]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/bpf/verifier.c
bpf: 32-bit RSH verification must truncate input before the ALU op
[mirror_ubuntu-bionic-kernel.git] / kernel / bpf / verifier.c
CommitLineData
51580e79 1/* Copyright (c) 2011-2014 PLUMgrid, http://plumgrid.com
969bf05e 2 * Copyright (c) 2016 Facebook
51580e79
AS
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of version 2 of the GNU General Public
6 * License as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful, but
9 * WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 */
13#include <linux/kernel.h>
14#include <linux/types.h>
15#include <linux/slab.h>
16#include <linux/bpf.h>
58e2af8b 17#include <linux/bpf_verifier.h>
51580e79
AS
18#include <linux/filter.h>
19#include <net/netlink.h>
20#include <linux/file.h>
21#include <linux/vmalloc.h>
ebb676da 22#include <linux/stringify.h>
51580e79 23
f4ac7e0b
JK
24#include "disasm.h"
25
00176a34
JK
26static const struct bpf_verifier_ops * const bpf_verifier_ops[] = {
27#define BPF_PROG_TYPE(_id, _name) \
28 [_id] = & _name ## _verifier_ops,
29#define BPF_MAP_TYPE(_id, _ops)
30#include <linux/bpf_types.h>
31#undef BPF_PROG_TYPE
32#undef BPF_MAP_TYPE
33};
34
51580e79
AS
35/* bpf_check() is a static code analyzer that walks eBPF program
36 * instruction by instruction and updates register/stack state.
37 * All paths of conditional branches are analyzed until 'bpf_exit' insn.
38 *
39 * The first pass is depth-first-search to check that the program is a DAG.
40 * It rejects the following programs:
41 * - larger than BPF_MAXINSNS insns
42 * - if loop is present (detected via back-edge)
43 * - unreachable insns exist (shouldn't be a forest. program = one function)
44 * - out of bounds or malformed jumps
45 * The second pass is all possible path descent from the 1st insn.
46 * Since it's analyzing all pathes through the program, the length of the
eba38a96 47 * analysis is limited to 64k insn, which may be hit even if total number of
51580e79
AS
48 * insn is less then 4K, but there are too many branches that change stack/regs.
49 * Number of 'branches to be analyzed' is limited to 1k
50 *
51 * On entry to each instruction, each register has a type, and the instruction
52 * changes the types of the registers depending on instruction semantics.
53 * If instruction is BPF_MOV64_REG(BPF_REG_1, BPF_REG_5), then type of R5 is
54 * copied to R1.
55 *
56 * All registers are 64-bit.
57 * R0 - return register
58 * R1-R5 argument passing registers
59 * R6-R9 callee saved registers
60 * R10 - frame pointer read-only
61 *
62 * At the start of BPF program the register R1 contains a pointer to bpf_context
63 * and has type PTR_TO_CTX.
64 *
65 * Verifier tracks arithmetic operations on pointers in case:
66 * BPF_MOV64_REG(BPF_REG_1, BPF_REG_10),
67 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_1, -20),
68 * 1st insn copies R10 (which has FRAME_PTR) type into R1
69 * and 2nd arithmetic instruction is pattern matched to recognize
70 * that it wants to construct a pointer to some element within stack.
71 * So after 2nd insn, the register R1 has type PTR_TO_STACK
72 * (and -20 constant is saved for further stack bounds checking).
73 * Meaning that this reg is a pointer to stack plus known immediate constant.
74 *
f1174f77 75 * Most of the time the registers have SCALAR_VALUE type, which
51580e79 76 * means the register has some value, but it's not a valid pointer.
f1174f77 77 * (like pointer plus pointer becomes SCALAR_VALUE type)
51580e79
AS
78 *
79 * When verifier sees load or store instructions the type of base register
f1174f77 80 * can be: PTR_TO_MAP_VALUE, PTR_TO_CTX, PTR_TO_STACK. These are three pointer
51580e79
AS
81 * types recognized by check_mem_access() function.
82 *
83 * PTR_TO_MAP_VALUE means that this register is pointing to 'map element value'
84 * and the range of [ptr, ptr + map's value_size) is accessible.
85 *
86 * registers used to pass values to function calls are checked against
87 * function argument constraints.
88 *
89 * ARG_PTR_TO_MAP_KEY is one of such argument constraints.
90 * It means that the register type passed to this function must be
91 * PTR_TO_STACK and it will be used inside the function as
92 * 'pointer to map element key'
93 *
94 * For example the argument constraints for bpf_map_lookup_elem():
95 * .ret_type = RET_PTR_TO_MAP_VALUE_OR_NULL,
96 * .arg1_type = ARG_CONST_MAP_PTR,
97 * .arg2_type = ARG_PTR_TO_MAP_KEY,
98 *
99 * ret_type says that this function returns 'pointer to map elem value or null'
100 * function expects 1st argument to be a const pointer to 'struct bpf_map' and
101 * 2nd argument should be a pointer to stack, which will be used inside
102 * the helper function as a pointer to map element key.
103 *
104 * On the kernel side the helper function looks like:
105 * u64 bpf_map_lookup_elem(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5)
106 * {
107 * struct bpf_map *map = (struct bpf_map *) (unsigned long) r1;
108 * void *key = (void *) (unsigned long) r2;
109 * void *value;
110 *
111 * here kernel can access 'key' and 'map' pointers safely, knowing that
112 * [key, key + map->key_size) bytes are valid and were initialized on
113 * the stack of eBPF program.
114 * }
115 *
116 * Corresponding eBPF program may look like:
117 * BPF_MOV64_REG(BPF_REG_2, BPF_REG_10), // after this insn R2 type is FRAME_PTR
118 * BPF_ALU64_IMM(BPF_ADD, BPF_REG_2, -4), // after this insn R2 type is PTR_TO_STACK
119 * BPF_LD_MAP_FD(BPF_REG_1, map_fd), // after this insn R1 type is CONST_PTR_TO_MAP
120 * BPF_RAW_INSN(BPF_JMP | BPF_CALL, 0, 0, 0, BPF_FUNC_map_lookup_elem),
121 * here verifier looks at prototype of map_lookup_elem() and sees:
122 * .arg1_type == ARG_CONST_MAP_PTR and R1->type == CONST_PTR_TO_MAP, which is ok,
123 * Now verifier knows that this map has key of R1->map_ptr->key_size bytes
124 *
125 * Then .arg2_type == ARG_PTR_TO_MAP_KEY and R2->type == PTR_TO_STACK, ok so far,
126 * Now verifier checks that [R2, R2 + map's key_size) are within stack limits
127 * and were initialized prior to this call.
