]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame_incremental - block/blk-core.c
bdi: add a user-tunable cpu_list for the bdi flusher threads
[mirror_ubuntu-artful-kernel.git] / block / blk-core.c
... / ...
CommitLineData
1/*
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
28#include <linux/task_io_accounting_ops.h>
29#include <linux/fault-inject.h>
30#include <linux/list_sort.h>
31#include <linux/delay.h>
32#include <linux/ratelimit.h>
33
34#define CREATE_TRACE_POINTS
35#include <trace/events/block.h>
36
37#include "blk.h"
38#include "blk-cgroup.h"
39
40EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_remap);
41EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
42EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
43
44DEFINE_IDA(blk_queue_ida);
45
46/*
47 * For the allocated request tables
48 */
49static struct kmem_cache *request_cachep;
50
51/*
52 * For queue allocation
53 */
54struct kmem_cache *blk_requestq_cachep;
55
56/*
57 * Controlling structure to kblockd
58 */
59static struct workqueue_struct *kblockd_workqueue;
60
61static void drive_stat_acct(struct request *rq, int new_io)
62{
63 struct hd_struct *part;
64 int rw = rq_data_dir(rq);
65 int cpu;
66
67 if (!blk_do_io_stat(rq))
68 return;
69
70 cpu = part_stat_lock();
71
72 if (!new_io) {
73 part = rq->part;
74 part_stat_inc(cpu, part, merges[rw]);
75 } else {
76 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
77 if (!hd_struct_try_get(part)) {
78 /*
79 * The partition is already being removed,
80 * the request will be accounted on the disk only
81 *
82 * We take a reference on disk->part0 although that
83 * partition will never be deleted, so we can treat
84 * it as any other partition.
85 */
86 part = &rq->rq_disk->part0;
87 hd_struct_get(part);
88 }
89 part_round_stats(cpu, part);
90 part_inc_in_flight(part, rw);
91 rq->part = part;
92 }
93
94 part_stat_unlock();
95}
96
97void blk_queue_congestion_threshold(struct request_queue *q)
98{
99 int nr;
100
101 nr = q->nr_requests - (q->nr_requests / 8) + 1;
102 if (nr > q->nr_requests)
103 nr = q->nr_requests;
104 q->nr_congestion_on = nr;
105
106 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
107 if (nr < 1)
108 nr = 1;
109 q->nr_congestion_off = nr;
110}
111
112/**
113 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
114 * @bdev: device
115 *
116 * Locates the passed device's request queue and returns the address of its
117 * backing_dev_info
118 *
119 * Will return NULL if the request queue cannot be located.
120 */
121struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
122{
123 struct backing_dev_info *ret = NULL;
124 struct request_queue *q = bdev_get_queue(bdev);
125
126 if (q)
127 ret = &q->backing_dev_info;
128 return ret;
129}
130EXPORT_SYMBOL(blk_get_backing_dev_info);
131
132void blk_rq_init(struct request_queue *q, struct request *rq)
133{
134 memset(rq, 0, sizeof(*rq));
135
136 INIT_LIST_HEAD(&rq->queuelist);
137 INIT_LIST_HEAD(&rq->timeout_list);
138 rq->cpu = -1;
139 rq->q = q;
140 rq->__sector = (sector_t) -1;
141 INIT_HLIST_NODE(&rq->hash);
142 RB_CLEAR_NODE(&rq->rb_node);
143 rq->cmd = rq->__cmd;
144 rq->cmd_len = BLK_MAX_CDB;
145 rq->tag = -1;
146 rq->ref_count = 1;
147 rq->start_time = jiffies;
148 set_start_time_ns(rq);
149 rq->part = NULL;
150}
151EXPORT_SYMBOL(blk_rq_init);
152
153static void req_bio_endio(struct request *rq, struct bio *bio,
154 unsigned int nbytes, int error)
155{
156 if (error)
157 clear_bit(BIO_UPTODATE, &bio->bi_flags);
158 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
159 error = -EIO;
160
161 if (unlikely(nbytes > bio->bi_size)) {
162 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
163 __func__, nbytes, bio->bi_size);
164 nbytes = bio->bi_size;
165 }
166
167 if (unlikely(rq->cmd_flags & REQ_QUIET))
168 set_bit(BIO_QUIET, &bio->bi_flags);
169
170 bio->bi_size -= nbytes;
171 bio->bi_sector += (nbytes >> 9);
172
173 if (bio_integrity(bio))
174 bio_integrity_advance(bio, nbytes);
175
176 /* don't actually finish bio if it's part of flush sequence */
177 if (bio->bi_size == 0 && !(rq->cmd_flags & REQ_FLUSH_SEQ))
178 bio_endio(bio, error);
179}
180
181void blk_dump_rq_flags(struct request *rq, char *msg)
182{
183 int bit;
184
185 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
186 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
187 rq->cmd_flags);
188
189 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
190 (unsigned long long)blk_rq_pos(rq),
191 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
192 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
193 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
194
195 if (rq->cmd_type == REQ_TYPE_BLOCK_PC) {
196 printk(KERN_INFO " cdb: ");
197 for (bit = 0; bit < BLK_MAX_CDB; bit++)
198 printk("%02x ", rq->cmd[bit]);
199 printk("\n");
200 }
201}
202EXPORT_SYMBOL(blk_dump_rq_flags);
203
204static void blk_delay_work(struct work_struct *work)
205{
206 struct request_queue *q;
207
208 q = container_of(work, struct request_queue, delay_work.work);
209 spin_lock_irq(q->queue_lock);
210 __blk_run_queue(q);
211 spin_unlock_irq(q->queue_lock);
212}
213
214/**
215 * blk_delay_queue - restart queueing after defined interval
216 * @q: The &struct request_queue in question
217 * @msecs: Delay in msecs
218 *
219 * Description:
220 * Sometimes queueing needs to be postponed for a little while, to allow
221 * resources to come back. This function will make sure that queueing is
222 * restarted around the specified time.
223 */
224void blk_delay_queue(struct request_queue *q, unsigned long msecs)
225{
226 queue_delayed_work(kblockd_workqueue, &q->delay_work,
227 msecs_to_jiffies(msecs));
228}
229EXPORT_SYMBOL(blk_delay_queue);
230
231/**
232 * blk_start_queue - restart a previously stopped queue
233 * @q: The &struct request_queue in question
234 *
235 * Description:
236 * blk_start_queue() will clear the stop flag on the queue, and call
237 * the request_fn for the queue if it was in a stopped state when
238 * entered. Also see blk_stop_queue(). Queue lock must be held.
239 **/
240void blk_start_queue(struct request_queue *q)
241{
242 WARN_ON(!irqs_disabled());
243
244 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
245 __blk_run_queue(q);
246}
247EXPORT_SYMBOL(blk_start_queue);
248
249/**
250 * blk_stop_queue - stop a queue
251 * @q: The &struct request_queue in question
252 *
253 * Description:
254 * The Linux block layer assumes that a block driver will consume all
255 * entries on the request queue when the request_fn strategy is called.
256 * Often this will not happen, because of hardware limitations (queue
257 * depth settings). If a device driver gets a 'queue full' response,
258 * or if it simply chooses not to queue more I/O at one point, it can
259 * call this function to prevent the request_fn from being called until
260 * the driver has signalled it's ready to go again. This happens by calling
261 * blk_start_queue() to restart queue operations. Queue lock must be held.
262 **/
263void blk_stop_queue(struct request_queue *q)
264{
265 cancel_delayed_work(&q->delay_work);
266 queue_flag_set(QUEUE_FLAG_STOPPED, q);
267}
268EXPORT_SYMBOL(blk_stop_queue);
269
270/**
271 * blk_sync_queue - cancel any pending callbacks on a queue
272 * @q: the queue
273 *
274 * Description:
275 * The block layer may perform asynchronous callback activity
276 * on a queue, such as calling the unplug function after a timeout.
277 * A block device may call blk_sync_queue to ensure that any
278 * such activity is cancelled, thus allowing it to release resources
279 * that the callbacks might use. The caller must already have made sure
280 * that its ->make_request_fn will not re-add plugging prior to calling
281 * this function.
282 *
283 * This function does not cancel any asynchronous activity arising
284 * out of elevator or throttling code. That would require elevaotor_exit()
285 * and blkcg_exit_queue() to be called with queue lock initialized.
286 *
287 */
288void blk_sync_queue(struct request_queue *q)
289{
290 del_timer_sync(&q->timeout);
291 cancel_delayed_work_sync(&q->delay_work);
292}
293EXPORT_SYMBOL(blk_sync_queue);
294
295/**
296 * __blk_run_queue - run a single device queue
297 * @q: The queue to run
298 *
299 * Description:
300 * See @blk_run_queue. This variant must be called with the queue lock
301 * held and interrupts disabled.
302 */
303void __blk_run_queue(struct request_queue *q)
304{
305 if (unlikely(blk_queue_stopped(q)))
306 return;
307
308 q->request_fn(q);
309}
310EXPORT_SYMBOL(__blk_run_queue);
311
312/**
313 * blk_run_queue_async - run a single device queue in workqueue context
314 * @q: The queue to run
315 *
316 * Description:
317 * Tells kblockd to perform the equivalent of @blk_run_queue on behalf
318 * of us.
319 */
320void blk_run_queue_async(struct request_queue *q)
321{
322 if (likely(!blk_queue_stopped(q)))
323 mod_delayed_work(kblockd_workqueue, &q->delay_work, 0);
324}
325EXPORT_SYMBOL(blk_run_queue_async);
326
327/**
328 * blk_run_queue - run a single device queue
329 * @q: The queue to run
330 *
331 * Description:
332 * Invoke request handling on this queue, if it has pending work to do.
333 * May be used to restart queueing when a request has completed.
334 */
335void blk_run_queue(struct request_queue *q)
336{
337 unsigned long flags;
338
339 spin_lock_irqsave(q->queue_lock, flags);
340 __blk_run_queue(q);
341 spin_unlock_irqrestore(q->queue_lock, flags);
342}
343EXPORT_SYMBOL(blk_run_queue);
344
345void blk_put_queue(struct request_queue *q)
346{
347 kobject_put(&q->kobj);
348}
349EXPORT_SYMBOL(blk_put_queue);
350
351/**
352 * blk_drain_queue - drain requests from request_queue
353 * @q: queue to drain
354 * @drain_all: whether to drain all requests or only the ones w/ ELVPRIV
355 *
356 * Drain requests from @q. If @drain_all is set, all requests are drained.
357 * If not, only ELVPRIV requests are drained. The caller is responsible
358 * for ensuring that no new requests which need to be drained are queued.
359 */
360void blk_drain_queue(struct request_queue *q, bool drain_all)
361{
362 int i;
363
364 while (true) {
365 bool drain = false;
366
367 spin_lock_irq(q->queue_lock);
368
369 /*
370 * The caller might be trying to drain @q before its
371 * elevator is initialized.
372 */
373 if (q->elevator)
374 elv_drain_elevator(q);
375
376 blkcg_drain_queue(q);
377
378 /*
379 * This function might be called on a queue which failed
380 * driver init after queue creation or is not yet fully
381 * active yet. Some drivers (e.g. fd and loop) get unhappy
382 * in such cases. Kick queue iff dispatch queue has
383 * something on it and @q has request_fn set.
384 */
385 if (!list_empty(&q->queue_head) && q->request_fn)
386 __blk_run_queue(q);
387
388 drain |= q->nr_rqs_elvpriv;
389
390 /*
391 * Unfortunately, requests are queued at and tracked from
392 * multiple places and there's no single counter which can
393 * be drained. Check all the queues and counters.
394 */
395 if (drain_all) {
396 drain |= !list_empty(&q->queue_head);
397 for (i = 0; i < 2; i++) {
398 drain |= q->nr_rqs[i];
399 drain |= q->in_flight[i];
400 drain |= !list_empty(&q->flush_queue[i]);
401 }
402 }
403
404 spin_unlock_irq(q->queue_lock);
405
406 if (!drain)
407 break;
408 msleep(10);
409 }
410
411 /*
412 * With queue marked dead, any woken up waiter will fail the
413 * allocation path, so the wakeup chaining is lost and we're
414 * left with hung waiters. We need to wake up those waiters.
