]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slab_common.c
Doc/slub: document slabinfo-gnuplot.sh script
[mirror_ubuntu-artful-kernel.git] / mm / slab_common.c
CommitLineData
039363f3
CL
1/*
2 * Slab allocator functions that are independent of the allocator strategy
3 *
4 * (C) 2012 Christoph Lameter <cl@linux.com>
5 */
6#include <linux/slab.h>
7
8#include <linux/mm.h>
9#include <linux/poison.h>
10#include <linux/interrupt.h>
11#include <linux/memory.h>
12#include <linux/compiler.h>
13#include <linux/module.h>
20cea968
CL
14#include <linux/cpu.h>
15#include <linux/uaccess.h>
b7454ad3
GC
16#include <linux/seq_file.h>
17#include <linux/proc_fs.h>
039363f3
CL
18#include <asm/cacheflush.h>
19#include <asm/tlbflush.h>
20#include <asm/page.h>
2633d7a0 21#include <linux/memcontrol.h>
928cec9c
AR
22
23#define CREATE_TRACE_POINTS
f1b6eb6e 24#include <trace/events/kmem.h>
039363f3 25
97d06609
CL
26#include "slab.h"
27
28enum slab_state slab_state;
18004c5d
CL
29LIST_HEAD(slab_caches);
30DEFINE_MUTEX(slab_mutex);
9b030cb8 31struct kmem_cache *kmem_cache;
97d06609 32
423c929c
JK
33/*
34 * Set of flags that will prevent slab merging
35 */
36#define SLAB_NEVER_MERGE (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER | \
37 SLAB_TRACE | SLAB_DESTROY_BY_RCU | SLAB_NOLEAKTRACE | \
38 SLAB_FAILSLAB)
39
3e810ae2 40#define SLAB_MERGE_SAME (SLAB_RECLAIM_ACCOUNT | SLAB_CACHE_DMA | SLAB_NOTRACK)
423c929c
JK
41
42/*
43 * Merge control. If this is set then no merging of slab caches will occur.
44 * (Could be removed. This was introduced to pacify the merge skeptics.)
45 */
46static int slab_nomerge;
47
48static int __init setup_slab_nomerge(char *str)
49{
50 slab_nomerge = 1;
51 return 1;
52}
53
54#ifdef CONFIG_SLUB
55__setup_param("slub_nomerge", slub_nomerge, setup_slab_nomerge, 0);
56#endif
57
58__setup("slab_nomerge", setup_slab_nomerge);
59
07f361b2
JK
60/*
61 * Determine the size of a slab object
62 */
63unsigned int kmem_cache_size(struct kmem_cache *s)
64{
65 return s->object_size;
66}
67EXPORT_SYMBOL(kmem_cache_size);
68
77be4b13 69#ifdef CONFIG_DEBUG_VM
794b1248 70static int kmem_cache_sanity_check(const char *name, size_t size)
039363f3
CL
71{
72 struct kmem_cache *s = NULL;
73
039363f3
CL
74 if (!name || in_interrupt() || size < sizeof(void *) ||
75 size > KMALLOC_MAX_SIZE) {
77be4b13
SK
76 pr_err("kmem_cache_create(%s) integrity check failed\n", name);
77 return -EINVAL;
039363f3 78 }
b920536a 79
20cea968
CL
80 list_for_each_entry(s, &slab_caches, list) {
81 char tmp;
82 int res;
83
84 /*
85 * This happens when the module gets unloaded and doesn't
86 * destroy its slab cache and no-one else reuses the vmalloc
87 * area of the module. Print a warning.
88 */
89 res = probe_kernel_address(s->name, tmp);
90 if (res) {
77be4b13 91 pr_err("Slab cache with size %d has lost its name\n",
20cea968
CL
92 s->object_size);
93 continue;
94 }
20cea968
CL
95 }
96
97 WARN_ON(strchr(name, ' ')); /* It confuses parsers */
77be4b13
SK
98 return 0;
99}
100#else
794b1248 101static inline int kmem_cache_sanity_check(const char *name, size_t size)
77be4b13
SK
102{
103 return 0;
104}
20cea968
CL
105#endif
106
484748f0
CL
107void __kmem_cache_free_bulk(struct kmem_cache *s, size_t nr, void **p)
108{
109 size_t i;
110
111 for (i = 0; i < nr; i++)
112 kmem_cache_free(s, p[i]);
113}
114
115bool __kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t nr,
116 void **p)
117{
118 size_t i;
119
120 for (i = 0; i < nr; i++) {
121 void *x = p[i] = kmem_cache_alloc(s, flags);
122 if (!x) {
123 __kmem_cache_free_bulk(s, i, p);
124 return false;
125 }
126 }
127 return true;
128}
129
55007d84 130#ifdef CONFIG_MEMCG_KMEM
f7ce3190 131void slab_init_memcg_params(struct kmem_cache *s)
33a690c4 132{
f7ce3190 133 s->memcg_params.is_root_cache = true;
426589f5 134 INIT_LIST_HEAD(&s->memcg_params.list);
f7ce3190
VD
135 RCU_INIT_POINTER(s->memcg_params.memcg_caches, NULL);
136}
137
138static int init_memcg_params(struct kmem_cache *s,
139 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
140{
141 struct memcg_cache_array *arr;
33a690c4 142
f7ce3190
VD
143 if (memcg) {
144 s->memcg_params.is_root_cache = false;
145 s->memcg_params.memcg = memcg;
146 s->memcg_params.root_cache = root_cache;
33a690c4 147 return 0;
f7ce3190 148 }
33a690c4 149
f7ce3190 150 slab_init_memcg_params(s);
33a690c4 151
f7ce3190
VD
152 if (!memcg_nr_cache_ids)
153 return 0;
33a690c4 154
f7ce3190
VD
155 arr = kzalloc(sizeof(struct memcg_cache_array) +
156 memcg_nr_cache_ids * sizeof(void *),
157 GFP_KERNEL);
158 if (!arr)
159 return -ENOMEM;
33a690c4 160
f7ce3190 161 RCU_INIT_POINTER(s->memcg_params.memcg_caches, arr);
33a690c4
VD
162 return 0;
163}
164
f7ce3190 165static void destroy_memcg_params(struct kmem_cache *s)
33a690c4 166{
f7ce3190
VD
167 if (is_root_cache(s))
168 kfree(rcu_access_pointer(s->memcg_params.memcg_caches));
33a690c4
VD
169}
170
f7ce3190 171static int update_memcg_params(struct kmem_cache *s, int new_array_size)