128 * If it's ok, then verifier allows this BPF_CALL insn and looks at
129 * .ret_type which is RET_PTR_TO_MAP_VALUE_OR_NULL, so it sets
130 * R0->type = PTR_TO_MAP_VALUE_OR_NULL which means bpf_map_lookup_elem() function
131 * returns ether pointer to map value or NULL.
132 *
133 * When type PTR_TO_MAP_VALUE_OR_NULL passes through 'if (reg != 0) goto +off'
134 * insn, the register holding that pointer in the true branch changes state to
135 * PTR_TO_MAP_VALUE and the same register changes state to CONST_IMM in the false
136 * branch. See check_cond_jmp_op().
137 *
138 * After the call R0 is set to return type of the function and registers R1-R5
139 * are set to NOT_INIT to indicate that they are no longer readable.
140 */
141
17a52670 142/* verifier_state + insn_idx are pushed to stack when branch is encountered */
58e2af8b 143struct bpf_verifier_stack_elem {
17a52670
AS
144 /* verifer state is 'st'
145 * before processing instruction 'insn_idx'
146 * and after processing instruction 'prev_insn_idx'
147 */
58e2af8b 148 struct bpf_verifier_state st;
17a52670
AS
149 int insn_idx;
150 int prev_insn_idx;
58e2af8b 151 struct bpf_verifier_stack_elem *next;
cbd35700
AS
152};
153
8e17c1b1 154#define BPF_COMPLEXITY_LIMIT_INSNS 131072
07016151
DB
155#define BPF_COMPLEXITY_LIMIT_STACK 1024
156
fad73a1a
MKL
157#define BPF_MAP_PTR_POISON ((void *)0xeB9F + POISON_POINTER_DELTA)
158
33ff9823
DB
159struct bpf_call_arg_meta {
160 struct bpf_map *map_ptr;
435faee1 161 bool raw_mode;
36bbef52 162 bool pkt_access;
435faee1
DB
163 int regno;
164 int access_size;
33ff9823
DB
165};
166
cbd35700
AS
167static DEFINE_MUTEX(bpf_verifier_lock);
168
169/* log_level controls verbosity level of eBPF verifier.
170 * verbose() is used to dump the verification trace to the log, so the user
171 * can figure out what's wrong with the program
172 */
61bd5218
JK
173static __printf(2, 3) void verbose(struct bpf_verifier_env *env,
174 const char *fmt, ...)
cbd35700 175{
61bd5218 176 struct bpf_verifer_log *log = &env->log;
a2a7d570 177 unsigned int n;
cbd35700
AS
178 va_list args;
179
a2a7d570 180 if (!log->level || !log->ubuf || bpf_verifier_log_full(log))
cbd35700
AS
181 return;
182
183 va_start(args, fmt);
a2a7d570 184 n = vscnprintf(log->kbuf, BPF_VERIFIER_TMP_LOG_SIZE, fmt, args);
cbd35700 185 va_end(args);
a2a7d570
JK
186
187 WARN_ONCE(n >= BPF_VERIFIER_TMP_LOG_SIZE - 1,
188 "verifier log line truncated - local buffer too short\n");
189
190 n = min(log->len_total - log->len_used - 1, n);
191 log->kbuf[n] = '\0';
192
193 if (!copy_to_user(log->ubuf + log->len_used, log->kbuf, n + 1))
194 log->len_used += n;
195 else
196 log->ubuf = NULL;
cbd35700
AS
197}
198
de8f3a83
DB
199static bool type_is_pkt_pointer(enum bpf_reg_type type)
200{
201 return type == PTR_TO_PACKET ||
202 type == PTR_TO_PACKET_META;
203}
204
17a52670
AS
205/* string representation of 'enum bpf_reg_type' */
206static const char * const reg_type_str[] = {
207 [NOT_INIT] = "?",
f1174f77 208 [SCALAR_VALUE] = "inv",
17a52670
AS
209 [PTR_TO_CTX] = "ctx",
210 [CONST_PTR_TO_MAP] = "map_ptr",
211 [PTR_TO_MAP_VALUE] = "map_value",
212 [PTR_TO_MAP_VALUE_OR_NULL] = "map_value_or_null",
17a52670 213 [PTR_TO_STACK] = "fp",
969bf05e 214 [PTR_TO_PACKET] = "pkt",
de8f3a83 215 [PTR_TO_PACKET_META] = "pkt_meta",
969bf05e 216 [PTR_TO_PACKET_END] = "pkt_end",
17a52670
AS
217};
218
61bd5218
JK
219static void print_verifier_state(struct bpf_verifier_env *env,
220 struct bpf_verifier_state *state)
17a52670 221{
58e2af8b 222 struct bpf_reg_state *reg;
17a52670
AS
223 enum bpf_reg_type t;
224 int i;
225
226 for (i = 0; i < MAX_BPF_REG; i++) {
1a0dc1ac
AS
227 reg = &state->regs[i];
228 t = reg->type;
17a52670
AS
229 if (t == NOT_INIT)
230 continue;
61bd5218 231 verbose(env, " R%d=%s", i, reg_type_str[t]);
f1174f77
EC
232 if ((t == SCALAR_VALUE || t == PTR_TO_STACK) &&
233 tnum_is_const(reg->var_off)) {
234 /* reg->off should be 0 for SCALAR_VALUE */
61bd5218 235 verbose(env, "%lld", reg->var_off.value + reg->off);
f1174f77 236 } else {
61bd5218 237 verbose(env, "(id=%d", reg->id);
f1174f77 238 if (t != SCALAR_VALUE)
61bd5218 239 verbose(env, ",off=%d", reg->off);
de8f3a83 240 if (type_is_pkt_pointer(t))
61bd5218 241 verbose(env, ",r=%d", reg->range);
f1174f77
EC
242 else if (t == CONST_PTR_TO_MAP ||
243 t == PTR_TO_MAP_VALUE ||
244 t == PTR_TO_MAP_VALUE_OR_NULL)
61bd5218 245 verbose(env, ",ks=%d,vs=%d",
f1174f77
EC
246 reg->map_ptr->key_size,
247 reg->map_ptr->value_size);
7d1238f2
EC
248 if (tnum_is_const(reg->var_off)) {
249 /* Typically an immediate SCALAR_VALUE, but
250 * could be a pointer whose offset is too big
251 * for reg->off