415 */
416 if (q->request_fn) {
417 struct request_list *rl;
418
419 spin_lock_irq(q->queue_lock);
420
421 blk_queue_for_each_rl(rl, q)
422 for (i = 0; i < ARRAY_SIZE(rl->wait); i++)
423 wake_up_all(&rl->wait[i]);
424
425 spin_unlock_irq(q->queue_lock);
426 }
427}
428
429/**
430 * blk_queue_bypass_start - enter queue bypass mode
431 * @q: queue of interest
432 *
433 * In bypass mode, only the dispatch FIFO queue of @q is used. This
434 * function makes @q enter bypass mode and drains all requests which were
435 * throttled or issued before. On return, it's guaranteed that no request
436 * is being throttled or has ELVPRIV set and blk_queue_bypass() %true
437 * inside queue or RCU read lock.
438 */
439void blk_queue_bypass_start(struct request_queue *q)
440{
441 bool drain;
442
443 spin_lock_irq(q->queue_lock);
444 drain = !q->bypass_depth++;
445 queue_flag_set(QUEUE_FLAG_BYPASS, q);
446 spin_unlock_irq(q->queue_lock);
447
448 if (drain) {
449 blk_drain_queue(q, false);
450 /* ensure blk_queue_bypass() is %true inside RCU read lock */
451 synchronize_rcu();
452 }
453}
454EXPORT_SYMBOL_GPL(blk_queue_bypass_start);
455
456/**
457 * blk_queue_bypass_end - leave queue bypass mode
458 * @q: queue of interest
459 *
460 * Leave bypass mode and restore the normal queueing behavior.
461 */
462void blk_queue_bypass_end(struct request_queue *q)
463{
464 spin_lock_irq(q->queue_lock);
465 if (!--q->bypass_depth)
466 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
467 WARN_ON_ONCE(q->bypass_depth < 0);
468 spin_unlock_irq(q->queue_lock);
469}
470EXPORT_SYMBOL_GPL(blk_queue_bypass_end);
471
472/**
473 * blk_cleanup_queue - shutdown a request queue
474 * @q: request queue to shutdown
475 *
476 * Mark @q DEAD, drain all pending requests, destroy and put it. All
477 * future requests will be failed immediately with -ENODEV.
478 */
479void blk_cleanup_queue(struct request_queue *q)
480{
481 spinlock_t *lock = q->queue_lock;
482
483 /* mark @q DEAD, no new request or merges will be allowed afterwards */
484 mutex_lock(&q->sysfs_lock);
485 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
486 spin_lock_irq(lock);
487
488 /*
489 * Dead queue is permanently in bypass mode till released. Note
490 * that, unlike blk_queue_bypass_start(), we aren't performing
491 * synchronize_rcu() after entering bypass mode to avoid the delay
492 * as some drivers create and destroy a lot of queues while
493 * probing. This is still safe because blk_release_queue() will be
494 * called only after the queue refcnt drops to zero and nothing,
495 * RCU or not, would be traversing the queue by then.
496 */
497 q->bypass_depth++;
498 queue_flag_set(QUEUE_FLAG_BYPASS, q);
499
500 queue_flag_set(QUEUE_FLAG_NOMERGES, q);
501 queue_flag_set(QUEUE_FLAG_NOXMERGES, q);
502 queue_flag_set(QUEUE_FLAG_DEAD, q);
503 spin_unlock_irq(lock);
504 mutex_unlock(&q->sysfs_lock);
505
506 /* drain all requests queued before DEAD marking */
507 blk_drain_queue(q, true);
508
509 /* @q won't process any more request, flush async actions */
510 del_timer_sync(&q->backing_dev_info.laptop_mode_wb_timer);
511 blk_sync_queue(q);
512
513 spin_lock_irq(lock);
514 if (q->queue_lock != &q->__queue_lock)
515 q->queue_lock = &q->__queue_lock;
516 spin_unlock_irq(lock);
517
518 /* @q is and will stay empty, shutdown and put */
519 blk_put_queue(q);
520}
521EXPORT_SYMBOL(blk_cleanup_queue);
522
523int blk_init_rl(struct request_list *rl, struct request_queue *q,
524 gfp_t gfp_mask)
525{
526 if (unlikely(rl->rq_pool))
527 return 0;
528
529 rl->q = q;
530 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
531 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
532 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
533 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
534
535 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
536 mempool_free_slab, request_cachep,
537 gfp_mask, q->node);
538 if (!rl->rq_pool)
539 return -ENOMEM;
540
541 return 0;
542}
543
544void blk_exit_rl(struct request_list *rl)
545{
546 if (rl->rq_pool)
547 mempool_destroy(rl->rq_pool);
548}
549
550struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
551{
552 return blk_alloc_queue_node(gfp_mask, NUMA_NO_NODE);
553}
554EXPORT_SYMBOL(blk_alloc_queue);
555
556struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
557{
558 struct request_queue *q;
559 int err;
560
561 q = kmem_cache_alloc_node(blk_requestq_cachep,
562 gfp_mask | __GFP_ZERO, node_id);
563 if (!q)
564 return NULL;
565
566 q->id = ida_simple_get(&blk_queue_ida, 0, 0, gfp_mask);
567 if (q->id < 0)
568 goto fail_q;
569
570 q->backing_dev_info.ra_pages =
571 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
572 q->backing_dev_info.state = 0;
573 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
574 q->backing_dev_info.name = "block";
575 q->node = node_id;
576
577 err = bdi_init(&q->backing_dev_info);
578 if (err)
579 goto fail_id;
580
581 setup_timer(&q->backing_dev_info.laptop_mode_wb_timer,
582 laptop_mode_timer_fn, (unsigned long) q);
583 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
584 INIT_LIST_HEAD(&q->queue_head);
585 INIT_LIST_HEAD(&q->timeout_list);
586 INIT_LIST_HEAD(&q->icq_list);
587#ifdef CONFIG_BLK_CGROUP
588 INIT_LIST_HEAD(&q->blkg_list);
589#endif
590 INIT_LIST_HEAD(&q->flush_queue[0]);
591 INIT_LIST_HEAD(&q->flush_queue[1]);
592 INIT_LIST_HEAD(&q->flush_data_in_flight);
593 INIT_DELAYED_WORK(&q->delay_work, blk_delay_work);
594
595 kobject_init(&q->kobj, &blk_queue_ktype);
596
597 mutex_init(&q->sysfs_lock);
598 spin_lock_init(&q->__queue_lock);
599
600 /*
601 * By default initialize queue_lock to internal lock and driver can
602 * override it later if need be.
603 */
604 q->queue_lock = &q->__queue_lock;
605
606 /*
607 * A queue starts its life with bypass turned on to avoid
608 * unnecessary bypass on/off overhead and nasty surprises during
609 * init. The initial bypass will be finished when the queue is
610 * registered by blk_register_queue().
611 */
612 q->bypass_depth = 1;
613 __set_bit(QUEUE_FLAG_BYPASS, &q->queue_flags);
614
615 if (blkcg_init_queue(q))
616 goto fail_id;
617
618 return q;
619
620fail_id:
621 ida_simple_remove(&blk_queue_ida, q->id);
622fail_q:
623 kmem_cache_free(blk_requestq_cachep, q);
624 return NULL;
625}
626EXPORT_SYMBOL(blk_alloc_queue_node);
627
628/**
629 * blk_init_queue - prepare a request queue for use with a block device
630 * @rfn: The function to be called to process requests that have been
631 * placed on the queue.
632 * @lock: Request queue spin lock
633 *
634 * Description:
635 * If a block device wishes to use the standard request handling procedures,
636 * which sorts requests and coalesces adjacent requests, then it must
637 * call blk_init_queue(). The function @rfn will be called when there
638 * are requests on the queue that need to be processed. If the device
639 * supports plugging, then @rfn may not be called immediately when requests
640 * are available on the queue, but may be called at some time later instead.
641 * Plugged queues are generally unplugged when a buffer belonging to one
642 * of the requests on the queue is needed, or due to memory pressure.
643 *
644 * @rfn is not required, or even expected, to remove all requests off the
645 * queue, but only as many as it can handle at a time. If it does leave
646 * requests on the queue, it is responsible for arranging that the requests
647 * get dealt with eventually.
648 *
649 * The queue spin lock must be held while manipulating the requests on the
650 * request queue; this lock will be taken also from interrupt context, so irq
651 * disabling is needed for it.
652 *
653 * Function returns a pointer to the initialized request queue, or %NULL if
654 * it didn't succeed.
655 *
656 * Note:
657 * blk_init_queue() must be paired with a blk_cleanup_queue() call
658 * when the block device is deactivated (such as at module unload).
659 **/
660
661struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
662{
663 return blk_init_queue_node(rfn, lock, NUMA_NO_NODE);
664}
665EXPORT_SYMBOL(blk_init_queue);
666
667struct request_queue *
668blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
669{
670 struct request_queue *uninit_q, *q;
671
672 uninit_q = blk_alloc_queue_node(GFP_KERNEL, node_id);
673 if (!uninit_q)
674 return NULL;
675
676 q = blk_init_allocated_queue(uninit_q, rfn, lock);
677 if (!q)
678 blk_cleanup_queue(uninit_q);
679
680 return q;
681}
682EXPORT_SYMBOL(blk_init_queue_node);
683
684struct request_queue *
685blk_init_allocated_queue(struct request_queue *q, request_fn_proc *rfn,
686 spinlock_t *lock)
687{
688 if (!q)
689 return NULL;
690
691 if (blk_init_rl(&q->root_rl, q, GFP_KERNEL))
692 return NULL;
693
694 q->request_fn = rfn;
695 q->prep_rq_fn = NULL;
696 q->unprep_rq_fn = NULL;
697 q->queue_flags |= QUEUE_FLAG_DEFAULT;
698
699 /* Override internal queue lock with supplied lock pointer */
700 if (lock)
701 q->queue_lock = lock;
702
703 /*
704 * This also sets hw/phys segments, boundary and size
705 */
706 blk_queue_make_request(q, blk_queue_bio);
707
708 q->sg_reserved_size = INT_MAX;
709
710 /* init elevator */
711 if (elevator_init(q, NULL))
712 return NULL;
713 return q;
714}
715EXPORT_SYMBOL(blk_init_allocated_queue);
716
717bool blk_get_queue(struct request_queue *q)
718{
719 if (likely(!blk_queue_dead(q))) {
720 __blk_get_queue(q);
721 return true;
722 }
723
724 return false;
725}
726EXPORT_SYMBOL(blk_get_queue);
727
728static inline void blk_free_request(struct request_list *rl, struct request *rq)
729{
730 if (rq->cmd_flags & REQ_ELVPRIV) {
731 elv_put_request(rl->q, rq);
732 if (rq->elv.icq)
733 put_io_context(rq->elv.icq->ioc);
734 }
735
736 mempool_free(rq, rl->rq_pool);
737}
738
739/*
740 * ioc_batching returns true if the ioc is a valid batching request and
741 * should be given priority access to a request.
742 */
743static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
744{
745 if (!ioc)
746 return 0;
747
748 /*
749 * Make sure the process is able to allocate at least 1 request
750 * even if the batch times out, otherwise we could theoretically
751 * lose wakeups.
752 */
753 return ioc->nr_batch_requests == q->nr_batching ||
754 (ioc->nr_batch_requests > 0
755 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
756}
757
758/*
759 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
760 * will cause the process to be a "batcher" on all queues in the system. This
761 * is the behaviour we want though - once it gets a wakeup it should be given
762 * a nice run.
763 */
764static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
765{
766 if (!ioc || ioc_batching(q, ioc))
767 return;
768
769 ioc->nr_batch_requests = q->nr_batching;
770 ioc->last_waited = jiffies;
771}
772
773static void __freed_request(struct request_list *rl, int sync)
774{
775 struct request_queue *q = rl->q;
776
777 /*
778 * bdi isn't aware of blkcg yet. As all async IOs end up root
779 * blkcg anyway, just use root blkcg state.
780 */
781 if (rl == &q->root_rl &&
782 rl->count[sync] < queue_congestion_off_threshold(q))
783 blk_clear_queue_congested(q, sync);
784
785 if (rl->count[sync] + 1 <= q->nr_requests) {
786 if (waitqueue_active(&rl->wait[sync]))
787 wake_up(&rl->wait[sync]);
788
789 blk_clear_rl_full(rl, sync);
790 }
791}
792
793/*
794 * A request has just been released. Account for it, update the full and
795 * congestion status, wake up any waiters. Called under q->queue_lock.
