]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/bio.c
dm: missing break in process_queued_bios()
[mirror_ubuntu-bionic-kernel.git] / block / bio.c
CommitLineData
1da177e4 1/*
0fe23479 2 * Copyright (C) 2001 Jens Axboe <axboe@kernel.dk>
1da177e4
LT
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License version 2 as
6 * published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public Licens
14 * along with this program; if not, write to the Free Software
15 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-
16 *
17 */
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/bio.h>
21#include <linux/blkdev.h>
a27bb332 22#include <linux/uio.h>
852c788f 23#include <linux/iocontext.h>
1da177e4
LT
24#include <linux/slab.h>
25#include <linux/init.h>
26#include <linux/kernel.h>
630d9c47 27#include <linux/export.h>
1da177e4
LT
28#include <linux/mempool.h>
29#include <linux/workqueue.h>
852c788f 30#include <linux/cgroup.h>
1da177e4 31
55782138 32#include <trace/events/block.h>
9e234eea 33#include "blk.h"
0bfc2455 34
392ddc32
JA
35/*
36 * Test patch to inline a certain number of bi_io_vec's inside the bio
37 * itself, to shrink a bio data allocation from two mempool calls to one
38 */
39#define BIO_INLINE_VECS 4
40
1da177e4
LT
41/*
42 * if you change this list, also change bvec_alloc or things will
43 * break badly! cannot be bigger than what you can fit into an
44 * unsigned short
45 */
1da177e4 46#define BV(x) { .nr_vecs = x, .name = "biovec-"__stringify(x) }
ed996a52 47static struct biovec_slab bvec_slabs[BVEC_POOL_NR] __read_mostly = {
1da177e4
LT
48 BV(1), BV(4), BV(16), BV(64), BV(128), BV(BIO_MAX_PAGES),
49};
50#undef BV
51
1da177e4
LT
52/*
53 * fs_bio_set is the bio_set containing bio and iovec memory pools used by
54 * IO code that does not need private memory pools.
55 */
51d654e1 56struct bio_set *fs_bio_set;
3f86a82a 57EXPORT_SYMBOL(fs_bio_set);
1da177e4 58
bb799ca0
JA
59/*
60 * Our slab pool management
61 */
62struct bio_slab {
63 struct kmem_cache *slab;
64 unsigned int slab_ref;
65 unsigned int slab_size;
66 char name[8];
67};
68static DEFINE_MUTEX(bio_slab_lock);
69static struct bio_slab *bio_slabs;
70static unsigned int bio_slab_nr, bio_slab_max;
71
72static struct kmem_cache *bio_find_or_create_slab(unsigned int extra_size)
73{
74 unsigned int sz = sizeof(struct bio) + extra_size;
75 struct kmem_cache *slab = NULL;
389d7b26 76 struct bio_slab *bslab, *new_bio_slabs;
386bc35a 77 unsigned int new_bio_slab_max;
bb799ca0
JA
78 unsigned int i, entry = -1;
79
80 mutex_lock(&bio_slab_lock);
81
82 i = 0;
83 while (i < bio_slab_nr) {
f06f135d 84 bslab = &bio_slabs[i];
bb799ca0
JA
85
86 if (!bslab->slab && entry == -1)
87 entry = i;
88 else if (bslab->slab_size == sz) {
89 slab = bslab->slab;
90 bslab->slab_ref++;
91 break;
92 }
93 i++;
94 }
95
96 if (slab)
97 goto out_unlock;
98
99 if (bio_slab_nr == bio_slab_max && entry == -1) {
386bc35a 100 new_bio_slab_max = bio_slab_max << 1;
389d7b26 101 new_bio_slabs = krealloc(bio_slabs,
386bc35a 102 new_bio_slab_max * sizeof(struct bio_slab),
389d7b26
AK
103 GFP_KERNEL);
104 if (!new_bio_slabs)
bb799ca0 105 goto out_unlock;
386bc35a 106 bio_slab_max = new_bio_slab_max;
389d7b26 107 bio_slabs = new_bio_slabs;
bb799ca0
JA
108 }
109 if (entry == -1)
110 entry = bio_slab_nr++;
111
112 bslab = &bio_slabs[entry];
113
114 snprintf(bslab->name, sizeof(bslab->name), "bio-%d", entry);
6a241483
MP
115 slab = kmem_cache_create(bslab->name, sz, ARCH_KMALLOC_MINALIGN,
116 SLAB_HWCACHE_ALIGN, NULL);
bb799ca0
JA
117 if (!slab)
118 goto out_unlock;
119
bb799ca0
JA
120 bslab->slab = slab;
121 bslab->slab_ref = 1;
122 bslab->slab_size = sz;
123out_unlock:
124 mutex_unlock(&bio_slab_lock);
125 return slab;
126}
127
128static void bio_put_slab(struct bio_set *bs)
129{
130 struct bio_slab *bslab = NULL;
131 unsigned int i;
132
133 mutex_lock(&bio_slab_lock);
134
135 for (i = 0; i < bio_slab_nr; i++) {
136 if (bs->bio_slab == bio_slabs[i].slab) {
137 bslab = &bio_slabs[i];
138 break;
139 }
140 }
141
142 if (WARN(!bslab, KERN_ERR "bio: unable to find slab!\n"))
143 goto out;
144
145 WARN_ON(!bslab->slab_ref);
146
147 if (--bslab->slab_ref)
148 goto out;
149
150 kmem_cache_destroy(bslab->slab);
151 bslab->slab = NULL;
152
153out:
154 mutex_unlock(&bio_slab_lock);
155}
156
7ba1ba12
MP
157unsigned int bvec_nr_vecs(unsigned short idx)
158{
159 return bvec_slabs[idx].nr_vecs;
160}
161
9f060e22 162void bvec_free(mempool_t *pool, struct bio_vec *bv, unsigned int idx)
bb799ca0 163{
ed996a52
CH
164 if (!idx)
165 return;
166 idx--;
167
168 BIO_BUG_ON(idx >= BVEC_POOL_NR);
bb799ca0 169
ed996a52 170 if (idx == BVEC_POOL_MAX) {
9f060e22 171 mempool_free(bv, pool);
ed996a52 172 } else {
bb799ca0
JA
173 struct biovec_slab *bvs = bvec_slabs + idx;
174
175 kmem_cache_free(bvs->slab, bv);
176 }
177}
178
9f060e22
KO
179struct bio_vec *bvec_alloc(gfp_t gfp_mask, int nr, unsigned long *idx,
180 mempool_t *pool)
1da177e4
LT
181{
182 struct bio_vec *bvl;
1da177e4 183
7ff9345f
JA
184 /*
185 * see comment near bvec_array define!
186 */
187 switch (nr) {
188 case 1:
189 *idx = 0;
190 break;
191 case 2 ... 4:
192 *idx = 1;
193 break;
194 case 5 ... 16:
195 *idx = 2;
196 break;
197 case 17 ... 64:
198 *idx = 3;
199 break;
200 case 65 ... 128:
201 *idx = 4;
202 break;
203 case 129 ... BIO_MAX_PAGES:
204 *idx = 5;
205 break;
206 default:
207 return NULL;
208 }
209
210 /*
211 * idx now points to the pool we want to allocate from. only the
212 * 1-vec entry pool is mempool backed.
213 */
ed996a52 214 if (*idx == BVEC_POOL_MAX) {
7ff9345f 215fallback:
9f060e22 216 bvl = mempool_alloc(pool, gfp_mask);
7ff9345f
JA
217 } else {
218 struct biovec_slab *bvs = bvec_slabs + *idx;
d0164adc 219 gfp_t __gfp_mask = gfp_mask & ~(__GFP_DIRECT_RECLAIM | __GFP_IO);
7ff9345f 220
0a0d96b0 221 /*
7ff9345f
JA
222 * Make this allocation restricted and don't dump info on
223 * allocation failures, since we'll fallback to the mempool
224 * in case of failure.
0a0d96b0 225 */
7ff9345f 226 __gfp_mask |= __GFP_NOMEMALLOC | __GFP_NORETRY | __GFP_NOWARN;
1da177e4 227
0a0d96b0 228 /*
d0164adc 229 * Try a slab allocation. If this fails and __GFP_DIRECT_RECLAIM
7ff9345f 230 * is set, retry with the 1-entry mempool
0a0d96b0 231 */
7ff9345f 232 bvl = kmem_cache_alloc(bvs->slab, __gfp_mask);
d0164adc 233 if (unlikely(!bvl && (gfp_mask & __GFP_DIRECT_RECLAIM))) {
ed996a52 234 *idx = BVEC_POOL_MAX;
7ff9345f
JA
235 goto fallback;
236 }
237 }
238
ed996a52 239 (*idx)++;
1da177e4
LT
240 return bvl;
241}
242
4254bba1 243static void __bio_free(struct bio *bio)
1da177e4 244{
4254bba1 245 bio_disassociate_task(bio);
1da177e4 246
7ba1ba12 247 if (bio_integrity(bio))
1e2a410f 248 bio_integrity_free(bio);
4254bba1 249}
7ba1ba12 250
4254bba1
KO
251static void bio_free(struct bio *bio)
252{
253 struct bio_set *bs = bio->bi_pool;
254 void *p;
255
256 __bio_free(bio);
257
258 if (bs) {
ed996a52 259 bvec_free(bs->bvec_pool, bio->bi_io_vec, BVEC_POOL_IDX(bio));
4254bba1
KO
260
261 /*
262 * If we have front padding, adjust the bio pointer before freeing
263 */
264 p = bio;
bb799ca0
JA
265 p -= bs->front_pad;
266
4254bba1
KO
267 mempool_free(p, bs->bio_pool);
268 } else {
269 /* Bio was allocated by bio_kmalloc() */
270 kfree(bio);
271 }
3676347a
PO
272}
273
3a83f467
ML
274void bio_init(struct bio *bio, struct bio_vec *table,
275 unsigned short max_vecs)
1da177e4 276{
2b94de55 277 memset(bio, 0, sizeof(*bio));
c4cf5261 278 atomic_set(&bio->__bi_remaining, 1);
dac56212 279 atomic_set(&bio->__bi_cnt, 1);
3a83f467
ML
280
281 bio->bi_io_vec = table;
282 bio->bi_max_vecs = max_vecs;
1da177e4 283}
a112a71d 284EXPORT_SYMBOL(bio_init);
1da177e4 285
f44b48c7
KO
286/**
287 * bio_reset - reinitialize a bio
288 * @bio: bio to reset
289 *
290 * Description:
291 * After calling bio_reset(), @bio will be in the same state as a freshly
292 * allocated bio returned bio bio_alloc_bioset() - the only fields that are
293 * preserved are the ones that are initialized by bio_alloc_bioset(). See
294 * comment in struct bio.
