]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - block/blk-core.c
block: Rename blk_queue_max_sectors to blk_queue_max_hw_sectors
[mirror_ubuntu-bionic-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
c17bb495 29#include <linux/fault-inject.h>
55782138
LZ
30
31#define CREATE_TRACE_POINTS
32#include <trace/events/block.h>
1da177e4 33
8324aa91
JA
34#include "blk.h"
35
0bfc2455 36EXPORT_TRACEPOINT_SYMBOL_GPL(block_remap);
b0da3f0d 37EXPORT_TRACEPOINT_SYMBOL_GPL(block_rq_remap);
55782138 38EXPORT_TRACEPOINT_SYMBOL_GPL(block_bio_complete);
0bfc2455 39
165125e1 40static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
41
42/*
43 * For the allocated request tables
44 */
5ece6c52 45static struct kmem_cache *request_cachep;
1da177e4
LT
46
47/*
48 * For queue allocation
49 */
6728cb0e 50struct kmem_cache *blk_requestq_cachep;
1da177e4 51
1da177e4
LT
52/*
53 * Controlling structure to kblockd
54 */
ff856bad 55static struct workqueue_struct *kblockd_workqueue;
1da177e4 56
26b8256e
JA
57static void drive_stat_acct(struct request *rq, int new_io)
58{
28f13702 59 struct hd_struct *part;
26b8256e 60 int rw = rq_data_dir(rq);
c9959059 61 int cpu;
26b8256e 62
c2553b58 63 if (!blk_do_io_stat(rq))
26b8256e
JA
64 return;
65
074a7aca 66 cpu = part_stat_lock();
83096ebf 67 part = disk_map_sector_rcu(rq->rq_disk, blk_rq_pos(rq));
c9959059 68
28f13702 69 if (!new_io)
074a7aca 70 part_stat_inc(cpu, part, merges[rw]);
28f13702 71 else {
074a7aca 72 part_round_stats(cpu, part);
316d315b 73 part_inc_in_flight(part, rw);
26b8256e 74 }
e71bf0d0 75
074a7aca 76 part_stat_unlock();
26b8256e
JA
77}
78
8324aa91 79void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
80{
81 int nr;
82
83 nr = q->nr_requests - (q->nr_requests / 8) + 1;
84 if (nr > q->nr_requests)
85 nr = q->nr_requests;
86 q->nr_congestion_on = nr;
87
88 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
89 if (nr < 1)
90 nr = 1;
91 q->nr_congestion_off = nr;
92}
93
1da177e4
LT
94/**
95 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
96 * @bdev: device
97 *
98 * Locates the passed device's request queue and returns the address of its
99 * backing_dev_info
100 *
101 * Will return NULL if the request queue cannot be located.
102 */
103struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
104{
105 struct backing_dev_info *ret = NULL;
165125e1 106 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
107
108 if (q)
109 ret = &q->backing_dev_info;
110 return ret;
111}
1da177e4
LT
112EXPORT_SYMBOL(blk_get_backing_dev_info);
113
2a4aa30c 114void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 115{
1afb20f3
FT
116 memset(rq, 0, sizeof(*rq));
117
1da177e4 118 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 119 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 120 rq->cpu = -1;
63a71386 121 rq->q = q;
a2dec7b3 122 rq->__sector = (sector_t) -1;
2e662b65
JA
123 INIT_HLIST_NODE(&rq->hash);
124 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 125 rq->cmd = rq->__cmd;
e2494e1b 126 rq->cmd_len = BLK_MAX_CDB;
63a71386 127 rq->tag = -1;
1da177e4 128 rq->ref_count = 1;
b243ddcb 129 rq->start_time = jiffies;
1da177e4 130}
2a4aa30c 131EXPORT_SYMBOL(blk_rq_init);
1da177e4 132
5bb23a68
N
133static void req_bio_endio(struct request *rq, struct bio *bio,
134 unsigned int nbytes, int error)
1da177e4 135{
165125e1 136 struct request_queue *q = rq->q;
797e7dbb 137
5bb23a68
N
138 if (&q->bar_rq != rq) {
139 if (error)
140 clear_bit(BIO_UPTODATE, &bio->bi_flags);
141 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
142 error = -EIO;
797e7dbb 143
5bb23a68 144 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 145 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 146 __func__, nbytes, bio->bi_size);
5bb23a68
N
147 nbytes = bio->bi_size;
148 }
797e7dbb 149
08bafc03
KM
150 if (unlikely(rq->cmd_flags & REQ_QUIET))
151 set_bit(BIO_QUIET, &bio->bi_flags);
152
5bb23a68
N
153 bio->bi_size -= nbytes;
154 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
155
156 if (bio_integrity(bio))
157 bio_integrity_advance(bio, nbytes);
158
5bb23a68 159 if (bio->bi_size == 0)
6712ecf8 160 bio_endio(bio, error);
5bb23a68
N
161 } else {
162
163 /*
164 * Okay, this is the barrier request in progress, just
165 * record the error;
166 */
167 if (error && !q->orderr)
168 q->orderr = error;
169 }
1da177e4 170}
1da177e4 171
1da177e4
LT
172void blk_dump_rq_flags(struct request *rq, char *msg)
173{
174 int bit;
175
6728cb0e 176 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
177 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
178 rq->cmd_flags);
1da177e4 179
83096ebf
TH
180 printk(KERN_INFO " sector %llu, nr/cnr %u/%u\n",
181 (unsigned long long)blk_rq_pos(rq),
182 blk_rq_sectors(rq), blk_rq_cur_sectors(rq));
731ec497 183 printk(KERN_INFO " bio %p, biotail %p, buffer %p, len %u\n",
2e46e8b2 184 rq->bio, rq->biotail, rq->buffer, blk_rq_bytes(rq));
1da177e4 185
4aff5e23 186 if (blk_pc_request(rq)) {
6728cb0e 187 printk(KERN_INFO " cdb: ");
d34c87e4 188 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
189 printk("%02x ", rq->cmd[bit]);
190 printk("\n");
191 }
192}
1da177e4
LT
193EXPORT_SYMBOL(blk_dump_rq_flags);
194
1da177e4
LT
195/*
196 * "plug" the device if there are no outstanding requests: this will
197 * force the transfer to start only after we have put all the requests
198 * on the list.
199 *
200 * This is called with interrupts off and no requests on the queue and
201 * with the queue lock held.
202 */
165125e1 203void blk_plug_device(struct request_queue *q)
1da177e4
LT
204{
205 WARN_ON(!irqs_disabled());
206
207 /*
208 * don't plug a stopped queue, it must be paired with blk_start_queue()
209 * which will restart the queueing
210 */
7daac490 211 if (blk_queue_stopped(q))
1da177e4
LT
212 return;
213
e48ec690 214 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 215 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
5f3ea37c 216 trace_block_plug(q);
2056a782 217 }
1da177e4 218}
1da177e4
LT
219EXPORT_SYMBOL(blk_plug_device);
220
6c5e0c4d
JA
221/**
222 * blk_plug_device_unlocked - plug a device without queue lock held
223 * @q: The &struct request_queue to plug
224 *
225 * Description:
226 * Like @blk_plug_device(), but grabs the queue lock and disables
227 * interrupts.
228 **/
229void blk_plug_device_unlocked(struct request_queue *q)
230{
231 unsigned long flags;
232
233 spin_lock_irqsave(q->queue_lock, flags);
234 blk_plug_device(q);
235 spin_unlock_irqrestore(q->queue_lock, flags);
236}
237EXPORT_SYMBOL(blk_plug_device_unlocked);
238
1da177e4
LT
239/*
240 * remove the queue from the plugged list, if present. called with
241 * queue lock held and interrupts disabled.
242 */
165125e1 243int blk_remove_plug(struct request_queue *q)
1da177e4
LT
244{
245 WARN_ON(!irqs_disabled());
246
e48ec690 247 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
248 return 0;
249
250 del_timer(&q->unplug_timer);
251 return 1;
252}
1da177e4
LT
253EXPORT_SYMBOL(blk_remove_plug);
254
255/*
256 * remove the plug and let it rip..
257 */
165125e1 258void __generic_unplug_device(struct request_queue *q)
1da177e4 259{
7daac490 260 if (unlikely(blk_queue_stopped(q)))
1da177e4 261 return;
a31a9738 262 if (!blk_remove_plug(q) && !blk_queue_nonrot(q))
1da177e4
LT
263 return;
264
22e2c507 265 q->request_fn(q);
1da177e4 266}
1da177e4
LT
267
268/**
269 * generic_unplug_device - fire a request queue
165125e1 270 * @q: The &struct request_queue in question
1da177e4
LT
271 *
272 * Description:
273 * Linux uses plugging to build bigger requests queues before letting
274 * the device have at them. If a queue is plugged, the I/O scheduler
275 * is still adding and merging requests on the queue. Once the queue
276 * gets unplugged, the request_fn defined for the queue is invoked and
277 * transfers started.
278 **/
165125e1 279void generic_unplug_device(struct request_queue *q)
1da177e4 280{
dbaf2c00
JA
281 if (blk_queue_plugged(q)) {
282 spin_lock_irq(q->queue_lock);
283 __generic_unplug_device(q);
284 spin_unlock_irq(q->queue_lock);
285 }
1da177e4
LT
286}
287EXPORT_SYMBOL(generic_unplug_device);
288
289static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
290 struct page *page)
291{
165125e1 292 struct request_queue *q = bdi->unplug_io_data;
1da177e4 293
2ad8b1ef 294 blk_unplug(q);
1da177e4
LT
295}
296
86db1e29 297void blk_unplug_work(struct work_struct *work)
1da177e4 298{
165125e1
JA
299 struct request_queue *q =
300 container_of(work, struct request_queue, unplug_work);
1da177e4 301
5f3ea37c 302 trace_block_unplug_io(q);
1da177e4
LT
303 q->unplug_fn(q);
304}
305
86db1e29 306void blk_unplug_timeout(unsigned long data)
1da177e4 307{
165125e1 308 struct request_queue *q = (struct request_queue *)data;
1da177e4 309
5f3ea37c 310 trace_block_unplug_timer(q);
18887ad9 311 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
312}
313
2ad8b1ef
AB
314void blk_unplug(struct request_queue *q)
315{
316 /*
317 * devices don't necessarily have an ->unplug_fn defined
318 */
319 if (q->unplug_fn) {
5f3ea37c 320 trace_block_unplug_io(q);
2ad8b1ef
AB
321 q->unplug_fn(q);
322 }
323}
324EXPORT_SYMBOL(blk_unplug);
325
1da177e4
LT
326/**
327 * blk_start_queue - restart a previously stopped queue
165125e1 328 * @q: The &struct request_queue in question
1da177e4
LT
329 *
330 * Description:
331 * blk_start_queue() will clear the stop flag on the queue, and call
332 * the request_fn for the queue if it was in a stopped state when
333 * entered. Also see blk_stop_queue(). Queue lock must be held.
334 **/
165125e1 335void blk_start_queue(struct request_queue *q)
1da177e4 336{
a038e253
PBG
337 WARN_ON(!irqs_disabled());
338
75ad23bc 339 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
a538cd03 340 __blk_run_queue(q);
1da177e4 341}
1da177e4
LT
342EXPORT_SYMBOL(blk_start_queue);
343
344/**
345 * blk_stop_queue - stop a queue
165125e1 346 * @q: The &struct request_queue in question
1da177e4
LT
347 *
348 * Description:
349 * The Linux block layer assumes that a block driver will consume all
350 * entries on the request queue when the request_fn strategy is called.
351 * Often this will not happen, because of hardware limitations (queue
352 * depth settings). If a device driver gets a 'queue full' response,
353 * or if it simply chooses not to queue more I/O at one point, it can
354 * call this function to prevent the request_fn from being called until
355 * the driver has signalled it's ready to go again. This happens by calling
356 * blk_start_queue() to restart queue operations. Queue lock must be held.
