]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/events/core.c
perf/x86: Fix possible Spectre-v1 indexing for hw_perf_event cache_*
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / events / core.c
CommitLineData
241771ef 1/*
cdd6c482 2 * Performance events x86 architecture code
241771ef 3 *
98144511
IM
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2009 Jaswinder Singh Rajput
7 * Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
90eec103 8 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra
30dd568c 9 * Copyright (C) 2009 Intel Corporation, <markus.t.metzger@intel.com>
1da53e02 10 * Copyright (C) 2009 Google, Inc., Stephane Eranian
241771ef
IM
11 *
12 * For licencing details see kernel-base/COPYING
13 */
14
cdd6c482 15#include <linux/perf_event.h>
241771ef
IM
16#include <linux/capability.h>
17#include <linux/notifier.h>
18#include <linux/hardirq.h>
19#include <linux/kprobes.h>
eb008eb6
PG
20#include <linux/export.h>
21#include <linux/init.h>
241771ef 22#include <linux/kdebug.h>
589ee628 23#include <linux/sched/mm.h>
e6017571 24#include <linux/sched/clock.h>
d7d59fb3 25#include <linux/uaccess.h>
5a0e3ad6 26#include <linux/slab.h>
30dd568c 27#include <linux/cpu.h>
272d30be 28#include <linux/bitops.h>
0c9d42ed 29#include <linux/device.h>
241771ef 30
241771ef 31#include <asm/apic.h>
d7d59fb3 32#include <asm/stacktrace.h>
4e935e47 33#include <asm/nmi.h>
69092624 34#include <asm/smp.h>
c8e5910e 35#include <asm/alternative.h>
7911d3f7 36#include <asm/mmu_context.h>
375074cc 37#include <asm/tlbflush.h>
e3f3541c 38#include <asm/timer.h>
d07bdfd3
PZ
39#include <asm/desc.h>
40#include <asm/ldt.h>
35f4d9b3 41#include <asm/unwind.h>
241771ef 42
27f6d22b 43#include "perf_event.h"
de0428a7 44
de0428a7 45struct x86_pmu x86_pmu __read_mostly;
efc9f05d 46
de0428a7 47DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
b0f3f28e
PZ
48 .enabled = 1,
49};
241771ef 50
a6673429
AL
51struct static_key rdpmc_always_available = STATIC_KEY_INIT_FALSE;
52
de0428a7 53u64 __read_mostly hw_cache_event_ids
8326f44d
IM
54 [PERF_COUNT_HW_CACHE_MAX]
55 [PERF_COUNT_HW_CACHE_OP_MAX]
56 [PERF_COUNT_HW_CACHE_RESULT_MAX];
de0428a7 57u64 __read_mostly hw_cache_extra_regs
e994d7d2
AK
58 [PERF_COUNT_HW_CACHE_MAX]
59 [PERF_COUNT_HW_CACHE_OP_MAX]
60 [PERF_COUNT_HW_CACHE_RESULT_MAX];
8326f44d 61
ee06094f 62/*
cdd6c482
IM
63 * Propagate event elapsed time into the generic event.
64 * Can only be executed on the CPU where the event is active.
ee06094f
IM
65 * Returns the delta events processed.
66 */
de0428a7 67u64 x86_perf_event_update(struct perf_event *event)
ee06094f 68{
cc2ad4ba 69 struct hw_perf_event *hwc = &event->hw;
948b1bb8 70 int shift = 64 - x86_pmu.cntval_bits;
ec3232bd 71 u64 prev_raw_count, new_raw_count;
cc2ad4ba 72 int idx = hwc->idx;
7f612a7f 73 u64 delta;
ee06094f 74
15c7ad51 75 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
76 return 0;
77
ee06094f 78 /*
cdd6c482 79 * Careful: an NMI might modify the previous event value.
ee06094f
IM
80 *
81 * Our tactic to handle this is to first atomically read and
82 * exchange a new raw count - then add that new-prev delta
cdd6c482 83 * count to the generic event atomically:
ee06094f
IM
84 */
85again:
e7850595 86 prev_raw_count = local64_read(&hwc->prev_count);
c48b6053 87 rdpmcl(hwc->event_base_rdpmc, new_raw_count);
ee06094f 88
e7850595 89 if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
ee06094f
IM
90 new_raw_count) != prev_raw_count)
91 goto again;
92
93 /*
94 * Now we have the new raw value and have updated the prev
95 * timestamp already. We can now calculate the elapsed delta
cdd6c482 96 * (event-)time and add that to the generic event.
ee06094f
IM
97 *
98 * Careful, not all hw sign-extends above the physical width
ec3232bd 99 * of the count.
ee06094f 100 */
ec3232bd
PZ
101 delta = (new_raw_count << shift) - (prev_raw_count << shift);
102 delta >>= shift;
ee06094f 103
e7850595
PZ
104 local64_add(delta, &event->count);
105 local64_sub(delta, &hwc->period_left);
4b7bfd0d
RR
106
107 return new_raw_count;
ee06094f
IM
108}
109
a7e3ed1e
AK
110/*
111 * Find and validate any extra registers to set up.
112 */
113static int x86_pmu_extra_regs(u64 config, struct perf_event *event)
114{
efc9f05d 115 struct hw_perf_event_extra *reg;
a7e3ed1e
AK
116 struct extra_reg *er;
117
efc9f05d 118 reg = &event->hw.extra_reg;
a7e3ed1e
AK
119
120 if (!x86_pmu.extra_regs)
121 return 0;
122
123 for (er = x86_pmu.extra_regs; er->msr; er++) {
124 if (er->event != (config & er->config_mask))
125 continue;
126 if (event->attr.config1 & ~er->valid_mask)
127 return -EINVAL;
338b522c
KL
128 /* Check if the extra msrs can be safely accessed*/
129 if (!er->extra_msr_access)
130 return -ENXIO;
efc9f05d
SE
131
132 reg->idx = er->idx;
133 reg->config = event->attr.config1;
134 reg->reg = er->msr;
a7e3ed1e
AK
135 break;
136 }
137 return 0;
138}
139
cdd6c482 140static atomic_t active_events;
1b7b938f 141static atomic_t pmc_refcount;
4e935e47
PZ
142static DEFINE_MUTEX(pmc_reserve_mutex);
143
b27ea29c
RR
144#ifdef CONFIG_X86_LOCAL_APIC
145
4e935e47
PZ
146static bool reserve_pmc_hardware(void)
147{
148 int i;
149
948b1bb8 150 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 151 if (!reserve_perfctr_nmi(x86_pmu_event_addr(i)))
4e935e47
PZ
152 goto perfctr_fail;
153 }
154
948b1bb8 155 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 156 if (!reserve_evntsel_nmi(x86_pmu_config_addr(i)))
4e935e47
PZ
157 goto eventsel_fail;
158 }
159
160 return true;
161
162eventsel_fail:
163 for (i--; i >= 0; i--)
41bf4989 164 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 165
948b1bb8 166 i = x86_pmu.num_counters;
4e935e47
PZ
167
168perfctr_fail:
169 for (i--; i >= 0; i--)
41bf4989 170 release_perfctr_nmi(x86_pmu_event_addr(i));
4e935e47 171
4e935e47
PZ
172 return false;
173}
174
175static void release_pmc_hardware(void)
176{
177 int i;
178
948b1bb8 179 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989
RR
180 release_perfctr_nmi(x86_pmu_event_addr(i));
181 release_evntsel_nmi(x86_pmu_config_addr(i));
4e935e47 182 }
4e935e47
PZ
183}
184
b27ea29c
RR
185#else
186
187static bool reserve_pmc_hardware(void) { return true; }
188static void release_pmc_hardware(void) {}
189
190#endif
191
33c6d6a7
DZ
192static bool check_hw_exists(void)
193{
11d8b058
AB
194 u64 val, val_fail = -1, val_new= ~0;
195 int i, reg, reg_fail = -1, ret = 0;
a5ebe0ba 196 int bios_fail = 0;
68ab7476 197 int reg_safe = -1;
33c6d6a7 198
4407204c
PZ
199 /*
200 * Check to see if the BIOS enabled any of the counters, if so
201 * complain and bail.
202 */
203 for (i = 0; i < x86_pmu.num_counters; i++) {
41bf4989 204 reg = x86_pmu_config_addr(i);
4407204c
PZ
205 ret = rdmsrl_safe(reg, &val);
206 if (ret)
207 goto msr_fail;
a5ebe0ba
GD
208 if (val & ARCH_PERFMON_EVENTSEL_ENABLE) {
209 bios_fail = 1;
210 val_fail = val;
211 reg_fail = reg;
68ab7476
DZ
212 } else {
213 reg_safe = i;
a5ebe0ba 214 }
4407204c
PZ
215 }
216
217 if (x86_pmu.num_counters_fixed) {
218 reg = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
219 ret = rdmsrl_safe(reg, &val);
220 if (ret)
221 goto msr_fail;
222 for (i = 0; i < x86_pmu.num_counters_fixed; i++) {
a5ebe0ba
GD
223 if (val & (0x03 << i*4)) {
224 bios_fail = 1;
225 val_fail = val;
226 reg_fail = reg;
227 }
4407204c
PZ
228 }
229 }
230
68ab7476
DZ
231 /*
232 * If all the counters are enabled, the below test will always
233 * fail. The tools will also become useless in this scenario.
234 * Just fail and disable the hardware counters.
235 */
236
237 if (reg_safe == -1) {
238 reg = reg_safe;
239 goto msr_fail;
240 }
241
4407204c 242 /*
bffd5fc2
AP
243 * Read the current value, change it and read it back to see if it
244 * matches, this is needed to detect certain hardware emulators
245 * (qemu/kvm) that don't trap on the MSR access and always return 0s.
4407204c 246 */
68ab7476 247 reg = x86_pmu_event_addr(reg_safe);
bffd5fc2
AP
248 if (rdmsrl_safe(reg, &val))
249 goto msr_fail;
250 val ^= 0xffffUL;
f285f92f
RR
251 ret = wrmsrl_safe(reg, val);
252 ret |= rdmsrl_safe(reg, &val_new);
33c6d6a7 253 if (ret || val != val_new)
4407204c 254 goto msr_fail;
33c6d6a7 255
45daae57
IM
256 /*
257 * We still allow the PMU driver to operate:
258 */
a5ebe0ba 259 if (bios_fail) {
1b74dde7
CY
260 pr_cont("Broken BIOS detected, complain to your hardware vendor.\n");
261 pr_err(FW_BUG "the BIOS has corrupted hw-PMU resources (MSR %x is %Lx)\n",
262 reg_fail, val_fail);
a5ebe0ba 263 }
45daae57
IM
264
265 return true;
4407204c
PZ
266
267msr_fail:
005bd007
JG
268 if (boot_cpu_has(X86_FEATURE_HYPERVISOR)) {
269 pr_cont("PMU not available due to virtualization, using software events only.\n");
270 } else {
271 pr_cont("Broken PMU hardware detected, using software events only.\n");
272 pr_err("Failed to access perfctr msr (MSR %x is %Lx)\n",
273 reg, val_new);
274 }
45daae57 275
4407204c 276 return false;
33c6d6a7
DZ
277}
278
cdd6c482 279static void hw_perf_event_destroy(struct perf_event *event)
4e935e47 280{
6b099d9b 281 x86_release_hardware();
1b7b938f 282 atomic_dec(&active_events);
4e935e47
PZ
283}
284
48070342
AS
285void hw_perf_lbr_event_destroy(struct perf_event *event)
286{
287 hw_perf_event_destroy(event);
288
289 /* undo the lbr/bts event accounting */
290 x86_del_exclusive(x86_lbr_exclusive_lbr);
291}
292
85cf9dba
RR
293static inline int x86_pmu_initialized(void)
294{
295 return x86_pmu.handle_irq != NULL;
296}
297
8326f44d 298static inline int
e994d7d2 299set_ext_hw_attr(struct hw_perf_event *hwc, struct perf_event *event)
8326f44d 300{
e994d7d2 301 struct perf_event_attr *attr = &event->attr;
8326f44d
IM
302 unsigned int cache_type, cache_op, cache_result;
303 u64 config, val;
304
305 config = attr->config;
306
75611add 307 cache_type = (config >> 0) & 0xff;
8326f44d
IM
308 if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
309 return -EINVAL;
75611add 310 cache_type = array_index_nospec(cache_type, PERF_COUNT_HW_CACHE_MAX);
8326f44d
IM
311
312 cache_op = (config >> 8) & 0xff;
313 if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
314 return -EINVAL;
75611add 315 cache_op = array_index_nospec(cache_op, PERF_COUNT_HW_CACHE_OP_MAX);
8326f44d
IM
316
317 cache_result = (config >> 16) & 0xff;
318 if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
319 return -EINVAL;
75611add 320 cache_result = array_index_nospec(cache_result, PERF_COUNT_HW_CACHE_RESULT_MAX);
8326f44d
IM
321
322 val = hw_cache_event_ids[cache_type][cache_op][cache_result];
323
324 if (val == 0)
325 return -ENOENT;
326
327 if (val == -1)
328 return -EINVAL;
329
330 hwc->config |= val;
e994d7d2
AK
331 attr->config1 = hw_cache_extra_regs[cache_type][cache_op][cache_result];
332 return x86_pmu_extra_regs(val, event);
8326f44d
IM
333}
334
6b099d9b
AS
335int x86_reserve_hardware(void)
336{
337 int err = 0;
338
1b7b938f 339 if (!atomic_inc_not_zero(&pmc_refcount)) {
6b099d9b 340 mutex_lock(&pmc_reserve_mutex);
1b7b938f 341 if (atomic_read(&pmc_refcount) == 0) {
6b099d9b
AS
342 if (!reserve_pmc_hardware())
343 err = -EBUSY;
344 else
345 reserve_ds_buffers();
346 }
347 if (!err)
1b7b938f 348 atomic_inc(&pmc_refcount);
6b099d9b
AS
349 mutex_unlock(&pmc_reserve_mutex);
350 }
351
352 return err;
353}
354
355void x86_release_hardware(void)
356{
1b7b938f 357 if (atomic_dec_and_mutex_lock(&pmc_refcount, &pmc_reserve_mutex)) {
6b099d9b
AS
358 release_pmc_hardware();
359 release_ds_buffers();
360 mutex_unlock(&pmc_reserve_mutex);
361 }
362}
363
48070342
AS
364/*
365 * Check if we can create event of a certain type (that no conflicting events
366 * are present).