295 */
296void bio_reset(struct bio *bio)
297{
298 unsigned long flags = bio->bi_flags & (~0UL << BIO_RESET_BITS);
299
4254bba1 300 __bio_free(bio);
f44b48c7
KO
301
302 memset(bio, 0, BIO_RESET_BYTES);
4246a0b6 303 bio->bi_flags = flags;
c4cf5261 304 atomic_set(&bio->__bi_remaining, 1);
f44b48c7
KO
305}
306EXPORT_SYMBOL(bio_reset);
307
38f8baae 308static struct bio *__bio_chain_endio(struct bio *bio)
196d38bc 309{
4246a0b6
CH
310 struct bio *parent = bio->bi_private;
311
4e4cbee9
CH
312 if (!parent->bi_status)
313 parent->bi_status = bio->bi_status;
196d38bc 314 bio_put(bio);
38f8baae
CH
315 return parent;
316}
317
318static void bio_chain_endio(struct bio *bio)
319{
320 bio_endio(__bio_chain_endio(bio));
196d38bc
KO
321}
322
323/**
324 * bio_chain - chain bio completions
1051a902
RD
325 * @bio: the target bio
326 * @parent: the @bio's parent bio
196d38bc
KO
327 *
328 * The caller won't have a bi_end_io called when @bio completes - instead,
329 * @parent's bi_end_io won't be called until both @parent and @bio have
330 * completed; the chained bio will also be freed when it completes.
331 *
332 * The caller must not set bi_private or bi_end_io in @bio.
333 */
334void bio_chain(struct bio *bio, struct bio *parent)
335{
336 BUG_ON(bio->bi_private || bio->bi_end_io);
337
338 bio->bi_private = parent;
339 bio->bi_end_io = bio_chain_endio;
c4cf5261 340 bio_inc_remaining(parent);
196d38bc
KO
341}
342EXPORT_SYMBOL(bio_chain);
343
df2cb6da
KO
344static void bio_alloc_rescue(struct work_struct *work)
345{
346 struct bio_set *bs = container_of(work, struct bio_set, rescue_work);
347 struct bio *bio;
348
349 while (1) {
350 spin_lock(&bs->rescue_lock);
351 bio = bio_list_pop(&bs->rescue_list);
352 spin_unlock(&bs->rescue_lock);
353
354 if (!bio)
355 break;
356
357 generic_make_request(bio);
358 }
359}
360
361static void punt_bios_to_rescuer(struct bio_set *bs)
362{
363 struct bio_list punt, nopunt;
364 struct bio *bio;
365
366 /*
367 * In order to guarantee forward progress we must punt only bios that
368 * were allocated from this bio_set; otherwise, if there was a bio on
369 * there for a stacking driver higher up in the stack, processing it
370 * could require allocating bios from this bio_set, and doing that from
371 * our own rescuer would be bad.
372 *
373 * Since bio lists are singly linked, pop them all instead of trying to
374 * remove from the middle of the list:
375 */
376
377 bio_list_init(&punt);
378 bio_list_init(&nopunt);
379
f5fe1b51 380 while ((bio = bio_list_pop(&current->bio_list[0])))
df2cb6da 381 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
f5fe1b51 382 current->bio_list[0] = nopunt;
df2cb6da 383
f5fe1b51
N
384 bio_list_init(&nopunt);
385 while ((bio = bio_list_pop(&current->bio_list[1])))
386 bio_list_add(bio->bi_pool == bs ? &punt : &nopunt, bio);
387 current->bio_list[1] = nopunt;
df2cb6da
KO
388
389 spin_lock(&bs->rescue_lock);
390 bio_list_merge(&bs->rescue_list, &punt);
391 spin_unlock(&bs->rescue_lock);
392
393 queue_work(bs->rescue_workqueue, &bs->rescue_work);
394}
395
1da177e4
LT
396/**
397 * bio_alloc_bioset - allocate a bio for I/O
398 * @gfp_mask: the GFP_ mask given to the slab allocator
399 * @nr_iovecs: number of iovecs to pre-allocate
db18efac 400 * @bs: the bio_set to allocate from.
1da177e4
LT
401 *
402 * Description:
3f86a82a
KO
403 * If @bs is NULL, uses kmalloc() to allocate the bio; else the allocation is
404 * backed by the @bs's mempool.
405 *
d0164adc
MG
406 * When @bs is not NULL, if %__GFP_DIRECT_RECLAIM is set then bio_alloc will
407 * always be able to allocate a bio. This is due to the mempool guarantees.
408 * To make this work, callers must never allocate more than 1 bio at a time
409 * from this pool. Callers that need to allocate more than 1 bio must always
410 * submit the previously allocated bio for IO before attempting to allocate
411 * a new one. Failure to do so can cause deadlocks under memory pressure.
3f86a82a 412 *
df2cb6da
KO
413 * Note that when running under generic_make_request() (i.e. any block
414 * driver), bios are not submitted until after you return - see the code in
415 * generic_make_request() that converts recursion into iteration, to prevent
416 * stack overflows.
417 *
418 * This would normally mean allocating multiple bios under
419 * generic_make_request() would be susceptible to deadlocks, but we have
420 * deadlock avoidance code that resubmits any blocked bios from a rescuer
421 * thread.
422 *
423 * However, we do not guarantee forward progress for allocations from other
424 * mempools. Doing multiple allocations from the same mempool under
425 * generic_make_request() should be avoided - instead, use bio_set's front_pad
426 * for per bio allocations.
427 *
3f86a82a
KO
428 * RETURNS:
429 * Pointer to new bio on success, NULL on failure.
430 */
7a88fa19
DC
431struct bio *bio_alloc_bioset(gfp_t gfp_mask, unsigned int nr_iovecs,
432 struct bio_set *bs)
1da177e4 433{
df2cb6da 434 gfp_t saved_gfp = gfp_mask;
3f86a82a
KO
435 unsigned front_pad;
436 unsigned inline_vecs;
34053979 437 struct bio_vec *bvl = NULL;
451a9ebf
TH
438 struct bio *bio;
439 void *p;
440
3f86a82a
KO
441 if (!bs) {
442 if (nr_iovecs > UIO_MAXIOV)
443 return NULL;
444
445 p = kmalloc(sizeof(struct bio) +
446 nr_iovecs * sizeof(struct bio_vec),
447 gfp_mask);
448 front_pad = 0;
449 inline_vecs = nr_iovecs;
450 } else {
d8f429e1
JN
451 /* should not use nobvec bioset for nr_iovecs > 0 */
452 if (WARN_ON_ONCE(!bs->bvec_pool && nr_iovecs > 0))
453 return NULL;
df2cb6da
KO
454 /*
455 * generic_make_request() converts recursion to iteration; this
456 * means if we're running beneath it, any bios we allocate and
457 * submit will not be submitted (and thus freed) until after we
458 * return.
459 *
460 * This exposes us to a potential deadlock if we allocate
461 * multiple bios from the same bio_set() while running
462 * underneath generic_make_request(). If we were to allocate
463 * multiple bios (say a stacking block driver that was splitting
464 * bios), we would deadlock if we exhausted the mempool's
465 * reserve.
466 *
467 * We solve this, and guarantee forward progress, with a rescuer
468 * workqueue per bio_set. If we go to allocate and there are
469 * bios on current->bio_list, we first try the allocation
d0164adc
MG
470 * without __GFP_DIRECT_RECLAIM; if that fails, we punt those
471 * bios we would be blocking to the rescuer workqueue before
472 * we retry with the original gfp_flags.
df2cb6da
KO
473 */
474
f5fe1b51
N
475 if (current->bio_list &&
476 (!bio_list_empty(&current->bio_list[0]) ||
477 !bio_list_empty(&current->bio_list[1])))
d0164adc 478 gfp_mask &= ~__GFP_DIRECT_RECLAIM;
df2cb6da 479
3f86a82a 480 p = mempool_alloc(bs->bio_pool, gfp_mask);
df2cb6da
KO
481 if (!p && gfp_mask != saved_gfp) {
482 punt_bios_to_rescuer(bs);
483 gfp_mask = saved_gfp;
484 p = mempool_alloc(bs->bio_pool, gfp_mask);
485 }
486
3f86a82a
KO
487 front_pad = bs->front_pad;
488 inline_vecs = BIO_INLINE_VECS;
489 }
490
451a9ebf
TH
491 if (unlikely(!p))
492 return NULL;
1da177e4 493
3f86a82a 494 bio = p + front_pad;
3a83f467 495 bio_init(bio, NULL, 0);
34053979 496
3f86a82a 497 if (nr_iovecs > inline_vecs) {
ed996a52
CH
498 unsigned long idx = 0;
499
9f060e22 500 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
501 if (!bvl && gfp_mask != saved_gfp) {
502 punt_bios_to_rescuer(bs);
503 gfp_mask = saved_gfp;
9f060e22 504 bvl = bvec_alloc(gfp_mask, nr_iovecs, &idx, bs->bvec_pool);
df2cb6da
KO
505 }
506
34053979
IM
507 if (unlikely(!bvl))
508 goto err_free;
a38352e0 509
ed996a52 510 bio->bi_flags |= idx << BVEC_POOL_OFFSET;
3f86a82a
KO
511 } else if (nr_iovecs) {
512 bvl = bio->bi_inline_vecs;
1da177e4 513 }
3f86a82a
KO
514
515 bio->bi_pool = bs;
34053979 516 bio->bi_max_vecs = nr_iovecs;
34053979 517 bio->bi_io_vec = bvl;
1da177e4 518 return bio;
34053979
IM
519
520err_free:
451a9ebf 521 mempool_free(p, bs->bio_pool);
34053979 522 return NULL;
1da177e4 523}
a112a71d 524EXPORT_SYMBOL(bio_alloc_bioset);
1da177e4 525
1da177e4
LT
526void zero_fill_bio(struct bio *bio)
527{
528 unsigned long flags;
7988613b
KO
529 struct bio_vec bv;
530 struct bvec_iter iter;
1da177e4 531
7988613b
KO
532 bio_for_each_segment(bv, bio, iter) {
533 char *data = bvec_kmap_irq(&bv, &flags);
534 memset(data, 0, bv.bv_len);
535 flush_dcache_page(bv.bv_page);
1da177e4
LT
536 bvec_kunmap_irq(data, &flags);
537 }
538}
539EXPORT_SYMBOL(zero_fill_bio);
540
541/**
542 * bio_put - release a reference to a bio
543 * @bio: bio to release reference to
544 *
545 * Description:
546 * Put a reference to a &struct bio, either one you have gotten with
ad0bf110 547 * bio_alloc, bio_get or bio_clone. The last put of a bio will free it.