6f817f4c 172{
f7ce3190 173 struct memcg_cache_array *old, *new;
6f817f4c 174
f7ce3190
VD
175 if (!is_root_cache(s))
176 return 0;
6f817f4c 177
f7ce3190
VD
178 new = kzalloc(sizeof(struct memcg_cache_array) +
179 new_array_size * sizeof(void *), GFP_KERNEL);
180 if (!new)
6f817f4c
VD
181 return -ENOMEM;
182
f7ce3190
VD
183 old = rcu_dereference_protected(s->memcg_params.memcg_caches,
184 lockdep_is_held(&slab_mutex));
185 if (old)
186 memcpy(new->entries, old->entries,
187 memcg_nr_cache_ids * sizeof(void *));
6f817f4c 188
f7ce3190
VD
189 rcu_assign_pointer(s->memcg_params.memcg_caches, new);
190 if (old)
191 kfree_rcu(old, rcu);
6f817f4c
VD
192 return 0;
193}
194
55007d84
GC
195int memcg_update_all_caches(int num_memcgs)
196{
197 struct kmem_cache *s;
198 int ret = 0;
55007d84 199
05257a1a 200 mutex_lock(&slab_mutex);
55007d84 201 list_for_each_entry(s, &slab_caches, list) {
f7ce3190 202 ret = update_memcg_params(s, num_memcgs);
55007d84 203 /*
55007d84
GC
204 * Instead of freeing the memory, we'll just leave the caches
205 * up to this point in an updated state.
206 */
207 if (ret)
05257a1a 208 break;
55007d84 209 }
55007d84
GC
210 mutex_unlock(&slab_mutex);
211 return ret;
212}
33a690c4 213#else
f7ce3190
VD
214static inline int init_memcg_params(struct kmem_cache *s,
215 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
33a690c4
VD
216{
217 return 0;
218}
219
f7ce3190 220static inline void destroy_memcg_params(struct kmem_cache *s)
33a690c4
VD
221{
222}
223#endif /* CONFIG_MEMCG_KMEM */
55007d84 224
423c929c
JK
225/*
226 * Find a mergeable slab cache
227 */
228int slab_unmergeable(struct kmem_cache *s)
229{
230 if (slab_nomerge || (s->flags & SLAB_NEVER_MERGE))
231 return 1;
232
233 if (!is_root_cache(s))
234 return 1;
235
236 if (s->ctor)
237 return 1;
238
239 /*
240 * We may have set a slab to be unmergeable during bootstrap.
241 */
242 if (s->refcount < 0)
243 return 1;
244
245 return 0;
246}
247
248struct kmem_cache *find_mergeable(size_t size, size_t align,
249 unsigned long flags, const char *name, void (*ctor)(void *))
250{
251 struct kmem_cache *s;
252
253 if (slab_nomerge || (flags & SLAB_NEVER_MERGE))
254 return NULL;
255
256 if (ctor)
257 return NULL;
258
259 size = ALIGN(size, sizeof(void *));
260 align = calculate_alignment(flags, align, size);
261 size = ALIGN(size, align);
262 flags = kmem_cache_flags(size, flags, name, NULL);
263
54362057 264 list_for_each_entry_reverse(s, &slab_caches, list) {
423c929c
JK
265 if (slab_unmergeable(s))
266 continue;
267
268 if (size > s->size)
269 continue;
270
271 if ((flags & SLAB_MERGE_SAME) != (s->flags & SLAB_MERGE_SAME))
272 continue;
273 /*
274 * Check if alignment is compatible.
275 * Courtesy of Adrian Drzewiecki
276 */
277 if ((s->size & ~(align - 1)) != s->size)
278 continue;
279
280 if (s->size - size >= sizeof(void *))
281 continue;
282
95069ac8
JK
283 if (IS_ENABLED(CONFIG_SLAB) && align &&
284 (align > s->align || s->align % align))
285 continue;
286
423c929c
JK
287 return s;
288 }
289 return NULL;
290}
291
45906855
CL
292/*
293 * Figure out what the alignment of the objects will be given a set of
294 * flags, a user specified alignment and the size of the objects.
295 */
296unsigned long calculate_alignment(unsigned long flags,
297 unsigned long align, unsigned long size)
298{
299 /*
300 * If the user wants hardware cache aligned objects then follow that
301 * suggestion if the object is sufficiently large.
302 *
303 * The hardware cache alignment cannot override the specified
304 * alignment though. If that is greater then use it.
305 */
306 if (flags & SLAB_HWCACHE_ALIGN) {
307 unsigned long ralign = cache_line_size();
308 while (size <= ralign / 2)
309 ralign /= 2;
310 align = max(align, ralign);
311 }
312
313 if (align < ARCH_SLAB_MINALIGN)
314 align = ARCH_SLAB_MINALIGN;
315
316 return ALIGN(align, sizeof(void *));
317}
318
c9a77a79
VD
319static struct kmem_cache *create_cache(const char *name,
320 size_t object_size, size_t size, size_t align,
321 unsigned long flags, void (*ctor)(void *),
322 struct mem_cgroup *memcg, struct kmem_cache *root_cache)
794b1248
VD
323{
324 struct kmem_cache *s;
325 int err;
326
327 err = -ENOMEM;
328 s = kmem_cache_zalloc(kmem_cache, GFP_KERNEL);
329 if (!s)
330 goto out;
331
332 s->name = name;
333 s->object_size = object_size;
334 s->size = size;
335 s->align = align;
336 s->ctor = ctor;
337
f7ce3190 338 err = init_memcg_params(s, memcg, root_cache);
794b1248
VD
339 if (err)
340 goto out_free_cache;
341
342 err = __kmem_cache_create(s, flags);
343 if (err)
344 goto out_free_cache;
345
346 s->refcount = 1;
347 list_add(&s->list, &slab_caches);
794b1248
VD
348out:
349 if (err)
350 return ERR_PTR(err);
351 return s;
352
353out_free_cache:
f7ce3190 354 destroy_memcg_params(s);
7c4da061 355 kmem_cache_free(kmem_cache, s);
794b1248
VD
356 goto out;
357}
45906855 358
77be4b13
SK
359/*
360 * kmem_cache_create - Create a cache.