252 */
61bd5218 253 verbose(env, ",imm=%llx", reg->var_off.value);
7d1238f2
EC
254 } else {
255 if (reg->smin_value != reg->umin_value &&
256 reg->smin_value != S64_MIN)
61bd5218 257 verbose(env, ",smin_value=%lld",
7d1238f2
EC
258 (long long)reg->smin_value);
259 if (reg->smax_value != reg->umax_value &&
260 reg->smax_value != S64_MAX)
61bd5218 261 verbose(env, ",smax_value=%lld",
7d1238f2
EC
262 (long long)reg->smax_value);
263 if (reg->umin_value != 0)
61bd5218 264 verbose(env, ",umin_value=%llu",
7d1238f2
EC
265 (unsigned long long)reg->umin_value);
266 if (reg->umax_value != U64_MAX)
61bd5218 267 verbose(env, ",umax_value=%llu",
7d1238f2
EC
268 (unsigned long long)reg->umax_value);
269 if (!tnum_is_unknown(reg->var_off)) {
270 char tn_buf[48];
f1174f77 271
7d1238f2 272 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 273 verbose(env, ",var_off=%s", tn_buf);
7d1238f2 274 }
f1174f77 275 }
61bd5218 276 verbose(env, ")");
f1174f77 277 }
17a52670 278 }
638f5b90
AS
279 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
280 if (state->stack[i].slot_type[0] == STACK_SPILL)
281 verbose(env, " fp%d=%s",
e8988995 282 (-i - 1) * BPF_REG_SIZE,
638f5b90 283 reg_type_str[state->stack[i].spilled_ptr.type]);
17a52670 284 }
61bd5218 285 verbose(env, "\n");
17a52670
AS
286}
287
638f5b90
AS
288static int copy_stack_state(struct bpf_verifier_state *dst,
289 const struct bpf_verifier_state *src)
17a52670 290{
638f5b90
AS
291 if (!src->stack)
292 return 0;
293 if (WARN_ON_ONCE(dst->allocated_stack < src->allocated_stack)) {
294 /* internal bug, make state invalid to reject the program */
295 memset(dst, 0, sizeof(*dst));
296 return -EFAULT;
297 }
298 memcpy(dst->stack, src->stack,
299 sizeof(*src->stack) * (src->allocated_stack / BPF_REG_SIZE));
300 return 0;
301}
302
303/* do_check() starts with zero-sized stack in struct bpf_verifier_state to
304 * make it consume minimal amount of memory. check_stack_write() access from
305 * the program calls into realloc_verifier_state() to grow the stack size.
306 * Note there is a non-zero 'parent' pointer inside bpf_verifier_state
307 * which this function copies over. It points to previous bpf_verifier_state
308 * which is never reallocated
309 */
310static int realloc_verifier_state(struct bpf_verifier_state *state, int size,
311 bool copy_old)
312{
313 u32 old_size = state->allocated_stack;
314 struct bpf_stack_state *new_stack;
315 int slot = size / BPF_REG_SIZE;
316
317 if (size <= old_size || !size) {
318 if (copy_old)
319 return 0;
320 state->allocated_stack = slot * BPF_REG_SIZE;
321 if (!size && old_size) {
322 kfree(state->stack);
323 state->stack = NULL;
324 }
325 return 0;
326 }
327 new_stack = kmalloc_array(slot, sizeof(struct bpf_stack_state),
328 GFP_KERNEL);
329 if (!new_stack)
330 return -ENOMEM;
331 if (copy_old) {
332 if (state->stack)
333 memcpy(new_stack, state->stack,
334 sizeof(*new_stack) * (old_size / BPF_REG_SIZE));
335 memset(new_stack + old_size / BPF_REG_SIZE, 0,
336 sizeof(*new_stack) * (size - old_size) / BPF_REG_SIZE);
337 }
338 state->allocated_stack = slot * BPF_REG_SIZE;
339 kfree(state->stack);
340 state->stack = new_stack;
341 return 0;
342}
343
1969db47
AS
344static void free_verifier_state(struct bpf_verifier_state *state,
345 bool free_self)
638f5b90
AS
346{
347 kfree(state->stack);
1969db47
AS
348 if (free_self)
349 kfree(state);
638f5b90
AS
350}
351
352/* copy verifier state from src to dst growing dst stack space
353 * when necessary to accommodate larger src stack
354 */
355static int copy_verifier_state(struct bpf_verifier_state *dst,
356 const struct bpf_verifier_state *src)
357{
358 int err;
359
360 err = realloc_verifier_state(dst, src->allocated_stack, false);
361 if (err)
362 return err;
363 memcpy(dst, src, offsetof(struct bpf_verifier_state, allocated_stack));
364 return copy_stack_state(dst, src);
365}
366
367static int pop_stack(struct bpf_verifier_env *env, int *prev_insn_idx,
368 int *insn_idx)
369{
370 struct bpf_verifier_state *cur = env->cur_state;
371 struct bpf_verifier_stack_elem *elem, *head = env->head;
372 int err;
17a52670
AS
373
374 if (env->head == NULL)
638f5b90 375 return -ENOENT;
17a52670 376
638f5b90
AS
377 if (cur) {
378 err = copy_verifier_state(cur, &head->st);
379 if (err)
380 return err;
381 }
382 if (insn_idx)
383 *insn_idx = head->insn_idx;
17a52670 384 if (prev_insn_idx)
638f5b90
AS
385 *prev_insn_idx = head->prev_insn_idx;
386 elem = head->next;
1969db47 387 free_verifier_state(&head->st, false);
638f5b90 388 kfree(head);
17a52670
AS
389 env->head = elem;
390 env->stack_size--;
638f5b90 391 return 0;
17a52670
AS
392}
393
58e2af8b