367 */
368int x86_add_exclusive(unsigned int what)
369{
93472aff 370 int i;
48070342 371
b0c1ef52
AK
372 /*
373 * When lbr_pt_coexist we allow PT to coexist with either LBR or BTS.
374 * LBR and BTS are still mutually exclusive.
375 */
376 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
ccbebba4
AS
377 return 0;
378
93472aff
PZ
379 if (!atomic_inc_not_zero(&x86_pmu.lbr_exclusive[what])) {
380 mutex_lock(&pmc_reserve_mutex);
381 for (i = 0; i < ARRAY_SIZE(x86_pmu.lbr_exclusive); i++) {
382 if (i != what && atomic_read(&x86_pmu.lbr_exclusive[i]))
383 goto fail_unlock;
384 }
385 atomic_inc(&x86_pmu.lbr_exclusive[what]);
386 mutex_unlock(&pmc_reserve_mutex);
6b099d9b 387 }
48070342 388
93472aff
PZ
389 atomic_inc(&active_events);
390 return 0;
48070342 391
93472aff 392fail_unlock:
48070342 393 mutex_unlock(&pmc_reserve_mutex);
93472aff 394 return -EBUSY;
48070342
AS
395}
396
397void x86_del_exclusive(unsigned int what)
398{
b0c1ef52 399 if (x86_pmu.lbr_pt_coexist && what == x86_lbr_exclusive_pt)
ccbebba4
AS
400 return;
401
48070342 402 atomic_dec(&x86_pmu.lbr_exclusive[what]);
1b7b938f 403 atomic_dec(&active_events);
48070342
AS
404}
405
de0428a7 406int x86_setup_perfctr(struct perf_event *event)
c1726f34
RR
407{
408 struct perf_event_attr *attr = &event->attr;
409 struct hw_perf_event *hwc = &event->hw;
410 u64 config;
411
6c7e550f 412 if (!is_sampling_event(event)) {
c1726f34
RR
413 hwc->sample_period = x86_pmu.max_period;
414 hwc->last_period = hwc->sample_period;
e7850595 415 local64_set(&hwc->period_left, hwc->sample_period);
c1726f34
RR
416 }
417
418 if (attr->type == PERF_TYPE_RAW)
ed13ec58 419 return x86_pmu_extra_regs(event->attr.config, event);
c1726f34
RR
420
421 if (attr->type == PERF_TYPE_HW_CACHE)
e994d7d2 422 return set_ext_hw_attr(hwc, event);
c1726f34
RR
423
424 if (attr->config >= x86_pmu.max_events)
425 return -EINVAL;
426
427 /*
428 * The generic map:
429 */
430 config = x86_pmu.event_map(attr->config);
431
432 if (config == 0)
433 return -ENOENT;
434
435 if (config == -1LL)
436 return -EINVAL;
437
438 /*
439 * Branch tracing:
440 */
18a073a3
PZ
441 if (attr->config == PERF_COUNT_HW_BRANCH_INSTRUCTIONS &&
442 !attr->freq && hwc->sample_period == 1) {
c1726f34 443 /* BTS is not supported by this architecture. */
6809b6ea 444 if (!x86_pmu.bts_active)
c1726f34
RR
445 return -EOPNOTSUPP;
446
447 /* BTS is currently only allowed for user-mode. */
448 if (!attr->exclude_kernel)
449 return -EOPNOTSUPP;
48070342
AS
450
451 /* disallow bts if conflicting events are present */
452 if (x86_add_exclusive(x86_lbr_exclusive_lbr))
453 return -EBUSY;
454
455 event->destroy = hw_perf_lbr_event_destroy;
c1726f34
RR
456 }
457
458 hwc->config |= config;
459
460 return 0;
461}
4261e0e0 462
ff3fb511
SE
463/*
464 * check that branch_sample_type is compatible with
465 * settings needed for precise_ip > 1 which implies
466 * using the LBR to capture ALL taken branches at the
467 * priv levels of the measurement
468 */
469static inline int precise_br_compat(struct perf_event *event)
470{
471 u64 m = event->attr.branch_sample_type;
472 u64 b = 0;
473
474 /* must capture all branches */
475 if (!(m & PERF_SAMPLE_BRANCH_ANY))
476 return 0;
477
478 m &= PERF_SAMPLE_BRANCH_KERNEL | PERF_SAMPLE_BRANCH_USER;
479
480 if (!event->attr.exclude_user)
481 b |= PERF_SAMPLE_BRANCH_USER;
482
483 if (!event->attr.exclude_kernel)
484 b |= PERF_SAMPLE_BRANCH_KERNEL;
485
486 /*
487 * ignore PERF_SAMPLE_BRANCH_HV, not supported on x86
488 */
489
490 return m == b;
491}
492
b00233b5 493int x86_pmu_max_precise(void)
a072738e 494{
b00233b5
AK
495 int precise = 0;
496
497 /* Support for constant skid */
498 if (x86_pmu.pebs_active && !x86_pmu.pebs_broken) {
499 precise++;
ab608344 500
b00233b5
AK
501 /* Support for IP fixup */
502 if (x86_pmu.lbr_nr || x86_pmu.intel_cap.pebs_format >= 2)
ab608344
PZ
503 precise++;
504
b00233b5
AK
505 if (x86_pmu.pebs_prec_dist)
506 precise++;
507 }
508 return precise;
509}
72469764 510
b00233b5
AK
511int x86_pmu_hw_config(struct perf_event *event)
512{
513 if (event->attr.precise_ip) {
514 int precise = x86_pmu_max_precise();
ab608344
PZ
515
516 if (event->attr.precise_ip > precise)
517 return -EOPNOTSUPP;
18e7a45a
JO
518
519 /* There's no sense in having PEBS for non sampling events: */
520 if (!is_sampling_event(event))
521 return -EINVAL;
4b854900
YZ
522 }
523 /*
524 * check that PEBS LBR correction does not conflict with
525 * whatever the user is asking with attr->branch_sample_type
526 */
527 if (event->attr.precise_ip > 1 && x86_pmu.intel_cap.pebs_format < 2) {
528 u64 *br_type = &event->attr.branch_sample_type;
529
530 if (has_branch_stack(event)) {
531 if (!precise_br_compat(event))
532 return -EOPNOTSUPP;
533
534 /* branch_sample_type is compatible */
535
536 } else {
537 /*
538 * user did not specify branch_sample_type
539 *
540 * For PEBS fixups, we capture all
541 * the branches at the priv level of the
542 * event.
543 */
544 *br_type = PERF_SAMPLE_BRANCH_ANY;
545
546 if (!event->attr.exclude_user)
547 *br_type |= PERF_SAMPLE_BRANCH_USER;
548
549 if (!event->attr.exclude_kernel)
550 *br_type |= PERF_SAMPLE_BRANCH_KERNEL;
ff3fb511 551 }
ab608344
PZ
552 }
553
e18bf526
YZ
554 if (event->attr.branch_sample_type & PERF_SAMPLE_BRANCH_CALL_STACK)
555 event->attach_state |= PERF_ATTACH_TASK_DATA;
556
a072738e
CG
557 /*
558 * Generate PMC IRQs:
559 * (keep 'enabled' bit clear for now)
560 */
b4cdc5c2 561 event->hw.config = ARCH_PERFMON_EVENTSEL_INT;
a072738e
CG
562
563 /*
564 * Count user and OS events unless requested not to
565 */
b4cdc5c2
PZ
566 if (!event->attr.exclude_user)
567 event->hw.config |= ARCH_PERFMON_EVENTSEL_USR;
568 if (!event->attr.exclude_kernel)
569 event->hw.config |= ARCH_PERFMON_EVENTSEL_OS;
a072738e 570
b4cdc5c2
PZ
571 if (event->attr.type == PERF_TYPE_RAW)
572 event->hw.config |= event->attr.config & X86_RAW_EVENT_MASK;
a072738e 573
294fe0f5
AK
574 if (event->attr.sample_period && x86_pmu.limit_period) {
575 if (x86_pmu.limit_period(event, event->attr.sample_period) >
576 event->attr.sample_period)
577 return -EINVAL;
578 }
579
9d0fcba6 580 return x86_setup_perfctr(event);
a098f448
RR
581}
582
241771ef 583/*
0d48696f 584 * Setup the hardware configuration for a given attr_type
241771ef 585 */
b0a873eb 586static int __x86_pmu_event_init(struct perf_event *event)
241771ef 587{
4e935e47 588 int err;
241771ef 589
85cf9dba
RR
590 if (!x86_pmu_initialized())
591 return -ENODEV;
241771ef 592
6b099d9b 593 err = x86_reserve_hardware();
4e935e47
PZ
594 if (err)
595 return err;
596
1b7b938f 597 atomic_inc(&active_events);
cdd6c482 598 event->destroy = hw_perf_event_destroy;
a1792cda 599
4261e0e0
RR
600 event->hw.idx = -1;
601 event->hw.last_cpu = -1;
602 event->hw.last_tag = ~0ULL;
b690081d 603
efc9f05d
SE
604 /* mark unused */
605 event->hw.extra_reg.idx = EXTRA_REG_NONE;
b36817e8
SE
606 event->hw.branch_reg.idx = EXTRA_REG_NONE;
607
9d0fcba6 608 return x86_pmu.hw_config(event);
4261e0e0
RR
609}
610
de0428a7 611void x86_pmu_disable_all(void)
f87ad35d 612{
89cbc767 613 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
9e35ad38
PZ
614 int idx;
615
948b1bb8 616 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
b0f3f28e
PZ
617 u64 val;
618
43f6201a 619 if (!test_bit(idx, cpuc->active_mask))
4295ee62 620 continue;
41bf4989 621 rdmsrl(x86_pmu_config_addr(idx), val);
bb1165d6 622 if (!(val & ARCH_PERFMON_EVENTSEL_ENABLE))
4295ee62 623 continue;
bb1165d6 624 val &= ~ARCH_PERFMON_EVENTSEL_ENABLE;
41bf4989 625 wrmsrl(x86_pmu_config_addr(idx), val);
f87ad35d 626 }
f87ad35d
JSR
627}
628
c3d266c8
KL
629/*
630 * There may be PMI landing after enabled=0. The PMI hitting could be before or
631 * after disable_all.
632 *
633 * If PMI hits before disable_all, the PMU will be disabled in the NMI handler.
634 * It will not be re-enabled in the NMI handler again, because enabled=0. After
635 * handling the NMI, disable_all will be called, which will not change the
636 * state either. If PMI hits after disable_all, the PMU is already disabled
637 * before entering NMI handler. The NMI handler will not change the state
638 * either.
639 *
640 * So either situation is harmless.
641 */
a4eaf7f1 642static void x86_pmu_disable(struct pmu *pmu)
b56a3802 643{
89cbc767 644 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02 645
85cf9dba 646 if (!x86_pmu_initialized())
9e35ad38 647 return;
1da53e02 648
1a6e21f7
PZ
649 if (!cpuc->enabled)
650 return;
651
652 cpuc->n_added = 0;
653 cpuc->enabled = 0;
654 barrier();
1da53e02
SE
655
656 x86_pmu.disable_all();
b56a3802 657}
241771ef 658
de0428a7 659void x86_pmu_enable_all(int added)
f87ad35d 660{
89cbc767 661 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
f87ad35d
JSR
662 int idx;
663
948b1bb8 664 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
d45dd923 665 struct hw_perf_event *hwc = &cpuc->events[idx]->hw;
b0f3f28e 666
43f6201a 667 if (!test_bit(idx, cpuc->active_mask))
4295ee62 668 continue;
984b838c 669
d45dd923 670 __x86_pmu_enable_event(hwc, ARCH_PERFMON_EVENTSEL_ENABLE);
f87ad35d
JSR
671 }
672}
673
51b0fe39 674static struct pmu pmu;
1da53e02
SE
675
676static inline int is_x86_event(struct perf_event *event)
677{
678 return event->pmu == &pmu;
679}
680
1e2ad28f
RR
681/*
682 * Event scheduler state:
683 *
684 * Assign events iterating over all events and counters, beginning
685 * with events with least weights first. Keep the current iterator
686 * state in struct sched_state.