357 **/
165125e1 358void blk_stop_queue(struct request_queue *q)
1da177e4
LT
359{
360 blk_remove_plug(q);
75ad23bc 361 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
362}
363EXPORT_SYMBOL(blk_stop_queue);
364
365/**
366 * blk_sync_queue - cancel any pending callbacks on a queue
367 * @q: the queue
368 *
369 * Description:
370 * The block layer may perform asynchronous callback activity
371 * on a queue, such as calling the unplug function after a timeout.
372 * A block device may call blk_sync_queue to ensure that any
373 * such activity is cancelled, thus allowing it to release resources
59c51591 374 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
375 * that its ->make_request_fn will not re-add plugging prior to calling
376 * this function.
377 *
378 */
379void blk_sync_queue(struct request_queue *q)
380{
381 del_timer_sync(&q->unplug_timer);
70ed28b9 382 del_timer_sync(&q->timeout);
64d01dc9 383 cancel_work_sync(&q->unplug_work);
1da177e4
LT
384}
385EXPORT_SYMBOL(blk_sync_queue);
386
387/**
80a4b58e 388 * __blk_run_queue - run a single device queue
1da177e4 389 * @q: The queue to run
80a4b58e
JA
390 *
391 * Description:
392 * See @blk_run_queue. This variant must be called with the queue lock
393 * held and interrupts disabled.
394 *
1da177e4 395 */
75ad23bc 396void __blk_run_queue(struct request_queue *q)
1da177e4 397{
1da177e4 398 blk_remove_plug(q);
dac07ec1 399
a538cd03
TH
400 if (unlikely(blk_queue_stopped(q)))
401 return;
402
403 if (elv_queue_empty(q))
404 return;
405
dac07ec1
JA
406 /*
407 * Only recurse once to avoid overrunning the stack, let the unplug
408 * handling reinvoke the handler shortly if we already got there.
409 */
a538cd03
TH
410 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
411 q->request_fn(q);
412 queue_flag_clear(QUEUE_FLAG_REENTER, q);
413 } else {
414 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
415 kblockd_schedule_work(q, &q->unplug_work);
416 }
75ad23bc
NP
417}
418EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 419
75ad23bc
NP
420/**
421 * blk_run_queue - run a single device queue
422 * @q: The queue to run
80a4b58e
JA
423 *
424 * Description:
425 * Invoke request handling on this queue, if it has pending work to do.
a7f55792 426 * May be used to restart queueing when a request has completed.
75ad23bc
NP
427 */
428void blk_run_queue(struct request_queue *q)
429{
430 unsigned long flags;
431
432 spin_lock_irqsave(q->queue_lock, flags);
433 __blk_run_queue(q);
1da177e4
LT
434 spin_unlock_irqrestore(q->queue_lock, flags);
435}
436EXPORT_SYMBOL(blk_run_queue);
437
165125e1 438void blk_put_queue(struct request_queue *q)
483f4afc
AV
439{
440 kobject_put(&q->kobj);
441}
483f4afc 442
6728cb0e 443void blk_cleanup_queue(struct request_queue *q)
483f4afc 444{
e3335de9
JA
445 /*
446 * We know we have process context here, so we can be a little
447 * cautious and ensure that pending block actions on this device
448 * are done before moving on. Going into this function, we should
449 * not have processes doing IO to this device.
450 */
451 blk_sync_queue(q);
452
483f4afc 453 mutex_lock(&q->sysfs_lock);
75ad23bc 454 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
455 mutex_unlock(&q->sysfs_lock);
456
457 if (q->elevator)
458 elevator_exit(q->elevator);
459
460 blk_put_queue(q);
461}
1da177e4
LT
462EXPORT_SYMBOL(blk_cleanup_queue);
463
165125e1 464static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
465{
466 struct request_list *rl = &q->rq;
467
1faa16d2
JA
468 rl->count[BLK_RW_SYNC] = rl->count[BLK_RW_ASYNC] = 0;
469 rl->starved[BLK_RW_SYNC] = rl->starved[BLK_RW_ASYNC] = 0;
cb98fc8b 470 rl->elvpriv = 0;
1faa16d2
JA
471 init_waitqueue_head(&rl->wait[BLK_RW_SYNC]);
472 init_waitqueue_head(&rl->wait[BLK_RW_ASYNC]);
1da177e4 473
1946089a
CL
474 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
475 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
476
477 if (!rl->rq_pool)
478 return -ENOMEM;
479
480 return 0;
481}
482
165125e1 483struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 484{
1946089a
CL
485 return blk_alloc_queue_node(gfp_mask, -1);
486}
487EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 488
165125e1 489struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 490{
165125e1 491 struct request_queue *q;
e0bf68dd 492 int err;
1946089a 493
8324aa91 494 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 495 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
496 if (!q)
497 return NULL;
498
e0bf68dd
PZ
499 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
500 q->backing_dev_info.unplug_io_data = q;
0989a025
JA
501 q->backing_dev_info.ra_pages =
502 (VM_MAX_READAHEAD * 1024) / PAGE_CACHE_SIZE;
503 q->backing_dev_info.state = 0;
504 q->backing_dev_info.capabilities = BDI_CAP_MAP_COPY;
d993831f 505 q->backing_dev_info.name = "block";
0989a025 506
e0bf68dd
PZ
507 err = bdi_init(&q->backing_dev_info);
508 if (err) {
8324aa91 509 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
510 return NULL;
511 }
512
1da177e4 513 init_timer(&q->unplug_timer);
242f9dcb
JA
514 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
515 INIT_LIST_HEAD(&q->timeout_list);
713ada9b 516 INIT_WORK(&q->unplug_work, blk_unplug_work);
483f4afc 517
8324aa91 518 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 519
483f4afc 520 mutex_init(&q->sysfs_lock);
e7e72bf6 521 spin_lock_init(&q->__queue_lock);
483f4afc 522
1da177e4
LT
523 return q;
524}
1946089a 525EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
526
527/**
528 * blk_init_queue - prepare a request queue for use with a block device
529 * @rfn: The function to be called to process requests that have been
530 * placed on the queue.
531 * @lock: Request queue spin lock
532 *
533 * Description:
534 * If a block device wishes to use the standard request handling procedures,
535 * which sorts requests and coalesces adjacent requests, then it must
536 * call blk_init_queue(). The function @rfn will be called when there
537 * are requests on the queue that need to be processed. If the device
538 * supports plugging, then @rfn may not be called immediately when requests
539 * are available on the queue, but may be called at some time later instead.
540 * Plugged queues are generally unplugged when a buffer belonging to one
541 * of the requests on the queue is needed, or due to memory pressure.
542 *
543 * @rfn is not required, or even expected, to remove all requests off the
544 * queue, but only as many as it can handle at a time. If it does leave
545 * requests on the queue, it is responsible for arranging that the requests
546 * get dealt with eventually.
547 *
548 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
549 * request queue; this lock will be taken also from interrupt context, so irq
550 * disabling is needed for it.
1da177e4 551 *
710027a4 552 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
553 * it didn't succeed.
554 *
555 * Note:
556 * blk_init_queue() must be paired with a blk_cleanup_queue() call
557 * when the block device is deactivated (such as at module unload).
558 **/
1946089a 559
165125e1 560struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 561{
1946089a
CL
562 return blk_init_queue_node(rfn, lock, -1);
563}
564EXPORT_SYMBOL(blk_init_queue);
565
165125e1 566struct request_queue *
1946089a
CL
567blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
568{
165125e1 569 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
570
571 if (!q)
572 return NULL;
573
1946089a 574 q->node = node_id;
8669aafd 575 if (blk_init_free_list(q)) {
8324aa91 576 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
577 return NULL;
578 }
1da177e4
LT
579
580 q->request_fn = rfn;
1da177e4
LT
581 q->prep_rq_fn = NULL;
582 q->unplug_fn = generic_unplug_device;
bc58ba94 583 q->queue_flags = QUEUE_FLAG_DEFAULT;
1da177e4
LT
584 q->queue_lock = lock;
585
f3b144aa
JA
586 /*
587 * This also sets hw/phys segments, boundary and size
588 */
1da177e4 589 blk_queue_make_request(q, __make_request);
1da177e4 590
44ec9542
AS
591 q->sg_reserved_size = INT_MAX;
592
1da177e4
LT
593 /*
594 * all done
595 */
596 if (!elevator_init(q, NULL)) {
597 blk_queue_congestion_threshold(q);
598 return q;
599 }
600
8669aafd 601 blk_put_queue(q);
1da177e4
LT
602 return NULL;
603}
1946089a 604EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 605
165125e1 606int blk_get_queue(struct request_queue *q)
1da177e4 607{
fde6ad22 608 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 609 kobject_get(&q->kobj);
1da177e4
LT
610 return 0;
611 }
612
613 return 1;
614}
1da177e4 615
165125e1 616static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 617{
4aff5e23 618 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 619 elv_put_request(q, rq);
1da177e4
LT
620 mempool_free(rq, q->rq.rq_pool);
621}
622
1ea25ecb 623static struct request *
42dad764 624blk_alloc_request(struct request_queue *q, int flags, int priv, gfp_t gfp_mask)
1da177e4
LT
625{
626 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
627
628 if (!rq)
629 return NULL;
630
2a4aa30c 631 blk_rq_init(q, rq);
1afb20f3 632
42dad764 633 rq->cmd_flags = flags | REQ_ALLOCED;
1da177e4 634
cb98fc8b 635 if (priv) {
cb78b285 636 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
637 mempool_free(rq, q->rq.rq_pool);
638 return NULL;
639 }
4aff5e23 640 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 641 }
1da177e4 642
cb98fc8b 643 return rq;
1da177e4
LT
644}
645
646/*
647 * ioc_batching returns true if the ioc is a valid batching request and
648 * should be given priority access to a request.
649 */
165125e1 650static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
651{
652 if (!ioc)
653 return 0;
654
655 /*
656 * Make sure the process is able to allocate at least 1 request
657 * even if the batch times out, otherwise we could theoretically
658 * lose wakeups.
659 */
660 return ioc->nr_batch_requests == q->nr_batching ||
661 (ioc->nr_batch_requests > 0
662 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
663}
664
665/*
666 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
667 * will cause the process to be a "batcher" on all queues in the system. This
668 * is the behaviour we want though - once it gets a wakeup it should be given
669 * a nice run.
670 */
165125e1 671static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
672{
673 if (!ioc || ioc_batching(q, ioc))
674 return;
675
676 ioc->nr_batch_requests = q->nr_batching;
677 ioc->last_waited = jiffies;
678}
679
1faa16d2 680static void __freed_request(struct request_queue *q, int sync)
1da177e4
LT
681{
682 struct request_list *rl = &q->rq;
683
1faa16d2
JA
684 if (rl->count[sync] < queue_congestion_off_threshold(q))
685 blk_clear_queue_congested(q, sync);
1da177e4 686
1faa16d2
JA
687 if (rl->count[sync] + 1 <= q->nr_requests) {
688 if (waitqueue_active(&rl->wait[sync]))
689 wake_up(&rl->wait[sync]);
1da177e4 690
1faa16d2 691 blk_clear_queue_full(q, sync);
1da177e4
LT
692 }
693}
694
695/*
696 * A request has just been released. Account for it, update the full and
697 * congestion status, wake up any waiters. Called under q->queue_lock.
698 */
1faa16d2 699static void freed_request(struct request_queue *q, int sync, int priv)
1da177e4
LT
700{
701 struct request_list *rl = &q->rq;
702
1faa16d2 703 rl->count[sync]--;
cb98fc8b
TH
704 if (priv)
705 rl->elvpriv--;
1da177e4 706
1faa16d2 707 __freed_request(q, sync);
1da177e4 708
1faa16d2
JA
709 if (unlikely(rl->starved[sync ^ 1]))
710 __freed_request(q, sync ^ 1);
1da177e4
LT
711}
712
1da177e4 713/*
d6344532
NP
714 * Get a free request, queue_lock must be held.
