c4
CL
1151 if (!list_empty(&n->slabs_full) ||
1152 !list_empty(&n->slabs_partial)) {
8f9f8d9e
DR
1153 ret = -EBUSY;
1154 break;
1155 }
1156 }
1157 return ret;
1158}
1159
1160static int __meminit slab_memory_callback(struct notifier_block *self,
1161 unsigned long action, void *arg)
1162{
1163 struct memory_notify *mnb = arg;
1164 int ret = 0;
1165 int nid;
1166
1167 nid = mnb->status_change_nid;
1168 if (nid < 0)
1169 goto out;
1170
1171 switch (action) {
1172 case MEM_GOING_ONLINE:
18004c5d 1173 mutex_lock(&slab_mutex);
6a67368c 1174 ret = init_cache_node_node(nid);
18004c5d 1175 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1176 break;
1177 case MEM_GOING_OFFLINE:
18004c5d 1178 mutex_lock(&slab_mutex);
6a67368c 1179 ret = drain_cache_node_node(nid);
18004c5d 1180 mutex_unlock(&slab_mutex);
8f9f8d9e
DR
1181 break;
1182 case MEM_ONLINE:
1183 case MEM_OFFLINE:
1184 case MEM_CANCEL_ONLINE:
1185 case MEM_CANCEL_OFFLINE:
1186 break;
1187 }
1188out:
5fda1bd5 1189 return notifier_from_errno(ret);
8f9f8d9e
DR
1190}
1191#endif /* CONFIG_NUMA && CONFIG_MEMORY_HOTPLUG */
1192
e498be7d 1193/*
ce8eb6c4 1194 * swap the static kmem_cache_node with kmalloced memory
e498be7d 1195 */
6744f087 1196static void __init init_list(struct kmem_cache *cachep, struct kmem_cache_node *list,
8f9f8d9e 1197 int nodeid)
e498be7d 1198{
6744f087 1199 struct kmem_cache_node *ptr;
e498be7d 1200
6744f087 1201 ptr = kmalloc_node(sizeof(struct kmem_cache_node), GFP_NOWAIT, nodeid);
e498be7d
CL
1202 BUG_ON(!ptr);
1203
6744f087 1204 memcpy(ptr, list, sizeof(struct kmem_cache_node));
2b2d5493
IM
1205 /*
1206 * Do not assume that spinlocks can be initialized via memcpy:
1207 */
1208 spin_lock_init(&ptr->list_lock);
1209
e498be7d 1210 MAKE_ALL_LISTS(cachep, ptr, nodeid);
6a67368c 1211 cachep->node[nodeid] = ptr;
e498be7d
CL
1212}
1213
556a169d 1214/*
ce8eb6c4
CL
1215 * For setting up all the kmem_cache_node for cache whose buffer_size is same as
1216 * size of kmem_cache_node.
556a169d 1217 */
ce8eb6c4 1218static void __init set_up_node(struct kmem_cache *cachep, int index)
556a169d
PE
1219{
1220 int node;
1221
1222 for_each_online_node(node) {
ce8eb6c4 1223 cachep->node[node] = &init_kmem_cache_node[index + node];
6a67368c 1224 cachep->node[node]->next_reap = jiffies +
5f0985bb
JZ
1225 REAPTIMEOUT_NODE +
1226 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
556a169d
PE
1227 }
1228}
1229
a737b3e2
AM
1230/*
1231 * Initialisation. Called after the page allocator have been initialised and
1232 * before smp_init().
1da177e4
LT
1233 */
1234void __init kmem_cache_init(void)
1235{
e498be7d
CL
1236 int i;
1237
68126702
JK
1238 BUILD_BUG_ON(sizeof(((struct page *)NULL)->lru) <
1239 sizeof(struct rcu_head));
9b030cb8
CL
1240 kmem_cache = &kmem_cache_boot;
1241
8888177e 1242 if (!IS_ENABLED(CONFIG_NUMA) || num_possible_nodes() == 1)
62918a03
SS
1243 use_alien_caches = 0;
1244
3c583465 1245 for (i = 0; i < NUM_INIT_LISTS; i++)
ce8eb6c4 1246 kmem_cache_node_init(&init_kmem_cache_node[i]);
3c583465 1247
1da177e4
LT
1248 /*
1249 * Fragmentation resistance on low memory - only use bigger
3df1cccd
DR
1250 * page orders on machines with more than 32MB of memory if
1251 * not overridden on the command line.
1da177e4 1252 */
3df1cccd 1253 if (!slab_max_order_set && totalram_pages > (32 << 20) >> PAGE_SHIFT)
543585cc 1254 slab_max_order = SLAB_MAX_ORDER_HI;
1da177e4 1255
1da177e4
LT
1256 /* Bootstrap is tricky, because several objects are allocated
1257 * from caches that do not exist yet:
9b030cb8
CL
1258 * 1) initialize the kmem_cache cache: it contains the struct
1259 * kmem_cache structures of all caches, except kmem_cache itself:
1260 * kmem_cache is statically allocated.
e498be7d 1261 * Initially an __init data area is used for the head array and the
ce8eb6c4 1262 * kmem_cache_node structures, it's replaced with a kmalloc allocated
e498be7d 1263 * array at the end of the bootstrap.
1da177e4 1264 * 2) Create the first kmalloc cache.
343e0d7a 1265 * The struct kmem_cache for the new cache is allocated normally.
e498be7d
CL
1266 * An __init data area is used for the head array.
1267 * 3) Create the remaining kmalloc caches, with minimally sized
1268 * head arrays.
9b030cb8 1269 * 4) Replace the __init data head arrays for kmem_cache and the first
1da177e4 1270 * kmalloc cache with kmalloc allocated arrays.
ce8eb6c4 1271 * 5) Replace the __init data for kmem_cache_node for kmem_cache and
e498be7d
CL
1272 * the other cache's with kmalloc allocated memory.
1273 * 6) Resize the head arrays of the kmalloc caches to their final sizes.
1da177e4
LT
1274 */
1275
9b030cb8 1276 /* 1) create the kmem_cache */
1da177e4 1277
8da3430d 1278 /*
b56efcf0 1279 * struct kmem_cache size depends on nr_node_ids & nr_cpu_ids
8da3430d 1280 */
2f9baa9f 1281 create_boot_cache(kmem_cache, "kmem_cache",
bf0dea23 1282 offsetof(struct kmem_cache, node) +
6744f087 1283 nr_node_ids * sizeof(struct kmem_cache_node *),
2f9baa9f
CL
1284 SLAB_HWCACHE_ALIGN);
1285 list_add(&kmem_cache->list, &slab_caches);
bf0dea23 1286 slab_state = PARTIAL;
1da177e4 1287
a737b3e2 1288 /*
bf0dea23
JK
1289 * Initialize the caches that provide memory for the kmem_cache_node
1290 * structures first. Without this, further allocations will bug.
e498be7d 1291 */
af3b5f87
VB
1292 kmalloc_caches[INDEX_NODE] = create_kmalloc_cache(
1293 kmalloc_info[INDEX_NODE].name,
ce8eb6c4 1294 kmalloc_size(INDEX_NODE), ARCH_KMALLOC_FLAGS);
bf0dea23 1295 slab_state = PARTIAL_NODE;
34cc6990 1296 setup_kmalloc_cache_index_table();
e498be7d 1297
e0a42726
IM
1298 slab_early_init = 0;
1299
ce8eb6c4 1300 /* 5) Replace the bootstrap kmem_cache_node */
e498be7d 1301 {
1ca4cb24
PE
1302 int nid;
1303
9c09a95c 1304 for_each_online_node(nid) {
ce8eb6c4 1305 init_list(kmem_cache, &init_kmem_cache_node[CACHE_CACHE + nid], nid);
556a169d 1306
bf0dea23 1307 init_list(kmalloc_caches[INDEX_NODE],
ce8eb6c4 1308 &init_kmem_cache_node[SIZE_NODE + nid], nid);
e498be7d
CL
1309 }
1310 }
1da177e4 1311
f97d5f63 1312 create_kmalloc_caches(ARCH_KMALLOC_FLAGS);
8429db5c
PE
1313}
1314
1315void __init kmem_cache_init_late(void)
1316{
1317 struct kmem_cache *cachep;
1318
97d06609 1319 slab_state = UP;
52cef189 1320
8429db5c 1321 /* 6) resize the head arrays to their final sizes */
18004c5d
CL
1322 mutex_lock(&slab_mutex);
1323 list_for_each_entry(cachep, &slab_caches, list)
8429db5c
PE
1324 if (enable_cpucache(cachep, GFP_NOWAIT))
1325 BUG();
18004c5d 1326 mutex_unlock(&slab_mutex);
056c6241 1327
97d06609
CL
1328 /* Done! */
1329 slab_state = FULL;
1330
8f9f8d9e
DR
1331#ifdef CONFIG_NUMA
1332 /*
1333 * Register a memory hotplug callback that initializes and frees
6a67368c 1334 * node.
8f9f8d9e
DR
1335 */
1336 hotplug_memory_notifier(slab_memory_callback, SLAB_CALLBACK_PRI);
1337#endif
1338
a737b3e2
AM
1339 /*
1340 * The reap timers are started later, with a module init call: That part
1341 * of the kernel is not yet operational.
1da177e4
LT
1342 */
1343}
1344
1345static int __init cpucache_init(void)
1346{
6731d4f1 1347 int ret;
1da177e4 1348
a737b3e2
AM
1349 /*
1350 * Register the timers that return unneeded pages to the page allocator
1da177e4 1351 */
6731d4f1
SAS
1352 ret = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "SLAB online",
1353 slab_online_cpu, slab_offline_cpu);
1354 WARN_ON(ret < 0);
a164f896
GC
1355
1356 /* Done! */
97d06609 1357 slab_state = FULL;
1da177e4
LT
1358 return 0;
1359}
1da177e4
LT
1360__initcall(cpucache_init);
1361
8bdec192
RA
1362static noinline void
1363slab_out_of_memory(struct kmem_cache *cachep, gfp_t gfpflags, int nodeid)
1364{
9a02d699 1365#if DEBUG
ce8eb6c4 1366 struct kmem_cache_node *n;
8bdec192
RA
1367 unsigned long flags;
1368 int node;
9a02d699
DR
1369 static DEFINE_RATELIMIT_STATE(slab_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
1370 DEFAULT_RATELIMIT_BURST);
1371
1372 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slab_oom_rs))
1373 return;
8bdec192 1374
5b3810e5
VB
1375 pr_warn("SLAB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
1376 nodeid, gfpflags, &gfpflags);
1377 pr_warn(" cache: %s, object size: %d, order: %d\n",
3b0efdfa 1378 cachep->name, cachep->size, cachep->gfporder);
8bdec192 1379
18bf8541 1380 for_each_kmem_cache_node(cachep, node, n) {
bf00bd34 1381 unsigned long total_slabs, free_slabs, free_objs;
8bdec192 1382
ce8eb6c4 1383 spin_lock_irqsave(&n->list_lock, flags);
bf00bd34
DR
1384 total_slabs = n->total_slabs;
1385 free_slabs = n->free_slabs;
1386 free_objs = n->free_objects;
ce8eb6c4 1387 spin_unlock_irqrestore(&n->list_lock, flags);
8bdec192 1388
bf00bd34
DR
1389 pr_warn(" node %d: slabs: %ld/%ld, objs: %ld/%ld\n",
1390 node, total_slabs - free_slabs, total_slabs,
1391 (total_slabs * cachep->num) - free_objs,
1392 total_slabs * cachep->num);
8bdec192 1393 }
9a02d699 1394#endif
8bdec192
RA
1395}
1396
1da177e4 1397/*
8a7d9b43
WSH
1398 * Interface to system's page allocator. No need to hold the
1399 * kmem_cache_node ->list_lock.
1da177e4
LT
1400 *
1401 * If we requested dmaable memory, we will get it. Even if we
1402 * did not request dmaable memory, we might get it, but that
1403 * would be relatively rare and ignorable.
1404 */
0c3aa83e
JK
1405static struct page *kmem_getpages(struct kmem_cache *cachep, gfp_t flags,
1406 int nodeid)
1da177e4
LT
1407{
1408 struct page *page;
e1b6aa6f 1409 int nr_pages;
765c4507 1410
a618e89f 1411 flags |= cachep->allocflags;
e12ba74d
MG
1412 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
1413 flags |= __GFP_RECLAIMABLE;
e1b6aa6f 1414
96db800f 1415 page = __alloc_pages_node(nodeid, flags | __GFP_NOTRACK, cachep->gfporder);
8bdec192 1416 if (!page) {
9a02d699 1417 slab_out_of_memory(cachep, flags, nodeid);
1da177e4 1418 return NULL;
8bdec192 1419 }
1da177e4 1420
f3ccb2c4
VD
1421 if (memcg_charge_slab(page, flags, cachep->gfporder, cachep)) {
1422 __free_pages(page, cachep->gfporder);
1423 return NULL;
1424 }
1425
e1b6aa6f 1426 nr_pages = (1 << cachep->gfporder);
1da177e4 1427 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1428 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, nr_pages);
972d1a7b 1429 else
7779f212 1430 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, nr_pages);
f68f8ddd 1431
a57a4988 1432 __SetPageSlab(page);
f68f8ddd
JK
1433 /* Record if ALLOC_NO_WATERMARKS was set when allocating the slab */
1434 if (sk_memalloc_socks() && page_is_pfmemalloc(page))
a57a4988 1435 SetPageSlabPfmemalloc(page);
072bb0aa 1436
b1eeab67
VN
1437 if (kmemcheck_enabled && !(cachep->flags & SLAB_NOTRACK)) {
1438 kmemcheck_alloc_shadow(page, cachep->gfporder, flags, nodeid);
1439
1440 if (cachep->ctor)
1441 kmemcheck_mark_uninitialized_pages(page, nr_pages);
1442 else
1443 kmemcheck_mark_unallocated_pages(page, nr_pages);
1444 }
c175eea4 1445
0c3aa83e 1446 return page;
1da177e4
LT
1447}
1448
1449/*
1450 * Interface to system's page release.