687 */
688struct sched_state {
689 int weight;
690 int event; /* event index */
691 int counter; /* counter index */
692 int unassigned; /* number of events to be assigned left */
cc1790cf 693 int nr_gp; /* number of GP counters used */
1e2ad28f
RR
694 unsigned long used[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
695};
696
bc1738f6
RR
697/* Total max is X86_PMC_IDX_MAX, but we are O(n!) limited */
698#define SCHED_STATES_MAX 2
699
1e2ad28f
RR
700struct perf_sched {
701 int max_weight;
702 int max_events;
cc1790cf
PZ
703 int max_gp;
704 int saved_states;
b371b594 705 struct event_constraint **constraints;
1e2ad28f 706 struct sched_state state;
bc1738f6 707 struct sched_state saved[SCHED_STATES_MAX];
1e2ad28f
RR
708};
709
710/*
711 * Initialize interator that runs through all events and counters.
712 */
b371b594 713static void perf_sched_init(struct perf_sched *sched, struct event_constraint **constraints,
cc1790cf 714 int num, int wmin, int wmax, int gpmax)
1e2ad28f
RR
715{
716 int idx;
717
718 memset(sched, 0, sizeof(*sched));
719 sched->max_events = num;
720 sched->max_weight = wmax;
cc1790cf 721 sched->max_gp = gpmax;
b371b594 722 sched->constraints = constraints;
1e2ad28f
RR
723
724 for (idx = 0; idx < num; idx++) {
b371b594 725 if (constraints[idx]->weight == wmin)
1e2ad28f
RR
726 break;
727 }
728
729 sched->state.event = idx; /* start with min weight */
730 sched->state.weight = wmin;
731 sched->state.unassigned = num;
732}
733
bc1738f6
RR
734static void perf_sched_save_state(struct perf_sched *sched)
735{
736 if (WARN_ON_ONCE(sched->saved_states >= SCHED_STATES_MAX))
737 return;
738
739 sched->saved[sched->saved_states] = sched->state;
740 sched->saved_states++;
741}
742
743static bool perf_sched_restore_state(struct perf_sched *sched)
744{
745 if (!sched->saved_states)
746 return false;
747
748 sched->saved_states--;
749 sched->state = sched->saved[sched->saved_states];
750
751 /* continue with next counter: */
752 clear_bit(sched->state.counter++, sched->state.used);
753
754 return true;
755}
756
1e2ad28f
RR
757/*
758 * Select a counter for the current event to schedule. Return true on
759 * success.
760 */
bc1738f6 761static bool __perf_sched_find_counter(struct perf_sched *sched)
1e2ad28f
RR
762{
763 struct event_constraint *c;
764 int idx;
765
766 if (!sched->state.unassigned)
767 return false;
768
769 if (sched->state.event >= sched->max_events)
770 return false;
771
b371b594 772 c = sched->constraints[sched->state.event];
4defea85 773 /* Prefer fixed purpose counters */
15c7ad51
RR
774 if (c->idxmsk64 & (~0ULL << INTEL_PMC_IDX_FIXED)) {
775 idx = INTEL_PMC_IDX_FIXED;
307b1cd7 776 for_each_set_bit_from(idx, c->idxmsk, X86_PMC_IDX_MAX) {
4defea85
PZ
777 if (!__test_and_set_bit(idx, sched->state.used))
778 goto done;
779 }
780 }
cc1790cf 781
1e2ad28f
RR
782 /* Grab the first unused counter starting with idx */
783 idx = sched->state.counter;
15c7ad51 784 for_each_set_bit_from(idx, c->idxmsk, INTEL_PMC_IDX_FIXED) {
cc1790cf
PZ
785 if (!__test_and_set_bit(idx, sched->state.used)) {
786 if (sched->state.nr_gp++ >= sched->max_gp)
787 return false;
788
4defea85 789 goto done;
cc1790cf 790 }
1e2ad28f 791 }
1e2ad28f 792
4defea85
PZ
793 return false;
794
795done:
796 sched->state.counter = idx;
1e2ad28f 797
bc1738f6
RR
798 if (c->overlap)
799 perf_sched_save_state(sched);
800
801 return true;
802}
803
804static bool perf_sched_find_counter(struct perf_sched *sched)
805{
806 while (!__perf_sched_find_counter(sched)) {
807 if (!perf_sched_restore_state(sched))
808 return false;
809 }
810
1e2ad28f
RR
811 return true;
812}
813
814/*
815 * Go through all unassigned events and find the next one to schedule.
816 * Take events with the least weight first. Return true on success.
817 */
818static bool perf_sched_next_event(struct perf_sched *sched)
819{
820 struct event_constraint *c;
821
822 if (!sched->state.unassigned || !--sched->state.unassigned)
823 return false;
824
825 do {
826 /* next event */
827 sched->state.event++;
828 if (sched->state.event >= sched->max_events) {
829 /* next weight */
830 sched->state.event = 0;
831 sched->state.weight++;
832 if (sched->state.weight > sched->max_weight)
833 return false;
834 }
b371b594 835 c = sched->constraints[sched->state.event];
1e2ad28f
RR
836 } while (c->weight != sched->state.weight);
837
838 sched->state.counter = 0; /* start with first counter */
839
840 return true;
841}
842
843/*
844 * Assign a counter for each event.
845 */
b371b594 846int perf_assign_events(struct event_constraint **constraints, int n,
cc1790cf 847 int wmin, int wmax, int gpmax, int *assign)
1e2ad28f
RR
848{
849 struct perf_sched sched;
850
cc1790cf 851 perf_sched_init(&sched, constraints, n, wmin, wmax, gpmax);
1e2ad28f
RR
852
853 do {
854 if (!perf_sched_find_counter(&sched))
855 break; /* failed */
856 if (assign)
857 assign[sched.state.event] = sched.state.counter;
858 } while (perf_sched_next_event(&sched));
859
860 return sched.state.unassigned;
861}
4a3dc121 862EXPORT_SYMBOL_GPL(perf_assign_events);
1e2ad28f 863
de0428a7 864int x86_schedule_events(struct cpu_hw_events *cpuc, int n, int *assign)
1da53e02 865{
43b45780 866 struct event_constraint *c;
1da53e02 867 unsigned long used_mask[BITS_TO_LONGS(X86_PMC_IDX_MAX)];
2f7f73a5 868 struct perf_event *e;
e979121b 869 int i, wmin, wmax, unsched = 0;
1da53e02
SE
870 struct hw_perf_event *hwc;
871
872 bitmap_zero(used_mask, X86_PMC_IDX_MAX);
873
c5362c0c
MD
874 if (x86_pmu.start_scheduling)
875 x86_pmu.start_scheduling(cpuc);
876
1e2ad28f 877 for (i = 0, wmin = X86_PMC_IDX_MAX, wmax = 0; i < n; i++) {
b371b594 878 cpuc->event_constraint[i] = NULL;
79cba822 879 c = x86_pmu.get_event_constraints(cpuc, i, cpuc->event_list[i]);
b371b594 880 cpuc->event_constraint[i] = c;
43b45780 881
1e2ad28f
RR
882 wmin = min(wmin, c->weight);
883 wmax = max(wmax, c->weight);
1da53e02
SE
884 }
885
8113070d
SE
886 /*
887 * fastpath, try to reuse previous register
888 */
c933c1a6 889 for (i = 0; i < n; i++) {
8113070d 890 hwc = &cpuc->event_list[i]->hw;
b371b594 891 c = cpuc->event_constraint[i];
8113070d
SE
892
893 /* never assigned */
894 if (hwc->idx == -1)
895 break;
896
897 /* constraint still honored */
63b14649 898 if (!test_bit(hwc->idx, c->idxmsk))
8113070d
SE
899 break;
900
901 /* not already used */
902 if (test_bit(hwc->idx, used_mask))
903 break;
904
34538ee7 905 __set_bit(hwc->idx, used_mask);
8113070d
SE
906 if (assign)
907 assign[i] = hwc->idx;
908 }
8113070d 909
1e2ad28f 910 /* slow path */
b371b594 911 if (i != n) {
cc1790cf
PZ
912 int gpmax = x86_pmu.num_counters;
913
914 /*
915 * Do not allow scheduling of more than half the available
916 * generic counters.
917 *
918 * This helps avoid counter starvation of sibling thread by
919 * ensuring at most half the counters cannot be in exclusive
920 * mode. There is no designated counters for the limits. Any
921 * N/2 counters can be used. This helps with events with
922 * specific counter constraints.
923 */
924 if (is_ht_workaround_enabled() && !cpuc->is_fake &&
925 READ_ONCE(cpuc->excl_cntrs->exclusive_present))
926 gpmax /= 2;
927
b371b594 928 unsched = perf_assign_events(cpuc->event_constraint, n, wmin,
cc1790cf 929 wmax, gpmax, assign);
b371b594 930 }
8113070d 931
2f7f73a5 932 /*
e979121b
MD
933 * In case of success (unsched = 0), mark events as committed,
934 * so we do not put_constraint() in case new events are added
935 * and fail to be scheduled
936 *
937 * We invoke the lower level commit callback to lock the resource
938 *
939 * We do not need to do all of this in case we are called to
940 * validate an event group (assign == NULL)
2f7f73a5 941 */
e979121b 942 if (!unsched && assign) {
2f7f73a5
SE
943 for (i = 0; i < n; i++) {
944 e = cpuc->event_list[i];
945 e->hw.flags |= PERF_X86_EVENT_COMMITTED;
c5362c0c 946 if (x86_pmu.commit_scheduling)
b371b594 947 x86_pmu.commit_scheduling(cpuc, i, assign[i]);
2f7f73a5 948 }
8736e548 949 } else {
1da53e02 950 for (i = 0; i < n; i++) {
2f7f73a5
SE
951 e = cpuc->event_list[i];
952 /*
953 * do not put_constraint() on comitted events,
954 * because they are good to go
955 */
956 if ((e->hw.flags & PERF_X86_EVENT_COMMITTED))
957 continue;
958
e979121b
MD
959 /*
960 * release events that failed scheduling
961 */
1da53e02 962 if (x86_pmu.put_event_constraints)
2f7f73a5 963 x86_pmu.put_event_constraints(cpuc, e);
1da53e02
SE
964 }
965 }
c5362c0c
MD
966
967 if (x86_pmu.stop_scheduling)
968 x86_pmu.stop_scheduling(cpuc);
969
e979121b 970 return unsched ? -EINVAL : 0;
1da53e02
SE
971}
972
973/*
974 * dogrp: true if must collect siblings events (group)
975 * returns total number of events and error code
976 */
977static int collect_events(struct cpu_hw_events *cpuc, struct perf_event *leader, bool dogrp)
978{
979 struct perf_event *event;
980 int n, max_count;
981
948b1bb8 982 max_count = x86_pmu.num_counters + x86_pmu.num_counters_fixed;
1da53e02
SE
983
984 /* current number of events already accepted */
985 n = cpuc->n_events;
986
987 if (is_x86_event(leader)) {
988 if (n >= max_count)
aa2bc1ad 989 return -EINVAL;
1da53e02
SE
990 cpuc->event_list[n] = leader;
991 n++;
992 }
993 if (!dogrp)
994 return n;
995
996 list_for_each_entry(event, &leader->sibling_list, group_entry) {
997 if (!is_x86_event(event) ||
8113070d 998 event->state <= PERF_EVENT_STATE_OFF)
1da53e02
SE
999 continue;
1000
1001 if (n >= max_count)
aa2bc1ad 1002 return -EINVAL;
1da53e02
SE
1003
1004 cpuc->event_list[n] = event;
1005 n++;
1006 }
1007 return n;
1008}
1009
1da53e02 1010static inline void x86_assign_hw_event(struct perf_event *event,
447a194b 1011 struct cpu_hw_events *cpuc, int i)
1da53e02 1012{
447a194b
SE
1013 struct hw_perf_event *hwc = &event->hw;
1014
1015 hwc->idx = cpuc->assign[i];
1016 hwc->last_cpu = smp_processor_id();
1017 hwc->last_tag = ++cpuc->tags[i];
1da53e02 1018
15c7ad51 1019 if (hwc->idx == INTEL_PMC_IDX_FIXED_BTS) {
1da53e02
SE
1020 hwc->config_base = 0;
1021 hwc->event_base = 0;
15c7ad51 1022 } else if (hwc->idx >= INTEL_PMC_IDX_FIXED) {
1da53e02 1023 hwc->config_base = MSR_ARCH_PERFMON_FIXED_CTR_CTRL;
15c7ad51
RR
1024 hwc->event_base = MSR_ARCH_PERFMON_FIXED_CTR0 + (hwc->idx - INTEL_PMC_IDX_FIXED);
1025 hwc->event_base_rdpmc = (hwc->idx - INTEL_PMC_IDX_FIXED) | 1<<30;
1da53e02 1026 } else {
73d6e522
RR
1027 hwc->config_base = x86_pmu_config_addr(hwc->idx);
1028 hwc->event_base = x86_pmu_event_addr(hwc->idx);
0fbdad07 1029 hwc->event_base_rdpmc = x86_pmu_rdpmc_index(hwc->idx);
1da53e02
SE
1030 }
1031}
1032
447a194b
SE
1033static inline int match_prev_assignment(struct hw_perf_event *hwc,
1034 struct cpu_hw_events *cpuc,
1035 int i)
1036{
1037 return hwc->idx == cpuc->assign[i] &&
1038 hwc->last_cpu == smp_processor_id() &&
1039 hwc->last_tag == cpuc->tags[i];
1040}
1041
a4eaf7f1 1042static void x86_pmu_start(struct perf_event *event, int flags);
2e841873 1043
a4eaf7f1 1044static void x86_pmu_enable(struct pmu *pmu)
ee06094f 1045{
89cbc767 1046 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1047 struct perf_event *event;
1048 struct hw_perf_event *hwc;
11164cd4 1049 int i, added = cpuc->n_added;
1da53e02 1050
85cf9dba 1051 if (!x86_pmu_initialized())
2b9ff0db 1052 return;
1a6e21f7
PZ
1053
1054 if (cpuc->enabled)
1055 return;
1056
1da53e02 1057 if (cpuc->n_added) {
19925ce7 1058 int n_running = cpuc->n_events - cpuc->n_added;
1da53e02
SE
1059 /*
1060 * apply assignment obtained either from
1061 * hw_perf_group_sched_in() or x86_pmu_enable()
1062 *
1063 * step1: save events moving to new counters
1da53e02 1064 */
19925ce7 1065 for (i = 0; i < n_running; i++) {
1da53e02
SE
1066 event = cpuc->event_list[i];
1067 hwc = &event->hw;
1068
447a194b
SE
1069 /*
1070 * we can avoid reprogramming counter if:
1071 * - assigned same counter as last time
1072 * - running on same CPU as last time
1073 * - no other event has used the counter since
1074 */
1075 if (hwc->idx == -1 ||
1076 match_prev_assignment(hwc, cpuc, i))
1da53e02
SE
1077 continue;
1078
a4eaf7f1
PZ
1079 /*
1080 * Ensure we don't accidentally enable a stopped
1081 * counter simply because we rescheduled.