JK
394static struct bpf_verifier_state *push_stack(struct bpf_verifier_env *env,
395 int insn_idx, int prev_insn_idx)
17a52670 396{
638f5b90 397 struct bpf_verifier_state *cur = env->cur_state;
58e2af8b 398 struct bpf_verifier_stack_elem *elem;
638f5b90 399 int err;
17a52670 400
638f5b90 401 elem = kzalloc(sizeof(struct bpf_verifier_stack_elem), GFP_KERNEL);
17a52670
AS
402 if (!elem)
403 goto err;
404
17a52670
AS
405 elem->insn_idx = insn_idx;
406 elem->prev_insn_idx = prev_insn_idx;
407 elem->next = env->head;
408 env->head = elem;
409 env->stack_size++;
1969db47
AS
410 err = copy_verifier_state(&elem->st, cur);
411 if (err)
412 goto err;
07016151 413 if (env->stack_size > BPF_COMPLEXITY_LIMIT_STACK) {
61bd5218 414 verbose(env, "BPF program is too complex\n");
17a52670
AS
415 goto err;
416 }
417 return &elem->st;
418err:
419 /* pop all elements and return */
638f5b90 420 while (!pop_stack(env, NULL, NULL));
17a52670
AS
421 return NULL;
422}
423
424#define CALLER_SAVED_REGS 6
425static const int caller_saved[CALLER_SAVED_REGS] = {
426 BPF_REG_0, BPF_REG_1, BPF_REG_2, BPF_REG_3, BPF_REG_4, BPF_REG_5
427};
428
f1174f77
EC
429static void __mark_reg_not_init(struct bpf_reg_state *reg);
430
b03c9f9f
EC
431/* Mark the unknown part of a register (variable offset or scalar value) as
432 * known to have the value @imm.
433 */
434static void __mark_reg_known(struct bpf_reg_state *reg, u64 imm)
435{
436 reg->id = 0;
437 reg->var_off = tnum_const(imm);
438 reg->smin_value = (s64)imm;
439 reg->smax_value = (s64)imm;
440 reg->umin_value = imm;
441 reg->umax_value = imm;
442}
443
f1174f77
EC
444/* Mark the 'variable offset' part of a register as zero. This should be
445 * used only on registers holding a pointer type.
446 */
447static void __mark_reg_known_zero(struct bpf_reg_state *reg)
a9789ef9 448{
b03c9f9f 449 __mark_reg_known(reg, 0);
f1174f77 450}
a9789ef9 451
61bd5218
JK
452static void mark_reg_known_zero(struct bpf_verifier_env *env,
453 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
454{
455 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 456 verbose(env, "mark_reg_known_zero(regs, %u)\n", regno);
f1174f77
EC
457 /* Something bad happened, let's kill all regs */
458 for (regno = 0; regno < MAX_BPF_REG; regno++)
459 __mark_reg_not_init(regs + regno);
460 return;
461 }
462 __mark_reg_known_zero(regs + regno);
463}
464
de8f3a83
DB
465static bool reg_is_pkt_pointer(const struct bpf_reg_state *reg)
466{
467 return type_is_pkt_pointer(reg->type);
468}
469
470static bool reg_is_pkt_pointer_any(const struct bpf_reg_state *reg)
471{
472 return reg_is_pkt_pointer(reg) ||
473 reg->type == PTR_TO_PACKET_END;
474}
475
476/* Unmodified PTR_TO_PACKET[_META,_END] register from ctx access. */
477static bool reg_is_init_pkt_pointer(const struct bpf_reg_state *reg,
478 enum bpf_reg_type which)
479{
480 /* The register can already have a range from prior markings.
481 * This is fine as long as it hasn't been advanced from its
482 * origin.
483 */
484 return reg->type == which &&
485 reg->id == 0 &&
486 reg->off == 0 &&
487 tnum_equals_const(reg->var_off, 0);
488}
489
b03c9f9f
EC
490/* Attempts to improve min/max values based on var_off information */
491static void __update_reg_bounds(struct bpf_reg_state *reg)
492{
493 /* min signed is max(sign bit) | min(other bits) */
494 reg->smin_value = max_t(s64, reg->smin_value,
495 reg->var_off.value | (reg->var_off.mask & S64_MIN));
496 /* max signed is min(sign bit) | max(other bits) */
497 reg->smax_value = min_t(s64, reg->smax_value,
498 reg->var_off.value | (reg->var_off.mask & S64_MAX));
499 reg->umin_value = max(reg->umin_value, reg->var_off.value);
500 reg->umax_value = min(reg->umax_value,
501 reg->var_off.value | reg->var_off.mask);
502}
503
504/* Uses signed min/max values to inform unsigned, and vice-versa */
505static void __reg_deduce_bounds(struct bpf_reg_state *reg)
506{
507 /* Learn sign from signed bounds.
508 * If we cannot cross the sign boundary, then signed and unsigned bounds
509 * are the same, so combine. This works even in the negative case, e.g.
510 * -3 s<= x s<= -1 implies 0xf...fd u<= x u<= 0xf...ff.
511 */
512 if (reg->smin_value >= 0 || reg->smax_value < 0) {
513 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
514 reg->umin_value);
515 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
516 reg->umax_value);
517 return;
518 }
519 /* Learn sign from unsigned bounds. Signed bounds cross the sign
520 * boundary, so we must be careful.
521 */
522 if ((s64)reg->umax_value >= 0) {
523 /* Positive. We can't learn anything from the smin, but smax
524 * is positive, hence safe.