1da177e4
LT
548 **/
549void bio_put(struct bio *bio)
550{
dac56212 551 if (!bio_flagged(bio, BIO_REFFED))
4254bba1 552 bio_free(bio);
dac56212
JA
553 else {
554 BIO_BUG_ON(!atomic_read(&bio->__bi_cnt));
555
556 /*
557 * last put frees it
558 */
559 if (atomic_dec_and_test(&bio->__bi_cnt))
560 bio_free(bio);
561 }
1da177e4 562}
a112a71d 563EXPORT_SYMBOL(bio_put);
1da177e4 564
165125e1 565inline int bio_phys_segments(struct request_queue *q, struct bio *bio)
1da177e4
LT
566{
567 if (unlikely(!bio_flagged(bio, BIO_SEG_VALID)))
568 blk_recount_segments(q, bio);
569
570 return bio->bi_phys_segments;
571}
a112a71d 572EXPORT_SYMBOL(bio_phys_segments);
1da177e4 573
59d276fe
KO
574/**
575 * __bio_clone_fast - clone a bio that shares the original bio's biovec
576 * @bio: destination bio
577 * @bio_src: bio to clone
578 *
579 * Clone a &bio. Caller will own the returned bio, but not
580 * the actual data it points to. Reference count of returned
581 * bio will be one.
582 *
583 * Caller must ensure that @bio_src is not freed before @bio.
584 */
585void __bio_clone_fast(struct bio *bio, struct bio *bio_src)
586{
ed996a52 587 BUG_ON(bio->bi_pool && BVEC_POOL_IDX(bio));
59d276fe
KO
588
589 /*
590 * most users will be overriding ->bi_bdev with a new target,
591 * so we don't set nor calculate new physical/hw segment counts here
592 */
593 bio->bi_bdev = bio_src->bi_bdev;
b7c44ed9 594 bio_set_flag(bio, BIO_CLONED);
1eff9d32 595 bio->bi_opf = bio_src->bi_opf;
59d276fe
KO
596 bio->bi_iter = bio_src->bi_iter;
597 bio->bi_io_vec = bio_src->bi_io_vec;
20bd723e
PV
598
599 bio_clone_blkcg_association(bio, bio_src);
59d276fe
KO
600}
601EXPORT_SYMBOL(__bio_clone_fast);
602
603/**
604 * bio_clone_fast - clone a bio that shares the original bio's biovec
605 * @bio: bio to clone
606 * @gfp_mask: allocation priority
607 * @bs: bio_set to allocate from
608 *
609 * Like __bio_clone_fast, only also allocates the returned bio
610 */
611struct bio *bio_clone_fast(struct bio *bio, gfp_t gfp_mask, struct bio_set *bs)
612{
613 struct bio *b;
614
615 b = bio_alloc_bioset(gfp_mask, 0, bs);
616 if (!b)
617 return NULL;
618
619 __bio_clone_fast(b, bio);
620
621 if (bio_integrity(bio)) {
622 int ret;
623
624 ret = bio_integrity_clone(b, bio, gfp_mask);
625
626 if (ret < 0) {
627 bio_put(b);
628 return NULL;
629 }
630 }
631
632 return b;
633}
634EXPORT_SYMBOL(bio_clone_fast);
635
f4595875
SL
636/**
637 * bio_clone_bioset - clone a bio
638 * @bio_src: bio to clone
639 * @gfp_mask: allocation priority
640 * @bs: bio_set to allocate from
641 *
642 * Clone bio. Caller will own the returned bio, but not the actual data it
643 * points to. Reference count of returned bio will be one.
644 */
645struct bio *bio_clone_bioset(struct bio *bio_src, gfp_t gfp_mask,
646 struct bio_set *bs)
1da177e4 647{
bdb53207
KO
648 struct bvec_iter iter;
649 struct bio_vec bv;
650 struct bio *bio;
1da177e4 651
bdb53207
KO
652 /*
653 * Pre immutable biovecs, __bio_clone() used to just do a memcpy from
654 * bio_src->bi_io_vec to bio->bi_io_vec.
655 *
656 * We can't do that anymore, because:
657 *
658 * - The point of cloning the biovec is to produce a bio with a biovec
659 * the caller can modify: bi_idx and bi_bvec_done should be 0.
660 *
661 * - The original bio could've had more than BIO_MAX_PAGES biovecs; if
662 * we tried to clone the whole thing bio_alloc_bioset() would fail.
663 * But the clone should succeed as long as the number of biovecs we
664 * actually need to allocate is fewer than BIO_MAX_PAGES.
665 *
666 * - Lastly, bi_vcnt should not be looked at or relied upon by code
667 * that does not own the bio - reason being drivers don't use it for
668 * iterating over the biovec anymore, so expecting it to be kept up
669 * to date (i.e. for clones that share the parent biovec) is just
670 * asking for trouble and would force extra work on
671 * __bio_clone_fast() anyways.
672 */
673
f4595875 674 bio = bio_alloc_bioset(gfp_mask, bio_segments(bio_src), bs);
bdb53207 675 if (!bio)
7ba1ba12 676 return NULL;
bdb53207 677 bio->bi_bdev = bio_src->bi_bdev;
1eff9d32 678 bio->bi_opf = bio_src->bi_opf;
bdb53207
KO
679 bio->bi_iter.bi_sector = bio_src->bi_iter.bi_sector;
680 bio->bi_iter.bi_size = bio_src->bi_iter.bi_size;
7ba1ba12 681
7afafc8a
AH
682 switch (bio_op(bio)) {
683 case REQ_OP_DISCARD:
684 case REQ_OP_SECURE_ERASE:
a6f0788e 685 case REQ_OP_WRITE_ZEROES:
7afafc8a
AH
686 break;
687 case REQ_OP_WRITE_SAME:
8423ae3d 688 bio->bi_io_vec[bio->bi_vcnt++] = bio_src->bi_io_vec[0];
7afafc8a
AH
689 break;
690 default:
f4595875 691 bio_for_each_segment(bv, bio_src, iter)
7afafc8a
AH
692 bio->bi_io_vec[bio->bi_vcnt++] = bv;
693 break;
8423ae3d
KO
694 }
695
bdb53207
KO
696 if (bio_integrity(bio_src)) {
697 int ret;
7ba1ba12 698
bdb53207 699 ret = bio_integrity_clone(bio, bio_src, gfp_mask);
059ea331 700 if (ret < 0) {
bdb53207 701 bio_put(bio);
7ba1ba12 702 return NULL;
059ea331 703 }
3676347a 704 }
1da177e4 705
20bd723e
PV
706 bio_clone_blkcg_association(bio, bio_src);
707
bdb53207 708 return bio;
1da177e4 709}
bf800ef1 710EXPORT_SYMBOL(bio_clone_bioset);
1da177e4
LT
711
712/**
c66a14d0
KO
713 * bio_add_pc_page - attempt to add page to bio
714 * @q: the target queue
715 * @bio: destination bio
716 * @page: page to add
717 * @len: vec entry length
718 * @offset: vec entry offset
1da177e4 719 *
c66a14d0
KO
720 * Attempt to add a page to the bio_vec maplist. This can fail for a
721 * number of reasons, such as the bio being full or target block device
722 * limitations. The target block device must allow bio's up to PAGE_SIZE,
723 * so it is always possible to add a single page to an empty bio.
724 *
725 * This should only be used by REQ_PC bios.
1da177e4 726 */
c66a14d0
KO
727int bio_add_pc_page(struct request_queue *q, struct bio *bio, struct page
728 *page, unsigned int len, unsigned int offset)
1da177e4
LT
729{
730 int retried_segments = 0;
731 struct bio_vec *bvec;
732
733 /*
734 * cloned bio must not modify vec list
735 */
736 if (unlikely(bio_flagged(bio, BIO_CLONED)))
737 return 0;
738
c66a14d0 739 if (((bio->bi_iter.bi_size + len) >> 9) > queue_max_hw_sectors(q))
1da177e4
LT
740 return 0;
741
80cfd548
JA
742 /*
743 * For filesystems with a blocksize smaller than the pagesize
744 * we will often be called with the same page as last time and
745 * a consecutive offset. Optimize this special case.
746 */
747 if (bio->bi_vcnt > 0) {
748 struct bio_vec *prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
749
750 if (page == prev->bv_page &&
751 offset == prev->bv_offset + prev->bv_len) {
752 prev->bv_len += len;
fcbf6a08 753 bio->bi_iter.bi_size += len;
80cfd548
JA
754 goto done;
755 }
66cb45aa
JA
756
757 /*
758 * If the queue doesn't support SG gaps and adding this
759 * offset would create a gap, disallow it.
760 */
03100aad 761 if (bvec_gap_to_prev(q, prev, offset))
66cb45aa 762 return 0;
80cfd548
JA
763 }
764
765 if (bio->bi_vcnt >= bio->bi_max_vecs)
1da177e4
LT
766 return 0;
767
768 /*
fcbf6a08
ML
769 * setup the new entry, we might clear it again later if we
770 * cannot add the page
771 */
772 bvec = &bio->bi_io_vec[bio->bi_vcnt];
773 bvec->bv_page = page;
774 bvec->bv_len = len;
775 bvec->bv_offset = offset;
776 bio->bi_vcnt++;
777 bio->bi_phys_segments++;
778 bio->bi_iter.bi_size += len;
779
780 /*
781 * Perform a recount if the number of segments is greater
782 * than queue_max_segments(q).
1da177e4
LT
783 */
784
fcbf6a08 785 while (bio->bi_phys_segments > queue_max_segments(q)) {
1da177e4
LT
786
787 if (retried_segments)
fcbf6a08 788 goto failed;
1da177e4
LT
789
790 retried_segments = 1;
791 blk_recount_segments(q, bio);
792 }
793
1da177e4 794 /* If we may be able to merge these biovecs, force a recount */
fcbf6a08 795 if (bio->bi_vcnt > 1 && (BIOVEC_PHYS_MERGEABLE(bvec-1, bvec)))
b7c44ed9 796 bio_clear_flag(bio, BIO_SEG_VALID);
1da177e4 797
80cfd548 798 done:
1da177e4 799 return len;
fcbf6a08
ML
800
801 failed:
802 bvec->bv_page = NULL;
803 bvec->bv_len = 0;
804 bvec->bv_offset = 0;
805 bio->bi_vcnt--;
806 bio->bi_iter.bi_size -= len;
807 blk_recount_segments(q, bio);
808 return 0;
1da177e4 809}
a112a71d 810EXPORT_SYMBOL(bio_add_pc_page);
6e68af66 811
1da177e4
LT
812/**
813 * bio_add_page - attempt to add page to bio
814 * @bio: destination bio
815 * @page: page to add
816 * @len: vec entry length
817 * @offset: vec entry offset
818 *
c66a14d0
KO
819 * Attempt to add a page to the bio_vec maplist. This will only fail
820 * if either bio->bi_vcnt == bio->bi_max_vecs or it's a cloned bio.
