]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/slub.c
UBUNTU: [Config] CONFIG_NET_DSA_LOOP=m
[mirror_ubuntu-artful-kernel.git] / mm / slub.c
CommitLineData
81819f0f
CL
1/*
2 * SLUB: A slab allocator that limits cache line use instead of queuing
3 * objects in per cpu and per node lists.
4 *
881db7fb
CL
5 * The allocator synchronizes using per slab locks or atomic operatios
6 * and only uses a centralized lock to manage a pool of partial slabs.
81819f0f 7 *
cde53535 8 * (C) 2007 SGI, Christoph Lameter
881db7fb 9 * (C) 2011 Linux Foundation, Christoph Lameter
81819f0f
CL
10 */
11
12#include <linux/mm.h>
1eb5ac64 13#include <linux/swap.h> /* struct reclaim_state */
81819f0f
CL
14#include <linux/module.h>
15#include <linux/bit_spinlock.h>
16#include <linux/interrupt.h>
17#include <linux/bitops.h>
18#include <linux/slab.h>
97d06609 19#include "slab.h"
7b3c3a50 20#include <linux/proc_fs.h>
3ac38faa 21#include <linux/notifier.h>
81819f0f 22#include <linux/seq_file.h>
a79316c6 23#include <linux/kasan.h>
5a896d9e 24#include <linux/kmemcheck.h>
81819f0f
CL
25#include <linux/cpu.h>
26#include <linux/cpuset.h>
27#include <linux/mempolicy.h>
28#include <linux/ctype.h>
3ac7fe5a 29#include <linux/debugobjects.h>
81819f0f 30#include <linux/kallsyms.h>
b9049e23 31#include <linux/memory.h>
f8bd2258 32#include <linux/math64.h>
773ff60e 33#include <linux/fault-inject.h>
bfa71457 34#include <linux/stacktrace.h>
4de900b4 35#include <linux/prefetch.h>
2633d7a0 36#include <linux/memcontrol.h>
81819f0f 37
4a92379b
RK
38#include <trace/events/kmem.h>
39
072bb0aa
MG
40#include "internal.h"
41
81819f0f
CL
42/*
43 * Lock order:
18004c5d 44 * 1. slab_mutex (Global Mutex)
881db7fb
CL
45 * 2. node->list_lock
46 * 3. slab_lock(page) (Only on some arches and for debugging)
81819f0f 47 *
18004c5d 48 * slab_mutex
881db7fb 49 *
18004c5d 50 * The role of the slab_mutex is to protect the list of all the slabs
881db7fb
CL
51 * and to synchronize major metadata changes to slab cache structures.
52 *
53 * The slab_lock is only used for debugging and on arches that do not
54 * have the ability to do a cmpxchg_double. It only protects the second
55 * double word in the page struct. Meaning
56 * A. page->freelist -> List of object free in a page
57 * B. page->counters -> Counters of objects
58 * C. page->frozen -> frozen state
59 *
60 * If a slab is frozen then it is exempt from list management. It is not
61 * on any list. The processor that froze the slab is the one who can
62 * perform list operations on the page. Other processors may put objects
63 * onto the freelist but the processor that froze the slab is the only
64 * one that can retrieve the objects from the page's freelist.
81819f0f
CL
65 *
66 * The list_lock protects the partial and full list on each node and
67 * the partial slab counter. If taken then no new slabs may be added or
68 * removed from the lists nor make the number of partial slabs be modified.
69 * (Note that the total number of slabs is an atomic value that may be
70 * modified without taking the list lock).
71 *
72 * The list_lock is a centralized lock and thus we avoid taking it as
73 * much as possible. As long as SLUB does not have to handle partial
74 * slabs, operations can continue without any centralized lock. F.e.
75 * allocating a long series of objects that fill up slabs does not require
76 * the list lock.
81819f0f
CL
77 * Interrupts are disabled during allocation and deallocation in order to
78 * make the slab allocator safe to use in the context of an irq. In addition
79 * interrupts are disabled to ensure that the processor does not change
80 * while handling per_cpu slabs, due to kernel preemption.
81 *
82 * SLUB assigns one slab for allocation to each processor.
83 * Allocations only occur from these slabs called cpu slabs.
84 *
672bba3a
CL
85 * Slabs with free elements are kept on a partial list and during regular
86 * operations no list for full slabs is used. If an object in a full slab is
81819f0f 87 * freed then the slab will show up again on the partial lists.
672bba3a
CL
88 * We track full slabs for debugging purposes though because otherwise we
89 * cannot scan all objects.
81819f0f
CL
90 *
91 * Slabs are freed when they become empty. Teardown and setup is
92 * minimal so we rely on the page allocators per cpu caches for
93 * fast frees and allocs.
94 *
95 * Overloading of page flags that are otherwise used for LRU management.
96 *
4b6f0750
CL
97 * PageActive The slab is frozen and exempt from list processing.
98 * This means that the slab is dedicated to a purpose
99 * such as satisfying allocations for a specific
100 * processor. Objects may be freed in the slab while
101 * it is frozen but slab_free will then skip the usual
102 * list operations. It is up to the processor holding
103 * the slab to integrate the slab into the slab lists
104 * when the slab is no longer needed.
105 *
106 * One use of this flag is to mark slabs that are
107 * used for allocations. Then such a slab becomes a cpu
108 * slab. The cpu slab may be equipped with an additional
dfb4f096 109 * freelist that allows lockless access to
894b8788
CL
110 * free objects in addition to the regular freelist
111 * that requires the slab lock.
81819f0f
CL
112 *
113 * PageError Slab requires special handling due to debug
114 * options set. This moves slab handling out of
894b8788 115 * the fast path and disables lockless freelists.
81819f0f
CL
116 */
117
af537b0a
CL
118static inline int kmem_cache_debug(struct kmem_cache *s)
119{
5577bd8a 120#ifdef CONFIG_SLUB_DEBUG
af537b0a 121 return unlikely(s->flags & SLAB_DEBUG_FLAGS);
5577bd8a 122#else
af537b0a 123 return 0;
5577bd8a 124#endif
af537b0a 125}
5577bd8a 126
117d54df 127void *fixup_red_left(struct kmem_cache *s, void *p)
d86bd1be
JK
128{
129 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE)
130 p += s->red_left_pad;
131
132 return p;
133}
134
345c905d
JK
135static inline bool kmem_cache_has_cpu_partial(struct kmem_cache *s)
136{
137#ifdef CONFIG_SLUB_CPU_PARTIAL
138 return !kmem_cache_debug(s);
139#else
140 return false;
141#endif
142}
143
81819f0f
CL
144/*
145 * Issues still to be resolved:
146 *
81819f0f
CL
147 * - Support PAGE_ALLOC_DEBUG. Should be easy to do.
148 *
81819f0f
CL
149 * - Variable sizing of the per node arrays
150 */
151
152/* Enable to test recovery from slab corruption on boot */
153#undef SLUB_RESILIENCY_TEST
154
b789ef51
CL
155/* Enable to log cmpxchg failures */
156#undef SLUB_DEBUG_CMPXCHG
157
2086d26a
CL
158/*
159 * Mininum number of partial slabs. These will be left on the partial
160 * lists even if they are empty. kmem_cache_shrink may reclaim them.
161 */
76be8950 162#define MIN_PARTIAL 5
e95eed57 163
2086d26a
CL
164/*
165 * Maximum number of desirable partial slabs.
166 * The existence of more partial slabs makes kmem_cache_shrink
721ae22a 167 * sort the partial list by the number of objects in use.
2086d26a
CL
168 */
169#define MAX_PARTIAL 10
170
becfda68 171#define DEBUG_DEFAULT_FLAGS (SLAB_CONSISTENCY_CHECKS | SLAB_RED_ZONE | \
81819f0f 172 SLAB_POISON | SLAB_STORE_USER)
672bba3a 173
149daaf3
LA
174/*
175 * These debug flags cannot use CMPXCHG because there might be consistency
176 * issues when checking or reading debug information
177 */
178#define SLAB_NO_CMPXCHG (SLAB_CONSISTENCY_CHECKS | SLAB_STORE_USER | \
179 SLAB_TRACE)
180
181
fa5ec8a1 182/*
3de47213
DR
183 * Debugging flags that require metadata to be stored in the slab. These get
184 * disabled when slub_debug=O is used and a cache's min order increases with
185 * metadata.
fa5ec8a1 186 */
3de47213 187#define DEBUG_METADATA_FLAGS (SLAB_RED_ZONE | SLAB_POISON | SLAB_STORE_USER)
fa5ec8a1 188
210b5c06
CG
189#define OO_SHIFT 16
190#define OO_MASK ((1 << OO_SHIFT) - 1)
50d5c41c 191#define MAX_OBJS_PER_PAGE 32767 /* since page.objects is u15 */
210b5c06 192
81819f0f 193/* Internal SLUB flags */
f90ec390 194#define __OBJECT_POISON 0x80000000UL /* Poison object */
b789ef51 195#define __CMPXCHG_DOUBLE 0x40000000UL /* Use cmpxchg_double */
81819f0f 196
02cbc874
CL
197/*
198 * Tracking user of a slab.
199 */
d6543e39 200#define TRACK_ADDRS_COUNT 16
02cbc874 201struct track {
ce71e27c 202 unsigned long addr; /* Called from address */
d6543e39
BG
203#ifdef CONFIG_STACKTRACE
204 unsigned long addrs[TRACK_ADDRS_COUNT]; /* Called from address */
205#endif
02cbc874
CL
206 int cpu; /* Was running on cpu */
207 int pid; /* Pid context */
208 unsigned long when; /* When did the operation occur */
209};
210
211enum track_item { TRACK_ALLOC, TRACK_FREE };
212
ab4d5ed5 213#ifdef CONFIG_SYSFS
81819f0f
CL
214static int sysfs_slab_add(struct kmem_cache *);
215static int sysfs_slab_alias(struct kmem_cache *, const char *);
107dab5c 216static void memcg_propagate_slab_attrs(struct kmem_cache *s);
bf5eb3de 217static void sysfs_slab_remove(struct kmem_cache *s);
81819f0f 218#else
0c710013
CL
219static inline int sysfs_slab_add(struct kmem_cache *s) { return 0; }
220static inline int sysfs_slab_alias(struct kmem_cache *s, const char *p)
221 { return 0; }
107dab5c 222static inline void memcg_propagate_slab_attrs(struct kmem_cache *s) { }
bf5eb3de 223static inline void sysfs_slab_remove(struct kmem_cache *s) { }
81819f0f
CL
224#endif
225
4fdccdfb 226static inline void stat(const struct kmem_cache *s, enum stat_item si)
8ff12cfc
CL
227{
228#ifdef CONFIG_SLUB_STATS
88da03a6
CL
229 /*
230 * The rmw is racy on a preemptible kernel but this is acceptable, so
231 * avoid this_cpu_add()'s irq-disable overhead.
232 */
233 raw_cpu_inc(s->cpu_slab->stat[si]);
8ff12cfc
CL
234#endif
235}
236
81819f0f
CL
237/********************************************************************
238 * Core slab cache functions
239 *******************************************************************/
240
7656c72b
CL
241static inline void *get_freepointer(struct kmem_cache *s, void *object)
242{
243 return *(void **)(object + s->offset);
244}
245
0ad9500e
ED
246static void prefetch_freepointer(const struct kmem_cache *s, void *object)
247{
248 prefetch(object + s->offset);
249}
250
1393d9a1
CL
251static inline void *get_freepointer_safe(struct kmem_cache *s, void *object)
252{
253 void *p;
254
922d566c
JK
255 if (!debug_pagealloc_enabled())
256 return get_freepointer(s, object);
257
1393d9a1 258 probe_kernel_read(&p, (void **)(object + s->offset), sizeof(p));
1393d9a1
CL
259 return p;
260}
261
7656c72b
CL
262static inline void set_freepointer(struct kmem_cache *s, void *object, void *fp)
263{
264 *(void **)(object + s->offset) = fp;
265}
266
267/* Loop over all objects in a slab */
224a88be 268#define for_each_object(__p, __s, __addr, __objects) \
d86bd1be
JK
269 for (__p = fixup_red_left(__s, __addr); \
270 __p < (__addr) + (__objects) * (__s)->size; \
271 __p += (__s)->size)
7656c72b 272
54266640 273#define for_each_object_idx(__p, __idx, __s, __addr, __objects) \
d86bd1be
JK
274 for (__p = fixup_red_left(__s, __addr), __idx = 1; \
275 __idx <= __objects; \
276 __p += (__s)->size, __idx++)
54266640 277
7656c72b
CL
278/* Determine object index from a given position */
279static inline int slab_index(void *p, struct kmem_cache *s, void *addr)
280{
281 return (p - addr) / s->size;
282}
283
ab9a0f19
LJ
284static inline int order_objects(int order, unsigned long size, int reserved)
285{
286 return ((PAGE_SIZE << order) - reserved) / size;
287}
288
834f3d11 289static inline struct kmem_cache_order_objects oo_make(int order,
ab9a0f19 290 unsigned long size, int reserved)
834f3d11
CL
291{
292 struct kmem_cache_order_objects x = {
ab9a0f19 293 (order << OO_SHIFT) + order_objects(order, size, reserved)
834f3d11
CL
294 };
295
296 return x;
297}
298
299static inline int oo_order(struct kmem_cache_order_objects x)
300{
210b5c06 301 return x.x >> OO_SHIFT;
834f3d11
CL
302}
303
304static inline int oo_objects(struct kmem_cache_order_objects x)
305{
210b5c06 306 return x.x & OO_MASK;
834f3d11
CL
307}
308
881db7fb
CL
309/*
310 * Per slab locking using the pagelock
311 */
312static __always_inline void slab_lock(struct page *page)
313{
48c935ad 314 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
315 bit_spin_lock(PG_locked, &page->flags);
316}
317
318static __always_inline void slab_unlock(struct page *page)
319{
48c935ad 320 VM_BUG_ON_PAGE(PageTail(page), page);
881db7fb
CL
321 __bit_spin_unlock(PG_locked, &page->flags);
322}
323
a0320865
DH
324static inline void set_page_slub_counters(struct page *page, unsigned long counters_new)
325{
326 struct page tmp;
327 tmp.counters = counters_new;
328 /*
329 * page->counters can cover frozen/inuse/objects as well
0139aa7b
JK
330 * as page->_refcount. If we assign to ->counters directly
331 * we run the risk of losing updates to page->_refcount, so
a0320865
DH
332 * be careful and only assign to the fields we need.
333 */
334 page->frozen = tmp.frozen;
335 page->inuse = tmp.inuse;
336 page->objects = tmp.objects;
337}
338
1d07171c
CL
339/* Interrupts must be disabled (for the fallback code to work right) */
340static inline bool __cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
341 void *freelist_old, unsigned long counters_old,
342 void *freelist_new, unsigned long counters_new,
343 const char *n)
344{
345 VM_BUG_ON(!irqs_disabled());
2565409f
HC
346#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
347 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
1d07171c 348 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 349 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
350 freelist_old, counters_old,
351 freelist_new, counters_new))
6f6528a1 352 return true;
1d07171c
CL
353 } else
354#endif
355 {
356 slab_lock(page);
d0e0ac97
CG
357 if (page->freelist == freelist_old &&
358 page->counters == counters_old) {
1d07171c 359 page->freelist = freelist_new;
a0320865 360 set_page_slub_counters(page, counters_new);
1d07171c 361 slab_unlock(page);
6f6528a1 362 return true;
1d07171c
CL
363 }
364 slab_unlock(page);
365 }
366
367 cpu_relax();
368 stat(s, CMPXCHG_DOUBLE_FAIL);
369
370#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 371 pr_info("%s %s: cmpxchg double redo ", n, s->name);
1d07171c
CL
372#endif
373
6f6528a1 374 return false;
1d07171c
CL
375}
376
b789ef51
CL
377static inline bool cmpxchg_double_slab(struct kmem_cache *s, struct page *page,
378 void *freelist_old, unsigned long counters_old,
379 void *freelist_new, unsigned long counters_new,
380 const char *n)
381{
2565409f
HC
382#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
383 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
b789ef51 384 if (s->flags & __CMPXCHG_DOUBLE) {
cdcd6298 385 if (cmpxchg_double(&page->freelist, &page->counters,
0aa9a13d
DC
386 freelist_old, counters_old,
387 freelist_new, counters_new))
6f6528a1 388 return true;
b789ef51
CL
389 } else
390#endif
391 {
1d07171c
CL
392 unsigned long flags;
393
394 local_irq_save(flags);
881db7fb 395 slab_lock(page);
d0e0ac97
CG
396 if (page->freelist == freelist_old &&
397 page->counters == counters_old) {
b789ef51 398 page->freelist = freelist_new;
a0320865 399 set_page_slub_counters(page, counters_new);
881db7fb 400 slab_unlock(page);
1d07171c 401 local_irq_restore(flags);
6f6528a1 402 return true;
b789ef51 403 }
881db7fb 404 slab_unlock(page);
1d07171c 405 local_irq_restore(flags);
b789ef51
CL
406 }
407
408 cpu_relax();
409 stat(s, CMPXCHG_DOUBLE_FAIL);
410
411#ifdef SLUB_DEBUG_CMPXCHG
f9f58285 412 pr_info("%s %s: cmpxchg double redo ", n, s->name);
b789ef51
CL
413#endif
414
6f6528a1 415 return false;
b789ef51
CL
416}
417
41ecc55b 418#ifdef CONFIG_SLUB_DEBUG
5f80b13a
CL
419/*
420 * Determine a map of object in use on a page.
421 *
881db7fb 422 * Node listlock must be held to guarantee that the page does
5f80b13a
CL
423 * not vanish from under us.
424 */
425static void get_map(struct kmem_cache *s, struct page *page, unsigned long *map)
426{
427 void *p;
428 void *addr = page_address(page);
429
430 for (p = page->freelist; p; p = get_freepointer(s, p))
431 set_bit(slab_index(p, s, addr), map);
432}
433
d86bd1be
JK
434static inline int size_from_object(struct kmem_cache *s)
435{
436 if (s->flags & SLAB_RED_ZONE)
437 return s->size - s->red_left_pad;
438
439 return s->size;
440}
441
442static inline void *restore_red_left(struct kmem_cache *s, void *p)
443{
444 if (s->flags & SLAB_RED_ZONE)
445 p -= s->red_left_pad;
446
447 return p;
448}
449
41ecc55b
CL
450/*
451 * Debug settings:
452 */
89d3c87e 453#if defined(CONFIG_SLUB_DEBUG_ON)
f0630fff
CL
454static int slub_debug = DEBUG_DEFAULT_FLAGS;
455#else
41ecc55b 456static int slub_debug;
f0630fff 457#endif
41ecc55b
CL
458
459static char *slub_debug_slabs;
fa5ec8a1 460static int disable_higher_order_debug;
41ecc55b 461
a79316c6
AR
462/*
463 * slub is about to manipulate internal object metadata. This memory lies
464 * outside the range of the allocated object, so accessing it would normally
465 * be reported by kasan as a bounds error. metadata_access_enable() is used
466 * to tell kasan that these accesses are OK.
467 */
468static inline void metadata_access_enable(void)
469{
470 kasan_disable_current();
471}
472
473static inline void metadata_access_disable(void)
474{
475 kasan_enable_current();
476}
477
81819f0f
CL
478/*
479 * Object debugging
480 */
d86bd1be
JK
481
482/* Verify that a pointer has an address that is valid within a slab page */
483static inline int check_valid_pointer(struct kmem_cache *s,
484 struct page *page, void *object)
485{
486 void *base;
487
488 if (!object)
489 return 1;
490
491 base = page_address(page);
492 object = restore_red_left(s, object);
493 if (object < base || object >= base + page->objects * s->size ||
494 (object - base) % s->size) {
495 return 0;
496 }
497
498 return 1;
499}
500
aa2efd5e
DT
501static void print_section(char *level, char *text, u8 *addr,
502 unsigned int length)
81819f0f 503{
a79316c6 504 metadata_access_enable();
aa2efd5e 505 print_hex_dump(level, text, DUMP_PREFIX_ADDRESS, 16, 1, addr,
ffc79d28 506 length, 1);
a79316c6 507 metadata_access_disable();
81819f0f
CL
508}
509
81819f0f
CL
510static struct track *get_track(struct kmem_cache *s, void *object,
511 enum track_item alloc)
512{
513 struct track *p;
514
515 if (s->offset)
516 p = object + s->offset + sizeof(void *);
517 else
518 p = object + s->inuse;
519
520 return p + alloc;
521}
522
523static void set_track(struct kmem_cache *s, void *object,
ce71e27c 524 enum track_item alloc, unsigned long addr)
81819f0f 525{
1a00df4a 526 struct track *p = get_track(s, object, alloc);
81819f0f 527
81819f0f 528 if (addr) {
d6543e39
BG
529#ifdef CONFIG_STACKTRACE
530 struct stack_trace trace;
531 int i;
532
533 trace.nr_entries = 0;
534 trace.max_entries = TRACK_ADDRS_COUNT;
535 trace.entries = p->addrs;
536 trace.skip = 3;
a79316c6 537 metadata_access_enable();
d6543e39 538 save_stack_trace(&trace);
a79316c6 539 metadata_access_disable();
d6543e39
BG
540
541 /* See rant in lockdep.c */
542 if (trace.nr_entries != 0 &&
543 trace.entries[trace.nr_entries - 1] == ULONG_MAX)
544 trace.nr_entries--;
545
546 for (i = trace.nr_entries; i < TRACK_ADDRS_COUNT; i++)
547 p->addrs[i] = 0;
548#endif
81819f0f
CL
549 p->addr = addr;
550 p->cpu = smp_processor_id();
88e4ccf2 551 p->pid = current->pid;
81819f0f
CL
552 p->when = jiffies;
553 } else
554 memset(p, 0, sizeof(struct track));
555}
556
81819f0f
CL
557static void init_tracking(struct kmem_cache *s, void *object)
558{
24922684
CL
559 if (!(s->flags & SLAB_STORE_USER))
560 return;
561
ce71e27c
EGM
562 set_track(s, object, TRACK_FREE, 0UL);
563 set_track(s, object, TRACK_ALLOC, 0UL);
81819f0f
CL
564}
565
566static void print_track(const char *s, struct track *t)
567{
568 if (!t->addr)
569 return;
570
f9f58285
FF
571 pr_err("INFO: %s in %pS age=%lu cpu=%u pid=%d\n",
572 s, (void *)t->addr, jiffies - t->when, t->cpu, t->pid);
d6543e39
BG
573#ifdef CONFIG_STACKTRACE
574 {
575 int i;
576 for (i = 0; i < TRACK_ADDRS_COUNT; i++)
577 if (t->addrs[i])
f9f58285 578 pr_err("\t%pS\n", (void *)t->addrs[i]);
d6543e39
BG
579 else
580 break;
581 }
582#endif
24922684
CL
583}
584
585static void print_tracking(struct kmem_cache *s, void *object)
586{
587 if (!(s->flags & SLAB_STORE_USER))
588 return;
589
590 print_track("Allocated", get_track(s, object, TRACK_ALLOC));
591 print_track("Freed", get_track(s, object, TRACK_FREE));
592}
593
594static void print_page_info(struct page *page)
595{
f9f58285 596 pr_err("INFO: Slab 0x%p objects=%u used=%u fp=0x%p flags=0x%04lx\n",
d0e0ac97 597 page, page->objects, page->inuse, page->freelist, page->flags);
24922684
CL
598
599}
600
601static void slab_bug(struct kmem_cache *s, char *fmt, ...)
602{
ecc42fbe 603 struct va_format vaf;
24922684 604 va_list args;
24922684
CL
605
606 va_start(args, fmt);
ecc42fbe
FF
607 vaf.fmt = fmt;
608 vaf.va = &args;
f9f58285 609 pr_err("=============================================================================\n");
ecc42fbe 610 pr_err("BUG %s (%s): %pV\n", s->name, print_tainted(), &vaf);
f9f58285 611 pr_err("-----------------------------------------------------------------------------\n\n");
645df230 612
373d4d09 613 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
ecc42fbe 614 va_end(args);
81819f0f
CL
615}
616
24922684
CL
617static void slab_fix(struct kmem_cache *s, char *fmt, ...)
618{
ecc42fbe 619 struct va_format vaf;
24922684 620 va_list args;
24922684
CL
621
622 va_start(args, fmt);
ecc42fbe
FF
623 vaf.fmt = fmt;
624 vaf.va = &args;
625 pr_err("FIX %s: %pV\n", s->name, &vaf);
24922684 626 va_end(args);
24922684
CL
627}
628
629static void print_trailer(struct kmem_cache *s, struct page *page, u8 *p)
81819f0f
CL
630{
631 unsigned int off; /* Offset of last byte */
a973e9dd 632 u8 *addr = page_address(page);
24922684
CL
633
634 print_tracking(s, p);
635
636 print_page_info(page);
637
f9f58285
FF
638 pr_err("INFO: Object 0x%p @offset=%tu fp=0x%p\n\n",
639 p, p - addr, get_freepointer(s, p));
24922684 640
d86bd1be 641 if (s->flags & SLAB_RED_ZONE)
aa2efd5e
DT
642 print_section(KERN_ERR, "Redzone ", p - s->red_left_pad,
643 s->red_left_pad);
d86bd1be 644 else if (p > addr + 16)
aa2efd5e 645 print_section(KERN_ERR, "Bytes b4 ", p - 16, 16);
81819f0f 646
aa2efd5e
DT
647 print_section(KERN_ERR, "Object ", p,
648 min_t(unsigned long, s->object_size, PAGE_SIZE));
81819f0f 649 if (s->flags & SLAB_RED_ZONE)
aa2efd5e 650 print_section(KERN_ERR, "Redzone ", p + s->object_size,
3b0efdfa 651 s->inuse - s->object_size);
81819f0f 652
81819f0f
CL
653 if (s->offset)
654 off = s->offset + sizeof(void *);
655 else
656 off = s->inuse;
657
24922684 658 if (s->flags & SLAB_STORE_USER)
81819f0f 659 off += 2 * sizeof(struct track);
81819f0f 660
80a9201a
AP
661 off += kasan_metadata_size(s);
662
d86bd1be 663 if (off != size_from_object(s))
81819f0f 664 /* Beginning of the filler is the free pointer */
aa2efd5e
DT
665 print_section(KERN_ERR, "Padding ", p + off,
666 size_from_object(s) - off);
24922684
CL
667
668 dump_stack();
81819f0f
CL
669}
670
75c66def 671void object_err(struct kmem_cache *s, struct page *page,
81819f0f
CL
672 u8 *object, char *reason)
673{
3dc50637 674 slab_bug(s, "%s", reason);
24922684 675 print_trailer(s, page, object);
81819f0f
CL
676}
677
d0e0ac97
CG
678static void slab_err(struct kmem_cache *s, struct page *page,
679 const char *fmt, ...)
81819f0f
CL
680{
681 va_list args;
682 char buf[100];
683
24922684
CL
684 va_start(args, fmt);
685 vsnprintf(buf, sizeof(buf), fmt, args);
81819f0f 686 va_end(args);
3dc50637 687 slab_bug(s, "%s", buf);
24922684 688 print_page_info(page);
81819f0f
CL
689 dump_stack();
690}
691
f7cb1933 692static void init_object(struct kmem_cache *s, void *object, u8 val)
81819f0f
CL
693{
694 u8 *p = object;
695
d86bd1be
JK
696 if (s->flags & SLAB_RED_ZONE)
697 memset(p - s->red_left_pad, val, s->red_left_pad);
698
81819f0f 699 if (s->flags & __OBJECT_POISON) {
3b0efdfa
CL
700 memset(p, POISON_FREE, s->object_size - 1);
701 p[s->object_size - 1] = POISON_END;
81819f0f
CL
702 }
703
704 if (s->flags & SLAB_RED_ZONE)
3b0efdfa 705 memset(p + s->object_size, val, s->inuse - s->object_size);
81819f0f
CL
706}
707
24922684
CL
708static void restore_bytes(struct kmem_cache *s, char *message, u8 data,
709 void *from, void *to)
710{
711 slab_fix(s, "Restoring 0x%p-0x%p=0x%x\n", from, to - 1, data);
712 memset(from, data, to - from);
713}
714
715static int check_bytes_and_report(struct kmem_cache *s, struct page *page,
716 u8 *object, char *what,
06428780 717 u8 *start, unsigned int value, unsigned int bytes)
24922684
CL
718{
719 u8 *fault;
720 u8 *end;
721
a79316c6 722 metadata_access_enable();
79824820 723 fault = memchr_inv(start, value, bytes);
a79316c6 724 metadata_access_disable();
24922684
CL
725 if (!fault)
726 return 1;
727
728 end = start + bytes;
729 while (end > fault && end[-1] == value)
730 end--;
731
732 slab_bug(s, "%s overwritten", what);
f9f58285 733 pr_err("INFO: 0x%p-0x%p. First byte 0x%x instead of 0x%x\n",
24922684
CL
734 fault, end - 1, fault[0], value);
735 print_trailer(s, page, object);
736
737 restore_bytes(s, what, value, fault, end);
738 return 0;
81819f0f
CL
739}
740
81819f0f
CL
741/*
742 * Object layout:
743 *
744 * object address
745 * Bytes of the object to be managed.
746 * If the freepointer may overlay the object then the free
747 * pointer is the first word of the object.
672bba3a 748 *
81819f0f
CL
749 * Poisoning uses 0x6b (POISON_FREE) and the last byte is
750 * 0xa5 (POISON_END)
751 *
3b0efdfa 752 * object + s->object_size
81819f0f 753 * Padding to reach word boundary. This is also used for Redzoning.
672bba3a 754 * Padding is extended by another word if Redzoning is enabled and
3b0efdfa 755 * object_size == inuse.
672bba3a 756 *
81819f0f
CL
757 * We fill with 0xbb (RED_INACTIVE) for inactive objects and with
758 * 0xcc (RED_ACTIVE) for objects in use.