361 * @name: A string which is used in /proc/slabinfo to identify this cache.
362 * @size: The size of objects to be created in this cache.
363 * @align: The required alignment for the objects.
364 * @flags: SLAB flags
365 * @ctor: A constructor for the objects.
366 *
367 * Returns a ptr to the cache on success, NULL on failure.
368 * Cannot be called within a interrupt, but can be interrupted.
369 * The @ctor is run when new pages are allocated by the cache.
370 *
371 * The flags are
372 *
373 * %SLAB_POISON - Poison the slab with a known test pattern (a5a5a5a5)
374 * to catch references to uninitialised memory.
375 *
376 * %SLAB_RED_ZONE - Insert `Red' zones around the allocated memory to check
377 * for buffer overruns.
378 *
379 * %SLAB_HWCACHE_ALIGN - Align the objects in this cache to a hardware
380 * cacheline. This can be beneficial if you're counting cycles as closely
381 * as davem.
382 */
2633d7a0 383struct kmem_cache *
794b1248
VD
384kmem_cache_create(const char *name, size_t size, size_t align,
385 unsigned long flags, void (*ctor)(void *))
77be4b13 386{
794b1248 387 struct kmem_cache *s;
3dec16ea 388 const char *cache_name;
3965fc36 389 int err;
039363f3 390
77be4b13 391 get_online_cpus();
03afc0e2 392 get_online_mems();
05257a1a 393 memcg_get_cache_ids();
03afc0e2 394
77be4b13 395 mutex_lock(&slab_mutex);
686d550d 396
794b1248 397 err = kmem_cache_sanity_check(name, size);
3aa24f51
AM
398 if (err) {
399 s = NULL; /* suppress uninit var warning */
3965fc36 400 goto out_unlock;
3aa24f51 401 }
686d550d 402
d8843922
GC
403 /*
404 * Some allocators will constraint the set of valid flags to a subset
405 * of all flags. We expect them to define CACHE_CREATE_MASK in this
406 * case, and we'll just provide them with a sanitized version of the
407 * passed flags.
408 */
409 flags &= CACHE_CREATE_MASK;
686d550d 410
794b1248
VD
411 s = __kmem_cache_alias(name, size, align, flags, ctor);
412 if (s)
3965fc36 413 goto out_unlock;
2633d7a0 414
3dec16ea 415 cache_name = kstrdup_const(name, GFP_KERNEL);
794b1248
VD
416 if (!cache_name) {
417 err = -ENOMEM;
418 goto out_unlock;
419 }
7c9adf5a 420
c9a77a79
VD
421 s = create_cache(cache_name, size, size,
422 calculate_alignment(flags, align, size),
423 flags, ctor, NULL, NULL);
794b1248
VD
424 if (IS_ERR(s)) {
425 err = PTR_ERR(s);
3dec16ea 426 kfree_const(cache_name);
794b1248 427 }
3965fc36
VD
428
429out_unlock:
20cea968 430 mutex_unlock(&slab_mutex);
03afc0e2 431
05257a1a 432 memcg_put_cache_ids();
03afc0e2 433 put_online_mems();
20cea968
CL
434 put_online_cpus();
435
ba3253c7 436 if (err) {
686d550d
CL
437 if (flags & SLAB_PANIC)
438 panic("kmem_cache_create: Failed to create slab '%s'. Error %d\n",
439 name, err);
440 else {
441 printk(KERN_WARNING "kmem_cache_create(%s) failed with error %d",
442 name, err);
443 dump_stack();
444 }
686d550d
CL
445 return NULL;
446 }
039363f3
CL
447 return s;
448}
794b1248 449EXPORT_SYMBOL(kmem_cache_create);
2633d7a0 450
c9a77a79 451static int shutdown_cache(struct kmem_cache *s,
d5b3cf71
VD
452 struct list_head *release, bool *need_rcu_barrier)
453{
cd918c55 454 if (__kmem_cache_shutdown(s) != 0)
d5b3cf71 455 return -EBUSY;
d5b3cf71
VD
456
457 if (s->flags & SLAB_DESTROY_BY_RCU)
458 *need_rcu_barrier = true;
459
d5b3cf71
VD
460 list_move(&s->list, release);
461 return 0;
462}
463
c9a77a79 464static void release_caches(struct list_head *release, bool need_rcu_barrier)
d5b3cf71
VD
465{
466 struct kmem_cache *s, *s2;
467
468 if (need_rcu_barrier)
469 rcu_barrier();
470
471 list_for_each_entry_safe(s, s2, release, list) {
472#ifdef SLAB_SUPPORTS_SYSFS
473 sysfs_slab_remove(s);
474#else
475 slab_kmem_cache_release(s);
476#endif
477 }
478}
479
794b1248
VD
480#ifdef CONFIG_MEMCG_KMEM
481/*
776ed0f0 482 * memcg_create_kmem_cache - Create a cache for a memory cgroup.
794b1248
VD
483 * @memcg: The memory cgroup the new cache is for.
484 * @root_cache: The parent of the new cache.
485 *
486 * This function attempts to create a kmem cache that will serve allocation
487 * requests going from @memcg to @root_cache. The new cache inherits properties
488 * from its parent.