796 */
797static void freed_request(struct request_list *rl, unsigned int flags)
798{
799 struct request_queue *q = rl->q;
800 int sync = rw_is_sync(flags);
801
802 q->nr_rqs[sync]--;
803 rl->count[sync]--;
804 if (flags & REQ_ELVPRIV)
805 q->nr_rqs_elvpriv--;
806
807 __freed_request(rl, sync);
808
809 if (unlikely(rl->starved[sync ^ 1]))
810 __freed_request(rl, sync ^ 1);
811}
812
813/*
814 * Determine if elevator data should be initialized when allocating the
815 * request associated with @bio.
816 */
817static bool blk_rq_should_init_elevator(struct bio *bio)
818{
819 if (!bio)
820 return true;
821
822 /*
823 * Flush requests do not use the elevator so skip initialization.
824 * This allows a request to share the flush and elevator data.
825 */
826 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA))
827 return false;
828
829 return true;
830}
831
832/**
833 * rq_ioc - determine io_context for request allocation
834 * @bio: request being allocated is for this bio (can be %NULL)
835 *
836 * Determine io_context to use for request allocation for @bio. May return
837 * %NULL if %current->io_context doesn't exist.
838 */
839static struct io_context *rq_ioc(struct bio *bio)
840{
841#ifdef CONFIG_BLK_CGROUP
842 if (bio && bio->bi_ioc)
843 return bio->bi_ioc;
844#endif
845 return current->io_context;
846}
847
848/**
849 * __get_request - get a free request
850 * @rl: request list to allocate from
851 * @rw_flags: RW and SYNC flags
852 * @bio: bio to allocate request for (can be %NULL)
853 * @gfp_mask: allocation mask
854 *
855 * Get a free request from @q. This function may fail under memory
856 * pressure or if @q is dead.
857 *
858 * Must be callled with @q->queue_lock held and,
859 * Returns %NULL on failure, with @q->queue_lock held.
860 * Returns !%NULL on success, with @q->queue_lock *not held*.
861 */
862static struct request *__get_request(struct request_list *rl, int rw_flags,
863 struct bio *bio, gfp_t gfp_mask)
864{
865 struct request_queue *q = rl->q;
866 struct request *rq;
867 struct elevator_type *et = q->elevator->type;
868 struct io_context *ioc = rq_ioc(bio);
869 struct io_cq *icq = NULL;
870 const bool is_sync = rw_is_sync(rw_flags) != 0;
871 int may_queue;
872
873 if (unlikely(blk_queue_dead(q)))
874 return NULL;
875
876 may_queue = elv_may_queue(q, rw_flags);
877 if (may_queue == ELV_MQUEUE_NO)
878 goto rq_starved;
879
880 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
881 if (rl->count[is_sync]+1 >= q->nr_requests) {
882 /*
883 * The queue will fill after this allocation, so set
884 * it as full, and mark this process as "batching".
885 * This process will be allowed to complete a batch of
886 * requests, others will be blocked.
887 */
888 if (!blk_rl_full(rl, is_sync)) {
889 ioc_set_batching(q, ioc);
890 blk_set_rl_full(rl, is_sync);
891 } else {
892 if (may_queue != ELV_MQUEUE_MUST
893 && !ioc_batching(q, ioc)) {
894 /*
895 * The queue is full and the allocating
896 * process is not a "batcher", and not
897 * exempted by the IO scheduler
898 */
899 return NULL;
900 }
901 }
902 }
903 /*
904 * bdi isn't aware of blkcg yet. As all async IOs end up
905 * root blkcg anyway, just use root blkcg state.
906 */
907 if (rl == &q->root_rl)
908 blk_set_queue_congested(q, is_sync);
909 }
910
911 /*
912 * Only allow batching queuers to allocate up to 50% over the defined
913 * limit of requests, otherwise we could have thousands of requests
914 * allocated with any setting of ->nr_requests
915 */
916 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
917 return NULL;
918
919 q->nr_rqs[is_sync]++;
920 rl->count[is_sync]++;
921 rl->starved[is_sync] = 0;
922
923 /*
924 * Decide whether the new request will be managed by elevator. If
925 * so, mark @rw_flags and increment elvpriv. Non-zero elvpriv will
926 * prevent the current elevator from being destroyed until the new
927 * request is freed. This guarantees icq's won't be destroyed and
928 * makes creating new ones safe.
929 *
930 * Also, lookup icq while holding queue_lock. If it doesn't exist,
931 * it will be created after releasing queue_lock.
932 */
933 if (blk_rq_should_init_elevator(bio) && !blk_queue_bypass(q)) {
934 rw_flags |= REQ_ELVPRIV;
935 q->nr_rqs_elvpriv++;
936 if (et->icq_cache && ioc)
937 icq = ioc_lookup_icq(ioc, q);
938 }
939
940 if (blk_queue_io_stat(q))
941 rw_flags |= REQ_IO_STAT;
942 spin_unlock_irq(q->queue_lock);
943
944 /* allocate and init request */
945 rq = mempool_alloc(rl->rq_pool, gfp_mask);
946 if (!rq)
947 goto fail_alloc;
948
949 blk_rq_init(q, rq);
950 blk_rq_set_rl(rq, rl);
951 rq->cmd_flags = rw_flags | REQ_ALLOCED;
952
953 /* init elvpriv */
954 if (rw_flags & REQ_ELVPRIV) {
955 if (unlikely(et->icq_cache && !icq)) {
956 if (ioc)
957 icq = ioc_create_icq(ioc, q, gfp_mask);
958 if (!icq)
959 goto fail_elvpriv;
960 }
961
962 rq->elv.icq = icq;
963 if (unlikely(elv_set_request(q, rq, bio, gfp_mask)))
964 goto fail_elvpriv;
965
966 /* @rq->elv.icq holds io_context until @rq is freed */
967 if (icq)
968 get_io_context(icq->ioc);
969 }
970out:
971 /*
972 * ioc may be NULL here, and ioc_batching will be false. That's
973 * OK, if the queue is under the request limit then requests need
974 * not count toward the nr_batch_requests limit. There will always
975 * be some limit enforced by BLK_BATCH_TIME.
976 */
977 if (ioc_batching(q, ioc))
978 ioc->nr_batch_requests--;
979
980 trace_block_getrq(q, bio, rw_flags & 1);
981 return rq;
982
983fail_elvpriv:
984 /*
985 * elvpriv init failed. ioc, icq and elvpriv aren't mempool backed
986 * and may fail indefinitely under memory pressure and thus
987 * shouldn't stall IO. Treat this request as !elvpriv. This will
988 * disturb iosched and blkcg but weird is bettern than dead.
989 */
990 printk_ratelimited(KERN_WARNING "%s: request aux data allocation failed, iosched may be disturbed\n",
991 dev_name(q->backing_dev_info.dev));
992
993 rq->cmd_flags &= ~REQ_ELVPRIV;
994 rq->elv.icq = NULL;
995
996 spin_lock_irq(q->queue_lock);
997 q->nr_rqs_elvpriv--;
998 spin_unlock_irq(q->queue_lock);
999 goto out;
1000
1001fail_alloc:
1002 /*
1003 * Allocation failed presumably due to memory. Undo anything we
1004 * might have messed up.
1005 *
1006 * Allocating task should really be put onto the front of the wait
1007 * queue, but this is pretty rare.
1008 */
1009 spin_lock_irq(q->queue_lock);
1010 freed_request(rl, rw_flags);
1011
1012 /*
1013 * in the very unlikely event that allocation failed and no
1014 * requests for this direction was pending, mark us starved so that
1015 * freeing of a request in the other direction will notice
1016 * us. another possible fix would be to split the rq mempool into
1017 * READ and WRITE
1018 */
1019rq_starved:
1020 if (unlikely(rl->count[is_sync] == 0))
1021 rl->starved[is_sync] = 1;
1022 return NULL;
1023}
1024
1025/**
1026 * get_request - get a free request
1027 * @q: request_queue to allocate request from
1028 * @rw_flags: RW and SYNC flags
1029 * @bio: bio to allocate request for (can be %NULL)
1030 * @gfp_mask: allocation mask
1031 *
1032 * Get a free request from @q. If %__GFP_WAIT is set in @gfp_mask, this
1033 * function keeps retrying under memory pressure and fails iff @q is dead.
1034 *
1035 * Must be callled with @q->queue_lock held and,
1036 * Returns %NULL on failure, with @q->queue_lock held.
1037 * Returns !%NULL on success, with @q->queue_lock *not held*.
1038 */
1039static struct request *get_request(struct request_queue *q, int rw_flags,
1040 struct bio *bio, gfp_t gfp_mask)
1041{
1042 const bool is_sync = rw_is_sync(rw_flags) != 0;
1043 DEFINE_WAIT(wait);
1044 struct request_list *rl;
1045 struct request *rq;
1046
1047 rl = blk_get_rl(q, bio); /* transferred to @rq on success */
1048retry:
1049 rq = __get_request(rl, rw_flags, bio, gfp_mask);
1050 if (rq)
1051 return rq;
1052
1053 if (!(gfp_mask & __GFP_WAIT) || unlikely(blk_queue_dead(q))) {
1054 blk_put_rl(rl);
1055 return NULL;
1056 }
1057
1058 /* wait on @rl and retry */
1059 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1060 TASK_UNINTERRUPTIBLE);
1061
1062 trace_block_sleeprq(q, bio, rw_flags & 1);
1063
1064 spin_unlock_irq(q->queue_lock);
1065 io_schedule();
1066
1067 /*
1068 * After sleeping, we become a "batching" process and will be able
1069 * to allocate at least one request, and up to a big batch of them
1070 * for a small period time. See ioc_batching, ioc_set_batching
1071 */
1072 ioc_set_batching(q, current->io_context);
1073
1074 spin_lock_irq(q->queue_lock);
1075 finish_wait(&rl->wait[is_sync], &wait);
1076
1077 goto retry;
1078}
1079
1080struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1081{
1082 struct request *rq;
1083
1084 BUG_ON(rw != READ && rw != WRITE);
1085
1086 /* create ioc upfront */
1087 create_io_context(gfp_mask, q->node);
1088
1089 spin_lock_irq(q->queue_lock);
1090 rq = get_request(q, rw, NULL, gfp_mask);
1091 if (!rq)
1092 spin_unlock_irq(q->queue_lock);
1093 /* q->queue_lock is unlocked at this point */
1094
1095 return rq;
1096}
1097EXPORT_SYMBOL(blk_get_request);
1098
1099/**
1100 * blk_make_request - given a bio, allocate a corresponding struct request.
1101 * @q: target request queue
1102 * @bio: The bio describing the memory mappings that will be submitted for IO.
1103 * It may be a chained-bio properly constructed by block/bio layer.
1104 * @gfp_mask: gfp flags to be used for memory allocation
1105 *
1106 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
1107 * type commands. Where the struct request needs to be farther initialized by
1108 * the caller. It is passed a &struct bio, which describes the memory info of
1109 * the I/O transfer.
1110 *
1111 * The caller of blk_make_request must make sure that bi_io_vec
1112 * are set to describe the memory buffers. That bio_data_dir() will return
1113 * the needed direction of the request. (And all bio's in the passed bio-chain
1114 * are properly set accordingly)
1115 *
1116 * If called under none-sleepable conditions, mapped bio buffers must not
1117 * need bouncing, by calling the appropriate masked or flagged allocator,
1118 * suitable for the target device. Otherwise the call to blk_queue_bounce will
1119 * BUG.
1120 *
1121 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
1122 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
1123 * anything but the first bio in the chain. Otherwise you risk waiting for IO
1124 * completion of a bio that hasn't been submitted yet, thus resulting in a
1125 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
1126 * of bio_alloc(), as that avoids the mempool deadlock.
1127 * If possible a big IO should be split into smaller parts when allocation
1128 * fails. Partial allocation should not be an error, or you risk a live-lock.
1129 */
1130struct request *blk_make_request(struct request_queue *q, struct bio *bio,
1131 gfp_t gfp_mask)
1132{
1133 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
1134
1135 if (unlikely(!rq))
1136 return ERR_PTR(-ENOMEM);
1137
1138 for_each_bio(bio) {
1139 struct bio *bounce_bio = bio;
1140 int ret;
1141
1142 blk_queue_bounce(q, &bounce_bio);
1143 ret = blk_rq_append_bio(q, rq, bounce_bio);
1144 if (unlikely(ret)) {
1145 blk_put_request(rq);
1146 return ERR_PTR(ret);
1147 }
1148 }
1149
1150 return rq;
1151}
1152EXPORT_SYMBOL(blk_make_request);
1153
1154/**
1155 * blk_requeue_request - put a request back on queue
1156 * @q: request queue where request should be inserted
1157 * @rq: request to be inserted
1158 *
1159 * Description:
1160 * Drivers often keep queueing requests until the hardware cannot accept
1161 * more, when that condition happens we need to put the request back
1162 * on the queue. Must be called with queue lock held.