759 *
760 * object + s->inuse
672bba3a
CL
761 * Meta data starts here.
762 *
81819f0f
CL
763 * A. Free pointer (if we cannot overwrite object on free)
764 * B. Tracking data for SLAB_STORE_USER
672bba3a 765 * C. Padding to reach required alignment boundary or at mininum
6446faa2 766 * one word if debugging is on to be able to detect writes
672bba3a
CL
767 * before the word boundary.
768 *
769 * Padding is done using 0x5a (POISON_INUSE)
81819f0f
CL
770 *
771 * object + s->size
672bba3a 772 * Nothing is used beyond s->size.
81819f0f 773 *
3b0efdfa 774 * If slabcaches are merged then the object_size and inuse boundaries are mostly
672bba3a 775 * ignored. And therefore no slab options that rely on these boundaries
81819f0f
CL
776 * may be used with merged slabcaches.
777 */
778
81819f0f
CL
779static int check_pad_bytes(struct kmem_cache *s, struct page *page, u8 *p)
780{
781 unsigned long off = s->inuse; /* The end of info */
782
783 if (s->offset)
784 /* Freepointer is placed after the object. */
785 off += sizeof(void *);
786
787 if (s->flags & SLAB_STORE_USER)
788 /* We also have user information there */
789 off += 2 * sizeof(struct track);
790
80a9201a
AP
791 off += kasan_metadata_size(s);
792
d86bd1be 793 if (size_from_object(s) == off)
81819f0f
CL
794 return 1;
795
24922684 796 return check_bytes_and_report(s, page, p, "Object padding",
d86bd1be 797 p + off, POISON_INUSE, size_from_object(s) - off);
81819f0f
CL
798}
799
39b26464 800/* Check the pad bytes at the end of a slab page */
81819f0f
CL
801static int slab_pad_check(struct kmem_cache *s, struct page *page)
802{
24922684
CL
803 u8 *start;
804 u8 *fault;
805 u8 *end;
806 int length;
807 int remainder;
81819f0f
CL
808
809 if (!(s->flags & SLAB_POISON))
810 return 1;
811
a973e9dd 812 start = page_address(page);
ab9a0f19 813 length = (PAGE_SIZE << compound_order(page)) - s->reserved;
39b26464
CL
814 end = start + length;
815 remainder = length % s->size;
81819f0f
CL
816 if (!remainder)
817 return 1;
818
a79316c6 819 metadata_access_enable();
79824820 820 fault = memchr_inv(end - remainder, POISON_INUSE, remainder);
a79316c6 821 metadata_access_disable();
24922684
CL
822 if (!fault)
823 return 1;
824 while (end > fault && end[-1] == POISON_INUSE)
825 end--;
826
827 slab_err(s, page, "Padding overwritten. 0x%p-0x%p", fault, end - 1);
aa2efd5e 828 print_section(KERN_ERR, "Padding ", end - remainder, remainder);
24922684 829
8a3d271d 830 restore_bytes(s, "slab padding", POISON_INUSE, end - remainder, end);
24922684 831 return 0;
81819f0f
CL
832}
833
834static int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 835 void *object, u8 val)
81819f0f
CL
836{
837 u8 *p = object;
3b0efdfa 838 u8 *endobject = object + s->object_size;
81819f0f
CL
839
840 if (s->flags & SLAB_RED_ZONE) {
d86bd1be
JK
841 if (!check_bytes_and_report(s, page, object, "Redzone",
842 object - s->red_left_pad, val, s->red_left_pad))
843 return 0;
844
24922684 845 if (!check_bytes_and_report(s, page, object, "Redzone",
3b0efdfa 846 endobject, val, s->inuse - s->object_size))
81819f0f 847 return 0;
81819f0f 848 } else {
3b0efdfa 849 if ((s->flags & SLAB_POISON) && s->object_size < s->inuse) {
3adbefee 850 check_bytes_and_report(s, page, p, "Alignment padding",
d0e0ac97
CG
851 endobject, POISON_INUSE,
852 s->inuse - s->object_size);
3adbefee 853 }
81819f0f
CL
854 }
855
856 if (s->flags & SLAB_POISON) {
f7cb1933 857 if (val != SLUB_RED_ACTIVE && (s->flags & __OBJECT_POISON) &&
24922684 858 (!check_bytes_and_report(s, page, p, "Poison", p,
3b0efdfa 859 POISON_FREE, s->object_size - 1) ||
24922684 860 !check_bytes_and_report(s, page, p, "Poison",
3b0efdfa 861 p + s->object_size - 1, POISON_END, 1)))
81819f0f 862 return 0;
81819f0f
CL
863 /*
864 * check_pad_bytes cleans up on its own.
865 */
866 check_pad_bytes(s, page, p);
867 }
868
f7cb1933 869 if (!s->offset && val == SLUB_RED_ACTIVE)
81819f0f
CL
870 /*
871 * Object and freepointer overlap. Cannot check
872 * freepointer while object is allocated.
873 */
874 return 1;
875
876 /* Check free pointer validity */
877 if (!check_valid_pointer(s, page, get_freepointer(s, p))) {
878 object_err(s, page, p, "Freepointer corrupt");
879 /*
9f6c708e 880 * No choice but to zap it and thus lose the remainder
81819f0f 881 * of the free objects in this slab. May cause
672bba3a 882 * another error because the object count is now wrong.
81819f0f 883 */
a973e9dd 884 set_freepointer(s, p, NULL);
81819f0f
CL
885 return 0;
886 }
887 return 1;
888}
889
890static int check_slab(struct kmem_cache *s, struct page *page)
891{
39b26464
CL
892 int maxobj;
893
81819f0f
CL
894 VM_BUG_ON(!irqs_disabled());
895
896 if (!PageSlab(page)) {
24922684 897 slab_err(s, page, "Not a valid slab page");
81819f0f
CL
898 return 0;
899 }
39b26464 900
ab9a0f19 901 maxobj = order_objects(compound_order(page), s->size, s->reserved);
39b26464
CL
902 if (page->objects > maxobj) {
903 slab_err(s, page, "objects %u > max %u",
f6edde9c 904 page->objects, maxobj);
39b26464
CL
905 return 0;
906 }
907 if (page->inuse > page->objects) {
24922684 908 slab_err(s, page, "inuse %u > max %u",
f6edde9c 909 page->inuse, page->objects);
81819f0f
CL
910 return 0;
911 }
912 /* Slab_pad_check fixes things up after itself */
913 slab_pad_check(s, page);
914 return 1;
915}
916
917/*
672bba3a
CL
918 * Determine if a certain object on a page is on the freelist. Must hold the
919 * slab lock to guarantee that the chains are in a consistent state.
81819f0f
CL
920 */
921static int on_freelist(struct kmem_cache *s, struct page *page, void *search)
922{
923 int nr = 0;
881db7fb 924 void *fp;
81819f0f 925 void *object = NULL;
f6edde9c 926 int max_objects;
81819f0f 927
881db7fb 928 fp = page->freelist;
39b26464 929 while (fp && nr <= page->objects) {
81819f0f
CL
930 if (fp == search)
931 return 1;
932 if (!check_valid_pointer(s, page, fp)) {
933 if (object) {
934 object_err(s, page, object,
935 "Freechain corrupt");
a973e9dd 936 set_freepointer(s, object, NULL);
81819f0f 937 } else {
24922684 938 slab_err(s, page, "Freepointer corrupt");
a973e9dd 939 page->freelist = NULL;
39b26464 940 page->inuse = page->objects;
24922684 941 slab_fix(s, "Freelist cleared");
81819f0f
CL
942 return 0;
943 }
944 break;
945 }
946 object = fp;
947 fp = get_freepointer(s, object);
948 nr++;
949 }
950
ab9a0f19 951 max_objects = order_objects(compound_order(page), s->size, s->reserved);
210b5c06
CG
952 if (max_objects > MAX_OBJS_PER_PAGE)
953 max_objects = MAX_OBJS_PER_PAGE;
224a88be
CL
954
955 if (page->objects != max_objects) {
756a025f
JP
956 slab_err(s, page, "Wrong number of objects. Found %d but should be %d",
957 page->objects, max_objects);
224a88be
CL
958 page->objects = max_objects;
959 slab_fix(s, "Number of objects adjusted.");
960 }
39b26464 961 if (page->inuse != page->objects - nr) {
756a025f
JP
962 slab_err(s, page, "Wrong object count. Counter is %d but counted were %d",
963 page->inuse, page->objects - nr);
39b26464 964 page->inuse = page->objects - nr;
24922684 965 slab_fix(s, "Object count adjusted.");
81819f0f
CL
966 }
967 return search == NULL;
968}
969
0121c619
CL
970static void trace(struct kmem_cache *s, struct page *page, void *object,
971 int alloc)
3ec09742
CL
972{
973 if (s->flags & SLAB_TRACE) {
f9f58285 974 pr_info("TRACE %s %s 0x%p inuse=%d fp=0x%p\n",
3ec09742
CL
975 s->name,
976 alloc ? "alloc" : "free",
977 object, page->inuse,
978 page->freelist);
979
980 if (!alloc)
aa2efd5e 981 print_section(KERN_INFO, "Object ", (void *)object,
d0e0ac97 982 s->object_size);
3ec09742
CL
983
984 dump_stack();
985 }
986}
987
643b1138 988/*
672bba3a 989 * Tracking of fully allocated slabs for debugging purposes.
643b1138 990 */
5cc6eee8
CL
991static void add_full(struct kmem_cache *s,
992 struct kmem_cache_node *n, struct page *page)
643b1138 993{
5cc6eee8
CL
994 if (!(s->flags & SLAB_STORE_USER))
995 return;
996
255d0884 997 lockdep_assert_held(&n->list_lock);
643b1138 998 list_add(&page->lru, &n->full);
643b1138
CL
999}
1000
c65c1877 1001static void remove_full(struct kmem_cache *s, struct kmem_cache_node *n, struct page *page)
643b1138 1002{
643b1138
CL
1003 if (!(s->flags & SLAB_STORE_USER))
1004 return;
1005
255d0884 1006 lockdep_assert_held(&n->list_lock);
643b1138 1007 list_del(&page->lru);
643b1138
CL
1008}
1009
0f389ec6
CL
1010/* Tracking of the number of slabs for debugging purposes */
1011static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1012{
1013 struct kmem_cache_node *n = get_node(s, node);
1014
1015 return atomic_long_read(&n->nr_slabs);
1016}
1017
26c02cf0
AB
1018static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1019{
1020 return atomic_long_read(&n->nr_slabs);
1021}
1022
205ab99d 1023static inline void inc_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1024{
1025 struct kmem_cache_node *n = get_node(s, node);
1026
1027 /*
1028 * May be called early in order to allocate a slab for the
1029 * kmem_cache_node structure. Solve the chicken-egg
1030 * dilemma by deferring the increment of the count during
1031 * bootstrap (see early_kmem_cache_node_alloc).
1032 */
338b2642 1033 if (likely(n)) {
0f389ec6 1034 atomic_long_inc(&n->nr_slabs);
205ab99d
CL
1035 atomic_long_add(objects, &n->total_objects);
1036 }
0f389ec6 1037}
205ab99d 1038static inline void dec_slabs_node(struct kmem_cache *s, int node, int objects)
0f389ec6
CL
1039{
1040 struct kmem_cache_node *n = get_node(s, node);
1041
1042 atomic_long_dec(&n->nr_slabs);
205ab99d 1043 atomic_long_sub(objects, &n->total_objects);
0f389ec6
CL
1044}
1045
1046/* Object debug checks for alloc/free paths */
3ec09742
CL
1047static void setup_object_debug(struct kmem_cache *s, struct page *page,
1048 void *object)
1049{
1050 if (!(s->flags & (SLAB_STORE_USER|SLAB_RED_ZONE|__OBJECT_POISON)))
1051 return;
1052
f7cb1933 1053 init_object(s, object, SLUB_RED_INACTIVE);
3ec09742
CL
1054 init_tracking(s, object);
1055}
1056
becfda68 1057static inline int alloc_consistency_checks(struct kmem_cache *s,
d0e0ac97 1058 struct page *page,
ce71e27c 1059 void *object, unsigned long addr)
81819f0f
CL
1060{
1061 if (!check_slab(s, page))
becfda68 1062 return 0;
81819f0f 1063
81819f0f
CL
1064 if (!check_valid_pointer(s, page, object)) {
1065 object_err(s, page, object, "Freelist Pointer check fails");
becfda68 1066 return 0;
81819f0f
CL
1067 }
1068
f7cb1933 1069 if (!check_object(s, page, object, SLUB_RED_INACTIVE))
becfda68
LA
1070 return 0;
1071
1072 return 1;
1073}
1074
1075static noinline int alloc_debug_processing(struct kmem_cache *s,
1076 struct page *page,
1077 void *object, unsigned long addr)
1078{
1079 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1080 if (!alloc_consistency_checks(s, page, object, addr))
1081 goto bad;
1082 }
81819f0f 1083
3ec09742
CL
1084 /* Success perform special debug activities for allocs */
1085 if (s->flags & SLAB_STORE_USER)
1086 set_track(s, object, TRACK_ALLOC, addr);
1087 trace(s, page, object, 1);
f7cb1933 1088 init_object(s, object, SLUB_RED_ACTIVE);
81819f0f 1089 return 1;
3ec09742 1090
81819f0f
CL
1091bad:
1092 if (PageSlab(page)) {
1093 /*
1094 * If this is a slab page then lets do the best we can
1095 * to avoid issues in the future. Marking all objects
672bba3a 1096 * as used avoids touching the remaining objects.
81819f0f 1097 */
24922684 1098 slab_fix(s, "Marking all objects used");
39b26464 1099 page->inuse = page->objects;
a973e9dd 1100 page->freelist = NULL;
81819f0f
CL
1101 }
1102 return 0;
1103}
1104
becfda68
LA
1105static inline int free_consistency_checks(struct kmem_cache *s,
1106 struct page *page, void *object, unsigned long addr)
81819f0f 1107{
81819f0f 1108 if (!check_valid_pointer(s, page, object)) {
70d71228 1109 slab_err(s, page, "Invalid object pointer 0x%p", object);
becfda68 1110 return 0;
81819f0f
CL
1111 }
1112
1113 if (on_freelist(s, page, object)) {
24922684 1114 object_err(s, page, object, "Object already free");
becfda68 1115 return 0;
81819f0f
CL
1116 }
1117
f7cb1933 1118 if (!check_object(s, page, object, SLUB_RED_ACTIVE))
becfda68 1119 return 0;
81819f0f 1120
1b4f59e3 1121 if (unlikely(s != page->slab_cache)) {
3adbefee 1122 if (!PageSlab(page)) {
756a025f
JP
1123 slab_err(s, page, "Attempt to free object(0x%p) outside of slab",
1124 object);
1b4f59e3 1125 } else if (!page->slab_cache) {
f9f58285
FF
1126 pr_err("SLUB <none>: no slab for object 0x%p.\n",
1127 object);
70d71228 1128 dump_stack();
06428780 1129 } else
24922684
CL
1130 object_err(s, page, object,
1131 "page slab pointer corrupt.");
becfda68
LA
1132 return 0;
1133 }
1134 return 1;
1135}
1136
1137/* Supports checking bulk free of a constructed freelist */
1138static noinline int free_debug_processing(
1139 struct kmem_cache *s, struct page *page,
1140 void *head, void *tail, int bulk_cnt,
1141 unsigned long addr)
1142{
1143 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
1144 void *object = head;
1145 int cnt = 0;
1146 unsigned long uninitialized_var(flags);
1147 int ret = 0;
1148
1149 spin_lock_irqsave(&n->list_lock, flags);
1150 slab_lock(page);
1151
1152 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1153 if (!check_slab(s, page))
1154 goto out;
1155 }
1156
1157next_object:
1158 cnt++;
1159
1160 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
1161 if (!free_consistency_checks(s, page, object, addr))
1162 goto out;
81819f0f 1163 }
3ec09742 1164
3ec09742
CL
1165 if (s->flags & SLAB_STORE_USER)
1166 set_track(s, object, TRACK_FREE, addr);
1167 trace(s, page, object, 0);
81084651 1168 /* Freepointer not overwritten by init_object(), SLAB_POISON moved it */
f7cb1933 1169 init_object(s, object, SLUB_RED_INACTIVE);
81084651
JDB
1170
1171 /* Reached end of constructed freelist yet? */
1172 if (object != tail) {
1173 object = get_freepointer(s, object);
1174 goto next_object;
1175 }
804aa132
LA
1176 ret = 1;
1177
5c2e4bbb 1178out:
81084651
JDB
1179 if (cnt != bulk_cnt)
1180 slab_err(s, page, "Bulk freelist count(%d) invalid(%d)\n",
1181 bulk_cnt, cnt);
1182
881db7fb 1183 slab_unlock(page);
282acb43 1184 spin_unlock_irqrestore(&n->list_lock, flags);
804aa132
LA
1185 if (!ret)
1186 slab_fix(s, "Object at 0x%p not freed", object);
1187 return ret;
81819f0f
CL
1188}
1189
41ecc55b
CL
1190static int __init setup_slub_debug(char *str)
1191{
f0630fff
CL
1192 slub_debug = DEBUG_DEFAULT_FLAGS;
1193 if (*str++ != '=' || !*str)
1194 /*
1195 * No options specified. Switch on full debugging.
1196 */
1197 goto out;
1198
1199 if (*str == ',')
1200 /*
1201 * No options but restriction on slabs. This means full
1202 * debugging for slabs matching a pattern.
1203 */
1204 goto check_slabs;
1205
1206 slub_debug = 0;
1207 if (*str == '-')
1208 /*
1209 * Switch off all debugging measures.
1210 */
1211 goto out;
1212
1213 /*
1214 * Determine which debug features should be switched on
1215 */
06428780 1216 for (; *str && *str != ','; str++) {
f0630fff
CL
1217 switch (tolower(*str)) {
1218 case 'f':
becfda68 1219 slub_debug |= SLAB_CONSISTENCY_CHECKS;
f0630fff
CL
1220 break;
1221 case 'z':
1222 slub_debug |= SLAB_RED_ZONE;
1223 break;
1224 case 'p':
1225 slub_debug |= SLAB_POISON;
1226 break;
1227 case 'u':
1228 slub_debug |= SLAB_STORE_USER;
1229 break;
1230 case 't':
1231 slub_debug |= SLAB_TRACE;
1232 break;
4c13dd3b
DM
1233 case 'a':
1234 slub_debug |= SLAB_FAILSLAB;
1235 break;
08303a73
CA
1236 case 'o':
1237 /*
1238 * Avoid enabling debugging on caches if its minimum
1239 * order would increase as a result.
1240 */
1241 disable_higher_order_debug = 1;
1242 break;
f0630fff 1243 default:
f9f58285
FF
1244 pr_err("slub_debug option '%c' unknown. skipped\n",
1245 *str);
f0630fff 1246 }
41ecc55b
CL
1247 }
1248
f0630fff 1249check_slabs:
41ecc55b
CL
1250 if (*str == ',')
1251 slub_debug_slabs = str + 1;
f0630fff 1252out:
41ecc55b
CL
1253 return 1;
1254}
1255
1256__setup("slub_debug", setup_slub_debug);
1257
423c929c 1258unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1259 unsigned long flags, const char *name,
51cc5068 1260 void (*ctor)(void *))
41ecc55b
CL
1261{
1262 /*
e153362a 1263 * Enable debugging if selected on the kernel commandline.
41ecc55b 1264 */
c6f58d9b
CL
1265 if (slub_debug && (!slub_debug_slabs || (name &&
1266 !strncmp(slub_debug_slabs, name, strlen(slub_debug_slabs)))))
3de47213 1267 flags |= slub_debug;
ba0268a8
CL
1268
1269 return flags;
41ecc55b 1270}
b4a64718 1271#else /* !CONFIG_SLUB_DEBUG */
3ec09742
CL
1272static inline void setup_object_debug(struct kmem_cache *s,
1273 struct page *page, void *object) {}
41ecc55b 1274
3ec09742 1275static inline int alloc_debug_processing(struct kmem_cache *s,
ce71e27c 1276 struct page *page, void *object, unsigned long addr) { return 0; }
41ecc55b 1277
282acb43 1278static inline int free_debug_processing(
81084651
JDB
1279 struct kmem_cache *s, struct page *page,
1280 void *head, void *tail, int bulk_cnt,
282acb43 1281 unsigned long addr) { return 0; }
41ecc55b 1282
41ecc55b
CL
1283static inline int slab_pad_check(struct kmem_cache *s, struct page *page)
1284 { return 1; }
1285static inline int check_object(struct kmem_cache *s, struct page *page,
f7cb1933 1286 void *object, u8 val) { return 1; }
5cc6eee8
CL
1287static inline void add_full(struct kmem_cache *s, struct kmem_cache_node *n,
1288 struct page *page) {}
c65c1877
PZ
1289static inline void remove_full(struct kmem_cache *s, struct kmem_cache_node *n,
1290 struct page *page) {}
423c929c 1291unsigned long kmem_cache_flags(unsigned long object_size,
ba0268a8 1292 unsigned long flags, const char *name,
51cc5068 1293 void (*ctor)(void *))
ba0268a8
CL
1294{
1295 return flags;
1296}
41ecc55b 1297#define slub_debug 0
0f389ec6 1298
fdaa45e9
IM
1299#define disable_higher_order_debug 0
1300
0f389ec6
CL
1301static inline unsigned long slabs_node(struct kmem_cache *s, int node)
1302 { return 0; }
26c02cf0
AB
1303static inline unsigned long node_nr_slabs(struct kmem_cache_node *n)
1304 { return 0; }
205ab99d
CL
1305static inline void inc_slabs_node(struct kmem_cache *s, int node,
1306 int objects) {}
1307static inline void dec_slabs_node(struct kmem_cache *s, int node,
1308 int objects) {}
7d550c56 1309
02e72cc6
AR
1310#endif /* CONFIG_SLUB_DEBUG */
1311
1312/*
1313 * Hooks for other subsystems that check memory allocations. In a typical
1314 * production configuration these hooks all should produce no code at all.
1315 */
d56791b3
RB
1316static inline void kmalloc_large_node_hook(void *ptr, size_t size, gfp_t flags)
1317{
1318 kmemleak_alloc(ptr, size, 1, flags);
505f5dcb 1319 kasan_kmalloc_large(ptr, size, flags);
d56791b3
RB
1320}
1321
1322static inline void kfree_hook(const void *x)
1323{
1324 kmemleak_free(x);
0316bec2 1325 kasan_kfree_large(x);
d56791b3
RB
1326}
1327
80a9201a 1328static inline void *slab_free_hook(struct kmem_cache *s, void *x)
d56791b3 1329{
80a9201a
AP
1330 void *freeptr;
1331
d56791b3 1332 kmemleak_free_recursive(x, s->flags);
7d550c56 1333
02e72cc6
AR
1334 /*
1335 * Trouble is that we may no longer disable interrupts in the fast path
1336 * So in order to make the debug calls that expect irqs to be
1337 * disabled we need to disable interrupts temporarily.
1338 */
1339#if defined(CONFIG_KMEMCHECK) || defined(CONFIG_LOCKDEP)
1340 {
1341 unsigned long flags;
1342
1343 local_irq_save(flags);
1344 kmemcheck_slab_free(s, x, s->object_size);
1345 debug_check_no_locks_freed(x, s->object_size);
1346 local_irq_restore(flags);
1347 }
1348#endif
1349 if (!(s->flags & SLAB_DEBUG_OBJECTS))
1350 debug_check_no_obj_freed(x, s->object_size);
0316bec2 1351
80a9201a
AP
1352 freeptr = get_freepointer(s, x);
1353 /*
1354 * kasan_slab_free() may put x into memory quarantine, delaying its
1355 * reuse. In this case the object's freelist pointer is changed.
1356 */
0316bec2 1357 kasan_slab_free(s, x);
80a9201a 1358 return freeptr;
02e72cc6 1359}
205ab99d 1360
81084651
JDB
1361static inline void slab_free_freelist_hook(struct kmem_cache *s,
1362 void *head, void *tail)
1363{
1364/*
1365 * Compiler cannot detect this function can be removed if slab_free_hook()
1366 * evaluates to nothing. Thus, catch all relevant config debug options here.
1367 */
1368#if defined(CONFIG_KMEMCHECK) || \
1369 defined(CONFIG_LOCKDEP) || \
1370 defined(CONFIG_DEBUG_KMEMLEAK) || \
1371 defined(CONFIG_DEBUG_OBJECTS_FREE) || \
1372 defined(CONFIG_KASAN)
1373
1374 void *object = head;
1375 void *tail_obj = tail ? : head;
80a9201a 1376 void *freeptr;
81084651
JDB
1377
1378 do {
80a9201a
AP
1379 freeptr = slab_free_hook(s, object);
1380 } while ((object != tail_obj) && (object = freeptr));
81084651
JDB
1381#endif
1382}
1383
588f8ba9
TG
1384static void setup_object(struct kmem_cache *s, struct page *page,
1385 void *object)
1386{
1387 setup_object_debug(s, page, object);
b3cbd9bf 1388 kasan_init_slab_obj(s, object);
588f8ba9
TG
1389 if (unlikely(s->ctor)) {
1390 kasan_unpoison_object_data(s, object);
1391 s->ctor(object);
1392 kasan_poison_object_data(s, object);
1393 }
1394}
1395
81819f0f
CL
1396/*
1397 * Slab allocation and freeing
1398 */
5dfb4175
VD
1399static inline struct page *alloc_slab_page(struct kmem_cache *s,
1400 gfp_t flags, int node, struct kmem_cache_order_objects oo)
65c3376a 1401{
5dfb4175 1402 struct page *page;
65c3376a
CL
1403 int order = oo_order(oo);
1404
b1eeab67
VN
1405 flags |= __GFP_NOTRACK;
1406
2154a336 1407 if (node == NUMA_NO_NODE)
5dfb4175 1408 page = alloc_pages(flags, order);
65c3376a 1409 else
96db800f 1410 page = __alloc_pages_node(node, flags, order);
5dfb4175 1411
f3ccb2c4
VD
1412 if (page && memcg_charge_slab(page, flags, order, s)) {
1413 __free_pages(page, order);
1414 page = NULL;
1415 }
5dfb4175
VD
1416
1417 return page;
65c3376a
CL
1418}
1419
210e7a43
TG
1420#ifdef CONFIG_SLAB_FREELIST_RANDOM
1421/* Pre-initialize the random sequence cache */
1422static int init_cache_random_seq(struct kmem_cache *s)
1423{
1424 int err;
1425 unsigned long i, count = oo_objects(s->oo);
1426
a810007a
SR
1427 /* Bailout if already initialised */
1428 if (s->random_seq)
1429 return 0;
1430
210e7a43
TG
1431 err = cache_random_seq_create(s, count, GFP_KERNEL);
1432 if (err) {
1433 pr_err("SLUB: Unable to initialize free list for %s\n",
1434 s->name);
1435 return err;
1436 }
1437
1438 /* Transform to an offset on the set of pages */
1439 if (s->random_seq) {
1440 for (i = 0; i < count; i++)
1441 s->random_seq[i] *= s->size;
1442 }
1443 return 0;
1444}
1445
1446/* Initialize each random sequence freelist per cache */
1447static void __init init_freelist_randomization(void)
1448{
1449 struct kmem_cache *s;
1450
1451 mutex_lock(&slab_mutex);
1452
1453 list_for_each_entry(s, &slab_caches, list)
1454 init_cache_random_seq(s);
1455
1456 mutex_unlock(&slab_mutex);
1457}
1458
1459/* Get the next entry on the pre-computed freelist randomized */
1460static void *next_freelist_entry(struct kmem_cache *s, struct page *page,
1461 unsigned long *pos, void *start,
1462 unsigned long page_limit,
1463 unsigned long freelist_count)
1464{
1465 unsigned int idx;
1466
1467 /*
1468 * If the target page allocation failed, the number of objects on the
1469 * page might be smaller than the usual size defined by the cache.
1470 */
1471 do {
1472 idx = s->random_seq[*pos];
1473 *pos += 1;
1474 if (*pos >= freelist_count)
1475 *pos = 0;
1476 } while (unlikely(idx >= page_limit));
1477
1478 return (char *)start + idx;
1479}
1480
1481/* Shuffle the single linked freelist based on a random pre-computed sequence */
1482static bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1483{
1484 void *start;
1485 void *cur;
1486 void *next;
1487 unsigned long idx, pos, page_limit, freelist_count;
1488
1489 if (page->objects < 2 || !s->random_seq)
1490 return false;
1491
1492 freelist_count = oo_objects(s->oo);
1493 pos = get_random_int() % freelist_count;
1494
1495 page_limit = page->objects * s->size;
1496 start = fixup_red_left(s, page_address(page));
1497
1498 /* First entry is used as the base of the freelist */
1499 cur = next_freelist_entry(s, page, &pos, start, page_limit,
1500 freelist_count);
1501 page->freelist = cur;
1502
1503 for (idx = 1; idx < page->objects; idx++) {
1504 setup_object(s, page, cur);
1505 next = next_freelist_entry(s, page, &pos, start, page_limit,
1506 freelist_count);
1507 set_freepointer(s, cur, next);
1508 cur = next;
1509 }
1510 setup_object(s, page, cur);
1511 set_freepointer(s, cur, NULL);
1512
1513 return true;
1514}
1515#else
1516static inline int init_cache_random_seq(struct kmem_cache *s)
1517{
1518 return 0;
1519}
1520static inline void init_freelist_randomization(void) { }
1521static inline bool shuffle_freelist(struct kmem_cache *s, struct page *page)
1522{
1523 return false;
1524}
1525#endif /* CONFIG_SLAB_FREELIST_RANDOM */
1526
81819f0f
CL
1527static struct page *allocate_slab(struct kmem_cache *s, gfp_t flags, int node)
1528{
06428780 1529 struct page *page;
834f3d11 1530 struct kmem_cache_order_objects oo = s->oo;
ba52270d 1531 gfp_t alloc_gfp;
588f8ba9
TG
1532 void *start, *p;
1533 int idx, order;
210e7a43 1534 bool shuffle;
81819f0f 1535
7e0528da
CL
1536 flags &= gfp_allowed_mask;
1537
d0164adc 1538 if (gfpflags_allow_blocking(flags))
7e0528da
CL
1539 local_irq_enable();
1540
b7a49f0d 1541 flags |= s->allocflags;
e12ba74d 1542
ba52270d
PE
1543 /*
1544 * Let the initial higher-order allocation fail under memory pressure
1545 * so we fall-back to the minimum order allocation.
