]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - arch/x86/kernel/tsc.c
x86/cpu: Sanitize FAM6_ATOM naming
[mirror_ubuntu-bionic-kernel.git] / arch / x86 / kernel / tsc.c
CommitLineData
c767a54b
JP
1#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
2
bfc0f594 3#include <linux/kernel.h>
0ef95533 4#include <linux/sched.h>
e6017571 5#include <linux/sched/clock.h>
0ef95533 6#include <linux/init.h>
186f4360 7#include <linux/export.h>
0ef95533 8#include <linux/timer.h>
bfc0f594 9#include <linux/acpi_pmtmr.h>
2dbe06fa 10#include <linux/cpufreq.h>
8fbbc4b4
AK
11#include <linux/delay.h>
12#include <linux/clocksource.h>
13#include <linux/percpu.h>
08604bd9 14#include <linux/timex.h>
10b033d4 15#include <linux/static_key.h>
bfc0f594
AK
16
17#include <asm/hpet.h>
8fbbc4b4
AK
18#include <asm/timer.h>
19#include <asm/vgtod.h>
20#include <asm/time.h>
21#include <asm/delay.h>
88b094fb 22#include <asm/hypervisor.h>
08047c4f 23#include <asm/nmi.h>
2d826404 24#include <asm/x86_init.h>
03da3ff1 25#include <asm/geode.h>
6731b0d6 26#include <asm/apic.h>
655e52d2 27#include <asm/intel-family.h>
faed5cdf 28#include <asm/i8259.h>
0ef95533 29
f24ade3a 30unsigned int __read_mostly cpu_khz; /* TSC clocks / usec, not used here */
0ef95533 31EXPORT_SYMBOL(cpu_khz);
f24ade3a
IM
32
33unsigned int __read_mostly tsc_khz;
0ef95533
AK
34EXPORT_SYMBOL(tsc_khz);
35
36/*
37 * TSC can be unstable due to cpufreq or due to unsynced TSCs
38 */
f24ade3a 39static int __read_mostly tsc_unstable;
0ef95533
AK
40
41/* native_sched_clock() is called before tsc_init(), so
42 we must start with the TSC soft disabled to prevent
59e21e3d 43 erroneous rdtsc usage on !boot_cpu_has(X86_FEATURE_TSC) processors */
f24ade3a 44static int __read_mostly tsc_disabled = -1;
0ef95533 45
3bbfafb7 46static DEFINE_STATIC_KEY_FALSE(__use_tsc);
10b033d4 47
28a00184 48int tsc_clocksource_reliable;
57c67da2 49
f9677e0f
CH
50static u32 art_to_tsc_numerator;
51static u32 art_to_tsc_denominator;
52static u64 art_to_tsc_offset;
53struct clocksource *art_related_clocksource;
54
20d1c86a 55struct cyc2ns {
59eaef78
PZ
56 struct cyc2ns_data data[2]; /* 0 + 2*16 = 32 */
57 seqcount_t seq; /* 32 + 4 = 36 */
20d1c86a 58
59eaef78 59}; /* fits one cacheline */
20d1c86a 60
59eaef78 61static DEFINE_PER_CPU_ALIGNED(struct cyc2ns, cyc2ns);
20d1c86a 62
59eaef78 63void cyc2ns_read_begin(struct cyc2ns_data *data)
20d1c86a 64{
59eaef78 65 int seq, idx;
20d1c86a 66
59eaef78 67 preempt_disable_notrace();
20d1c86a 68
59eaef78
PZ
69 do {
70 seq = this_cpu_read(cyc2ns.seq.sequence);
71 idx = seq & 1;
20d1c86a 72
59eaef78
PZ
73 data->cyc2ns_offset = this_cpu_read(cyc2ns.data[idx].cyc2ns_offset);
74 data->cyc2ns_mul = this_cpu_read(cyc2ns.data[idx].cyc2ns_mul);
75 data->cyc2ns_shift = this_cpu_read(cyc2ns.data[idx].cyc2ns_shift);
20d1c86a 76
59eaef78 77 } while (unlikely(seq != this_cpu_read(cyc2ns.seq.sequence)));
20d1c86a
PZ
78}
79
59eaef78 80void cyc2ns_read_end(void)
20d1c86a 81{
59eaef78 82 preempt_enable_notrace();
20d1c86a
PZ
83}
84
85/*
86 * Accelerators for sched_clock()
57c67da2
PZ
87 * convert from cycles(64bits) => nanoseconds (64bits)
88 * basic equation:
89 * ns = cycles / (freq / ns_per_sec)
90 * ns = cycles * (ns_per_sec / freq)
91 * ns = cycles * (10^9 / (cpu_khz * 10^3))
92 * ns = cycles * (10^6 / cpu_khz)
93 *
94 * Then we use scaling math (suggested by george@mvista.com) to get:
95 * ns = cycles * (10^6 * SC / cpu_khz) / SC
96 * ns = cycles * cyc2ns_scale / SC
97 *
98 * And since SC is a constant power of two, we can convert the div
b20112ed
AH
99 * into a shift. The larger SC is, the more accurate the conversion, but
100 * cyc2ns_scale needs to be a 32-bit value so that 32-bit multiplication
101 * (64-bit result) can be used.
57c67da2 102 *
b20112ed 103 * We can use khz divisor instead of mhz to keep a better precision.
57c67da2
PZ
104 * (mathieu.desnoyers@polymtl.ca)
105 *
106 * -johnstul@us.ibm.com "math is hard, lets go shopping!"
107 */
108
20d1c86a
PZ
109static void cyc2ns_data_init(struct cyc2ns_data *data)
110{
5e3c1afd 111 data->cyc2ns_mul = 0;
b20112ed 112 data->cyc2ns_shift = 0;
20d1c86a 113 data->cyc2ns_offset = 0;
20d1c86a
PZ
114}
115
120fc3fb 116static void __init cyc2ns_init(int cpu)
20d1c86a
PZ
117{
118 struct cyc2ns *c2n = &per_cpu(cyc2ns, cpu);
119
120 cyc2ns_data_init(&c2n->data[0]);
121 cyc2ns_data_init(&c2n->data[1]);
122
59eaef78 123 seqcount_init(&c2n->seq);
20d1c86a
PZ
124}
125
57c67da2
PZ
126static inline unsigned long long cycles_2_ns(unsigned long long cyc)
127{
59eaef78 128 struct cyc2ns_data data;
20d1c86a
PZ
129 unsigned long long ns;
130
59eaef78 131 cyc2ns_read_begin(&data);
20d1c86a 132
59eaef78
PZ
133 ns = data.cyc2ns_offset;
134 ns += mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
20d1c86a 135
59eaef78 136 cyc2ns_read_end();
20d1c86a 137
57c67da2
PZ
138 return ns;
139}
140
5c3c2ea6 141static void set_cyc2ns_scale(unsigned long khz, int cpu, unsigned long long tsc_now)
57c67da2 142{
615cd033 143 unsigned long long ns_now;
59eaef78
PZ
144 struct cyc2ns_data data;
145 struct cyc2ns *c2n;
20d1c86a 146 unsigned long flags;
57c67da2
PZ
147
148 local_irq_save(flags);
149 sched_clock_idle_sleep_event();
150
aa297292 151 if (!khz)
20d1c86a
PZ
152 goto done;
153
57c67da2
PZ
154 ns_now = cycles_2_ns(tsc_now);
155
20d1c86a
PZ
156 /*
157 * Compute a new multiplier as per the above comment and ensure our
158 * time function is continuous; see the comment near struct
159 * cyc2ns_data.