1163 */
1164void blk_requeue_request(struct request_queue *q, struct request *rq)
1165{
1166 blk_delete_timer(rq);
1167 blk_clear_rq_complete(rq);
1168 trace_block_rq_requeue(q, rq);
1169
1170 if (blk_rq_tagged(rq))
1171 blk_queue_end_tag(q, rq);
1172
1173 BUG_ON(blk_queued_rq(rq));
1174
1175 elv_requeue_request(q, rq);
1176}
1177EXPORT_SYMBOL(blk_requeue_request);
1178
1179static void add_acct_request(struct request_queue *q, struct request *rq,
1180 int where)
1181{
1182 drive_stat_acct(rq, 1);
1183 __elv_add_request(q, rq, where);
1184}
1185
1186static void part_round_stats_single(int cpu, struct hd_struct *part,
1187 unsigned long now)
1188{
1189 if (now == part->stamp)
1190 return;
1191
1192 if (part_in_flight(part)) {
1193 __part_stat_add(cpu, part, time_in_queue,
1194 part_in_flight(part) * (now - part->stamp));
1195 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1196 }
1197 part->stamp = now;
1198}
1199
1200/**
1201 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1202 * @cpu: cpu number for stats access
1203 * @part: target partition
1204 *
1205 * The average IO queue length and utilisation statistics are maintained
1206 * by observing the current state of the queue length and the amount of
1207 * time it has been in this state for.
1208 *
1209 * Normally, that accounting is done on IO completion, but that can result
1210 * in more than a second's worth of IO being accounted for within any one
1211 * second, leading to >100% utilisation. To deal with that, we call this
1212 * function to do a round-off before returning the results when reading
1213 * /proc/diskstats. This accounts immediately for all queue usage up to
1214 * the current jiffies and restarts the counters again.
1215 */
1216void part_round_stats(int cpu, struct hd_struct *part)
1217{
1218 unsigned long now = jiffies;
1219
1220 if (part->partno)
1221 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1222 part_round_stats_single(cpu, part, now);
1223}
1224EXPORT_SYMBOL_GPL(part_round_stats);
1225
1226/*
1227 * queue lock must be held
1228 */
1229void __blk_put_request(struct request_queue *q, struct request *req)
1230{
1231 if (unlikely(!q))
1232 return;
1233 if (unlikely(--req->ref_count))
1234 return;
1235
1236 elv_completed_request(q, req);
1237
1238 /* this is a bio leak */
1239 WARN_ON(req->bio != NULL);
1240
1241 /*
1242 * Request may not have originated from ll_rw_blk. if not,
1243 * it didn't come out of our reserved rq pools
1244 */
1245 if (req->cmd_flags & REQ_ALLOCED) {
1246 unsigned int flags = req->cmd_flags;
1247 struct request_list *rl = blk_rq_rl(req);
1248
1249 BUG_ON(!list_empty(&req->queuelist));
1250 BUG_ON(!hlist_unhashed(&req->hash));
1251
1252 blk_free_request(rl, req);
1253 freed_request(rl, flags);
1254 blk_put_rl(rl);
1255 }
1256}
1257EXPORT_SYMBOL_GPL(__blk_put_request);
1258
1259void blk_put_request(struct request *req)
1260{
1261 unsigned long flags;
1262 struct request_queue *q = req->q;
1263
1264 spin_lock_irqsave(q->queue_lock, flags);
1265 __blk_put_request(q, req);
1266 spin_unlock_irqrestore(q->queue_lock, flags);
1267}
1268EXPORT_SYMBOL(blk_put_request);
1269
1270/**
1271 * blk_add_request_payload - add a payload to a request
1272 * @rq: request to update
1273 * @page: page backing the payload
1274 * @len: length of the payload.
1275 *
1276 * This allows to later add a payload to an already submitted request by
1277 * a block driver. The driver needs to take care of freeing the payload
1278 * itself.
1279 *
1280 * Note that this is a quite horrible hack and nothing but handling of
1281 * discard requests should ever use it.
1282 */
1283void blk_add_request_payload(struct request *rq, struct page *page,
1284 unsigned int len)
1285{
1286 struct bio *bio = rq->bio;
1287
1288 bio->bi_io_vec->bv_page = page;
1289 bio->bi_io_vec->bv_offset = 0;
1290 bio->bi_io_vec->bv_len = len;
1291
1292 bio->bi_size = len;
1293 bio->bi_vcnt = 1;
1294 bio->bi_phys_segments = 1;
1295
1296 rq->__data_len = rq->resid_len = len;
1297 rq->nr_phys_segments = 1;
1298 rq->buffer = bio_data(bio);
1299}
1300EXPORT_SYMBOL_GPL(blk_add_request_payload);
1301
1302static bool bio_attempt_back_merge(struct request_queue *q, struct request *req,
1303 struct bio *bio)
1304{
1305 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1306
1307 if (!ll_back_merge_fn(q, req, bio))
1308 return false;
1309
1310 trace_block_bio_backmerge(q, bio);
1311
1312 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1313 blk_rq_set_mixed_merge(req);
1314
1315 req->biotail->bi_next = bio;
1316 req->biotail = bio;
1317 req->__data_len += bio->bi_size;
1318 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1319
1320 drive_stat_acct(req, 0);
1321 return true;
1322}
1323
1324static bool bio_attempt_front_merge(struct request_queue *q,
1325 struct request *req, struct bio *bio)
1326{
1327 const int ff = bio->bi_rw & REQ_FAILFAST_MASK;
1328
1329 if (!ll_front_merge_fn(q, req, bio))
1330 return false;
1331
1332 trace_block_bio_frontmerge(q, bio);
1333
1334 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1335 blk_rq_set_mixed_merge(req);
1336
1337 bio->bi_next = req->bio;
1338 req->bio = bio;
1339
1340 /*
1341 * may not be valid. if the low level driver said
1342 * it didn't need a bounce buffer then it better
1343 * not touch req->buffer either...
1344 */
1345 req->buffer = bio_data(bio);
1346 req->__sector = bio->bi_sector;
1347 req->__data_len += bio->bi_size;
1348 req->ioprio = ioprio_best(req->ioprio, bio_prio(bio));
1349
1350 drive_stat_acct(req, 0);
1351 return true;
1352}
1353
1354/**
1355 * attempt_plug_merge - try to merge with %current's plugged list
1356 * @q: request_queue new bio is being queued at
1357 * @bio: new bio being queued
1358 * @request_count: out parameter for number of traversed plugged requests
1359 *
1360 * Determine whether @bio being queued on @q can be merged with a request
1361 * on %current's plugged list. Returns %true if merge was successful,
1362 * otherwise %false.
1363 *
1364 * Plugging coalesces IOs from the same issuer for the same purpose without
1365 * going through @q->queue_lock. As such it's more of an issuing mechanism
1366 * than scheduling, and the request, while may have elvpriv data, is not
1367 * added on the elevator at this point. In addition, we don't have
1368 * reliable access to the elevator outside queue lock. Only check basic
1369 * merging parameters without querying the elevator.
1370 */
1371static bool attempt_plug_merge(struct request_queue *q, struct bio *bio,
1372 unsigned int *request_count)
1373{
1374 struct blk_plug *plug;
1375 struct request *rq;
1376 bool ret = false;
1377
1378 plug = current->plug;
1379 if (!plug)
1380 goto out;
1381 *request_count = 0;
1382
1383 list_for_each_entry_reverse(rq, &plug->list, queuelist) {
1384 int el_ret;
1385
1386 if (rq->q == q)
1387 (*request_count)++;
1388
1389 if (rq->q != q || !blk_rq_merge_ok(rq, bio))
1390 continue;
1391
1392 el_ret = blk_try_merge(rq, bio);
1393 if (el_ret == ELEVATOR_BACK_MERGE) {
1394 ret = bio_attempt_back_merge(q, rq, bio);
1395 if (ret)
1396 break;
1397 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1398 ret = bio_attempt_front_merge(q, rq, bio);
1399 if (ret)
1400 break;
1401 }
1402 }
1403out:
1404 return ret;
1405}
1406
1407void init_request_from_bio(struct request *req, struct bio *bio)
1408{
1409 req->cmd_type = REQ_TYPE_FS;
1410
1411 req->cmd_flags |= bio->bi_rw & REQ_COMMON_MASK;
1412 if (bio->bi_rw & REQ_RAHEAD)
1413 req->cmd_flags |= REQ_FAILFAST_MASK;
1414
1415 req->errors = 0;
1416 req->__sector = bio->bi_sector;
1417 req->ioprio = bio_prio(bio);
1418 blk_rq_bio_prep(req->q, req, bio);
1419}
1420
1421void blk_queue_bio(struct request_queue *q, struct bio *bio)
1422{
1423 const bool sync = !!(bio->bi_rw & REQ_SYNC);
1424 struct blk_plug *plug;
1425 int el_ret, rw_flags, where = ELEVATOR_INSERT_SORT;
1426 struct request *req;
1427 unsigned int request_count = 0;
1428
1429 /*
1430 * low level driver can indicate that it wants pages above a
1431 * certain limit bounced to low memory (ie for highmem, or even
1432 * ISA dma in theory)
1433 */
1434 blk_queue_bounce(q, &bio);
1435
1436 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA)) {
1437 spin_lock_irq(q->queue_lock);
1438 where = ELEVATOR_INSERT_FLUSH;
1439 goto get_rq;
1440 }
1441
1442 /*
1443 * Check if we can merge with the plugged list before grabbing
1444 * any locks.
1445 */
1446 if (attempt_plug_merge(q, bio, &request_count))
1447 return;
1448
1449 spin_lock_irq(q->queue_lock);
1450
1451 el_ret = elv_merge(q, &req, bio);
1452 if (el_ret == ELEVATOR_BACK_MERGE) {
1453 if (bio_attempt_back_merge(q, req, bio)) {
1454 elv_bio_merged(q, req, bio);
1455 if (!attempt_back_merge(q, req))
1456 elv_merged_request(q, req, el_ret);
1457 goto out_unlock;
1458 }
1459 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
1460 if (bio_attempt_front_merge(q, req, bio)) {
1461 elv_bio_merged(q, req, bio);
1462 if (!attempt_front_merge(q, req))
1463 elv_merged_request(q, req, el_ret);
1464 goto out_unlock;
1465 }
1466 }
1467
1468get_rq:
1469 /*
1470 * This sync check and mask will be re-done in init_request_from_bio(),
1471 * but we need to set it earlier to expose the sync flag to the
1472 * rq allocator and io schedulers.
1473 */
1474 rw_flags = bio_data_dir(bio);
1475 if (sync)
1476 rw_flags |= REQ_SYNC;
1477
1478 /*
1479 * Grab a free request. This is might sleep but can not fail.
1480 * Returns with the queue unlocked.
1481 */
1482 req = get_request(q, rw_flags, bio, GFP_NOIO);
1483 if (unlikely(!req)) {
1484 bio_endio(bio, -ENODEV); /* @q is dead */
1485 goto out_unlock;
1486 }
1487
1488 /*
1489 * After dropping the lock and possibly sleeping here, our request
1490 * may now be mergeable after it had proven unmergeable (above).
1491 * We don't worry about that case for efficiency. It won't happen
1492 * often, and the elevators are able to handle it.
1493 */
1494 init_request_from_bio(req, bio);
1495
1496 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags))
1497 req->cpu = raw_smp_processor_id();
1498
1499 plug = current->plug;
1500 if (plug) {
1501 /*
1502 * If this is the first request added after a plug, fire
1503 * of a plug trace. If others have been added before, check
1504 * if we have multiple devices in this plug. If so, make a
1505 * note to sort the list before dispatch.