525 */
526 reg->smin_value = reg->umin_value;
527 reg->smax_value = reg->umax_value = min_t(u64, reg->smax_value,
528 reg->umax_value);
529 } else if ((s64)reg->umin_value < 0) {
530 /* Negative. We can't learn anything from the smax, but smin
531 * is negative, hence safe.
532 */
533 reg->smin_value = reg->umin_value = max_t(u64, reg->smin_value,
534 reg->umin_value);
535 reg->smax_value = reg->umax_value;
536 }
537}
538
539/* Attempts to improve var_off based on unsigned min/max information */
540static void __reg_bound_offset(struct bpf_reg_state *reg)
541{
542 reg->var_off = tnum_intersect(reg->var_off,
543 tnum_range(reg->umin_value,
544 reg->umax_value));
545}
546
547/* Reset the min/max bounds of a register */
548static void __mark_reg_unbounded(struct bpf_reg_state *reg)
549{
550 reg->smin_value = S64_MIN;
551 reg->smax_value = S64_MAX;
552 reg->umin_value = 0;
553 reg->umax_value = U64_MAX;
554}
555
f1174f77
EC
556/* Mark a register as having a completely unknown (scalar) value. */
557static void __mark_reg_unknown(struct bpf_reg_state *reg)
558{
559 reg->type = SCALAR_VALUE;
560 reg->id = 0;
561 reg->off = 0;
562 reg->var_off = tnum_unknown;
b03c9f9f 563 __mark_reg_unbounded(reg);
f1174f77
EC
564}
565
61bd5218
JK
566static void mark_reg_unknown(struct bpf_verifier_env *env,
567 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
568{
569 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 570 verbose(env, "mark_reg_unknown(regs, %u)\n", regno);
f1174f77
EC
571 /* Something bad happened, let's kill all regs */
572 for (regno = 0; regno < MAX_BPF_REG; regno++)
573 __mark_reg_not_init(regs + regno);
574 return;
575 }
576 __mark_reg_unknown(regs + regno);
577}
578
579static void __mark_reg_not_init(struct bpf_reg_state *reg)
580{
581 __mark_reg_unknown(reg);
582 reg->type = NOT_INIT;
583}
584
61bd5218
JK
585static void mark_reg_not_init(struct bpf_verifier_env *env,
586 struct bpf_reg_state *regs, u32 regno)
f1174f77
EC
587{
588 if (WARN_ON(regno >= MAX_BPF_REG)) {
61bd5218 589 verbose(env, "mark_reg_not_init(regs, %u)\n", regno);
f1174f77
EC
590 /* Something bad happened, let's kill all regs */
591 for (regno = 0; regno < MAX_BPF_REG; regno++)
592 __mark_reg_not_init(regs + regno);
593 return;
594 }
595 __mark_reg_not_init(regs + regno);
a9789ef9
DB
596}
597
61bd5218
JK
598static void init_reg_state(struct bpf_verifier_env *env,
599 struct bpf_reg_state *regs)
17a52670
AS
600{
601 int i;
602
dc503a8a 603 for (i = 0; i < MAX_BPF_REG; i++) {
61bd5218 604 mark_reg_not_init(env, regs, i);
dc503a8a
EC
605 regs[i].live = REG_LIVE_NONE;
606 }
17a52670
AS
607
608 /* frame pointer */
f1174f77 609 regs[BPF_REG_FP].type = PTR_TO_STACK;
61bd5218 610 mark_reg_known_zero(env, regs, BPF_REG_FP);
17a52670
AS
611
612 /* 1st arg to a function */
613 regs[BPF_REG_1].type = PTR_TO_CTX;
61bd5218 614 mark_reg_known_zero(env, regs, BPF_REG_1);
6760bf2d
DB
615}
616
17a52670
AS
617enum reg_arg_type {
618 SRC_OP, /* register is used as source operand */
619 DST_OP, /* register is used as destination operand */
620 DST_OP_NO_MARK /* same as above, check only, don't mark */
621};
622
dc503a8a
EC
623static void mark_reg_read(const struct bpf_verifier_state *state, u32 regno)
624{
625 struct bpf_verifier_state *parent = state->parent;
626
8fe2d6cc
AS
627 if (regno == BPF_REG_FP)
628 /* We don't need to worry about FP liveness because it's read-only */
629 return;
630
dc503a8a
EC
631 while (parent) {
632 /* if read wasn't screened by an earlier write ... */
633 if (state->regs[regno].live & REG_LIVE_WRITTEN)
634 break;
635 /* ... then we depend on parent's value */
636 parent->regs[regno].live |= REG_LIVE_READ;
637 state = parent;
638 parent = state->parent;
639 }
640}
641
642static int check_reg_arg(struct bpf_verifier_env *env, u32 regno,
17a52670
AS
643 enum reg_arg_type t)
644{
638f5b90 645 struct bpf_reg_state *regs = env->cur_state->regs;
dc503a8a 646
17a52670 647 if (regno >= MAX_BPF_REG) {
61bd5218 648 verbose(env, "R%d is invalid\n", regno);
17a52670
AS
649 return -EINVAL;
650 }
651
652 if (t == SRC_OP) {
653 /* check whether register used as source operand can be read */
654 if (regs[regno].type == NOT_INIT) {
61bd5218 655 verbose(env, "R%d !read_ok\n", regno);
17a52670
AS
656 return -EACCES;
657 }
638f5b90 658 mark_reg_read(env->cur_state, regno);
17a52670
AS
659 } else {
660 /* check whether register used as dest operand can be written to */
661 if (regno == BPF_REG_FP) {
61bd5218 662 verbose(env, "frame pointer is read only\n");
17a52670
AS
663 return -EACCES;
664 }
dc503a8a 665 regs[regno].live |= REG_LIVE_WRITTEN;
17a52670 666 if (t == DST_OP)
61bd5218 667 mark_reg_unknown(env, regs, regno);
17a52670
AS
668 }
669 return 0;
670}
671
1be7f75d
AS
672static bool is_spillable_regtype(enum bpf_reg_type type)
673{
674 switch (type) {
675 case PTR_TO_MAP_VALUE:
676 case PTR_TO_MAP_VALUE_OR_NULL:
677 case PTR_TO_STACK:
678 case PTR_TO_CTX:
969bf05e 679 case PTR_TO_PACKET:
de8f3a83 680 case PTR_TO_PACKET_META:
969bf05e 681 case PTR_TO_PACKET_END:
1be7f75d
AS
682 case CONST_PTR_TO_MAP:
683 return true;
684 default:
685 return false;
686 }
687}
688
17a52670
AS
689/* check_stack_read/write functions track spill/fill of registers,
690 * stack boundary and alignment are checked in check_mem_access()
691 */
61bd5218
JK
692static int check_stack_write(struct bpf_verifier_env *env,
693 struct bpf_verifier_state *state, int off,
abd098e0 694 int size, int value_regno, int insn_idx)
17a52670 695{
638f5b90
AS
696 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE, err;
697