160 */
59eaef78 161 clocks_calc_mult_shift(&data.cyc2ns_mul, &data.cyc2ns_shift, khz,
b20112ed
AH
162 NSEC_PER_MSEC, 0);
163
b9511cd7
AH
164 /*
165 * cyc2ns_shift is exported via arch_perf_update_userpage() where it is
166 * not expected to be greater than 31 due to the original published
167 * conversion algorithm shifting a 32-bit value (now specifies a 64-bit
168 * value) - refer perf_event_mmap_page documentation in perf_event.h.
169 */
59eaef78
PZ
170 if (data.cyc2ns_shift == 32) {
171 data.cyc2ns_shift = 31;
172 data.cyc2ns_mul >>= 1;
b9511cd7
AH
173 }
174
59eaef78
PZ
175 data.cyc2ns_offset = ns_now -
176 mul_u64_u32_shr(tsc_now, data.cyc2ns_mul, data.cyc2ns_shift);
177
178 c2n = per_cpu_ptr(&cyc2ns, cpu);
20d1c86a 179
59eaef78
PZ
180 raw_write_seqcount_latch(&c2n->seq);
181 c2n->data[0] = data;
182 raw_write_seqcount_latch(&c2n->seq);
183 c2n->data[1] = data;
57c67da2 184
20d1c86a 185done:
ac1e843f 186 sched_clock_idle_wakeup_event();
57c67da2
PZ
187 local_irq_restore(flags);
188}
615cd033 189
0ef95533
AK
190/*
191 * Scheduler clock - returns current time in nanosec units.
192 */
193u64 native_sched_clock(void)
194{
3bbfafb7
PZ
195 if (static_branch_likely(&__use_tsc)) {
196 u64 tsc_now = rdtsc();
197
198 /* return the value in ns */
199 return cycles_2_ns(tsc_now);
200 }
0ef95533
AK
201
202 /*
203 * Fall back to jiffies if there's no TSC available:
204 * ( But note that we still use it if the TSC is marked
205 * unstable. We do this because unlike Time Of Day,
206 * the scheduler clock tolerates small errors and it's
207 * very important for it to be as fast as the platform
3ad2f3fb 208 * can achieve it. )
0ef95533 209 */
0ef95533 210
3bbfafb7
PZ
211 /* No locking but a rare wrong value is not a big deal: */
212 return (jiffies_64 - INITIAL_JIFFIES) * (1000000000 / HZ);
0ef95533
AK
213}
214
a94cab23
AK
215/*
216 * Generate a sched_clock if you already have a TSC value.
217 */
218u64 native_sched_clock_from_tsc(u64 tsc)
219{
220 return cycles_2_ns(tsc);
221}
222
0ef95533
AK
223/* We need to define a real function for sched_clock, to override the
224 weak default version */
225#ifdef CONFIG_PARAVIRT
226unsigned long long sched_clock(void)
227{
228 return paravirt_sched_clock();
229}
f94c8d11 230
698eff63 231bool using_native_sched_clock(void)
f94c8d11
PZ
232{
233 return pv_time_ops.sched_clock == native_sched_clock;
234}
0ef95533
AK
235#else
236unsigned long long
237sched_clock(void) __attribute__((alias("native_sched_clock")));
f94c8d11 238
698eff63 239bool using_native_sched_clock(void) { return true; }
0ef95533
AK
240#endif
241
242int check_tsc_unstable(void)
243{
244 return tsc_unstable;
245}
246EXPORT_SYMBOL_GPL(check_tsc_unstable);
247
248#ifdef CONFIG_X86_TSC
249int __init notsc_setup(char *str)
250{
c767a54b 251 pr_warn("Kernel compiled with CONFIG_X86_TSC, cannot disable TSC completely\n");
0ef95533
AK
252 tsc_disabled = 1;
253 return 1;
254}
255#else
256/*
257 * disable flag for tsc. Takes effect by clearing the TSC cpu flag
258 * in cpu/common.c
259 */
260int __init notsc_setup(char *str)
261{
262 setup_clear_cpu_cap(X86_FEATURE_TSC);
263 return 1;
264}
265#endif
266
267__setup("notsc", notsc_setup);
bfc0f594 268
e82b8e4e
VP
269static int no_sched_irq_time;
270
395628ef
AK
271static int __init tsc_setup(char *str)
272{
273 if (!strcmp(str, "reliable"))
274 tsc_clocksource_reliable = 1;
e82b8e4e
VP
275 if (!strncmp(str, "noirqtime", 9))
276 no_sched_irq_time = 1;
8309f86c
PZ
277 if (!strcmp(str, "unstable"))
278 mark_tsc_unstable("boot parameter");
395628ef
AK
279 return 1;
280}
281
282__setup("tsc=", tsc_setup);
283
bfc0f594
AK
284#define MAX_RETRIES 5
285#define SMI_TRESHOLD 50000
286
287/*
288 * Read TSC and the reference counters. Take care of SMI disturbance
289 */
827014be 290static u64 tsc_read_refs(u64 *p, int hpet)
bfc0f594
AK
291{
292 u64 t1, t2;
293 int i;
294
295 for (i = 0; i < MAX_RETRIES; i++) {
296 t1 = get_cycles();
297 if (hpet)
827014be 298 *p = hpet_readl(HPET_COUNTER) & 0xFFFFFFFF;
bfc0f594 299 else
827014be 300 *p = acpi_pm_read_early();
bfc0f594
AK
301 t2 = get_cycles();
302 if ((t2 - t1) < SMI_TRESHOLD)
303 return t2;
304 }
305 return ULLONG_MAX;
306}
307
d683ef7a
TG
308/*
309 * Calculate the TSC frequency from HPET reference
bfc0f594 310 */
d683ef7a 311static unsigned long calc_hpet_ref(u64 deltatsc, u64 hpet1, u64 hpet2)
bfc0f594 312{
d683ef7a 313 u64 tmp;
bfc0f594 314
d683ef7a
TG
315 if (hpet2 < hpet1)
316 hpet2 += 0x100000000ULL;
317 hpet2 -= hpet1;
318 tmp = ((u64)hpet2 * hpet_readl(HPET_PERIOD));
319 do_div(tmp, 1000000);
21060565 320 deltatsc = div64_u64(deltatsc, tmp);
d683ef7a
TG
321
322 return (unsigned long) deltatsc;
323}
324
325/*
326 * Calculate the TSC frequency from PMTimer reference
327 */
328static unsigned long calc_pmtimer_ref(u64 deltatsc, u64 pm1, u64 pm2)
329{
330 u64 tmp;
bfc0f594 331
d683ef7a
TG
332 if (!pm1 && !pm2)
333 return ULONG_MAX;
334
335 if (pm2 < pm1)
336 pm2 += (u64)ACPI_PM_OVRRUN;
337 pm2 -= pm1;
338 tmp = pm2 * 1000000000LL;
339 do_div(tmp, PMTMR_TICKS_PER_SEC);
340 do_div(deltatsc, tmp);
341
342 return (unsigned long) deltatsc;
343}
344
a977c400 345#define CAL_MS 10
b7743970 346#define CAL_LATCH (PIT_TICK_RATE / (1000 / CAL_MS))
a977c400
TG
347#define CAL_PIT_LOOPS 1000
348
349#define CAL2_MS 50
b7743970 350#define CAL2_LATCH (PIT_TICK_RATE / (1000 / CAL2_MS))
a977c400
TG
351#define CAL2_PIT_LOOPS 5000
352
cce3e057 353
ec0c15af
LT
354/*
355 * Try to calibrate the TSC against the Programmable
356 * Interrupt Timer and return the frequency of the TSC
357 * in kHz.