1451 */
0c3aa83e 1452static void kmem_freepages(struct kmem_cache *cachep, struct page *page)
1da177e4 1453{
27ee57c9
VD
1454 int order = cachep->gfporder;
1455 unsigned long nr_freed = (1 << order);
1da177e4 1456
27ee57c9 1457 kmemcheck_free_shadow(page, order);
c175eea4 1458
972d1a7b 1459 if (cachep->flags & SLAB_RECLAIM_ACCOUNT)
7779f212 1460 mod_lruvec_page_state(page, NR_SLAB_RECLAIMABLE, -nr_freed);
972d1a7b 1461 else
7779f212 1462 mod_lruvec_page_state(page, NR_SLAB_UNRECLAIMABLE, -nr_freed);
73293c2f 1463
a57a4988 1464 BUG_ON(!PageSlab(page));
73293c2f 1465 __ClearPageSlabPfmemalloc(page);
a57a4988 1466 __ClearPageSlab(page);
8456a648
JK
1467 page_mapcount_reset(page);
1468 page->mapping = NULL;
1f458cbf 1469
1da177e4
LT
1470 if (current->reclaim_state)
1471 current->reclaim_state->reclaimed_slab += nr_freed;
27ee57c9
VD
1472 memcg_uncharge_slab(page, order, cachep);
1473 __free_pages(page, order);
1da177e4
LT
1474}
1475
1476static void kmem_rcu_free(struct rcu_head *head)
1477{
68126702
JK
1478 struct kmem_cache *cachep;
1479 struct page *page;
1da177e4 1480
68126702
JK
1481 page = container_of(head, struct page, rcu_head);
1482 cachep = page->slab_cache;
1483
1484 kmem_freepages(cachep, page);
1da177e4
LT
1485}
1486
1487#if DEBUG
40b44137
JK
1488static bool is_debug_pagealloc_cache(struct kmem_cache *cachep)
1489{
1490 if (debug_pagealloc_enabled() && OFF_SLAB(cachep) &&
1491 (cachep->size % PAGE_SIZE) == 0)
1492 return true;
1493
1494 return false;
1495}
1da177e4
LT
1496
1497#ifdef CONFIG_DEBUG_PAGEALLOC
343e0d7a 1498static void store_stackinfo(struct kmem_cache *cachep, unsigned long *addr,
b28a02de 1499 unsigned long caller)
1da177e4 1500{
8c138bc0 1501 int size = cachep->object_size;
1da177e4 1502
3dafccf2 1503 addr = (unsigned long *)&((char *)addr)[obj_offset(cachep)];
1da177e4 1504
b28a02de 1505 if (size < 5 * sizeof(unsigned long))
1da177e4
LT
1506 return;
1507
b28a02de
PE
1508 *addr++ = 0x12345678;
1509 *addr++ = caller;
1510 *addr++ = smp_processor_id();
1511 size -= 3 * sizeof(unsigned long);
1da177e4
LT
1512 {
1513 unsigned long *sptr = &caller;
1514 unsigned long svalue;
1515
1516 while (!kstack_end(sptr)) {
1517 svalue = *sptr++;
1518 if (kernel_text_address(svalue)) {
b28a02de 1519 *addr++ = svalue;
1da177e4
LT
1520 size -= sizeof(unsigned long);
1521 if (size <= sizeof(unsigned long))
1522 break;
1523 }
1524 }
1525
1526 }
b28a02de 1527 *addr++ = 0x87654321;
1da177e4 1528}
40b44137
JK
1529
1530static void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1531 int map, unsigned long caller)
1532{
1533 if (!is_debug_pagealloc_cache(cachep))
1534 return;
1535
1536 if (caller)
1537 store_stackinfo(cachep, objp, caller);
1538
1539 kernel_map_pages(virt_to_page(objp), cachep->size / PAGE_SIZE, map);
1540}
1541
1542#else
1543static inline void slab_kernel_map(struct kmem_cache *cachep, void *objp,
1544 int map, unsigned long caller) {}
1545
1da177e4
LT
1546#endif
1547
343e0d7a 1548static void poison_obj(struct kmem_cache *cachep, void *addr, unsigned char val)
1da177e4 1549{
8c138bc0 1550 int size = cachep->object_size;
3dafccf2 1551 addr = &((char *)addr)[obj_offset(cachep)];
1da177e4
LT
1552
1553 memset(addr, val, size);
b28a02de 1554 *(unsigned char *)(addr + size - 1) = POISON_END;
1da177e4
LT
1555}
1556
1557static void dump_line(char *data, int offset, int limit)
1558{
1559 int i;
aa83aa40
DJ
1560 unsigned char error = 0;
1561 int bad_count = 0;
1562
1170532b 1563 pr_err("%03x: ", offset);
aa83aa40
DJ
1564 for (i = 0; i < limit; i++) {
1565 if (data[offset + i] != POISON_FREE) {
1566 error = data[offset + i];
1567 bad_count++;
1568 }
aa83aa40 1569 }
fdde6abb
SAS
1570 print_hex_dump(KERN_CONT, "", 0, 16, 1,
1571 &data[offset], limit, 1);
aa83aa40
DJ
1572
1573 if (bad_count == 1) {
1574 error ^= POISON_FREE;
1575 if (!(error & (error - 1))) {
1170532b 1576 pr_err("Single bit error detected. Probably bad RAM.\n");
aa83aa40 1577#ifdef CONFIG_X86
1170532b 1578 pr_err("Run memtest86+ or a similar memory test tool.\n");
aa83aa40 1579#else
1170532b 1580 pr_err("Run a memory test tool.\n");
aa83aa40
DJ
1581#endif
1582 }
1583 }
1da177e4
LT
1584}
1585#endif
1586
1587#if DEBUG
1588
343e0d7a 1589static void print_objinfo(struct kmem_cache *cachep, void *objp, int lines)
1da177e4
LT
1590{
1591 int i, size;
1592 char *realobj;
1593
1594 if (cachep->flags & SLAB_RED_ZONE) {
1170532b
JP
1595 pr_err("Redzone: 0x%llx/0x%llx\n",
1596 *dbg_redzone1(cachep, objp),
1597 *dbg_redzone2(cachep, objp));
1da177e4
LT
1598 }
1599
1600 if (cachep->flags & SLAB_STORE_USER) {
1170532b 1601 pr_err("Last user: [<%p>](%pSR)\n",
071361d3
JP
1602 *dbg_userword(cachep, objp),
1603 *dbg_userword(cachep, objp));
1da177e4 1604 }
3dafccf2 1605 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1606 size = cachep->object_size;
b28a02de 1607 for (i = 0; i < size && lines; i += 16, lines--) {
1da177e4
LT
1608 int limit;
1609 limit = 16;
b28a02de
PE
1610 if (i + limit > size)
1611 limit = size - i;
1da177e4
LT
1612 dump_line(realobj, i, limit);
1613 }
1614}
1615
343e0d7a 1616static void check_poison_obj(struct kmem_cache *cachep, void *objp)
1da177e4
LT
1617{
1618 char *realobj;
1619 int size, i;
1620 int lines = 0;
1621
40b44137
JK
1622 if (is_debug_pagealloc_cache(cachep))
1623 return;
1624
3dafccf2 1625 realobj = (char *)objp + obj_offset(cachep);
8c138bc0 1626 size = cachep->object_size;
1da177e4 1627
b28a02de 1628 for (i = 0; i < size; i++) {
1da177e4 1629 char exp = POISON_FREE;
b28a02de 1630 if (i == size - 1)
1da177e4
LT
1631 exp = POISON_END;
1632 if (realobj[i] != exp) {
1633 int limit;
1634 /* Mismatch ! */
1635 /* Print header */
1636 if (lines == 0) {
1170532b
JP
1637 pr_err("Slab corruption (%s): %s start=%p, len=%d\n",
1638 print_tainted(), cachep->name,
1639 realobj, size);
1da177e4
LT
1640 print_objinfo(cachep, objp, 0);
1641 }
1642 /* Hexdump the affected line */
b28a02de 1643 i = (i / 16) * 16;
1da177e4 1644 limit = 16;
b28a02de
PE
1645 if (i + limit > size)
1646 limit = size - i;
1da177e4
LT
1647 dump_line(realobj, i, limit);
1648 i += 16;
1649 lines++;
1650 /* Limit to 5 lines */
1651 if (lines > 5)
1652 break;
1653 }
1654 }
1655 if (lines != 0) {
1656 /* Print some data about the neighboring objects, if they
1657 * exist:
1658 */
8456a648 1659 struct page *page = virt_to_head_page(objp);
8fea4e96 1660 unsigned int objnr;
1da177e4 1661
8456a648 1662 objnr = obj_to_index(cachep, page, objp);
1da177e4 1663 if (objnr) {
8456a648 1664 objp = index_to_obj(cachep, page, objnr - 1);
3dafccf2 1665 realobj = (char *)objp + obj_offset(cachep);
1170532b 1666 pr_err("Prev obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1667 print_objinfo(cachep, objp, 2);
1668 }
b28a02de 1669 if (objnr + 1 < cachep->num) {
8456a648 1670 objp = index_to_obj(cachep, page, objnr + 1);
3dafccf2 1671 realobj = (char *)objp + obj_offset(cachep);
1170532b 1672 pr_err("Next obj: start=%p, len=%d\n", realobj, size);
1da177e4
LT
1673 print_objinfo(cachep, objp, 2);
1674 }
1675 }
1676}
1677#endif
1678
12dd36fa 1679#if DEBUG
8456a648
JK
1680static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1681 struct page *page)
1da177e4 1682{
1da177e4 1683 int i;
b03a017b
JK
1684
1685 if (OBJFREELIST_SLAB(cachep) && cachep->flags & SLAB_POISON) {
1686 poison_obj(cachep, page->freelist - obj_offset(cachep),
1687 POISON_FREE);
1688 }
1689
1da177e4 1690 for (i = 0; i < cachep->num; i++) {
8456a648 1691 void *objp = index_to_obj(cachep, page, i);
1da177e4
LT
1692
1693 if (cachep->flags & SLAB_POISON) {
1da177e4 1694 check_poison_obj(cachep, objp);
40b44137 1695 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
1696 }
1697 if (cachep->flags & SLAB_RED_ZONE) {
1698 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 1699 slab_error(cachep, "start of a freed object was overwritten");
1da177e4 1700 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 1701 slab_error(cachep, "end of a freed object was overwritten");
1da177e4 1702 }
1da177e4 1703 }
12dd36fa 1704}
1da177e4 1705#else
8456a648
JK
1706static void slab_destroy_debugcheck(struct kmem_cache *cachep,
1707 struct page *page)
12dd36fa 1708{
12dd36fa 1709}
1da177e4
LT
1710#endif
1711
911851e6
RD
1712/**
1713 * slab_destroy - destroy and release all objects in a slab
1714 * @cachep: cache pointer being destroyed
cb8ee1a3 1715 * @page: page pointer being destroyed
911851e6 1716 *
8a7d9b43
WSH
1717 * Destroy all the objs in a slab page, and release the mem back to the system.
1718 * Before calling the slab page must have been unlinked from the cache. The
1719 * kmem_cache_node ->list_lock is not held/needed.
12dd36fa 1720 */
8456a648 1721static void slab_destroy(struct kmem_cache *cachep, struct page *page)
12dd36fa 1722{
7e007355 1723 void *freelist;
12dd36fa 1724
8456a648
JK
1725 freelist = page->freelist;
1726 slab_destroy_debugcheck(cachep, page);
5f0d5a3a 1727 if (unlikely(cachep->flags & SLAB_TYPESAFE_BY_RCU))
bc4f610d
KS
1728 call_rcu(&page->rcu_head, kmem_rcu_free);
1729 else
0c3aa83e 1730 kmem_freepages(cachep, page);
68126702
JK
1731
1732 /*
8456a648 1733 * From now on, we don't use freelist
68126702
JK
1734 * although actual page can be freed in rcu context
1735 */
1736 if (OFF_SLAB(cachep))
8456a648 1737 kmem_cache_free(cachep->freelist_cache, freelist);
1da177e4
LT
1738}
1739
97654dfa
JK
1740static void slabs_destroy(struct kmem_cache *cachep, struct list_head *list)
1741{
1742 struct page *page, *n;
1743
1744 list_for_each_entry_safe(page, n, list, lru) {
1745 list_del(&page->lru);
1746 slab_destroy(cachep, page);
1747 }
1748}
1749
4d268eba 1750/**
a70773dd
RD
1751 * calculate_slab_order - calculate size (page order) of slabs
1752 * @cachep: pointer to the cache that is being created
1753 * @size: size of objects to be created in this cache.
a70773dd
RD
1754 * @flags: slab allocation flags
1755 *
1756 * Also calculates the number of objects per slab.
4d268eba
PE
1757 *
1758 * This could be made much more intelligent. For now, try to avoid using
1759 * high order pages for slabs. When the gfp() functions are more friendly
1760 * towards high-order requests, this should be changed.
1761 */
a737b3e2 1762static size_t calculate_slab_order(struct kmem_cache *cachep,
2e6b3602 1763 size_t size, unsigned long flags)
4d268eba
PE
1764{
1765 size_t left_over = 0;
9888e6fa 1766 int gfporder;
4d268eba 1767
0aa817f0 1768 for (gfporder = 0; gfporder <= KMALLOC_MAX_ORDER; gfporder++) {
4d268eba
PE
1769 unsigned int num;
1770 size_t remainder;
1771
70f75067 1772 num = cache_estimate(gfporder, size, flags, &remainder);
4d268eba
PE
1773 if (!num)
1774 continue;
9888e6fa 1775
f315e3fa
JK
1776 /* Can't handle number of objects more than SLAB_OBJ_MAX_NUM */
1777 if (num > SLAB_OBJ_MAX_NUM)
1778 break;
1779
b1ab41c4 1780 if (flags & CFLGS_OFF_SLAB) {
3217fd9b
JK
1781 struct kmem_cache *freelist_cache;
1782 size_t freelist_size;
1783
1784 freelist_size = num * sizeof(freelist_idx_t);
1785 freelist_cache = kmalloc_slab(freelist_size, 0u);
1786 if (!freelist_cache)
1787 continue;
1788
b1ab41c4 1789 /*
3217fd9b 1790 * Needed to avoid possible looping condition
76b342bd 1791 * in cache_grow_begin()
b1ab41c4 1792 */
3217fd9b
JK
1793 if (OFF_SLAB(freelist_cache))
1794 continue;
b1ab41c4 1795
3217fd9b
JK
1796 /* check if off slab has enough benefit */
1797 if (freelist_cache->size > cachep->size / 2)
1798 continue;
b1ab41c4 1799 }
4d268eba 1800
9888e6fa 1801 /* Found something acceptable - save it away */
4d268eba 1802 cachep->num = num;
9888e6fa 1803 cachep->gfporder = gfporder;
4d268eba
PE
1804 left_over = remainder;
1805
f78bb8ad
LT
1806 /*
1807 * A VFS-reclaimable slab tends to have most allocations
1808 * as GFP_NOFS and we really don't want to have to be allocating
1809 * higher-order pages when we are unable to shrink dcache.
1810 */
1811 if (flags & SLAB_RECLAIM_ACCOUNT)
1812 break;
1813
4d268eba
PE
1814 /*
1815 * Large number of objects is good, but very large slabs are
1816 * currently bad for the gfp()s.
1817 */
543585cc 1818 if (gfporder >= slab_max_order)
4d268eba
PE
1819 break;
1820
9888e6fa
LT
1821 /*
1822 * Acceptable internal fragmentation?
1823 */
a737b3e2 1824 if (left_over * 8 <= (PAGE_SIZE << gfporder))
4d268eba
PE
1825 break;
1826 }
1827 return left_over;
1828}
1829
bf0dea23
JK
1830static struct array_cache __percpu *alloc_kmem_cache_cpus(
1831 struct kmem_cache *cachep, int entries, int batchcount)
1832{
1833 int cpu;
1834 size_t size;
1835 struct array_cache __percpu *cpu_cache;
1836
1837 size = sizeof(void *) * entries + sizeof(struct array_cache);
85c9f4b0 1838 cpu_cache = __alloc_percpu(size, sizeof(void *));
bf0dea23
JK
1839
1840 if (!cpu_cache)
1841 return NULL;
1842
1843 for_each_possible_cpu(cpu) {
1844 init_arraycache(per_cpu_ptr(cpu_cache, cpu),
1845 entries, batchcount);
1846 }
1847
1848 return cpu_cache;
1849}
1850
bd721ea7 1851static int __ref setup_cpu_cache(struct kmem_cache *cachep, gfp_t gfp)
f30cf7d1 1852{
97d06609 1853 if (slab_state >= FULL)
83b519e8 1854 return enable_cpucache(cachep, gfp);
2ed3a4ef 1855
bf0dea23
JK
1856 cachep->cpu_cache = alloc_kmem_cache_cpus(cachep, 1, 1);
1857 if (!cachep->cpu_cache)
1858 return 1;
1859
97d06609 1860 if (slab_state == DOWN) {
bf0dea23
JK
1861 /* Creation of first cache (kmem_cache). */
1862 set_up_node(kmem_cache, CACHE_CACHE);
2f9baa9f 1863 } else if (slab_state == PARTIAL) {
bf0dea23
JK
1864 /* For kmem_cache_node */
1865 set_up_node(cachep, SIZE_NODE);
f30cf7d1 1866 } else {
bf0dea23 1867 int node;
f30cf7d1 1868
bf0dea23
JK
1869 for_each_online_node(node) {
1870 cachep->node[node] = kmalloc_node(
1871 sizeof(struct kmem_cache_node), gfp, node);
1872 BUG_ON(!cachep->node[node]);
1873 kmem_cache_node_init(cachep->node[node]);
f30cf7d1
PE
1874 }
1875 }
bf0dea23 1876
6a67368c 1877 cachep->node[numa_mem_id()]->next_reap =
5f0985bb
JZ
1878 jiffies + REAPTIMEOUT_NODE +
1879 ((unsigned long)cachep) % REAPTIMEOUT_NODE;
f30cf7d1
PE
1880
1881 cpu_cache_get(cachep)->avail = 0;
1882 cpu_cache_get(cachep)->limit = BOOT_CPUCACHE_ENTRIES;
1883 cpu_cache_get(cachep)->batchcount = 1;
1884 cpu_cache_get(cachep)->touched = 0;
1885 cachep->batchcount = 1;
1886 cachep->limit = BOOT_CPUCACHE_ENTRIES;
2ed3a4ef 1887 return 0;
f30cf7d1
PE
1888}
1889
12220dea
JK
1890unsigned long kmem_cache_flags(unsigned long object_size,
1891 unsigned long flags, const char *name,
1892 void (*ctor)(void *))
1893{
1894 return flags;
1895}
1896
1897struct kmem_cache *
1898__kmem_cache_alias(const char *name, size_t size, size_t align,
1899 unsigned long flags, void (*ctor)(void *))
1900{
1901 struct kmem_cache *cachep;
1902
1903 cachep = find_mergeable(size, align, flags, name, ctor);
1904 if (cachep) {
1905 cachep->refcount++;
1906
1907 /*
1908 * Adjust the object sizes so that we clear
1909 * the complete object on kzalloc.
1910 */
1911 cachep->object_size = max_t(int, cachep->object_size, size);
1912 }
1913 return cachep;
1914}
1915
b03a017b
JK
1916static bool set_objfreelist_slab_cache(struct kmem_cache *cachep,
1917 size_t size, unsigned long flags)
1918{
1919 size_t left;
1920
1921 cachep->num = 0;
1922
5f0d5a3a 1923 if (cachep->ctor || flags & SLAB_TYPESAFE_BY_RCU)
b03a017b
JK
1924 return false;
1925
1926 left = calculate_slab_order(cachep, size,
1927 flags | CFLGS_OBJFREELIST_SLAB);
1928 if (!cachep->num)
1929 return false;
1930
1931 if (cachep->num * sizeof(freelist_idx_t) > cachep->object_size)
1932 return false;
1933
1934 cachep->colour = left / cachep->colour_off;
1935
1936 return true;
1937}
1938
158e319b
JK
1939static bool set_off_slab_cache(struct kmem_cache *cachep,
1940 size_t size, unsigned long flags)
1941{
1942 size_t left;
1943
1944 cachep->num = 0;
1945
1946 /*
3217fd9b
JK
1947 * Always use on-slab management when SLAB_NOLEAKTRACE
1948 * to avoid recursive calls into kmemleak.
158e319b 1949 */
158e319b
JK
1950 if (flags & SLAB_NOLEAKTRACE)
1951 return false;
1952
1953 /*
1954 * Size is large, assume best to place the slab management obj
1955 * off-slab (should allow better packing of objs).
1956 */
1957 left = calculate_slab_order(cachep, size, flags | CFLGS_OFF_SLAB);
1958 if (!cachep->num)
1959 return false;
1960
1961 /*
1962 * If the slab has been placed off-slab, and we have enough space then
1963 * move it on-slab. This is at the expense of any extra colouring.