1da177e4 821 */
c66a14d0
KO
822int bio_add_page(struct bio *bio, struct page *page,
823 unsigned int len, unsigned int offset)
1da177e4 824{
c66a14d0
KO
825 struct bio_vec *bv;
826
827 /*
828 * cloned bio must not modify vec list
829 */
830 if (WARN_ON_ONCE(bio_flagged(bio, BIO_CLONED)))
831 return 0;
762380ad 832
c66a14d0
KO
833 /*
834 * For filesystems with a blocksize smaller than the pagesize
835 * we will often be called with the same page as last time and
836 * a consecutive offset. Optimize this special case.
837 */
838 if (bio->bi_vcnt > 0) {
839 bv = &bio->bi_io_vec[bio->bi_vcnt - 1];
58a4915a 840
c66a14d0
KO
841 if (page == bv->bv_page &&
842 offset == bv->bv_offset + bv->bv_len) {
843 bv->bv_len += len;
844 goto done;
845 }
846 }
847
848 if (bio->bi_vcnt >= bio->bi_max_vecs)
849 return 0;
850
851 bv = &bio->bi_io_vec[bio->bi_vcnt];
852 bv->bv_page = page;
853 bv->bv_len = len;
854 bv->bv_offset = offset;
855
856 bio->bi_vcnt++;
857done:
858 bio->bi_iter.bi_size += len;
859 return len;
1da177e4 860}
a112a71d 861EXPORT_SYMBOL(bio_add_page);
1da177e4 862
2cefe4db
KO
863/**
864 * bio_iov_iter_get_pages - pin user or kernel pages and add them to a bio
865 * @bio: bio to add pages to
866 * @iter: iov iterator describing the region to be mapped
867 *
868 * Pins as many pages from *iter and appends them to @bio's bvec array. The
869 * pages will have to be released using put_page() when done.
870 */
871int bio_iov_iter_get_pages(struct bio *bio, struct iov_iter *iter)
872{
873 unsigned short nr_pages = bio->bi_max_vecs - bio->bi_vcnt;
874 struct bio_vec *bv = bio->bi_io_vec + bio->bi_vcnt;
875 struct page **pages = (struct page **)bv;
876 size_t offset, diff;
877 ssize_t size;
878
879 size = iov_iter_get_pages(iter, pages, LONG_MAX, nr_pages, &offset);
880 if (unlikely(size <= 0))
881 return size ? size : -EFAULT;
882 nr_pages = (size + offset + PAGE_SIZE - 1) / PAGE_SIZE;
883
884 /*
885 * Deep magic below: We need to walk the pinned pages backwards
886 * because we are abusing the space allocated for the bio_vecs
887 * for the page array. Because the bio_vecs are larger than the
888 * page pointers by definition this will always work. But it also
889 * means we can't use bio_add_page, so any changes to it's semantics
890 * need to be reflected here as well.
891 */
892 bio->bi_iter.bi_size += size;
893 bio->bi_vcnt += nr_pages;
894
895 diff = (nr_pages * PAGE_SIZE - offset) - size;
896 while (nr_pages--) {
897 bv[nr_pages].bv_page = pages[nr_pages];
898 bv[nr_pages].bv_len = PAGE_SIZE;
899 bv[nr_pages].bv_offset = 0;
900 }
901
902 bv[0].bv_offset += offset;
903 bv[0].bv_len -= offset;
904 if (diff)
905 bv[bio->bi_vcnt - 1].bv_len -= diff;
906
907 iov_iter_advance(iter, size);
908 return 0;
909}
910EXPORT_SYMBOL_GPL(bio_iov_iter_get_pages);
911
9e882242
KO
912struct submit_bio_ret {
913 struct completion event;
914 int error;
915};
916
4246a0b6 917static void submit_bio_wait_endio(struct bio *bio)
9e882242
KO
918{
919 struct submit_bio_ret *ret = bio->bi_private;
920
4e4cbee9 921 ret->error = blk_status_to_errno(bio->bi_status);
9e882242
KO
922 complete(&ret->event);
923}
924
925/**
926 * submit_bio_wait - submit a bio, and wait until it completes
9e882242
KO
927 * @bio: The &struct bio which describes the I/O
928 *
929 * Simple wrapper around submit_bio(). Returns 0 on success, or the error from
930 * bio_endio() on failure.
931 */
4e49ea4a 932int submit_bio_wait(struct bio *bio)
9e882242
KO
933{
934 struct submit_bio_ret ret;
935
9e882242
KO
936 init_completion(&ret.event);
937 bio->bi_private = &ret;
938 bio->bi_end_io = submit_bio_wait_endio;
1eff9d32 939 bio->bi_opf |= REQ_SYNC;
4e49ea4a 940 submit_bio(bio);
d57d6115 941 wait_for_completion_io(&ret.event);
9e882242
KO
942
943 return ret.error;
944}
945EXPORT_SYMBOL(submit_bio_wait);
946
054bdf64
KO
947/**
948 * bio_advance - increment/complete a bio by some number of bytes
949 * @bio: bio to advance
950 * @bytes: number of bytes to complete
951 *
952 * This updates bi_sector, bi_size and bi_idx; if the number of bytes to
953 * complete doesn't align with a bvec boundary, then bv_len and bv_offset will
954 * be updated on the last bvec as well.
955 *
956 * @bio will then represent the remaining, uncompleted portion of the io.
957 */
958void bio_advance(struct bio *bio, unsigned bytes)
959{
960 if (bio_integrity(bio))
961 bio_integrity_advance(bio, bytes);
962
4550dd6c 963 bio_advance_iter(bio, &bio->bi_iter, bytes);
054bdf64
KO
964}
965EXPORT_SYMBOL(bio_advance);
966
a0787606
KO
967/**
968 * bio_alloc_pages - allocates a single page for each bvec in a bio
969 * @bio: bio to allocate pages for
970 * @gfp_mask: flags for allocation
971 *
972 * Allocates pages up to @bio->bi_vcnt.
973 *
974 * Returns 0 on success, -ENOMEM on failure. On failure, any allocated pages are
975 * freed.
976 */
977int bio_alloc_pages(struct bio *bio, gfp_t gfp_mask)
978{
979 int i;
980 struct bio_vec *bv;
981
982 bio_for_each_segment_all(bv, bio, i) {
983 bv->bv_page = alloc_page(gfp_mask);
984 if (!bv->bv_page) {
985 while (--bv >= bio->bi_io_vec)
986 __free_page(bv->bv_page);
987 return -ENOMEM;
988 }
989 }
990
991 return 0;
992}
993EXPORT_SYMBOL(bio_alloc_pages);
994
16ac3d63
KO
995/**
996 * bio_copy_data - copy contents of data buffers from one chain of bios to
997 * another
998 * @src: source bio list
999 * @dst: destination bio list
1000 *
1001 * If @src and @dst are single bios, bi_next must be NULL - otherwise, treats
1002 * @src and @dst as linked lists of bios.
1003 *
1004 * Stops when it reaches the end of either @src or @dst - that is, copies
1005 * min(src->bi_size, dst->bi_size) bytes (or the equivalent for lists of bios).
1006 */
1007void bio_copy_data(struct bio *dst, struct bio *src)
1008{
1cb9dda4
KO
1009 struct bvec_iter src_iter, dst_iter;
1010 struct bio_vec src_bv, dst_bv;
16ac3d63 1011 void *src_p, *dst_p;
1cb9dda4 1012 unsigned bytes;
16ac3d63 1013
1cb9dda4
KO
1014 src_iter = src->bi_iter;
1015 dst_iter = dst->bi_iter;
16ac3d63
KO
1016
1017 while (1) {
1cb9dda4
KO
1018 if (!src_iter.bi_size) {
1019 src = src->bi_next;
1020 if (!src)
1021 break;
16ac3d63 1022
1cb9dda4 1023 src_iter = src->bi_iter;
16ac3d63
KO
1024 }
1025
1cb9dda4
KO
1026 if (!dst_iter.bi_size) {
1027 dst = dst->bi_next;
1028 if (!dst)
1029 break;
16ac3d63 1030
1cb9dda4 1031 dst_iter = dst->bi_iter;
16ac3d63
KO
1032 }
1033
1cb9dda4
KO
1034 src_bv = bio_iter_iovec(src, src_iter);
1035 dst_bv = bio_iter_iovec(dst, dst_iter);
1036
1037 bytes = min(src_bv.bv_len, dst_bv.bv_len);
16ac3d63 1038
1cb9dda4
KO
1039 src_p = kmap_atomic(src_bv.bv_page);
1040 dst_p = kmap_atomic(dst_bv.bv_page);
16ac3d63 1041
1cb9dda4
KO
1042 memcpy(dst_p + dst_bv.bv_offset,
1043 src_p + src_bv.bv_offset,
16ac3d63
KO
1044 bytes);
1045
1046 kunmap_atomic(dst_p);
1047 kunmap_atomic(src_p);
1048
1cb9dda4
KO
1049 bio_advance_iter(src, &src_iter, bytes);
1050 bio_advance_iter(dst, &dst_iter, bytes);
16ac3d63
KO
1051 }
1052}
1053EXPORT_SYMBOL(bio_copy_data);
1054
1da177e4 1055struct bio_map_data {
152e283f 1056 int is_our_pages;
26e49cfc
KO
1057 struct iov_iter iter;
1058 struct iovec iov[];
1da177e4
LT
1059};
1060
7410b3c6 1061static struct bio_map_data *bio_alloc_map_data(unsigned int iov_count,
76029ff3 1062 gfp_t gfp_mask)
1da177e4 1063{
f3f63c1c
JA
1064 if (iov_count > UIO_MAXIOV)
1065 return NULL;
1da177e4 1066
c8db4448 1067 return kmalloc(sizeof(struct bio_map_data) +
26e49cfc 1068 sizeof(struct iovec) * iov_count, gfp_mask);
1da177e4
LT
1069}
1070
9124d3fe
DP
1071/**
1072 * bio_copy_from_iter - copy all pages from iov_iter to bio
1073 * @bio: The &struct bio which describes the I/O as destination
1074 * @iter: iov_iter as source
1075 *
1076 * Copy all pages from iov_iter to bio.