1082 */
1083 if (hwc->state & PERF_HES_STOPPED)
1084 hwc->state |= PERF_HES_ARCH;
1085
1086 x86_pmu_stop(event, PERF_EF_UPDATE);
1da53e02
SE
1087 }
1088
c347a2f1
PZ
1089 /*
1090 * step2: reprogram moved events into new counters
1091 */
1da53e02 1092 for (i = 0; i < cpuc->n_events; i++) {
1da53e02
SE
1093 event = cpuc->event_list[i];
1094 hwc = &event->hw;
1095
45e16a68 1096 if (!match_prev_assignment(hwc, cpuc, i))
447a194b 1097 x86_assign_hw_event(event, cpuc, i);
45e16a68
PZ
1098 else if (i < n_running)
1099 continue;
1da53e02 1100
a4eaf7f1
PZ
1101 if (hwc->state & PERF_HES_ARCH)
1102 continue;
1103
1104 x86_pmu_start(event, PERF_EF_RELOAD);
1da53e02
SE
1105 }
1106 cpuc->n_added = 0;
1107 perf_events_lapic_init();
1108 }
1a6e21f7
PZ
1109
1110 cpuc->enabled = 1;
1111 barrier();
1112
11164cd4 1113 x86_pmu.enable_all(added);
ee06094f 1114}
ee06094f 1115
245b2e70 1116static DEFINE_PER_CPU(u64 [X86_PMC_IDX_MAX], pmc_prev_left);
241771ef 1117
ee06094f
IM
1118/*
1119 * Set the next IRQ period, based on the hwc->period_left value.
cdd6c482 1120 * To be called with the event disabled in hw:
ee06094f 1121 */
de0428a7 1122int x86_perf_event_set_period(struct perf_event *event)
241771ef 1123{
07088edb 1124 struct hw_perf_event *hwc = &event->hw;
e7850595 1125 s64 left = local64_read(&hwc->period_left);
e4abb5d4 1126 s64 period = hwc->sample_period;
7645a24c 1127 int ret = 0, idx = hwc->idx;
ee06094f 1128
15c7ad51 1129 if (idx == INTEL_PMC_IDX_FIXED_BTS)
30dd568c
MM
1130 return 0;
1131
ee06094f 1132 /*
af901ca1 1133 * If we are way outside a reasonable range then just skip forward:
ee06094f
IM
1134 */
1135 if (unlikely(left <= -period)) {
1136 left = period;
e7850595 1137 local64_set(&hwc->period_left, left);
9e350de3 1138 hwc->last_period = period;
e4abb5d4 1139 ret = 1;
ee06094f
IM
1140 }
1141
1142 if (unlikely(left <= 0)) {
1143 left += period;
e7850595 1144 local64_set(&hwc->period_left, left);
9e350de3 1145 hwc->last_period = period;
e4abb5d4 1146 ret = 1;
ee06094f 1147 }
1c80f4b5 1148 /*
dfc65094 1149 * Quirk: certain CPUs dont like it if just 1 hw_event is left:
1c80f4b5
IM
1150 */
1151 if (unlikely(left < 2))
1152 left = 2;
241771ef 1153
e4abb5d4
PZ
1154 if (left > x86_pmu.max_period)
1155 left = x86_pmu.max_period;
1156
294fe0f5
AK
1157 if (x86_pmu.limit_period)
1158 left = x86_pmu.limit_period(event, left);
1159
245b2e70 1160 per_cpu(pmc_prev_left[idx], smp_processor_id()) = left;
ee06094f 1161
851559e3
YZ
1162 if (!(hwc->flags & PERF_X86_EVENT_AUTO_RELOAD) ||
1163 local64_read(&hwc->prev_count) != (u64)-left) {
1164 /*
1165 * The hw event starts counting from this event offset,
1166 * mark it to be able to extra future deltas:
1167 */
1168 local64_set(&hwc->prev_count, (u64)-left);
ee06094f 1169
851559e3
YZ
1170 wrmsrl(hwc->event_base, (u64)(-left) & x86_pmu.cntval_mask);
1171 }
68aa00ac
CG
1172
1173 /*
1174 * Due to erratum on certan cpu we need
1175 * a second write to be sure the register
1176 * is updated properly
1177 */
1178 if (x86_pmu.perfctr_second_write) {
73d6e522 1179 wrmsrl(hwc->event_base,
948b1bb8 1180 (u64)(-left) & x86_pmu.cntval_mask);
68aa00ac 1181 }
e4abb5d4 1182
cdd6c482 1183 perf_event_update_userpage(event);
194002b2 1184
e4abb5d4 1185 return ret;
2f18d1e8
IM
1186}
1187
de0428a7 1188void x86_pmu_enable_event(struct perf_event *event)
7c90cc45 1189{
0a3aee0d 1190 if (__this_cpu_read(cpu_hw_events.enabled))
31fa58af
RR
1191 __x86_pmu_enable_event(&event->hw,
1192 ARCH_PERFMON_EVENTSEL_ENABLE);
241771ef
IM
1193}
1194
b690081d 1195/*
a4eaf7f1 1196 * Add a single event to the PMU.
1da53e02
SE
1197 *
1198 * The event is added to the group of enabled events
1199 * but only if it can be scehduled with existing events.
fe9081cc 1200 */
a4eaf7f1 1201static int x86_pmu_add(struct perf_event *event, int flags)
fe9081cc 1202{
89cbc767 1203 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1da53e02
SE
1204 struct hw_perf_event *hwc;
1205 int assign[X86_PMC_IDX_MAX];
1206 int n, n0, ret;
fe9081cc 1207
1da53e02 1208 hwc = &event->hw;
fe9081cc 1209
1da53e02 1210 n0 = cpuc->n_events;
24cd7f54
PZ
1211 ret = n = collect_events(cpuc, event, false);
1212 if (ret < 0)
1213 goto out;
53b441a5 1214
a4eaf7f1
PZ
1215 hwc->state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1216 if (!(flags & PERF_EF_START))
1217 hwc->state |= PERF_HES_ARCH;
1218
4d1c52b0
LM
1219 /*
1220 * If group events scheduling transaction was started,
0d2eb44f 1221 * skip the schedulability test here, it will be performed
c347a2f1 1222 * at commit time (->commit_txn) as a whole.
68f7082f
PZ
1223 *
1224 * If commit fails, we'll call ->del() on all events
1225 * for which ->add() was called.
4d1c52b0 1226 */
8f3e5684 1227 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
24cd7f54 1228 goto done_collect;
4d1c52b0 1229
a072738e 1230 ret = x86_pmu.schedule_events(cpuc, n, assign);
1da53e02 1231 if (ret)
24cd7f54 1232 goto out;
1da53e02
SE
1233 /*
1234 * copy new assignment, now we know it is possible
1235 * will be used by hw_perf_enable()
1236 */
1237 memcpy(cpuc->assign, assign, n*sizeof(int));
7e2ae347 1238
24cd7f54 1239done_collect:
c347a2f1
PZ
1240 /*
1241 * Commit the collect_events() state. See x86_pmu_del() and
1242 * x86_pmu_*_txn().
1243 */
1da53e02 1244 cpuc->n_events = n;
356e1f2e 1245 cpuc->n_added += n - n0;
90151c35 1246 cpuc->n_txn += n - n0;
95cdd2e7 1247
68f7082f
PZ
1248 if (x86_pmu.add) {
1249 /*
1250 * This is before x86_pmu_enable() will call x86_pmu_start(),
1251 * so we enable LBRs before an event needs them etc..
1252 */
1253 x86_pmu.add(event);
1254 }
1255
24cd7f54
PZ
1256 ret = 0;
1257out:
24cd7f54 1258 return ret;
241771ef
IM
1259}
1260
a4eaf7f1 1261static void x86_pmu_start(struct perf_event *event, int flags)
d76a0812 1262{
89cbc767 1263 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
c08053e6
PZ
1264 int idx = event->hw.idx;
1265
a4eaf7f1
PZ
1266 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1267 return;
1268
1269 if (WARN_ON_ONCE(idx == -1))
1270 return;
1271
1272 if (flags & PERF_EF_RELOAD) {
1273 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1274 x86_perf_event_set_period(event);
1275 }
1276
1277 event->hw.state = 0;
d76a0812 1278
c08053e6
PZ
1279 cpuc->events[idx] = event;
1280 __set_bit(idx, cpuc->active_mask);
63e6be6d 1281 __set_bit(idx, cpuc->running);
aff3d91a 1282 x86_pmu.enable(event);
c08053e6 1283 perf_event_update_userpage(event);
a78ac325
PZ
1284}
1285
cdd6c482 1286void perf_event_print_debug(void)
241771ef 1287{
2f18d1e8 1288 u64 ctrl, status, overflow, pmc_ctrl, pmc_count, prev_left, fixed;
da3e606d 1289 u64 pebs, debugctl;
cdd6c482 1290 struct cpu_hw_events *cpuc;
5bb9efe3 1291 unsigned long flags;
1e125676
IM
1292 int cpu, idx;
1293
948b1bb8 1294 if (!x86_pmu.num_counters)
1e125676 1295 return;
241771ef 1296
5bb9efe3 1297 local_irq_save(flags);
241771ef
IM
1298
1299 cpu = smp_processor_id();
cdd6c482 1300 cpuc = &per_cpu(cpu_hw_events, cpu);
241771ef 1301
faa28ae0 1302 if (x86_pmu.version >= 2) {
a1ef58f4
JSR
1303 rdmsrl(MSR_CORE_PERF_GLOBAL_CTRL, ctrl);
1304 rdmsrl(MSR_CORE_PERF_GLOBAL_STATUS, status);
1305 rdmsrl(MSR_CORE_PERF_GLOBAL_OVF_CTRL, overflow);
1306 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR_CTRL, fixed);
1307
1308 pr_info("\n");
1309 pr_info("CPU#%d: ctrl: %016llx\n", cpu, ctrl);
1310 pr_info("CPU#%d: status: %016llx\n", cpu, status);
1311 pr_info("CPU#%d: overflow: %016llx\n", cpu, overflow);
1312 pr_info("CPU#%d: fixed: %016llx\n", cpu, fixed);
15fde110
AK
1313 if (x86_pmu.pebs_constraints) {
1314 rdmsrl(MSR_IA32_PEBS_ENABLE, pebs);
1315 pr_info("CPU#%d: pebs: %016llx\n", cpu, pebs);
1316 }
da3e606d
AK
1317 if (x86_pmu.lbr_nr) {
1318 rdmsrl(MSR_IA32_DEBUGCTLMSR, debugctl);
1319 pr_info("CPU#%d: debugctl: %016llx\n", cpu, debugctl);
1320 }
f87ad35d 1321 }
7645a24c 1322 pr_info("CPU#%d: active: %016llx\n", cpu, *(u64 *)cpuc->active_mask);
241771ef 1323
948b1bb8 1324 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
41bf4989
RR
1325 rdmsrl(x86_pmu_config_addr(idx), pmc_ctrl);
1326 rdmsrl(x86_pmu_event_addr(idx), pmc_count);
241771ef 1327
245b2e70 1328 prev_left = per_cpu(pmc_prev_left[idx], cpu);
241771ef 1329
a1ef58f4 1330 pr_info("CPU#%d: gen-PMC%d ctrl: %016llx\n",
241771ef 1331 cpu, idx, pmc_ctrl);
a1ef58f4 1332 pr_info("CPU#%d: gen-PMC%d count: %016llx\n",
241771ef 1333 cpu, idx, pmc_count);
a1ef58f4 1334 pr_info("CPU#%d: gen-PMC%d left: %016llx\n",
ee06094f 1335 cpu, idx, prev_left);
241771ef 1336 }
948b1bb8 1337 for (idx = 0; idx < x86_pmu.num_counters_fixed; idx++) {
2f18d1e8
IM
1338 rdmsrl(MSR_ARCH_PERFMON_FIXED_CTR0 + idx, pmc_count);
1339
a1ef58f4 1340 pr_info("CPU#%d: fixed-PMC%d count: %016llx\n",
2f18d1e8
IM
1341 cpu, idx, pmc_count);
1342 }
5bb9efe3 1343 local_irq_restore(flags);
241771ef
IM
1344}
1345
de0428a7 1346void x86_pmu_stop(struct perf_event *event, int flags)
241771ef 1347{
89cbc767 1348 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
cdd6c482 1349 struct hw_perf_event *hwc = &event->hw;
241771ef 1350
a4eaf7f1
PZ
1351 if (__test_and_clear_bit(hwc->idx, cpuc->active_mask)) {
1352 x86_pmu.disable(event);
1353 cpuc->events[hwc->idx] = NULL;
1354 WARN_ON_ONCE(hwc->state & PERF_HES_STOPPED);
1355 hwc->state |= PERF_HES_STOPPED;
1356 }
30dd568c 1357
a4eaf7f1
PZ
1358 if ((flags & PERF_EF_UPDATE) && !(hwc->state & PERF_HES_UPTODATE)) {
1359 /*
1360 * Drain the remaining delta count out of a event
1361 * that we are disabling:
1362 */
1363 x86_perf_event_update(event);
1364 hwc->state |= PERF_HES_UPTODATE;
1365 }
2e841873
PZ
1366}
1367
a4eaf7f1 1368static void x86_pmu_del(struct perf_event *event, int flags)
2e841873 1369{
89cbc767 1370 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
2e841873
PZ
1371 int i;
1372
2f7f73a5
SE
1373 /*
1374 * event is descheduled
1375 */
1376 event->hw.flags &= ~PERF_X86_EVENT_COMMITTED;
1377
90151c35 1378 /*
68f7082f 1379 * If we're called during a txn, we only need to undo x86_pmu.add.