1546 */
1547 alloc_gfp = (flags | __GFP_NOWARN | __GFP_NORETRY) & ~__GFP_NOFAIL;
d0164adc 1548 if ((alloc_gfp & __GFP_DIRECT_RECLAIM) && oo_order(oo) > oo_order(s->min))
444eb2a4 1549 alloc_gfp = (alloc_gfp | __GFP_NOMEMALLOC) & ~(__GFP_RECLAIM|__GFP_NOFAIL);
ba52270d 1550
5dfb4175 1551 page = alloc_slab_page(s, alloc_gfp, node, oo);
65c3376a
CL
1552 if (unlikely(!page)) {
1553 oo = s->min;
80c3a998 1554 alloc_gfp = flags;
65c3376a
CL
1555 /*
1556 * Allocation may have failed due to fragmentation.
1557 * Try a lower order alloc if possible
1558 */
5dfb4175 1559 page = alloc_slab_page(s, alloc_gfp, node, oo);
588f8ba9
TG
1560 if (unlikely(!page))
1561 goto out;
1562 stat(s, ORDER_FALLBACK);
65c3376a 1563 }
5a896d9e 1564
588f8ba9
TG
1565 if (kmemcheck_enabled &&
1566 !(s->flags & (SLAB_NOTRACK | DEBUG_DEFAULT_FLAGS))) {
b1eeab67
VN
1567 int pages = 1 << oo_order(oo);
1568
80c3a998 1569 kmemcheck_alloc_shadow(page, oo_order(oo), alloc_gfp, node);
b1eeab67
VN
1570
1571 /*
1572 * Objects from caches that have a constructor don't get
1573 * cleared when they're allocated, so we need to do it here.
1574 */
1575 if (s->ctor)
1576 kmemcheck_mark_uninitialized_pages(page, pages);
1577 else
1578 kmemcheck_mark_unallocated_pages(page, pages);
5a896d9e
VN
1579 }
1580
834f3d11 1581 page->objects = oo_objects(oo);
81819f0f 1582
1f458cbf 1583 order = compound_order(page);
1b4f59e3 1584 page->slab_cache = s;
c03f94cc 1585 __SetPageSlab(page);
2f064f34 1586 if (page_is_pfmemalloc(page))
072bb0aa 1587 SetPageSlabPfmemalloc(page);
81819f0f
CL
1588
1589 start = page_address(page);
81819f0f
CL
1590
1591 if (unlikely(s->flags & SLAB_POISON))
1f458cbf 1592 memset(start, POISON_INUSE, PAGE_SIZE << order);
81819f0f 1593
0316bec2
AR
1594 kasan_poison_slab(page);
1595
210e7a43
TG
1596 shuffle = shuffle_freelist(s, page);
1597
1598 if (!shuffle) {
1599 for_each_object_idx(p, idx, s, start, page->objects) {
1600 setup_object(s, page, p);
1601 if (likely(idx < page->objects))
1602 set_freepointer(s, p, p + s->size);
1603 else
1604 set_freepointer(s, p, NULL);
1605 }
1606 page->freelist = fixup_red_left(s, start);
81819f0f 1607 }
81819f0f 1608
e6e82ea1 1609 page->inuse = page->objects;
8cb0a506 1610 page->frozen = 1;
588f8ba9 1611
81819f0f 1612out:
d0164adc 1613 if (gfpflags_allow_blocking(flags))
588f8ba9
TG
1614 local_irq_disable();
1615 if (!page)
1616 return NULL;
1617
7779f212 1618 mod_lruvec_page_state(page,
588f8ba9
TG
1619 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1620 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
1621 1 << oo_order(oo));
1622
1623 inc_slabs_node(s, page_to_nid(page), page->objects);
1624
81819f0f
CL
1625 return page;
1626}
1627
588f8ba9
TG
1628static struct page *new_slab(struct kmem_cache *s, gfp_t flags, int node)
1629{
1630 if (unlikely(flags & GFP_SLAB_BUG_MASK)) {
bacdcb34 1631 gfp_t invalid_mask = flags & GFP_SLAB_BUG_MASK;
72baeef0
MH
1632 flags &= ~GFP_SLAB_BUG_MASK;
1633 pr_warn("Unexpected gfp: %#x (%pGg). Fixing up to gfp: %#x (%pGg). Fix your code!\n",
1634 invalid_mask, &invalid_mask, flags, &flags);
65b9de75 1635 dump_stack();
588f8ba9
TG
1636 }
1637
1638 return allocate_slab(s,
1639 flags & (GFP_RECLAIM_MASK | GFP_CONSTRAINT_MASK), node);
1640}
1641
81819f0f
CL
1642static void __free_slab(struct kmem_cache *s, struct page *page)
1643{
834f3d11
CL
1644 int order = compound_order(page);
1645 int pages = 1 << order;
81819f0f 1646
becfda68 1647 if (s->flags & SLAB_CONSISTENCY_CHECKS) {
81819f0f
CL
1648 void *p;
1649
1650 slab_pad_check(s, page);
224a88be
CL
1651 for_each_object(p, s, page_address(page),
1652 page->objects)
f7cb1933 1653 check_object(s, page, p, SLUB_RED_INACTIVE);
81819f0f
CL
1654 }
1655
b1eeab67 1656 kmemcheck_free_shadow(page, compound_order(page));
5a896d9e 1657
7779f212 1658 mod_lruvec_page_state(page,
81819f0f
CL
1659 (s->flags & SLAB_RECLAIM_ACCOUNT) ?
1660 NR_SLAB_RECLAIMABLE : NR_SLAB_UNRECLAIMABLE,
06428780 1661 -pages);
81819f0f 1662
072bb0aa 1663 __ClearPageSlabPfmemalloc(page);
49bd5221 1664 __ClearPageSlab(page);
1f458cbf 1665
22b751c3 1666 page_mapcount_reset(page);
1eb5ac64
NP
1667 if (current->reclaim_state)
1668 current->reclaim_state->reclaimed_slab += pages;
27ee57c9
VD
1669 memcg_uncharge_slab(page, order, s);
1670 __free_pages(page, order);
81819f0f
CL
1671}
1672
da9a638c
LJ
1673#define need_reserve_slab_rcu \
1674 (sizeof(((struct page *)NULL)->lru) < sizeof(struct rcu_head))
1675
81819f0f
CL
1676static void rcu_free_slab(struct rcu_head *h)
1677{
1678 struct page *page;
1679
da9a638c
LJ
1680 if (need_reserve_slab_rcu)
1681 page = virt_to_head_page(h);
1682 else
1683 page = container_of((struct list_head *)h, struct page, lru);
1684
1b4f59e3 1685 __free_slab(page->slab_cache, page);
81819f0f
CL
1686}
1687
1688static void free_slab(struct kmem_cache *s, struct page *page)
1689{
5f0d5a3a 1690 if (unlikely(s->flags & SLAB_TYPESAFE_BY_RCU)) {
da9a638c
LJ
1691 struct rcu_head *head;
1692
1693 if (need_reserve_slab_rcu) {
1694 int order = compound_order(page);
1695 int offset = (PAGE_SIZE << order) - s->reserved;
1696
1697 VM_BUG_ON(s->reserved != sizeof(*head));
1698 head = page_address(page) + offset;
1699 } else {
bc4f610d 1700 head = &page->rcu_head;
da9a638c 1701 }
81819f0f
CL
1702
1703 call_rcu(head, rcu_free_slab);
1704 } else
1705 __free_slab(s, page);
1706}
1707
1708static void discard_slab(struct kmem_cache *s, struct page *page)
1709{
205ab99d 1710 dec_slabs_node(s, page_to_nid(page), page->objects);
81819f0f
CL
1711 free_slab(s, page);
1712}
1713
1714/*
5cc6eee8 1715 * Management of partially allocated slabs.
81819f0f 1716 */
1e4dd946
SR
1717static inline void
1718__add_partial(struct kmem_cache_node *n, struct page *page, int tail)
81819f0f 1719{
e95eed57 1720 n->nr_partial++;
136333d1 1721 if (tail == DEACTIVATE_TO_TAIL)
7c2e132c
CL
1722 list_add_tail(&page->lru, &n->partial);
1723 else
1724 list_add(&page->lru, &n->partial);
81819f0f
CL
1725}
1726
1e4dd946
SR
1727static inline void add_partial(struct kmem_cache_node *n,
1728 struct page *page, int tail)
62e346a8 1729{
c65c1877 1730 lockdep_assert_held(&n->list_lock);
1e4dd946
SR
1731 __add_partial(n, page, tail);
1732}
c65c1877 1733
1e4dd946
SR
1734static inline void remove_partial(struct kmem_cache_node *n,
1735 struct page *page)
1736{
1737 lockdep_assert_held(&n->list_lock);
52b4b950
DS
1738 list_del(&page->lru);
1739 n->nr_partial--;
1e4dd946
SR
1740}
1741
81819f0f 1742/*
7ced3719
CL
1743 * Remove slab from the partial list, freeze it and
1744 * return the pointer to the freelist.
81819f0f 1745 *
497b66f2 1746 * Returns a list of objects or NULL if it fails.
81819f0f 1747 */
497b66f2 1748static inline void *acquire_slab(struct kmem_cache *s,
acd19fd1 1749 struct kmem_cache_node *n, struct page *page,
633b0764 1750 int mode, int *objects)
81819f0f 1751{
2cfb7455
CL
1752 void *freelist;
1753 unsigned long counters;
1754 struct page new;
1755
c65c1877
PZ
1756 lockdep_assert_held(&n->list_lock);
1757
2cfb7455
CL
1758 /*
1759 * Zap the freelist and set the frozen bit.
1760 * The old freelist is the list of objects for the
1761 * per cpu allocation list.
1762 */
7ced3719
CL
1763 freelist = page->freelist;
1764 counters = page->counters;
1765 new.counters = counters;
633b0764 1766 *objects = new.objects - new.inuse;
23910c50 1767 if (mode) {
7ced3719 1768 new.inuse = page->objects;
23910c50
PE
1769 new.freelist = NULL;
1770 } else {
1771 new.freelist = freelist;
1772 }
2cfb7455 1773
a0132ac0 1774 VM_BUG_ON(new.frozen);
7ced3719 1775 new.frozen = 1;
2cfb7455 1776
7ced3719 1777 if (!__cmpxchg_double_slab(s, page,
2cfb7455 1778 freelist, counters,
02d7633f 1779 new.freelist, new.counters,
7ced3719 1780 "acquire_slab"))
7ced3719 1781 return NULL;
2cfb7455
CL
1782
1783 remove_partial(n, page);
7ced3719 1784 WARN_ON(!freelist);
49e22585 1785 return freelist;
81819f0f
CL
1786}
1787
633b0764 1788static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain);
8ba00bb6 1789static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags);
49e22585 1790
81819f0f 1791/*
672bba3a 1792 * Try to allocate a partial slab from a specific node.
81819f0f 1793 */
8ba00bb6
JK
1794static void *get_partial_node(struct kmem_cache *s, struct kmem_cache_node *n,
1795 struct kmem_cache_cpu *c, gfp_t flags)
81819f0f 1796{
49e22585
CL
1797 struct page *page, *page2;
1798 void *object = NULL;
633b0764
JK
1799 int available = 0;
1800 int objects;
81819f0f
CL
1801
1802 /*
1803 * Racy check. If we mistakenly see no partial slabs then we
1804 * just allocate an empty slab. If we mistakenly try to get a
672bba3a
CL
1805 * partial slab and there is none available then get_partials()
1806 * will return NULL.
81819f0f
CL
1807 */
1808 if (!n || !n->nr_partial)
1809 return NULL;
1810
1811 spin_lock(&n->list_lock);
49e22585 1812 list_for_each_entry_safe(page, page2, &n->partial, lru) {
8ba00bb6 1813 void *t;
49e22585 1814
8ba00bb6
JK
1815 if (!pfmemalloc_match(page, flags))
1816 continue;
1817
633b0764 1818 t = acquire_slab(s, n, page, object == NULL, &objects);
49e22585
CL
1819 if (!t)
1820 break;
1821
633b0764 1822 available += objects;
12d79634 1823 if (!object) {
49e22585 1824 c->page = page;
49e22585 1825 stat(s, ALLOC_FROM_PARTIAL);
49e22585 1826 object = t;
49e22585 1827 } else {
633b0764 1828 put_cpu_partial(s, page, 0);
8028dcea 1829 stat(s, CPU_PARTIAL_NODE);
49e22585 1830 }
345c905d 1831 if (!kmem_cache_has_cpu_partial(s)
e6d0e1dc 1832 || available > slub_cpu_partial(s) / 2)
49e22585
CL
1833 break;
1834
497b66f2 1835 }
81819f0f 1836 spin_unlock(&n->list_lock);
497b66f2 1837 return object;
81819f0f
CL
1838}
1839
1840/*
672bba3a 1841 * Get a page from somewhere. Search in increasing NUMA distances.
81819f0f 1842 */
de3ec035 1843static void *get_any_partial(struct kmem_cache *s, gfp_t flags,
acd19fd1 1844 struct kmem_cache_cpu *c)
81819f0f
CL
1845{
1846#ifdef CONFIG_NUMA
1847 struct zonelist *zonelist;
dd1a239f 1848 struct zoneref *z;
54a6eb5c
MG
1849 struct zone *zone;
1850 enum zone_type high_zoneidx = gfp_zone(flags);
497b66f2 1851 void *object;
cc9a6c87 1852 unsigned int cpuset_mems_cookie;
81819f0f
CL
1853
1854 /*
672bba3a
CL
1855 * The defrag ratio allows a configuration of the tradeoffs between
1856 * inter node defragmentation and node local allocations. A lower
1857 * defrag_ratio increases the tendency to do local allocations
1858 * instead of attempting to obtain partial slabs from other nodes.
81819f0f 1859 *
672bba3a
CL
1860 * If the defrag_ratio is set to 0 then kmalloc() always
1861 * returns node local objects. If the ratio is higher then kmalloc()
1862 * may return off node objects because partial slabs are obtained
1863 * from other nodes and filled up.
81819f0f 1864 *
43efd3ea
LP
1865 * If /sys/kernel/slab/xx/remote_node_defrag_ratio is set to 100
1866 * (which makes defrag_ratio = 1000) then every (well almost)
1867 * allocation will first attempt to defrag slab caches on other nodes.
1868 * This means scanning over all nodes to look for partial slabs which
1869 * may be expensive if we do it every time we are trying to find a slab
672bba3a 1870 * with available objects.
81819f0f 1871 */
9824601e
CL
1872 if (!s->remote_node_defrag_ratio ||
1873 get_cycles() % 1024 > s->remote_node_defrag_ratio)
81819f0f
CL
1874 return NULL;
1875
cc9a6c87 1876 do {
d26914d1 1877 cpuset_mems_cookie = read_mems_allowed_begin();
2a389610 1878 zonelist = node_zonelist(mempolicy_slab_node(), flags);
cc9a6c87
MG
1879 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx) {
1880 struct kmem_cache_node *n;
1881
1882 n = get_node(s, zone_to_nid(zone));
1883
dee2f8aa 1884 if (n && cpuset_zone_allowed(zone, flags) &&
cc9a6c87 1885 n->nr_partial > s->min_partial) {
8ba00bb6 1886 object = get_partial_node(s, n, c, flags);
cc9a6c87
MG
1887 if (object) {
1888 /*
d26914d1
MG
1889 * Don't check read_mems_allowed_retry()
1890 * here - if mems_allowed was updated in
1891 * parallel, that was a harmless race
1892 * between allocation and the cpuset
1893 * update
cc9a6c87 1894 */
cc9a6c87
MG
1895 return object;
1896 }
c0ff7453 1897 }
81819f0f 1898 }
d26914d1 1899 } while (read_mems_allowed_retry(cpuset_mems_cookie));
81819f0f
CL
1900#endif
1901 return NULL;
1902}
1903
1904/*
1905 * Get a partial page, lock it and return it.
1906 */
497b66f2 1907static void *get_partial(struct kmem_cache *s, gfp_t flags, int node,
acd19fd1 1908 struct kmem_cache_cpu *c)
81819f0f 1909{
497b66f2 1910 void *object;
a561ce00
JK
1911 int searchnode = node;
1912
1913 if (node == NUMA_NO_NODE)
1914 searchnode = numa_mem_id();
1915 else if (!node_present_pages(node))
1916 searchnode = node_to_mem_node(node);
81819f0f 1917
8ba00bb6 1918 object = get_partial_node(s, get_node(s, searchnode), c, flags);
497b66f2
CL
1919 if (object || node != NUMA_NO_NODE)
1920 return object;
81819f0f 1921
acd19fd1 1922 return get_any_partial(s, flags, c);
81819f0f
CL
1923}
1924
8a5ec0ba
CL
1925#ifdef CONFIG_PREEMPT
1926/*
1927 * Calculate the next globally unique transaction for disambiguiation
1928 * during cmpxchg. The transactions start with the cpu number and are then
1929 * incremented by CONFIG_NR_CPUS.
1930 */
1931#define TID_STEP roundup_pow_of_two(CONFIG_NR_CPUS)
1932#else
1933/*
1934 * No preemption supported therefore also no need to check for
1935 * different cpus.
1936 */
1937#define TID_STEP 1
1938#endif
1939
1940static inline unsigned long next_tid(unsigned long tid)
1941{
1942 return tid + TID_STEP;
1943}
1944
1945static inline unsigned int tid_to_cpu(unsigned long tid)
1946{
1947 return tid % TID_STEP;
1948}
1949
1950static inline unsigned long tid_to_event(unsigned long tid)
1951{
1952 return tid / TID_STEP;
1953}
1954
1955static inline unsigned int init_tid(int cpu)
1956{
1957 return cpu;
1958}
1959
1960static inline void note_cmpxchg_failure(const char *n,
1961 const struct kmem_cache *s, unsigned long tid)
1962{
1963#ifdef SLUB_DEBUG_CMPXCHG
1964 unsigned long actual_tid = __this_cpu_read(s->cpu_slab->tid);
1965
f9f58285 1966 pr_info("%s %s: cmpxchg redo ", n, s->name);
8a5ec0ba
CL
1967
1968#ifdef CONFIG_PREEMPT
1969 if (tid_to_cpu(tid) != tid_to_cpu(actual_tid))
f9f58285 1970 pr_warn("due to cpu change %d -> %d\n",
8a5ec0ba
CL
1971 tid_to_cpu(tid), tid_to_cpu(actual_tid));
1972 else
1973#endif
1974 if (tid_to_event(tid) != tid_to_event(actual_tid))
f9f58285 1975 pr_warn("due to cpu running other code. Event %ld->%ld\n",
8a5ec0ba
CL
1976 tid_to_event(tid), tid_to_event(actual_tid));
1977 else
f9f58285 1978 pr_warn("for unknown reason: actual=%lx was=%lx target=%lx\n",
8a5ec0ba
CL
1979 actual_tid, tid, next_tid(tid));
1980#endif
4fdccdfb 1981 stat(s, CMPXCHG_DOUBLE_CPU_FAIL);
8a5ec0ba
CL
1982}
1983
788e1aad 1984static void init_kmem_cache_cpus(struct kmem_cache *s)
8a5ec0ba 1985{
8a5ec0ba
CL
1986 int cpu;
1987
1988 for_each_possible_cpu(cpu)
1989 per_cpu_ptr(s->cpu_slab, cpu)->tid = init_tid(cpu);
8a5ec0ba 1990}
2cfb7455 1991
81819f0f
CL
1992/*
1993 * Remove the cpu slab
1994 */
d0e0ac97 1995static void deactivate_slab(struct kmem_cache *s, struct page *page,
d4ff6d35 1996 void *freelist, struct kmem_cache_cpu *c)
81819f0f 1997{
2cfb7455 1998 enum slab_modes { M_NONE, M_PARTIAL, M_FULL, M_FREE };
2cfb7455
CL
1999 struct kmem_cache_node *n = get_node(s, page_to_nid(page));
2000 int lock = 0;
2001 enum slab_modes l = M_NONE, m = M_NONE;
2cfb7455 2002 void *nextfree;
136333d1 2003 int tail = DEACTIVATE_TO_HEAD;
2cfb7455
CL
2004 struct page new;
2005 struct page old;
2006
2007 if (page->freelist) {
84e554e6 2008 stat(s, DEACTIVATE_REMOTE_FREES);
136333d1 2009 tail = DEACTIVATE_TO_TAIL;
2cfb7455
CL
2010 }
2011
894b8788 2012 /*
2cfb7455
CL
2013 * Stage one: Free all available per cpu objects back
2014 * to the page freelist while it is still frozen. Leave the
2015 * last one.
2016 *
2017 * There is no need to take the list->lock because the page
2018 * is still frozen.
2019 */
2020 while (freelist && (nextfree = get_freepointer(s, freelist))) {
2021 void *prior;
2022 unsigned long counters;
2023
2024 do {
2025 prior = page->freelist;
2026 counters = page->counters;
2027 set_freepointer(s, freelist, prior);
2028 new.counters = counters;
2029 new.inuse--;
a0132ac0 2030 VM_BUG_ON(!new.frozen);
2cfb7455 2031
1d07171c 2032 } while (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2033 prior, counters,
2034 freelist, new.counters,
2035 "drain percpu freelist"));
2036
2037 freelist = nextfree;
2038 }
2039
894b8788 2040 /*
2cfb7455
CL
2041 * Stage two: Ensure that the page is unfrozen while the
2042 * list presence reflects the actual number of objects
2043 * during unfreeze.
2044 *
2045 * We setup the list membership and then perform a cmpxchg
2046 * with the count. If there is a mismatch then the page
2047 * is not unfrozen but the page is on the wrong list.
2048 *
2049 * Then we restart the process which may have to remove
2050 * the page from the list that we just put it on again
2051 * because the number of objects in the slab may have
2052 * changed.
894b8788 2053 */
2cfb7455 2054redo:
894b8788 2055
2cfb7455
CL
2056 old.freelist = page->freelist;
2057 old.counters = page->counters;
a0132ac0 2058 VM_BUG_ON(!old.frozen);
7c2e132c 2059
2cfb7455
CL
2060 /* Determine target state of the slab */
2061 new.counters = old.counters;
2062 if (freelist) {
2063 new.inuse--;
2064 set_freepointer(s, freelist, old.freelist);
2065 new.freelist = freelist;
2066 } else
2067 new.freelist = old.freelist;
2068
2069 new.frozen = 0;
2070
8a5b20ae 2071 if (!new.inuse && n->nr_partial >= s->min_partial)
2cfb7455
CL
2072 m = M_FREE;
2073 else if (new.freelist) {
2074 m = M_PARTIAL;
2075 if (!lock) {
2076 lock = 1;
2077 /*
2078 * Taking the spinlock removes the possiblity
2079 * that acquire_slab() will see a slab page that
2080 * is frozen
2081 */
2082 spin_lock(&n->list_lock);
2083 }
2084 } else {
2085 m = M_FULL;
2086 if (kmem_cache_debug(s) && !lock) {
2087 lock = 1;
2088 /*
2089 * This also ensures that the scanning of full
2090 * slabs from diagnostic functions will not see
2091 * any frozen slabs.
2092 */
2093 spin_lock(&n->list_lock);
2094 }
2095 }
2096
2097 if (l != m) {
2098
2099 if (l == M_PARTIAL)
2100
2101 remove_partial(n, page);
2102
2103 else if (l == M_FULL)
894b8788 2104
c65c1877 2105 remove_full(s, n, page);
2cfb7455
CL
2106
2107 if (m == M_PARTIAL) {
2108
2109 add_partial(n, page, tail);
136333d1 2110 stat(s, tail);
2cfb7455
CL
2111
2112 } else if (m == M_FULL) {
894b8788 2113
2cfb7455
CL
2114 stat(s, DEACTIVATE_FULL);
2115 add_full(s, n, page);
2116
2117 }
2118 }
2119
2120 l = m;
1d07171c 2121 if (!__cmpxchg_double_slab(s, page,
2cfb7455
CL
2122 old.freelist, old.counters,
2123 new.freelist, new.counters,
2124 "unfreezing slab"))
2125 goto redo;
2126
2cfb7455
CL
2127 if (lock)
2128 spin_unlock(&n->list_lock);
2129
2130 if (m == M_FREE) {
2131 stat(s, DEACTIVATE_EMPTY);
2132 discard_slab(s, page);
2133 stat(s, FREE_SLAB);
894b8788 2134 }
d4ff6d35
WY
2135
2136 c->page = NULL;
2137 c->freelist = NULL;
81819f0f
CL
2138}
2139
d24ac77f
JK
2140/*
2141 * Unfreeze all the cpu partial slabs.
2142 *
59a09917
CL
2143 * This function must be called with interrupts disabled
2144 * for the cpu using c (or some other guarantee must be there
2145 * to guarantee no concurrent accesses).
d24ac77f 2146 */
59a09917
CL
2147static void unfreeze_partials(struct kmem_cache *s,
2148 struct kmem_cache_cpu *c)
49e22585 2149{
345c905d 2150#ifdef CONFIG_SLUB_CPU_PARTIAL
43d77867 2151 struct kmem_cache_node *n = NULL, *n2 = NULL;
9ada1934 2152 struct page *page, *discard_page = NULL;
49e22585
CL
2153
2154 while ((page = c->partial)) {
49e22585
CL
2155 struct page new;
2156 struct page old;
2157
2158 c->partial = page->next;
43d77867
JK
2159
2160 n2 = get_node(s, page_to_nid(page));
2161 if (n != n2) {
2162 if (n)
2163 spin_unlock(&n->list_lock);
2164
2165 n = n2;
2166 spin_lock(&n->list_lock);
2167 }
49e22585
CL
2168
2169 do {
2170
2171 old.freelist = page->freelist;
2172 old.counters = page->counters;
a0132ac0 2173 VM_BUG_ON(!old.frozen);
49e22585
CL
2174
2175 new.counters = old.counters;
2176 new.freelist = old.freelist;
2177
2178 new.frozen = 0;
2179
d24ac77f 2180 } while (!__cmpxchg_double_slab(s, page,
49e22585
CL
2181 old.freelist, old.counters,
2182 new.freelist, new.counters,
2183 "unfreezing slab"));
2184
8a5b20ae 2185 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial)) {
9ada1934
SL
2186 page->next = discard_page;
2187 discard_page = page;
43d77867
JK
2188 } else {
2189 add_partial(n, page, DEACTIVATE_TO_TAIL);
2190 stat(s, FREE_ADD_PARTIAL);
49e22585
CL
2191 }
2192 }
2193
2194 if (n)
2195 spin_unlock(&n->list_lock);
9ada1934
SL
2196
2197 while (discard_page) {
2198 page = discard_page;
2199 discard_page = discard_page->next;
2200
2201 stat(s, DEACTIVATE_EMPTY);
2202 discard_slab(s, page);
2203 stat(s, FREE_SLAB);
2204 }
345c905d 2205#endif
49e22585
CL
2206}
2207
2208/*
2209 * Put a page that was just frozen (in __slab_free) into a partial page
2210 * slot if available. This is done without interrupts disabled and without
2211 * preemption disabled. The cmpxchg is racy and may put the partial page
2212 * onto a random cpus partial slot.
2213 *
2214 * If we did not find a slot then simply move all the partials to the
2215 * per node partial list.
2216 */
633b0764 2217static void put_cpu_partial(struct kmem_cache *s, struct page *page, int drain)
49e22585 2218{
345c905d 2219#ifdef CONFIG_SLUB_CPU_PARTIAL
49e22585
CL
2220 struct page *oldpage;
2221 int pages;
2222 int pobjects;
2223
d6e0b7fa 2224 preempt_disable();
49e22585
CL
2225 do {
2226 pages = 0;
2227 pobjects = 0;
2228 oldpage = this_cpu_read(s->cpu_slab->partial);
2229
2230 if (oldpage) {
2231 pobjects = oldpage->pobjects;
2232 pages = oldpage->pages;
2233 if (drain && pobjects > s->cpu_partial) {
2234 unsigned long flags;
2235 /*
2236 * partial array is full. Move the existing
2237 * set to the per node partial list.
2238 */
2239 local_irq_save(flags);
59a09917 2240 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
49e22585 2241 local_irq_restore(flags);
e24fc410 2242 oldpage = NULL;
49e22585
CL
2243 pobjects = 0;
2244 pages = 0;
8028dcea 2245 stat(s, CPU_PARTIAL_DRAIN);
49e22585
CL
2246 }
2247 }
2248
2249 pages++;
2250 pobjects += page->objects - page->inuse;
2251
2252 page->pages = pages;
2253 page->pobjects = pobjects;
2254 page->next = oldpage;
2255
d0e0ac97
CG
2256 } while (this_cpu_cmpxchg(s->cpu_slab->partial, oldpage, page)
2257 != oldpage);
d6e0b7fa
VD
2258 if (unlikely(!s->cpu_partial)) {
2259 unsigned long flags;
2260
2261 local_irq_save(flags);
2262 unfreeze_partials(s, this_cpu_ptr(s->cpu_slab));
2263 local_irq_restore(flags);
2264 }
2265 preempt_enable();
345c905d 2266#endif
49e22585
CL
2267}
2268
dfb4f096 2269static inline void flush_slab(struct kmem_cache *s, struct kmem_cache_cpu *c)
81819f0f 2270{
84e554e6 2271 stat(s, CPUSLAB_FLUSH);
d4ff6d35 2272 deactivate_slab(s, c->page, c->freelist, c);
c17dda40
CL
2273
2274 c->tid = next_tid(c->tid);
81819f0f
CL
2275}
2276
2277/*
2278 * Flush cpu slab.