358 *
359 * Return ULONG_MAX on failure to calibrate.
360 */
a977c400 361static unsigned long pit_calibrate_tsc(u32 latch, unsigned long ms, int loopmin)
ec0c15af
LT
362{
363 u64 tsc, t1, t2, delta;
364 unsigned long tscmin, tscmax;
365 int pitcnt;
366
faed5cdf
PZ
367 if (!has_legacy_pic()) {
368 /*
369 * Relies on tsc_early_delay_calibrate() to have given us semi
370 * usable udelay(), wait for the same 50ms we would have with
371 * the PIT loop below.
372 */
373 udelay(10 * USEC_PER_MSEC);
374 udelay(10 * USEC_PER_MSEC);
375 udelay(10 * USEC_PER_MSEC);
376 udelay(10 * USEC_PER_MSEC);
377 udelay(10 * USEC_PER_MSEC);
378 return ULONG_MAX;
379 }
380
ec0c15af
LT
381 /* Set the Gate high, disable speaker */
382 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
383
384 /*
385 * Setup CTC channel 2* for mode 0, (interrupt on terminal
386 * count mode), binary count. Set the latch register to 50ms
387 * (LSB then MSB) to begin countdown.
388 */
389 outb(0xb0, 0x43);
a977c400
TG
390 outb(latch & 0xff, 0x42);
391 outb(latch >> 8, 0x42);
ec0c15af
LT
392
393 tsc = t1 = t2 = get_cycles();
394
395 pitcnt = 0;
396 tscmax = 0;
397 tscmin = ULONG_MAX;
398 while ((inb(0x61) & 0x20) == 0) {
399 t2 = get_cycles();
400 delta = t2 - tsc;
401 tsc = t2;
402 if ((unsigned long) delta < tscmin)
403 tscmin = (unsigned int) delta;
404 if ((unsigned long) delta > tscmax)
405 tscmax = (unsigned int) delta;
406 pitcnt++;
407 }
408
409 /*
410 * Sanity checks:
411 *
a977c400 412 * If we were not able to read the PIT more than loopmin
ec0c15af
LT
413 * times, then we have been hit by a massive SMI
414 *
415 * If the maximum is 10 times larger than the minimum,
416 * then we got hit by an SMI as well.
417 */
a977c400 418 if (pitcnt < loopmin || tscmax > 10 * tscmin)
ec0c15af
LT
419 return ULONG_MAX;
420
421 /* Calculate the PIT value */
422 delta = t2 - t1;
a977c400 423 do_div(delta, ms);
ec0c15af
LT
424 return delta;
425}
426
6ac40ed0
LT
427/*
428 * This reads the current MSB of the PIT counter, and
429 * checks if we are running on sufficiently fast and
430 * non-virtualized hardware.
431 *
432 * Our expectations are:
433 *
434 * - the PIT is running at roughly 1.19MHz
435 *
436 * - each IO is going to take about 1us on real hardware,
437 * but we allow it to be much faster (by a factor of 10) or
438 * _slightly_ slower (ie we allow up to a 2us read+counter
439 * update - anything else implies a unacceptably slow CPU
440 * or PIT for the fast calibration to work.
441 *
442 * - with 256 PIT ticks to read the value, we have 214us to
443 * see the same MSB (and overhead like doing a single TSC
444 * read per MSB value etc).
445 *
446 * - We're doing 2 reads per loop (LSB, MSB), and we expect
447 * them each to take about a microsecond on real hardware.
448 * So we expect a count value of around 100. But we'll be
449 * generous, and accept anything over 50.
450 *
451 * - if the PIT is stuck, and we see *many* more reads, we
452 * return early (and the next caller of pit_expect_msb()
453 * then consider it a failure when they don't see the
454 * next expected value).
455 *
456 * These expectations mean that we know that we have seen the
457 * transition from one expected value to another with a fairly
458 * high accuracy, and we didn't miss any events. We can thus
459 * use the TSC value at the transitions to calculate a pretty
460 * good value for the TSC frequencty.
461 */
b6e61eef
LT
462static inline int pit_verify_msb(unsigned char val)
463{
464 /* Ignore LSB */
465 inb(0x42);
466 return inb(0x42) == val;
467}
468
9e8912e0 469static inline int pit_expect_msb(unsigned char val, u64 *tscp, unsigned long *deltap)
6ac40ed0 470{
9e8912e0 471 int count;
68f30fbe 472 u64 tsc = 0, prev_tsc = 0;
bfc0f594 473
6ac40ed0 474 for (count = 0; count < 50000; count++) {
b6e61eef 475 if (!pit_verify_msb(val))
6ac40ed0 476 break;
68f30fbe 477 prev_tsc = tsc;
9e8912e0 478 tsc = get_cycles();
6ac40ed0 479 }
68f30fbe 480 *deltap = get_cycles() - prev_tsc;
9e8912e0
LT
481 *tscp = tsc;
482
483 /*
484 * We require _some_ success, but the quality control
485 * will be based on the error terms on the TSC values.
486 */
487 return count > 5;
6ac40ed0
LT
488}
489
490/*
9e8912e0
LT
491 * How many MSB values do we want to see? We aim for
492 * a maximum error rate of 500ppm (in practice the
493 * real error is much smaller), but refuse to spend
68f30fbe 494 * more than 50ms on it.
6ac40ed0 495 */
68f30fbe 496#define MAX_QUICK_PIT_MS 50
9e8912e0 497#define MAX_QUICK_PIT_ITERATIONS (MAX_QUICK_PIT_MS * PIT_TICK_RATE / 1000 / 256)
bfc0f594 498
6ac40ed0
LT
499static unsigned long quick_pit_calibrate(void)
500{
9e8912e0
LT
501 int i;
502 u64 tsc, delta;
503 unsigned long d1, d2;
504
faed5cdf
PZ
505 if (!has_legacy_pic())
506 return 0;
507
6ac40ed0 508 /* Set the Gate high, disable speaker */
bfc0f594
AK
509 outb((inb(0x61) & ~0x02) | 0x01, 0x61);
510
6ac40ed0
LT
511 /*
512 * Counter 2, mode 0 (one-shot), binary count
513 *
514 * NOTE! Mode 2 decrements by two (and then the
515 * output is flipped each time, giving the same
516 * final output frequency as a decrement-by-one),
517 * so mode 0 is much better when looking at the
518 * individual counts.
519 */
bfc0f594 520 outb(0xb0, 0x43);
bfc0f594 521
6ac40ed0
LT
522 /* Start at 0xffff */
523 outb(0xff, 0x42);
524 outb(0xff, 0x42);
525
a6a80e1d
LT
526 /*
527 * The PIT starts counting at the next edge, so we
528 * need to delay for a microsecond. The easiest way
529 * to do that is to just read back the 16-bit counter
530 * once from the PIT.
531 */
b6e61eef 532 pit_verify_msb(0);
a6a80e1d 533
9e8912e0
LT
534 if (pit_expect_msb(0xff, &tsc, &d1)) {
535 for (i = 1; i <= MAX_QUICK_PIT_ITERATIONS; i++) {
536 if (!pit_expect_msb(0xff-i, &delta, &d2))
537 break;
538
5aac644a
AH
539 delta -= tsc;
540
541 /*
542 * Extrapolate the error and fail fast if the error will
543 * never be below 500 ppm.