90151c35
SE
1380 * The events never got scheduled and ->cancel_txn will truncate
1381 * the event_list.
c347a2f1
PZ
1382 *
1383 * XXX assumes any ->del() called during a TXN will only be on
1384 * an event added during that same TXN.
90151c35 1385 */
8f3e5684 1386 if (cpuc->txn_flags & PERF_PMU_TXN_ADD)
68f7082f 1387 goto do_del;
90151c35 1388
c347a2f1
PZ
1389 /*
1390 * Not a TXN, therefore cleanup properly.
1391 */
a4eaf7f1 1392 x86_pmu_stop(event, PERF_EF_UPDATE);
194002b2 1393
1da53e02 1394 for (i = 0; i < cpuc->n_events; i++) {
c347a2f1
PZ
1395 if (event == cpuc->event_list[i])
1396 break;
1397 }
1da53e02 1398
c347a2f1
PZ
1399 if (WARN_ON_ONCE(i == cpuc->n_events)) /* called ->del() without ->add() ? */
1400 return;
26e61e89 1401
c347a2f1
PZ
1402 /* If we have a newly added event; make sure to decrease n_added. */
1403 if (i >= cpuc->n_events - cpuc->n_added)
1404 --cpuc->n_added;
1da53e02 1405
c347a2f1
PZ
1406 if (x86_pmu.put_event_constraints)
1407 x86_pmu.put_event_constraints(cpuc, event);
1408
1409 /* Delete the array entry. */
b371b594 1410 while (++i < cpuc->n_events) {
c347a2f1 1411 cpuc->event_list[i-1] = cpuc->event_list[i];
b371b594
PZ
1412 cpuc->event_constraint[i-1] = cpuc->event_constraint[i];
1413 }
c347a2f1 1414 --cpuc->n_events;
1da53e02 1415
cdd6c482 1416 perf_event_update_userpage(event);
68f7082f
PZ
1417
1418do_del:
1419 if (x86_pmu.del) {
1420 /*
1421 * This is after x86_pmu_stop(); so we disable LBRs after any
1422 * event can need them etc..
1423 */
1424 x86_pmu.del(event);
1425 }
241771ef
IM
1426}
1427
de0428a7 1428int x86_pmu_handle_irq(struct pt_regs *regs)
a29aa8a7 1429{
df1a132b 1430 struct perf_sample_data data;
cdd6c482
IM
1431 struct cpu_hw_events *cpuc;
1432 struct perf_event *event;
11d1578f 1433 int idx, handled = 0;
9029a5e3
IM
1434 u64 val;
1435
89cbc767 1436 cpuc = this_cpu_ptr(&cpu_hw_events);
962bf7a6 1437
2bce5dac
DZ
1438 /*
1439 * Some chipsets need to unmask the LVTPC in a particular spot
1440 * inside the nmi handler. As a result, the unmasking was pushed
1441 * into all the nmi handlers.
1442 *
1443 * This generic handler doesn't seem to have any issues where the
1444 * unmasking occurs so it was left at the top.
1445 */
1446 apic_write(APIC_LVTPC, APIC_DM_NMI);
1447
948b1bb8 1448 for (idx = 0; idx < x86_pmu.num_counters; idx++) {
63e6be6d
RR
1449 if (!test_bit(idx, cpuc->active_mask)) {
1450 /*
1451 * Though we deactivated the counter some cpus
1452 * might still deliver spurious interrupts still
1453 * in flight. Catch them:
1454 */
1455 if (__test_and_clear_bit(idx, cpuc->running))
1456 handled++;
a29aa8a7 1457 continue;
63e6be6d 1458 }
962bf7a6 1459
cdd6c482 1460 event = cpuc->events[idx];
a4016a79 1461
cc2ad4ba 1462 val = x86_perf_event_update(event);
948b1bb8 1463 if (val & (1ULL << (x86_pmu.cntval_bits - 1)))
48e22d56 1464 continue;
962bf7a6 1465
9e350de3 1466 /*
cdd6c482 1467 * event overflow
9e350de3 1468 */
4177c42a 1469 handled++;
fd0d000b 1470 perf_sample_data_init(&data, 0, event->hw.last_period);
9e350de3 1471
07088edb 1472 if (!x86_perf_event_set_period(event))
e4abb5d4
PZ
1473 continue;
1474
a8b0ca17 1475 if (perf_event_overflow(event, &data, regs))
a4eaf7f1 1476 x86_pmu_stop(event, 0);
a29aa8a7 1477 }
962bf7a6 1478
9e350de3
PZ
1479 if (handled)
1480 inc_irq_stat(apic_perf_irqs);
1481
a29aa8a7
RR
1482 return handled;
1483}
39d81eab 1484
cdd6c482 1485void perf_events_lapic_init(void)
241771ef 1486{
04da8a43 1487 if (!x86_pmu.apic || !x86_pmu_initialized())
241771ef 1488 return;
85cf9dba 1489
241771ef 1490 /*
c323d95f 1491 * Always use NMI for PMU
241771ef 1492 */
c323d95f 1493 apic_write(APIC_LVTPC, APIC_DM_NMI);
241771ef
IM
1494}
1495
9326638c 1496static int
9c48f1c6 1497perf_event_nmi_handler(unsigned int cmd, struct pt_regs *regs)
241771ef 1498{
14c63f17
DH
1499 u64 start_clock;
1500 u64 finish_clock;
e8a923cc 1501 int ret;
14c63f17 1502
1b7b938f
AS
1503 /*
1504 * All PMUs/events that share this PMI handler should make sure to
1505 * increment active_events for their events.
1506 */
cdd6c482 1507 if (!atomic_read(&active_events))
9c48f1c6 1508 return NMI_DONE;
4177c42a 1509
e8a923cc 1510 start_clock = sched_clock();
14c63f17 1511 ret = x86_pmu.handle_irq(regs);
e8a923cc 1512 finish_clock = sched_clock();
14c63f17
DH
1513
1514 perf_sample_event_took(finish_clock - start_clock);
1515
1516 return ret;
241771ef 1517}
9326638c 1518NOKPROBE_SYMBOL(perf_event_nmi_handler);
241771ef 1519
de0428a7
KW
1520struct event_constraint emptyconstraint;
1521struct event_constraint unconstrained;
f87ad35d 1522
95ca792c 1523static int x86_pmu_prepare_cpu(unsigned int cpu)
3f6da390 1524{
7fdba1ca 1525 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
95ca792c 1526 int i;
3f6da390 1527
95ca792c
TG
1528 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++)
1529 cpuc->kfree_on_online[i] = NULL;
1530 if (x86_pmu.cpu_prepare)
1531 return x86_pmu.cpu_prepare(cpu);
1532 return 0;
1533}
7fdba1ca 1534
95ca792c
TG
1535static int x86_pmu_dead_cpu(unsigned int cpu)
1536{
1537 if (x86_pmu.cpu_dead)
1538 x86_pmu.cpu_dead(cpu);
1539 return 0;
1540}
3f6da390 1541
95ca792c
TG
1542static int x86_pmu_online_cpu(unsigned int cpu)
1543{
1544 struct cpu_hw_events *cpuc = &per_cpu(cpu_hw_events, cpu);
1545 int i;
3f6da390 1546
95ca792c
TG
1547 for (i = 0 ; i < X86_PERF_KFREE_MAX; i++) {
1548 kfree(cpuc->kfree_on_online[i]);
1549 cpuc->kfree_on_online[i] = NULL;
3f6da390 1550 }
95ca792c
TG
1551 return 0;
1552}
3f6da390 1553
95ca792c
TG
1554static int x86_pmu_starting_cpu(unsigned int cpu)
1555{
1556 if (x86_pmu.cpu_starting)
1557 x86_pmu.cpu_starting(cpu);
1558 return 0;
1559}
1560
1561static int x86_pmu_dying_cpu(unsigned int cpu)
1562{
1563 if (x86_pmu.cpu_dying)
1564 x86_pmu.cpu_dying(cpu);
1565 return 0;
3f6da390
PZ
1566}
1567
12558038
CG
1568static void __init pmu_check_apic(void)
1569{
93984fbd 1570 if (boot_cpu_has(X86_FEATURE_APIC))
12558038
CG
1571 return;
1572
1573 x86_pmu.apic = 0;
1574 pr_info("no APIC, boot with the \"lapic\" boot parameter to force-enable it.\n");
1575 pr_info("no hardware sampling interrupt available.\n");
c184c980
VW
1576
1577 /*
1578 * If we have a PMU initialized but no APIC
1579 * interrupts, we cannot sample hardware
1580 * events (user-space has to fall back and
1581 * sample via a hrtimer based software event):
1582 */
1583 pmu.capabilities |= PERF_PMU_CAP_NO_INTERRUPT;
1584
12558038
CG
1585}
1586
641cc938
JO
1587static struct attribute_group x86_pmu_format_group = {
1588 .name = "format",
1589 .attrs = NULL,
1590};
1591
8300daa2
JO
1592/*
1593 * Remove all undefined events (x86_pmu.event_map(id) == 0)
1594 * out of events_attr attributes.
1595 */
1596static void __init filter_events(struct attribute **attrs)
1597{
3a54aaa0
SE
1598 struct device_attribute *d;
1599 struct perf_pmu_events_attr *pmu_attr;
61b87cae 1600 int offset = 0;
8300daa2
JO
1601 int i, j;
1602
1603 for (i = 0; attrs[i]; i++) {
3a54aaa0
SE
1604 d = (struct device_attribute *)attrs[i];
1605 pmu_attr = container_of(d, struct perf_pmu_events_attr, attr);
1606 /* str trumps id */
1607 if (pmu_attr->event_str)
1608 continue;
61b87cae 1609 if (x86_pmu.event_map(i + offset))
8300daa2
JO
1610 continue;
1611
1612 for (j = i; attrs[j]; j++)
1613 attrs[j] = attrs[j + 1];
1614
1615 /* Check the shifted attr. */
1616 i--;
61b87cae
SE
1617
1618 /*
1619 * event_map() is index based, the attrs array is organized
1620 * by increasing event index. If we shift the events, then
1621 * we need to compensate for the event_map(), otherwise
1622 * we are looking up the wrong event in the map
1623 */
1624 offset++;
8300daa2
JO
1625 }
1626}
1627
1a6461b1 1628/* Merge two pointer arrays */
47732d88 1629__init struct attribute **merge_attr(struct attribute **a, struct attribute **b)
1a6461b1
AK
1630{
1631 struct attribute **new;
1632 int j, i;
1633
1634 for (j = 0; a[j]; j++)
1635 ;
1636 for (i = 0; b[i]; i++)
1637 j++;
1638 j++;
1639
1640 new = kmalloc(sizeof(struct attribute *) * j, GFP_KERNEL);
1641 if (!new)
1642 return NULL;
1643
1644 j = 0;
1645 for (i = 0; a[i]; i++)
1646 new[j++] = a[i];
1647 for (i = 0; b[i]; i++)
1648 new[j++] = b[i];
1649 new[j] = NULL;
1650
1651 return new;
1652}
1653
c7ab62bf 1654ssize_t events_sysfs_show(struct device *dev, struct device_attribute *attr, char *page)
a4747393
JO
1655{
1656 struct perf_pmu_events_attr *pmu_attr = \
1657 container_of(attr, struct perf_pmu_events_attr, attr);
a4747393 1658 u64 config = x86_pmu.event_map(pmu_attr->id);
a4747393 1659
3a54aaa0
SE
1660 /* string trumps id */
1661 if (pmu_attr->event_str)
1662 return sprintf(page, "%s", pmu_attr->event_str);
a4747393 1663
3a54aaa0
SE
1664 return x86_pmu.events_sysfs_show(page, config);
1665}
c7ab62bf 1666EXPORT_SYMBOL_GPL(events_sysfs_show);
a4747393 1667
fc07e9f9
AK
1668ssize_t events_ht_sysfs_show(struct device *dev, struct device_attribute *attr,
1669 char *page)
1670{
1671 struct perf_pmu_events_ht_attr *pmu_attr =
1672 container_of(attr, struct perf_pmu_events_ht_attr, attr);
1673
1674 /*
1675 * Report conditional events depending on Hyper-Threading.