6446faa2 2279 *
81819f0f
CL
2280 * Called from IPI handler with interrupts disabled.
2281 */
0c710013 2282static inline void __flush_cpu_slab(struct kmem_cache *s, int cpu)
81819f0f 2283{
9dfc6e68 2284 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
81819f0f 2285
49e22585
CL
2286 if (likely(c)) {
2287 if (c->page)
2288 flush_slab(s, c);
2289
59a09917 2290 unfreeze_partials(s, c);
49e22585 2291 }
81819f0f
CL
2292}
2293
2294static void flush_cpu_slab(void *d)
2295{
2296 struct kmem_cache *s = d;
81819f0f 2297
dfb4f096 2298 __flush_cpu_slab(s, smp_processor_id());
81819f0f
CL
2299}
2300
a8364d55
GBY
2301static bool has_cpu_slab(int cpu, void *info)
2302{
2303 struct kmem_cache *s = info;
2304 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab, cpu);
2305
a93cf07b 2306 return c->page || slub_percpu_partial(c);
a8364d55
GBY
2307}
2308
81819f0f
CL
2309static void flush_all(struct kmem_cache *s)
2310{
a8364d55 2311 on_each_cpu_cond(has_cpu_slab, flush_cpu_slab, s, 1, GFP_ATOMIC);
81819f0f
CL
2312}
2313
a96a87bf
SAS
2314/*
2315 * Use the cpu notifier to insure that the cpu slabs are flushed when
2316 * necessary.
2317 */
2318static int slub_cpu_dead(unsigned int cpu)
2319{
2320 struct kmem_cache *s;
2321 unsigned long flags;
2322
2323 mutex_lock(&slab_mutex);
2324 list_for_each_entry(s, &slab_caches, list) {
2325 local_irq_save(flags);
2326 __flush_cpu_slab(s, cpu);
2327 local_irq_restore(flags);
2328 }
2329 mutex_unlock(&slab_mutex);
2330 return 0;
2331}
2332
dfb4f096
CL
2333/*
2334 * Check if the objects in a per cpu structure fit numa
2335 * locality expectations.
2336 */
57d437d2 2337static inline int node_match(struct page *page, int node)
dfb4f096
CL
2338{
2339#ifdef CONFIG_NUMA
4d7868e6 2340 if (!page || (node != NUMA_NO_NODE && page_to_nid(page) != node))
dfb4f096
CL
2341 return 0;
2342#endif
2343 return 1;
2344}
2345
9a02d699 2346#ifdef CONFIG_SLUB_DEBUG
781b2ba6
PE
2347static int count_free(struct page *page)
2348{
2349 return page->objects - page->inuse;
2350}
2351
9a02d699
DR
2352static inline unsigned long node_nr_objs(struct kmem_cache_node *n)
2353{
2354 return atomic_long_read(&n->total_objects);
2355}
2356#endif /* CONFIG_SLUB_DEBUG */
2357
2358#if defined(CONFIG_SLUB_DEBUG) || defined(CONFIG_SYSFS)
781b2ba6
PE
2359static unsigned long count_partial(struct kmem_cache_node *n,
2360 int (*get_count)(struct page *))
2361{
2362 unsigned long flags;
2363 unsigned long x = 0;
2364 struct page *page;
2365
2366 spin_lock_irqsave(&n->list_lock, flags);
2367 list_for_each_entry(page, &n->partial, lru)
2368 x += get_count(page);
2369 spin_unlock_irqrestore(&n->list_lock, flags);
2370 return x;
2371}
9a02d699 2372#endif /* CONFIG_SLUB_DEBUG || CONFIG_SYSFS */
26c02cf0 2373
781b2ba6
PE
2374static noinline void
2375slab_out_of_memory(struct kmem_cache *s, gfp_t gfpflags, int nid)
2376{
9a02d699
DR
2377#ifdef CONFIG_SLUB_DEBUG
2378 static DEFINE_RATELIMIT_STATE(slub_oom_rs, DEFAULT_RATELIMIT_INTERVAL,
2379 DEFAULT_RATELIMIT_BURST);
781b2ba6 2380 int node;
fa45dc25 2381 struct kmem_cache_node *n;
781b2ba6 2382
9a02d699
DR
2383 if ((gfpflags & __GFP_NOWARN) || !__ratelimit(&slub_oom_rs))
2384 return;
2385
5b3810e5
VB
2386 pr_warn("SLUB: Unable to allocate memory on node %d, gfp=%#x(%pGg)\n",
2387 nid, gfpflags, &gfpflags);
f9f58285
FF
2388 pr_warn(" cache: %s, object size: %d, buffer size: %d, default order: %d, min order: %d\n",
2389 s->name, s->object_size, s->size, oo_order(s->oo),
2390 oo_order(s->min));
781b2ba6 2391
3b0efdfa 2392 if (oo_order(s->min) > get_order(s->object_size))
f9f58285
FF
2393 pr_warn(" %s debugging increased min order, use slub_debug=O to disable.\n",
2394 s->name);
fa5ec8a1 2395
fa45dc25 2396 for_each_kmem_cache_node(s, node, n) {
781b2ba6
PE
2397 unsigned long nr_slabs;
2398 unsigned long nr_objs;
2399 unsigned long nr_free;
2400
26c02cf0
AB
2401 nr_free = count_partial(n, count_free);
2402 nr_slabs = node_nr_slabs(n);
2403 nr_objs = node_nr_objs(n);
781b2ba6 2404
f9f58285 2405 pr_warn(" node %d: slabs: %ld, objs: %ld, free: %ld\n",
781b2ba6
PE
2406 node, nr_slabs, nr_objs, nr_free);
2407 }
9a02d699 2408#endif
781b2ba6
PE
2409}
2410
497b66f2
CL
2411static inline void *new_slab_objects(struct kmem_cache *s, gfp_t flags,
2412 int node, struct kmem_cache_cpu **pc)
2413{
6faa6833 2414 void *freelist;
188fd063
CL
2415 struct kmem_cache_cpu *c = *pc;
2416 struct page *page;
497b66f2 2417
188fd063 2418 freelist = get_partial(s, flags, node, c);
497b66f2 2419
188fd063
CL
2420 if (freelist)
2421 return freelist;
2422
2423 page = new_slab(s, flags, node);
497b66f2 2424 if (page) {
7c8e0181 2425 c = raw_cpu_ptr(s->cpu_slab);
497b66f2
CL
2426 if (c->page)
2427 flush_slab(s, c);
2428
2429 /*
2430 * No other reference to the page yet so we can
2431 * muck around with it freely without cmpxchg
2432 */
6faa6833 2433 freelist = page->freelist;
497b66f2
CL
2434 page->freelist = NULL;
2435
2436 stat(s, ALLOC_SLAB);
497b66f2
CL
2437 c->page = page;
2438 *pc = c;
2439 } else
6faa6833 2440 freelist = NULL;
497b66f2 2441
6faa6833 2442 return freelist;
497b66f2
CL
2443}
2444
072bb0aa
MG
2445static inline bool pfmemalloc_match(struct page *page, gfp_t gfpflags)
2446{
2447 if (unlikely(PageSlabPfmemalloc(page)))
2448 return gfp_pfmemalloc_allowed(gfpflags);
2449
2450 return true;
2451}
2452
213eeb9f 2453/*
d0e0ac97
CG
2454 * Check the page->freelist of a page and either transfer the freelist to the
2455 * per cpu freelist or deactivate the page.
213eeb9f
CL
2456 *
2457 * The page is still frozen if the return value is not NULL.
2458 *
2459 * If this function returns NULL then the page has been unfrozen.
d24ac77f
JK
2460 *
2461 * This function must be called with interrupt disabled.
213eeb9f
CL
2462 */
2463static inline void *get_freelist(struct kmem_cache *s, struct page *page)
2464{
2465 struct page new;
2466 unsigned long counters;
2467 void *freelist;
2468
2469 do {
2470 freelist = page->freelist;
2471 counters = page->counters;
6faa6833 2472
213eeb9f 2473 new.counters = counters;
a0132ac0 2474 VM_BUG_ON(!new.frozen);
213eeb9f
CL
2475
2476 new.inuse = page->objects;
2477 new.frozen = freelist != NULL;
2478
d24ac77f 2479 } while (!__cmpxchg_double_slab(s, page,
213eeb9f
CL
2480 freelist, counters,
2481 NULL, new.counters,
2482 "get_freelist"));
2483
2484 return freelist;
2485}
2486
81819f0f 2487/*
894b8788
CL
2488 * Slow path. The lockless freelist is empty or we need to perform
2489 * debugging duties.
2490 *
894b8788
CL
2491 * Processing is still very fast if new objects have been freed to the
2492 * regular freelist. In that case we simply take over the regular freelist
2493 * as the lockless freelist and zap the regular freelist.
81819f0f 2494 *
894b8788
CL
2495 * If that is not working then we fall back to the partial lists. We take the
2496 * first element of the freelist as the object to allocate now and move the
2497 * rest of the freelist to the lockless freelist.
81819f0f 2498 *
894b8788 2499 * And if we were unable to get a new slab from the partial slab lists then
6446faa2
CL
2500 * we need to allocate a new slab. This is the slowest path since it involves
2501 * a call to the page allocator and the setup of a new slab.
a380a3c7
CL
2502 *
2503 * Version of __slab_alloc to use when we know that interrupts are
2504 * already disabled (which is the case for bulk allocation).
81819f0f 2505 */
a380a3c7 2506static void *___slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
ce71e27c 2507 unsigned long addr, struct kmem_cache_cpu *c)
81819f0f 2508{
6faa6833 2509 void *freelist;
f6e7def7 2510 struct page *page;
81819f0f 2511
f6e7def7
CL
2512 page = c->page;
2513 if (!page)
81819f0f 2514 goto new_slab;
49e22585 2515redo:
6faa6833 2516
57d437d2 2517 if (unlikely(!node_match(page, node))) {
a561ce00
JK
2518 int searchnode = node;
2519
2520 if (node != NUMA_NO_NODE && !node_present_pages(node))
2521 searchnode = node_to_mem_node(node);
2522
2523 if (unlikely(!node_match(page, searchnode))) {
2524 stat(s, ALLOC_NODE_MISMATCH);
d4ff6d35 2525 deactivate_slab(s, page, c->freelist, c);
a561ce00
JK
2526 goto new_slab;
2527 }
fc59c053 2528 }
6446faa2 2529
072bb0aa
MG
2530 /*
2531 * By rights, we should be searching for a slab page that was
2532 * PFMEMALLOC but right now, we are losing the pfmemalloc
2533 * information when the page leaves the per-cpu allocator
2534 */
2535 if (unlikely(!pfmemalloc_match(page, gfpflags))) {
d4ff6d35 2536 deactivate_slab(s, page, c->freelist, c);
072bb0aa
MG
2537 goto new_slab;
2538 }
2539
73736e03 2540 /* must check again c->freelist in case of cpu migration or IRQ */
6faa6833
CL
2541 freelist = c->freelist;
2542 if (freelist)
73736e03 2543 goto load_freelist;
03e404af 2544
f6e7def7 2545 freelist = get_freelist(s, page);
6446faa2 2546
6faa6833 2547 if (!freelist) {
03e404af
CL
2548 c->page = NULL;
2549 stat(s, DEACTIVATE_BYPASS);
fc59c053 2550 goto new_slab;
03e404af 2551 }
6446faa2 2552
84e554e6 2553 stat(s, ALLOC_REFILL);
6446faa2 2554
894b8788 2555load_freelist:
507effea
CL
2556 /*
2557 * freelist is pointing to the list of objects to be used.
2558 * page is pointing to the page from which the objects are obtained.
2559 * That page must be frozen for per cpu allocations to work.
2560 */
a0132ac0 2561 VM_BUG_ON(!c->page->frozen);
6faa6833 2562 c->freelist = get_freepointer(s, freelist);
8a5ec0ba 2563 c->tid = next_tid(c->tid);
6faa6833 2564 return freelist;
81819f0f 2565
81819f0f 2566new_slab:
2cfb7455 2567
a93cf07b
WY
2568 if (slub_percpu_partial(c)) {
2569 page = c->page = slub_percpu_partial(c);
2570 slub_set_percpu_partial(c, page);
49e22585 2571 stat(s, CPU_PARTIAL_ALLOC);
49e22585 2572 goto redo;
81819f0f
CL
2573 }
2574
188fd063 2575 freelist = new_slab_objects(s, gfpflags, node, &c);
01ad8a7b 2576
f4697436 2577 if (unlikely(!freelist)) {
9a02d699 2578 slab_out_of_memory(s, gfpflags, node);
f4697436 2579 return NULL;
81819f0f 2580 }
2cfb7455 2581
f6e7def7 2582 page = c->page;
5091b74a 2583 if (likely(!kmem_cache_debug(s) && pfmemalloc_match(page, gfpflags)))
4b6f0750 2584 goto load_freelist;
2cfb7455 2585
497b66f2 2586 /* Only entered in the debug case */
d0e0ac97
CG
2587 if (kmem_cache_debug(s) &&
2588 !alloc_debug_processing(s, page, freelist, addr))
497b66f2 2589 goto new_slab; /* Slab failed checks. Next slab needed */
894b8788 2590
d4ff6d35 2591 deactivate_slab(s, page, get_freepointer(s, freelist), c);
6faa6833 2592 return freelist;
894b8788
CL
2593}
2594
a380a3c7
CL
2595/*
2596 * Another one that disabled interrupt and compensates for possible
2597 * cpu changes by refetching the per cpu area pointer.
2598 */
2599static void *__slab_alloc(struct kmem_cache *s, gfp_t gfpflags, int node,
2600 unsigned long addr, struct kmem_cache_cpu *c)
2601{
2602 void *p;
2603 unsigned long flags;
2604
2605 local_irq_save(flags);
2606#ifdef CONFIG_PREEMPT
2607 /*
2608 * We may have been preempted and rescheduled on a different
2609 * cpu before disabling interrupts. Need to reload cpu area
2610 * pointer.
2611 */
2612 c = this_cpu_ptr(s->cpu_slab);
2613#endif
2614
2615 p = ___slab_alloc(s, gfpflags, node, addr, c);
2616 local_irq_restore(flags);
2617 return p;
2618}
2619
894b8788
CL
2620/*
2621 * Inlined fastpath so that allocation functions (kmalloc, kmem_cache_alloc)
2622 * have the fastpath folded into their functions. So no function call
2623 * overhead for requests that can be satisfied on the fastpath.
2624 *
2625 * The fastpath works by first checking if the lockless freelist can be used.
2626 * If not then __slab_alloc is called for slow processing.
2627 *
2628 * Otherwise we can simply pick the next object from the lockless free list.
2629 */
2b847c3c 2630static __always_inline void *slab_alloc_node(struct kmem_cache *s,
ce71e27c 2631 gfp_t gfpflags, int node, unsigned long addr)
894b8788 2632{
03ec0ed5 2633 void *object;
dfb4f096 2634 struct kmem_cache_cpu *c;
57d437d2 2635 struct page *page;
8a5ec0ba 2636 unsigned long tid;
1f84260c 2637
8135be5a
VD
2638 s = slab_pre_alloc_hook(s, gfpflags);
2639 if (!s)
773ff60e 2640 return NULL;
8a5ec0ba 2641redo:
8a5ec0ba
CL
2642 /*
2643 * Must read kmem_cache cpu data via this cpu ptr. Preemption is
2644 * enabled. We may switch back and forth between cpus while
2645 * reading from one cpu area. That does not matter as long
2646 * as we end up on the original cpu again when doing the cmpxchg.
7cccd80b 2647 *
9aabf810
JK
2648 * We should guarantee that tid and kmem_cache are retrieved on
2649 * the same cpu. It could be different if CONFIG_PREEMPT so we need
2650 * to check if it is matched or not.
8a5ec0ba 2651 */
9aabf810
JK
2652 do {
2653 tid = this_cpu_read(s->cpu_slab->tid);
2654 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2655 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2656 unlikely(tid != READ_ONCE(c->tid)));
9aabf810
JK
2657
2658 /*
2659 * Irqless object alloc/free algorithm used here depends on sequence
2660 * of fetching cpu_slab's data. tid should be fetched before anything
2661 * on c to guarantee that object and page associated with previous tid
2662 * won't be used with current tid. If we fetch tid first, object and
2663 * page could be one associated with next tid and our alloc/free
2664 * request will be failed. In this case, we will retry. So, no problem.
2665 */
2666 barrier();
8a5ec0ba 2667
8a5ec0ba
CL
2668 /*
2669 * The transaction ids are globally unique per cpu and per operation on
2670 * a per cpu queue. Thus they can be guarantee that the cmpxchg_double
2671 * occurs on the right processor and that there was no operation on the
2672 * linked list in between.
2673 */
8a5ec0ba 2674
9dfc6e68 2675 object = c->freelist;
57d437d2 2676 page = c->page;
8eae1492 2677 if (unlikely(!object || !node_match(page, node))) {
dfb4f096 2678 object = __slab_alloc(s, gfpflags, node, addr, c);
8eae1492
DH
2679 stat(s, ALLOC_SLOWPATH);
2680 } else {
0ad9500e
ED
2681 void *next_object = get_freepointer_safe(s, object);
2682
8a5ec0ba 2683 /*
25985edc 2684 * The cmpxchg will only match if there was no additional
8a5ec0ba
CL
2685 * operation and if we are on the right processor.
2686 *
d0e0ac97
CG
2687 * The cmpxchg does the following atomically (without lock
2688 * semantics!)
8a5ec0ba
CL
2689 * 1. Relocate first pointer to the current per cpu area.
2690 * 2. Verify that tid and freelist have not been changed
2691 * 3. If they were not changed replace tid and freelist
2692 *
d0e0ac97
CG
2693 * Since this is without lock semantics the protection is only
2694 * against code executing on this cpu *not* from access by
2695 * other cpus.
8a5ec0ba 2696 */
933393f5 2697 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2698 s->cpu_slab->freelist, s->cpu_slab->tid,
2699 object, tid,
0ad9500e 2700 next_object, next_tid(tid)))) {
8a5ec0ba
CL
2701
2702 note_cmpxchg_failure("slab_alloc", s, tid);
2703 goto redo;
2704 }
0ad9500e 2705 prefetch_freepointer(s, next_object);
84e554e6 2706 stat(s, ALLOC_FASTPATH);
894b8788 2707 }
8a5ec0ba 2708
74e2134f 2709 if (unlikely(gfpflags & __GFP_ZERO) && object)
3b0efdfa 2710 memset(object, 0, s->object_size);
d07dbea4 2711
03ec0ed5 2712 slab_post_alloc_hook(s, gfpflags, 1, &object);
5a896d9e 2713
894b8788 2714 return object;
81819f0f
CL
2715}
2716
2b847c3c
EG
2717static __always_inline void *slab_alloc(struct kmem_cache *s,
2718 gfp_t gfpflags, unsigned long addr)
2719{
2720 return slab_alloc_node(s, gfpflags, NUMA_NO_NODE, addr);
2721}
2722
81819f0f
CL
2723void *kmem_cache_alloc(struct kmem_cache *s, gfp_t gfpflags)
2724{
2b847c3c 2725 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
5b882be4 2726
d0e0ac97
CG
2727 trace_kmem_cache_alloc(_RET_IP_, ret, s->object_size,
2728 s->size, gfpflags);
5b882be4
EGM
2729
2730 return ret;
81819f0f
CL
2731}
2732EXPORT_SYMBOL(kmem_cache_alloc);
2733
0f24f128 2734#ifdef CONFIG_TRACING
4a92379b
RK
2735void *kmem_cache_alloc_trace(struct kmem_cache *s, gfp_t gfpflags, size_t size)
2736{
2b847c3c 2737 void *ret = slab_alloc(s, gfpflags, _RET_IP_);
4a92379b 2738 trace_kmalloc(_RET_IP_, ret, size, s->size, gfpflags);
505f5dcb 2739 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b
RK
2740 return ret;
2741}
2742EXPORT_SYMBOL(kmem_cache_alloc_trace);
5b882be4
EGM
2743#endif
2744
81819f0f
CL
2745#ifdef CONFIG_NUMA
2746void *kmem_cache_alloc_node(struct kmem_cache *s, gfp_t gfpflags, int node)
2747{
2b847c3c 2748 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
5b882be4 2749
ca2b84cb 2750 trace_kmem_cache_alloc_node(_RET_IP_, ret,
3b0efdfa 2751 s->object_size, s->size, gfpflags, node);
5b882be4
EGM
2752
2753 return ret;
81819f0f
CL
2754}
2755EXPORT_SYMBOL(kmem_cache_alloc_node);
81819f0f 2756
0f24f128 2757#ifdef CONFIG_TRACING
4a92379b 2758void *kmem_cache_alloc_node_trace(struct kmem_cache *s,
5b882be4 2759 gfp_t gfpflags,
4a92379b 2760 int node, size_t size)
5b882be4 2761{
2b847c3c 2762 void *ret = slab_alloc_node(s, gfpflags, node, _RET_IP_);
4a92379b
RK
2763
2764 trace_kmalloc_node(_RET_IP_, ret,
2765 size, s->size, gfpflags, node);
0316bec2 2766
505f5dcb 2767 kasan_kmalloc(s, ret, size, gfpflags);
4a92379b 2768 return ret;
5b882be4 2769}
4a92379b 2770EXPORT_SYMBOL(kmem_cache_alloc_node_trace);
5b882be4 2771#endif
5d1f57e4 2772#endif
5b882be4 2773
81819f0f 2774/*
94e4d712 2775 * Slow path handling. This may still be called frequently since objects
894b8788 2776 * have a longer lifetime than the cpu slabs in most processing loads.
81819f0f 2777 *
894b8788
CL
2778 * So we still attempt to reduce cache line usage. Just take the slab
2779 * lock and free the item. If there is no additional partial page
2780 * handling required then we can return immediately.
81819f0f 2781 */
894b8788 2782static void __slab_free(struct kmem_cache *s, struct page *page,
81084651
JDB
2783 void *head, void *tail, int cnt,
2784 unsigned long addr)
2785
81819f0f
CL
2786{
2787 void *prior;
2cfb7455 2788 int was_frozen;
2cfb7455
CL
2789 struct page new;
2790 unsigned long counters;
2791 struct kmem_cache_node *n = NULL;
61728d1e 2792 unsigned long uninitialized_var(flags);
81819f0f 2793
8a5ec0ba 2794 stat(s, FREE_SLOWPATH);
81819f0f 2795
19c7ff9e 2796 if (kmem_cache_debug(s) &&
282acb43 2797 !free_debug_processing(s, page, head, tail, cnt, addr))
80f08c19 2798 return;
6446faa2 2799
2cfb7455 2800 do {
837d678d
JK
2801 if (unlikely(n)) {
2802 spin_unlock_irqrestore(&n->list_lock, flags);
2803 n = NULL;
2804 }
2cfb7455
CL
2805 prior = page->freelist;
2806 counters = page->counters;
81084651 2807 set_freepointer(s, tail, prior);
2cfb7455
CL
2808 new.counters = counters;
2809 was_frozen = new.frozen;
81084651 2810 new.inuse -= cnt;
837d678d 2811 if ((!new.inuse || !prior) && !was_frozen) {
49e22585 2812
c65c1877 2813 if (kmem_cache_has_cpu_partial(s) && !prior) {
49e22585
CL
2814
2815 /*
d0e0ac97
CG
2816 * Slab was on no list before and will be
2817 * partially empty
2818 * We can defer the list move and instead
2819 * freeze it.
49e22585
CL
2820 */
2821 new.frozen = 1;
2822
c65c1877 2823 } else { /* Needs to be taken off a list */
49e22585 2824
b455def2 2825 n = get_node(s, page_to_nid(page));
49e22585
CL
2826 /*
2827 * Speculatively acquire the list_lock.
2828 * If the cmpxchg does not succeed then we may
2829 * drop the list_lock without any processing.
2830 *
2831 * Otherwise the list_lock will synchronize with
2832 * other processors updating the list of slabs.
2833 */
2834 spin_lock_irqsave(&n->list_lock, flags);
2835
2836 }
2cfb7455 2837 }
81819f0f 2838
2cfb7455
CL
2839 } while (!cmpxchg_double_slab(s, page,
2840 prior, counters,
81084651 2841 head, new.counters,
2cfb7455 2842 "__slab_free"));
81819f0f 2843
2cfb7455 2844 if (likely(!n)) {
49e22585
CL
2845
2846 /*
2847 * If we just froze the page then put it onto the
2848 * per cpu partial list.
2849 */
8028dcea 2850 if (new.frozen && !was_frozen) {
49e22585 2851 put_cpu_partial(s, page, 1);
8028dcea
AS
2852 stat(s, CPU_PARTIAL_FREE);
2853 }
49e22585 2854 /*
2cfb7455
CL
2855 * The list lock was not taken therefore no list
2856 * activity can be necessary.
2857 */
b455def2
L
2858 if (was_frozen)
2859 stat(s, FREE_FROZEN);
2860 return;
2861 }
81819f0f 2862
8a5b20ae 2863 if (unlikely(!new.inuse && n->nr_partial >= s->min_partial))
837d678d
JK
2864 goto slab_empty;
2865
81819f0f 2866 /*
837d678d
JK
2867 * Objects left in the slab. If it was not on the partial list before
2868 * then add it.
81819f0f 2869 */
345c905d
JK
2870 if (!kmem_cache_has_cpu_partial(s) && unlikely(!prior)) {
2871 if (kmem_cache_debug(s))
c65c1877 2872 remove_full(s, n, page);
837d678d
JK
2873 add_partial(n, page, DEACTIVATE_TO_TAIL);
2874 stat(s, FREE_ADD_PARTIAL);
8ff12cfc 2875 }
80f08c19 2876 spin_unlock_irqrestore(&n->list_lock, flags);
81819f0f
CL
2877 return;
2878
2879slab_empty:
a973e9dd 2880 if (prior) {
81819f0f 2881 /*
6fbabb20 2882 * Slab on the partial list.
81819f0f 2883 */
5cc6eee8 2884 remove_partial(n, page);
84e554e6 2885 stat(s, FREE_REMOVE_PARTIAL);
c65c1877 2886 } else {
6fbabb20 2887 /* Slab must be on the full list */
c65c1877
PZ
2888 remove_full(s, n, page);
2889 }
2cfb7455 2890
80f08c19 2891 spin_unlock_irqrestore(&n->list_lock, flags);
84e554e6 2892 stat(s, FREE_SLAB);
81819f0f 2893 discard_slab(s, page);
81819f0f
CL
2894}
2895
894b8788
CL
2896/*
2897 * Fastpath with forced inlining to produce a kfree and kmem_cache_free that
2898 * can perform fastpath freeing without additional function calls.
2899 *
2900 * The fastpath is only possible if we are freeing to the current cpu slab
2901 * of this processor. This typically the case if we have just allocated
2902 * the item before.
2903 *
2904 * If fastpath is not possible then fall back to __slab_free where we deal
2905 * with all sorts of special processing.
81084651
JDB
2906 *
2907 * Bulk free of a freelist with several objects (all pointing to the
2908 * same page) possible by specifying head and tail ptr, plus objects
2909 * count (cnt). Bulk free indicated by tail pointer being set.
894b8788 2910 */
80a9201a
AP
2911static __always_inline void do_slab_free(struct kmem_cache *s,
2912 struct page *page, void *head, void *tail,
2913 int cnt, unsigned long addr)
894b8788 2914{
81084651 2915 void *tail_obj = tail ? : head;
dfb4f096 2916 struct kmem_cache_cpu *c;
8a5ec0ba 2917 unsigned long tid;
8a5ec0ba
CL
2918redo:
2919 /*
2920 * Determine the currently cpus per cpu slab.
2921 * The cpu may change afterward. However that does not matter since
2922 * data is retrieved via this pointer. If we are on the same cpu
2ae44005 2923 * during the cmpxchg then the free will succeed.
8a5ec0ba 2924 */
9aabf810
JK
2925 do {
2926 tid = this_cpu_read(s->cpu_slab->tid);
2927 c = raw_cpu_ptr(s->cpu_slab);
859b7a0e
MR
2928 } while (IS_ENABLED(CONFIG_PREEMPT) &&
2929 unlikely(tid != READ_ONCE(c->tid)));
c016b0bd 2930
9aabf810
JK
2931 /* Same with comment on barrier() in slab_alloc_node() */
2932 barrier();
c016b0bd 2933
442b06bc 2934 if (likely(page == c->page)) {
81084651 2935 set_freepointer(s, tail_obj, c->freelist);
8a5ec0ba 2936
933393f5 2937 if (unlikely(!this_cpu_cmpxchg_double(
8a5ec0ba
CL
2938 s->cpu_slab->freelist, s->cpu_slab->tid,
2939 c->freelist, tid,
81084651 2940 head, next_tid(tid)))) {
8a5ec0ba
CL
2941
2942 note_cmpxchg_failure("slab_free", s, tid);
2943 goto redo;
2944 }
84e554e6 2945 stat(s, FREE_FASTPATH);
894b8788 2946 } else
81084651 2947 __slab_free(s, page, head, tail_obj, cnt, addr);
894b8788 2948
894b8788
CL
2949}
2950
80a9201a
AP
2951static __always_inline void slab_free(struct kmem_cache *s, struct page *page,
2952 void *head, void *tail, int cnt,
2953 unsigned long addr)
2954{
2955 slab_free_freelist_hook(s, head, tail);
2956 /*
2957 * slab_free_freelist_hook() could have put the items into quarantine.