1964 */
1965 if (left >= cachep->num * sizeof(freelist_idx_t))
1966 return false;
1967
1968 cachep->colour = left / cachep->colour_off;
1969
1970 return true;
1971}
1972
1973static bool set_on_slab_cache(struct kmem_cache *cachep,
1974 size_t size, unsigned long flags)
1975{
1976 size_t left;
1977
1978 cachep->num = 0;
1979
1980 left = calculate_slab_order(cachep, size, flags);
1981 if (!cachep->num)
1982 return false;
1983
1984 cachep->colour = left / cachep->colour_off;
1985
1986 return true;
1987}
1988
1da177e4 1989/**
039363f3 1990 * __kmem_cache_create - Create a cache.
a755b76a 1991 * @cachep: cache management descriptor
1da177e4 1992 * @flags: SLAB flags
1da177e4
LT
1993 *
1994 * Returns a ptr to the cache on success, NULL on failure.
1995 * Cannot be called within a int, but can be interrupted.
20c2df83 1996 * The @ctor is run when new pages are allocated by the cache.
1da177e4 1997 *
1da177e4
LT
1998 * The flags are
1999 *
2000 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
2001 * to catch references to uninitialised memory.
2002 *
2003 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
2004 * for buffer overruns.
2005 *
1da177e4
LT
2006 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
2007 * cacheline. This can be beneficial if you're counting cycles as closely
2008 * as davem.
2009 */
278b1bb1 2010int
8a13a4cc 2011__kmem_cache_create (struct kmem_cache *cachep, unsigned long flags)
1da177e4 2012{
d4a5fca5 2013 size_t ralign = BYTES_PER_WORD;
83b519e8 2014 gfp_t gfp;
278b1bb1 2015 int err;
8a13a4cc 2016 size_t size = cachep->size;
1da177e4 2017
1da177e4 2018#if DEBUG
1da177e4
LT
2019#if FORCED_DEBUG
2020 /*
2021 * Enable redzoning and last user accounting, except for caches with
2022 * large objects, if the increased size would increase the object size
2023 * above the next power of two: caches with object sizes just above a
2024 * power of two have a significant amount of internal fragmentation.
2025 */
87a927c7
DW
2026 if (size < 4096 || fls(size - 1) == fls(size-1 + REDZONE_ALIGN +
2027 2 * sizeof(unsigned long long)))
b28a02de 2028 flags |= SLAB_RED_ZONE | SLAB_STORE_USER;
5f0d5a3a 2029 if (!(flags & SLAB_TYPESAFE_BY_RCU))
1da177e4
LT
2030 flags |= SLAB_POISON;
2031#endif
1da177e4 2032#endif
1da177e4 2033
a737b3e2
AM
2034 /*
2035 * Check that size is in terms of words. This is needed to avoid
1da177e4
LT
2036 * unaligned accesses for some archs when redzoning is used, and makes
2037 * sure any on-slab bufctl's are also correctly aligned.
2038 */
e0771950 2039 size = ALIGN(size, BYTES_PER_WORD);
1da177e4 2040
87a927c7
DW
2041 if (flags & SLAB_RED_ZONE) {
2042 ralign = REDZONE_ALIGN;
2043 /* If redzoning, ensure that the second redzone is suitably
2044 * aligned, by adjusting the object size accordingly. */
e0771950 2045 size = ALIGN(size, REDZONE_ALIGN);
87a927c7 2046 }
ca5f9703 2047
a44b56d3 2048 /* 3) caller mandated alignment */
8a13a4cc
CL
2049 if (ralign < cachep->align) {
2050 ralign = cachep->align;
1da177e4 2051 }
3ff84a7f
PE
2052 /* disable debug if necessary */
2053 if (ralign > __alignof__(unsigned long long))
a44b56d3 2054 flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
a737b3e2 2055 /*
ca5f9703 2056 * 4) Store it.
1da177e4 2057 */
8a13a4cc 2058 cachep->align = ralign;
158e319b
JK
2059 cachep->colour_off = cache_line_size();
2060 /* Offset must be a multiple of the alignment. */
2061 if (cachep->colour_off < cachep->align)
2062 cachep->colour_off = cachep->align;
1da177e4 2063
83b519e8
PE
2064 if (slab_is_available())
2065 gfp = GFP_KERNEL;
2066 else
2067 gfp = GFP_NOWAIT;
2068
1da177e4 2069#if DEBUG
1da177e4 2070
ca5f9703
PE
2071 /*
2072 * Both debugging options require word-alignment which is calculated
2073 * into align above.
2074 */
1da177e4 2075 if (flags & SLAB_RED_ZONE) {
1da177e4 2076 /* add space for red zone words */
3ff84a7f
PE
2077 cachep->obj_offset += sizeof(unsigned long long);
2078 size += 2 * sizeof(unsigned long long);
1da177e4
LT
2079 }
2080 if (flags & SLAB_STORE_USER) {
ca5f9703 2081 /* user store requires one word storage behind the end of
87a927c7
DW
2082 * the real object. But if the second red zone needs to be
2083 * aligned to 64 bits, we must allow that much space.
1da177e4 2084 */
87a927c7
DW
2085 if (flags & SLAB_RED_ZONE)
2086 size += REDZONE_ALIGN;
2087 else
2088 size += BYTES_PER_WORD;
1da177e4 2089 }
832a15d2
JK
2090#endif
2091
7ed2f9e6
AP
2092 kasan_cache_create(cachep, &size, &flags);
2093
832a15d2
JK
2094 size = ALIGN(size, cachep->align);
2095 /*
2096 * We should restrict the number of objects in a slab to implement
2097 * byte sized index. Refer comment on SLAB_OBJ_MIN_SIZE definition.
2098 */
2099 if (FREELIST_BYTE_INDEX && size < SLAB_OBJ_MIN_SIZE)
2100 size = ALIGN(SLAB_OBJ_MIN_SIZE, cachep->align);
2101
2102#if DEBUG
03a2d2a3
JK
2103 /*
2104 * To activate debug pagealloc, off-slab management is necessary
2105 * requirement. In early phase of initialization, small sized slab
2106 * doesn't get initialized so it would not be possible. So, we need
2107 * to check size >= 256. It guarantees that all necessary small
2108 * sized slab is initialized in current slab initialization sequence.
2109 */
40323278 2110 if (debug_pagealloc_enabled() && (flags & SLAB_POISON) &&
f3a3c320
JK
2111 size >= 256 && cachep->object_size > cache_line_size()) {
2112 if (size < PAGE_SIZE || size % PAGE_SIZE == 0) {
2113 size_t tmp_size = ALIGN(size, PAGE_SIZE);
2114
2115 if (set_off_slab_cache(cachep, tmp_size, flags)) {
2116 flags |= CFLGS_OFF_SLAB;
2117 cachep->obj_offset += tmp_size - size;
2118 size = tmp_size;
2119 goto done;
2120 }
2121 }
1da177e4 2122 }
1da177e4
LT
2123#endif
2124
b03a017b
JK
2125 if (set_objfreelist_slab_cache(cachep, size, flags)) {
2126 flags |= CFLGS_OBJFREELIST_SLAB;
2127 goto done;
2128 }
2129
158e319b 2130 if (set_off_slab_cache(cachep, size, flags)) {
1da177e4 2131 flags |= CFLGS_OFF_SLAB;
158e319b 2132 goto done;
832a15d2 2133 }
1da177e4 2134
158e319b
JK
2135 if (set_on_slab_cache(cachep, size, flags))
2136 goto done;
1da177e4 2137
158e319b 2138 return -E2BIG;
1da177e4 2139
158e319b
JK
2140done:
2141 cachep->freelist_size = cachep->num * sizeof(freelist_idx_t);
1da177e4 2142 cachep->flags = flags;
a57a4988 2143 cachep->allocflags = __GFP_COMP;
a3187e43 2144 if (flags & SLAB_CACHE_DMA)
a618e89f 2145 cachep->allocflags |= GFP_DMA;
3b0efdfa 2146 cachep->size = size;
6a2d7a95 2147 cachep->reciprocal_buffer_size = reciprocal_value(size);
1da177e4 2148
40b44137
JK
2149#if DEBUG
2150 /*
2151 * If we're going to use the generic kernel_map_pages()
2152 * poisoning, then it's going to smash the contents of
2153 * the redzone and userword anyhow, so switch them off.
2154 */
2155 if (IS_ENABLED(CONFIG_PAGE_POISONING) &&
2156 (cachep->flags & SLAB_POISON) &&
2157 is_debug_pagealloc_cache(cachep))
2158 cachep->flags &= ~(SLAB_RED_ZONE | SLAB_STORE_USER);
2159#endif
2160
2161 if (OFF_SLAB(cachep)) {
158e319b
JK
2162 cachep->freelist_cache =
2163 kmalloc_slab(cachep->freelist_size, 0u);
e5ac9c5a 2164 }
1da177e4 2165
278b1bb1
CL
2166 err = setup_cpu_cache(cachep, gfp);
2167 if (err) {
52b4b950 2168 __kmem_cache_release(cachep);
278b1bb1 2169 return err;
2ed3a4ef 2170 }
1da177e4 2171
278b1bb1 2172 return 0;
1da177e4 2173}
1da177e4
LT
2174
2175#if DEBUG
2176static void check_irq_off(void)
2177{
2178 BUG_ON(!irqs_disabled());
2179}
2180
2181static void check_irq_on(void)
2182{
2183 BUG_ON(irqs_disabled());
2184}
2185
18726ca8
JK
2186static void check_mutex_acquired(void)
2187{
2188 BUG_ON(!mutex_is_locked(&slab_mutex));
2189}
2190
343e0d7a 2191static void check_spinlock_acquired(struct kmem_cache *cachep)
1da177e4
LT
2192{
2193#ifdef CONFIG_SMP
2194 check_irq_off();
18bf8541 2195 assert_spin_locked(&get_node(cachep, numa_mem_id())->list_lock);
1da177e4
LT
2196#endif
2197}
e498be7d 2198
343e0d7a 2199static void check_spinlock_acquired_node(struct kmem_cache *cachep, int node)
e498be7d
CL
2200{
2201#ifdef CONFIG_SMP
2202 check_irq_off();
18bf8541 2203 assert_spin_locked(&get_node(cachep, node)->list_lock);
e498be7d
CL
2204#endif
2205}
2206
1da177e4
LT
2207#else
2208#define check_irq_off() do { } while(0)
2209#define check_irq_on() do { } while(0)
18726ca8 2210#define check_mutex_acquired() do { } while(0)
1da177e4 2211#define check_spinlock_acquired(x) do { } while(0)
e498be7d 2212#define check_spinlock_acquired_node(x, y) do { } while(0)
1da177e4
LT
2213#endif
2214
18726ca8
JK
2215static void drain_array_locked(struct kmem_cache *cachep, struct array_cache *ac,
2216 int node, bool free_all, struct list_head *list)
2217{
2218 int tofree;
2219
2220 if (!ac || !ac->avail)
2221 return;
2222
2223 tofree = free_all ? ac->avail : (ac->limit + 4) / 5;
2224 if (tofree > ac->avail)
2225 tofree = (ac->avail + 1) / 2;
2226
2227 free_block(cachep, ac->entry, tofree, node, list);
2228 ac->avail -= tofree;
2229 memmove(ac->entry, &(ac->entry[tofree]), sizeof(void *) * ac->avail);
2230}
aab2207c 2231
1da177e4
LT
2232static void do_drain(void *arg)
2233{
a737b3e2 2234 struct kmem_cache *cachep = arg;
1da177e4 2235 struct array_cache *ac;
7d6e6d09 2236 int node = numa_mem_id();
18bf8541 2237 struct kmem_cache_node *n;
97654dfa 2238 LIST_HEAD(list);
1da177e4
LT
2239
2240 check_irq_off();
9a2dba4b 2241 ac = cpu_cache_get(cachep);
18bf8541
CL
2242 n = get_node(cachep, node);
2243 spin_lock(&n->list_lock);
97654dfa 2244 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 2245 spin_unlock(&n->list_lock);
97654dfa 2246 slabs_destroy(cachep, &list);
1da177e4
LT
2247 ac->avail = 0;
2248}
2249
343e0d7a 2250static void drain_cpu_caches(struct kmem_cache *cachep)
1da177e4 2251{
ce8eb6c4 2252 struct kmem_cache_node *n;
e498be7d 2253 int node;
18726ca8 2254 LIST_HEAD(list);
e498be7d 2255
15c8b6c1 2256 on_each_cpu(do_drain, cachep, 1);
1da177e4 2257 check_irq_on();
18bf8541
CL
2258 for_each_kmem_cache_node(cachep, node, n)
2259 if (n->alien)
ce8eb6c4 2260 drain_alien_cache(cachep, n->alien);
a4523a8b 2261
18726ca8
JK
2262 for_each_kmem_cache_node(cachep, node, n) {
2263 spin_lock_irq(&n->list_lock);
2264 drain_array_locked(cachep, n->shared, node, true, &list);
2265 spin_unlock_irq(&n->list_lock);
2266
2267 slabs_destroy(cachep, &list);
2268 }
1da177e4
LT
2269}
2270
ed11d9eb
CL
2271/*
2272 * Remove slabs from the list of free slabs.
2273 * Specify the number of slabs to drain in tofree.
2274 *
2275 * Returns the actual number of slabs released.
2276 */
2277static int drain_freelist(struct kmem_cache *cache,
ce8eb6c4 2278 struct kmem_cache_node *n, int tofree)
1da177e4 2279{
ed11d9eb
CL
2280 struct list_head *p;
2281 int nr_freed;
8456a648 2282 struct page *page;
1da177e4 2283
ed11d9eb 2284 nr_freed = 0;
ce8eb6c4 2285 while (nr_freed < tofree && !list_empty(&n->slabs_free)) {
1da177e4 2286
ce8eb6c4
CL
2287 spin_lock_irq(&n->list_lock);
2288 p = n->slabs_free.prev;
2289 if (p == &n->slabs_free) {
2290 spin_unlock_irq(&n->list_lock);
ed11d9eb
CL
2291 goto out;
2292 }
1da177e4 2293
8456a648 2294 page = list_entry(p, struct page, lru);
8456a648 2295 list_del(&page->lru);
f728b0a5 2296 n->free_slabs--;
bf00bd34 2297 n->total_slabs--;
ed11d9eb
CL
2298 /*
2299 * Safe to drop the lock. The slab is no longer linked
2300 * to the cache.
2301 */
ce8eb6c4
CL
2302 n->free_objects -= cache->num;
2303 spin_unlock_irq(&n->list_lock);
8456a648 2304 slab_destroy(cache, page);
ed11d9eb 2305 nr_freed++;
1da177e4 2306 }
ed11d9eb
CL
2307out:
2308 return nr_freed;
1da177e4
LT
2309}
2310
c9fc5864 2311int __kmem_cache_shrink(struct kmem_cache *cachep)
e498be7d 2312{
18bf8541
CL
2313 int ret = 0;
2314 int node;
ce8eb6c4 2315 struct kmem_cache_node *n;
e498be7d
CL
2316
2317 drain_cpu_caches(cachep);
2318
2319 check_irq_on();
18bf8541 2320 for_each_kmem_cache_node(cachep, node, n) {
a5aa63a5 2321 drain_freelist(cachep, n, INT_MAX);
ed11d9eb 2322
ce8eb6c4
CL
2323 ret += !list_empty(&n->slabs_full) ||
2324 !list_empty(&n->slabs_partial);
e498be7d
CL
2325 }
2326 return (ret ? 1 : 0);
2327}
2328
c9fc5864
TH
2329#ifdef CONFIG_MEMCG
2330void __kmemcg_cache_deactivate(struct kmem_cache *cachep)
2331{
2332 __kmem_cache_shrink(cachep);
2333}
2334#endif
2335
945cf2b6 2336int __kmem_cache_shutdown(struct kmem_cache *cachep)
52b4b950 2337{
c9fc5864 2338 return __kmem_cache_shrink(cachep);
52b4b950
DS
2339}
2340
2341void __kmem_cache_release(struct kmem_cache *cachep)
1da177e4 2342{
12c3667f 2343 int i;
ce8eb6c4 2344 struct kmem_cache_node *n;
1da177e4 2345
c7ce4f60
TG
2346 cache_random_seq_destroy(cachep);
2347
bf0dea23 2348 free_percpu(cachep->cpu_cache);
1da177e4 2349
ce8eb6c4 2350 /* NUMA: free the node structures */
18bf8541
CL
2351 for_each_kmem_cache_node(cachep, i, n) {
2352 kfree(n->shared);
2353 free_alien_cache(n->alien);
2354 kfree(n);
2355 cachep->node[i] = NULL;
12c3667f 2356 }
1da177e4 2357}
1da177e4 2358
e5ac9c5a
RT
2359/*
2360 * Get the memory for a slab management obj.
5f0985bb
JZ
2361 *
2362 * For a slab cache when the slab descriptor is off-slab, the
2363 * slab descriptor can't come from the same cache which is being created,
2364 * Because if it is the case, that means we defer the creation of
2365 * the kmalloc_{dma,}_cache of size sizeof(slab descriptor) to this point.
2366 * And we eventually call down to __kmem_cache_create(), which
2367 * in turn looks up in the kmalloc_{dma,}_caches for the disired-size one.
2368 * This is a "chicken-and-egg" problem.