544 */
545 if (i == 1 &&
546 d1 + d2 >= (delta * MAX_QUICK_PIT_ITERATIONS) >> 11)
547 return 0;
548
9e8912e0
LT
549 /*
550 * Iterate until the error is less than 500 ppm
551 */
b6e61eef
LT
552 if (d1+d2 >= delta >> 11)
553 continue;
554
555 /*
556 * Check the PIT one more time to verify that
557 * all TSC reads were stable wrt the PIT.
558 *
559 * This also guarantees serialization of the
560 * last cycle read ('d2') in pit_expect_msb.
561 */
562 if (!pit_verify_msb(0xfe - i))
563 break;
564 goto success;
6ac40ed0 565 }
6ac40ed0 566 }
52045217 567 pr_info("Fast TSC calibration failed\n");
6ac40ed0 568 return 0;
9e8912e0
LT
569
570success:
571 /*
572 * Ok, if we get here, then we've seen the
573 * MSB of the PIT decrement 'i' times, and the
574 * error has shrunk to less than 500 ppm.
575 *
576 * As a result, we can depend on there not being
577 * any odd delays anywhere, and the TSC reads are
68f30fbe 578 * reliable (within the error).
9e8912e0
LT
579 *
580 * kHz = ticks / time-in-seconds / 1000;
581 * kHz = (t2 - t1) / (I * 256 / PIT_TICK_RATE) / 1000
582 * kHz = ((t2 - t1) * PIT_TICK_RATE) / (I * 256 * 1000)
583 */
9e8912e0
LT
584 delta *= PIT_TICK_RATE;
585 do_div(delta, i*256*1000);
c767a54b 586 pr_info("Fast TSC calibration using PIT\n");
9e8912e0 587 return delta;
6ac40ed0 588}
ec0c15af 589
bfc0f594 590/**
aa297292
LB
591 * native_calibrate_tsc
592 * Determine TSC frequency via CPUID, else return 0.
bfc0f594 593 */
e93ef949 594unsigned long native_calibrate_tsc(void)
aa297292
LB
595{
596 unsigned int eax_denominator, ebx_numerator, ecx_hz, edx;
597 unsigned int crystal_khz;
598
599 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
600 return 0;
601
602 if (boot_cpu_data.cpuid_level < 0x15)
603 return 0;
604
605 eax_denominator = ebx_numerator = ecx_hz = edx = 0;
606
607 /* CPUID 15H TSC/Crystal ratio, plus optionally Crystal Hz */
608 cpuid(0x15, &eax_denominator, &ebx_numerator, &ecx_hz, &edx);
609
610 if (ebx_numerator == 0 || eax_denominator == 0)
611 return 0;
612
613 crystal_khz = ecx_hz / 1000;
614
615 if (crystal_khz == 0) {
616 switch (boot_cpu_data.x86_model) {
655e52d2
PB
617 case INTEL_FAM6_SKYLAKE_MOBILE:
618 case INTEL_FAM6_SKYLAKE_DESKTOP:
6baf3d61
PB
619 case INTEL_FAM6_KABYLAKE_MOBILE:
620 case INTEL_FAM6_KABYLAKE_DESKTOP:
ff4c8663
LB
621 crystal_khz = 24000; /* 24.0 MHz */
622 break;
2811e5d5 623 case INTEL_FAM6_ATOM_GOLDMONT_X:
6baf3d61
PB
624 crystal_khz = 25000; /* 25.0 MHz */
625 break;
655e52d2 626 case INTEL_FAM6_ATOM_GOLDMONT:
ff4c8663
LB
627 crystal_khz = 19200; /* 19.2 MHz */
628 break;
aa297292
LB
629 }
630 }
631
da4ae6c4
LB
632 if (crystal_khz == 0)
633 return 0;
4ca4df0b
BG
634 /*
635 * TSC frequency determined by CPUID is a "hardware reported"
636 * frequency and is the most accurate one so far we have. This
637 * is considered a known frequency.
638 */
639 setup_force_cpu_cap(X86_FEATURE_TSC_KNOWN_FREQ);
640
4635fdc6
BG
641 /*
642 * For Atom SoCs TSC is the only reliable clocksource.
643 * Mark TSC reliable so no watchdog on it.
644 */
645 if (boot_cpu_data.x86_model == INTEL_FAM6_ATOM_GOLDMONT)
646 setup_force_cpu_cap(X86_FEATURE_TSC_RELIABLE);
647
aa297292
LB
648 return crystal_khz * ebx_numerator / eax_denominator;
649}
650
651static unsigned long cpu_khz_from_cpuid(void)
652{
653 unsigned int eax_base_mhz, ebx_max_mhz, ecx_bus_mhz, edx;
654
655 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL)
656 return 0;
657
658 if (boot_cpu_data.cpuid_level < 0x16)
659 return 0;
660
661 eax_base_mhz = ebx_max_mhz = ecx_bus_mhz = edx = 0;
662
663 cpuid(0x16, &eax_base_mhz, &ebx_max_mhz, &ecx_bus_mhz, &edx);
664
665 return eax_base_mhz * 1000;
666}
667
668/**
669 * native_calibrate_cpu - calibrate the cpu on boot
670 */
671unsigned long native_calibrate_cpu(void)
bfc0f594 672{
827014be 673 u64 tsc1, tsc2, delta, ref1, ref2;
fbb16e24 674 unsigned long tsc_pit_min = ULONG_MAX, tsc_ref_min = ULONG_MAX;
2d826404 675 unsigned long flags, latch, ms, fast_calibrate;
a977c400 676 int hpet = is_hpet_enabled(), i, loopmin;
bfc0f594 677
aa297292
LB
678 fast_calibrate = cpu_khz_from_cpuid();
679 if (fast_calibrate)
680 return fast_calibrate;
681
02c0cd2d 682 fast_calibrate = cpu_khz_from_msr();
5f0e0309 683 if (fast_calibrate)
7da7c156 684 return fast_calibrate;
7da7c156 685
6ac40ed0
LT
686 local_irq_save(flags);
687 fast_calibrate = quick_pit_calibrate();
bfc0f594 688 local_irq_restore(flags);
6ac40ed0
LT
689 if (fast_calibrate)
690 return fast_calibrate;
bfc0f594 691
fbb16e24
TG
692 /*
693 * Run 5 calibration loops to get the lowest frequency value
694 * (the best estimate). We use two different calibration modes
695 * here:
696 *
697 * 1) PIT loop. We set the PIT Channel 2 to oneshot mode and
698 * load a timeout of 50ms. We read the time right after we
699 * started the timer and wait until the PIT count down reaches
700 * zero. In each wait loop iteration we read the TSC and check
701 * the delta to the previous read. We keep track of the min
702 * and max values of that delta. The delta is mostly defined
703 * by the IO time of the PIT access, so we can detect when a
0d2eb44f 704 * SMI/SMM disturbance happened between the two reads. If the
fbb16e24
TG
705 * maximum time is significantly larger than the minimum time,
706 * then we discard the result and have another try.
707 *
708 * 2) Reference counter. If available we use the HPET or the
709 * PMTIMER as a reference to check the sanity of that value.
710 * We use separate TSC readouts and check inside of the
711 * reference read for a SMI/SMM disturbance. We dicard
712 * disturbed values here as well. We do that around the PIT
713 * calibration delay loop as we have to wait for a certain
714 * amount of time anyway.