2958 * If so, no need to free them.
2959 */
5f0d5a3a 2960 if (s->flags & SLAB_KASAN && !(s->flags & SLAB_TYPESAFE_BY_RCU))
80a9201a
AP
2961 return;
2962 do_slab_free(s, page, head, tail, cnt, addr);
2963}
2964
2965#ifdef CONFIG_KASAN
2966void ___cache_free(struct kmem_cache *cache, void *x, unsigned long addr)
2967{
2968 do_slab_free(cache, virt_to_head_page(x), x, NULL, 1, addr);
2969}
2970#endif
2971
81819f0f
CL
2972void kmem_cache_free(struct kmem_cache *s, void *x)
2973{
b9ce5ef4
GC
2974 s = cache_from_obj(s, x);
2975 if (!s)
79576102 2976 return;
81084651 2977 slab_free(s, virt_to_head_page(x), x, NULL, 1, _RET_IP_);
ca2b84cb 2978 trace_kmem_cache_free(_RET_IP_, x);
81819f0f
CL
2979}
2980EXPORT_SYMBOL(kmem_cache_free);
2981
d0ecd894 2982struct detached_freelist {
fbd02630 2983 struct page *page;
d0ecd894
JDB
2984 void *tail;
2985 void *freelist;
2986 int cnt;
376bf125 2987 struct kmem_cache *s;
d0ecd894 2988};
fbd02630 2989
d0ecd894
JDB
2990/*
2991 * This function progressively scans the array with free objects (with
2992 * a limited look ahead) and extract objects belonging to the same
2993 * page. It builds a detached freelist directly within the given
2994 * page/objects. This can happen without any need for
2995 * synchronization, because the objects are owned by running process.
2996 * The freelist is build up as a single linked list in the objects.
2997 * The idea is, that this detached freelist can then be bulk
2998 * transferred to the real freelist(s), but only requiring a single
2999 * synchronization primitive. Look ahead in the array is limited due
3000 * to performance reasons.
3001 */
376bf125
JDB
3002static inline
3003int build_detached_freelist(struct kmem_cache *s, size_t size,
3004 void **p, struct detached_freelist *df)
d0ecd894
JDB
3005{
3006 size_t first_skipped_index = 0;
3007 int lookahead = 3;
3008 void *object;
ca257195 3009 struct page *page;
fbd02630 3010
d0ecd894
JDB
3011 /* Always re-init detached_freelist */
3012 df->page = NULL;
fbd02630 3013
d0ecd894
JDB
3014 do {
3015 object = p[--size];
ca257195 3016 /* Do we need !ZERO_OR_NULL_PTR(object) here? (for kfree) */
d0ecd894 3017 } while (!object && size);
3eed034d 3018
d0ecd894
JDB
3019 if (!object)
3020 return 0;
fbd02630 3021
ca257195
JDB
3022 page = virt_to_head_page(object);
3023 if (!s) {
3024 /* Handle kalloc'ed objects */
3025 if (unlikely(!PageSlab(page))) {
3026 BUG_ON(!PageCompound(page));
3027 kfree_hook(object);
4949148a 3028 __free_pages(page, compound_order(page));
ca257195
JDB
3029 p[size] = NULL; /* mark object processed */
3030 return size;
3031 }
3032 /* Derive kmem_cache from object */
3033 df->s = page->slab_cache;
3034 } else {
3035 df->s = cache_from_obj(s, object); /* Support for memcg */
3036 }
376bf125 3037
d0ecd894 3038 /* Start new detached freelist */
ca257195 3039 df->page = page;
376bf125 3040 set_freepointer(df->s, object, NULL);
d0ecd894
JDB
3041 df->tail = object;
3042 df->freelist = object;
3043 p[size] = NULL; /* mark object processed */
3044 df->cnt = 1;
3045
3046 while (size) {
3047 object = p[--size];
3048 if (!object)
3049 continue; /* Skip processed objects */
3050
3051 /* df->page is always set at this point */
3052 if (df->page == virt_to_head_page(object)) {
3053 /* Opportunity build freelist */
376bf125 3054 set_freepointer(df->s, object, df->freelist);
d0ecd894
JDB
3055 df->freelist = object;
3056 df->cnt++;
3057 p[size] = NULL; /* mark object processed */
3058
3059 continue;
fbd02630 3060 }
d0ecd894
JDB
3061
3062 /* Limit look ahead search */
3063 if (!--lookahead)
3064 break;
3065
3066 if (!first_skipped_index)
3067 first_skipped_index = size + 1;
fbd02630 3068 }
d0ecd894
JDB
3069
3070 return first_skipped_index;
3071}
3072
d0ecd894 3073/* Note that interrupts must be enabled when calling this function. */
376bf125 3074void kmem_cache_free_bulk(struct kmem_cache *s, size_t size, void **p)
d0ecd894
JDB
3075{
3076 if (WARN_ON(!size))
3077 return;
3078
3079 do {
3080 struct detached_freelist df;
3081
3082 size = build_detached_freelist(s, size, p, &df);
84582c8a 3083 if (!df.page)
d0ecd894
JDB
3084 continue;
3085
376bf125 3086 slab_free(df.s, df.page, df.freelist, df.tail, df.cnt,_RET_IP_);
d0ecd894 3087 } while (likely(size));
484748f0
CL
3088}
3089EXPORT_SYMBOL(kmem_cache_free_bulk);
3090
994eb764 3091/* Note that interrupts must be enabled when calling this function. */
865762a8
JDB
3092int kmem_cache_alloc_bulk(struct kmem_cache *s, gfp_t flags, size_t size,
3093 void **p)
484748f0 3094{
994eb764
JDB
3095 struct kmem_cache_cpu *c;
3096 int i;
3097
03ec0ed5
JDB
3098 /* memcg and kmem_cache debug support */
3099 s = slab_pre_alloc_hook(s, flags);
3100 if (unlikely(!s))
3101 return false;
994eb764
JDB
3102 /*
3103 * Drain objects in the per cpu slab, while disabling local
3104 * IRQs, which protects against PREEMPT and interrupts
3105 * handlers invoking normal fastpath.
3106 */
3107 local_irq_disable();
3108 c = this_cpu_ptr(s->cpu_slab);
3109
3110 for (i = 0; i < size; i++) {
3111 void *object = c->freelist;
3112
ebe909e0 3113 if (unlikely(!object)) {
ebe909e0
JDB
3114 /*
3115 * Invoking slow path likely have side-effect
3116 * of re-populating per CPU c->freelist
3117 */
87098373 3118 p[i] = ___slab_alloc(s, flags, NUMA_NO_NODE,
ebe909e0 3119 _RET_IP_, c);
87098373
CL
3120 if (unlikely(!p[i]))
3121 goto error;
3122
ebe909e0
JDB
3123 c = this_cpu_ptr(s->cpu_slab);
3124 continue; /* goto for-loop */
3125 }
994eb764
JDB
3126 c->freelist = get_freepointer(s, object);
3127 p[i] = object;
3128 }
3129 c->tid = next_tid(c->tid);
3130 local_irq_enable();
3131
3132 /* Clear memory outside IRQ disabled fastpath loop */
3133 if (unlikely(flags & __GFP_ZERO)) {
3134 int j;
3135
3136 for (j = 0; j < i; j++)
3137 memset(p[j], 0, s->object_size);
3138 }
3139
03ec0ed5
JDB
3140 /* memcg and kmem_cache debug support */
3141 slab_post_alloc_hook(s, flags, size, p);
865762a8 3142 return i;
87098373 3143error:
87098373 3144 local_irq_enable();
03ec0ed5
JDB
3145 slab_post_alloc_hook(s, flags, i, p);
3146 __kmem_cache_free_bulk(s, i, p);
865762a8 3147 return 0;
484748f0
CL
3148}
3149EXPORT_SYMBOL(kmem_cache_alloc_bulk);
3150
3151
81819f0f 3152/*
672bba3a
CL
3153 * Object placement in a slab is made very easy because we always start at
3154 * offset 0. If we tune the size of the object to the alignment then we can
3155 * get the required alignment by putting one properly sized object after
3156 * another.
81819f0f
CL
3157 *
3158 * Notice that the allocation order determines the sizes of the per cpu
3159 * caches. Each processor has always one slab available for allocations.
3160 * Increasing the allocation order reduces the number of times that slabs
672bba3a 3161 * must be moved on and off the partial lists and is therefore a factor in
81819f0f 3162 * locking overhead.
81819f0f
CL
3163 */
3164
3165/*
3166 * Mininum / Maximum order of slab pages. This influences locking overhead
3167 * and slab fragmentation. A higher order reduces the number of partial slabs
3168 * and increases the number of allocations possible without having to
3169 * take the list_lock.
3170 */
3171static int slub_min_order;
114e9e89 3172static int slub_max_order = PAGE_ALLOC_COSTLY_ORDER;
9b2cd506 3173static int slub_min_objects;
81819f0f 3174
81819f0f
CL
3175/*
3176 * Calculate the order of allocation given an slab object size.
3177 *
672bba3a
CL
3178 * The order of allocation has significant impact on performance and other
3179 * system components. Generally order 0 allocations should be preferred since
3180 * order 0 does not cause fragmentation in the page allocator. Larger objects
3181 * be problematic to put into order 0 slabs because there may be too much
c124f5b5 3182 * unused space left. We go to a higher order if more than 1/16th of the slab
672bba3a
CL
3183 * would be wasted.
3184 *
3185 * In order to reach satisfactory performance we must ensure that a minimum
3186 * number of objects is in one slab. Otherwise we may generate too much
3187 * activity on the partial lists which requires taking the list_lock. This is
3188 * less a concern for large slabs though which are rarely used.
81819f0f 3189 *
672bba3a
CL
3190 * slub_max_order specifies the order where we begin to stop considering the
3191 * number of objects in a slab as critical. If we reach slub_max_order then
3192 * we try to keep the page order as low as possible. So we accept more waste
3193 * of space in favor of a small page order.
81819f0f 3194 *
672bba3a
CL
3195 * Higher order allocations also allow the placement of more objects in a
3196 * slab and thereby reduce object handling overhead. If the user has
3197 * requested a higher mininum order then we start with that one instead of
3198 * the smallest order which will fit the object.
81819f0f 3199 */
5e6d444e 3200static inline int slab_order(int size, int min_objects,
ab9a0f19 3201 int max_order, int fract_leftover, int reserved)
81819f0f
CL
3202{
3203 int order;
3204 int rem;
6300ea75 3205 int min_order = slub_min_order;
81819f0f 3206
ab9a0f19 3207 if (order_objects(min_order, size, reserved) > MAX_OBJS_PER_PAGE)
210b5c06 3208 return get_order(size * MAX_OBJS_PER_PAGE) - 1;
39b26464 3209
9f835703 3210 for (order = max(min_order, get_order(min_objects * size + reserved));
5e6d444e 3211 order <= max_order; order++) {
81819f0f 3212
5e6d444e 3213 unsigned long slab_size = PAGE_SIZE << order;
81819f0f 3214
ab9a0f19 3215 rem = (slab_size - reserved) % size;
81819f0f 3216
5e6d444e 3217 if (rem <= slab_size / fract_leftover)
81819f0f 3218 break;
81819f0f 3219 }
672bba3a 3220
81819f0f
CL
3221 return order;
3222}
3223
ab9a0f19 3224static inline int calculate_order(int size, int reserved)
5e6d444e
CL
3225{
3226 int order;
3227 int min_objects;
3228 int fraction;
e8120ff1 3229 int max_objects;
5e6d444e
CL
3230
3231 /*
3232 * Attempt to find best configuration for a slab. This
3233 * works by first attempting to generate a layout with
3234 * the best configuration and backing off gradually.
3235 *
422ff4d7 3236 * First we increase the acceptable waste in a slab. Then
5e6d444e
CL
3237 * we reduce the minimum objects required in a slab.
3238 */
3239 min_objects = slub_min_objects;
9b2cd506
CL
3240 if (!min_objects)
3241 min_objects = 4 * (fls(nr_cpu_ids) + 1);
ab9a0f19 3242 max_objects = order_objects(slub_max_order, size, reserved);
e8120ff1
ZY
3243 min_objects = min(min_objects, max_objects);
3244
5e6d444e 3245 while (min_objects > 1) {
c124f5b5 3246 fraction = 16;
5e6d444e
CL
3247 while (fraction >= 4) {
3248 order = slab_order(size, min_objects,
ab9a0f19 3249 slub_max_order, fraction, reserved);
5e6d444e
CL
3250 if (order <= slub_max_order)
3251 return order;
3252 fraction /= 2;
3253 }
5086c389 3254 min_objects--;
5e6d444e
CL
3255 }
3256
3257 /*
3258 * We were unable to place multiple objects in a slab. Now
3259 * lets see if we can place a single object there.
3260 */
ab9a0f19 3261 order = slab_order(size, 1, slub_max_order, 1, reserved);
5e6d444e
CL
3262 if (order <= slub_max_order)
3263 return order;
3264
3265 /*
3266 * Doh this slab cannot be placed using slub_max_order.
3267 */
ab9a0f19 3268 order = slab_order(size, 1, MAX_ORDER, 1, reserved);
818cf590 3269 if (order < MAX_ORDER)
5e6d444e
CL
3270 return order;
3271 return -ENOSYS;
3272}
3273
5595cffc 3274static void
4053497d 3275init_kmem_cache_node(struct kmem_cache_node *n)
81819f0f
CL
3276{
3277 n->nr_partial = 0;
81819f0f
CL
3278 spin_lock_init(&n->list_lock);
3279 INIT_LIST_HEAD(&n->partial);
8ab1372f 3280#ifdef CONFIG_SLUB_DEBUG
0f389ec6 3281 atomic_long_set(&n->nr_slabs, 0);
02b71b70 3282 atomic_long_set(&n->total_objects, 0);
643b1138 3283 INIT_LIST_HEAD(&n->full);
8ab1372f 3284#endif
81819f0f
CL
3285}
3286
55136592 3287static inline int alloc_kmem_cache_cpus(struct kmem_cache *s)
4c93c355 3288{
6c182dc0 3289 BUILD_BUG_ON(PERCPU_DYNAMIC_EARLY_SIZE <
95a05b42 3290 KMALLOC_SHIFT_HIGH * sizeof(struct kmem_cache_cpu));
4c93c355 3291
8a5ec0ba 3292 /*
d4d84fef
CM
3293 * Must align to double word boundary for the double cmpxchg
3294 * instructions to work; see __pcpu_double_call_return_bool().
8a5ec0ba 3295 */
d4d84fef
CM
3296 s->cpu_slab = __alloc_percpu(sizeof(struct kmem_cache_cpu),
3297 2 * sizeof(void *));
8a5ec0ba
CL
3298
3299 if (!s->cpu_slab)
3300 return 0;
3301
3302 init_kmem_cache_cpus(s);
4c93c355 3303
8a5ec0ba 3304 return 1;
4c93c355 3305}
4c93c355 3306
51df1142
CL
3307static struct kmem_cache *kmem_cache_node;
3308
81819f0f
CL
3309/*
3310 * No kmalloc_node yet so do it by hand. We know that this is the first
3311 * slab on the node for this slabcache. There are no concurrent accesses
3312 * possible.
3313 *
721ae22a
ZYW
3314 * Note that this function only works on the kmem_cache_node
3315 * when allocating for the kmem_cache_node. This is used for bootstrapping
4c93c355 3316 * memory on a fresh node that has no slab structures yet.
81819f0f 3317 */
55136592 3318static void early_kmem_cache_node_alloc(int node)
81819f0f
CL
3319{
3320 struct page *page;
3321 struct kmem_cache_node *n;
3322
51df1142 3323 BUG_ON(kmem_cache_node->size < sizeof(struct kmem_cache_node));
81819f0f 3324
51df1142 3325 page = new_slab(kmem_cache_node, GFP_NOWAIT, node);
81819f0f
CL
3326
3327 BUG_ON(!page);
a2f92ee7 3328 if (page_to_nid(page) != node) {
f9f58285
FF
3329 pr_err("SLUB: Unable to allocate memory from node %d\n", node);
3330 pr_err("SLUB: Allocating a useless per node structure in order to be able to continue\n");
a2f92ee7
CL
3331 }
3332
81819f0f
CL
3333 n = page->freelist;
3334 BUG_ON(!n);
51df1142 3335 page->freelist = get_freepointer(kmem_cache_node, n);
e6e82ea1 3336 page->inuse = 1;
8cb0a506 3337 page->frozen = 0;
51df1142 3338 kmem_cache_node->node[node] = n;
8ab1372f 3339#ifdef CONFIG_SLUB_DEBUG
f7cb1933 3340 init_object(kmem_cache_node, n, SLUB_RED_ACTIVE);
51df1142 3341 init_tracking(kmem_cache_node, n);
8ab1372f 3342#endif
505f5dcb
AP
3343 kasan_kmalloc(kmem_cache_node, n, sizeof(struct kmem_cache_node),
3344 GFP_KERNEL);
4053497d 3345 init_kmem_cache_node(n);
51df1142 3346 inc_slabs_node(kmem_cache_node, node, page->objects);
6446faa2 3347
67b6c900 3348 /*
1e4dd946
SR
3349 * No locks need to be taken here as it has just been
3350 * initialized and there is no concurrent access.
67b6c900 3351 */
1e4dd946 3352 __add_partial(n, page, DEACTIVATE_TO_HEAD);
81819f0f
CL
3353}
3354
3355static void free_kmem_cache_nodes(struct kmem_cache *s)
3356{
3357 int node;
fa45dc25 3358 struct kmem_cache_node *n;
81819f0f 3359
fa45dc25
CL
3360 for_each_kmem_cache_node(s, node, n) {
3361 kmem_cache_free(kmem_cache_node, n);
81819f0f
CL
3362 s->node[node] = NULL;
3363 }
3364}
3365
52b4b950
DS
3366void __kmem_cache_release(struct kmem_cache *s)
3367{
210e7a43 3368 cache_random_seq_destroy(s);
52b4b950
DS
3369 free_percpu(s->cpu_slab);
3370 free_kmem_cache_nodes(s);
3371}
3372
55136592 3373static int init_kmem_cache_nodes(struct kmem_cache *s)
81819f0f
CL
3374{
3375 int node;
81819f0f 3376
f64dc58c 3377 for_each_node_state(node, N_NORMAL_MEMORY) {
81819f0f
CL
3378 struct kmem_cache_node *n;
3379
73367bd8 3380 if (slab_state == DOWN) {
55136592 3381 early_kmem_cache_node_alloc(node);
73367bd8
AD
3382 continue;
3383 }
51df1142 3384 n = kmem_cache_alloc_node(kmem_cache_node,
55136592 3385 GFP_KERNEL, node);
81819f0f 3386
73367bd8
AD
3387 if (!n) {
3388 free_kmem_cache_nodes(s);
3389 return 0;
81819f0f 3390 }
73367bd8 3391
81819f0f 3392 s->node[node] = n;
4053497d 3393 init_kmem_cache_node(n);
81819f0f
CL
3394 }
3395 return 1;
3396}
81819f0f 3397
c0bdb232 3398static void set_min_partial(struct kmem_cache *s, unsigned long min)
3b89d7d8
DR
3399{
3400 if (min < MIN_PARTIAL)
3401 min = MIN_PARTIAL;
3402 else if (min > MAX_PARTIAL)
3403 min = MAX_PARTIAL;
3404 s->min_partial = min;
3405}
3406
e6d0e1dc
WY
3407static void set_cpu_partial(struct kmem_cache *s)
3408{
3409#ifdef CONFIG_SLUB_CPU_PARTIAL
3410 /*
3411 * cpu_partial determined the maximum number of objects kept in the
3412 * per cpu partial lists of a processor.
3413 *
3414 * Per cpu partial lists mainly contain slabs that just have one
3415 * object freed. If they are used for allocation then they can be
3416 * filled up again with minimal effort. The slab will never hit the
3417 * per node partial lists and therefore no locking will be required.
3418 *
3419 * This setting also determines
3420 *
3421 * A) The number of objects from per cpu partial slabs dumped to the
3422 * per node list when we reach the limit.
3423 * B) The number of objects in cpu partial slabs to extract from the
3424 * per node list when we run out of per cpu objects. We only fetch
3425 * 50% to keep some capacity around for frees.
3426 */
3427 if (!kmem_cache_has_cpu_partial(s))
3428 s->cpu_partial = 0;
3429 else if (s->size >= PAGE_SIZE)
3430 s->cpu_partial = 2;
3431 else if (s->size >= 1024)
3432 s->cpu_partial = 6;
3433 else if (s->size >= 256)
3434 s->cpu_partial = 13;
3435 else
3436 s->cpu_partial = 30;
3437#endif
3438}
3439
81819f0f
CL
3440/*
3441 * calculate_sizes() determines the order and the distribution of data within
3442 * a slab object.
3443 */
06b285dc 3444static int calculate_sizes(struct kmem_cache *s, int forced_order)
81819f0f
CL
3445{
3446 unsigned long flags = s->flags;
80a9201a 3447 size_t size = s->object_size;
834f3d11 3448 int order;
81819f0f 3449
d8b42bf5
CL
3450 /*
3451 * Round up object size to the next word boundary. We can only
3452 * place the free pointer at word boundaries and this determines
3453 * the possible location of the free pointer.
3454 */
3455 size = ALIGN(size, sizeof(void *));
3456
3457#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3458 /*
3459 * Determine if we can poison the object itself. If the user of
3460 * the slab may touch the object after free or before allocation
3461 * then we should never poison the object itself.
3462 */
5f0d5a3a 3463 if ((flags & SLAB_POISON) && !(flags & SLAB_TYPESAFE_BY_RCU) &&
c59def9f 3464 !s->ctor)
81819f0f
CL
3465 s->flags |= __OBJECT_POISON;
3466 else
3467 s->flags &= ~__OBJECT_POISON;
3468
81819f0f
CL
3469
3470 /*
672bba3a 3471 * If we are Redzoning then check if there is some space between the
81819f0f 3472 * end of the object and the free pointer. If not then add an
672bba3a 3473 * additional word to have some bytes to store Redzone information.
81819f0f 3474 */
3b0efdfa 3475 if ((flags & SLAB_RED_ZONE) && size == s->object_size)
81819f0f 3476 size += sizeof(void *);
41ecc55b 3477#endif
81819f0f
CL
3478
3479 /*
672bba3a
CL
3480 * With that we have determined the number of bytes in actual use
3481 * by the object. This is the potential offset to the free pointer.
81819f0f
CL
3482 */
3483 s->inuse = size;
3484
5f0d5a3a 3485 if (((flags & (SLAB_TYPESAFE_BY_RCU | SLAB_POISON)) ||
c59def9f 3486 s->ctor)) {
81819f0f
CL
3487 /*
3488 * Relocate free pointer after the object if it is not
3489 * permitted to overwrite the first word of the object on
3490 * kmem_cache_free.
3491 *
3492 * This is the case if we do RCU, have a constructor or
3493 * destructor or are poisoning the objects.
3494 */
3495 s->offset = size;
3496 size += sizeof(void *);
3497 }
3498
c12b3c62 3499#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
3500 if (flags & SLAB_STORE_USER)
3501 /*
3502 * Need to store information about allocs and frees after
3503 * the object.
3504 */
3505 size += 2 * sizeof(struct track);
80a9201a 3506#endif
81819f0f 3507
80a9201a
AP
3508 kasan_cache_create(s, &size, &s->flags);
3509#ifdef CONFIG_SLUB_DEBUG
d86bd1be 3510 if (flags & SLAB_RED_ZONE) {
81819f0f
CL
3511 /*
3512 * Add some empty padding so that we can catch
3513 * overwrites from earlier objects rather than let
3514 * tracking information or the free pointer be
0211a9c8 3515 * corrupted if a user writes before the start
81819f0f
CL
3516 * of the object.
3517 */
3518 size += sizeof(void *);
d86bd1be
JK
3519
3520 s->red_left_pad = sizeof(void *);
3521 s->red_left_pad = ALIGN(s->red_left_pad, s->align);
3522 size += s->red_left_pad;
3523 }
41ecc55b 3524#endif
672bba3a 3525
81819f0f
CL
3526 /*
3527 * SLUB stores one object immediately after another beginning from
3528 * offset 0. In order to align the objects we have to simply size
3529 * each object to conform to the alignment.
3530 */
45906855 3531 size = ALIGN(size, s->align);
81819f0f 3532 s->size = size;
06b285dc
CL
3533 if (forced_order >= 0)
3534 order = forced_order;
3535 else
ab9a0f19 3536 order = calculate_order(size, s->reserved);
81819f0f 3537
834f3d11 3538 if (order < 0)
81819f0f
CL
3539 return 0;
3540
b7a49f0d 3541 s->allocflags = 0;
834f3d11 3542 if (order)
b7a49f0d
CL
3543 s->allocflags |= __GFP_COMP;
3544
3545 if (s->flags & SLAB_CACHE_DMA)
2c59dd65 3546 s->allocflags |= GFP_DMA;
b7a49f0d
CL
3547
3548 if (s->flags & SLAB_RECLAIM_ACCOUNT)
3549 s->allocflags |= __GFP_RECLAIMABLE;
3550
81819f0f
CL
3551 /*
3552 * Determine the number of objects per slab
3553 */
ab9a0f19
LJ
3554 s->oo = oo_make(order, size, s->reserved);
3555 s->min = oo_make(get_order(size), size, s->reserved);
205ab99d
CL
3556 if (oo_objects(s->oo) > oo_objects(s->max))
3557 s->max = s->oo;
81819f0f 3558
834f3d11 3559 return !!oo_objects(s->oo);
81819f0f
CL
3560}
3561
8a13a4cc 3562static int kmem_cache_open(struct kmem_cache *s, unsigned long flags)
81819f0f 3563{
8a13a4cc 3564 s->flags = kmem_cache_flags(s->size, flags, s->name, s->ctor);
ab9a0f19 3565 s->reserved = 0;
81819f0f 3566
5f0d5a3a 3567 if (need_reserve_slab_rcu && (s->flags & SLAB_TYPESAFE_BY_RCU))
da9a638c 3568 s->reserved = sizeof(struct rcu_head);
81819f0f 3569
06b285dc 3570 if (!calculate_sizes(s, -1))
81819f0f 3571 goto error;
3de47213
DR
3572 if (disable_higher_order_debug) {
3573 /*
3574 * Disable debugging flags that store metadata if the min slab
3575 * order increased.
3576 */
3b0efdfa 3577 if (get_order(s->size) > get_order(s->object_size)) {
3de47213
DR
3578 s->flags &= ~DEBUG_METADATA_FLAGS;
3579 s->offset = 0;
3580 if (!calculate_sizes(s, -1))
3581 goto error;
3582 }
3583 }
81819f0f 3584
2565409f
HC
3585#if defined(CONFIG_HAVE_CMPXCHG_DOUBLE) && \
3586 defined(CONFIG_HAVE_ALIGNED_STRUCT_PAGE)
149daaf3 3587 if (system_has_cmpxchg_double() && (s->flags & SLAB_NO_CMPXCHG) == 0)
b789ef51
CL
3588 /* Enable fast mode */
3589 s->flags |= __CMPXCHG_DOUBLE;
3590#endif
3591
3b89d7d8
DR
3592 /*
3593 * The larger the object size is, the more pages we want on the partial
3594 * list to avoid pounding the page allocator excessively.
3595 */
49e22585
CL
3596 set_min_partial(s, ilog2(s->size) / 2);
3597
e6d0e1dc 3598 set_cpu_partial(s);
49e22585 3599
81819f0f 3600#ifdef CONFIG_NUMA
e2cb96b7 3601 s->remote_node_defrag_ratio = 1000;
81819f0f 3602#endif
210e7a43
TG
3603
3604 /* Initialize the pre-computed randomized freelist if slab is up */
3605 if (slab_state >= UP) {
3606 if (init_cache_random_seq(s))
3607 goto error;
3608 }
3609
55136592 3610 if (!init_kmem_cache_nodes(s))
dfb4f096 3611 goto error;
81819f0f 3612
55136592 3613 if (alloc_kmem_cache_cpus(s))
278b1bb1 3614 return 0;
ff12059e 3615
4c93c355 3616 free_kmem_cache_nodes(s);
81819f0f
CL
3617error:
3618 if (flags & SLAB_PANIC)
756a025f
JP
3619 panic("Cannot create slab %s size=%lu realsize=%u order=%u offset=%u flags=%lx\n",
3620 s->name, (unsigned long)s->size, s->size,
3621 oo_order(s->oo), s->offset, flags);
278b1bb1 3622 return -EINVAL;
81819f0f 3623}
81819f0f 3624
33b12c38
CL
3625static void list_slab_objects(struct kmem_cache *s, struct page *page,
3626 const char *text)
3627{
3628#ifdef CONFIG_SLUB_DEBUG
3629 void *addr = page_address(page);
3630 void *p;
a5dd5c11
NK
3631 unsigned long *map = kzalloc(BITS_TO_LONGS(page->objects) *
3632 sizeof(long), GFP_ATOMIC);
bbd7d57b
ED
3633 if (!map)
3634 return;
945cf2b6 3635 slab_err(s, page, text, s->name);
33b12c38 3636 slab_lock(page);
33b12c38 3637
5f80b13a 3638 get_map(s, page, map);
33b12c38
CL
3639 for_each_object(p, s, addr, page->objects) {
3640
3641 if (!test_bit(slab_index(p, s, addr), map)) {
f9f58285 3642 pr_err("INFO: Object 0x%p @offset=%tu\n", p, p - addr);
33b12c38
CL
3643 print_tracking(s, p);
3644 }
3645 }
3646 slab_unlock(page);
bbd7d57b 3647 kfree(map);
33b12c38
CL
3648#endif
3649}
3650
81819f0f 3651/*
599870b1 3652 * Attempt to free all partial slabs on a node.