715 * Returns NULL on failure, with queue_lock held.
716 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 717 */
165125e1 718static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 719 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
720{
721 struct request *rq = NULL;
722 struct request_list *rl = &q->rq;
88ee5ef1 723 struct io_context *ioc = NULL;
1faa16d2 724 const bool is_sync = rw_is_sync(rw_flags) != 0;
88ee5ef1
JA
725 int may_queue, priv;
726
7749a8d4 727 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
728 if (may_queue == ELV_MQUEUE_NO)
729 goto rq_starved;
730
1faa16d2
JA
731 if (rl->count[is_sync]+1 >= queue_congestion_on_threshold(q)) {
732 if (rl->count[is_sync]+1 >= q->nr_requests) {
b5deef90 733 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
734 /*
735 * The queue will fill after this allocation, so set
736 * it as full, and mark this process as "batching".
737 * This process will be allowed to complete a batch of
738 * requests, others will be blocked.
739 */
1faa16d2 740 if (!blk_queue_full(q, is_sync)) {
88ee5ef1 741 ioc_set_batching(q, ioc);
1faa16d2 742 blk_set_queue_full(q, is_sync);
88ee5ef1
JA
743 } else {
744 if (may_queue != ELV_MQUEUE_MUST
745 && !ioc_batching(q, ioc)) {
746 /*
747 * The queue is full and the allocating
748 * process is not a "batcher", and not
749 * exempted by the IO scheduler
750 */
751 goto out;
752 }
753 }
1da177e4 754 }
1faa16d2 755 blk_set_queue_congested(q, is_sync);
1da177e4
LT
756 }
757
082cf69e
JA
758 /*
759 * Only allow batching queuers to allocate up to 50% over the defined
760 * limit of requests, otherwise we could have thousands of requests
761 * allocated with any setting of ->nr_requests
762 */
1faa16d2 763 if (rl->count[is_sync] >= (3 * q->nr_requests / 2))
082cf69e 764 goto out;
fd782a4a 765
1faa16d2
JA
766 rl->count[is_sync]++;
767 rl->starved[is_sync] = 0;
cb98fc8b 768
64521d1a 769 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
770 if (priv)
771 rl->elvpriv++;
772
42dad764
JM
773 if (blk_queue_io_stat(q))
774 rw_flags |= REQ_IO_STAT;
1da177e4
LT
775 spin_unlock_irq(q->queue_lock);
776
7749a8d4 777 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 778 if (unlikely(!rq)) {
1da177e4
LT
779 /*
780 * Allocation failed presumably due to memory. Undo anything
781 * we might have messed up.
782 *
783 * Allocating task should really be put onto the front of the
784 * wait queue, but this is pretty rare.
785 */
786 spin_lock_irq(q->queue_lock);
1faa16d2 787 freed_request(q, is_sync, priv);
1da177e4
LT
788
789 /*
790 * in the very unlikely event that allocation failed and no
791 * requests for this direction was pending, mark us starved
792 * so that freeing of a request in the other direction will
793 * notice us. another possible fix would be to split the
794 * rq mempool into READ and WRITE
795 */
796rq_starved:
1faa16d2
JA
797 if (unlikely(rl->count[is_sync] == 0))
798 rl->starved[is_sync] = 1;
1da177e4 799
1da177e4
LT
800 goto out;
801 }
802
88ee5ef1
JA
803 /*
804 * ioc may be NULL here, and ioc_batching will be false. That's
805 * OK, if the queue is under the request limit then requests need
806 * not count toward the nr_batch_requests limit. There will always
807 * be some limit enforced by BLK_BATCH_TIME.
808 */
1da177e4
LT
809 if (ioc_batching(q, ioc))
810 ioc->nr_batch_requests--;
6728cb0e 811
1faa16d2 812 trace_block_getrq(q, bio, rw_flags & 1);
1da177e4 813out:
1da177e4
LT
814 return rq;
815}
816
817/*
818 * No available requests for this queue, unplug the device and wait for some
819 * requests to become available.
d6344532
NP
820 *
821 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 822 */
165125e1 823static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 824 struct bio *bio)
1da177e4 825{
1faa16d2 826 const bool is_sync = rw_is_sync(rw_flags) != 0;
1da177e4
LT
827 struct request *rq;
828
7749a8d4 829 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
830 while (!rq) {
831 DEFINE_WAIT(wait);
05caf8db 832 struct io_context *ioc;
1da177e4
LT
833 struct request_list *rl = &q->rq;
834
1faa16d2 835 prepare_to_wait_exclusive(&rl->wait[is_sync], &wait,
1da177e4
LT
836 TASK_UNINTERRUPTIBLE);
837
1faa16d2 838 trace_block_sleeprq(q, bio, rw_flags & 1);
1da177e4 839
05caf8db
ZY
840 __generic_unplug_device(q);
841 spin_unlock_irq(q->queue_lock);
842 io_schedule();
1da177e4 843
05caf8db
ZY
844 /*
845 * After sleeping, we become a "batching" process and
846 * will be able to allocate at least one request, and
847 * up to a big batch of them for a small period time.
848 * See ioc_batching, ioc_set_batching
849 */
850 ioc = current_io_context(GFP_NOIO, q->node);
851 ioc_set_batching(q, ioc);
d6344532 852
05caf8db 853 spin_lock_irq(q->queue_lock);
1faa16d2 854 finish_wait(&rl->wait[is_sync], &wait);
05caf8db
ZY
855
856 rq = get_request(q, rw_flags, bio, GFP_NOIO);
857 };
1da177e4
LT
858
859 return rq;
860}
861
165125e1 862struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
863{
864 struct request *rq;
865
866 BUG_ON(rw != READ && rw != WRITE);
867
d6344532
NP
868 spin_lock_irq(q->queue_lock);
869 if (gfp_mask & __GFP_WAIT) {
22e2c507 870 rq = get_request_wait(q, rw, NULL);
d6344532 871 } else {
22e2c507 872 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
873 if (!rq)
874 spin_unlock_irq(q->queue_lock);
875 }
876 /* q->queue_lock is unlocked at this point */
1da177e4
LT
877
878 return rq;
879}
1da177e4
LT
880EXPORT_SYMBOL(blk_get_request);
881
dc72ef4a 882/**
79eb63e9 883 * blk_make_request - given a bio, allocate a corresponding struct request.
8ebf9756 884 * @q: target request queue
79eb63e9
BH
885 * @bio: The bio describing the memory mappings that will be submitted for IO.
886 * It may be a chained-bio properly constructed by block/bio layer.
8ebf9756 887 * @gfp_mask: gfp flags to be used for memory allocation
dc72ef4a 888 *
79eb63e9
BH
889 * blk_make_request is the parallel of generic_make_request for BLOCK_PC
890 * type commands. Where the struct request needs to be farther initialized by
891 * the caller. It is passed a &struct bio, which describes the memory info of
892 * the I/O transfer.
dc72ef4a 893 *
79eb63e9
BH
894 * The caller of blk_make_request must make sure that bi_io_vec
895 * are set to describe the memory buffers. That bio_data_dir() will return
896 * the needed direction of the request. (And all bio's in the passed bio-chain
897 * are properly set accordingly)
898 *
899 * If called under none-sleepable conditions, mapped bio buffers must not
900 * need bouncing, by calling the appropriate masked or flagged allocator,
901 * suitable for the target device. Otherwise the call to blk_queue_bounce will
902 * BUG.
53674ac5
JA
903 *
904 * WARNING: When allocating/cloning a bio-chain, careful consideration should be
905 * given to how you allocate bios. In particular, you cannot use __GFP_WAIT for
906 * anything but the first bio in the chain. Otherwise you risk waiting for IO
907 * completion of a bio that hasn't been submitted yet, thus resulting in a
908 * deadlock. Alternatively bios should be allocated using bio_kmalloc() instead
909 * of bio_alloc(), as that avoids the mempool deadlock.
910 * If possible a big IO should be split into smaller parts when allocation
911 * fails. Partial allocation should not be an error, or you risk a live-lock.
dc72ef4a 912 */
79eb63e9
BH
913struct request *blk_make_request(struct request_queue *q, struct bio *bio,
914 gfp_t gfp_mask)
dc72ef4a 915{
79eb63e9
BH
916 struct request *rq = blk_get_request(q, bio_data_dir(bio), gfp_mask);
917
918 if (unlikely(!rq))
919 return ERR_PTR(-ENOMEM);
920
921 for_each_bio(bio) {
922 struct bio *bounce_bio = bio;
923 int ret;
924
925 blk_queue_bounce(q, &bounce_bio);
926 ret = blk_rq_append_bio(q, rq, bounce_bio);
927 if (unlikely(ret)) {
928 blk_put_request(rq);
929 return ERR_PTR(ret);
930 }
931 }
932
933 return rq;
dc72ef4a 934}
79eb63e9 935EXPORT_SYMBOL(blk_make_request);
dc72ef4a 936
1da177e4
LT
937/**
938 * blk_requeue_request - put a request back on queue
939 * @q: request queue where request should be inserted
940 * @rq: request to be inserted
941 *
942 * Description:
943 * Drivers often keep queueing requests until the hardware cannot accept
944 * more, when that condition happens we need to put the request back
945 * on the queue. Must be called with queue lock held.
946 */
165125e1 947void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 948{
242f9dcb
JA
949 blk_delete_timer(rq);
950 blk_clear_rq_complete(rq);
5f3ea37c 951 trace_block_rq_requeue(q, rq);
2056a782 952
1da177e4
LT
953 if (blk_rq_tagged(rq))
954 blk_queue_end_tag(q, rq);
955
ba396a6c
JB
956 BUG_ON(blk_queued_rq(rq));
957
1da177e4
LT
958 elv_requeue_request(q, rq);
959}
1da177e4
LT
960EXPORT_SYMBOL(blk_requeue_request);
961
962/**
710027a4 963 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
964 * @q: request queue where request should be inserted
965 * @rq: request to be inserted
966 * @at_head: insert request at head or tail of queue
967 * @data: private data
1da177e4
LT
968 *
969 * Description:
970 * Many block devices need to execute commands asynchronously, so they don't
971 * block the whole kernel from preemption during request execution. This is
972 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
973 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
974 * be scheduled for actual execution by the request queue.
1da177e4
LT
975 *
976 * We have the option of inserting the head or the tail of the queue.
977 * Typically we use the tail for new ioctls and so forth. We use the head
978 * of the queue for things like a QUEUE_FULL message from a device, or a
979 * host that is unable to accept a particular command.
980 */
165125e1 981void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 982 int at_head, void *data)
1da177e4 983{
867d1191 984 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
985 unsigned long flags;
986
987 /*
988 * tell I/O scheduler that this isn't a regular read/write (ie it
989 * must not attempt merges on this) and that it acts as a soft
990 * barrier
991 */
4aff5e23 992 rq->cmd_type = REQ_TYPE_SPECIAL;
1da177e4
LT
993
994 rq->special = data;
995
996 spin_lock_irqsave(q->queue_lock, flags);
997
998 /*
999 * If command is tagged, release the tag
1000 */
867d1191
TH
1001 if (blk_rq_tagged(rq))
1002 blk_queue_end_tag(q, rq);
1da177e4 1003
b238b3d4 1004 drive_stat_acct(rq, 1);
867d1191 1005 __elv_add_request(q, rq, where, 0);
a7f55792 1006 __blk_run_queue(q);
1da177e4
LT
1007 spin_unlock_irqrestore(q->queue_lock, flags);
1008}
1da177e4
LT
1009EXPORT_SYMBOL(blk_insert_request);
1010
1da177e4
LT
1011/*
1012 * add-request adds a request to the linked list.