698 err = realloc_verifier_state(state, round_up(slot + 1, BPF_REG_SIZE),
699 true);
700 if (err)
701 return err;
9c399760
AS
702 /* caller checked that off % size == 0 and -MAX_BPF_STACK <= off < 0,
703 * so it's aligned access and [off, off + size) are within stack limits
704 */
638f5b90
AS
705 if (!env->allow_ptr_leaks &&
706 state->stack[spi].slot_type[0] == STACK_SPILL &&
707 size != BPF_REG_SIZE) {
708 verbose(env, "attempt to corrupt spilled pointer on stack\n");
709 return -EACCES;
710 }
17a52670
AS
711
712 if (value_regno >= 0 &&
1be7f75d 713 is_spillable_regtype(state->regs[value_regno].type)) {
17a52670
AS
714
715 /* register containing pointer is being spilled into stack */
9c399760 716 if (size != BPF_REG_SIZE) {
61bd5218 717 verbose(env, "invalid size of register spill\n");
17a52670
AS
718 return -EACCES;
719 }
720
17a52670 721 /* save register state */
638f5b90
AS
722 state->stack[spi].spilled_ptr = state->regs[value_regno];
723 state->stack[spi].spilled_ptr.live |= REG_LIVE_WRITTEN;
17a52670 724
abd098e0
AS
725 for (i = 0; i < BPF_REG_SIZE; i++) {
726 if (state->stack[spi].slot_type[i] == STACK_MISC &&
727 !env->allow_ptr_leaks) {
728 int *poff = &env->insn_aux_data[insn_idx].sanitize_stack_off;
729 int soff = (-spi - 1) * BPF_REG_SIZE;
730
731 /* detected reuse of integer stack slot with a pointer
732 * which means either llvm is reusing stack slot or
733 * an attacker is trying to exploit CVE-2018-3639
734 * (speculative store bypass)
735 * Have to sanitize that slot with preemptive
736 * store of zero.
737 */
738 if (*poff && *poff != soff) {
739 /* disallow programs where single insn stores
740 * into two different stack slots, since verifier
741 * cannot sanitize them
742 */
743 verbose(env,
744 "insn %d cannot access two stack slots fp%d and fp%d",
745 insn_idx, *poff, soff);
746 return -EINVAL;
747 }
748 *poff = soff;
749 }
638f5b90 750 state->stack[spi].slot_type[i] = STACK_SPILL;
abd098e0 751 }
9c399760 752 } else {
17a52670 753 /* regular write of data into stack */
638f5b90 754 state->stack[spi].spilled_ptr = (struct bpf_reg_state) {};
9c399760
AS
755
756 for (i = 0; i < size; i++)
638f5b90
AS
757 state->stack[spi].slot_type[(slot - i) % BPF_REG_SIZE] =
758 STACK_MISC;
17a52670
AS
759 }
760 return 0;
761}
762
dc503a8a
EC
763static void mark_stack_slot_read(const struct bpf_verifier_state *state, int slot)
764{
765 struct bpf_verifier_state *parent = state->parent;
766
767 while (parent) {
768 /* if read wasn't screened by an earlier write ... */
638f5b90 769 if (state->stack[slot].spilled_ptr.live & REG_LIVE_WRITTEN)
dc503a8a
EC
770 break;
771 /* ... then we depend on parent's value */
638f5b90 772 parent->stack[slot].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
773 state = parent;
774 parent = state->parent;
775 }
776}
777
61bd5218
JK
778static int check_stack_read(struct bpf_verifier_env *env,
779 struct bpf_verifier_state *state, int off, int size,
17a52670
AS
780 int value_regno)
781{
638f5b90
AS
782 int i, slot = -off - 1, spi = slot / BPF_REG_SIZE;
783 u8 *stype;
17a52670 784
638f5b90
AS
785 if (state->allocated_stack <= slot) {
786 verbose(env, "invalid read from stack off %d+0 size %d\n",
787 off, size);
788 return -EACCES;
789 }
790 stype = state->stack[spi].slot_type;
17a52670 791
638f5b90 792 if (stype[0] == STACK_SPILL) {
9c399760 793 if (size != BPF_REG_SIZE) {
61bd5218 794 verbose(env, "invalid size of register spill\n");
17a52670
AS
795 return -EACCES;
796 }
9c399760 797 for (i = 1; i < BPF_REG_SIZE; i++) {
638f5b90 798 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_SPILL) {
61bd5218 799 verbose(env, "corrupted spill memory\n");
17a52670
AS
800 return -EACCES;
801 }
802 }
803
dc503a8a 804 if (value_regno >= 0) {
17a52670 805 /* restore register state from stack */
638f5b90 806 state->regs[value_regno] = state->stack[spi].spilled_ptr;
dc503a8a
EC
807 mark_stack_slot_read(state, spi);
808 }
17a52670
AS
809 return 0;
810 } else {
811 for (i = 0; i < size; i++) {
638f5b90 812 if (stype[(slot - i) % BPF_REG_SIZE] != STACK_MISC) {
61bd5218 813 verbose(env, "invalid read from stack off %d+%d size %d\n",
17a52670
AS
814 off, i, size);
815 return -EACCES;
816 }
817 }
818 if (value_regno >= 0)
819 /* have read misc data from the stack */
61bd5218 820 mark_reg_unknown(env, state->regs, value_regno);
17a52670
AS
821 return 0;
822 }
823}
824
825/* check read/write into map element returned by bpf_map_lookup_elem() */
f1174f77 826static int __check_map_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 827 int size, bool zero_size_allowed)
17a52670 828{
638f5b90
AS
829 struct bpf_reg_state *regs = cur_regs(env);
830 struct bpf_map *map = regs[regno].map_ptr;
17a52670 831
9fd29c08
YS
832 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
833 off + size > map->value_size) {
61bd5218 834 verbose(env, "invalid access to map value, value_size=%d off=%d size=%d\n",
17a52670
AS
835 map->value_size, off, size);
836 return -EACCES;
837 }
838 return 0;
839}
840
f1174f77
EC
841/* check read/write into a map element with possible variable offset */
842static int check_map_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 843 int off, int size, bool zero_size_allowed)
dbcfe5f7 844{
638f5b90 845 struct bpf_verifier_state *state = env->cur_state;
dbcfe5f7
GB
846 struct bpf_reg_state *reg = &state->regs[regno];
847 int err;
848
f1174f77
EC
849 /* We may have adjusted the register to this map value, so we
850 * need to try adding each of min_value and max_value to off
851 * to make sure our theoretical access will be safe.