489 */
d5b3cf71
VD
490void memcg_create_kmem_cache(struct mem_cgroup *memcg,
491 struct kmem_cache *root_cache)
2633d7a0 492{
3e0350a3 493 static char memcg_name_buf[NAME_MAX + 1]; /* protected by slab_mutex */
33398cf2 494 struct cgroup_subsys_state *css = &memcg->css;
f7ce3190 495 struct memcg_cache_array *arr;
bd673145 496 struct kmem_cache *s = NULL;
794b1248 497 char *cache_name;
f7ce3190 498 int idx;
794b1248
VD
499
500 get_online_cpus();
03afc0e2
VD
501 get_online_mems();
502
794b1248
VD
503 mutex_lock(&slab_mutex);
504
2a4db7eb
VD
505 /*
506 * The memory cgroup could have been deactivated while the cache
507 * creation work was pending.
508 */
509 if (!memcg_kmem_is_active(memcg))
510 goto out_unlock;
511
f7ce3190
VD
512 idx = memcg_cache_id(memcg);
513 arr = rcu_dereference_protected(root_cache->memcg_params.memcg_caches,
514 lockdep_is_held(&slab_mutex));
515
d5b3cf71
VD
516 /*
517 * Since per-memcg caches are created asynchronously on first
518 * allocation (see memcg_kmem_get_cache()), several threads can try to
519 * create the same cache, but only one of them may succeed.
520 */
f7ce3190 521 if (arr->entries[idx])
d5b3cf71
VD
522 goto out_unlock;
523
f1008365 524 cgroup_name(css->cgroup, memcg_name_buf, sizeof(memcg_name_buf));
073ee1c6 525 cache_name = kasprintf(GFP_KERNEL, "%s(%d:%s)", root_cache->name,
f1008365 526 css->id, memcg_name_buf);
794b1248
VD
527 if (!cache_name)
528 goto out_unlock;
529
c9a77a79
VD
530 s = create_cache(cache_name, root_cache->object_size,
531 root_cache->size, root_cache->align,
532 root_cache->flags, root_cache->ctor,
533 memcg, root_cache);
d5b3cf71
VD
534 /*
535 * If we could not create a memcg cache, do not complain, because
536 * that's not critical at all as we can always proceed with the root
537 * cache.
538 */
bd673145 539 if (IS_ERR(s)) {
794b1248 540 kfree(cache_name);
d5b3cf71 541 goto out_unlock;
bd673145 542 }
794b1248 543
426589f5
VD
544 list_add(&s->memcg_params.list, &root_cache->memcg_params.list);
545
d5b3cf71
VD
546 /*
547 * Since readers won't lock (see cache_from_memcg_idx()), we need a
548 * barrier here to ensure nobody will see the kmem_cache partially
549 * initialized.
550 */
551 smp_wmb();
f7ce3190 552 arr->entries[idx] = s;
d5b3cf71 553
794b1248
VD
554out_unlock:
555 mutex_unlock(&slab_mutex);
03afc0e2
VD
556
557 put_online_mems();
794b1248 558 put_online_cpus();
2633d7a0 559}
b8529907 560
2a4db7eb
VD
561void memcg_deactivate_kmem_caches(struct mem_cgroup *memcg)
562{
563 int idx;
564 struct memcg_cache_array *arr;
d6e0b7fa 565 struct kmem_cache *s, *c;
2a4db7eb
VD
566
567 idx = memcg_cache_id(memcg);
568
d6e0b7fa
VD
569 get_online_cpus();
570 get_online_mems();
571
2a4db7eb
VD
572 mutex_lock(&slab_mutex);
573 list_for_each_entry(s, &slab_caches, list) {
574 if (!is_root_cache(s))
575 continue;
576
577 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
578 lockdep_is_held(&slab_mutex));
d6e0b7fa
VD
579 c = arr->entries[idx];
580 if (!c)
581 continue;
582
583 __kmem_cache_shrink(c, true);
2a4db7eb
VD
584 arr->entries[idx] = NULL;
585 }
586 mutex_unlock(&slab_mutex);
d6e0b7fa
VD
587
588 put_online_mems();
589 put_online_cpus();
2a4db7eb
VD
590}
591
d60fdcc9
VD
592static int __shutdown_memcg_cache(struct kmem_cache *s,
593 struct list_head *release, bool *need_rcu_barrier)
594{
595 BUG_ON(is_root_cache(s));
596
597 if (shutdown_cache(s, release, need_rcu_barrier))
598 return -EBUSY;
599
600 list_del(&s->memcg_params.list);
601 return 0;
602}
603
d5b3cf71 604void memcg_destroy_kmem_caches(struct mem_cgroup *memcg)
b8529907 605{
d5b3cf71
VD
606 LIST_HEAD(release);
607 bool need_rcu_barrier = false;
608 struct kmem_cache *s, *s2;
b8529907 609
d5b3cf71
VD
610 get_online_cpus();
611 get_online_mems();
b8529907 612
b8529907 613 mutex_lock(&slab_mutex);
d5b3cf71 614 list_for_each_entry_safe(s, s2, &slab_caches, list) {
f7ce3190 615 if (is_root_cache(s) || s->memcg_params.memcg != memcg)
d5b3cf71
VD
616 continue;
617 /*
618 * The cgroup is about to be freed and therefore has no charges
619 * left. Hence, all its caches must be empty by now.
620 */
d60fdcc9 621 BUG_ON(__shutdown_memcg_cache(s, &release, &need_rcu_barrier));
d5b3cf71
VD
622 }
623 mutex_unlock(&slab_mutex);
b8529907 624
d5b3cf71
VD
625 put_online_mems();
626 put_online_cpus();
627
c9a77a79 628 release_caches(&release, need_rcu_barrier);
b8529907 629}
d60fdcc9
VD
630
631static int shutdown_memcg_caches(struct kmem_cache *s,
632 struct list_head *release, bool *need_rcu_barrier)
633{
634 struct memcg_cache_array *arr;
635 struct kmem_cache *c, *c2;
636 LIST_HEAD(busy);
637 int i;
638
639 BUG_ON(!is_root_cache(s));
640
641 /*
642 * First, shutdown active caches, i.e. caches that belong to online
643 * memory cgroups.