52b4b950
DS
3653 * This is called from __kmem_cache_shutdown(). We must take list_lock
3654 * because sysfs file might still access partial list after the shutdowning.
81819f0f 3655 */
599870b1 3656static void free_partial(struct kmem_cache *s, struct kmem_cache_node *n)
81819f0f 3657{
60398923 3658 LIST_HEAD(discard);
81819f0f
CL
3659 struct page *page, *h;
3660
52b4b950
DS
3661 BUG_ON(irqs_disabled());
3662 spin_lock_irq(&n->list_lock);
33b12c38 3663 list_for_each_entry_safe(page, h, &n->partial, lru) {
81819f0f 3664 if (!page->inuse) {
52b4b950 3665 remove_partial(n, page);
60398923 3666 list_add(&page->lru, &discard);
33b12c38
CL
3667 } else {
3668 list_slab_objects(s, page,
52b4b950 3669 "Objects remaining in %s on __kmem_cache_shutdown()");
599870b1 3670 }
33b12c38 3671 }
52b4b950 3672 spin_unlock_irq(&n->list_lock);
60398923
CW
3673
3674 list_for_each_entry_safe(page, h, &discard, lru)
3675 discard_slab(s, page);
81819f0f
CL
3676}
3677
3678/*
672bba3a 3679 * Release all resources used by a slab cache.
81819f0f 3680 */
52b4b950 3681int __kmem_cache_shutdown(struct kmem_cache *s)
81819f0f
CL
3682{
3683 int node;
fa45dc25 3684 struct kmem_cache_node *n;
81819f0f
CL
3685
3686 flush_all(s);
81819f0f 3687 /* Attempt to free all objects */
fa45dc25 3688 for_each_kmem_cache_node(s, node, n) {
599870b1
CL
3689 free_partial(s, n);
3690 if (n->nr_partial || slabs_node(s, node))
81819f0f
CL
3691 return 1;
3692 }
bf5eb3de 3693 sysfs_slab_remove(s);
81819f0f
CL
3694 return 0;
3695}
3696
81819f0f
CL
3697/********************************************************************
3698 * Kmalloc subsystem
3699 *******************************************************************/
3700
81819f0f
CL
3701static int __init setup_slub_min_order(char *str)
3702{
06428780 3703 get_option(&str, &slub_min_order);
81819f0f
CL
3704
3705 return 1;
3706}
3707
3708__setup("slub_min_order=", setup_slub_min_order);
3709
3710static int __init setup_slub_max_order(char *str)
3711{
06428780 3712 get_option(&str, &slub_max_order);
818cf590 3713 slub_max_order = min(slub_max_order, MAX_ORDER - 1);
81819f0f
CL
3714
3715 return 1;
3716}
3717
3718__setup("slub_max_order=", setup_slub_max_order);
3719
3720static int __init setup_slub_min_objects(char *str)
3721{
06428780 3722 get_option(&str, &slub_min_objects);
81819f0f
CL
3723
3724 return 1;
3725}
3726
3727__setup("slub_min_objects=", setup_slub_min_objects);
3728
81819f0f
CL
3729void *__kmalloc(size_t size, gfp_t flags)
3730{
aadb4bc4 3731 struct kmem_cache *s;
5b882be4 3732 void *ret;
81819f0f 3733
95a05b42 3734 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef 3735 return kmalloc_large(size, flags);
aadb4bc4 3736
2c59dd65 3737 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3738
3739 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3740 return s;
3741
2b847c3c 3742 ret = slab_alloc(s, flags, _RET_IP_);
5b882be4 3743
ca2b84cb 3744 trace_kmalloc(_RET_IP_, ret, size, s->size, flags);
5b882be4 3745
505f5dcb 3746 kasan_kmalloc(s, ret, size, flags);
0316bec2 3747
5b882be4 3748 return ret;
81819f0f
CL
3749}
3750EXPORT_SYMBOL(__kmalloc);
3751
5d1f57e4 3752#ifdef CONFIG_NUMA
f619cfe1
CL
3753static void *kmalloc_large_node(size_t size, gfp_t flags, int node)
3754{
b1eeab67 3755 struct page *page;
e4f7c0b4 3756 void *ptr = NULL;
f619cfe1 3757
52383431 3758 flags |= __GFP_COMP | __GFP_NOTRACK;
4949148a 3759 page = alloc_pages_node(node, flags, get_order(size));
f619cfe1 3760 if (page)
e4f7c0b4
CM
3761 ptr = page_address(page);
3762
d56791b3 3763 kmalloc_large_node_hook(ptr, size, flags);
e4f7c0b4 3764 return ptr;
f619cfe1
CL
3765}
3766
81819f0f
CL
3767void *__kmalloc_node(size_t size, gfp_t flags, int node)
3768{
aadb4bc4 3769 struct kmem_cache *s;
5b882be4 3770 void *ret;
81819f0f 3771
95a05b42 3772 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
5b882be4
EGM
3773 ret = kmalloc_large_node(size, flags, node);
3774
ca2b84cb
EGM
3775 trace_kmalloc_node(_RET_IP_, ret,
3776 size, PAGE_SIZE << get_order(size),
3777 flags, node);
5b882be4
EGM
3778
3779 return ret;
3780 }
aadb4bc4 3781
2c59dd65 3782 s = kmalloc_slab(size, flags);
aadb4bc4
CL
3783
3784 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913
CL
3785 return s;
3786
2b847c3c 3787 ret = slab_alloc_node(s, flags, node, _RET_IP_);
5b882be4 3788
ca2b84cb 3789 trace_kmalloc_node(_RET_IP_, ret, size, s->size, flags, node);
5b882be4 3790
505f5dcb 3791 kasan_kmalloc(s, ret, size, flags);
0316bec2 3792
5b882be4 3793 return ret;
81819f0f
CL
3794}
3795EXPORT_SYMBOL(__kmalloc_node);
3796#endif
3797
ed18adc1
KC
3798#ifdef CONFIG_HARDENED_USERCOPY
3799/*
3800 * Rejects objects that are incorrectly sized.
3801 *
3802 * Returns NULL if check passes, otherwise const char * to name of cache
3803 * to indicate an error.
3804 */
3805const char *__check_heap_object(const void *ptr, unsigned long n,
3806 struct page *page)
3807{
3808 struct kmem_cache *s;
3809 unsigned long offset;
3810 size_t object_size;
3811
3812 /* Find object and usable object size. */
3813 s = page->slab_cache;
3814 object_size = slab_ksize(s);
3815
3816 /* Reject impossible pointers. */
3817 if (ptr < page_address(page))
3818 return s->name;
3819
3820 /* Find offset within object. */
3821 offset = (ptr - page_address(page)) % s->size;
3822
3823 /* Adjust for redzone and reject if within the redzone. */
3824 if (kmem_cache_debug(s) && s->flags & SLAB_RED_ZONE) {
3825 if (offset < s->red_left_pad)
3826 return s->name;
3827 offset -= s->red_left_pad;
3828 }
3829
3830 /* Allow address range falling entirely within object size. */
3831 if (offset <= object_size && n <= object_size - offset)
3832 return NULL;
3833
3834 return s->name;
3835}
3836#endif /* CONFIG_HARDENED_USERCOPY */
3837
0316bec2 3838static size_t __ksize(const void *object)
81819f0f 3839{
272c1d21 3840 struct page *page;
81819f0f 3841
ef8b4520 3842 if (unlikely(object == ZERO_SIZE_PTR))
272c1d21
CL
3843 return 0;
3844
294a80a8 3845 page = virt_to_head_page(object);
294a80a8 3846
76994412
PE
3847 if (unlikely(!PageSlab(page))) {
3848 WARN_ON(!PageCompound(page));
294a80a8 3849 return PAGE_SIZE << compound_order(page);
76994412 3850 }
81819f0f 3851
1b4f59e3 3852 return slab_ksize(page->slab_cache);
81819f0f 3853}
0316bec2
AR
3854
3855size_t ksize(const void *object)
3856{
3857 size_t size = __ksize(object);
3858 /* We assume that ksize callers could use whole allocated area,
4ebb31a4
AP
3859 * so we need to unpoison this area.
3860 */
3861 kasan_unpoison_shadow(object, size);
0316bec2
AR
3862 return size;
3863}
b1aabecd 3864EXPORT_SYMBOL(ksize);
81819f0f
CL
3865
3866void kfree(const void *x)
3867{
81819f0f 3868 struct page *page;
5bb983b0 3869 void *object = (void *)x;
81819f0f 3870
2121db74
PE
3871 trace_kfree(_RET_IP_, x);
3872
2408c550 3873 if (unlikely(ZERO_OR_NULL_PTR(x)))
81819f0f
CL
3874 return;
3875
b49af68f 3876 page = virt_to_head_page(x);
aadb4bc4 3877 if (unlikely(!PageSlab(page))) {
0937502a 3878 BUG_ON(!PageCompound(page));
d56791b3 3879 kfree_hook(x);
4949148a 3880 __free_pages(page, compound_order(page));
aadb4bc4
CL
3881 return;
3882 }
81084651 3883 slab_free(page->slab_cache, page, object, NULL, 1, _RET_IP_);
81819f0f
CL
3884}
3885EXPORT_SYMBOL(kfree);
3886
832f37f5
VD
3887#define SHRINK_PROMOTE_MAX 32
3888
2086d26a 3889/*
832f37f5
VD
3890 * kmem_cache_shrink discards empty slabs and promotes the slabs filled
3891 * up most to the head of the partial lists. New allocations will then
3892 * fill those up and thus they can be removed from the partial lists.
672bba3a
CL
3893 *
3894 * The slabs with the least items are placed last. This results in them
3895 * being allocated from last increasing the chance that the last objects
3896 * are freed in them.
2086d26a 3897 */
c9fc5864 3898int __kmem_cache_shrink(struct kmem_cache *s)
2086d26a
CL
3899{
3900 int node;
3901 int i;
3902 struct kmem_cache_node *n;
3903 struct page *page;
3904 struct page *t;
832f37f5
VD
3905 struct list_head discard;
3906 struct list_head promote[SHRINK_PROMOTE_MAX];
2086d26a 3907 unsigned long flags;
ce3712d7 3908 int ret = 0;
2086d26a 3909
2086d26a 3910 flush_all(s);
fa45dc25 3911 for_each_kmem_cache_node(s, node, n) {
832f37f5
VD
3912 INIT_LIST_HEAD(&discard);
3913 for (i = 0; i < SHRINK_PROMOTE_MAX; i++)
3914 INIT_LIST_HEAD(promote + i);
2086d26a
CL
3915
3916 spin_lock_irqsave(&n->list_lock, flags);
3917
3918 /*
832f37f5 3919 * Build lists of slabs to discard or promote.
2086d26a 3920 *
672bba3a
CL
3921 * Note that concurrent frees may occur while we hold the
3922 * list_lock. page->inuse here is the upper limit.
2086d26a
CL
3923 */
3924 list_for_each_entry_safe(page, t, &n->partial, lru) {
832f37f5
VD
3925 int free = page->objects - page->inuse;
3926
3927 /* Do not reread page->inuse */
3928 barrier();
3929
3930 /* We do not keep full slabs on the list */
3931 BUG_ON(free <= 0);
3932
3933 if (free == page->objects) {
3934 list_move(&page->lru, &discard);
69cb8e6b 3935 n->nr_partial--;
832f37f5
VD
3936 } else if (free <= SHRINK_PROMOTE_MAX)
3937 list_move(&page->lru, promote + free - 1);
2086d26a
CL
3938 }
3939
2086d26a 3940 /*
832f37f5
VD
3941 * Promote the slabs filled up most to the head of the
3942 * partial list.
2086d26a 3943 */
832f37f5
VD
3944 for (i = SHRINK_PROMOTE_MAX - 1; i >= 0; i--)
3945 list_splice(promote + i, &n->partial);
2086d26a 3946
2086d26a 3947 spin_unlock_irqrestore(&n->list_lock, flags);
69cb8e6b
CL
3948
3949 /* Release empty slabs */
832f37f5 3950 list_for_each_entry_safe(page, t, &discard, lru)
69cb8e6b 3951 discard_slab(s, page);
ce3712d7
VD
3952
3953 if (slabs_node(s, node))
3954 ret = 1;
2086d26a
CL
3955 }
3956
ce3712d7 3957 return ret;
2086d26a 3958}
2086d26a 3959
c9fc5864 3960#ifdef CONFIG_MEMCG
01fb58bc
TH
3961static void kmemcg_cache_deact_after_rcu(struct kmem_cache *s)
3962{
50862ce7
TH
3963 /*
3964 * Called with all the locks held after a sched RCU grace period.
3965 * Even if @s becomes empty after shrinking, we can't know that @s
3966 * doesn't have allocations already in-flight and thus can't
3967 * destroy @s until the associated memcg is released.
3968 *
3969 * However, let's remove the sysfs files for empty caches here.
3970 * Each cache has a lot of interface files which aren't
3971 * particularly useful for empty draining caches; otherwise, we can
3972 * easily end up with millions of unnecessary sysfs files on
3973 * systems which have a lot of memory and transient cgroups.
3974 */
3975 if (!__kmem_cache_shrink(s))
3976 sysfs_slab_remove(s);
01fb58bc
TH
3977}
3978
c9fc5864
TH
3979void __kmemcg_cache_deactivate(struct kmem_cache *s)
3980{
3981 /*
3982 * Disable empty slabs caching. Used to avoid pinning offline
3983 * memory cgroups by kmem pages that can be freed.
3984 */
e6d0e1dc 3985 slub_set_cpu_partial(s, 0);
c9fc5864
TH
3986 s->min_partial = 0;
3987
3988 /*
3989 * s->cpu_partial is checked locklessly (see put_cpu_partial), so
01fb58bc 3990 * we have to make sure the change is visible before shrinking.
c9fc5864 3991 */
01fb58bc 3992 slab_deactivate_memcg_cache_rcu_sched(s, kmemcg_cache_deact_after_rcu);
c9fc5864
TH
3993}
3994#endif
3995
b9049e23
YG
3996static int slab_mem_going_offline_callback(void *arg)
3997{
3998 struct kmem_cache *s;
3999
18004c5d 4000 mutex_lock(&slab_mutex);
b9049e23 4001 list_for_each_entry(s, &slab_caches, list)
c9fc5864 4002 __kmem_cache_shrink(s);
18004c5d 4003 mutex_unlock(&slab_mutex);
b9049e23
YG
4004
4005 return 0;
4006}
4007
4008static void slab_mem_offline_callback(void *arg)
4009{
4010 struct kmem_cache_node *n;
4011 struct kmem_cache *s;
4012 struct memory_notify *marg = arg;
4013 int offline_node;
4014
b9d5ab25 4015 offline_node = marg->status_change_nid_normal;
b9049e23
YG
4016
4017 /*
4018 * If the node still has available memory. we need kmem_cache_node
4019 * for it yet.
4020 */
4021 if (offline_node < 0)
4022 return;
4023
18004c5d 4024 mutex_lock(&slab_mutex);
b9049e23
YG
4025 list_for_each_entry(s, &slab_caches, list) {
4026 n = get_node(s, offline_node);
4027 if (n) {
4028 /*
4029 * if n->nr_slabs > 0, slabs still exist on the node
4030 * that is going down. We were unable to free them,
c9404c9c 4031 * and offline_pages() function shouldn't call this
b9049e23
YG
4032 * callback. So, we must fail.
4033 */
0f389ec6 4034 BUG_ON(slabs_node(s, offline_node));
b9049e23
YG
4035
4036 s->node[offline_node] = NULL;
8de66a0c 4037 kmem_cache_free(kmem_cache_node, n);
b9049e23
YG
4038 }
4039 }
18004c5d 4040 mutex_unlock(&slab_mutex);
b9049e23
YG
4041}
4042
4043static int slab_mem_going_online_callback(void *arg)
4044{
4045 struct kmem_cache_node *n;
4046 struct kmem_cache *s;
4047 struct memory_notify *marg = arg;
b9d5ab25 4048 int nid = marg->status_change_nid_normal;
b9049e23
YG
4049 int ret = 0;
4050
4051 /*
4052 * If the node's memory is already available, then kmem_cache_node is
4053 * already created. Nothing to do.
4054 */
4055 if (nid < 0)
4056 return 0;
4057
4058 /*
0121c619 4059 * We are bringing a node online. No memory is available yet. We must
b9049e23
YG
4060 * allocate a kmem_cache_node structure in order to bring the node
4061 * online.
4062 */
18004c5d 4063 mutex_lock(&slab_mutex);
b9049e23
YG
4064 list_for_each_entry(s, &slab_caches, list) {
4065 /*
4066 * XXX: kmem_cache_alloc_node will fallback to other nodes
4067 * since memory is not yet available from the node that
4068 * is brought up.
4069 */
8de66a0c 4070 n = kmem_cache_alloc(kmem_cache_node, GFP_KERNEL);
b9049e23
YG
4071 if (!n) {
4072 ret = -ENOMEM;
4073 goto out;
4074 }
4053497d 4075 init_kmem_cache_node(n);
b9049e23
YG
4076 s->node[nid] = n;
4077 }
4078out:
18004c5d 4079 mutex_unlock(&slab_mutex);
b9049e23
YG
4080 return ret;
4081}
4082
4083static int slab_memory_callback(struct notifier_block *self,
4084 unsigned long action, void *arg)
4085{
4086 int ret = 0;
4087
4088 switch (action) {
4089 case MEM_GOING_ONLINE:
4090 ret = slab_mem_going_online_callback(arg);
4091 break;
4092 case MEM_GOING_OFFLINE:
4093 ret = slab_mem_going_offline_callback(arg);
4094 break;
4095 case MEM_OFFLINE:
4096 case MEM_CANCEL_ONLINE:
4097 slab_mem_offline_callback(arg);
4098 break;
4099 case MEM_ONLINE:
4100 case MEM_CANCEL_OFFLINE:
4101 break;
4102 }
dc19f9db
KH
4103 if (ret)
4104 ret = notifier_from_errno(ret);
4105 else
4106 ret = NOTIFY_OK;
b9049e23
YG
4107 return ret;
4108}
4109
3ac38faa
AM
4110static struct notifier_block slab_memory_callback_nb = {
4111 .notifier_call = slab_memory_callback,
4112 .priority = SLAB_CALLBACK_PRI,
4113};
b9049e23 4114
81819f0f
CL
4115/********************************************************************
4116 * Basic setup of slabs
4117 *******************************************************************/
4118
51df1142
CL
4119/*
4120 * Used for early kmem_cache structures that were allocated using
dffb4d60
CL
4121 * the page allocator. Allocate them properly then fix up the pointers
4122 * that may be pointing to the wrong kmem_cache structure.
51df1142
CL
4123 */
4124
dffb4d60 4125static struct kmem_cache * __init bootstrap(struct kmem_cache *static_cache)
51df1142
CL
4126{
4127 int node;
dffb4d60 4128 struct kmem_cache *s = kmem_cache_zalloc(kmem_cache, GFP_NOWAIT);
fa45dc25 4129 struct kmem_cache_node *n;
51df1142 4130
dffb4d60 4131 memcpy(s, static_cache, kmem_cache->object_size);
51df1142 4132
7d557b3c
GC
4133 /*
4134 * This runs very early, and only the boot processor is supposed to be
4135 * up. Even if it weren't true, IRQs are not up so we couldn't fire
4136 * IPIs around.
4137 */
4138 __flush_cpu_slab(s, smp_processor_id());
fa45dc25 4139 for_each_kmem_cache_node(s, node, n) {
51df1142
CL
4140 struct page *p;
4141
fa45dc25
CL
4142 list_for_each_entry(p, &n->partial, lru)
4143 p->slab_cache = s;
51df1142 4144
607bf324 4145#ifdef CONFIG_SLUB_DEBUG
fa45dc25
CL
4146 list_for_each_entry(p, &n->full, lru)
4147 p->slab_cache = s;
51df1142 4148#endif
51df1142 4149 }
f7ce3190 4150 slab_init_memcg_params(s);
dffb4d60 4151 list_add(&s->list, &slab_caches);
510ded33 4152 memcg_link_cache(s);
dffb4d60 4153 return s;
51df1142
CL
4154}
4155
81819f0f
CL
4156void __init kmem_cache_init(void)
4157{
dffb4d60
CL
4158 static __initdata struct kmem_cache boot_kmem_cache,
4159 boot_kmem_cache_node;
51df1142 4160
fc8d8620
SG
4161 if (debug_guardpage_minorder())
4162 slub_max_order = 0;
4163
dffb4d60
CL
4164 kmem_cache_node = &boot_kmem_cache_node;
4165 kmem_cache = &boot_kmem_cache;
51df1142 4166
dffb4d60
CL
4167 create_boot_cache(kmem_cache_node, "kmem_cache_node",
4168 sizeof(struct kmem_cache_node), SLAB_HWCACHE_ALIGN);
b9049e23 4169
3ac38faa 4170 register_hotmemory_notifier(&slab_memory_callback_nb);
81819f0f
CL
4171
4172 /* Able to allocate the per node structures */
4173 slab_state = PARTIAL;
4174
dffb4d60
CL
4175 create_boot_cache(kmem_cache, "kmem_cache",
4176 offsetof(struct kmem_cache, node) +
4177 nr_node_ids * sizeof(struct kmem_cache_node *),
4178 SLAB_HWCACHE_ALIGN);
8a13a4cc 4179
dffb4d60 4180 kmem_cache = bootstrap(&boot_kmem_cache);
81819f0f 4181
51df1142
CL
4182 /*
4183 * Allocate kmem_cache_node properly from the kmem_cache slab.
4184 * kmem_cache_node is separately allocated so no need to
4185 * update any list pointers.
4186 */
dffb4d60 4187 kmem_cache_node = bootstrap(&boot_kmem_cache_node);
51df1142
CL
4188
4189 /* Now we can use the kmem_cache to allocate kmalloc slabs */
34cc6990 4190 setup_kmalloc_cache_index_table();
f97d5f63 4191 create_kmalloc_caches(0);
81819f0f 4192
210e7a43
TG
4193 /* Setup random freelists for each cache */
4194 init_freelist_randomization();
4195
a96a87bf
SAS
4196 cpuhp_setup_state_nocalls(CPUHP_SLUB_DEAD, "slub:dead", NULL,
4197 slub_cpu_dead);
81819f0f 4198
f9f58285 4199 pr_info("SLUB: HWalign=%d, Order=%d-%d, MinObjects=%d, CPUs=%d, Nodes=%d\n",
f97d5f63 4200 cache_line_size(),
81819f0f
CL
4201 slub_min_order, slub_max_order, slub_min_objects,
4202 nr_cpu_ids, nr_node_ids);
4203}
4204
7e85ee0c
PE
4205void __init kmem_cache_init_late(void)
4206{
7e85ee0c
PE
4207}
4208
2633d7a0 4209struct kmem_cache *
a44cb944
VD
4210__kmem_cache_alias(const char *name, size_t size, size_t align,
4211 unsigned long flags, void (*ctor)(void *))
81819f0f 4212{
426589f5 4213 struct kmem_cache *s, *c;
81819f0f 4214
a44cb944 4215 s = find_mergeable(size, align, flags, name, ctor);
81819f0f
CL
4216 if (s) {
4217 s->refcount++;
84d0ddd6 4218
81819f0f
CL
4219 /*
4220 * Adjust the object sizes so that we clear
4221 * the complete object on kzalloc.
4222 */
3b0efdfa 4223 s->object_size = max(s->object_size, (int)size);
81819f0f 4224 s->inuse = max_t(int, s->inuse, ALIGN(size, sizeof(void *)));
6446faa2 4225
426589f5 4226 for_each_memcg_cache(c, s) {
84d0ddd6
VD
4227 c->object_size = s->object_size;
4228 c->inuse = max_t(int, c->inuse,
4229 ALIGN(size, sizeof(void *)));
4230 }
4231
7b8f3b66 4232 if (sysfs_slab_alias(s, name)) {
7b8f3b66 4233 s->refcount--;
cbb79694 4234 s = NULL;
7b8f3b66 4235 }
a0e1d1be 4236 }
6446faa2 4237
cbb79694
CL
4238 return s;
4239}
84c1cf62 4240
8a13a4cc 4241int __kmem_cache_create(struct kmem_cache *s, unsigned long flags)
cbb79694 4242{
aac3a166
PE
4243 int err;
4244
4245 err = kmem_cache_open(s, flags);
4246 if (err)
4247 return err;
20cea968 4248
45530c44
CL
4249 /* Mutex is not taken during early boot */
4250 if (slab_state <= UP)
4251 return 0;
4252
107dab5c 4253 memcg_propagate_slab_attrs(s);
aac3a166 4254 err = sysfs_slab_add(s);
aac3a166 4255 if (err)
52b4b950 4256 __kmem_cache_release(s);
20cea968 4257
aac3a166 4258 return err;
81819f0f 4259}
81819f0f 4260
ce71e27c 4261void *__kmalloc_track_caller(size_t size, gfp_t gfpflags, unsigned long caller)
81819f0f 4262{
aadb4bc4 4263 struct kmem_cache *s;
94b528d0 4264 void *ret;
aadb4bc4 4265
95a05b42 4266 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE))
eada35ef
PE
4267 return kmalloc_large(size, gfpflags);
4268
2c59dd65 4269 s = kmalloc_slab(size, gfpflags);
81819f0f 4270
2408c550 4271 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4272 return s;
81819f0f 4273
2b847c3c 4274 ret = slab_alloc(s, gfpflags, caller);
94b528d0 4275
25985edc 4276 /* Honor the call site pointer we received. */
ca2b84cb 4277 trace_kmalloc(caller, ret, size, s->size, gfpflags);
94b528d0
EGM
4278
4279 return ret;
81819f0f
CL
4280}
4281
5d1f57e4 4282#ifdef CONFIG_NUMA
81819f0f 4283void *__kmalloc_node_track_caller(size_t size, gfp_t gfpflags,
ce71e27c 4284 int node, unsigned long caller)
81819f0f 4285{
aadb4bc4 4286 struct kmem_cache *s;
94b528d0 4287 void *ret;
aadb4bc4 4288
95a05b42 4289 if (unlikely(size > KMALLOC_MAX_CACHE_SIZE)) {
d3e14aa3
XF
4290 ret = kmalloc_large_node(size, gfpflags, node);
4291
4292 trace_kmalloc_node(caller, ret,
4293 size, PAGE_SIZE << get_order(size),
4294 gfpflags, node);
4295
4296 return ret;
4297 }
eada35ef 4298
2c59dd65 4299 s = kmalloc_slab(size, gfpflags);
81819f0f 4300
2408c550 4301 if (unlikely(ZERO_OR_NULL_PTR(s)))
6cb8f913 4302 return s;
81819f0f 4303
2b847c3c 4304 ret = slab_alloc_node(s, gfpflags, node, caller);
94b528d0 4305
25985edc 4306 /* Honor the call site pointer we received. */
ca2b84cb 4307 trace_kmalloc_node(caller, ret, size, s->size, gfpflags, node);
94b528d0
EGM
4308
4309 return ret;
81819f0f 4310}
5d1f57e4 4311#endif
81819f0f 4312
ab4d5ed5 4313#ifdef CONFIG_SYSFS
205ab99d
CL
4314static int count_inuse(struct page *page)
4315{
4316 return page->inuse;
4317}
4318
4319static int count_total(struct page *page)
4320{
4321 return page->objects;
4322}
ab4d5ed5 4323#endif
205ab99d 4324
ab4d5ed5 4325#ifdef CONFIG_SLUB_DEBUG
434e245d
CL
4326static int validate_slab(struct kmem_cache *s, struct page *page,
4327 unsigned long *map)
53e15af0
CL
4328{
4329 void *p;
a973e9dd 4330 void *addr = page_address(page);
53e15af0
CL
4331
4332 if (!check_slab(s, page) ||
4333 !on_freelist(s, page, NULL))
4334 return 0;
4335
4336 /* Now we know that a valid freelist exists */
39b26464 4337 bitmap_zero(map, page->objects);
53e15af0 4338
5f80b13a
CL
4339 get_map(s, page, map);
4340 for_each_object(p, s, addr, page->objects) {
4341 if (test_bit(slab_index(p, s, addr), map))
4342 if (!check_object(s, page, p, SLUB_RED_INACTIVE))
4343 return 0;
53e15af0
CL
4344 }
4345
224a88be 4346 for_each_object(p, s, addr, page->objects)
7656c72b 4347 if (!test_bit(slab_index(p, s, addr), map))
37d57443 4348 if (!check_object(s, page, p, SLUB_RED_ACTIVE))
53e15af0
CL
4349 return 0;
4350 return 1;
4351}
4352
434e245d
CL
4353static void validate_slab_slab(struct kmem_cache *s, struct page *page,
4354 unsigned long *map)
53e15af0 4355{
881db7fb
CL
4356 slab_lock(page);
4357 validate_slab(s, page, map);
4358 slab_unlock(page);
53e15af0
CL
4359}
4360
434e245d
CL
4361static int validate_slab_node(struct kmem_cache *s,
4362 struct kmem_cache_node *n, unsigned long *map)
53e15af0
CL
4363{
4364 unsigned long count = 0;
4365 struct page *page;
4366 unsigned long flags;
4367
4368 spin_lock_irqsave(&n->list_lock, flags);
4369
4370 list_for_each_entry(page, &n->partial, lru) {
434e245d 4371 validate_slab_slab(s, page, map);
53e15af0
CL
4372 count++;
4373 }
4374 if (count != n->nr_partial)
f9f58285
FF
4375 pr_err("SLUB %s: %ld partial slabs counted but counter=%ld\n",
4376 s->name, count, n->nr_partial);
53e15af0
CL
4377
4378 if (!(s->flags & SLAB_STORE_USER))
4379 goto out;
4380
4381 list_for_each_entry(page, &n->full, lru) {
434e245d 4382 validate_slab_slab(s, page, map);
53e15af0
CL
4383 count++;
4384 }
4385 if (count != atomic_long_read(&n->nr_slabs))
f9f58285
FF
4386 pr_err("SLUB: %s %ld slabs counted but counter=%ld\n",
4387 s->name, count, atomic_long_read(&n->nr_slabs));
53e15af0
CL
4388
4389out:
4390 spin_unlock_irqrestore(&n->list_lock, flags);
4391 return count;
4392}
4393
434e245d 4394static long validate_slab_cache(struct kmem_cache *s)
53e15af0
CL
4395{
4396 int node;
4397 unsigned long count = 0;
205ab99d 4398 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
434e245d 4399 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4400 struct kmem_cache_node *n;
434e245d
CL
4401
4402 if (!map)
4403 return -ENOMEM;
53e15af0
CL
4404
4405 flush_all(s);
fa45dc25 4406 for_each_kmem_cache_node(s, node, n)
434e245d 4407 count += validate_slab_node(s, n, map);
434e245d 4408 kfree(map);
53e15af0
CL
4409 return count;
4410}
88a420e4 4411/*
672bba3a 4412 * Generate lists of code addresses where slabcache objects are allocated
88a420e4
CL
4413 * and freed.