dbcfe5f7 852 */
61bd5218
JK
853 if (env->log.level)
854 print_verifier_state(env, state);
dbcfe5f7
GB
855 /* The minimum value is only important with signed
856 * comparisons where we can't assume the floor of a
857 * value is 0. If we are using signed variables for our
858 * index'es we need to make sure that whatever we use
859 * will have a set floor within our range.
860 */
b03c9f9f 861 if (reg->smin_value < 0) {
61bd5218 862 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
dbcfe5f7
GB
863 regno);
864 return -EACCES;
865 }
9fd29c08
YS
866 err = __check_map_access(env, regno, reg->smin_value + off, size,
867 zero_size_allowed);
dbcfe5f7 868 if (err) {
61bd5218
JK
869 verbose(env, "R%d min value is outside of the array range\n",
870 regno);
dbcfe5f7
GB
871 return err;
872 }
873
b03c9f9f
EC
874 /* If we haven't set a max value then we need to bail since we can't be
875 * sure we won't do bad things.
876 * If reg->umax_value + off could overflow, treat that as unbounded too.
dbcfe5f7 877 */
b03c9f9f 878 if (reg->umax_value >= BPF_MAX_VAR_OFF) {
61bd5218 879 verbose(env, "R%d unbounded memory access, make sure to bounds check any array access into a map\n",
dbcfe5f7
GB
880 regno);
881 return -EACCES;
882 }
9fd29c08
YS
883 err = __check_map_access(env, regno, reg->umax_value + off, size,
884 zero_size_allowed);
f1174f77 885 if (err)
61bd5218
JK
886 verbose(env, "R%d max value is outside of the array range\n",
887 regno);
f1174f77 888 return err;
dbcfe5f7
GB
889}
890
969bf05e
AS
891#define MAX_PACKET_OFF 0xffff
892
58e2af8b 893static bool may_access_direct_pkt_data(struct bpf_verifier_env *env,
3a0af8fd
TG
894 const struct bpf_call_arg_meta *meta,
895 enum bpf_access_type t)
4acf6c0b 896{
36bbef52 897 switch (env->prog->type) {
3a0af8fd
TG
898 case BPF_PROG_TYPE_LWT_IN:
899 case BPF_PROG_TYPE_LWT_OUT:
900 /* dst_input() and dst_output() can't write for now */
901 if (t == BPF_WRITE)
902 return false;
7e57fbb2 903 /* fallthrough */
36bbef52
DB
904 case BPF_PROG_TYPE_SCHED_CLS:
905 case BPF_PROG_TYPE_SCHED_ACT:
4acf6c0b 906 case BPF_PROG_TYPE_XDP:
3a0af8fd 907 case BPF_PROG_TYPE_LWT_XMIT:
8a31db56 908 case BPF_PROG_TYPE_SK_SKB:
36bbef52
DB
909 if (meta)
910 return meta->pkt_access;
911
912 env->seen_direct_write = true;
4acf6c0b
BB
913 return true;
914 default:
915 return false;
916 }
917}
918
f1174f77 919static int __check_packet_access(struct bpf_verifier_env *env, u32 regno,
9fd29c08 920 int off, int size, bool zero_size_allowed)
969bf05e 921{
638f5b90 922 struct bpf_reg_state *regs = cur_regs(env);
58e2af8b 923 struct bpf_reg_state *reg = &regs[regno];
969bf05e 924
9fd29c08
YS
925 if (off < 0 || size < 0 || (size == 0 && !zero_size_allowed) ||
926 (u64)off + size > reg->range) {
61bd5218 927 verbose(env, "invalid access to packet, off=%d size=%d, R%d(id=%d,off=%d,r=%d)\n",
d91b28ed 928 off, size, regno, reg->id, reg->off, reg->range);
969bf05e
AS
929 return -EACCES;
930 }
931 return 0;
932}
933
f1174f77 934static int check_packet_access(struct bpf_verifier_env *env, u32 regno, int off,
9fd29c08 935 int size, bool zero_size_allowed)
f1174f77 936{
638f5b90 937 struct bpf_reg_state *regs = cur_regs(env);
f1174f77
EC
938 struct bpf_reg_state *reg = &regs[regno];
939 int err;
940
941 /* We may have added a variable offset to the packet pointer; but any
942 * reg->range we have comes after that. We are only checking the fixed
943 * offset.
944 */
945
946 /* We don't allow negative numbers, because we aren't tracking enough
947 * detail to prove they're safe.