1506 */
1507 if (list_empty(&plug->list))
1508 trace_block_plug(q);
1509 else {
1510 if (!plug->should_sort) {
1511 struct request *__rq;
1512
1513 __rq = list_entry_rq(plug->list.prev);
1514 if (__rq->q != q)
1515 plug->should_sort = 1;
1516 }
1517 if (request_count >= BLK_MAX_REQUEST_COUNT) {
1518 blk_flush_plug_list(plug, false);
1519 trace_block_plug(q);
1520 }
1521 }
1522 list_add_tail(&req->queuelist, &plug->list);
1523 drive_stat_acct(req, 1);
1524 } else {
1525 spin_lock_irq(q->queue_lock);
1526 add_acct_request(q, req, where);
1527 __blk_run_queue(q);
1528out_unlock:
1529 spin_unlock_irq(q->queue_lock);
1530 }
1531}
1532EXPORT_SYMBOL_GPL(blk_queue_bio); /* for device mapper only */
1533
1534/*
1535 * If bio->bi_dev is a partition, remap the location
1536 */
1537static inline void blk_partition_remap(struct bio *bio)
1538{
1539 struct block_device *bdev = bio->bi_bdev;
1540
1541 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1542 struct hd_struct *p = bdev->bd_part;
1543
1544 bio->bi_sector += p->start_sect;
1545 bio->bi_bdev = bdev->bd_contains;
1546
1547 trace_block_bio_remap(bdev_get_queue(bio->bi_bdev), bio,
1548 bdev->bd_dev,
1549 bio->bi_sector - p->start_sect);
1550 }
1551}
1552
1553static void handle_bad_sector(struct bio *bio)
1554{
1555 char b[BDEVNAME_SIZE];
1556
1557 printk(KERN_INFO "attempt to access beyond end of device\n");
1558 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1559 bdevname(bio->bi_bdev, b),
1560 bio->bi_rw,
1561 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1562 (long long)(i_size_read(bio->bi_bdev->bd_inode) >> 9));
1563
1564 set_bit(BIO_EOF, &bio->bi_flags);
1565}
1566
1567#ifdef CONFIG_FAIL_MAKE_REQUEST
1568
1569static DECLARE_FAULT_ATTR(fail_make_request);
1570
1571static int __init setup_fail_make_request(char *str)
1572{
1573 return setup_fault_attr(&fail_make_request, str);
1574}
1575__setup("fail_make_request=", setup_fail_make_request);
1576
1577static bool should_fail_request(struct hd_struct *part, unsigned int bytes)
1578{
1579 return part->make_it_fail && should_fail(&fail_make_request, bytes);
1580}
1581
1582static int __init fail_make_request_debugfs(void)
1583{
1584 struct dentry *dir = fault_create_debugfs_attr("fail_make_request",
1585 NULL, &fail_make_request);
1586
1587 return IS_ERR(dir) ? PTR_ERR(dir) : 0;
1588}
1589
1590late_initcall(fail_make_request_debugfs);
1591
1592#else /* CONFIG_FAIL_MAKE_REQUEST */
1593
1594static inline bool should_fail_request(struct hd_struct *part,
1595 unsigned int bytes)
1596{
1597 return false;
1598}
1599
1600#endif /* CONFIG_FAIL_MAKE_REQUEST */
1601
1602/*
1603 * Check whether this bio extends beyond the end of the device.
1604 */
1605static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1606{
1607 sector_t maxsector;
1608
1609 if (!nr_sectors)
1610 return 0;
1611
1612 /* Test device or partition size, when known. */
1613 maxsector = i_size_read(bio->bi_bdev->bd_inode) >> 9;
1614 if (maxsector) {
1615 sector_t sector = bio->bi_sector;
1616
1617 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1618 /*
1619 * This may well happen - the kernel calls bread()
1620 * without checking the size of the device, e.g., when
1621 * mounting a device.
1622 */
1623 handle_bad_sector(bio);
1624 return 1;
1625 }
1626 }
1627
1628 return 0;
1629}
1630
1631static noinline_for_stack bool
1632generic_make_request_checks(struct bio *bio)
1633{
1634 struct request_queue *q;
1635 int nr_sectors = bio_sectors(bio);
1636 int err = -EIO;
1637 char b[BDEVNAME_SIZE];
1638 struct hd_struct *part;
1639
1640 might_sleep();
1641
1642 if (bio_check_eod(bio, nr_sectors))
1643 goto end_io;
1644
1645 q = bdev_get_queue(bio->bi_bdev);
1646 if (unlikely(!q)) {
1647 printk(KERN_ERR
1648 "generic_make_request: Trying to access "
1649 "nonexistent block-device %s (%Lu)\n",
1650 bdevname(bio->bi_bdev, b),
1651 (long long) bio->bi_sector);
1652 goto end_io;
1653 }
1654
1655 if (likely(bio_is_rw(bio) &&
1656 nr_sectors > queue_max_hw_sectors(q))) {
1657 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1658 bdevname(bio->bi_bdev, b),
1659 bio_sectors(bio),
1660 queue_max_hw_sectors(q));
1661 goto end_io;
1662 }
1663
1664 part = bio->bi_bdev->bd_part;
1665 if (should_fail_request(part, bio->bi_size) ||
1666 should_fail_request(&part_to_disk(part)->part0,
1667 bio->bi_size))
1668 goto end_io;
1669
1670 /*
1671 * If this device has partitions, remap block n
1672 * of partition p to block n+start(p) of the disk.
1673 */
1674 blk_partition_remap(bio);
1675
1676 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1677 goto end_io;
1678
1679 if (bio_check_eod(bio, nr_sectors))
1680 goto end_io;
1681
1682 /*
1683 * Filter flush bio's early so that make_request based
1684 * drivers without flush support don't have to worry
1685 * about them.
1686 */
1687 if ((bio->bi_rw & (REQ_FLUSH | REQ_FUA)) && !q->flush_flags) {
1688 bio->bi_rw &= ~(REQ_FLUSH | REQ_FUA);
1689 if (!nr_sectors) {
1690 err = 0;
1691 goto end_io;
1692 }
1693 }
1694
1695 if ((bio->bi_rw & REQ_DISCARD) &&
1696 (!blk_queue_discard(q) ||
1697 ((bio->bi_rw & REQ_SECURE) && !blk_queue_secdiscard(q)))) {
1698 err = -EOPNOTSUPP;
1699 goto end_io;
1700 }
1701
1702 if (bio->bi_rw & REQ_WRITE_SAME && !bdev_write_same(bio->bi_bdev)) {
1703 err = -EOPNOTSUPP;
1704 goto end_io;
1705 }
1706
1707 /*
1708 * Various block parts want %current->io_context and lazy ioc
1709 * allocation ends up trading a lot of pain for a small amount of
1710 * memory. Just allocate it upfront. This may fail and block
1711 * layer knows how to live with it.
1712 */
1713 create_io_context(GFP_ATOMIC, q->node);
1714
1715 if (blk_throtl_bio(q, bio))
1716 return false; /* throttled, will be resubmitted later */
1717
1718 trace_block_bio_queue(q, bio);
1719 return true;
1720
1721end_io:
1722 bio_endio(bio, err);
1723 return false;
1724}
1725
1726/**
1727 * generic_make_request - hand a buffer to its device driver for I/O
1728 * @bio: The bio describing the location in memory and on the device.
1729 *
1730 * generic_make_request() is used to make I/O requests of block
1731 * devices. It is passed a &struct bio, which describes the I/O that needs
1732 * to be done.
1733 *
1734 * generic_make_request() does not return any status. The
1735 * success/failure status of the request, along with notification of
1736 * completion, is delivered asynchronously through the bio->bi_end_io
1737 * function described (one day) else where.
1738 *
1739 * The caller of generic_make_request must make sure that bi_io_vec
1740 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1741 * set to describe the device address, and the
1742 * bi_end_io and optionally bi_private are set to describe how
1743 * completion notification should be signaled.
1744 *
1745 * generic_make_request and the drivers it calls may use bi_next if this
1746 * bio happens to be merged with someone else, and may resubmit the bio to
1747 * a lower device by calling into generic_make_request recursively, which
1748 * means the bio should NOT be touched after the call to ->make_request_fn.
1749 */
1750void generic_make_request(struct bio *bio)
1751{
1752 struct bio_list bio_list_on_stack;
1753
1754 if (!generic_make_request_checks(bio))
1755 return;
1756
1757 /*
1758 * We only want one ->make_request_fn to be active at a time, else
1759 * stack usage with stacked devices could be a problem. So use
1760 * current->bio_list to keep a list of requests submited by a
1761 * make_request_fn function. current->bio_list is also used as a
1762 * flag to say if generic_make_request is currently active in this
1763 * task or not. If it is NULL, then no make_request is active. If
1764 * it is non-NULL, then a make_request is active, and new requests
1765 * should be added at the tail
1766 */
1767 if (current->bio_list) {
1768 bio_list_add(current->bio_list, bio);
1769 return;
1770 }
1771
1772 /* following loop may be a bit non-obvious, and so deserves some
1773 * explanation.
1774 * Before entering the loop, bio->bi_next is NULL (as all callers
1775 * ensure that) so we have a list with a single bio.
1776 * We pretend that we have just taken it off a longer list, so
1777 * we assign bio_list to a pointer to the bio_list_on_stack,
1778 * thus initialising the bio_list of new bios to be
1779 * added. ->make_request() may indeed add some more bios
1780 * through a recursive call to generic_make_request. If it
1781 * did, we find a non-NULL value in bio_list and re-enter the loop
1782 * from the top. In this case we really did just take the bio
1783 * of the top of the list (no pretending) and so remove it from
1784 * bio_list, and call into ->make_request() again.
1785 */
1786 BUG_ON(bio->bi_next);
1787 bio_list_init(&bio_list_on_stack);
1788 current->bio_list = &bio_list_on_stack;
1789 do {
1790 struct request_queue *q = bdev_get_queue(bio->bi_bdev);
1791
1792 q->make_request_fn(q, bio);
1793
1794 bio = bio_list_pop(current->bio_list);
1795 } while (bio);
1796 current->bio_list = NULL; /* deactivate */
1797}
1798EXPORT_SYMBOL(generic_make_request);
1799
1800/**
1801 * submit_bio - submit a bio to the block device layer for I/O
1802 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1803 * @bio: The &struct bio which describes the I/O
1804 *
1805 * submit_bio() is very similar in purpose to generic_make_request(), and
1806 * uses that function to do most of the work. Both are fairly rough
1807 * interfaces; @bio must be presetup and ready for I/O.
1808 *
1809 */
1810void submit_bio(int rw, struct bio *bio)
1811{
1812 bio->bi_rw |= rw;
1813
1814 /*
1815 * If it's a regular read/write or a barrier with data attached,
1816 * go through the normal accounting stuff before submission.
1817 */
1818 if (bio_has_data(bio)) {
1819 unsigned int count;
1820
1821 if (unlikely(rw & REQ_WRITE_SAME))
1822 count = bdev_logical_block_size(bio->bi_bdev) >> 9;
1823 else
1824 count = bio_sectors(bio);
1825
1826 if (rw & WRITE) {
1827 count_vm_events(PGPGOUT, count);
1828 } else {
1829 task_io_account_read(bio->bi_size);
1830 count_vm_events(PGPGIN, count);
1831 }
1832
1833 if (unlikely(block_dump)) {
1834 char b[BDEVNAME_SIZE];
1835 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s (%u sectors)\n",
1836 current->comm, task_pid_nr(current),
1837 (rw & WRITE) ? "WRITE" : "READ",
1838 (unsigned long long)bio->bi_sector,
1839 bdevname(bio->bi_bdev, b),
1840 count);
1841 }
1842 }
1843
1844 generic_make_request(bio);
1845}
1846EXPORT_SYMBOL(submit_bio);
1847
1848/**
1849 * blk_rq_check_limits - Helper function to check a request for the queue limit
1850 * @q: the queue
1851 * @rq: the request being checked
1852 *
1853 * Description:
1854 * @rq may have been made based on weaker limitations of upper-level queues
1855 * in request stacking drivers, and it may violate the limitation of @q.
1856 * Since the block layer and the underlying device driver trust @rq
1857 * after it is inserted to @q, it should be checked against @q before
1858 * the insertion using this generic function.
1859 *
1860 * This function should also be useful for request stacking drivers
1861 * in some cases below, so export this function.
1862 * Request stacking drivers like request-based dm may change the queue
1863 * limits while requests are in the queue (e.g. dm's table swapping).
1864 * Such request stacking drivers should check those requests agaist
1865 * the new queue limits again when they dispatch those requests,
1866 * although such checkings are also done against the old queue limits
1867 * when submitting requests.