1077 * Returns 0 on success, or error on failure.
1078 */
1079static int bio_copy_from_iter(struct bio *bio, struct iov_iter iter)
c5dec1c3 1080{
9124d3fe 1081 int i;
c5dec1c3 1082 struct bio_vec *bvec;
c5dec1c3 1083
d74c6d51 1084 bio_for_each_segment_all(bvec, bio, i) {
9124d3fe 1085 ssize_t ret;
c5dec1c3 1086
9124d3fe
DP
1087 ret = copy_page_from_iter(bvec->bv_page,
1088 bvec->bv_offset,
1089 bvec->bv_len,
1090 &iter);
1091
1092 if (!iov_iter_count(&iter))
1093 break;
1094
1095 if (ret < bvec->bv_len)
1096 return -EFAULT;
c5dec1c3
FT
1097 }
1098
9124d3fe
DP
1099 return 0;
1100}
1101
1102/**
1103 * bio_copy_to_iter - copy all pages from bio to iov_iter
1104 * @bio: The &struct bio which describes the I/O as source
1105 * @iter: iov_iter as destination
1106 *
1107 * Copy all pages from bio to iov_iter.
1108 * Returns 0 on success, or error on failure.
1109 */
1110static int bio_copy_to_iter(struct bio *bio, struct iov_iter iter)
1111{
1112 int i;
1113 struct bio_vec *bvec;
1114
1115 bio_for_each_segment_all(bvec, bio, i) {
1116 ssize_t ret;
1117
1118 ret = copy_page_to_iter(bvec->bv_page,
1119 bvec->bv_offset,
1120 bvec->bv_len,
1121 &iter);
1122
1123 if (!iov_iter_count(&iter))
1124 break;
1125
1126 if (ret < bvec->bv_len)
1127 return -EFAULT;
1128 }
1129
1130 return 0;
c5dec1c3
FT
1131}
1132
491221f8 1133void bio_free_pages(struct bio *bio)
1dfa0f68
CH
1134{
1135 struct bio_vec *bvec;
1136 int i;
1137
1138 bio_for_each_segment_all(bvec, bio, i)
1139 __free_page(bvec->bv_page);
1140}
491221f8 1141EXPORT_SYMBOL(bio_free_pages);
1dfa0f68 1142
1da177e4
LT
1143/**
1144 * bio_uncopy_user - finish previously mapped bio
1145 * @bio: bio being terminated
1146 *
ddad8dd0 1147 * Free pages allocated from bio_copy_user_iov() and write back data
1da177e4
LT
1148 * to user space in case of a read.
1149 */
1150int bio_uncopy_user(struct bio *bio)
1151{
1152 struct bio_map_data *bmd = bio->bi_private;
1dfa0f68 1153 int ret = 0;
1da177e4 1154
35dc2483
RD
1155 if (!bio_flagged(bio, BIO_NULL_MAPPED)) {
1156 /*
1157 * if we're in a workqueue, the request is orphaned, so
2d99b55d
HR
1158 * don't copy into a random user address space, just free
1159 * and return -EINTR so user space doesn't expect any data.
35dc2483 1160 */
2d99b55d
HR
1161 if (!current->mm)
1162 ret = -EINTR;
1163 else if (bio_data_dir(bio) == READ)
9124d3fe 1164 ret = bio_copy_to_iter(bio, bmd->iter);
1dfa0f68
CH
1165 if (bmd->is_our_pages)
1166 bio_free_pages(bio);
35dc2483 1167 }
c8db4448 1168 kfree(bmd);
1da177e4
LT
1169 bio_put(bio);
1170 return ret;
1171}
1172
1173/**
c5dec1c3 1174 * bio_copy_user_iov - copy user data to bio
26e49cfc
KO
1175 * @q: destination block queue
1176 * @map_data: pointer to the rq_map_data holding pages (if necessary)
1177 * @iter: iovec iterator
1178 * @gfp_mask: memory allocation flags
1da177e4
LT
1179 *
1180 * Prepares and returns a bio for indirect user io, bouncing data
1181 * to/from kernel pages as necessary. Must be paired with
1182 * call bio_uncopy_user() on io completion.
1183 */
152e283f
FT
1184struct bio *bio_copy_user_iov(struct request_queue *q,
1185 struct rq_map_data *map_data,
26e49cfc
KO
1186 const struct iov_iter *iter,
1187 gfp_t gfp_mask)
1da177e4 1188{
1da177e4 1189 struct bio_map_data *bmd;
1da177e4
LT
1190 struct page *page;
1191 struct bio *bio;
1192 int i, ret;
c5dec1c3 1193 int nr_pages = 0;
26e49cfc 1194 unsigned int len = iter->count;
bd5cecea 1195 unsigned int offset = map_data ? offset_in_page(map_data->offset) : 0;
1da177e4 1196
26e49cfc 1197 for (i = 0; i < iter->nr_segs; i++) {
c5dec1c3
FT
1198 unsigned long uaddr;
1199 unsigned long end;
1200 unsigned long start;
1201
26e49cfc
KO
1202 uaddr = (unsigned long) iter->iov[i].iov_base;
1203 end = (uaddr + iter->iov[i].iov_len + PAGE_SIZE - 1)
1204 >> PAGE_SHIFT;
c5dec1c3
FT
1205 start = uaddr >> PAGE_SHIFT;
1206
cb4644ca
JA
1207 /*
1208 * Overflow, abort
1209 */
1210 if (end < start)
1211 return ERR_PTR(-EINVAL);
1212
c5dec1c3 1213 nr_pages += end - start;
c5dec1c3
FT
1214 }
1215
69838727
FT
1216 if (offset)
1217 nr_pages++;
1218
26e49cfc 1219 bmd = bio_alloc_map_data(iter->nr_segs, gfp_mask);
1da177e4
LT
1220 if (!bmd)
1221 return ERR_PTR(-ENOMEM);
1222
26e49cfc
KO
1223 /*
1224 * We need to do a deep copy of the iov_iter including the iovecs.
1225 * The caller provided iov might point to an on-stack or otherwise
1226 * shortlived one.
1227 */
1228 bmd->is_our_pages = map_data ? 0 : 1;
1229 memcpy(bmd->iov, iter->iov, sizeof(struct iovec) * iter->nr_segs);
1230 iov_iter_init(&bmd->iter, iter->type, bmd->iov,
1231 iter->nr_segs, iter->count);
1232
1da177e4 1233 ret = -ENOMEM;
a9e9dc24 1234 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1235 if (!bio)
1236 goto out_bmd;
1237
1da177e4 1238 ret = 0;
56c451f4
FT
1239
1240 if (map_data) {
e623ddb4 1241 nr_pages = 1 << map_data->page_order;
56c451f4
FT
1242 i = map_data->offset / PAGE_SIZE;
1243 }
1da177e4 1244 while (len) {
e623ddb4 1245 unsigned int bytes = PAGE_SIZE;
1da177e4 1246
56c451f4
FT
1247 bytes -= offset;
1248
1da177e4
LT
1249 if (bytes > len)
1250 bytes = len;
1251
152e283f 1252 if (map_data) {
e623ddb4 1253 if (i == map_data->nr_entries * nr_pages) {
152e283f
FT
1254 ret = -ENOMEM;
1255 break;
1256 }
e623ddb4
FT
1257
1258 page = map_data->pages[i / nr_pages];
1259 page += (i % nr_pages);
1260
1261 i++;
1262 } else {
152e283f 1263 page = alloc_page(q->bounce_gfp | gfp_mask);
e623ddb4
FT
1264 if (!page) {
1265 ret = -ENOMEM;
1266 break;
1267 }
1da177e4
LT
1268 }
1269
56c451f4 1270 if (bio_add_pc_page(q, bio, page, bytes, offset) < bytes)
1da177e4 1271 break;
1da177e4
LT
1272
1273 len -= bytes;
56c451f4 1274 offset = 0;
1da177e4
LT
1275 }
1276
1277 if (ret)
1278 goto cleanup;
1279
1280 /*
1281 * success
1282 */
26e49cfc 1283 if (((iter->type & WRITE) && (!map_data || !map_data->null_mapped)) ||
ecb554a8 1284 (map_data && map_data->from_user)) {
9124d3fe 1285 ret = bio_copy_from_iter(bio, *iter);
c5dec1c3
FT
1286 if (ret)
1287 goto cleanup;
1da177e4
LT
1288 }
1289
26e49cfc 1290 bio->bi_private = bmd;
1da177e4
LT
1291 return bio;
1292cleanup:
152e283f 1293 if (!map_data)
1dfa0f68 1294 bio_free_pages(bio);
1da177e4
LT
1295 bio_put(bio);
1296out_bmd:
c8db4448 1297 kfree(bmd);
1da177e4
LT
1298 return ERR_PTR(ret);
1299}
1300
37f19e57
CH
1301/**
1302 * bio_map_user_iov - map user iovec into bio
1303 * @q: the struct request_queue for the bio
1304 * @iter: iovec iterator
1305 * @gfp_mask: memory allocation flags
1306 *
1307 * Map the user space address into a bio suitable for io to a block
1308 * device. Returns an error pointer in case of error.