644 */
645 arr = rcu_dereference_protected(s->memcg_params.memcg_caches,
646 lockdep_is_held(&slab_mutex));
647 for_each_memcg_cache_index(i) {
648 c = arr->entries[i];
649 if (!c)
650 continue;
651 if (__shutdown_memcg_cache(c, release, need_rcu_barrier))
652 /*
653 * The cache still has objects. Move it to a temporary
654 * list so as not to try to destroy it for a second
655 * time while iterating over inactive caches below.
656 */
657 list_move(&c->memcg_params.list, &busy);
658 else
659 /*
660 * The cache is empty and will be destroyed soon. Clear
661 * the pointer to it in the memcg_caches array so that
662 * it will never be accessed even if the root cache
663 * stays alive.
664 */
665 arr->entries[i] = NULL;
666 }
667
668 /*
669 * Second, shutdown all caches left from memory cgroups that are now
670 * offline.
671 */
672 list_for_each_entry_safe(c, c2, &s->memcg_params.list,
673 memcg_params.list)
674 __shutdown_memcg_cache(c, release, need_rcu_barrier);
675
676 list_splice(&busy, &s->memcg_params.list);
677
678 /*
679 * A cache being destroyed must be empty. In particular, this means
680 * that all per memcg caches attached to it must be empty too.
681 */
682 if (!list_empty(&s->memcg_params.list))
683 return -EBUSY;
684 return 0;
685}
686#else
687static inline int shutdown_memcg_caches(struct kmem_cache *s,
688 struct list_head *release, bool *need_rcu_barrier)
689{
690 return 0;
691}
794b1248 692#endif /* CONFIG_MEMCG_KMEM */
97d06609 693
41a21285
CL
694void slab_kmem_cache_release(struct kmem_cache *s)
695{
f7ce3190 696 destroy_memcg_params(s);
3dec16ea 697 kfree_const(s->name);
41a21285
CL
698 kmem_cache_free(kmem_cache, s);
699}
700
945cf2b6
CL
701void kmem_cache_destroy(struct kmem_cache *s)
702{
d5b3cf71
VD
703 LIST_HEAD(release);
704 bool need_rcu_barrier = false;
d60fdcc9 705 int err;
d5b3cf71 706
3942d299
SS
707 if (unlikely(!s))
708 return;
709
945cf2b6 710 get_online_cpus();
03afc0e2
VD
711 get_online_mems();
712
945cf2b6 713 mutex_lock(&slab_mutex);
b8529907 714
945cf2b6 715 s->refcount--;
b8529907
VD
716 if (s->refcount)
717 goto out_unlock;
718
d60fdcc9
VD
719 err = shutdown_memcg_caches(s, &release, &need_rcu_barrier);
720 if (!err)
cd918c55 721 err = shutdown_cache(s, &release, &need_rcu_barrier);
b8529907 722
cd918c55
VD
723 if (err) {
724 pr_err("kmem_cache_destroy %s: "
725 "Slab cache still has objects\n", s->name);
726 dump_stack();
727 }
b8529907
VD
728out_unlock:
729 mutex_unlock(&slab_mutex);
d5b3cf71 730
03afc0e2 731 put_online_mems();
945cf2b6 732 put_online_cpus();
d5b3cf71 733
c9a77a79 734 release_caches(&release, need_rcu_barrier);
945cf2b6
CL
735}
736EXPORT_SYMBOL(kmem_cache_destroy);
737
03afc0e2
VD
738/**
739 * kmem_cache_shrink - Shrink a cache.
740 * @cachep: The cache to shrink.
741 *
742 * Releases as many slabs as possible for a cache.
743 * To help debugging, a zero exit status indicates all slabs were released.
744 */
745int kmem_cache_shrink(struct kmem_cache *cachep)
746{
747 int ret;
748
749 get_online_cpus();
750 get_online_mems();
d6e0b7fa 751 ret = __kmem_cache_shrink(cachep, false);
03afc0e2
VD
752 put_online_mems();
753 put_online_cpus();
754 return ret;
755}
756EXPORT_SYMBOL(kmem_cache_shrink);
757
fda90124 758bool slab_is_available(void)
97d06609
CL
759{
760 return slab_state >= UP;
761}
b7454ad3 762
45530c44
CL
763#ifndef CONFIG_SLOB
764/* Create a cache during boot when no slab services are available yet */
765void __init create_boot_cache(struct kmem_cache *s, const char *name, size_t size,
766 unsigned long flags)
767{
768 int err;
769
770 s->name = name;
771 s->size = s->object_size = size;
45906855 772 s->align = calculate_alignment(flags, ARCH_KMALLOC_MINALIGN, size);
f7ce3190
VD
773
774 slab_init_memcg_params(s);
775
45530c44
CL
776 err = __kmem_cache_create(s, flags);
777
778 if (err)
31ba7346 779 panic("Creation of kmalloc slab %s size=%zu failed. Reason %d\n",
45530c44
CL
780 name, size, err);
781
782 s->refcount = -1; /* Exempt from merging for now */
783}
784
785struct kmem_cache *__init create_kmalloc_cache(const char *name, size_t size,
786 unsigned long flags)
787{
788 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
789
790 if (!s)
791 panic("Out of memory when creating slab %s\n", name);
792
793 create_boot_cache(s, name, size, flags);
794 list_add(&s->list, &slab_caches);
795 s->refcount = 1;
796 return s;
797}
798
9425c58e
CL
799struct kmem_cache *kmalloc_caches[KMALLOC_SHIFT_HIGH + 1];
800EXPORT_SYMBOL(kmalloc_caches);
801
802#ifdef CONFIG_ZONE_DMA
803struct kmem_cache *kmalloc_dma_caches[KMALLOC_SHIFT_HIGH + 1];
804EXPORT_SYMBOL(kmalloc_dma_caches);
805#endif
806
2c59dd65
CL
807/*
808 * Conversion table for small slabs sizes / 8 to the index in the
809 * kmalloc array. This is necessary for slabs < 192 since we have non power
810 * of two cache sizes there. The size of larger slabs can be determined using
811 * fls.