4414 */
4415
4416struct location {
4417 unsigned long count;
ce71e27c 4418 unsigned long addr;
45edfa58
CL
4419 long long sum_time;
4420 long min_time;
4421 long max_time;
4422 long min_pid;
4423 long max_pid;
174596a0 4424 DECLARE_BITMAP(cpus, NR_CPUS);
45edfa58 4425 nodemask_t nodes;
88a420e4
CL
4426};
4427
4428struct loc_track {
4429 unsigned long max;
4430 unsigned long count;
4431 struct location *loc;
4432};
4433
4434static void free_loc_track(struct loc_track *t)
4435{
4436 if (t->max)
4437 free_pages((unsigned long)t->loc,
4438 get_order(sizeof(struct location) * t->max));
4439}
4440
68dff6a9 4441static int alloc_loc_track(struct loc_track *t, unsigned long max, gfp_t flags)
88a420e4
CL
4442{
4443 struct location *l;
4444 int order;
4445
88a420e4
CL
4446 order = get_order(sizeof(struct location) * max);
4447
68dff6a9 4448 l = (void *)__get_free_pages(flags, order);
88a420e4
CL
4449 if (!l)
4450 return 0;
4451
4452 if (t->count) {
4453 memcpy(l, t->loc, sizeof(struct location) * t->count);
4454 free_loc_track(t);
4455 }
4456 t->max = max;
4457 t->loc = l;
4458 return 1;
4459}
4460
4461static int add_location(struct loc_track *t, struct kmem_cache *s,
45edfa58 4462 const struct track *track)
88a420e4
CL
4463{
4464 long start, end, pos;
4465 struct location *l;
ce71e27c 4466 unsigned long caddr;
45edfa58 4467 unsigned long age = jiffies - track->when;
88a420e4
CL
4468
4469 start = -1;
4470 end = t->count;
4471
4472 for ( ; ; ) {
4473 pos = start + (end - start + 1) / 2;
4474
4475 /*
4476 * There is nothing at "end". If we end up there
4477 * we need to add something to before end.
4478 */
4479 if (pos == end)
4480 break;
4481
4482 caddr = t->loc[pos].addr;
45edfa58
CL
4483 if (track->addr == caddr) {
4484
4485 l = &t->loc[pos];
4486 l->count++;
4487 if (track->when) {
4488 l->sum_time += age;
4489 if (age < l->min_time)
4490 l->min_time = age;
4491 if (age > l->max_time)
4492 l->max_time = age;
4493
4494 if (track->pid < l->min_pid)
4495 l->min_pid = track->pid;
4496 if (track->pid > l->max_pid)
4497 l->max_pid = track->pid;
4498
174596a0
RR
4499 cpumask_set_cpu(track->cpu,
4500 to_cpumask(l->cpus));
45edfa58
CL
4501 }
4502 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4503 return 1;
4504 }
4505
45edfa58 4506 if (track->addr < caddr)
88a420e4
CL
4507 end = pos;
4508 else
4509 start = pos;
4510 }
4511
4512 /*
672bba3a 4513 * Not found. Insert new tracking element.
88a420e4 4514 */
68dff6a9 4515 if (t->count >= t->max && !alloc_loc_track(t, 2 * t->max, GFP_ATOMIC))
88a420e4
CL
4516 return 0;
4517
4518 l = t->loc + pos;
4519 if (pos < t->count)
4520 memmove(l + 1, l,
4521 (t->count - pos) * sizeof(struct location));
4522 t->count++;
4523 l->count = 1;
45edfa58
CL
4524 l->addr = track->addr;
4525 l->sum_time = age;
4526 l->min_time = age;
4527 l->max_time = age;
4528 l->min_pid = track->pid;
4529 l->max_pid = track->pid;
174596a0
RR
4530 cpumask_clear(to_cpumask(l->cpus));
4531 cpumask_set_cpu(track->cpu, to_cpumask(l->cpus));
45edfa58
CL
4532 nodes_clear(l->nodes);
4533 node_set(page_to_nid(virt_to_page(track)), l->nodes);
88a420e4
CL
4534 return 1;
4535}
4536
4537static void process_slab(struct loc_track *t, struct kmem_cache *s,
bbd7d57b 4538 struct page *page, enum track_item alloc,
a5dd5c11 4539 unsigned long *map)
88a420e4 4540{
a973e9dd 4541 void *addr = page_address(page);
88a420e4
CL
4542 void *p;
4543
39b26464 4544 bitmap_zero(map, page->objects);
5f80b13a 4545 get_map(s, page, map);
88a420e4 4546
224a88be 4547 for_each_object(p, s, addr, page->objects)
45edfa58
CL
4548 if (!test_bit(slab_index(p, s, addr), map))
4549 add_location(t, s, get_track(s, p, alloc));
88a420e4
CL
4550}
4551
4552static int list_locations(struct kmem_cache *s, char *buf,
4553 enum track_item alloc)
4554{
e374d483 4555 int len = 0;
88a420e4 4556 unsigned long i;
68dff6a9 4557 struct loc_track t = { 0, 0, NULL };
88a420e4 4558 int node;
bbd7d57b
ED
4559 unsigned long *map = kmalloc(BITS_TO_LONGS(oo_objects(s->max)) *
4560 sizeof(unsigned long), GFP_KERNEL);
fa45dc25 4561 struct kmem_cache_node *n;
88a420e4 4562
bbd7d57b
ED
4563 if (!map || !alloc_loc_track(&t, PAGE_SIZE / sizeof(struct location),
4564 GFP_TEMPORARY)) {
4565 kfree(map);
68dff6a9 4566 return sprintf(buf, "Out of memory\n");
bbd7d57b 4567 }
88a420e4
CL
4568 /* Push back cpu slabs */
4569 flush_all(s);
4570
fa45dc25 4571 for_each_kmem_cache_node(s, node, n) {
88a420e4
CL
4572 unsigned long flags;
4573 struct page *page;
4574
9e86943b 4575 if (!atomic_long_read(&n->nr_slabs))
88a420e4
CL
4576 continue;
4577
4578 spin_lock_irqsave(&n->list_lock, flags);
4579 list_for_each_entry(page, &n->partial, lru)
bbd7d57b 4580 process_slab(&t, s, page, alloc, map);
88a420e4 4581 list_for_each_entry(page, &n->full, lru)
bbd7d57b 4582 process_slab(&t, s, page, alloc, map);
88a420e4
CL
4583 spin_unlock_irqrestore(&n->list_lock, flags);
4584 }
4585
4586 for (i = 0; i < t.count; i++) {
45edfa58 4587 struct location *l = &t.loc[i];
88a420e4 4588
9c246247 4589 if (len > PAGE_SIZE - KSYM_SYMBOL_LEN - 100)
88a420e4 4590 break;
e374d483 4591 len += sprintf(buf + len, "%7ld ", l->count);
45edfa58
CL
4592
4593 if (l->addr)
62c70bce 4594 len += sprintf(buf + len, "%pS", (void *)l->addr);
88a420e4 4595 else
e374d483 4596 len += sprintf(buf + len, "<not-available>");
45edfa58
CL
4597
4598 if (l->sum_time != l->min_time) {
e374d483 4599 len += sprintf(buf + len, " age=%ld/%ld/%ld",
f8bd2258
RZ
4600 l->min_time,
4601 (long)div_u64(l->sum_time, l->count),
4602 l->max_time);
45edfa58 4603 } else
e374d483 4604 len += sprintf(buf + len, " age=%ld",
45edfa58
CL
4605 l->min_time);
4606
4607 if (l->min_pid != l->max_pid)
e374d483 4608 len += sprintf(buf + len, " pid=%ld-%ld",
45edfa58
CL
4609 l->min_pid, l->max_pid);
4610 else
e374d483 4611 len += sprintf(buf + len, " pid=%ld",
45edfa58
CL
4612 l->min_pid);
4613
174596a0
RR
4614 if (num_online_cpus() > 1 &&
4615 !cpumask_empty(to_cpumask(l->cpus)) &&
5024c1d7
TH
4616 len < PAGE_SIZE - 60)
4617 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4618 " cpus=%*pbl",
4619 cpumask_pr_args(to_cpumask(l->cpus)));
45edfa58 4620
62bc62a8 4621 if (nr_online_nodes > 1 && !nodes_empty(l->nodes) &&
5024c1d7
TH
4622 len < PAGE_SIZE - 60)
4623 len += scnprintf(buf + len, PAGE_SIZE - len - 50,
4624 " nodes=%*pbl",
4625 nodemask_pr_args(&l->nodes));
45edfa58 4626
e374d483 4627 len += sprintf(buf + len, "\n");
88a420e4
CL
4628 }
4629
4630 free_loc_track(&t);
bbd7d57b 4631 kfree(map);
88a420e4 4632 if (!t.count)
e374d483
HH
4633 len += sprintf(buf, "No data\n");
4634 return len;
88a420e4 4635}
ab4d5ed5 4636#endif
88a420e4 4637
a5a84755 4638#ifdef SLUB_RESILIENCY_TEST
c07b8183 4639static void __init resiliency_test(void)
a5a84755
CL
4640{
4641 u8 *p;
4642
95a05b42 4643 BUILD_BUG_ON(KMALLOC_MIN_SIZE > 16 || KMALLOC_SHIFT_HIGH < 10);
a5a84755 4644
f9f58285
FF
4645 pr_err("SLUB resiliency testing\n");
4646 pr_err("-----------------------\n");
4647 pr_err("A. Corruption after allocation\n");
a5a84755
CL
4648
4649 p = kzalloc(16, GFP_KERNEL);
4650 p[16] = 0x12;
f9f58285
FF
4651 pr_err("\n1. kmalloc-16: Clobber Redzone/next pointer 0x12->0x%p\n\n",
4652 p + 16);
a5a84755
CL
4653
4654 validate_slab_cache(kmalloc_caches[4]);
4655
4656 /* Hmmm... The next two are dangerous */
4657 p = kzalloc(32, GFP_KERNEL);
4658 p[32 + sizeof(void *)] = 0x34;
f9f58285
FF
4659 pr_err("\n2. kmalloc-32: Clobber next pointer/next slab 0x34 -> -0x%p\n",
4660 p);
4661 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4662
4663 validate_slab_cache(kmalloc_caches[5]);
4664 p = kzalloc(64, GFP_KERNEL);
4665 p += 64 + (get_cycles() & 0xff) * sizeof(void *);
4666 *p = 0x56;
f9f58285
FF
4667 pr_err("\n3. kmalloc-64: corrupting random byte 0x56->0x%p\n",
4668 p);
4669 pr_err("If allocated object is overwritten then not detectable\n\n");
a5a84755
CL
4670 validate_slab_cache(kmalloc_caches[6]);
4671
f9f58285 4672 pr_err("\nB. Corruption after free\n");
a5a84755
CL
4673 p = kzalloc(128, GFP_KERNEL);
4674 kfree(p);
4675 *p = 0x78;
f9f58285 4676 pr_err("1. kmalloc-128: Clobber first word 0x78->0x%p\n\n", p);
a5a84755
CL
4677 validate_slab_cache(kmalloc_caches[7]);
4678
4679 p = kzalloc(256, GFP_KERNEL);
4680 kfree(p);
4681 p[50] = 0x9a;
f9f58285 4682 pr_err("\n2. kmalloc-256: Clobber 50th byte 0x9a->0x%p\n\n", p);
a5a84755
CL
4683 validate_slab_cache(kmalloc_caches[8]);
4684
4685 p = kzalloc(512, GFP_KERNEL);
4686 kfree(p);
4687 p[512] = 0xab;
f9f58285 4688 pr_err("\n3. kmalloc-512: Clobber redzone 0xab->0x%p\n\n", p);
a5a84755
CL
4689 validate_slab_cache(kmalloc_caches[9]);
4690}
4691#else
4692#ifdef CONFIG_SYSFS
4693static void resiliency_test(void) {};
4694#endif
4695#endif
4696
ab4d5ed5 4697#ifdef CONFIG_SYSFS
81819f0f 4698enum slab_stat_type {
205ab99d
CL
4699 SL_ALL, /* All slabs */
4700 SL_PARTIAL, /* Only partially allocated slabs */
4701 SL_CPU, /* Only slabs used for cpu caches */
4702 SL_OBJECTS, /* Determine allocated objects not slabs */
4703 SL_TOTAL /* Determine object capacity not slabs */
81819f0f
CL
4704};
4705
205ab99d 4706#define SO_ALL (1 << SL_ALL)
81819f0f
CL
4707#define SO_PARTIAL (1 << SL_PARTIAL)
4708#define SO_CPU (1 << SL_CPU)
4709#define SO_OBJECTS (1 << SL_OBJECTS)
205ab99d 4710#define SO_TOTAL (1 << SL_TOTAL)
81819f0f 4711
1663f26d
TH
4712#ifdef CONFIG_MEMCG
4713static bool memcg_sysfs_enabled = IS_ENABLED(CONFIG_SLUB_MEMCG_SYSFS_ON);
4714
4715static int __init setup_slub_memcg_sysfs(char *str)
4716{
4717 int v;
4718
4719 if (get_option(&str, &v) > 0)
4720 memcg_sysfs_enabled = v;
4721
4722 return 1;
4723}
4724
4725__setup("slub_memcg_sysfs=", setup_slub_memcg_sysfs);
4726#endif
4727
62e5c4b4
CG
4728static ssize_t show_slab_objects(struct kmem_cache *s,
4729 char *buf, unsigned long flags)
81819f0f
CL
4730{
4731 unsigned long total = 0;
81819f0f
CL
4732 int node;
4733 int x;
4734 unsigned long *nodes;
81819f0f 4735
e35e1a97 4736 nodes = kzalloc(sizeof(unsigned long) * nr_node_ids, GFP_KERNEL);
62e5c4b4
CG
4737 if (!nodes)
4738 return -ENOMEM;
81819f0f 4739
205ab99d
CL
4740 if (flags & SO_CPU) {
4741 int cpu;
81819f0f 4742
205ab99d 4743 for_each_possible_cpu(cpu) {
d0e0ac97
CG
4744 struct kmem_cache_cpu *c = per_cpu_ptr(s->cpu_slab,
4745 cpu);
ec3ab083 4746 int node;
49e22585 4747 struct page *page;
dfb4f096 4748
4db0c3c2 4749 page = READ_ONCE(c->page);
ec3ab083
CL
4750 if (!page)
4751 continue;
205ab99d 4752
ec3ab083
CL
4753 node = page_to_nid(page);
4754 if (flags & SO_TOTAL)
4755 x = page->objects;
4756 else if (flags & SO_OBJECTS)
4757 x = page->inuse;
4758 else
4759 x = 1;
49e22585 4760
ec3ab083
CL
4761 total += x;
4762 nodes[node] += x;
4763
a93cf07b 4764 page = slub_percpu_partial_read_once(c);
49e22585 4765 if (page) {
8afb1474
LZ
4766 node = page_to_nid(page);
4767 if (flags & SO_TOTAL)
4768 WARN_ON_ONCE(1);
4769 else if (flags & SO_OBJECTS)
4770 WARN_ON_ONCE(1);
4771 else
4772 x = page->pages;
bc6697d8
ED
4773 total += x;
4774 nodes[node] += x;
49e22585 4775 }
81819f0f
CL
4776 }
4777 }
4778
bfc8c901 4779 get_online_mems();
ab4d5ed5 4780#ifdef CONFIG_SLUB_DEBUG
205ab99d 4781 if (flags & SO_ALL) {
fa45dc25
CL
4782 struct kmem_cache_node *n;
4783
4784 for_each_kmem_cache_node(s, node, n) {
205ab99d 4785
d0e0ac97
CG
4786 if (flags & SO_TOTAL)
4787 x = atomic_long_read(&n->total_objects);
4788 else if (flags & SO_OBJECTS)
4789 x = atomic_long_read(&n->total_objects) -
4790 count_partial(n, count_free);
81819f0f 4791 else
205ab99d 4792 x = atomic_long_read(&n->nr_slabs);
81819f0f
CL
4793 total += x;
4794 nodes[node] += x;
4795 }
4796
ab4d5ed5
CL
4797 } else
4798#endif
4799 if (flags & SO_PARTIAL) {
fa45dc25 4800 struct kmem_cache_node *n;
81819f0f 4801
fa45dc25 4802 for_each_kmem_cache_node(s, node, n) {
205ab99d
CL
4803 if (flags & SO_TOTAL)
4804 x = count_partial(n, count_total);
4805 else if (flags & SO_OBJECTS)
4806 x = count_partial(n, count_inuse);
81819f0f 4807 else
205ab99d 4808 x = n->nr_partial;
81819f0f
CL
4809 total += x;
4810 nodes[node] += x;
4811 }
4812 }
81819f0f
CL
4813 x = sprintf(buf, "%lu", total);
4814#ifdef CONFIG_NUMA
fa45dc25 4815 for (node = 0; node < nr_node_ids; node++)
81819f0f
CL
4816 if (nodes[node])
4817 x += sprintf(buf + x, " N%d=%lu",
4818 node, nodes[node]);
4819#endif
bfc8c901 4820 put_online_mems();
81819f0f
CL
4821 kfree(nodes);
4822 return x + sprintf(buf + x, "\n");
4823}
4824
ab4d5ed5 4825#ifdef CONFIG_SLUB_DEBUG
81819f0f
CL
4826static int any_slab_objects(struct kmem_cache *s)
4827{
4828 int node;
fa45dc25 4829 struct kmem_cache_node *n;
81819f0f 4830
fa45dc25 4831 for_each_kmem_cache_node(s, node, n)
4ea33e2d 4832 if (atomic_long_read(&n->total_objects))
81819f0f 4833 return 1;
fa45dc25 4834
81819f0f
CL
4835 return 0;
4836}
ab4d5ed5 4837#endif
81819f0f
CL
4838
4839#define to_slab_attr(n) container_of(n, struct slab_attribute, attr)
497888cf 4840#define to_slab(n) container_of(n, struct kmem_cache, kobj)
81819f0f
CL
4841
4842struct slab_attribute {
4843 struct attribute attr;
4844 ssize_t (*show)(struct kmem_cache *s, char *buf);
4845 ssize_t (*store)(struct kmem_cache *s, const char *x, size_t count);
4846};
4847
4848#define SLAB_ATTR_RO(_name) \
ab067e99
VK
4849 static struct slab_attribute _name##_attr = \
4850 __ATTR(_name, 0400, _name##_show, NULL)
81819f0f
CL
4851
4852#define SLAB_ATTR(_name) \
4853 static struct slab_attribute _name##_attr = \
ab067e99 4854 __ATTR(_name, 0600, _name##_show, _name##_store)
81819f0f 4855
81819f0f
CL
4856static ssize_t slab_size_show(struct kmem_cache *s, char *buf)
4857{
4858 return sprintf(buf, "%d\n", s->size);
4859}
4860SLAB_ATTR_RO(slab_size);
4861
4862static ssize_t align_show(struct kmem_cache *s, char *buf)
4863{
4864 return sprintf(buf, "%d\n", s->align);
4865}
4866SLAB_ATTR_RO(align);
4867
4868static ssize_t object_size_show(struct kmem_cache *s, char *buf)
4869{
3b0efdfa 4870 return sprintf(buf, "%d\n", s->object_size);
81819f0f
CL
4871}
4872SLAB_ATTR_RO(object_size);
4873
4874static ssize_t objs_per_slab_show(struct kmem_cache *s, char *buf)
4875{
834f3d11 4876 return sprintf(buf, "%d\n", oo_objects(s->oo));
81819f0f
CL
4877}
4878SLAB_ATTR_RO(objs_per_slab);
4879
06b285dc
CL
4880static ssize_t order_store(struct kmem_cache *s,
4881 const char *buf, size_t length)
4882{
0121c619
CL
4883 unsigned long order;
4884 int err;
4885
3dbb95f7 4886 err = kstrtoul(buf, 10, &order);
0121c619
CL
4887 if (err)
4888 return err;
06b285dc
CL
4889
4890 if (order > slub_max_order || order < slub_min_order)
4891 return -EINVAL;
4892
4893 calculate_sizes(s, order);
4894 return length;
4895}
4896
81819f0f
CL
4897static ssize_t order_show(struct kmem_cache *s, char *buf)
4898{
834f3d11 4899 return sprintf(buf, "%d\n", oo_order(s->oo));
81819f0f 4900}
06b285dc 4901SLAB_ATTR(order);
81819f0f 4902
73d342b1
DR
4903static ssize_t min_partial_show(struct kmem_cache *s, char *buf)
4904{
4905 return sprintf(buf, "%lu\n", s->min_partial);
4906}
4907
4908static ssize_t min_partial_store(struct kmem_cache *s, const char *buf,
4909 size_t length)
4910{
4911 unsigned long min;
4912 int err;
4913
3dbb95f7 4914 err = kstrtoul(buf, 10, &min);
73d342b1
DR
4915 if (err)
4916 return err;
4917
c0bdb232 4918 set_min_partial(s, min);
73d342b1
DR
4919 return length;
4920}
4921SLAB_ATTR(min_partial);
4922
49e22585
CL
4923static ssize_t cpu_partial_show(struct kmem_cache *s, char *buf)
4924{
e6d0e1dc 4925 return sprintf(buf, "%u\n", slub_cpu_partial(s));
49e22585
CL
4926}
4927
4928static ssize_t cpu_partial_store(struct kmem_cache *s, const char *buf,
4929 size_t length)
4930{
4931 unsigned long objects;
4932 int err;
4933
3dbb95f7 4934 err = kstrtoul(buf, 10, &objects);
49e22585
CL
4935 if (err)
4936 return err;
345c905d 4937 if (objects && !kmem_cache_has_cpu_partial(s))
74ee4ef1 4938 return -EINVAL;
49e22585 4939
e6d0e1dc 4940 slub_set_cpu_partial(s, objects);
49e22585
CL
4941 flush_all(s);
4942 return length;
4943}
4944SLAB_ATTR(cpu_partial);
4945
81819f0f
CL
4946static ssize_t ctor_show(struct kmem_cache *s, char *buf)
4947{
62c70bce
JP
4948 if (!s->ctor)
4949 return 0;
4950 return sprintf(buf, "%pS\n", s->ctor);
81819f0f
CL
4951}
4952SLAB_ATTR_RO(ctor);
4953
81819f0f
CL
4954static ssize_t aliases_show(struct kmem_cache *s, char *buf)
4955{
4307c14f 4956 return sprintf(buf, "%d\n", s->refcount < 0 ? 0 : s->refcount - 1);
81819f0f
CL
4957}
4958SLAB_ATTR_RO(aliases);
4959
81819f0f
CL
4960static ssize_t partial_show(struct kmem_cache *s, char *buf)
4961{
d9acf4b7 4962 return show_slab_objects(s, buf, SO_PARTIAL);
81819f0f
CL
4963}
4964SLAB_ATTR_RO(partial);
4965
4966static ssize_t cpu_slabs_show(struct kmem_cache *s, char *buf)
4967{
d9acf4b7 4968 return show_slab_objects(s, buf, SO_CPU);
81819f0f
CL
4969}
4970SLAB_ATTR_RO(cpu_slabs);
4971
4972static ssize_t objects_show(struct kmem_cache *s, char *buf)
4973{
205ab99d 4974 return show_slab_objects(s, buf, SO_ALL|SO_OBJECTS);
81819f0f
CL
4975}
4976SLAB_ATTR_RO(objects);
4977
205ab99d
CL
4978static ssize_t objects_partial_show(struct kmem_cache *s, char *buf)
4979{
4980 return show_slab_objects(s, buf, SO_PARTIAL|SO_OBJECTS);
4981}
4982SLAB_ATTR_RO(objects_partial);
4983
49e22585
CL
4984static ssize_t slabs_cpu_partial_show(struct kmem_cache *s, char *buf)
4985{
4986 int objects = 0;
4987 int pages = 0;
4988 int cpu;
4989 int len;
4990
4991 for_each_online_cpu(cpu) {
a93cf07b
WY
4992 struct page *page;
4993
4994 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
4995
4996 if (page) {
4997 pages += page->pages;
4998 objects += page->pobjects;
4999 }
5000 }
5001
5002 len = sprintf(buf, "%d(%d)", objects, pages);
5003
5004#ifdef CONFIG_SMP
5005 for_each_online_cpu(cpu) {
a93cf07b
WY
5006 struct page *page;
5007
5008 page = slub_percpu_partial(per_cpu_ptr(s->cpu_slab, cpu));
49e22585
CL
5009
5010 if (page && len < PAGE_SIZE - 20)
5011 len += sprintf(buf + len, " C%d=%d(%d)", cpu,
5012 page->pobjects, page->pages);
5013 }
5014#endif
5015 return len + sprintf(buf + len, "\n");
5016}
5017SLAB_ATTR_RO(slabs_cpu_partial);
5018
a5a84755
CL
5019static ssize_t reclaim_account_show(struct kmem_cache *s, char *buf)
5020{
5021 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RECLAIM_ACCOUNT));
5022}
5023
5024static ssize_t reclaim_account_store(struct kmem_cache *s,
5025 const char *buf, size_t length)
5026{
5027 s->flags &= ~SLAB_RECLAIM_ACCOUNT;
5028 if (buf[0] == '1')
5029 s->flags |= SLAB_RECLAIM_ACCOUNT;
5030 return length;
5031}
5032SLAB_ATTR(reclaim_account);
5033
5034static ssize_t hwcache_align_show(struct kmem_cache *s, char *buf)
5035{
5036 return sprintf(buf, "%d\n", !!(s->flags & SLAB_HWCACHE_ALIGN));
5037}
5038SLAB_ATTR_RO(hwcache_align);
5039
5040#ifdef CONFIG_ZONE_DMA
5041static ssize_t cache_dma_show(struct kmem_cache *s, char *buf)
5042{
5043 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CACHE_DMA));
5044}
5045SLAB_ATTR_RO(cache_dma);
5046#endif
5047
5048static ssize_t destroy_by_rcu_show(struct kmem_cache *s, char *buf)
5049{
5f0d5a3a 5050 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TYPESAFE_BY_RCU));
a5a84755
CL
5051}
5052SLAB_ATTR_RO(destroy_by_rcu);
5053
ab9a0f19
LJ
5054static ssize_t reserved_show(struct kmem_cache *s, char *buf)
5055{
5056 return sprintf(buf, "%d\n", s->reserved);
5057}
5058SLAB_ATTR_RO(reserved);
5059
ab4d5ed5 5060#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5061static ssize_t slabs_show(struct kmem_cache *s, char *buf)
5062{
5063 return show_slab_objects(s, buf, SO_ALL);
5064}
5065SLAB_ATTR_RO(slabs);
5066
205ab99d
CL
5067static ssize_t total_objects_show(struct kmem_cache *s, char *buf)
5068{
5069 return show_slab_objects(s, buf, SO_ALL|SO_TOTAL);
5070}
5071SLAB_ATTR_RO(total_objects);
5072
81819f0f
CL
5073static ssize_t sanity_checks_show(struct kmem_cache *s, char *buf)
5074{
becfda68 5075 return sprintf(buf, "%d\n", !!(s->flags & SLAB_CONSISTENCY_CHECKS));
81819f0f
CL
5076}
5077
5078static ssize_t sanity_checks_store(struct kmem_cache *s,
5079 const char *buf, size_t length)
5080{
becfda68 5081 s->flags &= ~SLAB_CONSISTENCY_CHECKS;
b789ef51
CL
5082 if (buf[0] == '1') {
5083 s->flags &= ~__CMPXCHG_DOUBLE;
becfda68 5084 s->flags |= SLAB_CONSISTENCY_CHECKS;
b789ef51 5085 }
81819f0f
CL
5086 return length;
5087}
5088SLAB_ATTR(sanity_checks);
5089
5090static ssize_t trace_show(struct kmem_cache *s, char *buf)
5091{
5092 return sprintf(buf, "%d\n", !!(s->flags & SLAB_TRACE));
5093}
5094
5095static ssize_t trace_store(struct kmem_cache *s, const char *buf,
5096 size_t length)
5097{
c9e16131
CL
5098 /*
5099 * Tracing a merged cache is going to give confusing results
5100 * as well as cause other issues like converting a mergeable
5101 * cache into an umergeable one.