715 */
a977c400
TG
716
717 /* Preset PIT loop values */
718 latch = CAL_LATCH;
719 ms = CAL_MS;
720 loopmin = CAL_PIT_LOOPS;
721
722 for (i = 0; i < 3; i++) {
ec0c15af 723 unsigned long tsc_pit_khz;
fbb16e24
TG
724
725 /*
726 * Read the start value and the reference count of
ec0c15af
LT
727 * hpet/pmtimer when available. Then do the PIT
728 * calibration, which will take at least 50ms, and
729 * read the end value.
fbb16e24 730 */
ec0c15af 731 local_irq_save(flags);
827014be 732 tsc1 = tsc_read_refs(&ref1, hpet);
a977c400 733 tsc_pit_khz = pit_calibrate_tsc(latch, ms, loopmin);
827014be 734 tsc2 = tsc_read_refs(&ref2, hpet);
fbb16e24
TG
735 local_irq_restore(flags);
736
ec0c15af
LT
737 /* Pick the lowest PIT TSC calibration so far */
738 tsc_pit_min = min(tsc_pit_min, tsc_pit_khz);
fbb16e24
TG
739
740 /* hpet or pmtimer available ? */
62627bec 741 if (ref1 == ref2)
fbb16e24
TG
742 continue;
743
744 /* Check, whether the sampling was disturbed by an SMI */
745 if (tsc1 == ULLONG_MAX || tsc2 == ULLONG_MAX)
746 continue;
747
748 tsc2 = (tsc2 - tsc1) * 1000000LL;
d683ef7a 749 if (hpet)
827014be 750 tsc2 = calc_hpet_ref(tsc2, ref1, ref2);
d683ef7a 751 else
827014be 752 tsc2 = calc_pmtimer_ref(tsc2, ref1, ref2);
fbb16e24 753
fbb16e24 754 tsc_ref_min = min(tsc_ref_min, (unsigned long) tsc2);
a977c400
TG
755
756 /* Check the reference deviation */
757 delta = ((u64) tsc_pit_min) * 100;
758 do_div(delta, tsc_ref_min);
759
760 /*
761 * If both calibration results are inside a 10% window
762 * then we can be sure, that the calibration
763 * succeeded. We break out of the loop right away. We
764 * use the reference value, as it is more precise.
765 */
766 if (delta >= 90 && delta <= 110) {
c767a54b
JP
767 pr_info("PIT calibration matches %s. %d loops\n",
768 hpet ? "HPET" : "PMTIMER", i + 1);
a977c400 769 return tsc_ref_min;
fbb16e24
TG
770 }
771
a977c400
TG
772 /*
773 * Check whether PIT failed more than once. This
774 * happens in virtualized environments. We need to
775 * give the virtual PC a slightly longer timeframe for
776 * the HPET/PMTIMER to make the result precise.
777 */
778 if (i == 1 && tsc_pit_min == ULONG_MAX) {
779 latch = CAL2_LATCH;
780 ms = CAL2_MS;
781 loopmin = CAL2_PIT_LOOPS;
782 }
fbb16e24 783 }
bfc0f594
AK
784
785 /*
fbb16e24 786 * Now check the results.
bfc0f594 787 */
fbb16e24
TG
788 if (tsc_pit_min == ULONG_MAX) {
789 /* PIT gave no useful value */
c767a54b 790 pr_warn("Unable to calibrate against PIT\n");
fbb16e24
TG
791
792 /* We don't have an alternative source, disable TSC */
827014be 793 if (!hpet && !ref1 && !ref2) {
c767a54b 794 pr_notice("No reference (HPET/PMTIMER) available\n");
fbb16e24
TG
795 return 0;
796 }
797
798 /* The alternative source failed as well, disable TSC */
799 if (tsc_ref_min == ULONG_MAX) {
c767a54b 800 pr_warn("HPET/PMTIMER calibration failed\n");
fbb16e24
TG
801 return 0;
802 }
803
804 /* Use the alternative source */
c767a54b
JP
805 pr_info("using %s reference calibration\n",
806 hpet ? "HPET" : "PMTIMER");
fbb16e24
TG
807
808 return tsc_ref_min;
809 }
bfc0f594 810
fbb16e24 811 /* We don't have an alternative source, use the PIT calibration value */
827014be 812 if (!hpet && !ref1 && !ref2) {
c767a54b 813 pr_info("Using PIT calibration value\n");
fbb16e24 814 return tsc_pit_min;
bfc0f594
AK
815 }
816
fbb16e24
TG
817 /* The alternative source failed, use the PIT calibration value */
818 if (tsc_ref_min == ULONG_MAX) {
c767a54b 819 pr_warn("HPET/PMTIMER calibration failed. Using PIT calibration.\n");
fbb16e24 820 return tsc_pit_min;
bfc0f594
AK
821 }
822
fbb16e24
TG
823 /*
824 * The calibration values differ too much. In doubt, we use
825 * the PIT value as we know that there are PMTIMERs around
a977c400 826 * running at double speed. At least we let the user know:
fbb16e24 827 */
c767a54b
JP
828 pr_warn("PIT calibration deviates from %s: %lu %lu\n",
829 hpet ? "HPET" : "PMTIMER", tsc_pit_min, tsc_ref_min);
830 pr_info("Using PIT calibration value\n");
fbb16e24 831 return tsc_pit_min;
bfc0f594
AK
832}
833
af576850 834void recalibrate_cpu_khz(void)
bfc0f594
AK
835{
836#ifndef CONFIG_SMP
837 unsigned long cpu_khz_old = cpu_khz;
838
eff4677e 839 if (!boot_cpu_has(X86_FEATURE_TSC))
af576850 840 return;
eff4677e 841
aa297292 842 cpu_khz = x86_platform.calibrate_cpu();
eff4677e 843 tsc_khz = x86_platform.calibrate_tsc();
aa297292
LB
844 if (tsc_khz == 0)
845 tsc_khz = cpu_khz;
ff4c8663
LB
846 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
847 cpu_khz = tsc_khz;
eff4677e
BP
848 cpu_data(0).loops_per_jiffy = cpufreq_scale(cpu_data(0).loops_per_jiffy,
849 cpu_khz_old, cpu_khz);
bfc0f594
AK
850#endif
851}
852
853EXPORT_SYMBOL(recalibrate_cpu_khz);
854
2dbe06fa 855
cd7240c0
SS
856static unsigned long long cyc2ns_suspend;
857
b74f05d6 858void tsc_save_sched_clock_state(void)
cd7240c0 859{
35af99e6 860 if (!sched_clock_stable())
cd7240c0
SS
861 return;
862
863 cyc2ns_suspend = sched_clock();
864}
865
866/*
867 * Even on processors with invariant TSC, TSC gets reset in some the
868 * ACPI system sleep states. And in some systems BIOS seem to reinit TSC to
869 * arbitrary value (still sync'd across cpu's) during resume from such sleep
870 * states. To cope up with this, recompute the cyc2ns_offset for each cpu so
871 * that sched_clock() continues from the point where it was left off during
872 * suspend.
873 */
b74f05d6 874void tsc_restore_sched_clock_state(void)
cd7240c0
SS
875{
876 unsigned long long offset;
877 unsigned long flags;
878 int cpu;
879
35af99e6 880 if (!sched_clock_stable())
cd7240c0
SS
881 return;
882
883 local_irq_save(flags);
884
20d1c86a 885 /*
6a6256f9 886 * We're coming out of suspend, there's no concurrency yet; don't
20d1c86a
PZ
887 * bother being nice about the RCU stuff, just write to both
888 * data fields.