812 */
813static s8 size_index[24] = {
814 3, /* 8 */
815 4, /* 16 */
816 5, /* 24 */
817 5, /* 32 */
818 6, /* 40 */
819 6, /* 48 */
820 6, /* 56 */
821 6, /* 64 */
822 1, /* 72 */
823 1, /* 80 */
824 1, /* 88 */
825 1, /* 96 */
826 7, /* 104 */
827 7, /* 112 */
828 7, /* 120 */
829 7, /* 128 */
830 2, /* 136 */
831 2, /* 144 */
832 2, /* 152 */
833 2, /* 160 */
834 2, /* 168 */
835 2, /* 176 */
836 2, /* 184 */
837 2 /* 192 */
838};
839
840static inline int size_index_elem(size_t bytes)
841{
842 return (bytes - 1) / 8;
843}
844
845/*
846 * Find the kmem_cache structure that serves a given size of
847 * allocation
848 */
849struct kmem_cache *kmalloc_slab(size_t size, gfp_t flags)
850{
851 int index;
852
9de1bc87 853 if (unlikely(size > KMALLOC_MAX_SIZE)) {
907985f4 854 WARN_ON_ONCE(!(flags & __GFP_NOWARN));
6286ae97 855 return NULL;
907985f4 856 }
6286ae97 857
2c59dd65
CL
858 if (size <= 192) {
859 if (!size)
860 return ZERO_SIZE_PTR;
861
862 index = size_index[size_index_elem(size)];
863 } else
864 index = fls(size - 1);
865
866#ifdef CONFIG_ZONE_DMA
b1e05416 867 if (unlikely((flags & GFP_DMA)))
2c59dd65
CL
868 return kmalloc_dma_caches[index];
869
870#endif
871 return kmalloc_caches[index];
872}
873
4066c33d
GG
874/*
875 * kmalloc_info[] is to make slub_debug=,kmalloc-xx option work at boot time.
876 * kmalloc_index() supports up to 2^26=64MB, so the final entry of the table is
877 * kmalloc-67108864.
878 */
879static struct {
880 const char *name;
881 unsigned long size;
882} const kmalloc_info[] __initconst = {
883 {NULL, 0}, {"kmalloc-96", 96},
884 {"kmalloc-192", 192}, {"kmalloc-8", 8},
885 {"kmalloc-16", 16}, {"kmalloc-32", 32},
886 {"kmalloc-64", 64}, {"kmalloc-128", 128},
887 {"kmalloc-256", 256}, {"kmalloc-512", 512},
888 {"kmalloc-1024", 1024}, {"kmalloc-2048", 2048},
889 {"kmalloc-4096", 4096}, {"kmalloc-8192", 8192},
890 {"kmalloc-16384", 16384}, {"kmalloc-32768", 32768},
891 {"kmalloc-65536", 65536}, {"kmalloc-131072", 131072},
892 {"kmalloc-262144", 262144}, {"kmalloc-524288", 524288},
893 {"kmalloc-1048576", 1048576}, {"kmalloc-2097152", 2097152},
894 {"kmalloc-4194304", 4194304}, {"kmalloc-8388608", 8388608},
895 {"kmalloc-16777216", 16777216}, {"kmalloc-33554432", 33554432},
896 {"kmalloc-67108864", 67108864}
897};
898
f97d5f63 899/*
34cc6990
DS
900 * Patch up the size_index table if we have strange large alignment
901 * requirements for the kmalloc array. This is only the case for
902 * MIPS it seems. The standard arches will not generate any code here.
903 *
904 * Largest permitted alignment is 256 bytes due to the way we
905 * handle the index determination for the smaller caches.
906 *
907 * Make sure that nothing crazy happens if someone starts tinkering
908 * around with ARCH_KMALLOC_MINALIGN
f97d5f63 909 */
34cc6990 910void __init setup_kmalloc_cache_index_table(void)
f97d5f63
CL
911{
912 int i;
913
2c59dd65
CL
914 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 256 ||
915 (KMALLOC_MIN_SIZE & (KMALLOC_MIN_SIZE - 1)));
916
917 for (i = 8; i < KMALLOC_MIN_SIZE; i += 8) {
918 int elem = size_index_elem(i);
919
920 if (elem >= ARRAY_SIZE(size_index))
921 break;
922 size_index[elem] = KMALLOC_SHIFT_LOW;
923 }
924
925 if (KMALLOC_MIN_SIZE >= 64) {
926 /*
927 * The 96 byte size cache is not used if the alignment
928 * is 64 byte.
929 */
930 for (i = 64 + 8; i <= 96; i += 8)
931 size_index[size_index_elem(i)] = 7;
932
933 }
934
935 if (KMALLOC_MIN_SIZE >= 128) {
936 /*
937 * The 192 byte sized cache is not used if the alignment
938 * is 128 byte. Redirect kmalloc to use the 256 byte cache
939 * instead.
940 */
941 for (i = 128 + 8; i <= 192; i += 8)
942 size_index[size_index_elem(i)] = 8;
943 }
34cc6990
DS
944}
945
ae6f2462 946static void __init new_kmalloc_cache(int idx, unsigned long flags)
a9730fca
CL
947{
948 kmalloc_caches[idx] = create_kmalloc_cache(kmalloc_info[idx].name,
949 kmalloc_info[idx].size, flags);
950}
951
34cc6990
DS
952/*
953 * Create the kmalloc array. Some of the regular kmalloc arrays
954 * may already have been created because they were needed to
955 * enable allocations for slab creation.
956 */
957void __init create_kmalloc_caches(unsigned long flags)
958{
959 int i;
960
a9730fca
CL
961 for (i = KMALLOC_SHIFT_LOW; i <= KMALLOC_SHIFT_HIGH; i++) {
962 if (!kmalloc_caches[i])
963 new_kmalloc_cache(i, flags);
f97d5f63 964
956e46ef 965 /*
a9730fca
CL
966 * Caches that are not of the two-to-the-power-of size.