1013 * queue lock is held and interrupts disabled, as we muck with the
1014 * request queue list.
1015 */
6728cb0e 1016static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 1017{
b238b3d4 1018 drive_stat_acct(req, 1);
1da177e4 1019
1da177e4
LT
1020 /*
1021 * elevator indicated where it wants this request to be
1022 * inserted at elevator_merge time
1023 */
1024 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
1025}
6728cb0e 1026
074a7aca
TH
1027static void part_round_stats_single(int cpu, struct hd_struct *part,
1028 unsigned long now)
1029{
1030 if (now == part->stamp)
1031 return;
1032
316d315b 1033 if (part_in_flight(part)) {
074a7aca 1034 __part_stat_add(cpu, part, time_in_queue,
316d315b 1035 part_in_flight(part) * (now - part->stamp));
074a7aca
TH
1036 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
1037 }
1038 part->stamp = now;
1039}
1040
1041/**
496aa8a9
RD
1042 * part_round_stats() - Round off the performance stats on a struct disk_stats.
1043 * @cpu: cpu number for stats access
1044 * @part: target partition
1da177e4
LT
1045 *
1046 * The average IO queue length and utilisation statistics are maintained
1047 * by observing the current state of the queue length and the amount of
1048 * time it has been in this state for.
1049 *
1050 * Normally, that accounting is done on IO completion, but that can result
1051 * in more than a second's worth of IO being accounted for within any one
1052 * second, leading to >100% utilisation. To deal with that, we call this
1053 * function to do a round-off before returning the results when reading
1054 * /proc/diskstats. This accounts immediately for all queue usage up to
1055 * the current jiffies and restarts the counters again.
1056 */
c9959059 1057void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1058{
1059 unsigned long now = jiffies;
1060
074a7aca
TH
1061 if (part->partno)
1062 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1063 part_round_stats_single(cpu, part, now);
6f2576af 1064}
074a7aca 1065EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1066
1da177e4
LT
1067/*
1068 * queue lock must be held
1069 */
165125e1 1070void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1071{
1da177e4
LT
1072 if (unlikely(!q))
1073 return;
1074 if (unlikely(--req->ref_count))
1075 return;
1076
8922e16c
TH
1077 elv_completed_request(q, req);
1078
1cd96c24
BH
1079 /* this is a bio leak */
1080 WARN_ON(req->bio != NULL);
1081
1da177e4
LT
1082 /*
1083 * Request may not have originated from ll_rw_blk. if not,
1084 * it didn't come out of our reserved rq pools
1085 */
49171e5c 1086 if (req->cmd_flags & REQ_ALLOCED) {
1faa16d2 1087 int is_sync = rq_is_sync(req) != 0;
4aff5e23 1088 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1089
1da177e4 1090 BUG_ON(!list_empty(&req->queuelist));
9817064b 1091 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1092
1093 blk_free_request(q, req);
1faa16d2 1094 freed_request(q, is_sync, priv);
1da177e4
LT
1095 }
1096}
6e39b69e
MC
1097EXPORT_SYMBOL_GPL(__blk_put_request);
1098
1da177e4
LT
1099void blk_put_request(struct request *req)
1100{
8922e16c 1101 unsigned long flags;
165125e1 1102 struct request_queue *q = req->q;
8922e16c 1103
52a93ba8
FT
1104 spin_lock_irqsave(q->queue_lock, flags);
1105 __blk_put_request(q, req);
1106 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1107}
1da177e4
LT
1108EXPORT_SYMBOL(blk_put_request);
1109
86db1e29 1110void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1111{
c7c22e4d 1112 req->cpu = bio->bi_comp_cpu;
4aff5e23 1113 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1114
1115 /*
a82afdfc
TH
1116 * Inherit FAILFAST from bio (for read-ahead, and explicit
1117 * FAILFAST). FAILFAST flags are identical for req and bio.
52d9e675 1118 */
1f98a13f 1119 if (bio_rw_flagged(bio, BIO_RW_AHEAD))
a82afdfc
TH
1120 req->cmd_flags |= REQ_FAILFAST_MASK;
1121 else
1122 req->cmd_flags |= bio->bi_rw & REQ_FAILFAST_MASK;
52d9e675 1123
1f98a13f 1124 if (unlikely(bio_rw_flagged(bio, BIO_RW_DISCARD))) {
e17fc0a1 1125 req->cmd_flags |= REQ_DISCARD;
1f98a13f 1126 if (bio_rw_flagged(bio, BIO_RW_BARRIER))
e17fc0a1 1127 req->cmd_flags |= REQ_SOFTBARRIER;
1f98a13f 1128 } else if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)))
e4025f6c 1129 req->cmd_flags |= REQ_HARDBARRIER;
52d9e675 1130
1f98a13f 1131 if (bio_rw_flagged(bio, BIO_RW_SYNCIO))
4aff5e23 1132 req->cmd_flags |= REQ_RW_SYNC;
1f98a13f 1133 if (bio_rw_flagged(bio, BIO_RW_META))
5404bc7a 1134 req->cmd_flags |= REQ_RW_META;
1f98a13f 1135 if (bio_rw_flagged(bio, BIO_RW_NOIDLE))
aeb6fafb 1136 req->cmd_flags |= REQ_NOIDLE;
b31dc66a 1137
52d9e675 1138 req->errors = 0;
a2dec7b3 1139 req->__sector = bio->bi_sector;
52d9e675 1140 req->ioprio = bio_prio(bio);
bc1c56fd 1141 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1142}
1143
644b2d99
JA
1144/*
1145 * Only disabling plugging for non-rotational devices if it does tagging
1146 * as well, otherwise we do need the proper merging
1147 */
1148static inline bool queue_should_plug(struct request_queue *q)
1149{
79da0644 1150 return !(blk_queue_nonrot(q) && blk_queue_tagged(q));
644b2d99
JA
1151}
1152
165125e1 1153static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1154{
450991bc 1155 struct request *req;
2e46e8b2
TH
1156 int el_ret;
1157 unsigned int bytes = bio->bi_size;
51da90fc 1158 const unsigned short prio = bio_prio(bio);
1f98a13f
JA
1159 const bool sync = bio_rw_flagged(bio, BIO_RW_SYNCIO);
1160 const bool unplug = bio_rw_flagged(bio, BIO_RW_UNPLUG);
80a761fd 1161 const unsigned int ff = bio->bi_rw & REQ_FAILFAST_MASK;
7749a8d4 1162 int rw_flags;
1da177e4 1163
6cafb12d 1164 if (bio_rw_flagged(bio, BIO_RW_BARRIER) &&
db64f680
N
1165 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1166 bio_endio(bio, -EOPNOTSUPP);
1167 return 0;
1168 }
1da177e4
LT
1169 /*
1170 * low level driver can indicate that it wants pages above a
1171 * certain limit bounced to low memory (ie for highmem, or even
1172 * ISA dma in theory)
1173 */
1174 blk_queue_bounce(q, &bio);
1175
1da177e4
LT
1176 spin_lock_irq(q->queue_lock);
1177
1f98a13f 1178 if (unlikely(bio_rw_flagged(bio, BIO_RW_BARRIER)) || elv_queue_empty(q))
1da177e4
LT
1179 goto get_rq;
1180
1181 el_ret = elv_merge(q, &req, bio);
1182 switch (el_ret) {
6728cb0e
JA
1183 case ELEVATOR_BACK_MERGE:
1184 BUG_ON(!rq_mergeable(req));
1da177e4 1185
6728cb0e
JA
1186 if (!ll_back_merge_fn(q, req, bio))
1187 break;
1da177e4 1188
5f3ea37c 1189 trace_block_bio_backmerge(q, bio);
2056a782 1190
80a761fd
TH
1191 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff)
1192 blk_rq_set_mixed_merge(req);
1193
6728cb0e
JA
1194 req->biotail->bi_next = bio;
1195 req->biotail = bio;
a2dec7b3 1196 req->__data_len += bytes;
6728cb0e 1197 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1198 if (!blk_rq_cpu_valid(req))
1199 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1200 drive_stat_acct(req, 0);
1201 if (!attempt_back_merge(q, req))
1202 elv_merged_request(q, req, el_ret);
1203 goto out;
1da177e4 1204
6728cb0e
JA
1205 case ELEVATOR_FRONT_MERGE:
1206 BUG_ON(!rq_mergeable(req));
1da177e4 1207
6728cb0e
JA
1208 if (!ll_front_merge_fn(q, req, bio))
1209 break;
1da177e4 1210
5f3ea37c 1211 trace_block_bio_frontmerge(q, bio);
2056a782 1212
80a761fd
TH
1213 if ((req->cmd_flags & REQ_FAILFAST_MASK) != ff) {
1214 blk_rq_set_mixed_merge(req);
1215 req->cmd_flags &= ~REQ_FAILFAST_MASK;
1216 req->cmd_flags |= ff;
1217 }
1218
6728cb0e
JA
1219 bio->bi_next = req->bio;
1220 req->bio = bio;
1da177e4 1221
6728cb0e
JA
1222 /*
1223 * may not be valid. if the low level driver said
1224 * it didn't need a bounce buffer then it better
1225 * not touch req->buffer either...
1226 */
1227 req->buffer = bio_data(bio);
a2dec7b3
TH
1228 req->__sector = bio->bi_sector;
1229 req->__data_len += bytes;
6728cb0e 1230 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1231 if (!blk_rq_cpu_valid(req))
1232 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1233 drive_stat_acct(req, 0);
1234 if (!attempt_front_merge(q, req))
1235 elv_merged_request(q, req, el_ret);
1236 goto out;
1237
1238 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1239 default:
1240 ;
1da177e4
LT
1241 }
1242
450991bc 1243get_rq:
7749a8d4
JA
1244 /*
1245 * This sync check and mask will be re-done in init_request_from_bio(),
1246 * but we need to set it earlier to expose the sync flag to the
1247 * rq allocator and io schedulers.
1248 */
1249 rw_flags = bio_data_dir(bio);
1250 if (sync)
1251 rw_flags |= REQ_RW_SYNC;
1252
1da177e4 1253 /*
450991bc 1254 * Grab a free request. This is might sleep but can not fail.
d6344532 1255 * Returns with the queue unlocked.
450991bc 1256 */
7749a8d4 1257 req = get_request_wait(q, rw_flags, bio);
d6344532 1258
450991bc
NP
1259 /*
1260 * After dropping the lock and possibly sleeping here, our request
1261 * may now be mergeable after it had proven unmergeable (above).
1262 * We don't worry about that case for efficiency. It won't happen
1263 * often, and the elevators are able to handle it.