1868 */
1869int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1870{
1871 if (!rq_mergeable(rq))
1872 return 0;
1873
1874 if (blk_rq_sectors(rq) > blk_queue_get_max_sectors(q, rq->cmd_flags)) {
1875 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1876 return -EIO;
1877 }
1878
1879 /*
1880 * queue's settings related to segment counting like q->bounce_pfn
1881 * may differ from that of other stacking queues.
1882 * Recalculate it to check the request correctly on this queue's
1883 * limitation.
1884 */
1885 blk_recalc_rq_segments(rq);
1886 if (rq->nr_phys_segments > queue_max_segments(q)) {
1887 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1888 return -EIO;
1889 }
1890
1891 return 0;
1892}
1893EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1894
1895/**
1896 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1897 * @q: the queue to submit the request
1898 * @rq: the request being queued
1899 */
1900int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1901{
1902 unsigned long flags;
1903 int where = ELEVATOR_INSERT_BACK;
1904
1905 if (blk_rq_check_limits(q, rq))
1906 return -EIO;
1907
1908 if (rq->rq_disk &&
1909 should_fail_request(&rq->rq_disk->part0, blk_rq_bytes(rq)))
1910 return -EIO;
1911
1912 spin_lock_irqsave(q->queue_lock, flags);
1913 if (unlikely(blk_queue_dead(q))) {
1914 spin_unlock_irqrestore(q->queue_lock, flags);
1915 return -ENODEV;
1916 }
1917
1918 /*
1919 * Submitting request must be dequeued before calling this function
1920 * because it will be linked to another request_queue
1921 */
1922 BUG_ON(blk_queued_rq(rq));
1923
1924 if (rq->cmd_flags & (REQ_FLUSH|REQ_FUA))
1925 where = ELEVATOR_INSERT_FLUSH;
1926
1927 add_acct_request(q, rq, where);
1928 if (where == ELEVATOR_INSERT_FLUSH)
1929 __blk_run_queue(q);
1930 spin_unlock_irqrestore(q->queue_lock, flags);
1931
1932 return 0;
1933}
1934EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1935
1936/**
1937 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1938 * @rq: request to examine
1939 *
1940 * Description:
1941 * A request could be merge of IOs which require different failure
1942 * handling. This function determines the number of bytes which
1943 * can be failed from the beginning of the request without
1944 * crossing into area which need to be retried further.
1945 *
1946 * Return:
1947 * The number of bytes to fail.
1948 *
1949 * Context:
1950 * queue_lock must be held.
1951 */
1952unsigned int blk_rq_err_bytes(const struct request *rq)
1953{
1954 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1955 unsigned int bytes = 0;
1956 struct bio *bio;
1957
1958 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1959 return blk_rq_bytes(rq);
1960
1961 /*
1962 * Currently the only 'mixing' which can happen is between
1963 * different fastfail types. We can safely fail portions
1964 * which have all the failfast bits that the first one has -
1965 * the ones which are at least as eager to fail as the first
1966 * one.
1967 */
1968 for (bio = rq->bio; bio; bio = bio->bi_next) {
1969 if ((bio->bi_rw & ff) != ff)
1970 break;
1971 bytes += bio->bi_size;
1972 }
1973
1974 /* this could lead to infinite loop */
1975 BUG_ON(blk_rq_bytes(rq) && !bytes);
1976 return bytes;
1977}
1978EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1979
1980static void blk_account_io_completion(struct request *req, unsigned int bytes)
1981{
1982 if (blk_do_io_stat(req)) {
1983 const int rw = rq_data_dir(req);
1984 struct hd_struct *part;
1985 int cpu;
1986
1987 cpu = part_stat_lock();
1988 part = req->part;
1989 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1990 part_stat_unlock();
1991 }
1992}
1993
1994static void blk_account_io_done(struct request *req)
1995{
1996 /*
1997 * Account IO completion. flush_rq isn't accounted as a
1998 * normal IO on queueing nor completion. Accounting the
1999 * containing request is enough.
2000 */
2001 if (blk_do_io_stat(req) && !(req->cmd_flags & REQ_FLUSH_SEQ)) {
2002 unsigned long duration = jiffies - req->start_time;
2003 const int rw = rq_data_dir(req);
2004 struct hd_struct *part;
2005 int cpu;
2006
2007 cpu = part_stat_lock();
2008 part = req->part;
2009
2010 part_stat_inc(cpu, part, ios[rw]);
2011 part_stat_add(cpu, part, ticks[rw], duration);
2012 part_round_stats(cpu, part);
2013 part_dec_in_flight(part, rw);
2014
2015 hd_struct_put(part);
2016 part_stat_unlock();
2017 }
2018}
2019
2020/**
2021 * blk_peek_request - peek at the top of a request queue
2022 * @q: request queue to peek at
2023 *
2024 * Description:
2025 * Return the request at the top of @q. The returned request
2026 * should be started using blk_start_request() before LLD starts
2027 * processing it.
2028 *
2029 * Return:
2030 * Pointer to the request at the top of @q if available. Null
2031 * otherwise.
2032 *
2033 * Context:
2034 * queue_lock must be held.
2035 */
2036struct request *blk_peek_request(struct request_queue *q)
2037{
2038 struct request *rq;
2039 int ret;
2040
2041 while ((rq = __elv_next_request(q)) != NULL) {
2042 if (!(rq->cmd_flags & REQ_STARTED)) {
2043 /*
2044 * This is the first time the device driver
2045 * sees this request (possibly after
2046 * requeueing). Notify IO scheduler.
2047 */
2048 if (rq->cmd_flags & REQ_SORTED)
2049 elv_activate_rq(q, rq);
2050
2051 /*
2052 * just mark as started even if we don't start
2053 * it, a request that has been delayed should
2054 * not be passed by new incoming requests
2055 */
2056 rq->cmd_flags |= REQ_STARTED;
2057 trace_block_rq_issue(q, rq);
2058 }
2059
2060 if (!q->boundary_rq || q->boundary_rq == rq) {
2061 q->end_sector = rq_end_sector(rq);
2062 q->boundary_rq = NULL;
2063 }
2064
2065 if (rq->cmd_flags & REQ_DONTPREP)
2066 break;
2067
2068 if (q->dma_drain_size && blk_rq_bytes(rq)) {
2069 /*
2070 * make sure space for the drain appears we
2071 * know we can do this because max_hw_segments
2072 * has been adjusted to be one fewer than the
2073 * device can handle
2074 */
2075 rq->nr_phys_segments++;
2076 }
2077
2078 if (!q->prep_rq_fn)
2079 break;
2080
2081 ret = q->prep_rq_fn(q, rq);
2082 if (ret == BLKPREP_OK) {
2083 break;
2084 } else if (ret == BLKPREP_DEFER) {
2085 /*
2086 * the request may have been (partially) prepped.
2087 * we need to keep this request in the front to
2088 * avoid resource deadlock. REQ_STARTED will
2089 * prevent other fs requests from passing this one.
2090 */
2091 if (q->dma_drain_size && blk_rq_bytes(rq) &&
2092 !(rq->cmd_flags & REQ_DONTPREP)) {
2093 /*
2094 * remove the space for the drain we added
2095 * so that we don't add it again
2096 */
2097 --rq->nr_phys_segments;
2098 }
2099
2100 rq = NULL;
2101 break;
2102 } else if (ret == BLKPREP_KILL) {
2103 rq->cmd_flags |= REQ_QUIET;
2104 /*
2105 * Mark this request as started so we don't trigger
2106 * any debug logic in the end I/O path.
2107 */
2108 blk_start_request(rq);
2109 __blk_end_request_all(rq, -EIO);
2110 } else {
2111 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
2112 break;
2113 }
2114 }
2115
2116 return rq;
2117}
2118EXPORT_SYMBOL(blk_peek_request);
2119
2120void blk_dequeue_request(struct request *rq)
2121{
2122 struct request_queue *q = rq->q;
2123
2124 BUG_ON(list_empty(&rq->queuelist));
2125 BUG_ON(ELV_ON_HASH(rq));
2126
2127 list_del_init(&rq->queuelist);
2128
2129 /*
2130 * the time frame between a request being removed from the lists
2131 * and to it is freed is accounted as io that is in progress at
2132 * the driver side.
2133 */
2134 if (blk_account_rq(rq)) {
2135 q->in_flight[rq_is_sync(rq)]++;
2136 set_io_start_time_ns(rq);
2137 }
2138}
2139
2140/**
2141 * blk_start_request - start request processing on the driver
2142 * @req: request to dequeue
2143 *
2144 * Description:
2145 * Dequeue @req and start timeout timer on it. This hands off the
2146 * request to the driver.
2147 *
2148 * Block internal functions which don't want to start timer should
2149 * call blk_dequeue_request().
2150 *
2151 * Context:
2152 * queue_lock must be held.
2153 */
2154void blk_start_request(struct request *req)
2155{
2156 blk_dequeue_request(req);
2157
2158 /*
2159 * We are now handing the request to the hardware, initialize
2160 * resid_len to full count and add the timeout handler.
2161 */
2162 req->resid_len = blk_rq_bytes(req);
2163 if (unlikely(blk_bidi_rq(req)))
2164 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
2165
2166 blk_add_timer(req);
2167}
2168EXPORT_SYMBOL(blk_start_request);
2169
2170/**
2171 * blk_fetch_request - fetch a request from a request queue
2172 * @q: request queue to fetch a request from
2173 *
2174 * Description:
2175 * Return the request at the top of @q. The request is started on
2176 * return and LLD can start processing it immediately.
2177 *
2178 * Return:
2179 * Pointer to the request at the top of @q if available. Null
2180 * otherwise.
2181 *
2182 * Context:
2183 * queue_lock must be held.
2184 */
2185struct request *blk_fetch_request(struct request_queue *q)
2186{
2187 struct request *rq;
2188
2189 rq = blk_peek_request(q);
2190 if (rq)
2191 blk_start_request(rq);
2192 return rq;
2193}
2194EXPORT_SYMBOL(blk_fetch_request);
2195
2196/**
2197 * blk_update_request - Special helper function for request stacking drivers
2198 * @req: the request being processed
2199 * @error: %0 for success, < %0 for error
2200 * @nr_bytes: number of bytes to complete @req
2201 *
2202 * Description:
2203 * Ends I/O on a number of bytes attached to @req, but doesn't complete
2204 * the request structure even if @req doesn't have leftover.
2205 * If @req has leftover, sets it up for the next range of segments.
2206 *
2207 * This special helper function is only for request stacking drivers
2208 * (e.g. request-based dm) so that they can handle partial completion.
2209 * Actual device drivers should use blk_end_request instead.
2210 *
2211 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
2212 * %false return from this function.
2213 *
2214 * Return:
2215 * %false - this request doesn't have any more data
2216 * %true - this request has more data
2217 **/
2218bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
2219{
2220 int total_bytes, bio_nbytes, next_idx = 0;
2221 struct bio *bio;
2222
2223 if (!req->bio)
2224 return false;
2225
2226 trace_block_rq_complete(req->q, req);
2227
2228 /*
2229 * For fs requests, rq is just carrier of independent bio's
2230 * and each partial completion should be handled separately.
2231 * Reset per-request error on each partial completion.
2232 *
2233 * TODO: tj: This is too subtle. It would be better to let
2234 * low level drivers do what they see fit.
2235 */
2236 if (req->cmd_type == REQ_TYPE_FS)
2237 req->errors = 0;
2238
2239 if (error && req->cmd_type == REQ_TYPE_FS &&
2240 !(req->cmd_flags & REQ_QUIET)) {
2241 char *error_type;
2242
2243 switch (error) {
2244 case -ENOLINK:
2245 error_type = "recoverable transport";
2246 break;
2247 case -EREMOTEIO:
2248 error_type = "critical target";
2249 break;
2250 case -EBADE:
2251 error_type = "critical nexus";
2252 break;
2253 case -EIO:
2254 default:
2255 error_type = "I/O";
2256 break;
2257 }
2258 printk_ratelimited(KERN_ERR "end_request: %s error, dev %s, sector %llu\n",
2259 error_type, req->rq_disk ?