1676 *
1677 * This is overly conservative as usually the HT special
1678 * handling is not needed if the other CPU thread is idle.
1679 *
1680 * Note this does not (and cannot) handle the case when thread
1681 * siblings are invisible, for example with virtualization
1682 * if they are owned by some other guest. The user tool
1683 * has to re-read when a thread sibling gets onlined later.
1684 */
1685 return sprintf(page, "%s",
1686 topology_max_smt_threads() > 1 ?
1687 pmu_attr->event_str_ht :
1688 pmu_attr->event_str_noht);
1689}
1690
a4747393
JO
1691EVENT_ATTR(cpu-cycles, CPU_CYCLES );
1692EVENT_ATTR(instructions, INSTRUCTIONS );
1693EVENT_ATTR(cache-references, CACHE_REFERENCES );
1694EVENT_ATTR(cache-misses, CACHE_MISSES );
1695EVENT_ATTR(branch-instructions, BRANCH_INSTRUCTIONS );
1696EVENT_ATTR(branch-misses, BRANCH_MISSES );
1697EVENT_ATTR(bus-cycles, BUS_CYCLES );
1698EVENT_ATTR(stalled-cycles-frontend, STALLED_CYCLES_FRONTEND );
1699EVENT_ATTR(stalled-cycles-backend, STALLED_CYCLES_BACKEND );
1700EVENT_ATTR(ref-cycles, REF_CPU_CYCLES );
1701
1702static struct attribute *empty_attrs;
1703
95d18aa2 1704static struct attribute *events_attr[] = {
a4747393
JO
1705 EVENT_PTR(CPU_CYCLES),
1706 EVENT_PTR(INSTRUCTIONS),
1707 EVENT_PTR(CACHE_REFERENCES),
1708 EVENT_PTR(CACHE_MISSES),
1709 EVENT_PTR(BRANCH_INSTRUCTIONS),
1710 EVENT_PTR(BRANCH_MISSES),
1711 EVENT_PTR(BUS_CYCLES),
1712 EVENT_PTR(STALLED_CYCLES_FRONTEND),
1713 EVENT_PTR(STALLED_CYCLES_BACKEND),
1714 EVENT_PTR(REF_CPU_CYCLES),
1715 NULL,
1716};
1717
1718static struct attribute_group x86_pmu_events_group = {
1719 .name = "events",
1720 .attrs = events_attr,
1721};
1722
0bf79d44 1723ssize_t x86_event_sysfs_show(char *page, u64 config, u64 event)
43c032fe 1724{
43c032fe
JO
1725 u64 umask = (config & ARCH_PERFMON_EVENTSEL_UMASK) >> 8;
1726 u64 cmask = (config & ARCH_PERFMON_EVENTSEL_CMASK) >> 24;
1727 bool edge = (config & ARCH_PERFMON_EVENTSEL_EDGE);
1728 bool pc = (config & ARCH_PERFMON_EVENTSEL_PIN_CONTROL);
1729 bool any = (config & ARCH_PERFMON_EVENTSEL_ANY);
1730 bool inv = (config & ARCH_PERFMON_EVENTSEL_INV);
1731 ssize_t ret;
1732
1733 /*
1734 * We have whole page size to spend and just little data
1735 * to write, so we can safely use sprintf.
1736 */
1737 ret = sprintf(page, "event=0x%02llx", event);
1738
1739 if (umask)
1740 ret += sprintf(page + ret, ",umask=0x%02llx", umask);
1741
1742 if (edge)
1743 ret += sprintf(page + ret, ",edge");
1744
1745 if (pc)
1746 ret += sprintf(page + ret, ",pc");
1747
1748 if (any)
1749 ret += sprintf(page + ret, ",any");
1750
1751 if (inv)
1752 ret += sprintf(page + ret, ",inv");
1753
1754 if (cmask)
1755 ret += sprintf(page + ret, ",cmask=0x%02llx", cmask);
1756
1757 ret += sprintf(page + ret, "\n");
1758
1759 return ret;
1760}
1761
6089327f 1762static struct attribute_group x86_pmu_attr_group;
5da382eb 1763static struct attribute_group x86_pmu_caps_group;
6089327f 1764
dda99116 1765static int __init init_hw_perf_events(void)
b56a3802 1766{
c1d6f42f 1767 struct x86_pmu_quirk *quirk;
72eae04d
RR
1768 int err;
1769
cdd6c482 1770 pr_info("Performance Events: ");
1123e3ad 1771
b56a3802
JSR
1772 switch (boot_cpu_data.x86_vendor) {
1773 case X86_VENDOR_INTEL:
72eae04d 1774 err = intel_pmu_init();
b56a3802 1775 break;
f87ad35d 1776 case X86_VENDOR_AMD:
72eae04d 1777 err = amd_pmu_init();
f87ad35d 1778 break;
4138960a 1779 default:
8a3da6c7 1780 err = -ENOTSUPP;
b56a3802 1781 }
1123e3ad 1782 if (err != 0) {
cdd6c482 1783 pr_cont("no PMU driver, software events only.\n");
004417a6 1784 return 0;
1123e3ad 1785 }
b56a3802 1786
12558038
CG
1787 pmu_check_apic();
1788
33c6d6a7 1789 /* sanity check that the hardware exists or is emulated */
4407204c 1790 if (!check_hw_exists())
004417a6 1791 return 0;
33c6d6a7 1792
1123e3ad 1793 pr_cont("%s PMU driver.\n", x86_pmu.name);
faa28ae0 1794
e97df763
PZ
1795 x86_pmu.attr_rdpmc = 1; /* enable userspace RDPMC usage by default */
1796
c1d6f42f
PZ
1797 for (quirk = x86_pmu.quirks; quirk; quirk = quirk->next)
1798 quirk->func();
3c44780b 1799
a1eac7ac
RR
1800 if (!x86_pmu.intel_ctrl)
1801 x86_pmu.intel_ctrl = (1 << x86_pmu.num_counters) - 1;
241771ef 1802
cdd6c482 1803 perf_events_lapic_init();
9c48f1c6 1804 register_nmi_handler(NMI_LOCAL, perf_event_nmi_handler, 0, "PMI");
1123e3ad 1805
63b14649 1806 unconstrained = (struct event_constraint)
948b1bb8 1807 __EVENT_CONSTRAINT(0, (1ULL << x86_pmu.num_counters) - 1,
9fac2cf3 1808 0, x86_pmu.num_counters, 0, 0);
63b14649 1809
641cc938 1810 x86_pmu_format_group.attrs = x86_pmu.format_attrs;
0c9d42ed 1811
5da382eb
PZ
1812 if (x86_pmu.caps_attrs) {
1813 struct attribute **tmp;
1814
1815 tmp = merge_attr(x86_pmu_caps_group.attrs, x86_pmu.caps_attrs);
1816 if (!WARN_ON(!tmp))
1817 x86_pmu_caps_group.attrs = tmp;
1818 }
0c9d42ed 1819
f20093ee
SE
1820 if (x86_pmu.event_attrs)
1821 x86_pmu_events_group.attrs = x86_pmu.event_attrs;
1822
a4747393
JO
1823 if (!x86_pmu.events_sysfs_show)
1824 x86_pmu_events_group.attrs = &empty_attrs;
8300daa2
JO
1825 else
1826 filter_events(x86_pmu_events_group.attrs);
a4747393 1827
1a6461b1
AK
1828 if (x86_pmu.cpu_events) {
1829 struct attribute **tmp;
1830
1831 tmp = merge_attr(x86_pmu_events_group.attrs, x86_pmu.cpu_events);
1832 if (!WARN_ON(!tmp))
1833 x86_pmu_events_group.attrs = tmp;
1834 }
1835
6089327f
KL
1836 if (x86_pmu.attrs) {
1837 struct attribute **tmp;
1838
1839 tmp = merge_attr(x86_pmu_attr_group.attrs, x86_pmu.attrs);
1840 if (!WARN_ON(!tmp))
1841 x86_pmu_attr_group.attrs = tmp;
1842 }
1843
57c0c15b 1844 pr_info("... version: %d\n", x86_pmu.version);
948b1bb8
RR
1845 pr_info("... bit width: %d\n", x86_pmu.cntval_bits);
1846 pr_info("... generic registers: %d\n", x86_pmu.num_counters);
1847 pr_info("... value mask: %016Lx\n", x86_pmu.cntval_mask);
57c0c15b 1848 pr_info("... max period: %016Lx\n", x86_pmu.max_period);
948b1bb8 1849 pr_info("... fixed-purpose events: %d\n", x86_pmu.num_counters_fixed);
d6dc0b4e 1850 pr_info("... event mask: %016Lx\n", x86_pmu.intel_ctrl);
3f6da390 1851
95ca792c
TG
1852 /*
1853 * Install callbacks. Core will call them for each online
1854 * cpu.
1855 */
73c1b41e 1856 err = cpuhp_setup_state(CPUHP_PERF_X86_PREPARE, "perf/x86:prepare",
95ca792c
TG
1857 x86_pmu_prepare_cpu, x86_pmu_dead_cpu);
1858 if (err)
1859 return err;
1860
1861 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_STARTING,
73c1b41e 1862 "perf/x86:starting", x86_pmu_starting_cpu,
95ca792c
TG
1863 x86_pmu_dying_cpu);
1864 if (err)
1865 goto out;
1866
73c1b41e 1867 err = cpuhp_setup_state(CPUHP_AP_PERF_X86_ONLINE, "perf/x86:online",
95ca792c
TG
1868 x86_pmu_online_cpu, NULL);
1869 if (err)
1870 goto out1;
1871
1872 err = perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1873 if (err)
1874 goto out2;
004417a6
PZ
1875
1876 return 0;
95ca792c
TG
1877
1878out2:
1879 cpuhp_remove_state(CPUHP_AP_PERF_X86_ONLINE);
1880out1:
1881 cpuhp_remove_state(CPUHP_AP_PERF_X86_STARTING);
1882out:
1883 cpuhp_remove_state(CPUHP_PERF_X86_PREPARE);
1884 return err;
241771ef 1885}
004417a6 1886early_initcall(init_hw_perf_events);
621a01ea 1887
cdd6c482 1888static inline void x86_pmu_read(struct perf_event *event)
ee06094f 1889{
cc2ad4ba 1890 x86_perf_event_update(event);
ee06094f
IM
1891}
1892
4d1c52b0
LM
1893/*
1894 * Start group events scheduling transaction
1895 * Set the flag to make pmu::enable() not perform the
1896 * schedulability test, it will be performed at commit time
fbbe0701
SB
1897 *
1898 * We only support PERF_PMU_TXN_ADD transactions. Save the
1899 * transaction flags but otherwise ignore non-PERF_PMU_TXN_ADD
1900 * transactions.
4d1c52b0 1901 */
fbbe0701 1902static void x86_pmu_start_txn(struct pmu *pmu, unsigned int txn_flags)
4d1c52b0 1903{
fbbe0701
SB
1904 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1905
1906 WARN_ON_ONCE(cpuc->txn_flags); /* txn already in flight */
1907
1908 cpuc->txn_flags = txn_flags;
1909 if (txn_flags & ~PERF_PMU_TXN_ADD)
1910 return;
1911
33696fc0 1912 perf_pmu_disable(pmu);
0a3aee0d 1913 __this_cpu_write(cpu_hw_events.n_txn, 0);
4d1c52b0
LM
1914}
1915
1916/*
1917 * Stop group events scheduling transaction
1918 * Clear the flag and pmu::enable() will perform the
1919 * schedulability test.
1920 */
51b0fe39 1921static void x86_pmu_cancel_txn(struct pmu *pmu)
4d1c52b0 1922{
fbbe0701
SB
1923 unsigned int txn_flags;
1924 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1925
1926 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1927
1928 txn_flags = cpuc->txn_flags;
1929 cpuc->txn_flags = 0;
1930 if (txn_flags & ~PERF_PMU_TXN_ADD)
1931 return;
1932
90151c35 1933 /*
c347a2f1
PZ
1934 * Truncate collected array by the number of events added in this
1935 * transaction. See x86_pmu_add() and x86_pmu_*_txn().