1da177e4 1264 */
52d9e675 1265 init_request_from_bio(req, bio);
1da177e4 1266
450991bc 1267 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1268 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1269 bio_flagged(bio, BIO_CPU_AFFINE))
1270 req->cpu = blk_cpu_to_group(smp_processor_id());
644b2d99 1271 if (queue_should_plug(q) && elv_queue_empty(q))
450991bc 1272 blk_plug_device(q);
1da177e4
LT
1273 add_request(q, req);
1274out:
644b2d99 1275 if (unplug || !queue_should_plug(q))
1da177e4 1276 __generic_unplug_device(q);
1da177e4
LT
1277 spin_unlock_irq(q->queue_lock);
1278 return 0;
1da177e4
LT
1279}
1280
1281/*
1282 * If bio->bi_dev is a partition, remap the location
1283 */
1284static inline void blk_partition_remap(struct bio *bio)
1285{
1286 struct block_device *bdev = bio->bi_bdev;
1287
bf2de6f5 1288 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1289 struct hd_struct *p = bdev->bd_part;
1290
1da177e4
LT
1291 bio->bi_sector += p->start_sect;
1292 bio->bi_bdev = bdev->bd_contains;
c7149d6b 1293
5f3ea37c 1294 trace_block_remap(bdev_get_queue(bio->bi_bdev), bio,
22a7c31a 1295 bdev->bd_dev,
c7149d6b 1296 bio->bi_sector - p->start_sect);
1da177e4
LT
1297 }
1298}
1299
1da177e4
LT
1300static void handle_bad_sector(struct bio *bio)
1301{
1302 char b[BDEVNAME_SIZE];
1303
1304 printk(KERN_INFO "attempt to access beyond end of device\n");
1305 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1306 bdevname(bio->bi_bdev, b),
1307 bio->bi_rw,
1308 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1309 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1310
1311 set_bit(BIO_EOF, &bio->bi_flags);
1312}
1313
c17bb495
AM
1314#ifdef CONFIG_FAIL_MAKE_REQUEST
1315
1316static DECLARE_FAULT_ATTR(fail_make_request);
1317
1318static int __init setup_fail_make_request(char *str)
1319{
1320 return setup_fault_attr(&fail_make_request, str);
1321}
1322__setup("fail_make_request=", setup_fail_make_request);
1323
1324static int should_fail_request(struct bio *bio)
1325{
eddb2e26
TH
1326 struct hd_struct *part = bio->bi_bdev->bd_part;
1327
1328 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1329 return should_fail(&fail_make_request, bio->bi_size);
1330
1331 return 0;
1332}
1333
1334static int __init fail_make_request_debugfs(void)
1335{
1336 return init_fault_attr_dentries(&fail_make_request,
1337 "fail_make_request");
1338}
1339
1340late_initcall(fail_make_request_debugfs);
1341
1342#else /* CONFIG_FAIL_MAKE_REQUEST */
1343
1344static inline int should_fail_request(struct bio *bio)
1345{
1346 return 0;
1347}
1348
1349#endif /* CONFIG_FAIL_MAKE_REQUEST */
1350
c07e2b41
JA
1351/*
1352 * Check whether this bio extends beyond the end of the device.
1353 */
1354static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1355{
1356 sector_t maxsector;
1357
1358 if (!nr_sectors)
1359 return 0;
1360
1361 /* Test device or partition size, when known. */
1362 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1363 if (maxsector) {
1364 sector_t sector = bio->bi_sector;
1365
1366 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1367 /*
1368 * This may well happen - the kernel calls bread()
1369 * without checking the size of the device, e.g., when
1370 * mounting a device.
1371 */
1372 handle_bad_sector(bio);
1373 return 1;
1374 }
1375 }
1376
1377 return 0;
1378}
1379
1da177e4 1380/**
710027a4 1381 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1382 * @bio: The bio describing the location in memory and on the device.
1383 *
1384 * generic_make_request() is used to make I/O requests of block
1385 * devices. It is passed a &struct bio, which describes the I/O that needs
1386 * to be done.
1387 *
1388 * generic_make_request() does not return any status. The
1389 * success/failure status of the request, along with notification of
1390 * completion, is delivered asynchronously through the bio->bi_end_io
1391 * function described (one day) else where.
1392 *
1393 * The caller of generic_make_request must make sure that bi_io_vec
1394 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1395 * set to describe the device address, and the
1396 * bi_end_io and optionally bi_private are set to describe how
1397 * completion notification should be signaled.
1398 *
1399 * generic_make_request and the drivers it calls may use bi_next if this
1400 * bio happens to be merged with someone else, and may change bi_dev and
1401 * bi_sector for remaps as it sees fit. So the values of these fields
1402 * should NOT be depended on after the call to generic_make_request.
1403 */
d89d8796 1404static inline void __generic_make_request(struct bio *bio)
1da177e4 1405{
165125e1 1406 struct request_queue *q;
5ddfe969 1407 sector_t old_sector;
1da177e4 1408 int ret, nr_sectors = bio_sectors(bio);
2056a782 1409 dev_t old_dev;
51fd77bd 1410 int err = -EIO;
1da177e4
LT
1411
1412 might_sleep();
1da177e4 1413
c07e2b41
JA
1414 if (bio_check_eod(bio, nr_sectors))
1415 goto end_io;
1da177e4
LT
1416
1417 /*
1418 * Resolve the mapping until finished. (drivers are
1419 * still free to implement/resolve their own stacking
1420 * by explicitly returning 0)
1421 *
1422 * NOTE: we don't repeat the blk_size check for each new device.
1423 * Stacking drivers are expected to know what they are doing.
1424 */
5ddfe969 1425 old_sector = -1;
2056a782 1426 old_dev = 0;
1da177e4
LT
1427 do {
1428 char b[BDEVNAME_SIZE];
1429
1430 q = bdev_get_queue(bio->bi_bdev);
a7384677 1431 if (unlikely(!q)) {
1da177e4
LT
1432 printk(KERN_ERR
1433 "generic_make_request: Trying to access "
1434 "nonexistent block-device %s (%Lu)\n",
1435 bdevname(bio->bi_bdev, b),
1436 (long long) bio->bi_sector);
a7384677 1437 goto end_io;
1da177e4
LT
1438 }
1439
67efc925
CH
1440 if (unlikely(!bio_rw_flagged(bio, BIO_RW_DISCARD) &&
1441 nr_sectors > queue_max_hw_sectors(q))) {
6728cb0e 1442 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
ae03bf63
MP
1443 bdevname(bio->bi_bdev, b),
1444 bio_sectors(bio),
1445 queue_max_hw_sectors(q));
1da177e4
LT
1446 goto end_io;
1447 }
1448
fde6ad22 1449 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1450 goto end_io;
1451
c17bb495
AM
1452 if (should_fail_request(bio))
1453 goto end_io;
1454
1da177e4
LT
1455 /*
1456 * If this device has partitions, remap block n
1457 * of partition p to block n+start(p) of the disk.
1458 */
1459 blk_partition_remap(bio);
1460
7ba1ba12
MP
1461 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1462 goto end_io;
1463
5ddfe969 1464 if (old_sector != -1)
22a7c31a 1465 trace_block_remap(q, bio, old_dev, old_sector);
2056a782 1466
5ddfe969 1467 old_sector = bio->bi_sector;
2056a782
JA
1468 old_dev = bio->bi_bdev->bd_dev;
1469
c07e2b41
JA
1470 if (bio_check_eod(bio, nr_sectors))
1471 goto end_io;
a7384677 1472
1f98a13f 1473 if (bio_rw_flagged(bio, BIO_RW_DISCARD) &&
c15227de 1474 !blk_queue_discard(q)) {
51fd77bd
JA
1475 err = -EOPNOTSUPP;
1476 goto end_io;
1477 }
5ddfe969 1478
01edede4
MK
1479 trace_block_bio_queue(q, bio);
1480
1da177e4
LT
1481 ret = q->make_request_fn(q, bio);
1482 } while (ret);
a7384677
TH
1483
1484 return;
1485
1486end_io:
1487 bio_endio(bio, err);
1da177e4
LT
1488}
1489
d89d8796
NB
1490/*
1491 * We only want one ->make_request_fn to be active at a time,
1492 * else stack usage with stacked devices could be a problem.
bddd87c7 1493 * So use current->bio_list to keep a list of requests
d89d8796 1494 * submited by a make_request_fn function.
bddd87c7 1495 * current->bio_list is also used as a flag to say if
d89d8796
NB
1496 * generic_make_request is currently active in this task or not.
1497 * If it is NULL, then no make_request is active. If it is non-NULL,
1498 * then a make_request is active, and new requests should be added
1499 * at the tail
1500 */
1501void generic_make_request(struct bio *bio)
1502{
bddd87c7
AM
1503 struct bio_list bio_list_on_stack;
1504
1505 if (current->bio_list) {
d89d8796 1506 /* make_request is active */
bddd87c7 1507 bio_list_add(current->bio_list, bio);
d89d8796
NB
1508 return;
1509 }
1510 /* following loop may be a bit non-obvious, and so deserves some
1511 * explanation.
1512 * Before entering the loop, bio->bi_next is NULL (as all callers
1513 * ensure that) so we have a list with a single bio.
1514 * We pretend that we have just taken it off a longer list, so
bddd87c7
AM
1515 * we assign bio_list to a pointer to the bio_list_on_stack,
1516 * thus initialising the bio_list of new bios to be
d89d8796
NB
1517 * added. __generic_make_request may indeed add some more bios
1518 * through a recursive call to generic_make_request. If it
1519 * did, we find a non-NULL value in bio_list and re-enter the loop
1520 * from the top. In this case we really did just take the bio
bddd87c7
AM
1521 * of the top of the list (no pretending) and so remove it from
1522 * bio_list, and call into __generic_make_request again.
d89d8796
NB
1523 *
1524 * The loop was structured like this to make only one call to
1525 * __generic_make_request (which is important as it is large and
1526 * inlined) and to keep the structure simple.
1527 */
1528 BUG_ON(bio->bi_next);
bddd87c7
AM
1529 bio_list_init(&bio_list_on_stack);
1530 current->bio_list = &bio_list_on_stack;
d89d8796 1531 do {
d89d8796 1532 __generic_make_request(bio);
bddd87c7 1533 bio = bio_list_pop(current->bio_list);
d89d8796 1534 } while (bio);
bddd87c7 1535 current->bio_list = NULL; /* deactivate */
d89d8796 1536}
1da177e4
LT
1537EXPORT_SYMBOL(generic_make_request);
1538
1539/**
710027a4 1540 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1541 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1542 * @bio: The &struct bio which describes the I/O
1543 *
1544 * submit_bio() is very similar in purpose to generic_make_request(), and
1545 * uses that function to do most of the work. Both are fairly rough
710027a4 1546 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1547 *
1548 */
1549void submit_bio(int rw, struct bio *bio)
1550{
1551 int count = bio_sectors(bio);
1552
22e2c507 1553 bio->bi_rw |= rw;
1da177e4 1554
bf2de6f5
JA
1555 /*
1556 * If it's a regular read/write or a barrier with data attached,
1557 * go through the normal accounting stuff before submission.
1558 */
a9c701e5 1559 if (bio_has_data(bio)) {
bf2de6f5
JA
1560 if (rw & WRITE) {
1561 count_vm_events(PGPGOUT, count);
1562 } else {
1563 task_io_account_read(bio->bi_size);
1564 count_vm_events(PGPGIN, count);
1565 }
1566
1567 if (unlikely(block_dump)) {
1568 char b[BDEVNAME_SIZE];
1569 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1570 current->comm, task_pid_nr(current),
bf2de6f5
JA
1571 (rw & WRITE) ? "WRITE" : "READ",
1572 (unsigned long long)bio->bi_sector,
6728cb0e 1573 bdevname(bio->bi_bdev, b));
bf2de6f5 1574 }
1da177e4
LT
1575 }
1576
1577 generic_make_request(bio);
1578}
1da177e4
LT
1579EXPORT_SYMBOL(submit_bio);
1580
82124d60
KU
1581/**
1582 * blk_rq_check_limits - Helper function to check a request for the queue limit
1583 * @q: the queue
1584 * @rq: the request being checked
1585 *
1586 * Description:
1587 * @rq may have been made based on weaker limitations of upper-level queues
1588 * in request stacking drivers, and it may violate the limitation of @q.
1589 * Since the block layer and the underlying device driver trust @rq
1590 * after it is inserted to @q, it should be checked against @q before
1591 * the insertion using this generic function.
1592 *
1593 * This function should also be useful for request stacking drivers
1594 * in some cases below, so export this fuction.
1595 * Request stacking drivers like request-based dm may change the queue
1596 * limits while requests are in the queue (e.g. dm's table swapping).
1597 * Such request stacking drivers should check those requests agaist
1598 * the new queue limits again when they dispatch those requests,
1599 * although such checkings are also done against the old queue limits
1600 * when submitting requests.