5102 */
5103 if (s->refcount > 1)
5104 return -EINVAL;
5105
81819f0f 5106 s->flags &= ~SLAB_TRACE;
b789ef51
CL
5107 if (buf[0] == '1') {
5108 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5109 s->flags |= SLAB_TRACE;
b789ef51 5110 }
81819f0f
CL
5111 return length;
5112}
5113SLAB_ATTR(trace);
5114
81819f0f
CL
5115static ssize_t red_zone_show(struct kmem_cache *s, char *buf)
5116{
5117 return sprintf(buf, "%d\n", !!(s->flags & SLAB_RED_ZONE));
5118}
5119
5120static ssize_t red_zone_store(struct kmem_cache *s,
5121 const char *buf, size_t length)
5122{
5123 if (any_slab_objects(s))
5124 return -EBUSY;
5125
5126 s->flags &= ~SLAB_RED_ZONE;
b789ef51 5127 if (buf[0] == '1') {
81819f0f 5128 s->flags |= SLAB_RED_ZONE;
b789ef51 5129 }
06b285dc 5130 calculate_sizes(s, -1);
81819f0f
CL
5131 return length;
5132}
5133SLAB_ATTR(red_zone);
5134
5135static ssize_t poison_show(struct kmem_cache *s, char *buf)
5136{
5137 return sprintf(buf, "%d\n", !!(s->flags & SLAB_POISON));
5138}
5139
5140static ssize_t poison_store(struct kmem_cache *s,
5141 const char *buf, size_t length)
5142{
5143 if (any_slab_objects(s))
5144 return -EBUSY;
5145
5146 s->flags &= ~SLAB_POISON;
b789ef51 5147 if (buf[0] == '1') {
81819f0f 5148 s->flags |= SLAB_POISON;
b789ef51 5149 }
06b285dc 5150 calculate_sizes(s, -1);
81819f0f
CL
5151 return length;
5152}
5153SLAB_ATTR(poison);
5154
5155static ssize_t store_user_show(struct kmem_cache *s, char *buf)
5156{
5157 return sprintf(buf, "%d\n", !!(s->flags & SLAB_STORE_USER));
5158}
5159
5160static ssize_t store_user_store(struct kmem_cache *s,
5161 const char *buf, size_t length)
5162{
5163 if (any_slab_objects(s))
5164 return -EBUSY;
5165
5166 s->flags &= ~SLAB_STORE_USER;
b789ef51
CL
5167 if (buf[0] == '1') {
5168 s->flags &= ~__CMPXCHG_DOUBLE;
81819f0f 5169 s->flags |= SLAB_STORE_USER;
b789ef51 5170 }
06b285dc 5171 calculate_sizes(s, -1);
81819f0f
CL
5172 return length;
5173}
5174SLAB_ATTR(store_user);
5175
53e15af0
CL
5176static ssize_t validate_show(struct kmem_cache *s, char *buf)
5177{
5178 return 0;
5179}
5180
5181static ssize_t validate_store(struct kmem_cache *s,
5182 const char *buf, size_t length)
5183{
434e245d
CL
5184 int ret = -EINVAL;
5185
5186 if (buf[0] == '1') {
5187 ret = validate_slab_cache(s);
5188 if (ret >= 0)
5189 ret = length;
5190 }
5191 return ret;
53e15af0
CL
5192}
5193SLAB_ATTR(validate);
a5a84755
CL
5194
5195static ssize_t alloc_calls_show(struct kmem_cache *s, char *buf)
5196{
5197 if (!(s->flags & SLAB_STORE_USER))
5198 return -ENOSYS;
5199 return list_locations(s, buf, TRACK_ALLOC);
5200}
5201SLAB_ATTR_RO(alloc_calls);
5202
5203static ssize_t free_calls_show(struct kmem_cache *s, char *buf)
5204{
5205 if (!(s->flags & SLAB_STORE_USER))
5206 return -ENOSYS;
5207 return list_locations(s, buf, TRACK_FREE);
5208}
5209SLAB_ATTR_RO(free_calls);
5210#endif /* CONFIG_SLUB_DEBUG */
5211
5212#ifdef CONFIG_FAILSLAB
5213static ssize_t failslab_show(struct kmem_cache *s, char *buf)
5214{
5215 return sprintf(buf, "%d\n", !!(s->flags & SLAB_FAILSLAB));
5216}
5217
5218static ssize_t failslab_store(struct kmem_cache *s, const char *buf,
5219 size_t length)
5220{
c9e16131
CL
5221 if (s->refcount > 1)
5222 return -EINVAL;
5223
a5a84755
CL
5224 s->flags &= ~SLAB_FAILSLAB;
5225 if (buf[0] == '1')
5226 s->flags |= SLAB_FAILSLAB;
5227 return length;
5228}
5229SLAB_ATTR(failslab);
ab4d5ed5 5230#endif
53e15af0 5231
2086d26a
CL
5232static ssize_t shrink_show(struct kmem_cache *s, char *buf)
5233{
5234 return 0;
5235}
5236
5237static ssize_t shrink_store(struct kmem_cache *s,
5238 const char *buf, size_t length)
5239{
832f37f5
VD
5240 if (buf[0] == '1')
5241 kmem_cache_shrink(s);
5242 else
2086d26a
CL
5243 return -EINVAL;
5244 return length;
5245}
5246SLAB_ATTR(shrink);
5247
81819f0f 5248#ifdef CONFIG_NUMA
9824601e 5249static ssize_t remote_node_defrag_ratio_show(struct kmem_cache *s, char *buf)
81819f0f 5250{
9824601e 5251 return sprintf(buf, "%d\n", s->remote_node_defrag_ratio / 10);
81819f0f
CL
5252}
5253
9824601e 5254static ssize_t remote_node_defrag_ratio_store(struct kmem_cache *s,
81819f0f
CL
5255 const char *buf, size_t length)
5256{
0121c619
CL
5257 unsigned long ratio;
5258 int err;
5259
3dbb95f7 5260 err = kstrtoul(buf, 10, &ratio);
0121c619
CL
5261 if (err)
5262 return err;
5263
e2cb96b7 5264 if (ratio <= 100)
0121c619 5265 s->remote_node_defrag_ratio = ratio * 10;
81819f0f 5266
81819f0f
CL
5267 return length;
5268}
9824601e 5269SLAB_ATTR(remote_node_defrag_ratio);
81819f0f
CL
5270#endif
5271
8ff12cfc 5272#ifdef CONFIG_SLUB_STATS
8ff12cfc
CL
5273static int show_stat(struct kmem_cache *s, char *buf, enum stat_item si)
5274{
5275 unsigned long sum = 0;
5276 int cpu;
5277 int len;
5278 int *data = kmalloc(nr_cpu_ids * sizeof(int), GFP_KERNEL);
5279
5280 if (!data)
5281 return -ENOMEM;
5282
5283 for_each_online_cpu(cpu) {
9dfc6e68 5284 unsigned x = per_cpu_ptr(s->cpu_slab, cpu)->stat[si];
8ff12cfc
CL
5285
5286 data[cpu] = x;
5287 sum += x;
5288 }
5289
5290 len = sprintf(buf, "%lu", sum);
5291
50ef37b9 5292#ifdef CONFIG_SMP
8ff12cfc
CL
5293 for_each_online_cpu(cpu) {
5294 if (data[cpu] && len < PAGE_SIZE - 20)
50ef37b9 5295 len += sprintf(buf + len, " C%d=%u", cpu, data[cpu]);
8ff12cfc 5296 }
50ef37b9 5297#endif
8ff12cfc
CL
5298 kfree(data);
5299 return len + sprintf(buf + len, "\n");
5300}
5301
78eb00cc
DR
5302static void clear_stat(struct kmem_cache *s, enum stat_item si)
5303{
5304 int cpu;
5305
5306 for_each_online_cpu(cpu)
9dfc6e68 5307 per_cpu_ptr(s->cpu_slab, cpu)->stat[si] = 0;
78eb00cc
DR
5308}
5309
8ff12cfc
CL
5310#define STAT_ATTR(si, text) \
5311static ssize_t text##_show(struct kmem_cache *s, char *buf) \
5312{ \
5313 return show_stat(s, buf, si); \
5314} \
78eb00cc
DR
5315static ssize_t text##_store(struct kmem_cache *s, \
5316 const char *buf, size_t length) \
5317{ \
5318 if (buf[0] != '0') \
5319 return -EINVAL; \
5320 clear_stat(s, si); \
5321 return length; \
5322} \
5323SLAB_ATTR(text); \
8ff12cfc
CL
5324
5325STAT_ATTR(ALLOC_FASTPATH, alloc_fastpath);
5326STAT_ATTR(ALLOC_SLOWPATH, alloc_slowpath);
5327STAT_ATTR(FREE_FASTPATH, free_fastpath);
5328STAT_ATTR(FREE_SLOWPATH, free_slowpath);
5329STAT_ATTR(FREE_FROZEN, free_frozen);
5330STAT_ATTR(FREE_ADD_PARTIAL, free_add_partial);
5331STAT_ATTR(FREE_REMOVE_PARTIAL, free_remove_partial);
5332STAT_ATTR(ALLOC_FROM_PARTIAL, alloc_from_partial);
5333STAT_ATTR(ALLOC_SLAB, alloc_slab);
5334STAT_ATTR(ALLOC_REFILL, alloc_refill);
e36a2652 5335STAT_ATTR(ALLOC_NODE_MISMATCH, alloc_node_mismatch);
8ff12cfc
CL
5336STAT_ATTR(FREE_SLAB, free_slab);
5337STAT_ATTR(CPUSLAB_FLUSH, cpuslab_flush);
5338STAT_ATTR(DEACTIVATE_FULL, deactivate_full);
5339STAT_ATTR(DEACTIVATE_EMPTY, deactivate_empty);
5340STAT_ATTR(DEACTIVATE_TO_HEAD, deactivate_to_head);
5341STAT_ATTR(DEACTIVATE_TO_TAIL, deactivate_to_tail);
5342STAT_ATTR(DEACTIVATE_REMOTE_FREES, deactivate_remote_frees);
03e404af 5343STAT_ATTR(DEACTIVATE_BYPASS, deactivate_bypass);
65c3376a 5344STAT_ATTR(ORDER_FALLBACK, order_fallback);
b789ef51
CL
5345STAT_ATTR(CMPXCHG_DOUBLE_CPU_FAIL, cmpxchg_double_cpu_fail);
5346STAT_ATTR(CMPXCHG_DOUBLE_FAIL, cmpxchg_double_fail);
49e22585
CL
5347STAT_ATTR(CPU_PARTIAL_ALLOC, cpu_partial_alloc);
5348STAT_ATTR(CPU_PARTIAL_FREE, cpu_partial_free);
8028dcea
AS
5349STAT_ATTR(CPU_PARTIAL_NODE, cpu_partial_node);
5350STAT_ATTR(CPU_PARTIAL_DRAIN, cpu_partial_drain);
8ff12cfc
CL
5351#endif
5352
06428780 5353static struct attribute *slab_attrs[] = {
81819f0f
CL
5354 &slab_size_attr.attr,
5355 &object_size_attr.attr,
5356 &objs_per_slab_attr.attr,
5357 &order_attr.attr,
73d342b1 5358 &min_partial_attr.attr,
49e22585 5359 &cpu_partial_attr.attr,
81819f0f 5360 &objects_attr.attr,
205ab99d 5361 &objects_partial_attr.attr,
81819f0f
CL
5362 &partial_attr.attr,
5363 &cpu_slabs_attr.attr,
5364 &ctor_attr.attr,
81819f0f
CL
5365 &aliases_attr.attr,
5366 &align_attr.attr,
81819f0f
CL
5367 &hwcache_align_attr.attr,
5368 &reclaim_account_attr.attr,
5369 &destroy_by_rcu_attr.attr,
a5a84755 5370 &shrink_attr.attr,
ab9a0f19 5371 &reserved_attr.attr,
49e22585 5372 &slabs_cpu_partial_attr.attr,
ab4d5ed5 5373#ifdef CONFIG_SLUB_DEBUG
a5a84755
CL
5374 &total_objects_attr.attr,
5375 &slabs_attr.attr,
5376 &sanity_checks_attr.attr,
5377 &trace_attr.attr,
81819f0f
CL
5378 &red_zone_attr.attr,
5379 &poison_attr.attr,
5380 &store_user_attr.attr,
53e15af0 5381 &validate_attr.attr,
88a420e4
CL
5382 &alloc_calls_attr.attr,
5383 &free_calls_attr.attr,
ab4d5ed5 5384#endif
81819f0f
CL
5385#ifdef CONFIG_ZONE_DMA
5386 &cache_dma_attr.attr,
5387#endif
5388#ifdef CONFIG_NUMA
9824601e 5389 &remote_node_defrag_ratio_attr.attr,
8ff12cfc
CL
5390#endif
5391#ifdef CONFIG_SLUB_STATS
5392 &alloc_fastpath_attr.attr,
5393 &alloc_slowpath_attr.attr,
5394 &free_fastpath_attr.attr,
5395 &free_slowpath_attr.attr,
5396 &free_frozen_attr.attr,
5397 &free_add_partial_attr.attr,
5398 &free_remove_partial_attr.attr,
5399 &alloc_from_partial_attr.attr,
5400 &alloc_slab_attr.attr,
5401 &alloc_refill_attr.attr,
e36a2652 5402 &alloc_node_mismatch_attr.attr,
8ff12cfc
CL
5403 &free_slab_attr.attr,
5404 &cpuslab_flush_attr.attr,
5405 &deactivate_full_attr.attr,
5406 &deactivate_empty_attr.attr,
5407 &deactivate_to_head_attr.attr,
5408 &deactivate_to_tail_attr.attr,
5409 &deactivate_remote_frees_attr.attr,
03e404af 5410 &deactivate_bypass_attr.attr,
65c3376a 5411 &order_fallback_attr.attr,
b789ef51
CL
5412 &cmpxchg_double_fail_attr.attr,
5413 &cmpxchg_double_cpu_fail_attr.attr,
49e22585
CL
5414 &cpu_partial_alloc_attr.attr,
5415 &cpu_partial_free_attr.attr,
8028dcea
AS
5416 &cpu_partial_node_attr.attr,
5417 &cpu_partial_drain_attr.attr,
81819f0f 5418#endif
4c13dd3b
DM
5419#ifdef CONFIG_FAILSLAB
5420 &failslab_attr.attr,
5421#endif
5422
81819f0f
CL
5423 NULL
5424};
5425
5426static struct attribute_group slab_attr_group = {
5427 .attrs = slab_attrs,
5428};
5429
5430static ssize_t slab_attr_show(struct kobject *kobj,
5431 struct attribute *attr,
5432 char *buf)
5433{
5434 struct slab_attribute *attribute;
5435 struct kmem_cache *s;
5436 int err;
5437
5438 attribute = to_slab_attr(attr);
5439 s = to_slab(kobj);
5440
5441 if (!attribute->show)
5442 return -EIO;
5443
5444 err = attribute->show(s, buf);
5445
5446 return err;
5447}
5448
5449static ssize_t slab_attr_store(struct kobject *kobj,
5450 struct attribute *attr,
5451 const char *buf, size_t len)
5452{
5453 struct slab_attribute *attribute;
5454 struct kmem_cache *s;
5455 int err;
5456
5457 attribute = to_slab_attr(attr);
5458 s = to_slab(kobj);
5459
5460 if (!attribute->store)
5461 return -EIO;
5462
5463 err = attribute->store(s, buf, len);
127424c8 5464#ifdef CONFIG_MEMCG
107dab5c 5465 if (slab_state >= FULL && err >= 0 && is_root_cache(s)) {
426589f5 5466 struct kmem_cache *c;
81819f0f 5467
107dab5c
GC
5468 mutex_lock(&slab_mutex);
5469 if (s->max_attr_size < len)
5470 s->max_attr_size = len;
5471
ebe945c2
GC
5472 /*
5473 * This is a best effort propagation, so this function's return
5474 * value will be determined by the parent cache only. This is
5475 * basically because not all attributes will have a well
5476 * defined semantics for rollbacks - most of the actions will
5477 * have permanent effects.
5478 *
5479 * Returning the error value of any of the children that fail
5480 * is not 100 % defined, in the sense that users seeing the
5481 * error code won't be able to know anything about the state of
5482 * the cache.
5483 *
5484 * Only returning the error code for the parent cache at least
5485 * has well defined semantics. The cache being written to
5486 * directly either failed or succeeded, in which case we loop
5487 * through the descendants with best-effort propagation.
5488 */
426589f5
VD
5489 for_each_memcg_cache(c, s)
5490 attribute->store(c, buf, len);
107dab5c
GC
5491 mutex_unlock(&slab_mutex);
5492 }
5493#endif
81819f0f
CL
5494 return err;
5495}
5496
107dab5c
GC
5497static void memcg_propagate_slab_attrs(struct kmem_cache *s)
5498{
127424c8 5499#ifdef CONFIG_MEMCG
107dab5c
GC
5500 int i;
5501 char *buffer = NULL;
93030d83 5502 struct kmem_cache *root_cache;
107dab5c 5503
93030d83 5504 if (is_root_cache(s))
107dab5c
GC
5505 return;
5506
f7ce3190 5507 root_cache = s->memcg_params.root_cache;
93030d83 5508
107dab5c
GC
5509 /*
5510 * This mean this cache had no attribute written. Therefore, no point
5511 * in copying default values around
5512 */
93030d83 5513 if (!root_cache->max_attr_size)
107dab5c
GC
5514 return;
5515
5516 for (i = 0; i < ARRAY_SIZE(slab_attrs); i++) {
5517 char mbuf[64];
5518 char *buf;
5519 struct slab_attribute *attr = to_slab_attr(slab_attrs[i]);
478fe303 5520 ssize_t len;
107dab5c
GC
5521
5522 if (!attr || !attr->store || !attr->show)
5523 continue;
5524
5525 /*
5526 * It is really bad that we have to allocate here, so we will
5527 * do it only as a fallback. If we actually allocate, though,
5528 * we can just use the allocated buffer until the end.
5529 *
5530 * Most of the slub attributes will tend to be very small in
5531 * size, but sysfs allows buffers up to a page, so they can
5532 * theoretically happen.
5533 */
5534 if (buffer)
5535 buf = buffer;
93030d83 5536 else if (root_cache->max_attr_size < ARRAY_SIZE(mbuf))
107dab5c
GC
5537 buf = mbuf;
5538 else {
5539 buffer = (char *) get_zeroed_page(GFP_KERNEL);
5540 if (WARN_ON(!buffer))
5541 continue;
5542 buf = buffer;
5543 }
5544
478fe303
TG
5545 len = attr->show(root_cache, buf);
5546 if (len > 0)
5547 attr->store(s, buf, len);
107dab5c
GC
5548 }
5549
5550 if (buffer)
5551 free_page((unsigned long)buffer);
5552#endif
5553}
5554
41a21285
CL
5555static void kmem_cache_release(struct kobject *k)
5556{
5557 slab_kmem_cache_release(to_slab(k));
5558}
5559
52cf25d0 5560static const struct sysfs_ops slab_sysfs_ops = {
81819f0f
CL
5561 .show = slab_attr_show,
5562 .store = slab_attr_store,
5563};
5564
5565static struct kobj_type slab_ktype = {
5566 .sysfs_ops = &slab_sysfs_ops,
41a21285 5567 .release = kmem_cache_release,
81819f0f
CL
5568};
5569
5570static int uevent_filter(struct kset *kset, struct kobject *kobj)
5571{
5572 struct kobj_type *ktype = get_ktype(kobj);
5573
5574 if (ktype == &slab_ktype)
5575 return 1;
5576 return 0;
5577}
5578
9cd43611 5579static const struct kset_uevent_ops slab_uevent_ops = {
81819f0f
CL
5580 .filter = uevent_filter,
5581};
5582
27c3a314 5583static struct kset *slab_kset;
81819f0f 5584
9a41707b
VD
5585static inline struct kset *cache_kset(struct kmem_cache *s)
5586{
127424c8 5587#ifdef CONFIG_MEMCG
9a41707b 5588 if (!is_root_cache(s))
f7ce3190 5589 return s->memcg_params.root_cache->memcg_kset;
9a41707b
VD
5590#endif
5591 return slab_kset;
5592}
5593
81819f0f
CL
5594#define ID_STR_LENGTH 64
5595
5596/* Create a unique string id for a slab cache:
6446faa2
CL
5597 *
5598 * Format :[flags-]size
81819f0f
CL
5599 */
5600static char *create_unique_id(struct kmem_cache *s)
5601{
5602 char *name = kmalloc(ID_STR_LENGTH, GFP_KERNEL);
5603 char *p = name;
5604
5605 BUG_ON(!name);
5606
5607 *p++ = ':';
5608 /*
5609 * First flags affecting slabcache operations. We will only
5610 * get here for aliasable slabs so we do not need to support
5611 * too many flags. The flags here must cover all flags that
5612 * are matched during merging to guarantee that the id is
5613 * unique.
5614 */
5615 if (s->flags & SLAB_CACHE_DMA)
5616 *p++ = 'd';
5617 if (s->flags & SLAB_RECLAIM_ACCOUNT)
5618 *p++ = 'a';
becfda68 5619 if (s->flags & SLAB_CONSISTENCY_CHECKS)
81819f0f 5620 *p++ = 'F';
5a896d9e
VN
5621 if (!(s->flags & SLAB_NOTRACK))
5622 *p++ = 't';
230e9fc2
VD
5623 if (s->flags & SLAB_ACCOUNT)
5624 *p++ = 'A';
81819f0f
CL
5625 if (p != name + 1)
5626 *p++ = '-';
5627 p += sprintf(p, "%07d", s->size);
2633d7a0 5628
81819f0f
CL
5629 BUG_ON(p > name + ID_STR_LENGTH - 1);
5630 return name;
5631}
5632
3b7b3140
TH
5633static void sysfs_slab_remove_workfn(struct work_struct *work)
5634{
5635 struct kmem_cache *s =
5636 container_of(work, struct kmem_cache, kobj_remove_work);
5637
5638 if (!s->kobj.state_in_sysfs)
5639 /*
5640 * For a memcg cache, this may be called during
5641 * deactivation and again on shutdown. Remove only once.
5642 * A cache is never shut down before deactivation is
5643 * complete, so no need to worry about synchronization.
5644 */
f6ba4880 5645 goto out;
3b7b3140
TH
5646
5647#ifdef CONFIG_MEMCG
5648 kset_unregister(s->memcg_kset);
5649#endif
5650 kobject_uevent(&s->kobj, KOBJ_REMOVE);
5651 kobject_del(&s->kobj);
f6ba4880 5652out:
3b7b3140
TH
5653 kobject_put(&s->kobj);
5654}
5655
81819f0f
CL
5656static int sysfs_slab_add(struct kmem_cache *s)
5657{
5658 int err;
5659 const char *name;
1663f26d 5660 struct kset *kset = cache_kset(s);
45530c44 5661 int unmergeable = slab_unmergeable(s);
81819f0f 5662
3b7b3140
TH
5663 INIT_WORK(&s->kobj_remove_work, sysfs_slab_remove_workfn);
5664
1663f26d
TH
5665 if (!kset) {
5666 kobject_init(&s->kobj, &slab_ktype);
5667 return 0;
5668 }
5669
81819f0f
CL
5670 if (unmergeable) {
5671 /*
5672 * Slabcache can never be merged so we can use the name proper.
5673 * This is typically the case for debug situations. In that
5674 * case we can catch duplicate names easily.
5675 */
27c3a314 5676 sysfs_remove_link(&slab_kset->kobj, s->name);
81819f0f
CL
5677 name = s->name;
5678 } else {
5679 /*
5680 * Create a unique name for the slab as a target
5681 * for the symlinks.
5682 */
5683 name = create_unique_id(s);
5684 }
5685
1663f26d 5686 s->kobj.kset = kset;
26e4f205 5687 err = kobject_init_and_add(&s->kobj, &slab_ktype, NULL, "%s", name);
54b6a731 5688 if (err)
80da026a 5689 goto out;
81819f0f
CL
5690
5691 err = sysfs_create_group(&s->kobj, &slab_attr_group);
54b6a731
DJ
5692 if (err)
5693 goto out_del_kobj;
9a41707b 5694
127424c8 5695#ifdef CONFIG_MEMCG
1663f26d 5696 if (is_root_cache(s) && memcg_sysfs_enabled) {
9a41707b
VD
5697 s->memcg_kset = kset_create_and_add("cgroup", NULL, &s->kobj);
5698 if (!s->memcg_kset) {
54b6a731
DJ
5699 err = -ENOMEM;
5700 goto out_del_kobj;
9a41707b
VD
5701 }
5702 }
5703#endif
5704
81819f0f
CL
5705 kobject_uevent(&s->kobj, KOBJ_ADD);
5706 if (!unmergeable) {
5707 /* Setup first alias */
5708 sysfs_slab_alias(s, s->name);
81819f0f 5709 }
54b6a731
DJ
5710out:
5711 if (!unmergeable)
5712 kfree(name);
5713 return err;
5714out_del_kobj:
5715 kobject_del(&s->kobj);
54b6a731 5716 goto out;
81819f0f
CL
5717}
5718
bf5eb3de 5719static void sysfs_slab_remove(struct kmem_cache *s)
81819f0f 5720{
97d06609 5721 if (slab_state < FULL)
2bce6485
CL
5722 /*
5723 * Sysfs has not been setup yet so no need to remove the
5724 * cache from sysfs.
5725 */
5726 return;
5727
3b7b3140
TH
5728 kobject_get(&s->kobj);
5729 schedule_work(&s->kobj_remove_work);
bf5eb3de
TH
5730}
5731
5732void sysfs_slab_release(struct kmem_cache *s)
5733{
5734 if (slab_state >= FULL)
5735 kobject_put(&s->kobj);
81819f0f
CL
5736}
5737
5738/*
5739 * Need to buffer aliases during bootup until sysfs becomes
9f6c708e 5740 * available lest we lose that information.
81819f0f
CL
5741 */
5742struct saved_alias {
5743 struct kmem_cache *s;
5744 const char *name;
5745 struct saved_alias *next;
5746};
5747
5af328a5 5748static struct saved_alias *alias_list;
81819f0f
CL
5749
5750static int sysfs_slab_alias(struct kmem_cache *s, const char *name)
5751{
5752 struct saved_alias *al;
5753
97d06609 5754 if (slab_state == FULL) {
81819f0f
CL
5755 /*
5756 * If we have a leftover link then remove it.
5757 */
27c3a314
GKH
5758 sysfs_remove_link(&slab_kset->kobj, name);
5759 return sysfs_create_link(&slab_kset->kobj, &s->kobj, name);
81819f0f
CL
5760 }
5761
5762 al = kmalloc(sizeof(struct saved_alias), GFP_KERNEL);
5763 if (!al)
5764 return -ENOMEM;
5765
5766 al->s = s;
5767 al->name = name;
5768 al->next = alias_list;
5769 alias_list = al;
5770 return 0;
5771}
5772
5773static int __init slab_sysfs_init(void)
5774{
5b95a4ac 5775 struct kmem_cache *s;
81819f0f
CL
5776 int err;
5777
18004c5d 5778 mutex_lock(&slab_mutex);
2bce6485 5779
0ff21e46 5780 slab_kset = kset_create_and_add("slab", &slab_uevent_ops, kernel_kobj);
27c3a314 5781 if (!slab_kset) {
18004c5d 5782 mutex_unlock(&slab_mutex);
f9f58285 5783 pr_err("Cannot register slab subsystem.\n");
81819f0f
CL
5784 return -ENOSYS;
5785 }
5786
97d06609 5787 slab_state = FULL;
26a7bd03 5788
5b95a4ac 5789 list_for_each_entry(s, &slab_caches, list) {
26a7bd03 5790 err = sysfs_slab_add(s);
5d540fb7 5791 if (err)
f9f58285
FF
5792 pr_err("SLUB: Unable to add boot slab %s to sysfs\n",
5793 s->name);
26a7bd03 5794 }
81819f0f
CL
5795
5796 while (alias_list) {
5797 struct saved_alias *al = alias_list;
5798
5799 alias_list = alias_list->next;
5800 err = sysfs_slab_alias(al->s, al->name);
5d540fb7 5801 if (err)
f9f58285
FF
5802 pr_err("SLUB: Unable to add boot slab alias %s to sysfs\n",
5803 al->name);
81819f0f
CL
5804 kfree(al);
5805 }
5806
18004c5d 5807 mutex_unlock(&slab_mutex);
81819f0f
CL
5808 resiliency_test();
5809 return 0;
5810}
5811
5812__initcall(slab_sysfs_init);
ab4d5ed5 5813#endif /* CONFIG_SYSFS */
57ed3eda
PE
5814
5815/*
5816 * The /proc/slabinfo ABI
5817 */
158a9624 5818#ifdef CONFIG_SLABINFO
0d7561c6 5819void get_slabinfo(struct kmem_cache *s, struct slabinfo *sinfo)
57ed3eda 5820{
57ed3eda 5821 unsigned long nr_slabs = 0;
205ab99d
CL
5822 unsigned long nr_objs = 0;
5823 unsigned long nr_free = 0;
57ed3eda 5824 int node;
fa45dc25 5825 struct kmem_cache_node *n;
57ed3eda 5826
fa45dc25 5827 for_each_kmem_cache_node(s, node, n) {
c17fd13e
WL
5828 nr_slabs += node_nr_slabs(n);
5829 nr_objs += node_nr_objs(n);
205ab99d 5830 nr_free += count_partial(n, count_free);
57ed3eda
PE
5831 }
5832
0d7561c6
GC
5833 sinfo->active_objs = nr_objs - nr_free;
5834 sinfo->num_objs = nr_objs;
5835 sinfo->active_slabs = nr_slabs;
5836 sinfo->num_slabs = nr_slabs;
5837 sinfo->objects_per_slab = oo_objects(s->oo);
5838 sinfo->cache_order = oo_order(s->oo);
57ed3eda
PE
5839}
5840
0d7561c6 5841void slabinfo_show_stats(struct seq_file *m, struct kmem_cache *s)
7b3c3a50 5842{
7b3c3a50
AD
5843}
5844
b7454ad3
GC
5845ssize_t slabinfo_write(struct file *file, const char __user *buffer,
5846 size_t count, loff_t *ppos)
7b3c3a50 5847{
b7454ad3 5848 return -EIO;
7b3c3a50 5849}
158a9624 5850#endif /* CONFIG_SLABINFO */