889 */
890
891 this_cpu_write(cyc2ns.data[0].cyc2ns_offset, 0);
892 this_cpu_write(cyc2ns.data[1].cyc2ns_offset, 0);
893
cd7240c0
SS
894 offset = cyc2ns_suspend - sched_clock();
895
20d1c86a
PZ
896 for_each_possible_cpu(cpu) {
897 per_cpu(cyc2ns.data[0].cyc2ns_offset, cpu) = offset;
898 per_cpu(cyc2ns.data[1].cyc2ns_offset, cpu) = offset;
899 }
cd7240c0
SS
900
901 local_irq_restore(flags);
902}
903
2dbe06fa 904#ifdef CONFIG_CPU_FREQ
2dbe06fa
AK
905/* Frequency scaling support. Adjust the TSC based timer when the cpu frequency
906 * changes.
907 *
908 * RED-PEN: On SMP we assume all CPUs run with the same frequency. It's
909 * not that important because current Opteron setups do not support
910 * scaling on SMP anyroads.
911 *
912 * Should fix up last_tsc too. Currently gettimeofday in the
913 * first tick after the change will be slightly wrong.
914 */
915
916static unsigned int ref_freq;
917static unsigned long loops_per_jiffy_ref;
918static unsigned long tsc_khz_ref;
919
920static int time_cpufreq_notifier(struct notifier_block *nb, unsigned long val,
921 void *data)
922{
923 struct cpufreq_freqs *freq = data;
931db6a3 924 unsigned long *lpj;
2dbe06fa 925
931db6a3 926 lpj = &boot_cpu_data.loops_per_jiffy;
2dbe06fa 927#ifdef CONFIG_SMP
931db6a3 928 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
2dbe06fa 929 lpj = &cpu_data(freq->cpu).loops_per_jiffy;
2dbe06fa
AK
930#endif
931
932 if (!ref_freq) {
933 ref_freq = freq->old;
934 loops_per_jiffy_ref = *lpj;
935 tsc_khz_ref = tsc_khz;
936 }
937 if ((val == CPUFREQ_PRECHANGE && freq->old < freq->new) ||
0b443ead 938 (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
878f4f53 939 *lpj = cpufreq_scale(loops_per_jiffy_ref, ref_freq, freq->new);
2dbe06fa
AK
940
941 tsc_khz = cpufreq_scale(tsc_khz_ref, ref_freq, freq->new);
942 if (!(freq->flags & CPUFREQ_CONST_LOOPS))
943 mark_tsc_unstable("cpufreq changes");
2dbe06fa 944
5c3c2ea6 945 set_cyc2ns_scale(tsc_khz, freq->cpu, rdtsc());
3896c329 946 }
2dbe06fa
AK
947
948 return 0;
949}
950
951static struct notifier_block time_cpufreq_notifier_block = {
952 .notifier_call = time_cpufreq_notifier
953};
954
a841cca7 955static int __init cpufreq_register_tsc_scaling(void)
2dbe06fa 956{
59e21e3d 957 if (!boot_cpu_has(X86_FEATURE_TSC))
060700b5
LT
958 return 0;
959 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
960 return 0;
2dbe06fa
AK
961 cpufreq_register_notifier(&time_cpufreq_notifier_block,
962 CPUFREQ_TRANSITION_NOTIFIER);
963 return 0;
964}
965
a841cca7 966core_initcall(cpufreq_register_tsc_scaling);
2dbe06fa
AK
967
968#endif /* CONFIG_CPU_FREQ */
8fbbc4b4 969
f9677e0f
CH
970#define ART_CPUID_LEAF (0x15)
971#define ART_MIN_DENOMINATOR (1)
972
973
974/*
975 * If ART is present detect the numerator:denominator to convert to TSC
976 */
120fc3fb 977static void __init detect_art(void)
f9677e0f
CH
978{
979 unsigned int unused[2];
980
981 if (boot_cpu_data.cpuid_level < ART_CPUID_LEAF)
982 return;
983
6c66350d 984 /*
985 * Don't enable ART in a VM, non-stop TSC and TSC_ADJUST required,
986 * and the TSC counter resets must not occur asynchronously.
987 */
f9677e0f
CH
988 if (boot_cpu_has(X86_FEATURE_HYPERVISOR) ||
989 !boot_cpu_has(X86_FEATURE_NONSTOP_TSC) ||
6c66350d 990 !boot_cpu_has(X86_FEATURE_TSC_ADJUST) ||
991 tsc_async_resets)
f9677e0f
CH
992 return;
993
7b3d2f6e
TG
994 cpuid(ART_CPUID_LEAF, &art_to_tsc_denominator,
995 &art_to_tsc_numerator, unused, unused+1);
996
997 if (art_to_tsc_denominator < ART_MIN_DENOMINATOR)
f9677e0f
CH
998 return;
999
7b3d2f6e
TG
1000 rdmsrl(MSR_IA32_TSC_ADJUST, art_to_tsc_offset);
1001
f9677e0f
CH
1002 /* Make this sticky over multiple CPU init calls */
1003 setup_force_cpu_cap(X86_FEATURE_ART);
1004}
1005
1006
8fbbc4b4
AK
1007/* clocksource code */
1008
1009static struct clocksource clocksource_tsc;
1010
6a369583
TG
1011static void tsc_resume(struct clocksource *cs)
1012{
1013 tsc_verify_tsc_adjust(true);
1014}
1015
8fbbc4b4 1016/*
09ec5442 1017 * We used to compare the TSC to the cycle_last value in the clocksource
8fbbc4b4
AK
1018 * structure to avoid a nasty time-warp. This can be observed in a
1019 * very small window right after one CPU updated cycle_last under
1020 * xtime/vsyscall_gtod lock and the other CPU reads a TSC value which
1021 * is smaller than the cycle_last reference value due to a TSC which
1022 * is slighty behind. This delta is nowhere else observable, but in
1023 * that case it results in a forward time jump in the range of hours
1024 * due to the unsigned delta calculation of the time keeping core
1025 * code, which is necessary to support wrapping clocksources like pm
1026 * timer.
09ec5442
TG
1027 *
1028 * This sanity check is now done in the core timekeeping code.
1029 * checking the result of read_tsc() - cycle_last for being negative.
1030 * That works because CLOCKSOURCE_MASK(64) does not mask out any bit.