1309 */
1310struct bio *bio_map_user_iov(struct request_queue *q,
1311 const struct iov_iter *iter,
1312 gfp_t gfp_mask)
1da177e4 1313{
26e49cfc 1314 int j;
f1970baf 1315 int nr_pages = 0;
1da177e4
LT
1316 struct page **pages;
1317 struct bio *bio;
f1970baf
JB
1318 int cur_page = 0;
1319 int ret, offset;
26e49cfc
KO
1320 struct iov_iter i;
1321 struct iovec iov;
1da177e4 1322
26e49cfc
KO
1323 iov_for_each(iov, i, *iter) {
1324 unsigned long uaddr = (unsigned long) iov.iov_base;
1325 unsigned long len = iov.iov_len;
f1970baf
JB
1326 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1327 unsigned long start = uaddr >> PAGE_SHIFT;
1328
cb4644ca
JA
1329 /*
1330 * Overflow, abort
1331 */
1332 if (end < start)
1333 return ERR_PTR(-EINVAL);
1334
f1970baf
JB
1335 nr_pages += end - start;
1336 /*
a441b0d0 1337 * buffer must be aligned to at least logical block size for now
f1970baf 1338 */
ad2d7225 1339 if (uaddr & queue_dma_alignment(q))
f1970baf
JB
1340 return ERR_PTR(-EINVAL);
1341 }
1342
1343 if (!nr_pages)
1da177e4
LT
1344 return ERR_PTR(-EINVAL);
1345
a9e9dc24 1346 bio = bio_kmalloc(gfp_mask, nr_pages);
1da177e4
LT
1347 if (!bio)
1348 return ERR_PTR(-ENOMEM);
1349
1350 ret = -ENOMEM;
a3bce90e 1351 pages = kcalloc(nr_pages, sizeof(struct page *), gfp_mask);
1da177e4
LT
1352 if (!pages)
1353 goto out;
1354
26e49cfc
KO
1355 iov_for_each(iov, i, *iter) {
1356 unsigned long uaddr = (unsigned long) iov.iov_base;
1357 unsigned long len = iov.iov_len;
f1970baf
JB
1358 unsigned long end = (uaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1359 unsigned long start = uaddr >> PAGE_SHIFT;
1360 const int local_nr_pages = end - start;
1361 const int page_limit = cur_page + local_nr_pages;
cb4644ca 1362
f5dd33c4 1363 ret = get_user_pages_fast(uaddr, local_nr_pages,
26e49cfc
KO
1364 (iter->type & WRITE) != WRITE,
1365 &pages[cur_page]);
99172157
JA
1366 if (ret < local_nr_pages) {
1367 ret = -EFAULT;
f1970baf 1368 goto out_unmap;
99172157 1369 }
f1970baf 1370
bd5cecea 1371 offset = offset_in_page(uaddr);
f1970baf
JB
1372 for (j = cur_page; j < page_limit; j++) {
1373 unsigned int bytes = PAGE_SIZE - offset;
1374
1375 if (len <= 0)
1376 break;
1377
1378 if (bytes > len)
1379 bytes = len;
1380
1381 /*
1382 * sorry...
1383 */
defd94b7
MC
1384 if (bio_add_pc_page(q, bio, pages[j], bytes, offset) <
1385 bytes)
f1970baf
JB
1386 break;
1387
1388 len -= bytes;
1389 offset = 0;
1390 }
1da177e4 1391
f1970baf 1392 cur_page = j;
1da177e4 1393 /*
f1970baf 1394 * release the pages we didn't map into the bio, if any
1da177e4 1395 */
f1970baf 1396 while (j < page_limit)
09cbfeaf 1397 put_page(pages[j++]);
1da177e4
LT
1398 }
1399
1da177e4
LT
1400 kfree(pages);
1401
b7c44ed9 1402 bio_set_flag(bio, BIO_USER_MAPPED);
37f19e57
CH
1403
1404 /*
5fad1b64 1405 * subtle -- if bio_map_user_iov() ended up bouncing a bio,
37f19e57
CH
1406 * it would normally disappear when its bi_end_io is run.
1407 * however, we need it for the unmap, so grab an extra
1408 * reference to it
1409 */
1410 bio_get(bio);
1da177e4 1411 return bio;
f1970baf
JB
1412
1413 out_unmap:
26e49cfc
KO
1414 for (j = 0; j < nr_pages; j++) {
1415 if (!pages[j])
f1970baf 1416 break;
09cbfeaf 1417 put_page(pages[j]);
f1970baf
JB
1418 }
1419 out:
1da177e4
LT
1420 kfree(pages);
1421 bio_put(bio);
1422 return ERR_PTR(ret);
1423}
1424
1da177e4
LT
1425static void __bio_unmap_user(struct bio *bio)
1426{
1427 struct bio_vec *bvec;
1428 int i;
1429
1430 /*
1431 * make sure we dirty pages we wrote to
1432 */
d74c6d51 1433 bio_for_each_segment_all(bvec, bio, i) {
1da177e4
LT
1434 if (bio_data_dir(bio) == READ)
1435 set_page_dirty_lock(bvec->bv_page);
1436
09cbfeaf 1437 put_page(bvec->bv_page);
1da177e4
LT
1438 }
1439
1440 bio_put(bio);
1441}
1442
1443/**
1444 * bio_unmap_user - unmap a bio
1445 * @bio: the bio being unmapped
1446 *
5fad1b64
BVA
1447 * Unmap a bio previously mapped by bio_map_user_iov(). Must be called from
1448 * process context.
1da177e4
LT
1449 *
1450 * bio_unmap_user() may sleep.
1451 */
1452void bio_unmap_user(struct bio *bio)
1453{
1454 __bio_unmap_user(bio);
1455 bio_put(bio);
1456}
1457
4246a0b6 1458static void bio_map_kern_endio(struct bio *bio)
b823825e 1459{
b823825e 1460 bio_put(bio);
b823825e
JA
1461}
1462
75c72b83
CH
1463/**
1464 * bio_map_kern - map kernel address into bio
1465 * @q: the struct request_queue for the bio
1466 * @data: pointer to buffer to map
1467 * @len: length in bytes
1468 * @gfp_mask: allocation flags for bio allocation
1469 *
1470 * Map the kernel address into a bio suitable for io to a block
1471 * device. Returns an error pointer in case of error.
1472 */
1473struct bio *bio_map_kern(struct request_queue *q, void *data, unsigned int len,
1474 gfp_t gfp_mask)
df46b9a4
MC
1475{
1476 unsigned long kaddr = (unsigned long)data;
1477 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1478 unsigned long start = kaddr >> PAGE_SHIFT;
1479 const int nr_pages = end - start;
1480 int offset, i;
1481 struct bio *bio;
1482
a9e9dc24 1483 bio = bio_kmalloc(gfp_mask, nr_pages);
df46b9a4
MC
1484 if (!bio)
1485 return ERR_PTR(-ENOMEM);
1486
1487 offset = offset_in_page(kaddr);
1488 for (i = 0; i < nr_pages; i++) {
1489 unsigned int bytes = PAGE_SIZE - offset;
1490
1491 if (len <= 0)
1492 break;
1493
1494 if (bytes > len)
1495 bytes = len;
1496
defd94b7 1497 if (bio_add_pc_page(q, bio, virt_to_page(data), bytes,
75c72b83
CH
1498 offset) < bytes) {
1499 /* we don't support partial mappings */
1500 bio_put(bio);
1501 return ERR_PTR(-EINVAL);
1502 }
df46b9a4
MC
1503
1504 data += bytes;
1505 len -= bytes;
1506 offset = 0;
1507 }
1508
b823825e 1509 bio->bi_end_io = bio_map_kern_endio;
df46b9a4
MC
1510 return bio;
1511}
a112a71d 1512EXPORT_SYMBOL(bio_map_kern);
df46b9a4 1513
4246a0b6 1514static void bio_copy_kern_endio(struct bio *bio)
68154e90 1515{
1dfa0f68
CH
1516 bio_free_pages(bio);
1517 bio_put(bio);
1518}
1519
4246a0b6 1520static void bio_copy_kern_endio_read(struct bio *bio)
1dfa0f68 1521{
42d2683a 1522 char *p = bio->bi_private;
1dfa0f68 1523 struct bio_vec *bvec;
68154e90
FT
1524 int i;
1525
d74c6d51 1526 bio_for_each_segment_all(bvec, bio, i) {
1dfa0f68 1527 memcpy(p, page_address(bvec->bv_page), bvec->bv_len);
c8db4448 1528 p += bvec->bv_len;
68154e90
FT
1529 }
1530
4246a0b6 1531 bio_copy_kern_endio(bio);
68154e90
FT
1532}
1533
1534/**
1535 * bio_copy_kern - copy kernel address into bio
1536 * @q: the struct request_queue for the bio
1537 * @data: pointer to buffer to copy
1538 * @len: length in bytes
1539 * @gfp_mask: allocation flags for bio and page allocation
ffee0259 1540 * @reading: data direction is READ
68154e90
FT
1541 *
1542 * copy the kernel address into a bio suitable for io to a block
1543 * device. Returns an error pointer in case of error.
1544 */
1545struct bio *bio_copy_kern(struct request_queue *q, void *data, unsigned int len,
1546 gfp_t gfp_mask, int reading)
1547{
42d2683a
CH
1548 unsigned long kaddr = (unsigned long)data;
1549 unsigned long end = (kaddr + len + PAGE_SIZE - 1) >> PAGE_SHIFT;
1550 unsigned long start = kaddr >> PAGE_SHIFT;
42d2683a
CH
1551 struct bio *bio;
1552 void *p = data;
1dfa0f68 1553 int nr_pages = 0;
68154e90 1554
42d2683a
CH
1555 /*
1556 * Overflow, abort
1557 */
1558 if (end < start)
1559 return ERR_PTR(-EINVAL);
68154e90 1560
42d2683a
CH
1561 nr_pages = end - start;
1562 bio = bio_kmalloc(gfp_mask, nr_pages);
1563 if (!bio)
1564 return ERR_PTR(-ENOMEM);
68154e90 1565
42d2683a
CH
1566 while (len) {
1567 struct page *page;
1568 unsigned int bytes = PAGE_SIZE;
68154e90 1569
42d2683a
CH
1570 if (bytes > len)
1571 bytes = len;
1572
1573 page = alloc_page(q->bounce_gfp | gfp_mask);
1574 if (!page)
1575 goto cleanup;
1576
1577 if (!reading)
1578 memcpy(page_address(page), p, bytes);
1579
1580 if (bio_add_pc_page(q, bio, page, bytes, 0) < bytes)
1581 break;
1582
1583 len -= bytes;
1584 p += bytes;
68154e90
FT
1585 }
1586
1dfa0f68
CH
1587 if (reading) {
1588 bio->bi_end_io = bio_copy_kern_endio_read;
1589 bio->bi_private = data;
1590 } else {
1591 bio->bi_end_io = bio_copy_kern_endio;
1dfa0f68 1592 }
76029ff3 1593
68154e90 1594 return bio;
42d2683a
CH
1595
1596cleanup:
1dfa0f68 1597 bio_free_pages(bio);
42d2683a
CH
1598 bio_put(bio);
1599 return ERR_PTR(-ENOMEM);
68154e90
FT
1600}
1601
1da177e4
LT
1602/*
1603 * bio_set_pages_dirty() and bio_check_pages_dirty() are support functions
1604 * for performing direct-IO in BIOs.
1605 *
1606 * The problem is that we cannot run set_page_dirty() from interrupt context
1607 * because the required locks are not interrupt-safe. So what we can do is to
1608 * mark the pages dirty _before_ performing IO. And in interrupt context,
1609 * check that the pages are still dirty. If so, fine. If not, redirty them
1610 * in process context.