2369 *
2370 * So the off-slab slab descriptor shall come from the kmalloc_{dma,}_caches,
2371 * which are all initialized during kmem_cache_init().
e5ac9c5a 2372 */
7e007355 2373static void *alloc_slabmgmt(struct kmem_cache *cachep,
0c3aa83e
JK
2374 struct page *page, int colour_off,
2375 gfp_t local_flags, int nodeid)
1da177e4 2376{
7e007355 2377 void *freelist;
0c3aa83e 2378 void *addr = page_address(page);
b28a02de 2379
2e6b3602
JK
2380 page->s_mem = addr + colour_off;
2381 page->active = 0;
2382
b03a017b
JK
2383 if (OBJFREELIST_SLAB(cachep))
2384 freelist = NULL;
2385 else if (OFF_SLAB(cachep)) {
1da177e4 2386 /* Slab management obj is off-slab. */
8456a648 2387 freelist = kmem_cache_alloc_node(cachep->freelist_cache,
8759ec50 2388 local_flags, nodeid);
8456a648 2389 if (!freelist)
1da177e4
LT
2390 return NULL;
2391 } else {
2e6b3602
JK
2392 /* We will use last bytes at the slab for freelist */
2393 freelist = addr + (PAGE_SIZE << cachep->gfporder) -
2394 cachep->freelist_size;
1da177e4 2395 }
2e6b3602 2396
8456a648 2397 return freelist;
1da177e4
LT
2398}
2399
7cc68973 2400static inline freelist_idx_t get_free_obj(struct page *page, unsigned int idx)
1da177e4 2401{
a41adfaa 2402 return ((freelist_idx_t *)page->freelist)[idx];
e5c58dfd
JK
2403}
2404
2405static inline void set_free_obj(struct page *page,
7cc68973 2406 unsigned int idx, freelist_idx_t val)
e5c58dfd 2407{
a41adfaa 2408 ((freelist_idx_t *)(page->freelist))[idx] = val;
1da177e4
LT
2409}
2410
10b2e9e8 2411static void cache_init_objs_debug(struct kmem_cache *cachep, struct page *page)
1da177e4 2412{
10b2e9e8 2413#if DEBUG
1da177e4
LT
2414 int i;
2415
2416 for (i = 0; i < cachep->num; i++) {
8456a648 2417 void *objp = index_to_obj(cachep, page, i);
10b2e9e8 2418
1da177e4
LT
2419 if (cachep->flags & SLAB_STORE_USER)
2420 *dbg_userword(cachep, objp) = NULL;
2421
2422 if (cachep->flags & SLAB_RED_ZONE) {
2423 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2424 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2425 }
2426 /*
a737b3e2
AM
2427 * Constructors are not allowed to allocate memory from the same
2428 * cache which they are a constructor for. Otherwise, deadlock.
2429 * They must also be threaded.
1da177e4 2430 */
7ed2f9e6
AP
2431 if (cachep->ctor && !(cachep->flags & SLAB_POISON)) {
2432 kasan_unpoison_object_data(cachep,
2433 objp + obj_offset(cachep));
51cc5068 2434 cachep->ctor(objp + obj_offset(cachep));
7ed2f9e6
AP
2435 kasan_poison_object_data(
2436 cachep, objp + obj_offset(cachep));
2437 }
1da177e4
LT
2438
2439 if (cachep->flags & SLAB_RED_ZONE) {
2440 if (*dbg_redzone2(cachep, objp) != RED_INACTIVE)
756a025f 2441 slab_error(cachep, "constructor overwrote the end of an object");
1da177e4 2442 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE)
756a025f 2443 slab_error(cachep, "constructor overwrote the start of an object");
1da177e4 2444 }
40b44137
JK
2445 /* need to poison the objs? */
2446 if (cachep->flags & SLAB_POISON) {
2447 poison_obj(cachep, objp, POISON_FREE);
2448 slab_kernel_map(cachep, objp, 0, 0);
2449 }
10b2e9e8 2450 }
1da177e4 2451#endif
10b2e9e8
JK
2452}
2453
c7ce4f60
TG
2454#ifdef CONFIG_SLAB_FREELIST_RANDOM
2455/* Hold information during a freelist initialization */
2456union freelist_init_state {
2457 struct {
2458 unsigned int pos;
7c00fce9 2459 unsigned int *list;
c7ce4f60 2460 unsigned int count;
c7ce4f60
TG
2461 };
2462 struct rnd_state rnd_state;
2463};
2464
2465/*
2466 * Initialize the state based on the randomization methode available.
2467 * return true if the pre-computed list is available, false otherwize.
2468 */
2469static bool freelist_state_initialize(union freelist_init_state *state,
2470 struct kmem_cache *cachep,
2471 unsigned int count)
2472{
2473 bool ret;
2474 unsigned int rand;
2475
2476 /* Use best entropy available to define a random shift */
7c00fce9 2477 rand = get_random_int();
c7ce4f60
TG
2478
2479 /* Use a random state if the pre-computed list is not available */
2480 if (!cachep->random_seq) {
2481 prandom_seed_state(&state->rnd_state, rand);
2482 ret = false;
2483 } else {
2484 state->list = cachep->random_seq;
2485 state->count = count;
c4e490cf 2486 state->pos = rand % count;
c7ce4f60
TG
2487 ret = true;
2488 }
2489 return ret;
2490}
2491
2492/* Get the next entry on the list and randomize it using a random shift */
2493static freelist_idx_t next_random_slot(union freelist_init_state *state)
2494{
c4e490cf
JS
2495 if (state->pos >= state->count)
2496 state->pos = 0;
2497 return state->list[state->pos++];
c7ce4f60
TG
2498}
2499
7c00fce9
TG
2500/* Swap two freelist entries */
2501static void swap_free_obj(struct page *page, unsigned int a, unsigned int b)
2502{
2503 swap(((freelist_idx_t *)page->freelist)[a],
2504 ((freelist_idx_t *)page->freelist)[b]);
2505}
2506
c7ce4f60
TG
2507/*
2508 * Shuffle the freelist initialization state based on pre-computed lists.
2509 * return true if the list was successfully shuffled, false otherwise.
2510 */
2511static bool shuffle_freelist(struct kmem_cache *cachep, struct page *page)
2512{
7c00fce9 2513 unsigned int objfreelist = 0, i, rand, count = cachep->num;
c7ce4f60
TG
2514 union freelist_init_state state;
2515 bool precomputed;
2516
2517 if (count < 2)
2518 return false;
2519
2520 precomputed = freelist_state_initialize(&state, cachep, count);
2521
2522 /* Take a random entry as the objfreelist */
2523 if (OBJFREELIST_SLAB(cachep)) {
2524 if (!precomputed)
2525 objfreelist = count - 1;
2526 else
2527 objfreelist = next_random_slot(&state);
2528 page->freelist = index_to_obj(cachep, page, objfreelist) +
2529 obj_offset(cachep);
2530 count--;
2531 }
2532
2533 /*
2534 * On early boot, generate the list dynamically.
2535 * Later use a pre-computed list for speed.
2536 */
2537 if (!precomputed) {
7c00fce9
TG
2538 for (i = 0; i < count; i++)
2539 set_free_obj(page, i, i);
2540
2541 /* Fisher-Yates shuffle */
2542 for (i = count - 1; i > 0; i--) {
2543 rand = prandom_u32_state(&state.rnd_state);
2544 rand %= (i + 1);
2545 swap_free_obj(page, i, rand);
2546 }
c7ce4f60
TG
2547 } else {
2548 for (i = 0; i < count; i++)
2549 set_free_obj(page, i, next_random_slot(&state));
2550 }
2551
2552 if (OBJFREELIST_SLAB(cachep))
2553 set_free_obj(page, cachep->num - 1, objfreelist);
2554
2555 return true;
2556}
2557#else
2558static inline bool shuffle_freelist(struct kmem_cache *cachep,
2559 struct page *page)
2560{
2561 return false;
2562}
2563#endif /* CONFIG_SLAB_FREELIST_RANDOM */
2564
10b2e9e8
JK
2565static void cache_init_objs(struct kmem_cache *cachep,
2566 struct page *page)
2567{
2568 int i;
7ed2f9e6 2569 void *objp;
c7ce4f60 2570 bool shuffled;
10b2e9e8
JK
2571
2572 cache_init_objs_debug(cachep, page);
2573
c7ce4f60
TG
2574 /* Try to randomize the freelist if enabled */
2575 shuffled = shuffle_freelist(cachep, page);
2576
2577 if (!shuffled && OBJFREELIST_SLAB(cachep)) {
b03a017b
JK
2578 page->freelist = index_to_obj(cachep, page, cachep->num - 1) +
2579 obj_offset(cachep);
2580 }
2581
10b2e9e8 2582 for (i = 0; i < cachep->num; i++) {
b3cbd9bf
AR
2583 objp = index_to_obj(cachep, page, i);
2584 kasan_init_slab_obj(cachep, objp);
2585
10b2e9e8 2586 /* constructor could break poison info */
7ed2f9e6 2587 if (DEBUG == 0 && cachep->ctor) {
7ed2f9e6
AP
2588 kasan_unpoison_object_data(cachep, objp);
2589 cachep->ctor(objp);
2590 kasan_poison_object_data(cachep, objp);
2591 }
10b2e9e8 2592
c7ce4f60
TG
2593 if (!shuffled)
2594 set_free_obj(page, i, i);
1da177e4 2595 }
1da177e4
LT
2596}
2597
260b61dd 2598static void *slab_get_obj(struct kmem_cache *cachep, struct page *page)
78d382d7 2599{
b1cb0982 2600 void *objp;
78d382d7 2601
e5c58dfd 2602 objp = index_to_obj(cachep, page, get_free_obj(page, page->active));
8456a648 2603 page->active++;
78d382d7 2604
d31676df
JK
2605#if DEBUG
2606 if (cachep->flags & SLAB_STORE_USER)
2607 set_store_user_dirty(cachep);
2608#endif
2609
78d382d7
MD
2610 return objp;
2611}
2612
260b61dd
JK
2613static void slab_put_obj(struct kmem_cache *cachep,
2614 struct page *page, void *objp)
78d382d7 2615{
8456a648 2616 unsigned int objnr = obj_to_index(cachep, page, objp);
78d382d7 2617#if DEBUG
16025177 2618 unsigned int i;
b1cb0982 2619
b1cb0982 2620 /* Verify double free bug */
8456a648 2621 for (i = page->active; i < cachep->num; i++) {
e5c58dfd 2622 if (get_free_obj(page, i) == objnr) {
1170532b 2623 pr_err("slab: double free detected in cache '%s', objp %p\n",
756a025f 2624 cachep->name, objp);
b1cb0982
JK
2625 BUG();
2626 }
78d382d7
MD
2627 }
2628#endif
8456a648 2629 page->active--;
b03a017b
JK
2630 if (!page->freelist)
2631 page->freelist = objp + obj_offset(cachep);
2632
e5c58dfd 2633 set_free_obj(page, page->active, objnr);
78d382d7
MD
2634}
2635
4776874f
PE
2636/*
2637 * Map pages beginning at addr to the given cache and slab. This is required
2638 * for the slab allocator to be able to lookup the cache and slab of a
ccd35fb9 2639 * virtual address for kfree, ksize, and slab debugging.
4776874f 2640 */
8456a648 2641static void slab_map_pages(struct kmem_cache *cache, struct page *page,
7e007355 2642 void *freelist)
1da177e4 2643{
a57a4988 2644 page->slab_cache = cache;
8456a648 2645 page->freelist = freelist;
1da177e4
LT
2646}
2647
2648/*
2649 * Grow (by 1) the number of slabs within a cache. This is called by
2650 * kmem_cache_alloc() when there are no active objs left in a cache.
2651 */
76b342bd
JK
2652static struct page *cache_grow_begin(struct kmem_cache *cachep,
2653 gfp_t flags, int nodeid)
1da177e4 2654{
7e007355 2655 void *freelist;
b28a02de
PE
2656 size_t offset;
2657 gfp_t local_flags;
511e3a05 2658 int page_node;
ce8eb6c4 2659 struct kmem_cache_node *n;
511e3a05 2660 struct page *page;
1da177e4 2661
a737b3e2
AM
2662 /*
2663 * Be lazy and only check for valid flags here, keeping it out of the
2664 * critical path in kmem_cache_alloc().
1da177e4 2665 */
c871ac4e 2666 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 2667 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
2668 flags &= ~GFP_SLAB_BUG_MASK;
2669 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
2670 invalid_mask, &invalid_mask, flags, &flags);
2671 dump_stack();
c871ac4e 2672 }
6cb06229 2673 local_flags = flags & (GFP_CONSTRAINT_MASK|GFP_RECLAIM_MASK);
1da177e4 2674
1da177e4 2675 check_irq_off();
d0164adc 2676 if (gfpflags_allow_blocking(local_flags))
1da177e4
LT
2677 local_irq_enable();
2678
a737b3e2
AM
2679 /*
2680 * Get mem for the objs. Attempt to allocate a physical page from
2681 * 'nodeid'.
e498be7d 2682 */
511e3a05 2683 page = kmem_getpages(cachep, local_flags, nodeid);
0c3aa83e 2684 if (!page)
1da177e4
LT
2685 goto failed;
2686
511e3a05
JK
2687 page_node = page_to_nid(page);
2688 n = get_node(cachep, page_node);
03d1d43a
JK
2689
2690 /* Get colour for the slab, and cal the next value. */
2691 n->colour_next++;
2692 if (n->colour_next >= cachep->colour)
2693 n->colour_next = 0;
2694
2695 offset = n->colour_next;
2696 if (offset >= cachep->colour)
2697 offset = 0;
2698
2699 offset *= cachep->colour_off;
2700
1da177e4 2701 /* Get slab management. */
8456a648 2702 freelist = alloc_slabmgmt(cachep, page, offset,
511e3a05 2703 local_flags & ~GFP_CONSTRAINT_MASK, page_node);
b03a017b 2704 if (OFF_SLAB(cachep) && !freelist)
1da177e4
LT
2705 goto opps1;
2706
8456a648 2707 slab_map_pages(cachep, page, freelist);
1da177e4 2708
7ed2f9e6 2709 kasan_poison_slab(page);
8456a648 2710 cache_init_objs(cachep, page);
1da177e4 2711
d0164adc 2712 if (gfpflags_allow_blocking(local_flags))
1da177e4 2713 local_irq_disable();
1da177e4 2714
76b342bd
JK
2715 return page;
2716
a737b3e2 2717opps1:
0c3aa83e 2718 kmem_freepages(cachep, page);
a737b3e2 2719failed:
d0164adc 2720 if (gfpflags_allow_blocking(local_flags))
1da177e4 2721 local_irq_disable();
76b342bd
JK
2722 return NULL;
2723}
2724
2725static void cache_grow_end(struct kmem_cache *cachep, struct page *page)
2726{
2727 struct kmem_cache_node *n;
2728 void *list = NULL;
2729
2730 check_irq_off();
2731
2732 if (!page)
2733 return;
2734
2735 INIT_LIST_HEAD(&page->lru);
2736 n = get_node(cachep, page_to_nid(page));
2737
2738 spin_lock(&n->list_lock);
bf00bd34 2739 n->total_slabs++;
f728b0a5 2740 if (!page->active) {
76b342bd 2741 list_add_tail(&page->lru, &(n->slabs_free));
f728b0a5 2742 n->free_slabs++;
bf00bd34 2743 } else
76b342bd 2744 fixup_slab_list(cachep, n, page, &list);
07a63c41 2745
76b342bd
JK
2746 STATS_INC_GROWN(cachep);
2747 n->free_objects += cachep->num - page->active;
2748 spin_unlock(&n->list_lock);
2749
2750 fixup_objfreelist_debug(cachep, &list);
1da177e4
LT
2751}
2752
2753#if DEBUG
2754
2755/*
2756 * Perform extra freeing checks:
2757 * - detect bad pointers.
2758 * - POISON/RED_ZONE checking
1da177e4
LT
2759 */
2760static void kfree_debugcheck(const void *objp)
2761{
1da177e4 2762 if (!virt_addr_valid(objp)) {
1170532b 2763 pr_err("kfree_debugcheck: out of range ptr %lxh\n",
b28a02de
PE
2764 (unsigned long)objp);
2765 BUG();
1da177e4 2766 }
1da177e4
LT
2767}
2768
58ce1fd5
PE
2769static inline void verify_redzone_free(struct kmem_cache *cache, void *obj)
2770{
b46b8f19 2771 unsigned long long redzone1, redzone2;
58ce1fd5
PE
2772
2773 redzone1 = *dbg_redzone1(cache, obj);
2774 redzone2 = *dbg_redzone2(cache, obj);
2775
2776 /*
2777 * Redzone is ok.