8fbbc4b4 1031 */
a5a1d1c2 1032static u64 read_tsc(struct clocksource *cs)
8fbbc4b4 1033{
a5a1d1c2 1034 return (u64)rdtsc_ordered();
1be39679
MS
1035}
1036
12907fbb
TG
1037static void tsc_cs_mark_unstable(struct clocksource *cs)
1038{
1039 if (tsc_unstable)
1040 return;
f94c8d11 1041
12907fbb 1042 tsc_unstable = 1;
f94c8d11
PZ
1043 if (using_native_sched_clock())
1044 clear_sched_clock_stable();
12907fbb
TG
1045 disable_sched_clock_irqtime();
1046 pr_info("Marking TSC unstable due to clocksource watchdog\n");
1047}
1048
b421b22b
PZ
1049static void tsc_cs_tick_stable(struct clocksource *cs)
1050{
1051 if (tsc_unstable)
1052 return;
1053
1054 if (using_native_sched_clock())
1055 sched_clock_tick_stable();
1056}
1057
09ec5442
TG
1058/*
1059 * .mask MUST be CLOCKSOURCE_MASK(64). See comment above read_tsc()
1060 */
8fbbc4b4
AK
1061static struct clocksource clocksource_tsc = {
1062 .name = "tsc",
1063 .rating = 300,
1064 .read = read_tsc,
1065 .mask = CLOCKSOURCE_MASK(64),
8fbbc4b4
AK
1066 .flags = CLOCK_SOURCE_IS_CONTINUOUS |
1067 CLOCK_SOURCE_MUST_VERIFY,
98d0ac38 1068 .archdata = { .vclock_mode = VCLOCK_TSC },
6a369583 1069 .resume = tsc_resume,
12907fbb 1070 .mark_unstable = tsc_cs_mark_unstable,
b421b22b 1071 .tick_stable = tsc_cs_tick_stable,
8fbbc4b4
AK
1072};
1073
1074void mark_tsc_unstable(char *reason)
1075{
f94c8d11
PZ
1076 if (tsc_unstable)
1077 return;
1078
1079 tsc_unstable = 1;
1080 if (using_native_sched_clock())
35af99e6 1081 clear_sched_clock_stable();
f94c8d11
PZ
1082 disable_sched_clock_irqtime();
1083 pr_info("Marking TSC unstable due to %s\n", reason);
1084 /* Change only the rating, when not registered */
1085 if (clocksource_tsc.mult) {
1086 clocksource_mark_unstable(&clocksource_tsc);
1087 } else {
1088 clocksource_tsc.flags |= CLOCK_SOURCE_UNSTABLE;
1089 clocksource_tsc.rating = 0;
8fbbc4b4
AK
1090 }
1091}
1092
1093EXPORT_SYMBOL_GPL(mark_tsc_unstable);
1094
395628ef
AK
1095static void __init check_system_tsc_reliable(void)
1096{
03da3ff1
DW
1097#if defined(CONFIG_MGEODEGX1) || defined(CONFIG_MGEODE_LX) || defined(CONFIG_X86_GENERIC)
1098 if (is_geode_lx()) {
1099 /* RTSC counts during suspend */
8fbbc4b4 1100#define RTSC_SUSP 0x100
03da3ff1 1101 unsigned long res_low, res_high;
8fbbc4b4 1102
03da3ff1
DW
1103 rdmsr_safe(MSR_GEODE_BUSCONT_CONF0, &res_low, &res_high);
1104 /* Geode_LX - the OLPC CPU has a very reliable TSC */
1105 if (res_low & RTSC_SUSP)
1106 tsc_clocksource_reliable = 1;
1107 }
8fbbc4b4 1108#endif
395628ef
AK
1109 if (boot_cpu_has(X86_FEATURE_TSC_RELIABLE))
1110 tsc_clocksource_reliable = 1;
1111}
8fbbc4b4
AK
1112
1113/*
1114 * Make an educated guess if the TSC is trustworthy and synchronized
1115 * over all CPUs.
1116 */
148f9bb8 1117int unsynchronized_tsc(void)
8fbbc4b4 1118{
59e21e3d 1119 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_unstable)
8fbbc4b4
AK
1120 return 1;
1121
3e5095d1 1122#ifdef CONFIG_SMP
8fbbc4b4
AK
1123 if (apic_is_clustered_box())
1124 return 1;
1125#endif
1126
1127 if (boot_cpu_has(X86_FEATURE_CONSTANT_TSC))
1128 return 0;
d3b8f889
JS
1129
1130 if (tsc_clocksource_reliable)
1131 return 0;
8fbbc4b4
AK
1132 /*
1133 * Intel systems are normally all synchronized.
1134 * Exceptions must mark TSC as unstable:
1135 */
1136 if (boot_cpu_data.x86_vendor != X86_VENDOR_INTEL) {
1137 /* assume multi socket systems are not synchronized: */
1138 if (num_possible_cpus() > 1)
d3b8f889 1139 return 1;
8fbbc4b4
AK
1140 }
1141
d3b8f889 1142 return 0;
8fbbc4b4
AK
1143}
1144
f9677e0f
CH
1145/*
1146 * Convert ART to TSC given numerator/denominator found in detect_art()
1147 */
a5a1d1c2 1148struct system_counterval_t convert_art_to_tsc(u64 art)
f9677e0f
CH
1149{
1150 u64 tmp, res, rem;
1151
1152 rem = do_div(art, art_to_tsc_denominator);
1153
1154 res = art * art_to_tsc_numerator;
1155 tmp = rem * art_to_tsc_numerator;
1156
1157 do_div(tmp, art_to_tsc_denominator);
1158 res += tmp + art_to_tsc_offset;
1159
1160 return (struct system_counterval_t) {.cs = art_related_clocksource,
1161 .cycles = res};
1162}
1163EXPORT_SYMBOL(convert_art_to_tsc);
08ec0c58
JS
1164
1165static void tsc_refine_calibration_work(struct work_struct *work);
1166static DECLARE_DELAYED_WORK(tsc_irqwork, tsc_refine_calibration_work);
1167/**
1168 * tsc_refine_calibration_work - Further refine tsc freq calibration
1169 * @work - ignored.
1170 *
1171 * This functions uses delayed work over a period of a
1172 * second to further refine the TSC freq value. Since this is
1173 * timer based, instead of loop based, we don't block the boot
1174 * process while this longer calibration is done.
1175 *
0d2eb44f 1176 * If there are any calibration anomalies (too many SMIs, etc),
08ec0c58
JS
1177 * or the refined calibration is off by 1% of the fast early
1178 * calibration, we throw out the new calibration and use the
1179 * early calibration.
1180 */
1181static void tsc_refine_calibration_work(struct work_struct *work)
1182{
1183 static u64 tsc_start = -1, ref_start;
1184 static int hpet;
1185 u64 tsc_stop, ref_stop, delta;
1186 unsigned long freq;
aa7b630e 1187 int cpu;
08ec0c58
JS
1188
1189 /* Don't bother refining TSC on unstable systems */
1190 if (check_tsc_unstable())
1191 goto out;
1192
1193 /*
1194 * Since the work is started early in boot, we may be
1195 * delayed the first time we expire. So set the workqueue
1196 * again once we know timers are working.
1197 */
1198 if (tsc_start == -1) {
1199 /*
1200 * Only set hpet once, to avoid mixing hardware
1201 * if the hpet becomes enabled later.
1202 */
1203 hpet = is_hpet_enabled();
1204 schedule_delayed_work(&tsc_irqwork, HZ);
1205 tsc_start = tsc_read_refs(&ref_start, hpet);
1206 return;
1207 }
1208
1209 tsc_stop = tsc_read_refs(&ref_stop, hpet);
1210
1211 /* hpet or pmtimer available ? */
62627bec 1212 if (ref_start == ref_stop)
08ec0c58
JS
1213 goto out;
1214
1215 /* Check, whether the sampling was disturbed by an SMI */
1216 if (tsc_start == ULLONG_MAX || tsc_stop == ULLONG_MAX)
1217 goto out;
1218
1219 delta = tsc_stop - tsc_start;
1220 delta *= 1000000LL;
1221 if (hpet)
1222 freq = calc_hpet_ref(delta, ref_start, ref_stop);
1223 else
1224 freq = calc_pmtimer_ref(delta, ref_start, ref_stop);
1225
1226 /* Make sure we're within 1% */
1227 if (abs(tsc_khz - freq) > tsc_khz/100)
1228 goto out;
1229
1230 tsc_khz = freq;
c767a54b
JP
1231 pr_info("Refined TSC clocksource calibration: %lu.%03lu MHz\n",
1232 (unsigned long)tsc_khz / 1000,
1233 (unsigned long)tsc_khz % 1000);
08ec0c58 1234
6731b0d6
NS
1235 /* Inform the TSC deadline clockevent devices about the recalibration */
1236 lapic_update_tsc_freq();
1237
aa7b630e
PZ
1238 /* Update the sched_clock() rate to match the clocksource one */
1239 for_each_possible_cpu(cpu)
5c3c2ea6 1240 set_cyc2ns_scale(tsc_khz, cpu, tsc_stop);
aa7b630e 1241
08ec0c58 1242out:
f9677e0f
CH
1243 if (boot_cpu_has(X86_FEATURE_ART))
1244 art_related_clocksource = &clocksource_tsc;
08ec0c58
JS
1245 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1246}
1247
1248
1249static int __init init_tsc_clocksource(void)
8fbbc4b4 1250{
59e21e3d 1251 if (!boot_cpu_has(X86_FEATURE_TSC) || tsc_disabled > 0 || !tsc_khz)
a8760eca
TG
1252 return 0;
1253
395628ef
AK
1254 if (tsc_clocksource_reliable)
1255 clocksource_tsc.flags &= ~CLOCK_SOURCE_MUST_VERIFY;
8fbbc4b4
AK
1256 /* lower the rating if we already know its unstable: */
1257 if (check_tsc_unstable()) {
1258 clocksource_tsc.rating = 0;
1259 clocksource_tsc.flags &= ~CLOCK_SOURCE_IS_CONTINUOUS;
1260 }
57779dc2 1261
82f9c080
FT
1262 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC_S3))
1263 clocksource_tsc.flags |= CLOCK_SOURCE_SUSPEND_NONSTOP;
1264
57779dc2 1265 /*
47c95a46
BG
1266 * When TSC frequency is known (retrieved via MSR or CPUID), we skip
1267 * the refined calibration and directly register it as a clocksource.