1601 */
1602int blk_rq_check_limits(struct request_queue *q, struct request *rq)
1603{
ae03bf63
MP
1604 if (blk_rq_sectors(rq) > queue_max_sectors(q) ||
1605 blk_rq_bytes(rq) > queue_max_hw_sectors(q) << 9) {
82124d60
KU
1606 printk(KERN_ERR "%s: over max size limit.\n", __func__);
1607 return -EIO;
1608 }
1609
1610 /*
1611 * queue's settings related to segment counting like q->bounce_pfn
1612 * may differ from that of other stacking queues.
1613 * Recalculate it to check the request correctly on this queue's
1614 * limitation.
1615 */
1616 blk_recalc_rq_segments(rq);
ae03bf63
MP
1617 if (rq->nr_phys_segments > queue_max_phys_segments(q) ||
1618 rq->nr_phys_segments > queue_max_hw_segments(q)) {
82124d60
KU
1619 printk(KERN_ERR "%s: over max segments limit.\n", __func__);
1620 return -EIO;
1621 }
1622
1623 return 0;
1624}
1625EXPORT_SYMBOL_GPL(blk_rq_check_limits);
1626
1627/**
1628 * blk_insert_cloned_request - Helper for stacking drivers to submit a request
1629 * @q: the queue to submit the request
1630 * @rq: the request being queued
1631 */
1632int blk_insert_cloned_request(struct request_queue *q, struct request *rq)
1633{
1634 unsigned long flags;
1635
1636 if (blk_rq_check_limits(q, rq))
1637 return -EIO;
1638
1639#ifdef CONFIG_FAIL_MAKE_REQUEST
1640 if (rq->rq_disk && rq->rq_disk->part0.make_it_fail &&
1641 should_fail(&fail_make_request, blk_rq_bytes(rq)))
1642 return -EIO;
1643#endif
1644
1645 spin_lock_irqsave(q->queue_lock, flags);
1646
1647 /*
1648 * Submitting request must be dequeued before calling this function
1649 * because it will be linked to another request_queue
1650 */
1651 BUG_ON(blk_queued_rq(rq));
1652
1653 drive_stat_acct(rq, 1);
1654 __elv_add_request(q, rq, ELEVATOR_INSERT_BACK, 0);
1655
1656 spin_unlock_irqrestore(q->queue_lock, flags);
1657
1658 return 0;
1659}
1660EXPORT_SYMBOL_GPL(blk_insert_cloned_request);
1661
80a761fd
TH
1662/**
1663 * blk_rq_err_bytes - determine number of bytes till the next failure boundary
1664 * @rq: request to examine
1665 *
1666 * Description:
1667 * A request could be merge of IOs which require different failure
1668 * handling. This function determines the number of bytes which
1669 * can be failed from the beginning of the request without
1670 * crossing into area which need to be retried further.
1671 *
1672 * Return:
1673 * The number of bytes to fail.
1674 *
1675 * Context:
1676 * queue_lock must be held.
1677 */
1678unsigned int blk_rq_err_bytes(const struct request *rq)
1679{
1680 unsigned int ff = rq->cmd_flags & REQ_FAILFAST_MASK;
1681 unsigned int bytes = 0;
1682 struct bio *bio;
1683
1684 if (!(rq->cmd_flags & REQ_MIXED_MERGE))
1685 return blk_rq_bytes(rq);
1686
1687 /*
1688 * Currently the only 'mixing' which can happen is between
1689 * different fastfail types. We can safely fail portions
1690 * which have all the failfast bits that the first one has -
1691 * the ones which are at least as eager to fail as the first
1692 * one.
1693 */
1694 for (bio = rq->bio; bio; bio = bio->bi_next) {
1695 if ((bio->bi_rw & ff) != ff)
1696 break;
1697 bytes += bio->bi_size;
1698 }
1699
1700 /* this could lead to infinite loop */
1701 BUG_ON(blk_rq_bytes(rq) && !bytes);
1702 return bytes;
1703}
1704EXPORT_SYMBOL_GPL(blk_rq_err_bytes);
1705
bc58ba94
JA
1706static void blk_account_io_completion(struct request *req, unsigned int bytes)
1707{
c2553b58 1708 if (blk_do_io_stat(req)) {
bc58ba94
JA
1709 const int rw = rq_data_dir(req);
1710 struct hd_struct *part;
1711 int cpu;
1712
1713 cpu = part_stat_lock();
83096ebf 1714 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1715 part_stat_add(cpu, part, sectors[rw], bytes >> 9);
1716 part_stat_unlock();
1717 }
1718}
1719
1720static void blk_account_io_done(struct request *req)
1721{
bc58ba94
JA
1722 /*
1723 * Account IO completion. bar_rq isn't accounted as a normal
1724 * IO on queueing nor completion. Accounting the containing
1725 * request is enough.
1726 */
c2553b58 1727 if (blk_do_io_stat(req) && req != &req->q->bar_rq) {
bc58ba94
JA
1728 unsigned long duration = jiffies - req->start_time;
1729 const int rw = rq_data_dir(req);
1730 struct hd_struct *part;
1731 int cpu;
1732
1733 cpu = part_stat_lock();
83096ebf 1734 part = disk_map_sector_rcu(req->rq_disk, blk_rq_pos(req));
bc58ba94
JA
1735
1736 part_stat_inc(cpu, part, ios[rw]);
1737 part_stat_add(cpu, part, ticks[rw], duration);
1738 part_round_stats(cpu, part);
316d315b 1739 part_dec_in_flight(part, rw);
bc58ba94
JA
1740
1741 part_stat_unlock();
1742 }
1743}
1744
3bcddeac 1745/**
9934c8c0
TH
1746 * blk_peek_request - peek at the top of a request queue
1747 * @q: request queue to peek at
1748 *
1749 * Description:
1750 * Return the request at the top of @q. The returned request
1751 * should be started using blk_start_request() before LLD starts
1752 * processing it.
1753 *
1754 * Return:
1755 * Pointer to the request at the top of @q if available. Null
1756 * otherwise.
1757 *
1758 * Context:
1759 * queue_lock must be held.
1760 */
1761struct request *blk_peek_request(struct request_queue *q)
158dbda0
TH
1762{
1763 struct request *rq;
1764 int ret;
1765
1766 while ((rq = __elv_next_request(q)) != NULL) {
1767 if (!(rq->cmd_flags & REQ_STARTED)) {
1768 /*
1769 * This is the first time the device driver
1770 * sees this request (possibly after
1771 * requeueing). Notify IO scheduler.
1772 */
1773 if (blk_sorted_rq(rq))
1774 elv_activate_rq(q, rq);
1775
1776 /*
1777 * just mark as started even if we don't start
1778 * it, a request that has been delayed should
1779 * not be passed by new incoming requests
1780 */
1781 rq->cmd_flags |= REQ_STARTED;
1782 trace_block_rq_issue(q, rq);
1783 }
1784
1785 if (!q->boundary_rq || q->boundary_rq == rq) {
1786 q->end_sector = rq_end_sector(rq);
1787 q->boundary_rq = NULL;
1788 }
1789
1790 if (rq->cmd_flags & REQ_DONTPREP)
1791 break;
1792
2e46e8b2 1793 if (q->dma_drain_size && blk_rq_bytes(rq)) {
158dbda0
TH
1794 /*
1795 * make sure space for the drain appears we
1796 * know we can do this because max_hw_segments
1797 * has been adjusted to be one fewer than the
1798 * device can handle
1799 */
1800 rq->nr_phys_segments++;
1801 }
1802
1803 if (!q->prep_rq_fn)
1804 break;
1805
1806 ret = q->prep_rq_fn(q, rq);
1807 if (ret == BLKPREP_OK) {
1808 break;
1809 } else if (ret == BLKPREP_DEFER) {
1810 /*
1811 * the request may have been (partially) prepped.
1812 * we need to keep this request in the front to
1813 * avoid resource deadlock. REQ_STARTED will
1814 * prevent other fs requests from passing this one.
1815 */
2e46e8b2 1816 if (q->dma_drain_size && blk_rq_bytes(rq) &&
158dbda0
TH
1817 !(rq->cmd_flags & REQ_DONTPREP)) {
1818 /*
1819 * remove the space for the drain we added
1820 * so that we don't add it again
1821 */
1822 --rq->nr_phys_segments;
1823 }
1824
1825 rq = NULL;
1826 break;
1827 } else if (ret == BLKPREP_KILL) {
1828 rq->cmd_flags |= REQ_QUIET;
c143dc90
JB
1829 /*
1830 * Mark this request as started so we don't trigger
1831 * any debug logic in the end I/O path.
1832 */
1833 blk_start_request(rq);
40cbbb78 1834 __blk_end_request_all(rq, -EIO);
158dbda0
TH
1835 } else {
1836 printk(KERN_ERR "%s: bad return=%d\n", __func__, ret);
1837 break;
1838 }
1839 }
1840
1841 return rq;
1842}
9934c8c0 1843EXPORT_SYMBOL(blk_peek_request);
158dbda0 1844
9934c8c0 1845void blk_dequeue_request(struct request *rq)
158dbda0 1846{
9934c8c0
TH
1847 struct request_queue *q = rq->q;
1848
158dbda0
TH
1849 BUG_ON(list_empty(&rq->queuelist));
1850 BUG_ON(ELV_ON_HASH(rq));
1851
1852 list_del_init(&rq->queuelist);
1853
1854 /*
1855 * the time frame between a request being removed from the lists
1856 * and to it is freed is accounted as io that is in progress at
1857 * the driver side.
1858 */
79da0644 1859 if (blk_account_rq(rq))
0a7ae2ff 1860 q->in_flight[rq_is_sync(rq)]++;
158dbda0
TH
1861}
1862
9934c8c0
TH
1863/**
1864 * blk_start_request - start request processing on the driver
1865 * @req: request to dequeue
1866 *
1867 * Description:
1868 * Dequeue @req and start timeout timer on it. This hands off the
1869 * request to the driver.
1870 *
1871 * Block internal functions which don't want to start timer should
1872 * call blk_dequeue_request().
1873 *
1874 * Context:
1875 * queue_lock must be held.
1876 */
1877void blk_start_request(struct request *req)
1878{
1879 blk_dequeue_request(req);
1880
1881 /*
5f49f631
TH
1882 * We are now handing the request to the hardware, initialize
1883 * resid_len to full count and add the timeout handler.
9934c8c0 1884 */
5f49f631 1885 req->resid_len = blk_rq_bytes(req);
dbb66c4b
FT
1886 if (unlikely(blk_bidi_rq(req)))
1887 req->next_rq->resid_len = blk_rq_bytes(req->next_rq);
1888
9934c8c0
TH
1889 blk_add_timer(req);
1890}
1891EXPORT_SYMBOL(blk_start_request);
1892
1893/**
1894 * blk_fetch_request - fetch a request from a request queue
1895 * @q: request queue to fetch a request from
1896 *
1897 * Description:
1898 * Return the request at the top of @q. The request is started on
1899 * return and LLD can start processing it immediately.
1900 *
1901 * Return:
1902 * Pointer to the request at the top of @q if available. Null
1903 * otherwise.
1904 *
1905 * Context:
1906 * queue_lock must be held.
1907 */
1908struct request *blk_fetch_request(struct request_queue *q)
1909{
1910 struct request *rq;
1911
1912 rq = blk_peek_request(q);
1913 if (rq)
1914 blk_start_request(rq);
1915 return rq;
1916}
1917EXPORT_SYMBOL(blk_fetch_request);
1918
3bcddeac 1919/**
2e60e022 1920 * blk_update_request - Special helper function for request stacking drivers
8ebf9756 1921 * @req: the request being processed
710027a4 1922 * @error: %0 for success, < %0 for error
8ebf9756 1923 * @nr_bytes: number of bytes to complete @req
3bcddeac
KU
1924 *
1925 * Description:
8ebf9756
RD
1926 * Ends I/O on a number of bytes attached to @req, but doesn't complete
1927 * the request structure even if @req doesn't have leftover.