2778 */
2779 if (redzone1 == RED_ACTIVE && redzone2 == RED_ACTIVE)
2780 return;
2781
2782 if (redzone1 == RED_INACTIVE && redzone2 == RED_INACTIVE)
2783 slab_error(cache, "double free detected");
2784 else
2785 slab_error(cache, "memory outside object was overwritten");
2786
1170532b
JP
2787 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
2788 obj, redzone1, redzone2);
58ce1fd5
PE
2789}
2790
343e0d7a 2791static void *cache_free_debugcheck(struct kmem_cache *cachep, void *objp,
7c0cb9c6 2792 unsigned long caller)
1da177e4 2793{
1da177e4 2794 unsigned int objnr;
8456a648 2795 struct page *page;
1da177e4 2796
80cbd911
MW
2797 BUG_ON(virt_to_cache(objp) != cachep);
2798
3dafccf2 2799 objp -= obj_offset(cachep);
1da177e4 2800 kfree_debugcheck(objp);
b49af68f 2801 page = virt_to_head_page(objp);
1da177e4 2802
1da177e4 2803 if (cachep->flags & SLAB_RED_ZONE) {
58ce1fd5 2804 verify_redzone_free(cachep, objp);
1da177e4
LT
2805 *dbg_redzone1(cachep, objp) = RED_INACTIVE;
2806 *dbg_redzone2(cachep, objp) = RED_INACTIVE;
2807 }
d31676df
JK
2808 if (cachep->flags & SLAB_STORE_USER) {
2809 set_store_user_dirty(cachep);
7c0cb9c6 2810 *dbg_userword(cachep, objp) = (void *)caller;
d31676df 2811 }
1da177e4 2812
8456a648 2813 objnr = obj_to_index(cachep, page, objp);
1da177e4
LT
2814
2815 BUG_ON(objnr >= cachep->num);
8456a648 2816 BUG_ON(objp != index_to_obj(cachep, page, objnr));
1da177e4 2817
1da177e4 2818 if (cachep->flags & SLAB_POISON) {
1da177e4 2819 poison_obj(cachep, objp, POISON_FREE);
40b44137 2820 slab_kernel_map(cachep, objp, 0, caller);
1da177e4
LT
2821 }
2822 return objp;
2823}
2824
1da177e4
LT
2825#else
2826#define kfree_debugcheck(x) do { } while(0)
2827#define cache_free_debugcheck(x,objp,z) (objp)
1da177e4
LT
2828#endif
2829
b03a017b
JK
2830static inline void fixup_objfreelist_debug(struct kmem_cache *cachep,
2831 void **list)
2832{
2833#if DEBUG
2834 void *next = *list;
2835 void *objp;
2836
2837 while (next) {
2838 objp = next - obj_offset(cachep);
2839 next = *(void **)next;
2840 poison_obj(cachep, objp, POISON_FREE);
2841 }
2842#endif
2843}
2844
d8410234 2845static inline void fixup_slab_list(struct kmem_cache *cachep,
b03a017b
JK
2846 struct kmem_cache_node *n, struct page *page,
2847 void **list)
d8410234
JK
2848{
2849 /* move slabp to correct slabp list: */
2850 list_del(&page->lru);
b03a017b 2851 if (page->active == cachep->num) {
d8410234 2852 list_add(&page->lru, &n->slabs_full);
b03a017b
JK
2853 if (OBJFREELIST_SLAB(cachep)) {
2854#if DEBUG
2855 /* Poisoning will be done without holding the lock */
2856 if (cachep->flags & SLAB_POISON) {
2857 void **objp = page->freelist;
2858
2859 *objp = *list;
2860 *list = objp;
2861 }
2862#endif
2863 page->freelist = NULL;
2864 }
2865 } else
d8410234
JK
2866 list_add(&page->lru, &n->slabs_partial);
2867}
2868
f68f8ddd
JK
2869/* Try to find non-pfmemalloc slab if needed */
2870static noinline struct page *get_valid_first_slab(struct kmem_cache_node *n,
bf00bd34 2871 struct page *page, bool pfmemalloc)
f68f8ddd
JK
2872{
2873 if (!page)
2874 return NULL;
2875
2876 if (pfmemalloc)
2877 return page;
2878
2879 if (!PageSlabPfmemalloc(page))
2880 return page;
2881
2882 /* No need to keep pfmemalloc slab if we have enough free objects */
2883 if (n->free_objects > n->free_limit) {
2884 ClearPageSlabPfmemalloc(page);
2885 return page;
2886 }
2887
2888 /* Move pfmemalloc slab to the end of list to speed up next search */
2889 list_del(&page->lru);
bf00bd34 2890 if (!page->active) {
f68f8ddd 2891 list_add_tail(&page->lru, &n->slabs_free);
bf00bd34 2892 n->free_slabs++;
f728b0a5 2893 } else
f68f8ddd
JK
2894 list_add_tail(&page->lru, &n->slabs_partial);
2895
2896 list_for_each_entry(page, &n->slabs_partial, lru) {
2897 if (!PageSlabPfmemalloc(page))
2898 return page;
2899 }
2900
f728b0a5 2901 n->free_touched = 1;
f68f8ddd 2902 list_for_each_entry(page, &n->slabs_free, lru) {
f728b0a5 2903 if (!PageSlabPfmemalloc(page)) {
bf00bd34 2904 n->free_slabs--;
f68f8ddd 2905 return page;
f728b0a5 2906 }
f68f8ddd
JK
2907 }
2908
2909 return NULL;
2910}
2911
2912static struct page *get_first_slab(struct kmem_cache_node *n, bool pfmemalloc)
7aa0d227
GT
2913{
2914 struct page *page;
2915
f728b0a5 2916 assert_spin_locked(&n->list_lock);
bf00bd34 2917 page = list_first_entry_or_null(&n->slabs_partial, struct page, lru);
7aa0d227
GT
2918 if (!page) {
2919 n->free_touched = 1;
bf00bd34
DR
2920 page = list_first_entry_or_null(&n->slabs_free, struct page,
2921 lru);
f728b0a5 2922 if (page)
bf00bd34 2923 n->free_slabs--;
7aa0d227
GT
2924 }
2925
f68f8ddd 2926 if (sk_memalloc_socks())
bf00bd34 2927 page = get_valid_first_slab(n, page, pfmemalloc);
f68f8ddd 2928
7aa0d227
GT
2929 return page;
2930}
2931
f68f8ddd
JK
2932static noinline void *cache_alloc_pfmemalloc(struct kmem_cache *cachep,
2933 struct kmem_cache_node *n, gfp_t flags)
2934{
2935 struct page *page;
2936 void *obj;
2937 void *list = NULL;
2938
2939 if (!gfp_pfmemalloc_allowed(flags))
2940 return NULL;
2941
2942 spin_lock(&n->list_lock);
2943 page = get_first_slab(n, true);
2944 if (!page) {
2945 spin_unlock(&n->list_lock);
2946 return NULL;
2947 }
2948
2949 obj = slab_get_obj(cachep, page);
2950 n->free_objects--;
2951
2952 fixup_slab_list(cachep, n, page, &list);
2953
2954 spin_unlock(&n->list_lock);
2955 fixup_objfreelist_debug(cachep, &list);
2956
2957 return obj;
2958}
2959
213b4695
JK
2960/*
2961 * Slab list should be fixed up by fixup_slab_list() for existing slab
2962 * or cache_grow_end() for new slab
2963 */
2964static __always_inline int alloc_block(struct kmem_cache *cachep,
2965 struct array_cache *ac, struct page *page, int batchcount)
2966{
2967 /*
2968 * There must be at least one object available for
2969 * allocation.
2970 */
2971 BUG_ON(page->active >= cachep->num);
2972
2973 while (page->active < cachep->num && batchcount--) {
2974 STATS_INC_ALLOCED(cachep);
2975 STATS_INC_ACTIVE(cachep);
2976 STATS_SET_HIGH(cachep);
2977
2978 ac->entry[ac->avail++] = slab_get_obj(cachep, page);
2979 }
2980
2981 return batchcount;
2982}
2983
f68f8ddd 2984static void *cache_alloc_refill(struct kmem_cache *cachep, gfp_t flags)
1da177e4
LT
2985{
2986 int batchcount;
ce8eb6c4 2987 struct kmem_cache_node *n;
801faf0d 2988 struct array_cache *ac, *shared;
1ca4cb24 2989 int node;
b03a017b 2990 void *list = NULL;
76b342bd 2991 struct page *page;
1ca4cb24 2992
1da177e4 2993 check_irq_off();
7d6e6d09 2994 node = numa_mem_id();
f68f8ddd 2995
9a2dba4b 2996 ac = cpu_cache_get(cachep);
1da177e4
LT
2997 batchcount = ac->batchcount;
2998 if (!ac->touched && batchcount > BATCHREFILL_LIMIT) {
a737b3e2
AM
2999 /*
3000 * If there was little recent activity on this cache, then
3001 * perform only a partial refill. Otherwise we could generate
3002 * refill bouncing.
1da177e4
LT
3003 */
3004 batchcount = BATCHREFILL_LIMIT;
3005 }
18bf8541 3006 n = get_node(cachep, node);
e498be7d 3007
ce8eb6c4 3008 BUG_ON(ac->avail > 0 || !n);
801faf0d
JK
3009 shared = READ_ONCE(n->shared);
3010 if (!n->free_objects && (!shared || !shared->avail))
3011 goto direct_grow;
3012
ce8eb6c4 3013 spin_lock(&n->list_lock);
801faf0d 3014 shared = READ_ONCE(n->shared);
1da177e4 3015
3ded175a 3016 /* See if we can refill from the shared array */
801faf0d
JK
3017 if (shared && transfer_objects(ac, shared, batchcount)) {
3018 shared->touched = 1;
3ded175a 3019 goto alloc_done;
44b57f1c 3020 }
3ded175a 3021
1da177e4 3022 while (batchcount > 0) {
1da177e4 3023 /* Get slab alloc is to come from. */
f68f8ddd 3024 page = get_first_slab(n, false);
7aa0d227
GT
3025 if (!page)
3026 goto must_grow;
1da177e4 3027
1da177e4 3028 check_spinlock_acquired(cachep);
714b8171 3029
213b4695 3030 batchcount = alloc_block(cachep, ac, page, batchcount);
b03a017b 3031 fixup_slab_list(cachep, n, page, &list);
1da177e4
LT
3032 }
3033
a737b3e2 3034must_grow:
ce8eb6c4 3035 n->free_objects -= ac->avail;
a737b3e2 3036alloc_done:
ce8eb6c4 3037 spin_unlock(&n->list_lock);
b03a017b 3038 fixup_objfreelist_debug(cachep, &list);
1da177e4 3039
801faf0d 3040direct_grow:
1da177e4 3041 if (unlikely(!ac->avail)) {
f68f8ddd
JK
3042 /* Check if we can use obj in pfmemalloc slab */
3043 if (sk_memalloc_socks()) {
3044 void *obj = cache_alloc_pfmemalloc(cachep, n, flags);
3045
3046 if (obj)
3047 return obj;
3048 }
3049
76b342bd 3050 page = cache_grow_begin(cachep, gfp_exact_node(flags), node);
e498be7d 3051
76b342bd
JK
3052 /*
3053 * cache_grow_begin() can reenable interrupts,
3054 * then ac could change.
3055 */
9a2dba4b 3056 ac = cpu_cache_get(cachep);
213b4695
JK
3057 if (!ac->avail && page)
3058 alloc_block(cachep, ac, page, batchcount);
3059 cache_grow_end(cachep, page);
072bb0aa 3060
213b4695 3061 if (!ac->avail)
1da177e4 3062 return NULL;
1da177e4
LT
3063 }
3064 ac->touched = 1;
072bb0aa 3065
f68f8ddd 3066 return ac->entry[--ac->avail];
1da177e4
LT
3067}
3068
a737b3e2
AM
3069static inline void cache_alloc_debugcheck_before(struct kmem_cache *cachep,
3070 gfp_t flags)
1da177e4 3071{
d0164adc 3072 might_sleep_if(gfpflags_allow_blocking(flags));
1da177e4
LT
3073}
3074
3075#if DEBUG
a737b3e2 3076static void *cache_alloc_debugcheck_after(struct kmem_cache *cachep,
7c0cb9c6 3077 gfp_t flags, void *objp, unsigned long caller)
1da177e4 3078{
b28a02de 3079 if (!objp)
1da177e4 3080 return objp;
b28a02de 3081 if (cachep->flags & SLAB_POISON) {
1da177e4 3082 check_poison_obj(cachep, objp);
40b44137 3083 slab_kernel_map(cachep, objp, 1, 0);
1da177e4
LT
3084 poison_obj(cachep, objp, POISON_INUSE);
3085 }
3086 if (cachep->flags & SLAB_STORE_USER)
7c0cb9c6 3087 *dbg_userword(cachep, objp) = (void *)caller;
1da177e4
LT
3088
3089 if (cachep->flags & SLAB_RED_ZONE) {
a737b3e2
AM
3090 if (*dbg_redzone1(cachep, objp) != RED_INACTIVE ||
3091 *dbg_redzone2(cachep, objp) != RED_INACTIVE) {
756a025f 3092 slab_error(cachep, "double free, or memory outside object was overwritten");
1170532b
JP
3093 pr_err("%p: redzone 1:0x%llx, redzone 2:0x%llx\n",
3094 objp, *dbg_redzone1(cachep, objp),
3095 *dbg_redzone2(cachep, objp));
1da177e4
LT
3096 }
3097 *dbg_redzone1(cachep, objp) = RED_ACTIVE;
3098 *dbg_redzone2(cachep, objp) = RED_ACTIVE;
3099 }
03787301 3100
3dafccf2 3101 objp += obj_offset(cachep);
4f104934 3102 if (cachep->ctor && cachep->flags & SLAB_POISON)
51cc5068 3103 cachep->ctor(objp);
7ea466f2
TH
3104 if (ARCH_SLAB_MINALIGN &&
3105 ((unsigned long)objp & (ARCH_SLAB_MINALIGN-1))) {
1170532b 3106 pr_err("0x%p: not aligned to ARCH_SLAB_MINALIGN=%d\n",
c225150b 3107 objp, (int)ARCH_SLAB_MINALIGN);
a44b56d3 3108 }
1da177e4
LT
3109 return objp;
3110}
3111#else
3112#define cache_alloc_debugcheck_after(a,b,objp,d) (objp)
3113#endif
3114
343e0d7a 3115static inline void *____cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3116{
b28a02de 3117 void *objp;
1da177e4
LT
3118 struct array_cache *ac;
3119
5c382300 3120 check_irq_off();
8a8b6502 3121
9a2dba4b 3122 ac = cpu_cache_get(cachep);
1da177e4 3123 if (likely(ac->avail)) {
1da177e4 3124 ac->touched = 1;
f68f8ddd 3125 objp = ac->entry[--ac->avail];
072bb0aa 3126
f68f8ddd
JK
3127 STATS_INC_ALLOCHIT(cachep);
3128 goto out;
1da177e4 3129 }
072bb0aa
MG
3130
3131 STATS_INC_ALLOCMISS(cachep);
f68f8ddd 3132 objp = cache_alloc_refill(cachep, flags);
072bb0aa
MG
3133 /*
3134 * the 'ac' may be updated by cache_alloc_refill(),
3135 * and kmemleak_erase() requires its correct value.
3136 */
3137 ac = cpu_cache_get(cachep);
3138
3139out:
d5cff635
CM
3140 /*
3141 * To avoid a false negative, if an object that is in one of the
3142 * per-CPU caches is leaked, we need to make sure kmemleak doesn't
3143 * treat the array pointers as a reference to the object.
3144 */
f3d8b53a
O
3145 if (objp)
3146 kmemleak_erase(&ac->entry[ac->avail]);
5c382300
AK
3147 return objp;
3148}
3149
e498be7d 3150#ifdef CONFIG_NUMA
c61afb18 3151/*
2ad654bc 3152 * Try allocating on another node if PFA_SPREAD_SLAB is a mempolicy is set.
c61afb18
PJ
3153 *
3154 * If we are in_interrupt, then process context, including cpusets and
3155 * mempolicy, may not apply and should not be used for allocation policy.
3156 */
3157static void *alternate_node_alloc(struct kmem_cache *cachep, gfp_t flags)
3158{
3159 int nid_alloc, nid_here;
3160
765c4507 3161 if (in_interrupt() || (flags & __GFP_THISNODE))
c61afb18 3162 return NULL;
7d6e6d09 3163 nid_alloc = nid_here = numa_mem_id();
c61afb18 3164 if (cpuset_do_slab_mem_spread() && (cachep->flags & SLAB_MEM_SPREAD))
6adef3eb 3165 nid_alloc = cpuset_slab_spread_node();
c61afb18 3166 else if (current->mempolicy)
2a389610 3167 nid_alloc = mempolicy_slab_node();
c61afb18 3168 if (nid_alloc != nid_here)
8b98c169 3169 return ____cache_alloc_node(cachep, flags, nid_alloc);
c61afb18
PJ
3170 return NULL;
3171}
3172
765c4507
CL
3173/*
3174 * Fallback function if there was no memory available and no objects on a
3c517a61 3175 * certain node and fall back is permitted. First we scan all the
6a67368c 3176 * available node for available objects. If that fails then we
3c517a61
CL
3177 * perform an allocation without specifying a node. This allows the page
3178 * allocator to do its reclaim / fallback magic. We then insert the
3179 * slab into the proper nodelist and then allocate from it.
765c4507 3180 */
8c8cc2c1 3181static void *fallback_alloc(struct kmem_cache *cache, gfp_t flags)
765c4507 3182{
8c8cc2c1 3183 struct zonelist *zonelist;
dd1a239f 3184 struct zoneref *z;
54a6eb5c
MG
3185 struct zone *zone;
3186 enum zone_type high_zoneidx = gfp_zone(flags);
765c4507 3187 void *obj = NULL;
76b342bd 3188 struct page *page;
3c517a61 3189 int nid;
cc9a6c87 3190 unsigned int cpuset_mems_cookie;
8c8cc2c1
PE
3191
3192 if (flags & __GFP_THISNODE)
3193 return NULL;
3194
cc9a6c87 3195retry_cpuset:
d26914d1 3196 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 3197 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87 3198
3c517a61
CL
3199retry:
3200 /*
3201 * Look through allowed nodes for objects available
3202 * from existing per node queues.
3203 */
54a6eb5c
MG
3204 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
3205 nid = zone_to_nid(zone);
aedb0eb1 3206
061d7074 3207 if (cpuset_zone_allowed(zone, flags) &&
18bf8541
CL
3208 get_node(cache, nid) &&
3209 get_node(cache, nid)->free_objects) {
3c517a61 3210 obj = ____cache_alloc_node(cache,
4167e9b2 3211 gfp_exact_node(flags), nid);
481c5346
CL
3212 if (obj)
3213 break;
3214 }
3c517a61
CL
3215 }
3216
cfce6604 3217 if (!obj) {
3c517a61
CL
3218 /*
3219 * This allocation will be performed within the constraints
3220 * of the current cpuset / memory policy requirements.
3221 * We may trigger various forms of reclaim on the allowed
3222 * set and go into memory reserves if necessary.