90151c35 1936 */
0a3aee0d
TH
1937 __this_cpu_sub(cpu_hw_events.n_added, __this_cpu_read(cpu_hw_events.n_txn));
1938 __this_cpu_sub(cpu_hw_events.n_events, __this_cpu_read(cpu_hw_events.n_txn));
33696fc0 1939 perf_pmu_enable(pmu);
4d1c52b0
LM
1940}
1941
1942/*
1943 * Commit group events scheduling transaction
1944 * Perform the group schedulability test as a whole
1945 * Return 0 if success
c347a2f1
PZ
1946 *
1947 * Does not cancel the transaction on failure; expects the caller to do this.
4d1c52b0 1948 */
51b0fe39 1949static int x86_pmu_commit_txn(struct pmu *pmu)
4d1c52b0 1950{
89cbc767 1951 struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
4d1c52b0
LM
1952 int assign[X86_PMC_IDX_MAX];
1953 int n, ret;
1954
fbbe0701
SB
1955 WARN_ON_ONCE(!cpuc->txn_flags); /* no txn in flight */
1956
1957 if (cpuc->txn_flags & ~PERF_PMU_TXN_ADD) {
1958 cpuc->txn_flags = 0;
1959 return 0;
1960 }
1961
4d1c52b0
LM
1962 n = cpuc->n_events;
1963
1964 if (!x86_pmu_initialized())
1965 return -EAGAIN;
1966
1967 ret = x86_pmu.schedule_events(cpuc, n, assign);
1968 if (ret)
1969 return ret;
1970
1971 /*
1972 * copy new assignment, now we know it is possible
1973 * will be used by hw_perf_enable()
1974 */
1975 memcpy(cpuc->assign, assign, n*sizeof(int));
1976
fbbe0701 1977 cpuc->txn_flags = 0;
33696fc0 1978 perf_pmu_enable(pmu);
4d1c52b0
LM
1979 return 0;
1980}
cd8a38d3
SE
1981/*
1982 * a fake_cpuc is used to validate event groups. Due to
1983 * the extra reg logic, we need to also allocate a fake
1984 * per_core and per_cpu structure. Otherwise, group events
1985 * using extra reg may conflict without the kernel being
1986 * able to catch this when the last event gets added to
1987 * the group.
1988 */
1989static void free_fake_cpuc(struct cpu_hw_events *cpuc)
1990{
1991 kfree(cpuc->shared_regs);
1992 kfree(cpuc);
1993}
1994
1995static struct cpu_hw_events *allocate_fake_cpuc(void)
1996{
1997 struct cpu_hw_events *cpuc;
1998 int cpu = raw_smp_processor_id();
1999
2000 cpuc = kzalloc(sizeof(*cpuc), GFP_KERNEL);
2001 if (!cpuc)
2002 return ERR_PTR(-ENOMEM);
2003
2004 /* only needed, if we have extra_regs */
2005 if (x86_pmu.extra_regs) {
2006 cpuc->shared_regs = allocate_shared_regs(cpu);
2007 if (!cpuc->shared_regs)
2008 goto error;
2009 }
b430f7c4 2010 cpuc->is_fake = 1;
cd8a38d3
SE
2011 return cpuc;
2012error:
2013 free_fake_cpuc(cpuc);
2014 return ERR_PTR(-ENOMEM);
2015}
4d1c52b0 2016
ca037701
PZ
2017/*
2018 * validate that we can schedule this event
2019 */
2020static int validate_event(struct perf_event *event)
2021{
2022 struct cpu_hw_events *fake_cpuc;
2023 struct event_constraint *c;
2024 int ret = 0;
2025
cd8a38d3
SE
2026 fake_cpuc = allocate_fake_cpuc();
2027 if (IS_ERR(fake_cpuc))
2028 return PTR_ERR(fake_cpuc);
ca037701 2029
79cba822 2030 c = x86_pmu.get_event_constraints(fake_cpuc, -1, event);
ca037701
PZ
2031
2032 if (!c || !c->weight)
aa2bc1ad 2033 ret = -EINVAL;
ca037701
PZ
2034
2035 if (x86_pmu.put_event_constraints)
2036 x86_pmu.put_event_constraints(fake_cpuc, event);
2037
cd8a38d3 2038 free_fake_cpuc(fake_cpuc);
ca037701
PZ
2039
2040 return ret;
2041}
2042
1da53e02
SE
2043/*
2044 * validate a single event group
2045 *
2046 * validation include:
184f412c
IM
2047 * - check events are compatible which each other
2048 * - events do not compete for the same counter
2049 * - number of events <= number of counters
1da53e02
SE
2050 *
2051 * validation ensures the group can be loaded onto the
2052 * PMU if it was the only group available.
2053 */
fe9081cc
PZ
2054static int validate_group(struct perf_event *event)
2055{
1da53e02 2056 struct perf_event *leader = event->group_leader;
502568d5 2057 struct cpu_hw_events *fake_cpuc;
aa2bc1ad 2058 int ret = -EINVAL, n;
fe9081cc 2059
cd8a38d3
SE
2060 fake_cpuc = allocate_fake_cpuc();
2061 if (IS_ERR(fake_cpuc))
2062 return PTR_ERR(fake_cpuc);
1da53e02
SE
2063 /*
2064 * the event is not yet connected with its
2065 * siblings therefore we must first collect
2066 * existing siblings, then add the new event
2067 * before we can simulate the scheduling
2068 */
502568d5 2069 n = collect_events(fake_cpuc, leader, true);
1da53e02 2070 if (n < 0)
cd8a38d3 2071 goto out;
fe9081cc 2072
502568d5
PZ
2073 fake_cpuc->n_events = n;
2074 n = collect_events(fake_cpuc, event, false);
1da53e02 2075 if (n < 0)
cd8a38d3 2076 goto out;
fe9081cc 2077
502568d5 2078 fake_cpuc->n_events = n;
1da53e02 2079
a072738e 2080 ret = x86_pmu.schedule_events(fake_cpuc, n, NULL);
502568d5 2081
502568d5 2082out:
cd8a38d3 2083 free_fake_cpuc(fake_cpuc);
502568d5 2084 return ret;
fe9081cc
PZ
2085}
2086
dda99116 2087static int x86_pmu_event_init(struct perf_event *event)
621a01ea 2088{
51b0fe39 2089 struct pmu *tmp;
621a01ea
IM
2090 int err;
2091
b0a873eb
PZ
2092 switch (event->attr.type) {
2093 case PERF_TYPE_RAW:
2094 case PERF_TYPE_HARDWARE:
2095 case PERF_TYPE_HW_CACHE:
2096 break;
2097
2098 default:
2099 return -ENOENT;
2100 }
2101
2102 err = __x86_pmu_event_init(event);
fe9081cc 2103 if (!err) {
8113070d
SE
2104 /*
2105 * we temporarily connect event to its pmu
2106 * such that validate_group() can classify
2107 * it as an x86 event using is_x86_event()
2108 */
2109 tmp = event->pmu;
2110 event->pmu = &pmu;
2111
fe9081cc
PZ
2112 if (event->group_leader != event)
2113 err = validate_group(event);
ca037701
PZ
2114 else
2115 err = validate_event(event);
8113070d
SE
2116
2117 event->pmu = tmp;
fe9081cc 2118 }
a1792cda 2119 if (err) {
cdd6c482
IM
2120 if (event->destroy)
2121 event->destroy(event);
a1792cda 2122 }
621a01ea 2123
6aa7de05 2124 if (READ_ONCE(x86_pmu.attr_rdpmc))
7911d3f7
AL
2125 event->hw.flags |= PERF_X86_EVENT_RDPMC_ALLOWED;
2126
b0a873eb 2127 return err;
621a01ea 2128}
d7d59fb3 2129
7911d3f7
AL
2130static void refresh_pce(void *ignored)
2131{
3d28ebce 2132 load_mm_cr4(this_cpu_read(cpu_tlbstate.loaded_mm));
7911d3f7
AL
2133}
2134
bfe33492 2135static void x86_pmu_event_mapped(struct perf_event *event, struct mm_struct *mm)
7911d3f7
AL
2136{
2137 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2138 return;
2139
4b07372a
AL
2140 /*
2141 * This function relies on not being called concurrently in two
2142 * tasks in the same mm. Otherwise one task could observe
2143 * perf_rdpmc_allowed > 1 and return all the way back to
2144 * userspace with CR4.PCE clear while another task is still
2145 * doing on_each_cpu_mask() to propagate CR4.PCE.
2146 *
2147 * For now, this can't happen because all callers hold mmap_sem
2148 * for write. If this changes, we'll need a different solution.
2149 */
bfe33492 2150 lockdep_assert_held_exclusive(&mm->mmap_sem);
4b07372a 2151
bfe33492
PZ
2152 if (atomic_inc_return(&mm->context.perf_rdpmc_allowed) == 1)
2153 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
7911d3f7
AL
2154}
2155
bfe33492 2156static void x86_pmu_event_unmapped(struct perf_event *event, struct mm_struct *mm)
7911d3f7 2157{
7911d3f7
AL
2158
2159 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
2160 return;
2161
bfe33492
PZ
2162 if (atomic_dec_and_test(&mm->context.perf_rdpmc_allowed))
2163 on_each_cpu_mask(mm_cpumask(mm), refresh_pce, NULL, 1);
7911d3f7
AL
2164}
2165
fe4a3308
PZ
2166static int x86_pmu_event_idx(struct perf_event *event)
2167{
2168 int idx = event->hw.idx;
2169
7911d3f7 2170 if (!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED))
c7206205
PZ
2171 return 0;
2172
15c7ad51
RR
2173 if (x86_pmu.num_counters_fixed && idx >= INTEL_PMC_IDX_FIXED) {
2174 idx -= INTEL_PMC_IDX_FIXED;
fe4a3308
PZ
2175 idx |= 1 << 30;
2176 }
2177
2178 return idx + 1;
2179}
2180
0c9d42ed
PZ
2181static ssize_t get_attr_rdpmc(struct device *cdev,
2182 struct device_attribute *attr,
2183 char *buf)
2184{
2185 return snprintf(buf, 40, "%d\n", x86_pmu.attr_rdpmc);
2186}
2187
0c9d42ed
PZ
2188static ssize_t set_attr_rdpmc(struct device *cdev,
2189 struct device_attribute *attr,
2190 const char *buf, size_t count)
2191{
e2b297fc
SK
2192 unsigned long val;
2193 ssize_t ret;
2194
2195 ret = kstrtoul(buf, 0, &val);
2196 if (ret)
2197 return ret;
e97df763 2198
a6673429
AL
2199 if (val > 2)
2200 return -EINVAL;
2201
e97df763
PZ
2202 if (x86_pmu.attr_rdpmc_broken)
2203 return -ENOTSUPP;
0c9d42ed 2204
a6673429
AL
2205 if ((val == 2) != (x86_pmu.attr_rdpmc == 2)) {
2206 /*
2207 * Changing into or out of always available, aka
2208 * perf-event-bypassing mode. This path is extremely slow,
2209 * but only root can trigger it, so it's okay.
2210 */
2211 if (val == 2)
2212 static_key_slow_inc(&rdpmc_always_available);
2213 else
2214 static_key_slow_dec(&rdpmc_always_available);
2215 on_each_cpu(refresh_pce, NULL, 1);
2216 }
2217
2218 x86_pmu.attr_rdpmc = val;
2219
0c9d42ed
PZ
2220 return count;
2221}
2222
2223static DEVICE_ATTR(rdpmc, S_IRUSR | S_IWUSR, get_attr_rdpmc, set_attr_rdpmc);
2224
2225static struct attribute *x86_pmu_attrs[] = {
2226 &dev_attr_rdpmc.attr,
2227 NULL,
2228};
2229
2230static struct attribute_group x86_pmu_attr_group = {
2231 .attrs = x86_pmu_attrs,
2232};
2233
5da382eb
PZ
2234static ssize_t max_precise_show(struct device *cdev,
2235 struct device_attribute *attr,
2236 char *buf)
2237{
2238 return snprintf(buf, PAGE_SIZE, "%d\n", x86_pmu_max_precise());
2239}
2240
2241static DEVICE_ATTR_RO(max_precise);
2242
2243static struct attribute *x86_pmu_caps_attrs[] = {
2244 &dev_attr_max_precise.attr,
2245 NULL
2246};
2247
2248static struct attribute_group x86_pmu_caps_group = {
2249 .name = "caps",
2250 .attrs = x86_pmu_caps_attrs,
2251};
2252
0c9d42ed
PZ
2253static const struct attribute_group *x86_pmu_attr_groups[] = {
2254 &x86_pmu_attr_group,
641cc938 2255 &x86_pmu_format_group,
a4747393 2256 &x86_pmu_events_group,
b00233b5 2257 &x86_pmu_caps_group,
0c9d42ed
PZ
2258 NULL,
2259};
2260
ba532500 2261static void x86_pmu_sched_task(struct perf_event_context *ctx, bool sched_in)
d010b332 2262{
ba532500
YZ
2263 if (x86_pmu.sched_task)
2264 x86_pmu.sched_task(ctx, sched_in);
d010b332
SE
2265}
2266
c93dc84c
PZ
2267void perf_check_microcode(void)
2268{
2269 if (x86_pmu.check_microcode)
2270 x86_pmu.check_microcode();
2271}
c93dc84c 2272
b0a873eb 2273static struct pmu pmu = {
d010b332
SE
2274 .pmu_enable = x86_pmu_enable,
2275 .pmu_disable = x86_pmu_disable,
a4eaf7f1 2276
c93dc84c 2277 .attr_groups = x86_pmu_attr_groups,
0c9d42ed 2278
c93dc84c 2279 .event_init = x86_pmu_event_init,
a4eaf7f1 2280
7911d3f7
AL
2281 .event_mapped = x86_pmu_event_mapped,
2282 .event_unmapped = x86_pmu_event_unmapped,
2283
d010b332
SE
2284 .add = x86_pmu_add,
2285 .del = x86_pmu_del,
2286 .start = x86_pmu_start,
2287 .stop = x86_pmu_stop,
2288 .read = x86_pmu_read,
a4eaf7f1 2289
c93dc84c
PZ
2290 .start_txn = x86_pmu_start_txn,
2291 .cancel_txn = x86_pmu_cancel_txn,
2292 .commit_txn = x86_pmu_commit_txn,
fe4a3308 2293
c93dc84c 2294 .event_idx = x86_pmu_event_idx,
ba532500 2295 .sched_task = x86_pmu_sched_task,
e18bf526 2296 .task_ctx_size = sizeof(struct x86_perf_task_context),
b0a873eb
PZ
2297};
2298
c1317ec2
AL
2299void arch_perf_update_userpage(struct perf_event *event,
2300 struct perf_event_mmap_page *userpg, u64 now)
e3f3541c 2301{
59eaef78 2302 struct cyc2ns_data data;
698eff63 2303 u64 offset;
20d1c86a 2304
fa731587
PZ
2305 userpg->cap_user_time = 0;
2306 userpg->cap_user_time_zero = 0;
7911d3f7
AL
2307 userpg->cap_user_rdpmc =
2308 !!(event->hw.flags & PERF_X86_EVENT_RDPMC_ALLOWED);
c7206205
PZ
2309 userpg->pmc_width = x86_pmu.cntval_bits;
2310
698eff63 2311 if (!using_native_sched_clock() || !sched_clock_stable())
e3f3541c
PZ
2312 return;
2313
59eaef78 2314 cyc2ns_read_begin(&data);
20d1c86a 2315
59eaef78 2316 offset = data.cyc2ns_offset + __sched_clock_offset;
698eff63 2317
34f43927
PZ
2318 /*
2319 * Internal timekeeping for enabled/running/stopped times
2320 * is always in the local_clock domain.