1928 * If @req has leftover, sets it up for the next range of segments.
2e60e022
TH
1929 *
1930 * This special helper function is only for request stacking drivers
1931 * (e.g. request-based dm) so that they can handle partial completion.
1932 * Actual device drivers should use blk_end_request instead.
1933 *
1934 * Passing the result of blk_rq_bytes() as @nr_bytes guarantees
1935 * %false return from this function.
3bcddeac
KU
1936 *
1937 * Return:
2e60e022
TH
1938 * %false - this request doesn't have any more data
1939 * %true - this request has more data
3bcddeac 1940 **/
2e60e022 1941bool blk_update_request(struct request *req, int error, unsigned int nr_bytes)
1da177e4 1942{
5450d3e1 1943 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1944 struct bio *bio;
1945
2e60e022
TH
1946 if (!req->bio)
1947 return false;
1948
5f3ea37c 1949 trace_block_rq_complete(req->q, req);
2056a782 1950
1da177e4 1951 /*
6f41469c
TH
1952 * For fs requests, rq is just carrier of independent bio's
1953 * and each partial completion should be handled separately.
1954 * Reset per-request error on each partial completion.
1955 *
1956 * TODO: tj: This is too subtle. It would be better to let
1957 * low level drivers do what they see fit.
1da177e4 1958 */
6f41469c 1959 if (blk_fs_request(req))
1da177e4
LT
1960 req->errors = 0;
1961
6728cb0e
JA
1962 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1963 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4 1964 req->rq_disk ? req->rq_disk->disk_name : "?",
83096ebf 1965 (unsigned long long)blk_rq_pos(req));
1da177e4
LT
1966 }
1967
bc58ba94 1968 blk_account_io_completion(req, nr_bytes);
d72d904a 1969
1da177e4
LT
1970 total_bytes = bio_nbytes = 0;
1971 while ((bio = req->bio) != NULL) {
1972 int nbytes;
1973
1974 if (nr_bytes >= bio->bi_size) {
1975 req->bio = bio->bi_next;
1976 nbytes = bio->bi_size;
5bb23a68 1977 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1978 next_idx = 0;
1979 bio_nbytes = 0;
1980 } else {
1981 int idx = bio->bi_idx + next_idx;
1982
af498d7f 1983 if (unlikely(idx >= bio->bi_vcnt)) {
1da177e4 1984 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1985 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
af498d7f 1986 __func__, idx, bio->bi_vcnt);
1da177e4
LT
1987 break;
1988 }
1989
1990 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1991 BIO_BUG_ON(nbytes > bio->bi_size);
1992
1993 /*
1994 * not a complete bvec done
1995 */
1996 if (unlikely(nbytes > nr_bytes)) {
1997 bio_nbytes += nr_bytes;
1998 total_bytes += nr_bytes;
1999 break;
2000 }
2001
2002 /*
2003 * advance to the next vector
2004 */
2005 next_idx++;
2006 bio_nbytes += nbytes;
2007 }
2008
2009 total_bytes += nbytes;
2010 nr_bytes -= nbytes;
2011
6728cb0e
JA
2012 bio = req->bio;
2013 if (bio) {
1da177e4
LT
2014 /*
2015 * end more in this run, or just return 'not-done'
2016 */
2017 if (unlikely(nr_bytes <= 0))
2018 break;
2019 }
2020 }
2021
2022 /*
2023 * completely done
2024 */
2e60e022
TH
2025 if (!req->bio) {
2026 /*
2027 * Reset counters so that the request stacking driver
2028 * can find how many bytes remain in the request
2029 * later.
2030 */
a2dec7b3 2031 req->__data_len = 0;
2e60e022
TH
2032 return false;
2033 }
1da177e4
LT
2034
2035 /*
2036 * if the request wasn't completed, update state
2037 */
2038 if (bio_nbytes) {
5bb23a68 2039 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
2040 bio->bi_idx += next_idx;
2041 bio_iovec(bio)->bv_offset += nr_bytes;
2042 bio_iovec(bio)->bv_len -= nr_bytes;
2043 }
2044
a2dec7b3 2045 req->__data_len -= total_bytes;
2e46e8b2
TH
2046 req->buffer = bio_data(req->bio);
2047
2048 /* update sector only for requests with clear definition of sector */
2049 if (blk_fs_request(req) || blk_discard_rq(req))
a2dec7b3 2050 req->__sector += total_bytes >> 9;
2e46e8b2 2051
80a761fd
TH
2052 /* mixed attributes always follow the first bio */
2053 if (req->cmd_flags & REQ_MIXED_MERGE) {
2054 req->cmd_flags &= ~REQ_FAILFAST_MASK;
2055 req->cmd_flags |= req->bio->bi_rw & REQ_FAILFAST_MASK;
2056 }
2057
2e46e8b2
TH
2058 /*
2059 * If total number of sectors is less than the first segment
2060 * size, something has gone terribly wrong.
2061 */
2062 if (blk_rq_bytes(req) < blk_rq_cur_bytes(req)) {
2063 printk(KERN_ERR "blk: request botched\n");
a2dec7b3 2064 req->__data_len = blk_rq_cur_bytes(req);
2e46e8b2
TH
2065 }
2066
2067 /* recalculate the number of segments */
1da177e4 2068 blk_recalc_rq_segments(req);
2e46e8b2 2069
2e60e022 2070 return true;
1da177e4 2071}
2e60e022 2072EXPORT_SYMBOL_GPL(blk_update_request);
1da177e4 2073
2e60e022
TH
2074static bool blk_update_bidi_request(struct request *rq, int error,
2075 unsigned int nr_bytes,
2076 unsigned int bidi_bytes)
5efccd17 2077{
2e60e022
TH
2078 if (blk_update_request(rq, error, nr_bytes))
2079 return true;
5efccd17 2080
2e60e022
TH
2081 /* Bidi request must be completed as a whole */
2082 if (unlikely(blk_bidi_rq(rq)) &&
2083 blk_update_request(rq->next_rq, error, bidi_bytes))
2084 return true;
5efccd17 2085
2e60e022
TH
2086 add_disk_randomness(rq->rq_disk);
2087
2088 return false;
1da177e4
LT
2089}
2090
1da177e4
LT
2091/*
2092 * queue lock must be held
2093 */
2e60e022 2094static void blk_finish_request(struct request *req, int error)
1da177e4 2095{
b8286239
KU
2096 if (blk_rq_tagged(req))
2097 blk_queue_end_tag(req->q, req);
2098
ba396a6c 2099 BUG_ON(blk_queued_rq(req));
1da177e4
LT
2100
2101 if (unlikely(laptop_mode) && blk_fs_request(req))
2102 laptop_io_completion();
2103
e78042e5
MA
2104 blk_delete_timer(req);
2105
bc58ba94 2106 blk_account_io_done(req);
b8286239 2107
1da177e4 2108 if (req->end_io)
8ffdc655 2109 req->end_io(req, error);
b8286239
KU
2110 else {
2111 if (blk_bidi_rq(req))
2112 __blk_put_request(req->next_rq->q, req->next_rq);
2113
1da177e4 2114 __blk_put_request(req->q, req);
b8286239 2115 }
1da177e4
LT
2116}
2117
3b11313a 2118/**
2e60e022
TH
2119 * blk_end_bidi_request - Complete a bidi request
2120 * @rq: the request to complete
2121 * @error: %0 for success, < %0 for error
2122 * @nr_bytes: number of bytes to complete @rq
2123 * @bidi_bytes: number of bytes to complete @rq->next_rq
a0cd1285
JA
2124 *
2125 * Description:
e3a04fe3 2126 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
2e60e022
TH
2127 * Drivers that supports bidi can safely call this member for any
2128 * type of request, bidi or uni. In the later case @bidi_bytes is
2129 * just ignored.
336cdb40
KU
2130 *
2131 * Return:
2e60e022
TH
2132 * %false - we are done with this request
2133 * %true - still buffers pending for this request
a0cd1285 2134 **/
b1f74493 2135static bool blk_end_bidi_request(struct request *rq, int error,
32fab448
KU
2136 unsigned int nr_bytes, unsigned int bidi_bytes)
2137{
336cdb40 2138 struct request_queue *q = rq->q;
2e60e022 2139 unsigned long flags;
32fab448 2140
2e60e022
TH
2141 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2142 return true;
32fab448 2143
336cdb40 2144 spin_lock_irqsave(q->queue_lock, flags);
2e60e022 2145 blk_finish_request(rq, error);
336cdb40
KU
2146 spin_unlock_irqrestore(q->queue_lock, flags);
2147
2e60e022 2148 return false;
32fab448
KU
2149}
2150
336cdb40 2151/**
2e60e022
TH
2152 * __blk_end_bidi_request - Complete a bidi request with queue lock held
2153 * @rq: the request to complete
710027a4 2154 * @error: %0 for success, < %0 for error
e3a04fe3
KU
2155 * @nr_bytes: number of bytes to complete @rq
2156 * @bidi_bytes: number of bytes to complete @rq->next_rq
336cdb40
KU
2157 *
2158 * Description:
2e60e022
TH
2159 * Identical to blk_end_bidi_request() except that queue lock is
2160 * assumed to be locked on entry and remains so on return.
336cdb40
KU
2161 *
2162 * Return:
2e60e022
TH
2163 * %false - we are done with this request
2164 * %true - still buffers pending for this request
336cdb40 2165 **/
b1f74493
FT
2166static bool __blk_end_bidi_request(struct request *rq, int error,
2167 unsigned int nr_bytes, unsigned int bidi_bytes)
336cdb40 2168{
2e60e022
TH
2169 if (blk_update_bidi_request(rq, error, nr_bytes, bidi_bytes))
2170 return true;
336cdb40 2171
2e60e022 2172 blk_finish_request(rq, error);
336cdb40 2173
2e60e022 2174 return false;
336cdb40 2175}
e19a3ab0
KU
2176
2177/**
2178 * blk_end_request - Helper function for drivers to complete the request.
2179 * @rq: the request being processed
710027a4 2180 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2181 * @nr_bytes: number of bytes to complete
2182 *
2183 * Description:
2184 * Ends I/O on a number of bytes attached to @rq.
2185 * If @rq has leftover, sets it up for the next range of segments.
2186 *
2187 * Return:
b1f74493
FT
2188 * %false - we are done with this request
2189 * %true - still buffers pending for this request
e19a3ab0 2190 **/
b1f74493 2191bool blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 2192{
b1f74493 2193 return blk_end_bidi_request(rq, error, nr_bytes, 0);
e19a3ab0 2194}
56ad1740 2195EXPORT_SYMBOL(blk_end_request);
336cdb40
KU
2196
2197/**
b1f74493
FT
2198 * blk_end_request_all - Helper function for drives to finish the request.
2199 * @rq: the request to finish
8ebf9756 2200 * @error: %0 for success, < %0 for error
336cdb40
KU
2201 *
2202 * Description:
b1f74493
FT
2203 * Completely finish @rq.
2204 */
2205void blk_end_request_all(struct request *rq, int error)
336cdb40 2206{
b1f74493
FT
2207 bool pending;
2208 unsigned int bidi_bytes = 0;
336cdb40 2209
b1f74493
FT
2210 if (unlikely(blk_bidi_rq(rq)))
2211 bidi_bytes = blk_rq_bytes(rq->next_rq);
336cdb40 2212
b1f74493
FT
2213 pending = blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2214 BUG_ON(pending);
2215}
56ad1740 2216EXPORT_SYMBOL(blk_end_request_all);
336cdb40 2217
b1f74493
FT
2218/**
2219 * blk_end_request_cur - Helper function to finish the current request chunk.
2220 * @rq: the request to finish the current chunk for
8ebf9756 2221 * @error: %0 for success, < %0 for error
b1f74493
FT
2222 *
2223 * Description:
2224 * Complete the current consecutively mapped chunk from @rq.