2260 req->rq_disk->disk_name : "?",
2261 (unsigned long long)blk_rq_pos(req));
2262
2263 }
2264
2265 blk_account_io_completion(req, nr_bytes);
2266
2267 total_bytes = bio_nbytes = 0;
2268 while ((bio = req->bio) != NULL) {
2269 int nbytes;
2270
2271 if (nr_bytes >= bio->bi_size) {
2272 req->bio = bio->bi_next;
2273 nbytes = bio->bi_size;
2274 req_bio_endio(req, bio, nbytes, error);
2275 next_idx = 0;
2276 bio_nbytes = 0;
2277 } else {
2278 int idx = bio->bi_idx + next_idx;
2279
2280 if (unlikely(idx >= bio->bi_vcnt)) {
2281 blk_dump_rq_flags(req, "__end_that");
2282 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
2283 __func__, idx, bio->bi_vcnt);
2284 break;
2285 }
2286
2287 nbytes = bio_iovec_idx(bio, idx)->bv_len;
2288 BIO_BUG_ON(nbytes > bio->bi_size);
2289
2290 /*
2291 * not a complete bvec done
2292 */
2293 if (unlikely(nbytes > nr_bytes)) {
2294 bio_nbytes += nr_bytes;
2295 total_bytes += nr_bytes;
2296 break;
2297 }
2298
2299 /*
2300 * advance to the next vector
2301 */
2302 next_idx++;
2303 bio_nbytes += nbytes;
2304 }
2305
2306 total_bytes += nbytes;
2307 nr_bytes -= nbytes;
2308
2309 bio = req->bio;
2310 if (bio) {
2311 /*
2312 * end more in this run, or just return 'not-done'
2313 */
2314 if (unlikely(nr_bytes <= 0))
2315 break;
2316 }
2317 }
2318
2319 /*
2320 * completely done
2321 */
2322 if (!req->bio) {
2323 /*
2324 * Reset counters so that the request stacking driver
2325 * can find how many bytes remain in the request
2326 * later.
2327 */
2328 req->__data_len = 0;
2329 return false;
2330 }
2331
2332 /*
2333 * if the request wasn't completed, update state
2334 */
2335 if (bio_nbytes) {
2336 req_bio_endio(req, bio, bio_nbytes, error);
2337 bio->bi_idx += next_idx;
2338 bio_iovec(bio)->bv_offset += nr_bytes;
2339 bio_iovec(bio)->bv_len -= nr_bytes;
2340 }
2341
2342 req->__data_len -= total_bytes;
2343 req->buffer = bio_data(req->bio);
2344
2345 /* update sector only for requests with clear definition of sector */
2346 if (req->cmd_type == REQ_TYPE_FS)
2347 req->__sector += total_bytes >> 9;
2348
2349 /* mixed attributes always follow the first bio */
2350 if (req->cmd_flags & REQ_MIXED_MERGE) {
2351 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2352 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2353 }
2354
2355 /*
2356 * If total number of sectors is less than the first segment
2357 * size, something has gone terribly wrong.
2358 */
2359 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2360 blk_dump_rq_flags(req, "request botched");
2361 req->__data_len = blk_rq_cur_bytes(req);
2362 }
2363
2364 /* recalculate the number of segments */
2365 blk_recalc_rq_segments(req);
2366
2367 return true;
2368}
2369EXPORT_SYMBOL_GPL(blk_update_request);
2370
2371static bool blk_update_bidi_request(struct request *rq, int error,
2372 unsigned int nr_bytes,
2373 unsigned int bidi_bytes)
2374{
2375 if (blk_update_request(rq, error, nr_bytes))
2376 return true;
2377
2378 /* Bidi request must be completed as a whole */
2379 if (unlikely(blk_bidi_rq(rq)) &&
2380 blk_update_request(rq->next_rq, error, bidi_bytes))
2381 return true;
2382
2383 if (blk_queue_add_random(rq->q))
2384 add_disk_randomness(rq->rq_disk);
2385
2386 return false;
2387}
2388
2389/**
2390 * blk_unprep_request - unprepare a request
2391 * @req: the request
2392 *
2393 * This function makes a request ready for complete resubmission (or
2394 * completion). It happens only after all error handling is complete,
2395 * so represents the appropriate moment to deallocate any resources
2396 * that were allocated to the request in the prep_rq_fn. The queue
2397 * lock is held when calling this.
2398 */
2399void blk_unprep_request(struct request *req)
2400{
2401 struct request_queue *q = req->q;
2402
2403 req->cmd_flags &= ~REQ_DONTPREP;
2404 if (q->unprep_rq_fn)
2405 q->unprep_rq_fn(q, req);
2406}
2407EXPORT_SYMBOL_GPL(blk_unprep_request);
2408
2409/*
2410 * queue lock must be held
2411 */
2412static void blk_finish_request(struct request *req, int error)
2413{
2414 if (blk_rq_tagged(req))
2415 blk_queue_end_tag(req->q, req);
2416
2417 BUG_ON(blk_queued_rq(req));
2418
2419 if (unlikely(laptop_mode) && req->cmd_type == REQ_TYPE_FS)
2420 laptop_io_completion(&req->q->backing_dev_info);
2421
2422 blk_delete_timer(req);
2423
2424 if (req->cmd_flags & REQ_DONTPREP)
2425 blk_unprep_request(req);
2426
2427
2428 blk_account_io_done(req);
2429
2430 if (req->end_io)
2431 req->end_io(req, error);
2432 else {
2433 if (blk_bidi_rq(req))
2434 __blk_put_request(req->next_rq->q, req->next_rq);
2435
2436 __blk_put_request(req->q, req);
2437 }
2438}
2439
2440/**
2441 * blk_end_bidi_request - Complete a bidi request
2442 * @rq: the request to complete
2443 * @error: %0 for success, < %0 for error
2444 * @nr_bytes: number of bytes to complete @rq
2445 * @bidi_bytes: number of bytes to complete @rq->next_rq
2446 *
2447 * Description:
2448 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2449 * Drivers that supports bidi can safely call this member for any
2450 * type of request, bidi or uni. In the later case @bidi_bytes is
2451 * just ignored.
2452 *
2453 * Return:
2454 * %false - we are done with this request
2455 * %true - still buffers pending for this request
2456 **/
2457static bool blk_end_bidi_request(struct request *rq, int error,
2458 unsigned int nr_bytes, unsigned int bidi_bytes)
2459{
2460 struct request_queue *q = rq->q;
2461 unsigned long flags;
2462
2463 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2464 return true;
2465
2466 spin_lock_irqsave(q->queue_lock, flags);
2467 blk_finish_request(rq, error);
2468 spin_unlock_irqrestore(q->queue_lock, flags);
2469
2470 return false;
2471}
2472
2473/**
2474 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2475 * @rq: the request to complete
2476 * @error: %0 for success, < %0 for error
2477 * @nr_bytes: number of bytes to complete @rq
2478 * @bidi_bytes: number of bytes to complete @rq->next_rq
2479 *
2480 * Description:
2481 * Identical to blk_end_bidi_request() except that queue lock is
2482 * assumed to be locked on entry and remains so on return.
2483 *
2484 * Return:
2485 * %false - we are done with this request
2486 * %true - still buffers pending for this request
2487 **/
2488bool __blk_end_bidi_request(struct request *rq, int error,
2489 unsigned int nr_bytes, unsigned int bidi_bytes)
2490{
2491 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2492 return true;
2493
2494 blk_finish_request(rq, error);
2495
2496 return false;
2497}
2498
2499/**
2500 * blk_end_request - Helper function for drivers to complete the request.
2501 * @rq: the request being processed
2502 * @error: %0 for success, < %0 for error
2503 * @nr_bytes: number of bytes to complete
2504 *
2505 * Description:
2506 * Ends I/O on a number of bytes attached to @rq.
2507 * If @rq has leftover, sets it up for the next range of segments.
2508 *
2509 * Return:
2510 * %false - we are done with this request
2511 * %true - still buffers pending for this request
2512 **/
2513bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2514{
2515 return blk_end_bidi_request(rq, error, nr_bytes, 0);
2516}
2517EXPORT_SYMBOL(blk_end_request);
2518
2519/**
2520 * blk_end_request_all - Helper function for drives to finish the request.
2521 * @rq: the request to finish
2522 * @error: %0 for success, < %0 for error
2523 *
2524 * Description:
2525 * Completely finish @rq.
2526 */
2527void blk_end_request_all(struct request *rq, int error)
2528{
2529 bool pending;
2530 unsigned int bidi_bytes = 0;
2531
2532 if (unlikely(blk_bidi_rq(rq)))
2533 bidi_bytes = blk_rq_bytes(rq->next_rq);
2534
2535 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2536 BUG_ON(pending);
2537}
2538EXPORT_SYMBOL(blk_end_request_all);
2539
2540/**
2541 * blk_end_request_cur - Helper function to finish the current request chunk.
2542 * @rq: the request to finish the current chunk for
2543 * @error: %0 for success, < %0 for error
2544 *
2545 * Description:
2546 * Complete the current consecutively mapped chunk from @rq.
2547 *
2548 * Return:
2549 * %false - we are done with this request
2550 * %true - still buffers pending for this request
2551 */
2552bool blk_end_request_cur(struct request *rq, int error)
2553{
2554 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2555}
2556EXPORT_SYMBOL(blk_end_request_cur);
2557
2558/**
2559 * blk_end_request_err - Finish a request till the next failure boundary.
2560 * @rq: the request to finish till the next failure boundary for
2561 * @error: must be negative errno
2562 *
2563 * Description:
2564 * Complete @rq till the next failure boundary.
2565 *
2566 * Return:
2567 * %false - we are done with this request
2568 * %true - still buffers pending for this request
2569 */
2570bool blk_end_request_err(struct request *rq, int error)
2571{
2572 WARN_ON(error >= 0);
2573 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2574}
2575EXPORT_SYMBOL_GPL(blk_end_request_err);
2576
2577/**
2578 * __blk_end_request - Helper function for drivers to complete the request.
2579 * @rq: the request being processed
2580 * @error: %0 for success, < %0 for error
2581 * @nr_bytes: number of bytes to complete
2582 *
2583 * Description:
2584 * Must be called with queue lock held unlike blk_end_request().
2585 *
2586 * Return:
2587 * %false - we are done with this request
2588 * %true - still buffers pending for this request
2589 **/
2590bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
2591{
2592 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
2593}
2594EXPORT_SYMBOL(__blk_end_request);
2595
2596/**
2597 * __blk_end_request_all - Helper function for drives to finish the request.
2598 * @rq: the request to finish
2599 * @error: %0 for success, < %0 for error
2600 *
2601 * Description:
2602 * Completely finish @rq. Must be called with queue lock held.
2603 */
2604void __blk_end_request_all(struct request *rq, int error)
2605{
2606 bool pending;
2607 unsigned int bidi_bytes = 0;
2608
2609 if (unlikely(blk_bidi_rq(rq)))
2610 bidi_bytes = blk_rq_bytes(rq->next_rq);
2611
2612 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2613 BUG_ON(pending);
2614}
2615EXPORT_SYMBOL(__blk_end_request_all);
2616
2617/**
2618 * __blk_end_request_cur - Helper function to finish the current request chunk.
2619 * @rq: the request to finish the current chunk for
2620 * @error: %0 for success, < %0 for error
2621 *
2622 * Description:
2623 * Complete the current consecutively mapped chunk from @rq. Must
2624 * be called with queue lock held.
2625 *
2626 * Return:
2627 * %false - we are done with this request
2628 * %true - still buffers pending for this request
2629 */
2630bool __blk_end_request_cur(struct request *rq, int error)
2631{
2632 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
2633}
2634EXPORT_SYMBOL(__blk_end_request_cur);
2635
2636/**
2637 * __blk_end_request_err - Finish a request till the next failure boundary.
2638 * @rq: the request to finish till the next failure boundary for
2639 * @error: must be negative errno
2640 *
2641 * Description:
2642 * Complete @rq till the next failure boundary. Must be called
2643 * with queue lock held.
2644 *
2645 * Return:
2646 * %false - we are done with this request
2647 * %true - still buffers pending for this request
2648 */
2649bool __blk_end_request_err(struct request *rq, int error)
2650{
2651 WARN_ON(error >= 0);
2652 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2653}
2654EXPORT_SYMBOL_GPL(__blk_end_request_err);
2655
2656void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2657 struct bio *bio)
2658{
2659 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2660 rq->cmd_flags |= bio->bi_rw & REQ_WRITE;
2661
2662 if (bio_has_data(bio)) {
2663 rq->nr_phys_segments = bio_phys_segments(q, bio);
2664 rq->buffer = bio_data(bio);
2665 }
2666 rq->__data_len = bio->bi_size;
2667 rq->bio = rq->biotail = bio;
2668
2669 if (bio->bi_bdev)
2670 rq->rq_disk = bio->bi_bdev->bd_disk;
2671}
2672
2673#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2674/**
2675 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2676 * @rq: the request to be flushed
2677 *
2678 * Description:
2679 * Flush all pages in @rq.