3223 */
76b342bd
JK
3224 page = cache_grow_begin(cache, flags, numa_mem_id());
3225 cache_grow_end(cache, page);
3226 if (page) {
3227 nid = page_to_nid(page);
511e3a05
JK
3228 obj = ____cache_alloc_node(cache,
3229 gfp_exact_node(flags), nid);
0c3aa83e 3230
3c517a61 3231 /*
511e3a05
JK
3232 * Another processor may allocate the objects in
3233 * the slab since we are not holding any locks.
3c517a61 3234 */
511e3a05
JK
3235 if (!obj)
3236 goto retry;
3c517a61 3237 }
aedb0eb1 3238 }
cc9a6c87 3239
d26914d1 3240 if (unlikely(!obj && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 3241 goto retry_cpuset;
765c4507
CL
3242 return obj;
3243}
3244
e498be7d
CL
3245/*
3246 * A interface to enable slab creation on nodeid
1da177e4 3247 */
8b98c169 3248static void *____cache_alloc_node(struct kmem_cache *cachep, gfp_t flags,
a737b3e2 3249 int nodeid)
e498be7d 3250{
8456a648 3251 struct page *page;
ce8eb6c4 3252 struct kmem_cache_node *n;
213b4695 3253 void *obj = NULL;
b03a017b 3254 void *list = NULL;
b28a02de 3255
7c3fbbdd 3256 VM_BUG_ON(nodeid < 0 || nodeid >= MAX_NUMNODES);
18bf8541 3257 n = get_node(cachep, nodeid);
ce8eb6c4 3258 BUG_ON(!n);
b28a02de 3259
ca3b9b91 3260 check_irq_off();
ce8eb6c4 3261 spin_lock(&n->list_lock);
f68f8ddd 3262 page = get_first_slab(n, false);
7aa0d227
GT
3263 if (!page)
3264 goto must_grow;
b28a02de 3265
b28a02de 3266 check_spinlock_acquired_node(cachep, nodeid);
b28a02de
PE
3267
3268 STATS_INC_NODEALLOCS(cachep);
3269 STATS_INC_ACTIVE(cachep);
3270 STATS_SET_HIGH(cachep);
3271
8456a648 3272 BUG_ON(page->active == cachep->num);
b28a02de 3273
260b61dd 3274 obj = slab_get_obj(cachep, page);
ce8eb6c4 3275 n->free_objects--;
b28a02de 3276
b03a017b 3277 fixup_slab_list(cachep, n, page, &list);
e498be7d 3278
ce8eb6c4 3279 spin_unlock(&n->list_lock);
b03a017b 3280 fixup_objfreelist_debug(cachep, &list);
213b4695 3281 return obj;
e498be7d 3282
a737b3e2 3283must_grow:
ce8eb6c4 3284 spin_unlock(&n->list_lock);
76b342bd 3285 page = cache_grow_begin(cachep, gfp_exact_node(flags), nodeid);
213b4695
JK
3286 if (page) {
3287 /* This slab isn't counted yet so don't update free_objects */
3288 obj = slab_get_obj(cachep, page);
3289 }
76b342bd 3290 cache_grow_end(cachep, page);
1da177e4 3291
213b4695 3292 return obj ? obj : fallback_alloc(cachep, flags);
e498be7d 3293}
8c8cc2c1 3294
8c8cc2c1 3295static __always_inline void *
48356303 3296slab_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid,
7c0cb9c6 3297 unsigned long caller)
8c8cc2c1
PE
3298{
3299 unsigned long save_flags;
3300 void *ptr;
7d6e6d09 3301 int slab_node = numa_mem_id();
8c8cc2c1 3302
dcce284a 3303 flags &= gfp_allowed_mask;
011eceaf
JDB
3304 cachep = slab_pre_alloc_hook(cachep, flags);
3305 if (unlikely(!cachep))
824ebef1
AM
3306 return NULL;
3307
8c8cc2c1
PE
3308 cache_alloc_debugcheck_before(cachep, flags);
3309 local_irq_save(save_flags);
3310
eacbbae3 3311 if (nodeid == NUMA_NO_NODE)
7d6e6d09 3312 nodeid = slab_node;
8c8cc2c1 3313
18bf8541 3314 if (unlikely(!get_node(cachep, nodeid))) {
8c8cc2c1
PE
3315 /* Node not bootstrapped yet */
3316 ptr = fallback_alloc(cachep, flags);
3317 goto out;
3318 }
3319
7d6e6d09 3320 if (nodeid == slab_node) {
8c8cc2c1
PE
3321 /*
3322 * Use the locally cached objects if possible.
3323 * However ____cache_alloc does not allow fallback
3324 * to other nodes. It may fail while we still have
3325 * objects on other nodes available.
3326 */
3327 ptr = ____cache_alloc(cachep, flags);
3328 if (ptr)
3329 goto out;
3330 }
3331 /* ___cache_alloc_node can fall back to other nodes */
3332 ptr = ____cache_alloc_node(cachep, flags, nodeid);
3333 out:
3334 local_irq_restore(save_flags);
3335 ptr = cache_alloc_debugcheck_after(cachep, flags, ptr, caller);
3336
d5e3ed66
JDB
3337 if (unlikely(flags & __GFP_ZERO) && ptr)
3338 memset(ptr, 0, cachep->object_size);
d07dbea4 3339
d5e3ed66 3340 slab_post_alloc_hook(cachep, flags, 1, &ptr);
8c8cc2c1
PE
3341 return ptr;
3342}
3343
3344static __always_inline void *
3345__do_cache_alloc(struct kmem_cache *cache, gfp_t flags)
3346{
3347 void *objp;
3348
2ad654bc 3349 if (current->mempolicy || cpuset_do_slab_mem_spread()) {
8c8cc2c1
PE
3350 objp = alternate_node_alloc(cache, flags);
3351 if (objp)
3352 goto out;
3353 }
3354 objp = ____cache_alloc(cache, flags);
3355
3356 /*
3357 * We may just have run out of memory on the local node.
3358 * ____cache_alloc_node() knows how to locate memory on other nodes
3359 */
7d6e6d09
LS
3360 if (!objp)
3361 objp = ____cache_alloc_node(cache, flags, numa_mem_id());
8c8cc2c1
PE
3362
3363 out:
3364 return objp;
3365}
3366#else
3367
3368static __always_inline void *
3369__do_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
3370{
3371 return ____cache_alloc(cachep, flags);
3372}
3373
3374#endif /* CONFIG_NUMA */
3375
3376static __always_inline void *
48356303 3377slab_alloc(struct kmem_cache *cachep, gfp_t flags, unsigned long caller)
8c8cc2c1
PE
3378{
3379 unsigned long save_flags;
3380 void *objp;
3381
dcce284a 3382 flags &= gfp_allowed_mask;
011eceaf
JDB
3383 cachep = slab_pre_alloc_hook(cachep, flags);
3384 if (unlikely(!cachep))
824ebef1
AM
3385 return NULL;
3386
8c8cc2c1
PE
3387 cache_alloc_debugcheck_before(cachep, flags);
3388 local_irq_save(save_flags);
3389 objp = __do_cache_alloc(cachep, flags);
3390 local_irq_restore(save_flags);
3391 objp = cache_alloc_debugcheck_after(cachep, flags, objp, caller);
3392 prefetchw(objp);
3393
d5e3ed66
JDB
3394 if (unlikely(flags & __GFP_ZERO) && objp)
3395 memset(objp, 0, cachep->object_size);
d07dbea4 3396
d5e3ed66 3397 slab_post_alloc_hook(cachep, flags, 1, &objp);
8c8cc2c1
PE
3398 return objp;
3399}
e498be7d
CL
3400
3401/*
5f0985bb 3402 * Caller needs to acquire correct kmem_cache_node's list_lock
97654dfa 3403 * @list: List of detached free slabs should be freed by caller
e498be7d 3404 */
97654dfa
JK
3405static void free_block(struct kmem_cache *cachep, void **objpp,
3406 int nr_objects, int node, struct list_head *list)
1da177e4
LT
3407{
3408 int i;
25c063fb 3409 struct kmem_cache_node *n = get_node(cachep, node);
6052b788
JK
3410 struct page *page;
3411
3412 n->free_objects += nr_objects;
1da177e4
LT
3413
3414 for (i = 0; i < nr_objects; i++) {
072bb0aa 3415 void *objp;
8456a648 3416 struct page *page;
1da177e4 3417
072bb0aa
MG
3418 objp = objpp[i];
3419
8456a648 3420 page = virt_to_head_page(objp);
8456a648 3421 list_del(&page->lru);
ff69416e 3422 check_spinlock_acquired_node(cachep, node);
260b61dd 3423 slab_put_obj(cachep, page, objp);
1da177e4 3424 STATS_DEC_ACTIVE(cachep);
1da177e4
LT
3425
3426 /* fixup slab chains */
f728b0a5 3427 if (page->active == 0) {
6052b788 3428 list_add(&page->lru, &n->slabs_free);
f728b0a5 3429 n->free_slabs++;
f728b0a5 3430 } else {
1da177e4
LT
3431 /* Unconditionally move a slab to the end of the
3432 * partial list on free - maximum time for the
3433 * other objects to be freed, too.
3434 */
8456a648 3435 list_add_tail(&page->lru, &n->slabs_partial);
1da177e4
LT
3436 }
3437 }
6052b788
JK
3438
3439 while (n->free_objects > n->free_limit && !list_empty(&n->slabs_free)) {
3440 n->free_objects -= cachep->num;
3441
3442 page = list_last_entry(&n->slabs_free, struct page, lru);
de24baec 3443 list_move(&page->lru, list);
f728b0a5 3444 n->free_slabs--;
bf00bd34 3445 n->total_slabs--;
6052b788 3446 }
1da177e4
LT
3447}
3448
343e0d7a 3449static void cache_flusharray(struct kmem_cache *cachep, struct array_cache *ac)
1da177e4
LT
3450{
3451 int batchcount;
ce8eb6c4 3452 struct kmem_cache_node *n;
7d6e6d09 3453 int node = numa_mem_id();
97654dfa 3454 LIST_HEAD(list);
1da177e4
LT
3455
3456 batchcount = ac->batchcount;
260b61dd 3457
1da177e4 3458 check_irq_off();
18bf8541 3459 n = get_node(cachep, node);
ce8eb6c4
CL
3460 spin_lock(&n->list_lock);
3461 if (n->shared) {
3462 struct array_cache *shared_array = n->shared;
b28a02de 3463 int max = shared_array->limit - shared_array->avail;
1da177e4
LT
3464 if (max) {
3465 if (batchcount > max)
3466 batchcount = max;
e498be7d 3467 memcpy(&(shared_array->entry[shared_array->avail]),
b28a02de 3468 ac->entry, sizeof(void *) * batchcount);
1da177e4
LT
3469 shared_array->avail += batchcount;
3470 goto free_done;
3471 }
3472 }
3473
97654dfa 3474 free_block(cachep, ac->entry, batchcount, node, &list);
a737b3e2 3475free_done:
1da177e4
LT
3476#if STATS
3477 {
3478 int i = 0;
73c0219d 3479 struct page *page;
1da177e4 3480
73c0219d 3481 list_for_each_entry(page, &n->slabs_free, lru) {
8456a648 3482 BUG_ON(page->active);
1da177e4
LT
3483
3484 i++;
1da177e4
LT
3485 }
3486 STATS_SET_FREEABLE(cachep, i);
3487 }
3488#endif
ce8eb6c4 3489 spin_unlock(&n->list_lock);
97654dfa 3490 slabs_destroy(cachep, &list);
1da177e4 3491 ac->avail -= batchcount;
a737b3e2 3492 memmove(ac->entry, &(ac->entry[batchcount]), sizeof(void *)*ac->avail);
1da177e4
LT
3493}
3494
3495/*
a737b3e2
AM
3496 * Release an obj back to its cache. If the obj has a constructed state, it must
3497 * be in this state _before_ it is released. Called with disabled ints.
1da177e4 3498 */
a947eb95 3499static inline void __cache_free(struct kmem_cache *cachep, void *objp,
7c0cb9c6 3500 unsigned long caller)
1da177e4 3501{
55834c59
AP
3502 /* Put the object into the quarantine, don't touch it for now. */
3503 if (kasan_slab_free(cachep, objp))
3504 return;
3505
3506 ___cache_free(cachep, objp, caller);
3507}
1da177e4 3508
55834c59
AP
3509void ___cache_free(struct kmem_cache *cachep, void *objp,
3510 unsigned long caller)
3511{
3512 struct array_cache *ac = cpu_cache_get(cachep);
7ed2f9e6 3513
1da177e4 3514 check_irq_off();
d5cff635 3515 kmemleak_free_recursive(objp, cachep->flags);
a947eb95 3516 objp = cache_free_debugcheck(cachep, objp, caller);
1da177e4 3517
8c138bc0 3518 kmemcheck_slab_free(cachep, objp, cachep->object_size);
c175eea4 3519
1807a1aa
SS
3520 /*
3521 * Skip calling cache_free_alien() when the platform is not numa.
3522 * This will avoid cache misses that happen while accessing slabp (which
3523 * is per page memory reference) to get nodeid. Instead use a global
3524 * variable to skip the call, which is mostly likely to be present in
3525 * the cache.
3526 */
b6e68bc1 3527 if (nr_online_nodes > 1 && cache_free_alien(cachep, objp))
729bd0b7
PE
3528 return;
3529
3d880194 3530 if (ac->avail < ac->limit) {
1da177e4 3531 STATS_INC_FREEHIT(cachep);
1da177e4
LT
3532 } else {
3533 STATS_INC_FREEMISS(cachep);
3534 cache_flusharray(cachep, ac);
1da177e4 3535 }
42c8c99c 3536
f68f8ddd
JK
3537 if (sk_memalloc_socks()) {
3538 struct page *page = virt_to_head_page(objp);
3539
3540 if (unlikely(PageSlabPfmemalloc(page))) {
3541 cache_free_pfmemalloc(cachep, page, objp);
3542 return;
3543 }
3544 }
3545
3546 ac->entry[ac->avail++] = objp;
1da177e4
LT
3547}
3548
3549/**
3550 * kmem_cache_alloc - Allocate an object
3551 * @cachep: The cache to allocate from.
3552 * @flags: See kmalloc().
3553 *
3554 * Allocate an object from this cache. The flags are only relevant
3555 * if the cache has no available objects.
3556 */
343e0d7a 3557void *kmem_cache_alloc(struct kmem_cache *cachep, gfp_t flags)
1da177e4 3558{
48356303 3559 void *ret = slab_alloc(cachep, flags, _RET_IP_);
36555751 3560
505f5dcb 3561 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3562 trace_kmem_cache_alloc(_RET_IP_, ret,
8c138bc0 3563 cachep->object_size, cachep->size, flags);
36555751
EGM
3564
3565 return ret;
1da177e4
LT
3566}
3567EXPORT_SYMBOL(kmem_cache_alloc);
3568
7b0501dd
JDB
3569static __always_inline void
3570cache_alloc_debugcheck_after_bulk(struct kmem_cache *s, gfp_t flags,
3571 size_t size, void **p, unsigned long caller)
3572{
3573 size_t i;
3574
3575 for (i = 0; i < size; i++)
3576 p[i] = cache_alloc_debugcheck_after(s, flags, p[i], caller);
3577}
3578
865762a8 3579int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
2a777eac 3580 void **p)
484748f0 3581{
2a777eac
JDB
3582 size_t i;
3583
3584 s = slab_pre_alloc_hook(s, flags);
3585 if (!s)
3586 return 0;
3587
3588 cache_alloc_debugcheck_before(s, flags);
3589
3590 local_irq_disable();
3591 for (i = 0; i < size; i++) {
3592 void *objp = __do_cache_alloc(s, flags);
3593
2a777eac
JDB
3594 if (unlikely(!objp))
3595 goto error;
3596 p[i] = objp;
3597 }
3598 local_irq_enable();
3599
7b0501dd
JDB
3600 cache_alloc_debugcheck_after_bulk(s, flags, size, p, _RET_IP_);
3601
2a777eac
JDB
3602 /* Clear memory outside IRQ disabled section */
3603 if (unlikely(flags & __GFP_ZERO))
3604 for (i = 0; i < size; i++)
3605 memset(p[i], 0, s->object_size);
3606
3607 slab_post_alloc_hook(s, flags, size, p);
3608 /* FIXME: Trace call missing. Christoph would like a bulk variant */
3609 return size;
3610error:
3611 local_irq_enable();
7b0501dd 3612 cache_alloc_debugcheck_after_bulk(s, flags, i, p, _RET_IP_);
2a777eac
JDB
3613 slab_post_alloc_hook(s, flags, i, p);
3614 __kmem_cache_free_bulk(s, i, p);
3615 return 0;
484748f0
CL
3616}
3617EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3618
0f24f128 3619#ifdef CONFIG_TRACING
85beb586 3620void *
4052147c 3621kmem_cache_alloc_trace(struct kmem_cache *cachep, gfp_t flags, size_t size)
36555751 3622{
85beb586
SR
3623 void *ret;
3624
48356303 3625 ret = slab_alloc(cachep, flags, _RET_IP_);
85beb586 3626
505f5dcb 3627 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3628 trace_kmalloc(_RET_IP_, ret,
ff4fcd01 3629 size, cachep->size, flags);
85beb586 3630 return ret;
36555751 3631}
85beb586 3632EXPORT_SYMBOL(kmem_cache_alloc_trace);
36555751
EGM
3633#endif
3634
1da177e4 3635#ifdef CONFIG_NUMA
d0d04b78
ZL
3636/**
3637 * kmem_cache_alloc_node - Allocate an object on the specified node
3638 * @cachep: The cache to allocate from.
3639 * @flags: See kmalloc().
3640 * @nodeid: node number of the target node.
3641 *
3642 * Identical to kmem_cache_alloc but it will allocate memory on the given
3643 * node, which can improve the performance for cpu bound structures.