1611 *
1612 * We special-case compound pages here: normally this means reads into hugetlb
1613 * pages. The logic in here doesn't really work right for compound pages
1614 * because the VM does not uniformly chase down the head page in all cases.
1615 * But dirtiness of compound pages is pretty meaningless anyway: the VM doesn't
1616 * handle them at all. So we skip compound pages here at an early stage.
1617 *
1618 * Note that this code is very hard to test under normal circumstances because
1619 * direct-io pins the pages with get_user_pages(). This makes
1620 * is_page_cache_freeable return false, and the VM will not clean the pages.
0d5c3eba 1621 * But other code (eg, flusher threads) could clean the pages if they are mapped
1da177e4
LT
1622 * pagecache.
1623 *
1624 * Simply disabling the call to bio_set_pages_dirty() is a good way to test the
1625 * deferred bio dirtying paths.
1626 */
1627
1628/*
1629 * bio_set_pages_dirty() will mark all the bio's pages as dirty.
1630 */
1631void bio_set_pages_dirty(struct bio *bio)
1632{
cb34e057 1633 struct bio_vec *bvec;
1da177e4
LT
1634 int i;
1635
cb34e057
KO
1636 bio_for_each_segment_all(bvec, bio, i) {
1637 struct page *page = bvec->bv_page;
1da177e4
LT
1638
1639 if (page && !PageCompound(page))
1640 set_page_dirty_lock(page);
1641 }
1642}
1643
86b6c7a7 1644static void bio_release_pages(struct bio *bio)
1da177e4 1645{
cb34e057 1646 struct bio_vec *bvec;
1da177e4
LT
1647 int i;
1648
cb34e057
KO
1649 bio_for_each_segment_all(bvec, bio, i) {
1650 struct page *page = bvec->bv_page;
1da177e4
LT
1651
1652 if (page)
1653 put_page(page);
1654 }
1655}
1656
1657/*
1658 * bio_check_pages_dirty() will check that all the BIO's pages are still dirty.
1659 * If they are, then fine. If, however, some pages are clean then they must
1660 * have been written out during the direct-IO read. So we take another ref on
1661 * the BIO and the offending pages and re-dirty the pages in process context.
1662 *
1663 * It is expected that bio_check_pages_dirty() will wholly own the BIO from
ea1754a0
KS
1664 * here on. It will run one put_page() against each page and will run one
1665 * bio_put() against the BIO.
1da177e4
LT
1666 */
1667
65f27f38 1668static void bio_dirty_fn(struct work_struct *work);
1da177e4 1669
65f27f38 1670static DECLARE_WORK(bio_dirty_work, bio_dirty_fn);
1da177e4
LT
1671static DEFINE_SPINLOCK(bio_dirty_lock);
1672static struct bio *bio_dirty_list;
1673
1674/*
1675 * This runs in process context
1676 */
65f27f38 1677static void bio_dirty_fn(struct work_struct *work)
1da177e4
LT
1678{
1679 unsigned long flags;
1680 struct bio *bio;
1681
1682 spin_lock_irqsave(&bio_dirty_lock, flags);
1683 bio = bio_dirty_list;
1684 bio_dirty_list = NULL;
1685 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1686
1687 while (bio) {
1688 struct bio *next = bio->bi_private;
1689
1690 bio_set_pages_dirty(bio);
1691 bio_release_pages(bio);
1692 bio_put(bio);
1693 bio = next;
1694 }
1695}
1696
1697void bio_check_pages_dirty(struct bio *bio)
1698{
cb34e057 1699 struct bio_vec *bvec;
1da177e4
LT
1700 int nr_clean_pages = 0;
1701 int i;
1702
cb34e057
KO
1703 bio_for_each_segment_all(bvec, bio, i) {
1704 struct page *page = bvec->bv_page;
1da177e4
LT
1705
1706 if (PageDirty(page) || PageCompound(page)) {
09cbfeaf 1707 put_page(page);
cb34e057 1708 bvec->bv_page = NULL;
1da177e4
LT
1709 } else {
1710 nr_clean_pages++;
1711 }
1712 }
1713
1714 if (nr_clean_pages) {
1715 unsigned long flags;
1716
1717 spin_lock_irqsave(&bio_dirty_lock, flags);
1718 bio->bi_private = bio_dirty_list;
1719 bio_dirty_list = bio;
1720 spin_unlock_irqrestore(&bio_dirty_lock, flags);
1721 schedule_work(&bio_dirty_work);
1722 } else {
1723 bio_put(bio);
1724 }
1725}
1726
394ffa50
GZ
1727void generic_start_io_acct(int rw, unsigned long sectors,
1728 struct hd_struct *part)
1729{
1730 int cpu = part_stat_lock();
1731
1732 part_round_stats(cpu, part);
1733 part_stat_inc(cpu, part, ios[rw]);
1734 part_stat_add(cpu, part, sectors[rw], sectors);
1735 part_inc_in_flight(part, rw);
1736
1737 part_stat_unlock();
1738}
1739EXPORT_SYMBOL(generic_start_io_acct);
1740
1741void generic_end_io_acct(int rw, struct hd_struct *part,
1742 unsigned long start_time)
1743{
1744 unsigned long duration = jiffies - start_time;
1745 int cpu = part_stat_lock();
1746
1747 part_stat_add(cpu, part, ticks[rw], duration);
1748 part_round_stats(cpu, part);
1749 part_dec_in_flight(part, rw);
1750
1751 part_stat_unlock();
1752}
1753EXPORT_SYMBOL(generic_end_io_acct);
1754
2d4dc890
IL
1755#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
1756void bio_flush_dcache_pages(struct bio *bi)
1757{
7988613b
KO
1758 struct bio_vec bvec;
1759 struct bvec_iter iter;
2d4dc890 1760
7988613b
KO
1761 bio_for_each_segment(bvec, bi, iter)
1762 flush_dcache_page(bvec.bv_page);
2d4dc890
IL
1763}
1764EXPORT_SYMBOL(bio_flush_dcache_pages);
1765#endif
1766
c4cf5261
JA
1767static inline bool bio_remaining_done(struct bio *bio)
1768{
1769 /*
1770 * If we're not chaining, then ->__bi_remaining is always 1 and
1771 * we always end io on the first invocation.
1772 */
1773 if (!bio_flagged(bio, BIO_CHAIN))
1774 return true;
1775
1776 BUG_ON(atomic_read(&bio->__bi_remaining) <= 0);
1777
326e1dbb 1778 if (atomic_dec_and_test(&bio->__bi_remaining)) {
b7c44ed9 1779 bio_clear_flag(bio, BIO_CHAIN);
c4cf5261 1780 return true;
326e1dbb 1781 }
c4cf5261
JA
1782
1783 return false;
1784}
1785
1da177e4
LT
1786/**
1787 * bio_endio - end I/O on a bio
1788 * @bio: bio
1da177e4
LT
1789 *
1790 * Description:
4246a0b6
CH
1791 * bio_endio() will end I/O on the whole bio. bio_endio() is the preferred
1792 * way to end I/O on a bio. No one should call bi_end_io() directly on a
1793 * bio unless they own it and thus know that it has an end_io function.
fbbaf700
N
1794 *
1795 * bio_endio() can be called several times on a bio that has been chained
1796 * using bio_chain(). The ->bi_end_io() function will only be called the
1797 * last time. At this point the BLK_TA_COMPLETE tracing event will be
1798 * generated if BIO_TRACE_COMPLETION is set.
1da177e4 1799 **/
4246a0b6 1800void bio_endio(struct bio *bio)
1da177e4 1801{
ba8c6967 1802again:
2b885517 1803 if (!bio_remaining_done(bio))
ba8c6967 1804 return;
1da177e4 1805
ba8c6967
CH
1806 /*
1807 * Need to have a real endio function for chained bios, otherwise
1808 * various corner cases will break (like stacking block devices that
1809 * save/restore bi_end_io) - however, we want to avoid unbounded
1810 * recursion and blowing the stack. Tail call optimization would
1811 * handle this, but compiling with frame pointers also disables
1812 * gcc's sibling call optimization.
1813 */
1814 if (bio->bi_end_io == bio_chain_endio) {
1815 bio = __bio_chain_endio(bio);
1816 goto again;
196d38bc 1817 }
ba8c6967 1818
fbbaf700
N
1819 if (bio->bi_bdev && bio_flagged(bio, BIO_TRACE_COMPLETION)) {
1820 trace_block_bio_complete(bdev_get_queue(bio->bi_bdev),
4e4cbee9 1821 bio, bio->bi_status);
fbbaf700
N
1822 bio_clear_flag(bio, BIO_TRACE_COMPLETION);
1823 }
1824
9e234eea 1825 blk_throtl_bio_endio(bio);
ba8c6967
CH
1826 if (bio->bi_end_io)
1827 bio->bi_end_io(bio);
1da177e4 1828}
a112a71d 1829EXPORT_SYMBOL(bio_endio);
1da177e4 1830
20d0189b
KO
1831/**
1832 * bio_split - split a bio
1833 * @bio: bio to split
1834 * @sectors: number of sectors to split from the front of @bio
1835 * @gfp: gfp mask
1836 * @bs: bio set to allocate from
1837 *
1838 * Allocates and returns a new bio which represents @sectors from the start of
1839 * @bio, and updates @bio to represent the remaining sectors.
1840 *
f3f5da62
MP
1841 * Unless this is a discard request the newly allocated bio will point
1842 * to @bio's bi_io_vec; it is the caller's responsibility to ensure that
1843 * @bio is not freed before the split.
20d0189b
KO
1844 */
1845struct bio *bio_split(struct bio *bio, int sectors,
1846 gfp_t gfp, struct bio_set *bs)
1847{
1848 struct bio *split = NULL;
1849
1850 BUG_ON(sectors <= 0);
1851 BUG_ON(sectors >= bio_sectors(bio));
1852
f9d03f96 1853 split = bio_clone_fast(bio, gfp, bs);
20d0189b
KO
1854 if (!split)
1855 return NULL;
1856
1857 split->bi_iter.bi_size = sectors << 9;
1858
1859 if (bio_integrity(split))
1860 bio_integrity_trim(split, 0, sectors);
1861
1862 bio_advance(bio, split->bi_iter.bi_size);
1863
fbbaf700
N
1864 if (bio_flagged(bio, BIO_TRACE_COMPLETION))
1865 bio_set_flag(bio, BIO_TRACE_COMPLETION);
1866
20d0189b
KO
1867 return split;
1868}
1869EXPORT_SYMBOL(bio_split);
1870
6678d83f
KO
1871/**
1872 * bio_trim - trim a bio
1873 * @bio: bio to trim
1874 * @offset: number of sectors to trim from the front of @bio
1875 * @size: size we want to trim @bio to, in sectors
1876 */
1877void bio_trim(struct bio *bio, int offset, int size)
1878{
1879 /* 'bio' is a cloned bio which we need to trim to match
1880 * the given offset and size.