967 * These have to be created immediately after the
968 * earlier power of two caches
956e46ef 969 */
a9730fca
CL
970 if (KMALLOC_MIN_SIZE <= 32 && !kmalloc_caches[1] && i == 6)
971 new_kmalloc_cache(1, flags);
972 if (KMALLOC_MIN_SIZE <= 64 && !kmalloc_caches[2] && i == 7)
973 new_kmalloc_cache(2, flags);
8a965b3b
CL
974 }
975
f97d5f63
CL
976 /* Kmalloc array is now usable */
977 slab_state = UP;
978
f97d5f63
CL
979#ifdef CONFIG_ZONE_DMA
980 for (i = 0; i <= KMALLOC_SHIFT_HIGH; i++) {
981 struct kmem_cache *s = kmalloc_caches[i];
982
983 if (s) {
984 int size = kmalloc_size(i);
985 char *n = kasprintf(GFP_NOWAIT,
986 "dma-kmalloc-%d", size);
987
988 BUG_ON(!n);
989 kmalloc_dma_caches[i] = create_kmalloc_cache(n,
990 size, SLAB_CACHE_DMA | flags);
991 }
992 }
993#endif
994}
45530c44
CL
995#endif /* !CONFIG_SLOB */
996
cea371f4
VD
997/*
998 * To avoid unnecessary overhead, we pass through large allocation requests
999 * directly to the page allocator. We use __GFP_COMP, because we will need to
1000 * know the allocation order to free the pages properly in kfree.
1001 */
52383431
VD
1002void *kmalloc_order(size_t size, gfp_t flags, unsigned int order)
1003{
1004 void *ret;
1005 struct page *page;
1006
1007 flags |= __GFP_COMP;
1008 page = alloc_kmem_pages(flags, order);
1009 ret = page ? page_address(page) : NULL;
1010 kmemleak_alloc(ret, size, 1, flags);
0316bec2 1011 kasan_kmalloc_large(ret, size);
52383431
VD
1012 return ret;
1013}
1014EXPORT_SYMBOL(kmalloc_order);
1015
f1b6eb6e
CL
1016#ifdef CONFIG_TRACING
1017void *kmalloc_order_trace(size_t size, gfp_t flags, unsigned int order)
1018{
1019 void *ret = kmalloc_order(size, flags, order);
1020 trace_kmalloc(_RET_IP_, ret, size, PAGE_SIZE << order, flags);
1021 return ret;
1022}
1023EXPORT_SYMBOL(kmalloc_order_trace);
1024#endif
45530c44 1025
b7454ad3 1026#ifdef CONFIG_SLABINFO
e9b4db2b
WL
1027
1028#ifdef CONFIG_SLAB
1029#define SLABINFO_RIGHTS (S_IWUSR | S_IRUSR)
1030#else
1031#define SLABINFO_RIGHTS S_IRUSR
1032#endif
1033
b047501c 1034static void print_slabinfo_header(struct seq_file *m)
bcee6e2a
GC
1035{
1036 /*
1037 * Output format version, so at least we can change it
1038 * without _too_ many complaints.
1039 */
1040#ifdef CONFIG_DEBUG_SLAB
1041 seq_puts(m, "slabinfo - version: 2.1 (statistics)\n");
1042#else
1043 seq_puts(m, "slabinfo - version: 2.1\n");
1044#endif
1045 seq_puts(m, "# name <active_objs> <num_objs> <objsize> "
1046 "<objperslab> <pagesperslab>");
1047 seq_puts(m, " : tunables <limit> <batchcount> <sharedfactor>");
1048 seq_puts(m, " : slabdata <active_slabs> <num_slabs> <sharedavail>");
1049#ifdef CONFIG_DEBUG_SLAB
1050 seq_puts(m, " : globalstat <listallocs> <maxobjs> <grown> <reaped> "
1051 "<error> <maxfreeable> <nodeallocs> <remotefrees> <alienoverflow>");
1052 seq_puts(m, " : cpustat <allochit> <allocmiss> <freehit> <freemiss>");
1053#endif
1054 seq_putc(m, '\n');
1055}
1056
1df3b26f 1057void *slab_start(struct seq_file *m, loff_t *pos)
b7454ad3 1058{
b7454ad3 1059 mutex_lock(&slab_mutex);
b7454ad3
GC
1060 return seq_list_start(&slab_caches, *pos);
1061}
1062
276a2439 1063void *slab_next(struct seq_file *m, void *p, loff_t *pos)
b7454ad3
GC
1064{
1065 return seq_list_next(p, &slab_caches, pos);
1066}
1067
276a2439 1068void slab_stop(struct seq_file *m, void *p)
b7454ad3
GC
1069{
1070 mutex_unlock(&slab_mutex);
1071}
1072
749c5415
GC
1073static void
1074memcg_accumulate_slabinfo(struct kmem_cache *s, struct slabinfo *info)
1075{
1076 struct kmem_cache *c;
1077 struct slabinfo sinfo;
749c5415
GC
1078
1079 if (!is_root_cache(s))
1080 return;
1081
426589f5 1082 for_each_memcg_cache(c, s) {
749c5415
GC
1083 memset(&sinfo, 0, sizeof(sinfo));
1084 get_slabinfo(c, &sinfo);
1085
1086 info->active_slabs += sinfo.active_slabs;
1087 info->num_slabs += sinfo.num_slabs;
1088 info->shared_avail += sinfo.shared_avail;
1089 info->active_objs += sinfo.active_objs;
1090 info->num_objs += sinfo.num_objs;
1091 }
1092}
1093
b047501c 1094static void cache_show(struct kmem_cache *s, struct seq_file *m)
b7454ad3 1095{
0d7561c6
GC
1096 struct slabinfo sinfo;
1097
1098 memset(&sinfo, 0, sizeof(sinfo));
1099 get_slabinfo(s, &sinfo);
1100
749c5415
GC
1101 memcg_accumulate_slabinfo(s, &sinfo);
1102
0d7561c6 1103 seq_printf(m, "%-17s %6lu %6lu %6u %4u %4d",
749c5415 1104 cache_name(s), sinfo.active_objs, sinfo.num_objs, s->size,
0d7561c6
GC
1105 sinfo.objects_per_slab, (1 << sinfo.cache_order));
1106
1107 seq_printf(m, " : tunables %4u %4u %4u",
1108 sinfo.limit, sinfo.batchcount, sinfo.shared);
1109 seq_printf(m, " : slabdata %6lu %6lu %6lu",
1110 sinfo.active_slabs, sinfo.num_slabs, sinfo.shared_avail);
1111 slabinfo_show_stats(m, s);
1112 seq_putc(m, '\n');
b7454ad3
GC
1113}
1114
1df3b26f 1115static int slab_show(struct seq_file *m, void *p)
749c5415
GC