2680 */
2681void rq_flush_dcache_pages(struct request *rq)
2682{
2683 struct req_iterator iter;
2684 struct bio_vec *bvec;
2685
2686 rq_for_each_segment(bvec, rq, iter)
2687 flush_dcache_page(bvec->bv_page);
2688}
2689EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2690#endif
2691
2692/**
2693 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2694 * @q : the queue of the device being checked
2695 *
2696 * Description:
2697 * Check if underlying low-level drivers of a device are busy.
2698 * If the drivers want to export their busy state, they must set own
2699 * exporting function using blk_queue_lld_busy() first.
2700 *
2701 * Basically, this function is used only by request stacking drivers
2702 * to stop dispatching requests to underlying devices when underlying
2703 * devices are busy. This behavior helps more I/O merging on the queue
2704 * of the request stacking driver and prevents I/O throughput regression
2705 * on burst I/O load.
2706 *
2707 * Return:
2708 * 0 - Not busy (The request stacking driver should dispatch request)
2709 * 1 - Busy (The request stacking driver should stop dispatching request)
2710 */
2711int blk_lld_busy(struct request_queue *q)
2712{
2713 if (q->lld_busy_fn)
2714 return q->lld_busy_fn(q);
2715
2716 return 0;
2717}
2718EXPORT_SYMBOL_GPL(blk_lld_busy);
2719
2720/**
2721 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2722 * @rq: the clone request to be cleaned up
2723 *
2724 * Description:
2725 * Free all bios in @rq for a cloned request.
2726 */
2727void blk_rq_unprep_clone(struct request *rq)
2728{
2729 struct bio *bio;
2730
2731 while ((bio = rq->bio) != NULL) {
2732 rq->bio = bio->bi_next;
2733
2734 bio_put(bio);
2735 }
2736}
2737EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2738
2739/*
2740 * Copy attributes of the original request to the clone request.
2741 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2742 */
2743static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2744{
2745 dst->cpu = src->cpu;
2746 dst->cmd_flags = (src->cmd_flags & REQ_CLONE_MASK) | REQ_NOMERGE;
2747 dst->cmd_type = src->cmd_type;
2748 dst->__sector = blk_rq_pos(src);
2749 dst->__data_len = blk_rq_bytes(src);
2750 dst->nr_phys_segments = src->nr_phys_segments;
2751 dst->ioprio = src->ioprio;
2752 dst->extra_len = src->extra_len;
2753}
2754
2755/**
2756 * blk_rq_prep_clone - Helper function to setup clone request
2757 * @rq: the request to be setup
2758 * @rq_src: original request to be cloned
2759 * @bs: bio_set that bios for clone are allocated from
2760 * @gfp_mask: memory allocation mask for bio
2761 * @bio_ctr: setup function to be called for each clone bio.
2762 * Returns %0 for success, non %0 for failure.
2763 * @data: private data to be passed to @bio_ctr
2764 *
2765 * Description:
2766 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2767 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2768 * are not copied, and copying such parts is the caller's responsibility.
2769 * Also, pages which the original bios are pointing to are not copied
2770 * and the cloned bios just point same pages.
2771 * So cloned bios must be completed before original bios, which means
2772 * the caller must complete @rq before @rq_src.
2773 */
2774int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2775 struct bio_set *bs, gfp_t gfp_mask,
2776 int (*bio_ctr)(struct bio *, struct bio *, void *),
2777 void *data)
2778{
2779 struct bio *bio, *bio_src;
2780
2781 if (!bs)
2782 bs = fs_bio_set;
2783
2784 blk_rq_init(NULL, rq);
2785
2786 __rq_for_each_bio(bio_src, rq_src) {
2787 bio = bio_clone_bioset(bio_src, gfp_mask, bs);
2788 if (!bio)
2789 goto free_and_out;
2790
2791 if (bio_ctr && bio_ctr(bio, bio_src, data))
2792 goto free_and_out;
2793
2794 if (rq->bio) {
2795 rq->biotail->bi_next = bio;
2796 rq->biotail = bio;
2797 } else
2798 rq->bio = rq->biotail = bio;
2799 }
2800
2801 __blk_rq_prep_clone(rq, rq_src);
2802
2803 return 0;
2804
2805free_and_out:
2806 if (bio)
2807 bio_put(bio);
2808 blk_rq_unprep_clone(rq);
2809
2810 return -ENOMEM;
2811}
2812EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2813
2814int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
2815{
2816 return queue_work(kblockd_workqueue, work);
2817}
2818EXPORT_SYMBOL(kblockd_schedule_work);
2819
2820int kblockd_schedule_delayed_work(struct request_queue *q,
2821 struct delayed_work *dwork, unsigned long delay)
2822{
2823 return queue_delayed_work(kblockd_workqueue, dwork, delay);
2824}
2825EXPORT_SYMBOL(kblockd_schedule_delayed_work);
2826
2827#define PLUG_MAGIC 0x91827364
2828
2829/**
2830 * blk_start_plug - initialize blk_plug and track it inside the task_struct
2831 * @plug: The &struct blk_plug that needs to be initialized
2832 *
2833 * Description:
2834 * Tracking blk_plug inside the task_struct will help with auto-flushing the
2835 * pending I/O should the task end up blocking between blk_start_plug() and
2836 * blk_finish_plug(). This is important from a performance perspective, but
2837 * also ensures that we don't deadlock. For instance, if the task is blocking
2838 * for a memory allocation, memory reclaim could end up wanting to free a
2839 * page belonging to that request that is currently residing in our private
2840 * plug. By flushing the pending I/O when the process goes to sleep, we avoid
2841 * this kind of deadlock.
2842 */
2843void blk_start_plug(struct blk_plug *plug)
2844{
2845 struct task_struct *tsk = current;
2846
2847 plug->magic = PLUG_MAGIC;
2848 INIT_LIST_HEAD(&plug->list);
2849 INIT_LIST_HEAD(&plug->cb_list);
2850 plug->should_sort = 0;
2851
2852 /*
2853 * If this is a nested plug, don't actually assign it. It will be
2854 * flushed on its own.
2855 */
2856 if (!tsk->plug) {
2857 /*
2858 * Store ordering should not be needed here, since a potential
2859 * preempt will imply a full memory barrier
2860 */
2861 tsk->plug = plug;
2862 }
2863}
2864EXPORT_SYMBOL(blk_start_plug);
2865
2866static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
2867{
2868 struct request *rqa = container_of(a, struct request, queuelist);
2869 struct request *rqb = container_of(b, struct request, queuelist);
2870
2871 return !(rqa->q < rqb->q ||
2872 (rqa->q == rqb->q && blk_rq_pos(rqa) < blk_rq_pos(rqb)));
2873}
2874
2875/*
2876 * If 'from_schedule' is true, then postpone the dispatch of requests
2877 * until a safe kblockd context. We due this to avoid accidental big
2878 * additional stack usage in driver dispatch, in places where the originally
2879 * plugger did not intend it.
2880 */
2881static void queue_unplugged(struct request_queue *q, unsigned int depth,
2882 bool from_schedule)
2883 __releases(q->queue_lock)
2884{
2885 trace_block_unplug(q, depth, !from_schedule);
2886
2887 /*
2888 * Don't mess with dead queue.
2889 */
2890 if (unlikely(blk_queue_dead(q))) {
2891 spin_unlock(q->queue_lock);
2892 return;
2893 }
2894
2895 /*
2896 * If we are punting this to kblockd, then we can safely drop
2897 * the queue_lock before waking kblockd (which needs to take
2898 * this lock).
2899 */
2900 if (from_schedule) {
2901 spin_unlock(q->queue_lock);
2902 blk_run_queue_async(q);
2903 } else {
2904 __blk_run_queue(q);
2905 spin_unlock(q->queue_lock);
2906 }
2907
2908}
2909
2910static void flush_plug_callbacks(struct blk_plug *plug, bool from_schedule)
2911{
2912 LIST_HEAD(callbacks);
2913
2914 while (!list_empty(&plug->cb_list)) {
2915 list_splice_init(&plug->cb_list, &callbacks);
2916
2917 while (!list_empty(&callbacks)) {
2918 struct blk_plug_cb *cb = list_first_entry(&callbacks,
2919 struct blk_plug_cb,
2920 list);
2921 list_del(&cb->list);
2922 cb->callback(cb, from_schedule);
2923 }
2924 }
2925}
2926
2927struct blk_plug_cb *blk_check_plugged(blk_plug_cb_fn unplug, void *data,
2928 int size)
2929{
2930 struct blk_plug *plug = current->plug;
2931 struct blk_plug_cb *cb;
2932
2933 if (!plug)
2934 return NULL;
2935
2936 list_for_each_entry(cb, &plug->cb_list, list)
2937 if (cb->callback == unplug && cb->data == data)
2938 return cb;
2939
2940 /* Not currently on the callback list */
2941 BUG_ON(size < sizeof(*cb));
2942 cb = kzalloc(size, GFP_ATOMIC);
2943 if (cb) {
2944 cb->data = data;
2945 cb->callback = unplug;
2946 list_add(&cb->list, &plug->cb_list);
2947 }
2948 return cb;
2949}
2950EXPORT_SYMBOL(blk_check_plugged);
2951
2952void blk_flush_plug_list(struct blk_plug *plug, bool from_schedule)
2953{
2954 struct request_queue *q;
2955 unsigned long flags;
2956 struct request *rq;
2957 LIST_HEAD(list);
2958 unsigned int depth;
2959
2960 BUG_ON(plug->magic != PLUG_MAGIC);
2961
2962 flush_plug_callbacks(plug, from_schedule);
2963 if (list_empty(&plug->list))
2964 return;
2965
2966 list_splice_init(&plug->list, &list);
2967
2968 if (plug->should_sort) {
2969 list_sort(NULL, &list, plug_rq_cmp);
2970 plug->should_sort = 0;
2971 }
2972
2973 q = NULL;
2974 depth = 0;
2975
2976 /*
2977 * Save and disable interrupts here, to avoid doing it for every
2978 * queue lock we have to take.
2979 */
2980 local_irq_save(flags);
2981 while (!list_empty(&list)) {
2982 rq = list_entry_rq(list.next);
2983 list_del_init(&rq->queuelist);
2984 BUG_ON(!rq->q);
2985 if (rq->q != q) {
2986 /*
2987 * This drops the queue lock
2988 */
2989 if (q)
2990 queue_unplugged(q, depth, from_schedule);
2991 q = rq->q;
2992 depth = 0;
2993 spin_lock(q->queue_lock);
2994 }
2995
2996 /*
2997 * Short-circuit if @q is dead
2998 */
2999 if (unlikely(blk_queue_dead(q))) {
3000 __blk_end_request_all(rq, -ENODEV);
3001 continue;
3002 }
3003
3004 /*
3005 * rq is already accounted, so use raw insert
3006 */
3007 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA))
3008 __elv_add_request(q, rq, ELEVATOR_INSERT_FLUSH);
3009 else
3010 __elv_add_request(q, rq, ELEVATOR_INSERT_SORT_MERGE);
3011
3012 depth++;
3013 }
3014
3015 /*
3016 * This drops the queue lock
3017 */
3018 if (q)
3019 queue_unplugged(q, depth, from_schedule);
3020
3021 local_irq_restore(flags);
3022}
3023
3024void blk_finish_plug(struct blk_plug *plug)
3025{
3026 blk_flush_plug_list(plug, false);
3027
3028 if (plug == current->plug)
3029 current->plug = NULL;
3030}
3031EXPORT_SYMBOL(blk_finish_plug);
3032
3033int __init blk_dev_init(void)
3034{
3035 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
3036 sizeof(((struct request *)0)->cmd_flags));
3037
3038 /* used for unplugging and affects IO latency/throughput - HIGHPRI */
3039 kblockd_workqueue = alloc_workqueue("kblockd",
3040 WQ_MEM_RECLAIM | WQ_HIGHPRI, 0);
3041 if (!kblockd_workqueue)
3042 panic("Failed to create kblockd\n");
3043
3044 request_cachep = kmem_cache_create("blkdev_requests",
3045 sizeof(struct request), 0, SLAB_PANIC, NULL);
3046
3047 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
3048 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
3049
3050 return 0;
3051}