6678d83f 1881 */
6678d83f
KO
1882
1883 size <<= 9;
4f024f37 1884 if (offset == 0 && size == bio->bi_iter.bi_size)
6678d83f
KO
1885 return;
1886
b7c44ed9 1887 bio_clear_flag(bio, BIO_SEG_VALID);
6678d83f
KO
1888
1889 bio_advance(bio, offset << 9);
1890
4f024f37 1891 bio->bi_iter.bi_size = size;
6678d83f
KO
1892}
1893EXPORT_SYMBOL_GPL(bio_trim);
1894
1da177e4
LT
1895/*
1896 * create memory pools for biovec's in a bio_set.
1897 * use the global biovec slabs created for general use.
1898 */
a6c39cb4 1899mempool_t *biovec_create_pool(int pool_entries)
1da177e4 1900{
ed996a52 1901 struct biovec_slab *bp = bvec_slabs + BVEC_POOL_MAX;
1da177e4 1902
9f060e22 1903 return mempool_create_slab_pool(pool_entries, bp->slab);
1da177e4
LT
1904}
1905
1906void bioset_free(struct bio_set *bs)
1907{
df2cb6da
KO
1908 if (bs->rescue_workqueue)
1909 destroy_workqueue(bs->rescue_workqueue);
1910
1da177e4
LT
1911 if (bs->bio_pool)
1912 mempool_destroy(bs->bio_pool);
1913
9f060e22
KO
1914 if (bs->bvec_pool)
1915 mempool_destroy(bs->bvec_pool);
1916
7878cba9 1917 bioset_integrity_free(bs);
bb799ca0 1918 bio_put_slab(bs);
1da177e4
LT
1919
1920 kfree(bs);
1921}
a112a71d 1922EXPORT_SYMBOL(bioset_free);
1da177e4 1923
d8f429e1
JN
1924static struct bio_set *__bioset_create(unsigned int pool_size,
1925 unsigned int front_pad,
1926 bool create_bvec_pool)
1da177e4 1927{
392ddc32 1928 unsigned int back_pad = BIO_INLINE_VECS * sizeof(struct bio_vec);
1b434498 1929 struct bio_set *bs;
1da177e4 1930
1b434498 1931 bs = kzalloc(sizeof(*bs), GFP_KERNEL);
1da177e4
LT
1932 if (!bs)
1933 return NULL;
1934
bb799ca0 1935 bs->front_pad = front_pad;
1b434498 1936
df2cb6da
KO
1937 spin_lock_init(&bs->rescue_lock);
1938 bio_list_init(&bs->rescue_list);
1939 INIT_WORK(&bs->rescue_work, bio_alloc_rescue);
1940
392ddc32 1941 bs->bio_slab = bio_find_or_create_slab(front_pad + back_pad);
bb799ca0
JA
1942 if (!bs->bio_slab) {
1943 kfree(bs);
1944 return NULL;
1945 }
1946
1947 bs->bio_pool = mempool_create_slab_pool(pool_size, bs->bio_slab);
1da177e4
LT
1948 if (!bs->bio_pool)
1949 goto bad;
1950
d8f429e1
JN
1951 if (create_bvec_pool) {
1952 bs->bvec_pool = biovec_create_pool(pool_size);
1953 if (!bs->bvec_pool)
1954 goto bad;
1955 }
df2cb6da
KO
1956
1957 bs->rescue_workqueue = alloc_workqueue("bioset", WQ_MEM_RECLAIM, 0);
1958 if (!bs->rescue_workqueue)
1959 goto bad;
1da177e4 1960
df2cb6da 1961 return bs;
1da177e4
LT
1962bad:
1963 bioset_free(bs);
1964 return NULL;
1965}
d8f429e1
JN
1966
1967/**
1968 * bioset_create - Create a bio_set
1969 * @pool_size: Number of bio and bio_vecs to cache in the mempool
1970 * @front_pad: Number of bytes to allocate in front of the returned bio
1971 *
1972 * Description:
1973 * Set up a bio_set to be used with @bio_alloc_bioset. Allows the caller
1974 * to ask for a number of bytes to be allocated in front of the bio.
1975 * Front pad allocation is useful for embedding the bio inside
1976 * another structure, to avoid allocating extra data to go with the bio.
1977 * Note that the bio must be embedded at the END of that structure always,
1978 * or things will break badly.
1979 */
1980struct bio_set *bioset_create(unsigned int pool_size, unsigned int front_pad)
1981{
1982 return __bioset_create(pool_size, front_pad, true);
1983}
a112a71d 1984EXPORT_SYMBOL(bioset_create);
1da177e4 1985
d8f429e1
JN
1986/**
1987 * bioset_create_nobvec - Create a bio_set without bio_vec mempool
1988 * @pool_size: Number of bio to cache in the mempool
1989 * @front_pad: Number of bytes to allocate in front of the returned bio
1990 *
1991 * Description:
1992 * Same functionality as bioset_create() except that mempool is not
1993 * created for bio_vecs. Saving some memory for bio_clone_fast() users.
1994 */
1995struct bio_set *bioset_create_nobvec(unsigned int pool_size, unsigned int front_pad)
1996{
1997 return __bioset_create(pool_size, front_pad, false);
1998}
1999EXPORT_SYMBOL(bioset_create_nobvec);
2000
852c788f 2001#ifdef CONFIG_BLK_CGROUP
1d933cf0
TH
2002
2003/**
2004 * bio_associate_blkcg - associate a bio with the specified blkcg
2005 * @bio: target bio
2006 * @blkcg_css: css of the blkcg to associate
2007 *
2008 * Associate @bio with the blkcg specified by @blkcg_css. Block layer will
2009 * treat @bio as if it were issued by a task which belongs to the blkcg.
2010 *
2011 * This function takes an extra reference of @blkcg_css which will be put
2012 * when @bio is released. The caller must own @bio and is responsible for
2013 * synchronizing calls to this function.
2014 */
2015int bio_associate_blkcg(struct bio *bio, struct cgroup_subsys_state *blkcg_css)
2016{
2017 if (unlikely(bio->bi_css))
2018 return -EBUSY;
2019 css_get(blkcg_css);
2020 bio->bi_css = blkcg_css;
2021 return 0;
2022}
5aa2a96b 2023EXPORT_SYMBOL_GPL(bio_associate_blkcg);
1d933cf0 2024
852c788f
TH
2025/**
2026 * bio_associate_current - associate a bio with %current
2027 * @bio: target bio
2028 *
2029 * Associate @bio with %current if it hasn't been associated yet. Block
2030 * layer will treat @bio as if it were issued by %current no matter which
2031 * task actually issues it.
2032 *
2033 * This function takes an extra reference of @task's io_context and blkcg
2034 * which will be put when @bio is released. The caller must own @bio,
2035 * ensure %current->io_context exists, and is responsible for synchronizing
2036 * calls to this function.
2037 */
2038int bio_associate_current(struct bio *bio)
2039{
2040 struct io_context *ioc;
852c788f 2041
1d933cf0 2042 if (bio->bi_css)
852c788f
TH
2043 return -EBUSY;
2044
2045 ioc = current->io_context;
2046 if (!ioc)
2047 return -ENOENT;
2048
852c788f
TH
2049 get_io_context_active(ioc);
2050 bio->bi_ioc = ioc;
c165b3e3 2051 bio->bi_css = task_get_css(current, io_cgrp_id);
852c788f
TH
2052 return 0;
2053}
5aa2a96b 2054EXPORT_SYMBOL_GPL(bio_associate_current);
852c788f
TH
2055
2056/**
2057 * bio_disassociate_task - undo bio_associate_current()
2058 * @bio: target bio
2059 */
2060void bio_disassociate_task(struct bio *bio)
2061{
2062 if (bio->bi_ioc) {
2063 put_io_context(bio->bi_ioc);
2064 bio->bi_ioc = NULL;
2065 }
2066 if (bio->bi_css) {
2067 css_put(bio->bi_css);
2068 bio->bi_css = NULL;
2069 }
2070}
2071
20bd723e
PV
2072/**
2073 * bio_clone_blkcg_association - clone blkcg association from src to dst bio
2074 * @dst: destination bio
2075 * @src: source bio
2076 */
2077void bio_clone_blkcg_association(struct bio *dst, struct bio *src)
2078{
2079 if (src->bi_css)
2080 WARN_ON(bio_associate_blkcg(dst, src->bi_css));
2081}
2082
852c788f
TH
2083#endif /* CONFIG_BLK_CGROUP */
2084
1da177e4
LT
2085static void __init biovec_init_slabs(void)
2086{
2087 int i;
2088
ed996a52 2089 for (i = 0; i < BVEC_POOL_NR; i++) {
1da177e4
LT
2090 int size;
2091 struct biovec_slab *bvs = bvec_slabs + i;
2092
a7fcd37c
JA
2093 if (bvs->nr_vecs <= BIO_INLINE_VECS) {
2094 bvs->slab = NULL;
2095 continue;
2096 }
a7fcd37c 2097
1da177e4
LT
2098 size = bvs->nr_vecs * sizeof(struct bio_vec);
2099 bvs->slab = kmem_cache_create(bvs->name, size, 0,
20c2df83 2100 SLAB_HWCACHE_ALIGN|SLAB_PANIC, NULL);
1da177e4
LT
2101 }
2102}
2103
2104static int __init init_bio(void)
2105{
bb799ca0
JA
2106 bio_slab_max = 2;
2107 bio_slab_nr = 0;
2108 bio_slabs = kzalloc(bio_slab_max * sizeof(struct bio_slab), GFP_KERNEL);
2109 if (!bio_slabs)
2110 panic("bio: can't allocate bios\n");
1da177e4 2111
7878cba9 2112 bio_integrity_init();
1da177e4
LT
2113 biovec_init_slabs();
2114
bb799ca0 2115 fs_bio_set = bioset_create(BIO_POOL_SIZE, 0);
1da177e4
LT
2116 if (!fs_bio_set)
2117 panic("bio: can't allocate bios\n");
2118
a91a2785
MP
2119 if (bioset_integrity_create(fs_bio_set, BIO_POOL_SIZE))
2120 panic("bio: can't create integrity pool\n");
2121
1da177e4
LT
2122 return 0;
2123}
1da177e4 2124subsys_initcall(init_bio);