1116{
1117 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1118
1df3b26f
VD
1119 if (p == slab_caches.next)
1120 print_slabinfo_header(m);
b047501c
VD
1121 if (is_root_cache(s))
1122 cache_show(s, m);
1123 return 0;
1124}
1125
1126#ifdef CONFIG_MEMCG_KMEM
1127int memcg_slab_show(struct seq_file *m, void *p)
1128{
1129 struct kmem_cache *s = list_entry(p, struct kmem_cache, list);
1130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
1131
1132 if (p == slab_caches.next)
1133 print_slabinfo_header(m);
f7ce3190 1134 if (!is_root_cache(s) && s->memcg_params.memcg == memcg)
b047501c
VD
1135 cache_show(s, m);
1136 return 0;
749c5415 1137}
b047501c 1138#endif
749c5415 1139
b7454ad3
GC
1140/*
1141 * slabinfo_op - iterator that generates /proc/slabinfo
1142 *
1143 * Output layout:
1144 * cache-name
1145 * num-active-objs
1146 * total-objs
1147 * object size
1148 * num-active-slabs
1149 * total-slabs
1150 * num-pages-per-slab
1151 * + further values on SMP and with statistics enabled
1152 */
1153static const struct seq_operations slabinfo_op = {
1df3b26f 1154 .start = slab_start,
276a2439
WL
1155 .next = slab_next,
1156 .stop = slab_stop,
1df3b26f 1157 .show = slab_show,
b7454ad3
GC
1158};
1159
1160static int slabinfo_open(struct inode *inode, struct file *file)
1161{
1162 return seq_open(file, &slabinfo_op);
1163}
1164
1165static const struct file_operations proc_slabinfo_operations = {
1166 .open = slabinfo_open,
1167 .read = seq_read,
1168 .write = slabinfo_write,
1169 .llseek = seq_lseek,
1170 .release = seq_release,
1171};
1172
1173static int __init slab_proc_init(void)
1174{
e9b4db2b
WL
1175 proc_create("slabinfo", SLABINFO_RIGHTS, NULL,
1176 &proc_slabinfo_operations);
b7454ad3
GC
1177 return 0;
1178}
1179module_init(slab_proc_init);
1180#endif /* CONFIG_SLABINFO */
928cec9c
AR
1181
1182static __always_inline void *__do_krealloc(const void *p, size_t new_size,
1183 gfp_t flags)
1184{
1185 void *ret;
1186 size_t ks = 0;
1187
1188 if (p)
1189 ks = ksize(p);
1190
0316bec2
AR
1191 if (ks >= new_size) {
1192 kasan_krealloc((void *)p, new_size);
928cec9c 1193 return (void *)p;
0316bec2 1194 }
928cec9c
AR
1195
1196 ret = kmalloc_track_caller(new_size, flags);
1197 if (ret && p)
1198 memcpy(ret, p, ks);
1199
1200 return ret;
1201}
1202
1203/**
1204 * __krealloc - like krealloc() but don't free @p.
1205 * @p: object to reallocate memory for.
1206 * @new_size: how many bytes of memory are required.
1207 * @flags: the type of memory to allocate.
1208 *
1209 * This function is like krealloc() except it never frees the originally
1210 * allocated buffer. Use this if you don't want to free the buffer immediately
1211 * like, for example, with RCU.
1212 */
1213void *__krealloc(const void *p, size_t new_size, gfp_t flags)
1214{
1215 if (unlikely(!new_size))
1216 return ZERO_SIZE_PTR;
1217
1218 return __do_krealloc(p, new_size, flags);
1219
1220}
1221EXPORT_SYMBOL(__krealloc);
1222
1223/**
1224 * krealloc - reallocate memory. The contents will remain unchanged.
1225 * @p: object to reallocate memory for.
1226 * @new_size: how many bytes of memory are required.
1227 * @flags: the type of memory to allocate.
1228 *
1229 * The contents of the object pointed to are preserved up to the
1230 * lesser of the new and old sizes. If @p is %NULL, krealloc()
1231 * behaves exactly like kmalloc(). If @new_size is 0 and @p is not a
1232 * %NULL pointer, the object pointed to is freed.
1233 */
1234void *krealloc(const void *p, size_t new_size, gfp_t flags)
1235{
1236 void *ret;
1237
1238 if (unlikely(!new_size)) {
1239 kfree(p);
1240 return ZERO_SIZE_PTR;
1241 }
1242
1243 ret = __do_krealloc(p, new_size, flags);
1244 if (ret && p != ret)
1245 kfree(p);
1246
1247 return ret;
1248}
1249EXPORT_SYMBOL(krealloc);
1250
1251/**
1252 * kzfree - like kfree but zero memory
1253 * @p: object to free memory of
1254 *
1255 * The memory of the object @p points to is zeroed before freed.
1256 * If @p is %NULL, kzfree() does nothing.
1257 *
1258 * Note: this function zeroes the whole allocated buffer which can be a good
1259 * deal bigger than the requested buffer size passed to kmalloc(). So be
1260 * careful when using this function in performance sensitive code.
1261 */
1262void kzfree(const void *p)
1263{
1264 size_t ks;
1265 void *mem = (void *)p;
1266
1267 if (unlikely(ZERO_OR_NULL_PTR(mem)))
1268 return;
1269 ks = ksize(mem);
1270 memset(mem, 0, ks);
1271 kfree(mem);
1272}
1273EXPORT_SYMBOL(kzfree);
1274
1275/* Tracepoints definitions. */
1276EXPORT_TRACEPOINT_SYMBOL(kmalloc);
1277EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
1278EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
1279EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
1280EXPORT_TRACEPOINT_SYMBOL(kfree);
1281EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);