3644 *
3645 * Fallback to other node is possible if __GFP_THISNODE is not set.
3646 */
8b98c169
CH
3647void *kmem_cache_alloc_node(struct kmem_cache *cachep, gfp_t flags, int nodeid)
3648{
48356303 3649 void *ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
36555751 3650
505f5dcb 3651 kasan_slab_alloc(cachep, ret, flags);
ca2b84cb 3652 trace_kmem_cache_alloc_node(_RET_IP_, ret,
8c138bc0 3653 cachep->object_size, cachep->size,
ca2b84cb 3654 flags, nodeid);
36555751
EGM
3655
3656 return ret;
8b98c169 3657}
1da177e4
LT
3658EXPORT_SYMBOL(kmem_cache_alloc_node);
3659
0f24f128 3660#ifdef CONFIG_TRACING
4052147c 3661void *kmem_cache_alloc_node_trace(struct kmem_cache *cachep,
85beb586 3662 gfp_t flags,
4052147c
EG
3663 int nodeid,
3664 size_t size)
36555751 3665{
85beb586
SR
3666 void *ret;
3667
592f4145 3668 ret = slab_alloc_node(cachep, flags, nodeid, _RET_IP_);
505f5dcb
AP
3669
3670 kasan_kmalloc(cachep, ret, size, flags);
85beb586 3671 trace_kmalloc_node(_RET_IP_, ret,
ff4fcd01 3672 size, cachep->size,
85beb586
SR
3673 flags, nodeid);
3674 return ret;
36555751 3675}
85beb586 3676EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
36555751
EGM
3677#endif
3678
8b98c169 3679static __always_inline void *
7c0cb9c6 3680__do_kmalloc_node(size_t size, gfp_t flags, int node, unsigned long caller)
97e2bde4 3681{
343e0d7a 3682 struct kmem_cache *cachep;
7ed2f9e6 3683 void *ret;
97e2bde4 3684
2c59dd65 3685 cachep = kmalloc_slab(size, flags);
6cb8f913
CL
3686 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3687 return cachep;
7ed2f9e6 3688 ret = kmem_cache_alloc_node_trace(cachep, flags, node, size);
505f5dcb 3689 kasan_kmalloc(cachep, ret, size, flags);
7ed2f9e6
AP
3690
3691 return ret;
97e2bde4 3692}
8b98c169 3693
8b98c169
CH
3694void *__kmalloc_node(size_t size, gfp_t flags, int node)
3695{
7c0cb9c6 3696 return __do_kmalloc_node(size, flags, node, _RET_IP_);
8b98c169 3697}
dbe5e69d 3698EXPORT_SYMBOL(__kmalloc_node);
8b98c169
CH
3699
3700void *__kmalloc_node_track_caller(size_t size, gfp_t flags,
ce71e27c 3701 int node, unsigned long caller)
8b98c169 3702{
7c0cb9c6 3703 return __do_kmalloc_node(size, flags, node, caller);
8b98c169
CH
3704}
3705EXPORT_SYMBOL(__kmalloc_node_track_caller);
8b98c169 3706#endif /* CONFIG_NUMA */
1da177e4
LT
3707
3708/**
800590f5 3709 * __do_kmalloc - allocate memory
1da177e4 3710 * @size: how many bytes of memory are required.
800590f5 3711 * @flags: the type of memory to allocate (see kmalloc).
911851e6 3712 * @caller: function caller for debug tracking of the caller
1da177e4 3713 */
7fd6b141 3714static __always_inline void *__do_kmalloc(size_t size, gfp_t flags,
7c0cb9c6 3715 unsigned long caller)
1da177e4 3716{
343e0d7a 3717 struct kmem_cache *cachep;
36555751 3718 void *ret;
1da177e4 3719
2c59dd65 3720 cachep = kmalloc_slab(size, flags);
a5c96d8a
LT
3721 if (unlikely(ZERO_OR_NULL_PTR(cachep)))
3722 return cachep;
48356303 3723 ret = slab_alloc(cachep, flags, caller);
36555751 3724
505f5dcb 3725 kasan_kmalloc(cachep, ret, size, flags);
7c0cb9c6 3726 trace_kmalloc(caller, ret,
3b0efdfa 3727 size, cachep->size, flags);
36555751
EGM
3728
3729 return ret;
7fd6b141
PE
3730}
3731
7fd6b141
PE
3732void *__kmalloc(size_t size, gfp_t flags)
3733{
7c0cb9c6 3734 return __do_kmalloc(size, flags, _RET_IP_);
1da177e4
LT
3735}
3736EXPORT_SYMBOL(__kmalloc);
3737
ce71e27c 3738void *__kmalloc_track_caller(size_t size, gfp_t flags, unsigned long caller)
7fd6b141 3739{
7c0cb9c6 3740 return __do_kmalloc(size, flags, caller);
7fd6b141
PE
3741}
3742EXPORT_SYMBOL(__kmalloc_track_caller);
1d2c8eea 3743
1da177e4
LT
3744/**
3745 * kmem_cache_free - Deallocate an object
3746 * @cachep: The cache the allocation was from.
3747 * @objp: The previously allocated object.
3748 *
3749 * Free an object which was previously allocated from this
3750 * cache.
3751 */
343e0d7a 3752void kmem_cache_free(struct kmem_cache *cachep, void *objp)
1da177e4
LT
3753{
3754 unsigned long flags;
b9ce5ef4
GC
3755 cachep = cache_from_obj(cachep, objp);
3756 if (!cachep)
3757 return;
1da177e4
LT
3758
3759 local_irq_save(flags);
d97d476b 3760 debug_check_no_locks_freed(objp, cachep->object_size);
3ac7fe5a 3761 if (!(cachep->flags & SLAB_DEBUG_OBJECTS))
8c138bc0 3762 debug_check_no_obj_freed(objp, cachep->object_size);
7c0cb9c6 3763 __cache_free(cachep, objp, _RET_IP_);
1da177e4 3764 local_irq_restore(flags);
36555751 3765
ca2b84cb 3766 trace_kmem_cache_free(_RET_IP_, objp);
1da177e4
LT
3767}
3768EXPORT_SYMBOL(kmem_cache_free);
3769
e6cdb58d
JDB
3770void kmem_cache_free_bulk(struct kmem_cache *orig_s, size_t size, void **p)
3771{
3772 struct kmem_cache *s;
3773 size_t i;
3774
3775 local_irq_disable();
3776 for (i = 0; i < size; i++) {
3777 void *objp = p[i];
3778
ca257195
JDB
3779 if (!orig_s) /* called via kfree_bulk */
3780 s = virt_to_cache(objp);
3781 else
3782 s = cache_from_obj(orig_s, objp);
e6cdb58d
JDB
3783
3784 debug_check_no_locks_freed(objp, s->object_size);
3785 if (!(s->flags & SLAB_DEBUG_OBJECTS))
3786 debug_check_no_obj_freed(objp, s->object_size);
3787
3788 __cache_free(s, objp, _RET_IP_);
3789 }
3790 local_irq_enable();
3791
3792 /* FIXME: add tracing */
3793}
3794EXPORT_SYMBOL(kmem_cache_free_bulk);
3795
1da177e4
LT
3796/**
3797 * kfree - free previously allocated memory
3798 * @objp: pointer returned by kmalloc.
3799 *
80e93eff
PE
3800 * If @objp is NULL, no operation is performed.
3801 *
1da177e4
LT
3802 * Don't free memory not originally allocated by kmalloc()
3803 * or you will run into trouble.
3804 */
3805void kfree(const void *objp)
3806{
343e0d7a 3807 struct kmem_cache *c;
1da177e4
LT
3808 unsigned long flags;
3809
2121db74
PE
3810 trace_kfree(_RET_IP_, objp);
3811
6cb8f913 3812 if (unlikely(ZERO_OR_NULL_PTR(objp)))
1da177e4
LT
3813 return;
3814 local_irq_save(flags);
3815 kfree_debugcheck(objp);
6ed5eb22 3816 c = virt_to_cache(objp);
8c138bc0
CL
3817 debug_check_no_locks_freed(objp, c->object_size);
3818
3819 debug_check_no_obj_freed(objp, c->object_size);
7c0cb9c6 3820 __cache_free(c, (void *)objp, _RET_IP_);
1da177e4
LT
3821 local_irq_restore(flags);
3822}
3823EXPORT_SYMBOL(kfree);
3824
e498be7d 3825/*
ce8eb6c4 3826 * This initializes kmem_cache_node or resizes various caches for all nodes.
e498be7d 3827 */
c3d332b6 3828static int setup_kmem_cache_nodes(struct kmem_cache *cachep, gfp_t gfp)
e498be7d 3829{
c3d332b6 3830 int ret;
e498be7d 3831 int node;
ce8eb6c4 3832 struct kmem_cache_node *n;
e498be7d 3833
9c09a95c 3834 for_each_online_node(node) {
c3d332b6
JK
3835 ret = setup_kmem_cache_node(cachep, node, gfp, true);
3836 if (ret)
e498be7d
CL
3837 goto fail;
3838
e498be7d 3839 }
c3d332b6 3840
cafeb02e 3841 return 0;
0718dc2a 3842
a737b3e2 3843fail:
3b0efdfa 3844 if (!cachep->list.next) {
0718dc2a
CL
3845 /* Cache is not active yet. Roll back what we did */
3846 node--;
3847 while (node >= 0) {
18bf8541
CL
3848 n = get_node(cachep, node);
3849 if (n) {
ce8eb6c4
CL
3850 kfree(n->shared);
3851 free_alien_cache(n->alien);
3852 kfree(n);
6a67368c 3853 cachep->node[node] = NULL;
0718dc2a
CL
3854 }
3855 node--;
3856 }
3857 }
cafeb02e 3858 return -ENOMEM;
e498be7d
CL
3859}
3860
18004c5d 3861/* Always called with the slab_mutex held */
943a451a 3862static int __do_tune_cpucache(struct kmem_cache *cachep, int limit,
83b519e8 3863 int batchcount, int shared, gfp_t gfp)
1da177e4 3864{
bf0dea23
JK
3865 struct array_cache __percpu *cpu_cache, *prev;
3866 int cpu;
1da177e4 3867
bf0dea23
JK
3868 cpu_cache = alloc_kmem_cache_cpus(cachep, limit, batchcount);
3869 if (!cpu_cache)
d2e7b7d0
SS
3870 return -ENOMEM;
3871
bf0dea23
JK
3872 prev = cachep->cpu_cache;
3873 cachep->cpu_cache = cpu_cache;
a87c75fb
GT
3874 /*
3875 * Without a previous cpu_cache there's no need to synchronize remote
3876 * cpus, so skip the IPIs.
3877 */
3878 if (prev)
3879 kick_all_cpus_sync();
e498be7d 3880
1da177e4 3881 check_irq_on();
1da177e4
LT
3882 cachep->batchcount = batchcount;
3883 cachep->limit = limit;
e498be7d 3884 cachep->shared = shared;
1da177e4 3885
bf0dea23 3886 if (!prev)
c3d332b6 3887 goto setup_node;
bf0dea23
JK
3888
3889 for_each_online_cpu(cpu) {
97654dfa 3890 LIST_HEAD(list);
18bf8541
CL
3891 int node;
3892 struct kmem_cache_node *n;
bf0dea23 3893 struct array_cache *ac = per_cpu_ptr(prev, cpu);
18bf8541 3894
bf0dea23 3895 node = cpu_to_mem(cpu);
18bf8541
CL
3896 n = get_node(cachep, node);
3897 spin_lock_irq(&n->list_lock);
bf0dea23 3898 free_block(cachep, ac->entry, ac->avail, node, &list);
18bf8541 3899 spin_unlock_irq(&n->list_lock);
97654dfa 3900 slabs_destroy(cachep, &list);
1da177e4 3901 }
bf0dea23
JK
3902 free_percpu(prev);
3903
c3d332b6
JK
3904setup_node:
3905 return setup_kmem_cache_nodes(cachep, gfp);
1da177e4
LT
3906}
3907
943a451a
GC
3908static int do_tune_cpucache(struct kmem_cache *cachep, int limit,
3909 int batchcount, int shared, gfp_t gfp)
3910{
3911 int ret;
426589f5 3912 struct kmem_cache *c;
943a451a
GC
3913
3914 ret = __do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
3915
3916 if (slab_state < FULL)
3917 return ret;
3918
3919 if ((ret < 0) || !is_root_cache(cachep))
3920 return ret;
3921
426589f5
VD
3922 lockdep_assert_held(&slab_mutex);
3923 for_each_memcg_cache(c, cachep) {
3924 /* return value determined by the root cache only */
3925 __do_tune_cpucache(c, limit, batchcount, shared, gfp);
943a451a
GC
3926 }
3927
3928 return ret;
3929}
3930
18004c5d 3931/* Called with slab_mutex held always */
83b519e8 3932static int enable_cpucache(struct kmem_cache *cachep, gfp_t gfp)
1da177e4
LT
3933{
3934 int err;
943a451a
GC
3935 int limit = 0;
3936 int shared = 0;
3937 int batchcount = 0;
3938
7c00fce9 3939 err = cache_random_seq_create(cachep, cachep->num, gfp);
c7ce4f60
TG
3940 if (err)
3941 goto end;
3942
943a451a
GC
3943 if (!is_root_cache(cachep)) {
3944 struct kmem_cache *root = memcg_root_cache(cachep);
3945 limit = root->limit;
3946 shared = root->shared;
3947 batchcount = root->batchcount;
3948 }
1da177e4 3949
943a451a
GC
3950 if (limit && shared && batchcount)
3951 goto skip_setup;
a737b3e2
AM
3952 /*
3953 * The head array serves three purposes:
1da177e4
LT
3954 * - create a LIFO ordering, i.e. return objects that are cache-warm
3955 * - reduce the number of spinlock operations.
a737b3e2 3956 * - reduce the number of linked list operations on the slab and
1da177e4
LT
3957 * bufctl chains: array operations are cheaper.
3958 * The numbers are guessed, we should auto-tune as described by
3959 * Bonwick.
3960 */
3b0efdfa 3961 if (cachep->size > 131072)
1da177e4 3962 limit = 1;
3b0efdfa 3963 else if (cachep->size > PAGE_SIZE)
1da177e4 3964 limit = 8;
3b0efdfa 3965 else if (cachep->size > 1024)
1da177e4 3966 limit = 24;
3b0efdfa 3967 else if (cachep->size > 256)
1da177e4
LT
3968 limit = 54;
3969 else
3970 limit = 120;
3971
a737b3e2
AM
3972 /*
3973 * CPU bound tasks (e.g. network routing) can exhibit cpu bound
1da177e4
LT
3974 * allocation behaviour: Most allocs on one cpu, most free operations
3975 * on another cpu. For these cases, an efficient object passing between
3976 * cpus is necessary. This is provided by a shared array. The array
3977 * replaces Bonwick's magazine layer.
3978 * On uniprocessor, it's functionally equivalent (but less efficient)
3979 * to a larger limit. Thus disabled by default.
3980 */
3981 shared = 0;
3b0efdfa 3982 if (cachep->size <= PAGE_SIZE && num_possible_cpus() > 1)
1da177e4 3983 shared = 8;
1da177e4
LT
3984
3985#if DEBUG
a737b3e2
AM
3986 /*
3987 * With debugging enabled, large batchcount lead to excessively long
3988 * periods with disabled local interrupts. Limit the batchcount
1da177e4
LT
3989 */
3990 if (limit > 32)
3991 limit = 32;
3992#endif
943a451a
GC
3993 batchcount = (limit + 1) / 2;
3994skip_setup:
3995 err = do_tune_cpucache(cachep, limit, batchcount, shared, gfp);
c7ce4f60 3996end:
1da177e4 3997 if (err)
1170532b 3998 pr_err("enable_cpucache failed for %s, error %d\n",
b28a02de 3999 cachep->name, -err);
2ed3a4ef 4000 return err;
1da177e4
LT
4001}
4002
1b55253a 4003/*
ce8eb6c4
CL
4004 * Drain an array if it contains any elements taking the node lock only if
4005 * necessary. Note that the node listlock also protects the array_cache
b18e7e65 4006 * if drain_array() is used on the shared array.
1b55253a 4007 */
ce8eb6c4 4008static void drain_array(struct kmem_cache *cachep, struct kmem_cache_node *n,
18726ca8 4009 struct array_cache *ac, int node)
1da177e4 4010{
97654dfa 4011 LIST_HEAD(list);
18726ca8
JK
4012
4013 /* ac from n->shared can be freed if we don't hold the slab_mutex. */
4014 check_mutex_acquired();
1da177e4 4015
1b55253a
CL
4016 if (!ac || !ac->avail)
4017 return;
18726ca8
JK
4018
4019 if (ac->touched) {
1da177e4 4020 ac->touched = 0;
18726ca8 4021 return;
1da177e4 4022 }
18726ca8
JK
4023
4024 spin_lock_irq(&n->list_lock);
4025 drain_array_locked(cachep, ac, node, false, &list);
4026 spin_unlock_irq(&n->list_lock);
4027
4028 slabs_destroy(cachep, &list);
1da177e4
LT
4029}
4030
4031/**
4032 * cache_reap - Reclaim memory from caches.
05fb6bf0 4033 * @w: work descriptor
1da177e4
LT
4034 *
4035 * Called from workqueue/eventd every few seconds.
4036 * Purpose:
4037 * - clear the per-cpu caches for this CPU.
4038 * - return freeable pages to the main free memory pool.
4039 *
a737b3e2
AM
4040 * If we cannot acquire the cache chain mutex then just give up - we'll try
4041 * again on the next iteration.