57779dc2 1268 */
984feceb 1269 if (boot_cpu_has(X86_FEATURE_TSC_KNOWN_FREQ)) {
44fee88c
PZ
1270 if (boot_cpu_has(X86_FEATURE_ART))
1271 art_related_clocksource = &clocksource_tsc;
57779dc2
AK
1272 clocksource_register_khz(&clocksource_tsc, tsc_khz);
1273 return 0;
1274 }
1275
08ec0c58
JS
1276 schedule_delayed_work(&tsc_irqwork, 0);
1277 return 0;
8fbbc4b4 1278}
08ec0c58
JS
1279/*
1280 * We use device_initcall here, to ensure we run after the hpet
1281 * is fully initialized, which may occur at fs_initcall time.
1282 */
1283device_initcall(init_tsc_clocksource);
8fbbc4b4 1284
eb496063
DL
1285void __init tsc_early_delay_calibrate(void)
1286{
1287 unsigned long lpj;
1288
1289 if (!boot_cpu_has(X86_FEATURE_TSC))
1290 return;
1291
1292 cpu_khz = x86_platform.calibrate_cpu();
1293 tsc_khz = x86_platform.calibrate_tsc();
1294
1295 tsc_khz = tsc_khz ? : cpu_khz;
1296 if (!tsc_khz)
1297 return;
1298
1299 lpj = tsc_khz * 1000;
1300 do_div(lpj, HZ);
1301 loops_per_jiffy = lpj;
1302}
1303
8fbbc4b4
AK
1304void __init tsc_init(void)
1305{
615cd033 1306 u64 lpj, cyc;
8fbbc4b4
AK
1307 int cpu;
1308
59e21e3d 1309 if (!boot_cpu_has(X86_FEATURE_TSC)) {
b47dcbdc 1310 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4 1311 return;
b47dcbdc 1312 }
8fbbc4b4 1313
aa297292 1314 cpu_khz = x86_platform.calibrate_cpu();
2d826404 1315 tsc_khz = x86_platform.calibrate_tsc();
ff4c8663
LB
1316
1317 /*
1318 * Trust non-zero tsc_khz as authorative,
1319 * and use it to sanity check cpu_khz,
1320 * which will be off if system timer is off.
1321 */
aa297292
LB
1322 if (tsc_khz == 0)
1323 tsc_khz = cpu_khz;
ff4c8663
LB
1324 else if (abs(cpu_khz - tsc_khz) * 10 > tsc_khz)
1325 cpu_khz = tsc_khz;
8fbbc4b4 1326
e93ef949 1327 if (!tsc_khz) {
8fbbc4b4 1328 mark_tsc_unstable("could not calculate TSC khz");
b47dcbdc 1329 setup_clear_cpu_cap(X86_FEATURE_TSC_DEADLINE_TIMER);
8fbbc4b4
AK
1330 return;
1331 }
1332
c767a54b
JP
1333 pr_info("Detected %lu.%03lu MHz processor\n",
1334 (unsigned long)cpu_khz / 1000,
1335 (unsigned long)cpu_khz % 1000);
8fbbc4b4 1336
4b5b2127
LB
1337 if (cpu_khz != tsc_khz) {
1338 pr_info("Detected %lu.%03lu MHz TSC",
1339 (unsigned long)tsc_khz / 1000,
1340 (unsigned long)tsc_khz % 1000);
1341 }
1342
f2e04214
TG
1343 /* Sanitize TSC ADJUST before cyc2ns gets initialized */
1344 tsc_store_and_check_tsc_adjust(true);
1345
8fbbc4b4
AK
1346 /*
1347 * Secondary CPUs do not run through tsc_init(), so set up
1348 * all the scale factors for all CPUs, assuming the same
1349 * speed as the bootup CPU. (cpufreq notifiers will fix this
1350 * up if their speed diverges)
1351 */
615cd033 1352 cyc = rdtsc();
20d1c86a
PZ
1353 for_each_possible_cpu(cpu) {
1354 cyc2ns_init(cpu);
5c3c2ea6 1355 set_cyc2ns_scale(tsc_khz, cpu, cyc);
20d1c86a 1356 }
8fbbc4b4
AK
1357
1358 if (tsc_disabled > 0)
1359 return;
1360
1361 /* now allow native_sched_clock() to use rdtsc */
10b033d4 1362
8fbbc4b4 1363 tsc_disabled = 0;
3bbfafb7 1364 static_branch_enable(&__use_tsc);
8fbbc4b4 1365
e82b8e4e
VP
1366 if (!no_sched_irq_time)
1367 enable_sched_clock_irqtime();
1368
70de9a97
AK
1369 lpj = ((u64)tsc_khz * 1000);
1370 do_div(lpj, HZ);
1371 lpj_fine = lpj;
1372
8fbbc4b4 1373 use_tsc_delay();
8fbbc4b4 1374
a1272dd5
ZD
1375 check_system_tsc_reliable();
1376
8fbbc4b4
AK
1377 if (unsynchronized_tsc())
1378 mark_tsc_unstable("TSCs unsynchronized");
1379
f9677e0f 1380 detect_art();
8fbbc4b4
AK
1381}
1382
b565201c
JS
1383#ifdef CONFIG_SMP
1384/*
1385 * If we have a constant TSC and are using the TSC for the delay loop,
1386 * we can skip clock calibration if another cpu in the same socket has already
1387 * been calibrated. This assumes that CONSTANT_TSC applies to all
1388 * cpus in the socket - this should be a safe assumption.
1389 */
148f9bb8 1390unsigned long calibrate_delay_is_known(void)
b565201c 1391{
c25323c0 1392 int sibling, cpu = smp_processor_id();
76ce7cfe
PT
1393 int constant_tsc = cpu_has(&cpu_data(cpu), X86_FEATURE_CONSTANT_TSC);
1394 const struct cpumask *mask = topology_core_cpumask(cpu);
b565201c 1395
76ce7cfe 1396 if (tsc_disabled || !constant_tsc || !mask)
f508a5ba
TG
1397 return 0;
1398
1399 sibling = cpumask_any_but(mask, cpu);
c25323c0
TG
1400 if (sibling < nr_cpu_ids)
1401 return cpu_data(sibling).loops_per_jiffy;
b565201c
JS
1402 return 0;
1403}
1404#endif