2225 *
2226 * Return:
2227 * %false - we are done with this request
2228 * %true - still buffers pending for this request
2229 */
2230bool blk_end_request_cur(struct request *rq, int error)
2231{
2232 return blk_end_request(rq, error, blk_rq_cur_bytes(rq));
336cdb40 2233}
56ad1740 2234EXPORT_SYMBOL(blk_end_request_cur);
336cdb40 2235
80a761fd
TH
2236/**
2237 * blk_end_request_err - Finish a request till the next failure boundary.
2238 * @rq: the request to finish till the next failure boundary for
2239 * @error: must be negative errno
2240 *
2241 * Description:
2242 * Complete @rq till the next failure boundary.
2243 *
2244 * Return:
2245 * %false - we are done with this request
2246 * %true - still buffers pending for this request
2247 */
2248bool blk_end_request_err(struct request *rq, int error)
2249{
2250 WARN_ON(error >= 0);
2251 return blk_end_request(rq, error, blk_rq_err_bytes(rq));
2252}
2253EXPORT_SYMBOL_GPL(blk_end_request_err);
2254
e3a04fe3 2255/**
b1f74493
FT
2256 * __blk_end_request - Helper function for drivers to complete the request.
2257 * @rq: the request being processed
2258 * @error: %0 for success, < %0 for error
2259 * @nr_bytes: number of bytes to complete
e3a04fe3
KU
2260 *
2261 * Description:
b1f74493 2262 * Must be called with queue lock held unlike blk_end_request().
e3a04fe3
KU
2263 *
2264 * Return:
b1f74493
FT
2265 * %false - we are done with this request
2266 * %true - still buffers pending for this request
e3a04fe3 2267 **/
b1f74493 2268bool __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e3a04fe3 2269{
b1f74493 2270 return __blk_end_bidi_request(rq, error, nr_bytes, 0);
e3a04fe3 2271}
56ad1740 2272EXPORT_SYMBOL(__blk_end_request);
e3a04fe3 2273
32fab448 2274/**
b1f74493
FT
2275 * __blk_end_request_all - Helper function for drives to finish the request.
2276 * @rq: the request to finish
8ebf9756 2277 * @error: %0 for success, < %0 for error
32fab448
KU
2278 *
2279 * Description:
b1f74493 2280 * Completely finish @rq. Must be called with queue lock held.
32fab448 2281 */
b1f74493 2282void __blk_end_request_all(struct request *rq, int error)
32fab448 2283{
b1f74493
FT
2284 bool pending;
2285 unsigned int bidi_bytes = 0;
2286
2287 if (unlikely(blk_bidi_rq(rq)))
2288 bidi_bytes = blk_rq_bytes(rq->next_rq);
2289
2290 pending = __blk_end_bidi_request(rq, error, blk_rq_bytes(rq), bidi_bytes);
2291 BUG_ON(pending);
32fab448 2292}
56ad1740 2293EXPORT_SYMBOL(__blk_end_request_all);
32fab448 2294
e19a3ab0 2295/**
b1f74493
FT
2296 * __blk_end_request_cur - Helper function to finish the current request chunk.
2297 * @rq: the request to finish the current chunk for
8ebf9756 2298 * @error: %0 for success, < %0 for error
e19a3ab0
KU
2299 *
2300 * Description:
b1f74493
FT
2301 * Complete the current consecutively mapped chunk from @rq. Must
2302 * be called with queue lock held.
e19a3ab0
KU
2303 *
2304 * Return:
b1f74493
FT
2305 * %false - we are done with this request
2306 * %true - still buffers pending for this request
2307 */
2308bool __blk_end_request_cur(struct request *rq, int error)
e19a3ab0 2309{
b1f74493 2310 return __blk_end_request(rq, error, blk_rq_cur_bytes(rq));
e19a3ab0 2311}
56ad1740 2312EXPORT_SYMBOL(__blk_end_request_cur);
e19a3ab0 2313
80a761fd
TH
2314/**
2315 * __blk_end_request_err - Finish a request till the next failure boundary.
2316 * @rq: the request to finish till the next failure boundary for
2317 * @error: must be negative errno
2318 *
2319 * Description:
2320 * Complete @rq till the next failure boundary. Must be called
2321 * with queue lock held.
2322 *
2323 * Return:
2324 * %false - we are done with this request
2325 * %true - still buffers pending for this request
2326 */
2327bool __blk_end_request_err(struct request *rq, int error)
2328{
2329 WARN_ON(error >= 0);
2330 return __blk_end_request(rq, error, blk_rq_err_bytes(rq));
2331}
2332EXPORT_SYMBOL_GPL(__blk_end_request_err);
2333
86db1e29
JA
2334void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
2335 struct bio *bio)
1da177e4 2336{
a82afdfc
TH
2337 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw */
2338 rq->cmd_flags |= bio->bi_rw & REQ_RW;
1da177e4 2339
fb2dce86
DW
2340 if (bio_has_data(bio)) {
2341 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
2342 rq->buffer = bio_data(bio);
2343 }
a2dec7b3 2344 rq->__data_len = bio->bi_size;
1da177e4 2345 rq->bio = rq->biotail = bio;
1da177e4 2346
66846572
N
2347 if (bio->bi_bdev)
2348 rq->rq_disk = bio->bi_bdev->bd_disk;
2349}
1da177e4 2350
2d4dc890
IL
2351#if ARCH_IMPLEMENTS_FLUSH_DCACHE_PAGE
2352/**
2353 * rq_flush_dcache_pages - Helper function to flush all pages in a request
2354 * @rq: the request to be flushed
2355 *
2356 * Description:
2357 * Flush all pages in @rq.
2358 */
2359void rq_flush_dcache_pages(struct request *rq)
2360{
2361 struct req_iterator iter;
2362 struct bio_vec *bvec;
2363
2364 rq_for_each_segment(bvec, rq, iter)
2365 flush_dcache_page(bvec->bv_page);
2366}
2367EXPORT_SYMBOL_GPL(rq_flush_dcache_pages);
2368#endif
2369
ef9e3fac
KU
2370/**
2371 * blk_lld_busy - Check if underlying low-level drivers of a device are busy
2372 * @q : the queue of the device being checked
2373 *
2374 * Description:
2375 * Check if underlying low-level drivers of a device are busy.
2376 * If the drivers want to export their busy state, they must set own
2377 * exporting function using blk_queue_lld_busy() first.
2378 *
2379 * Basically, this function is used only by request stacking drivers
2380 * to stop dispatching requests to underlying devices when underlying
2381 * devices are busy. This behavior helps more I/O merging on the queue
2382 * of the request stacking driver and prevents I/O throughput regression
2383 * on burst I/O load.
2384 *
2385 * Return:
2386 * 0 - Not busy (The request stacking driver should dispatch request)
2387 * 1 - Busy (The request stacking driver should stop dispatching request)
2388 */
2389int blk_lld_busy(struct request_queue *q)
2390{
2391 if (q->lld_busy_fn)
2392 return q->lld_busy_fn(q);
2393
2394 return 0;
2395}
2396EXPORT_SYMBOL_GPL(blk_lld_busy);
2397
b0fd271d
KU
2398/**
2399 * blk_rq_unprep_clone - Helper function to free all bios in a cloned request
2400 * @rq: the clone request to be cleaned up
2401 *
2402 * Description:
2403 * Free all bios in @rq for a cloned request.
2404 */
2405void blk_rq_unprep_clone(struct request *rq)
2406{
2407 struct bio *bio;
2408
2409 while ((bio = rq->bio) != NULL) {
2410 rq->bio = bio->bi_next;
2411
2412 bio_put(bio);
2413 }
2414}
2415EXPORT_SYMBOL_GPL(blk_rq_unprep_clone);
2416
2417/*
2418 * Copy attributes of the original request to the clone request.
2419 * The actual data parts (e.g. ->cmd, ->buffer, ->sense) are not copied.
2420 */
2421static void __blk_rq_prep_clone(struct request *dst, struct request *src)
2422{
2423 dst->cpu = src->cpu;
2424 dst->cmd_flags = (rq_data_dir(src) | REQ_NOMERGE);
2425 dst->cmd_type = src->cmd_type;
2426 dst->__sector = blk_rq_pos(src);
2427 dst->__data_len = blk_rq_bytes(src);
2428 dst->nr_phys_segments = src->nr_phys_segments;
2429 dst->ioprio = src->ioprio;
2430 dst->extra_len = src->extra_len;
2431}
2432
2433/**
2434 * blk_rq_prep_clone - Helper function to setup clone request
2435 * @rq: the request to be setup
2436 * @rq_src: original request to be cloned
2437 * @bs: bio_set that bios for clone are allocated from
2438 * @gfp_mask: memory allocation mask for bio
2439 * @bio_ctr: setup function to be called for each clone bio.
2440 * Returns %0 for success, non %0 for failure.
2441 * @data: private data to be passed to @bio_ctr
2442 *
2443 * Description:
2444 * Clones bios in @rq_src to @rq, and copies attributes of @rq_src to @rq.
2445 * The actual data parts of @rq_src (e.g. ->cmd, ->buffer, ->sense)
2446 * are not copied, and copying such parts is the caller's responsibility.
2447 * Also, pages which the original bios are pointing to are not copied
2448 * and the cloned bios just point same pages.
2449 * So cloned bios must be completed before original bios, which means
2450 * the caller must complete @rq before @rq_src.
2451 */
2452int blk_rq_prep_clone(struct request *rq, struct request *rq_src,
2453 struct bio_set *bs, gfp_t gfp_mask,
2454 int (*bio_ctr)(struct bio *, struct bio *, void *),
2455 void *data)
2456{
2457 struct bio *bio, *bio_src;
2458
2459 if (!bs)
2460 bs = fs_bio_set;
2461
2462 blk_rq_init(NULL, rq);
2463
2464 __rq_for_each_bio(bio_src, rq_src) {
2465 bio = bio_alloc_bioset(gfp_mask, bio_src->bi_max_vecs, bs);
2466 if (!bio)
2467 goto free_and_out;
2468
2469 __bio_clone(bio, bio_src);
2470
2471 if (bio_integrity(bio_src) &&
7878cba9 2472 bio_integrity_clone(bio, bio_src, gfp_mask, bs))
b0fd271d
KU
2473 goto free_and_out;
2474
2475 if (bio_ctr && bio_ctr(bio, bio_src, data))
2476 goto free_and_out;
2477
2478 if (rq->bio) {
2479 rq->biotail->bi_next = bio;
2480 rq->biotail = bio;
2481 } else
2482 rq->bio = rq->biotail = bio;
2483 }
2484
2485 __blk_rq_prep_clone(rq, rq_src);
2486
2487 return 0;
2488
2489free_and_out:
2490 if (bio)
2491 bio_free(bio, bs);
2492 blk_rq_unprep_clone(rq);
2493
2494 return -ENOMEM;
2495}
2496EXPORT_SYMBOL_GPL(blk_rq_prep_clone);
2497
18887ad9 2498int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
2499{
2500 return queue_work(kblockd_workqueue, work);
2501}
1da177e4
LT
2502EXPORT_SYMBOL(kblockd_schedule_work);
2503
1da177e4
LT
2504int __init blk_dev_init(void)
2505{
9eb55b03
NK
2506 BUILD_BUG_ON(__REQ_NR_BITS > 8 *
2507 sizeof(((struct request *)0)->cmd_flags));
2508
1da177e4
LT
2509 kblockd_workqueue = create_workqueue("kblockd");
2510 if (!kblockd_workqueue)
2511 panic("Failed to create kblockd\n");
2512
2513 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 2514 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 2515
8324aa91 2516 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 2517 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 2518
d38ecf93 2519 return 0;
1da177e4 2520}
1da177e4 2521