1da177e4 4042 */
7c5cae36 4043static void cache_reap(struct work_struct *w)
1da177e4 4044{
7a7c381d 4045 struct kmem_cache *searchp;
ce8eb6c4 4046 struct kmem_cache_node *n;
7d6e6d09 4047 int node = numa_mem_id();
bf6aede7 4048 struct delayed_work *work = to_delayed_work(w);
1da177e4 4049
18004c5d 4050 if (!mutex_trylock(&slab_mutex))
1da177e4 4051 /* Give up. Setup the next iteration. */
7c5cae36 4052 goto out;
1da177e4 4053
18004c5d 4054 list_for_each_entry(searchp, &slab_caches, list) {
1da177e4
LT
4055 check_irq_on();
4056
35386e3b 4057 /*
ce8eb6c4 4058 * We only take the node lock if absolutely necessary and we
35386e3b
CL
4059 * have established with reasonable certainty that
4060 * we can do some work if the lock was obtained.
4061 */
18bf8541 4062 n = get_node(searchp, node);
35386e3b 4063
ce8eb6c4 4064 reap_alien(searchp, n);
1da177e4 4065
18726ca8 4066 drain_array(searchp, n, cpu_cache_get(searchp), node);
1da177e4 4067
35386e3b
CL
4068 /*
4069 * These are racy checks but it does not matter
4070 * if we skip one check or scan twice.
4071 */
ce8eb6c4 4072 if (time_after(n->next_reap, jiffies))
35386e3b 4073 goto next;
1da177e4 4074
5f0985bb 4075 n->next_reap = jiffies + REAPTIMEOUT_NODE;
1da177e4 4076
18726ca8 4077 drain_array(searchp, n, n->shared, node);
1da177e4 4078
ce8eb6c4
CL
4079 if (n->free_touched)
4080 n->free_touched = 0;
ed11d9eb
CL
4081 else {
4082 int freed;
1da177e4 4083
ce8eb6c4 4084 freed = drain_freelist(searchp, n, (n->free_limit +
ed11d9eb
CL
4085 5 * searchp->num - 1) / (5 * searchp->num));
4086 STATS_ADD_REAPED(searchp, freed);
4087 }
35386e3b 4088next:
1da177e4
LT
4089 cond_resched();
4090 }
4091 check_irq_on();
18004c5d 4092 mutex_unlock(&slab_mutex);
8fce4d8e 4093 next_reap_node();
7c5cae36 4094out:
a737b3e2 4095 /* Set up the next iteration */
5f0985bb 4096 schedule_delayed_work(work, round_jiffies_relative(REAPTIMEOUT_AC));
1da177e4
LT
4097}
4098
158a9624 4099#ifdef CONFIG_SLABINFO
0d7561c6 4100void get_slabinfo(struct kmem_cache *cachep, struct slabinfo *sinfo)
1da177e4 4101{
f728b0a5 4102 unsigned long active_objs, num_objs, active_slabs;
bf00bd34
DR
4103 unsigned long total_slabs = 0, free_objs = 0, shared_avail = 0;
4104 unsigned long free_slabs = 0;
e498be7d 4105 int node;
ce8eb6c4 4106 struct kmem_cache_node *n;
1da177e4 4107
18bf8541 4108 for_each_kmem_cache_node(cachep, node, n) {
ca3b9b91 4109 check_irq_on();
ce8eb6c4 4110 spin_lock_irq(&n->list_lock);
e498be7d 4111
bf00bd34
DR
4112 total_slabs += n->total_slabs;
4113 free_slabs += n->free_slabs;
f728b0a5 4114 free_objs += n->free_objects;
07a63c41 4115
ce8eb6c4
CL
4116 if (n->shared)
4117 shared_avail += n->shared->avail;
e498be7d 4118
ce8eb6c4 4119 spin_unlock_irq(&n->list_lock);
1da177e4 4120 }
bf00bd34
DR
4121 num_objs = total_slabs * cachep->num;
4122 active_slabs = total_slabs - free_slabs;
f728b0a5 4123 active_objs = num_objs - free_objs;
1da177e4 4124
0d7561c6
GC
4125 sinfo->active_objs = active_objs;
4126 sinfo->num_objs = num_objs;
4127 sinfo->active_slabs = active_slabs;
bf00bd34 4128 sinfo->num_slabs = total_slabs;
0d7561c6
GC
4129 sinfo->shared_avail = shared_avail;
4130 sinfo->limit = cachep->limit;
4131 sinfo->batchcount = cachep->batchcount;
4132 sinfo->shared = cachep->shared;
4133 sinfo->objects_per_slab = cachep->num;
4134 sinfo->cache_order = cachep->gfporder;
4135}
4136
4137void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *cachep)
4138{
1da177e4 4139#if STATS
ce8eb6c4 4140 { /* node stats */
1da177e4
LT
4141 unsigned long high = cachep->high_mark;
4142 unsigned long allocs = cachep->num_allocations;
4143 unsigned long grown = cachep->grown;
4144 unsigned long reaped = cachep->reaped;
4145 unsigned long errors = cachep->errors;
4146 unsigned long max_freeable = cachep->max_freeable;
1da177e4 4147 unsigned long node_allocs = cachep->node_allocs;
e498be7d 4148 unsigned long node_frees = cachep->node_frees;
fb7faf33 4149 unsigned long overflows = cachep->node_overflow;
1da177e4 4150
756a025f 4151 seq_printf(m, " : globalstat %7lu %6lu %5lu %4lu %4lu %4lu %4lu %4lu %4lu",
e92dd4fd
JP
4152 allocs, high, grown,
4153 reaped, errors, max_freeable, node_allocs,
4154 node_frees, overflows);
1da177e4
LT
4155 }
4156 /* cpu stats */
4157 {
4158 unsigned long allochit = atomic_read(&cachep->allochit);
4159 unsigned long allocmiss = atomic_read(&cachep->allocmiss);
4160 unsigned long freehit = atomic_read(&cachep->freehit);
4161 unsigned long freemiss = atomic_read(&cachep->freemiss);
4162
4163 seq_printf(m, " : cpustat %6lu %6lu %6lu %6lu",
b28a02de 4164 allochit, allocmiss, freehit, freemiss);
1da177e4
LT
4165 }
4166#endif
1da177e4
LT
4167}
4168
1da177e4
LT
4169#define MAX_SLABINFO_WRITE 128
4170/**
4171 * slabinfo_write - Tuning for the slab allocator
4172 * @file: unused
4173 * @buffer: user buffer
4174 * @count: data length
4175 * @ppos: unused
4176 */
b7454ad3 4177ssize_t slabinfo_write(struct file *file, const char __user *buffer,
b28a02de 4178 size_t count, loff_t *ppos)
1da177e4 4179{
b28a02de 4180 char kbuf[MAX_SLABINFO_WRITE + 1], *tmp;
1da177e4 4181 int limit, batchcount, shared, res;
7a7c381d 4182 struct kmem_cache *cachep;
b28a02de 4183
1da177e4
LT
4184 if (count > MAX_SLABINFO_WRITE)
4185 return -EINVAL;
4186 if (copy_from_user(&kbuf, buffer, count))
4187 return -EFAULT;
b28a02de 4188 kbuf[MAX_SLABINFO_WRITE] = '\0';
1da177e4
LT
4189
4190 tmp = strchr(kbuf, ' ');
4191 if (!tmp)
4192 return -EINVAL;
4193 *tmp = '\0';
4194 tmp++;
4195 if (sscanf(tmp, " %d %d %d", &limit, &batchcount, &shared) != 3)
4196 return -EINVAL;
4197
4198 /* Find the cache in the chain of caches. */
18004c5d 4199 mutex_lock(&slab_mutex);
1da177e4 4200 res = -EINVAL;
18004c5d 4201 list_for_each_entry(cachep, &slab_caches, list) {
1da177e4 4202 if (!strcmp(cachep->name, kbuf)) {
a737b3e2
AM
4203 if (limit < 1 || batchcount < 1 ||
4204 batchcount > limit || shared < 0) {
e498be7d 4205 res = 0;
1da177e4 4206 } else {
e498be7d 4207 res = do_tune_cpucache(cachep, limit,
83b519e8
PE
4208 batchcount, shared,
4209 GFP_KERNEL);
1da177e4
LT
4210 }
4211 break;
4212 }
4213 }
18004c5d 4214 mutex_unlock(&slab_mutex);
1da177e4
LT
4215 if (res >= 0)
4216 res = count;
4217 return res;
4218}
871751e2
AV
4219
4220#ifdef CONFIG_DEBUG_SLAB_LEAK
4221
871751e2
AV
4222static inline int add_caller(unsigned long *n, unsigned long v)
4223{
4224 unsigned long *p;
4225 int l;
4226 if (!v)
4227 return 1;
4228 l = n[1];
4229 p = n + 2;
4230 while (l) {
4231 int i = l/2;
4232 unsigned long *q = p + 2 * i;
4233 if (*q == v) {
4234 q[1]++;
4235 return 1;
4236 }
4237 if (*q > v) {
4238 l = i;
4239 } else {
4240 p = q + 2;
4241 l -= i + 1;
4242 }
4243 }
4244 if (++n[1] == n[0])
4245 return 0;
4246 memmove(p + 2, p, n[1] * 2 * sizeof(unsigned long) - ((void *)p - (void *)n));
4247 p[0] = v;
4248 p[1] = 1;
4249 return 1;
4250}
4251
8456a648
JK
4252static void handle_slab(unsigned long *n, struct kmem_cache *c,
4253 struct page *page)
871751e2
AV
4254{
4255 void *p;
d31676df
JK
4256 int i, j;
4257 unsigned long v;
b1cb0982 4258
871751e2
AV
4259 if (n[0] == n[1])
4260 return;
8456a648 4261 for (i = 0, p = page->s_mem; i < c->num; i++, p += c->size) {
d31676df
JK
4262 bool active = true;
4263
4264 for (j = page->active; j < c->num; j++) {
4265 if (get_free_obj(page, j) == i) {
4266 active = false;
4267 break;
4268 }
4269 }
4270
4271 if (!active)
871751e2 4272 continue;
b1cb0982 4273
d31676df
JK
4274 /*
4275 * probe_kernel_read() is used for DEBUG_PAGEALLOC. page table
4276 * mapping is established when actual object allocation and
4277 * we could mistakenly access the unmapped object in the cpu
4278 * cache.
4279 */
4280 if (probe_kernel_read(&v, dbg_userword(c, p), sizeof(v)))
4281 continue;
4282
4283 if (!add_caller(n, v))
871751e2
AV
4284 return;
4285 }
4286}
4287
4288static void show_symbol(struct seq_file *m, unsigned long address)
4289{
4290#ifdef CONFIG_KALLSYMS
871751e2 4291 unsigned long offset, size;
9281acea 4292 char modname[MODULE_NAME_LEN], name[KSYM_NAME_LEN];
871751e2 4293
a5c43dae 4294 if (lookup_symbol_attrs(address, &size, &offset, modname, name) == 0) {
871751e2 4295 seq_printf(m, "%s+%#lx/%#lx", name, offset, size);
a5c43dae 4296 if (modname[0])
871751e2
AV
4297 seq_printf(m, " [%s]", modname);
4298 return;
4299 }
4300#endif
4301 seq_printf(m, "%p", (void *)address);
4302}
4303
4304static int leaks_show(struct seq_file *m, void *p)
4305{
0672aa7c 4306 struct kmem_cache *cachep = list_entry(p, struct kmem_cache, list);
8456a648 4307 struct page *page;
ce8eb6c4 4308 struct kmem_cache_node *n;
871751e2 4309 const char *name;
db845067 4310 unsigned long *x = m->private;
871751e2
AV
4311 int node;
4312 int i;
4313
4314 if (!(cachep->flags & SLAB_STORE_USER))
4315 return 0;
4316 if (!(cachep->flags & SLAB_RED_ZONE))
4317 return 0;
4318
d31676df
JK
4319 /*
4320 * Set store_user_clean and start to grab stored user information
4321 * for all objects on this cache. If some alloc/free requests comes
4322 * during the processing, information would be wrong so restart
4323 * whole processing.
4324 */
4325 do {
4326 set_store_user_clean(cachep);
4327 drain_cpu_caches(cachep);
4328
4329 x[1] = 0;
871751e2 4330
d31676df 4331 for_each_kmem_cache_node(cachep, node, n) {
871751e2 4332
d31676df
JK
4333 check_irq_on();
4334 spin_lock_irq(&n->list_lock);
871751e2 4335
d31676df
JK
4336 list_for_each_entry(page, &n->slabs_full, lru)
4337 handle_slab(x, cachep, page);
4338 list_for_each_entry(page, &n->slabs_partial, lru)
4339 handle_slab(x, cachep, page);
4340 spin_unlock_irq(&n->list_lock);
4341 }
4342 } while (!is_store_user_clean(cachep));
871751e2 4343
871751e2 4344 name = cachep->name;
db845067 4345 if (x[0] == x[1]) {
871751e2 4346 /* Increase the buffer size */
18004c5d 4347 mutex_unlock(&slab_mutex);
db845067 4348 m->private = kzalloc(x[0] * 4 * sizeof(unsigned long), GFP_KERNEL);
871751e2
AV
4349 if (!m->private) {
4350 /* Too bad, we are really out */
db845067 4351 m->private = x;
18004c5d 4352 mutex_lock(&slab_mutex);
871751e2
AV
4353 return -ENOMEM;
4354 }
db845067
CL
4355 *(unsigned long *)m->private = x[0] * 2;
4356 kfree(x);
18004c5d 4357 mutex_lock(&slab_mutex);
871751e2
AV
4358 /* Now make sure this entry will be retried */
4359 m->count = m->size;
4360 return 0;
4361 }
db845067
CL
4362 for (i = 0; i < x[1]; i++) {
4363 seq_printf(m, "%s: %lu ", name, x[2*i+3]);
4364 show_symbol(m, x[2*i+2]);
871751e2
AV
4365 seq_putc(m, '\n');
4366 }
d2e7b7d0 4367
871751e2
AV
4368 return 0;
4369}
4370
a0ec95a8 4371static const struct seq_operations slabstats_op = {
1df3b26f 4372 .start = slab_start,
276a2439
WL
4373 .next = slab_next,
4374 .stop = slab_stop,
871751e2
AV
4375 .show = leaks_show,
4376};
a0ec95a8
AD
4377
4378static int slabstats_open(struct inode *inode, struct file *file)
4379{
b208ce32
RJ
4380 unsigned long *n;
4381
4382 n = __seq_open_private(file, &slabstats_op, PAGE_SIZE);
4383 if (!n)
4384 return -ENOMEM;
4385
4386 *n = PAGE_SIZE / (2 * sizeof(unsigned long));
4387
4388 return 0;
a0ec95a8
AD
4389}
4390
4391static const struct file_operations proc_slabstats_operations = {
4392 .open = slabstats_open,
4393 .read = seq_read,
4394 .llseek = seq_lseek,
4395 .release = seq_release_private,
4396};
4397#endif
4398
4399static int __init slab_proc_init(void)
4400{
4401#ifdef CONFIG_DEBUG_SLAB_LEAK
4402 proc_create("slab_allocators", 0, NULL, &proc_slabstats_operations);
871751e2 4403#endif
a0ec95a8
AD
4404 return 0;
4405}
4406module_init(slab_proc_init);
1da177e4
LT
4407#endif
4408
04385fc5
KC
4409#ifdef CONFIG_HARDENED_USERCOPY
4410/*
4411 * Rejects objects that are incorrectly sized.
4412 *
4413 * Returns NULL if check passes, otherwise const char * to name of cache
4414 * to indicate an error.
4415 */
4416const char *__check_heap_object(const void *ptr, unsigned long n,
4417 struct page *page)
4418{
4419 struct kmem_cache *cachep;
4420 unsigned int objnr;
4421 unsigned long offset;
4422
4423 /* Find and validate object. */
4424 cachep = page->slab_cache;
4425 objnr = obj_to_index(cachep, page, (void *)ptr);
4426 BUG_ON(objnr >= cachep->num);
4427
4428 /* Find offset within object. */
4429 offset = ptr - index_to_obj(cachep, page, objnr) - obj_offset(cachep);
4430
4431 /* Allow address range falling entirely within object size. */
4432 if (offset <= cachep->object_size && n <= cachep->object_size - offset)
4433 return NULL;
4434
4435 return cachep->name;
4436}
4437#endif /* CONFIG_HARDENED_USERCOPY */
4438
00e145b6
MS
4439/**
4440 * ksize - get the actual amount of memory allocated for a given object
4441 * @objp: Pointer to the object
4442 *
4443 * kmalloc may internally round up allocations and return more memory
4444 * than requested. ksize() can be used to determine the actual amount of
4445 * memory allocated. The caller may use this additional memory, even though
4446 * a smaller amount of memory was initially specified with the kmalloc call.
4447 * The caller must guarantee that objp points to a valid object previously
4448 * allocated with either kmalloc() or kmem_cache_alloc(). The object
4449 * must not be freed during the duration of the call.
4450 */
fd76bab2 4451size_t ksize(const void *objp)
1da177e4 4452{
7ed2f9e6
AP
4453 size_t size;
4454
ef8b4520
CL
4455 BUG_ON(!objp);
4456 if (unlikely(objp == ZERO_SIZE_PTR))
00e145b6 4457 return 0;
1da177e4 4458
7ed2f9e6
AP
4459 size = virt_to_cache(objp)->object_size;
4460 /* We assume that ksize callers could use the whole allocated area,
4461 * so we need to unpoison this area.
4462 */
4ebb31a4 4463 kasan_unpoison_shadow(objp, size);
7ed2f9e6
AP
4464
4465 return size;
1da177e4 4466}
b1aabecd 4467EXPORT_SYMBOL(ksize);