2321 */
fa731587 2322 userpg->cap_user_time = 1;
59eaef78
PZ
2323 userpg->time_mult = data.cyc2ns_mul;
2324 userpg->time_shift = data.cyc2ns_shift;
698eff63 2325 userpg->time_offset = offset - now;
c73deb6a 2326
34f43927
PZ
2327 /*
2328 * cap_user_time_zero doesn't make sense when we're using a different
2329 * time base for the records.
2330 */
f454bfdd 2331 if (!event->attr.use_clockid) {
34f43927 2332 userpg->cap_user_time_zero = 1;
698eff63 2333 userpg->time_zero = offset;
34f43927 2334 }
20d1c86a 2335
59eaef78 2336 cyc2ns_read_end();
e3f3541c
PZ
2337}
2338
56962b44 2339void
cfbcf468 2340perf_callchain_kernel(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
d7d59fb3 2341{
35f4d9b3
JP
2342 struct unwind_state state;
2343 unsigned long addr;
2344
927c7a9e
FW
2345 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2346 /* TODO: We don't support guest os callchain now */
ed805261 2347 return;
927c7a9e
FW
2348 }
2349
019e579d
JP
2350 if (perf_callchain_store(entry, regs->ip))
2351 return;
d7d59fb3 2352
35f4d9b3
JP
2353 for (unwind_start(&state, current, regs, NULL); !unwind_done(&state);
2354 unwind_next_frame(&state)) {
2355 addr = unwind_get_return_address(&state);
2356 if (!addr || perf_callchain_store(entry, addr))
2357 return;
2358 }
d7d59fb3
PZ
2359}
2360
bc6ca7b3
AS
2361static inline int
2362valid_user_frame(const void __user *fp, unsigned long size)
2363{
2364 return (__range_not_ok(fp, size, TASK_SIZE) == 0);
2365}
2366
d07bdfd3
PZ
2367static unsigned long get_segment_base(unsigned int segment)
2368{
2369 struct desc_struct *desc;
990e9dc3 2370 unsigned int idx = segment >> 3;
d07bdfd3
PZ
2371
2372 if ((segment & SEGMENT_TI_MASK) == SEGMENT_LDT) {
a5b9e5a2 2373#ifdef CONFIG_MODIFY_LDT_SYSCALL
37868fe1
AL
2374 struct ldt_struct *ldt;
2375
37868fe1 2376 /* IRQs are off, so this synchronizes with smp_store_release */
506458ef 2377 ldt = READ_ONCE(current->active_mm->context.ldt);
eaa2f87c 2378 if (!ldt || idx >= ldt->nr_entries)
d07bdfd3
PZ
2379 return 0;
2380
37868fe1 2381 desc = &ldt->entries[idx];
a5b9e5a2
AL
2382#else
2383 return 0;
2384#endif
d07bdfd3 2385 } else {
eaa2f87c 2386 if (idx >= GDT_ENTRIES)
d07bdfd3
PZ
2387 return 0;
2388
37868fe1 2389 desc = raw_cpu_ptr(gdt_page.gdt) + idx;
d07bdfd3
PZ
2390 }
2391
37868fe1 2392 return get_desc_base(desc);
d07bdfd3
PZ
2393}
2394
10ed3493 2395#ifdef CONFIG_IA32_EMULATION
d1a797f3
PA
2396
2397#include <asm/compat.h>
2398
257ef9d2 2399static inline int
cfbcf468 2400perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
74193ef0 2401{
257ef9d2 2402 /* 32-bit process in 64-bit kernel. */
d07bdfd3 2403 unsigned long ss_base, cs_base;
257ef9d2
TE
2404 struct stack_frame_ia32 frame;
2405 const void __user *fp;
74193ef0 2406
257ef9d2
TE
2407 if (!test_thread_flag(TIF_IA32))
2408 return 0;
2409
d07bdfd3
PZ
2410 cs_base = get_segment_base(regs->cs);
2411 ss_base = get_segment_base(regs->ss);
2412
2413 fp = compat_ptr(ss_base + regs->bp);
75925e1a 2414 pagefault_disable();
3b1fff08 2415 while (entry->nr < entry->max_stack) {
257ef9d2
TE
2416 unsigned long bytes;
2417 frame.next_frame = 0;
2418 frame.return_address = 0;
2419
ae31fe51 2420 if (!valid_user_frame(fp, sizeof(frame)))
75925e1a
AK
2421 break;
2422
2423 bytes = __copy_from_user_nmi(&frame.next_frame, fp, 4);
2424 if (bytes != 0)
2425 break;
2426 bytes = __copy_from_user_nmi(&frame.return_address, fp+4, 4);
0a196848 2427 if (bytes != 0)
257ef9d2 2428 break;
74193ef0 2429
d07bdfd3
PZ
2430 perf_callchain_store(entry, cs_base + frame.return_address);
2431 fp = compat_ptr(ss_base + frame.next_frame);
257ef9d2 2432 }
75925e1a 2433 pagefault_enable();
257ef9d2 2434 return 1;
d7d59fb3 2435}
257ef9d2
TE
2436#else
2437static inline int
cfbcf468 2438perf_callchain_user32(struct pt_regs *regs, struct perf_callchain_entry_ctx *entry)
257ef9d2
TE
2439{
2440 return 0;
2441}
2442#endif
d7d59fb3 2443
56962b44 2444void
cfbcf468 2445perf_callchain_user(struct perf_callchain_entry_ctx *entry, struct pt_regs *regs)
d7d59fb3
PZ
2446{
2447 struct stack_frame frame;
fc188225 2448 const unsigned long __user *fp;
d7d59fb3 2449
927c7a9e
FW
2450 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
2451 /* TODO: We don't support guest os callchain now */
ed805261 2452 return;
927c7a9e 2453 }
5a6cec3a 2454
d07bdfd3
PZ
2455 /*
2456 * We don't know what to do with VM86 stacks.. ignore them for now.
2457 */
2458 if (regs->flags & (X86_VM_MASK | PERF_EFLAGS_VM))
2459 return;
2460
fc188225 2461 fp = (unsigned long __user *)regs->bp;
d7d59fb3 2462
70791ce9 2463 perf_callchain_store(entry, regs->ip);
d7d59fb3 2464
20afc60f
AV
2465 if (!current->mm)
2466 return;
2467
257ef9d2
TE
2468 if (perf_callchain_user32(regs, entry))
2469 return;
2470
75925e1a 2471 pagefault_disable();
3b1fff08 2472 while (entry->nr < entry->max_stack) {
257ef9d2 2473 unsigned long bytes;
fc188225 2474
038e836e 2475 frame.next_frame = NULL;
d7d59fb3
PZ
2476 frame.return_address = 0;
2477
ae31fe51 2478 if (!valid_user_frame(fp, sizeof(frame)))
75925e1a
AK
2479 break;
2480
fc188225 2481 bytes = __copy_from_user_nmi(&frame.next_frame, fp, sizeof(*fp));
75925e1a
AK
2482 if (bytes != 0)
2483 break;
fc188225 2484 bytes = __copy_from_user_nmi(&frame.return_address, fp + 1, sizeof(*fp));
0a196848 2485 if (bytes != 0)
d7d59fb3
PZ
2486 break;
2487
70791ce9 2488 perf_callchain_store(entry, frame.return_address);
75925e1a 2489 fp = (void __user *)frame.next_frame;
d7d59fb3 2490 }
75925e1a 2491 pagefault_enable();
d7d59fb3
PZ
2492}
2493
d07bdfd3
PZ
2494/*
2495 * Deal with code segment offsets for the various execution modes:
2496 *
2497 * VM86 - the good olde 16 bit days, where the linear address is
2498 * 20 bits and we use regs->ip + 0x10 * regs->cs.
2499 *
2500 * IA32 - Where we need to look at GDT/LDT segment descriptor tables
2501 * to figure out what the 32bit base address is.
2502 *
2503 * X32 - has TIF_X32 set, but is running in x86_64
2504 *
2505 * X86_64 - CS,DS,SS,ES are all zero based.
2506 */
2507static unsigned long code_segment_base(struct pt_regs *regs)
39447b38 2508{
383f3af3
AL
2509 /*
2510 * For IA32 we look at the GDT/LDT segment base to convert the
2511 * effective IP to a linear address.
2512 */
2513
2514#ifdef CONFIG_X86_32
d07bdfd3
PZ
2515 /*
2516 * If we are in VM86 mode, add the segment offset to convert to a
2517 * linear address.
2518 */
2519 if (regs->flags & X86_VM_MASK)
2520 return 0x10 * regs->cs;
2521
55474c48 2522 if (user_mode(regs) && regs->cs != __USER_CS)
d07bdfd3
PZ
2523 return get_segment_base(regs->cs);
2524#else
c56716af
AL
2525 if (user_mode(regs) && !user_64bit_mode(regs) &&
2526 regs->cs != __USER32_CS)
2527 return get_segment_base(regs->cs);
d07bdfd3
PZ
2528#endif
2529 return 0;
2530}
dcf46b94 2531
d07bdfd3
PZ
2532unsigned long perf_instruction_pointer(struct pt_regs *regs)
2533{
39447b38 2534 if (perf_guest_cbs && perf_guest_cbs->is_in_guest())
d07bdfd3 2535 return perf_guest_cbs->get_guest_ip();
dcf46b94 2536
d07bdfd3 2537 return regs->ip + code_segment_base(regs);
39447b38
ZY
2538}
2539
2540unsigned long perf_misc_flags(struct pt_regs *regs)
2541{
2542 int misc = 0;
dcf46b94 2543
39447b38 2544 if (perf_guest_cbs && perf_guest_cbs->is_in_guest()) {
dcf46b94
ZY
2545 if (perf_guest_cbs->is_user_mode())
2546 misc |= PERF_RECORD_MISC_GUEST_USER;
2547 else
2548 misc |= PERF_RECORD_MISC_GUEST_KERNEL;
2549 } else {
d07bdfd3 2550 if (user_mode(regs))
dcf46b94
ZY
2551 misc |= PERF_RECORD_MISC_USER;
2552 else
2553 misc |= PERF_RECORD_MISC_KERNEL;
2554 }
2555
39447b38 2556 if (regs->flags & PERF_EFLAGS_EXACT)
ab608344 2557 misc |= PERF_RECORD_MISC_EXACT_IP;
39447b38
ZY
2558
2559 return misc;
2560}
b3d9468a
GN
2561
2562void perf_get_x86_pmu_capability(struct x86_pmu_capability *cap)
2563{
2564 cap->version = x86_pmu.version;
2565 cap->num_counters_gp = x86_pmu.num_counters;
2566 cap->num_counters_fixed = x86_pmu.num_counters_fixed;
2567 cap->bit_width_gp = x86_pmu.cntval_bits;
2568 cap->bit_width_fixed = x86_pmu.cntval_bits;
2569 cap->events_mask = (unsigned int)x86_pmu.events_maskl;
2570 cap->events_mask_len = x86_pmu.events_mask_len;
2571}
2572EXPORT_SYMBOL_GPL(perf_get_x86_pmu_capability);