948 */
b03c9f9f 949 if (reg->smin_value < 0) {
61bd5218 950 verbose(env, "R%d min value is negative, either use unsigned index or do a if (index >=0) check.\n",
f1174f77
EC
951 regno);
952 return -EACCES;
953 }
9fd29c08 954 err = __check_packet_access(env, regno, off, size, zero_size_allowed);
f1174f77 955 if (err) {
61bd5218 956 verbose(env, "R%d offset is outside of the packet\n", regno);
f1174f77
EC
957 return err;
958 }
959 return err;
960}
961
962/* check access to 'struct bpf_context' fields. Supports fixed offsets only */
31fd8581 963static int check_ctx_access(struct bpf_verifier_env *env, int insn_idx, int off, int size,
19de99f7 964 enum bpf_access_type t, enum bpf_reg_type *reg_type)
17a52670 965{
f96da094
DB
966 struct bpf_insn_access_aux info = {
967 .reg_type = *reg_type,
968 };
31fd8581 969
4f9218aa
JK
970 if (env->ops->is_valid_access &&
971 env->ops->is_valid_access(off, size, t, &info)) {
f96da094
DB
972 /* A non zero info.ctx_field_size indicates that this field is a
973 * candidate for later verifier transformation to load the whole
974 * field and then apply a mask when accessed with a narrower
975 * access than actual ctx access size. A zero info.ctx_field_size
976 * will only allow for whole field access and rejects any other
977 * type of narrower access.
31fd8581 978 */
23994631 979 *reg_type = info.reg_type;
31fd8581 980
4f9218aa 981 env->insn_aux_data[insn_idx].ctx_field_size = info.ctx_field_size;
32bbe007
AS
982 /* remember the offset of last byte accessed in ctx */
983 if (env->prog->aux->max_ctx_offset < off + size)
984 env->prog->aux->max_ctx_offset = off + size;
17a52670 985 return 0;
32bbe007 986 }
17a52670 987
61bd5218 988 verbose(env, "invalid bpf_context access off=%d size=%d\n", off, size);
17a52670
AS
989 return -EACCES;
990}
991
4cabc5b1
DB
992static bool __is_pointer_value(bool allow_ptr_leaks,
993 const struct bpf_reg_state *reg)
1be7f75d 994{
4cabc5b1 995 if (allow_ptr_leaks)
1be7f75d
AS
996 return false;
997
f1174f77 998 return reg->type != SCALAR_VALUE;
1be7f75d
AS
999}
1000
4cabc5b1
DB
1001static bool is_pointer_value(struct bpf_verifier_env *env, int regno)
1002{
638f5b90 1003 return __is_pointer_value(env->allow_ptr_leaks, cur_regs(env) + regno);
4cabc5b1
DB
1004}
1005
f37a8cb8
DB
1006static bool is_ctx_reg(struct bpf_verifier_env *env, int regno)
1007{
1008 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1009
1010 return reg->type == PTR_TO_CTX;
1011}
1012
57b4a36e
DB
1013static bool is_pkt_reg(struct bpf_verifier_env *env, int regno)
1014{
1015 const struct bpf_reg_state *reg = cur_regs(env) + regno;
1016
1017 return type_is_pkt_pointer(reg->type);
1018}
1019
61bd5218
JK
1020static int check_pkt_ptr_alignment(struct bpf_verifier_env *env,
1021 const struct bpf_reg_state *reg,
d1174416 1022 int off, int size, bool strict)
969bf05e 1023{
f1174f77 1024 struct tnum reg_off;
e07b98d9 1025 int ip_align;
d1174416
DM
1026
1027 /* Byte size accesses are always allowed. */
1028 if (!strict || size == 1)
1029 return 0;
1030
e4eda884
DM
1031 /* For platforms that do not have a Kconfig enabling
1032 * CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS the value of
1033 * NET_IP_ALIGN is universally set to '2'. And on platforms
1034 * that do set CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS, we get
1035 * to this code only in strict mode where we want to emulate
1036 * the NET_IP_ALIGN==2 checking. Therefore use an
1037 * unconditional IP align value of '2'.
e07b98d9 1038 */
e4eda884 1039 ip_align = 2;
f1174f77
EC
1040
1041 reg_off = tnum_add(reg->var_off, tnum_const(ip_align + reg->off + off));
1042 if (!tnum_is_aligned(reg_off, size)) {
1043 char tn_buf[48];
1044
1045 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1046 verbose(env,
1047 "misaligned packet access off %d+%s+%d+%d size %d\n",
f1174f77 1048 ip_align, tn_buf, reg->off, off, size);
969bf05e
AS
1049 return -EACCES;
1050 }
79adffcd 1051
969bf05e
AS
1052 return 0;
1053}
1054
61bd5218
JK
1055static int check_generic_ptr_alignment(struct bpf_verifier_env *env,
1056 const struct bpf_reg_state *reg,
f1174f77
EC
1057 const char *pointer_desc,
1058 int off, int size, bool strict)
79adffcd 1059{
f1174f77
EC
1060 struct tnum reg_off;
1061
1062 /* Byte size accesses are always allowed. */
1063 if (!strict || size == 1)
1064 return 0;
1065
1066 reg_off = tnum_add(reg->var_off, tnum_const(reg->off + off));
1067 if (!tnum_is_aligned(reg_off, size)) {
1068 char tn_buf[48];
1069
1070 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1071 verbose(env, "misaligned %saccess off %s+%d+%d size %d\n",
f1174f77 1072 pointer_desc, tn_buf, reg->off, off, size);
79adffcd
DB
1073 return -EACCES;
1074 }
1075
969bf05e
AS
1076 return 0;
1077}
1078
e07b98d9 1079static int check_ptr_alignment(struct bpf_verifier_env *env,
57b4a36e
DB
1080 const struct bpf_reg_state *reg, int off,
1081 int size, bool strict_alignment_once)
79adffcd 1082{
57b4a36e 1083 bool strict = env->strict_alignment || strict_alignment_once;
f1174f77 1084 const char *pointer_desc = "";
d1174416 1085
79adffcd
DB
1086 switch (reg->type) {
1087 case PTR_TO_PACKET:
de8f3a83
DB
1088 case PTR_TO_PACKET_META:
1089 /* Special case, because of NET_IP_ALIGN. Given metadata sits
1090 * right in front, treat it the very same way.
1091 */
61bd5218 1092 return check_pkt_ptr_alignment(env, reg, off, size, strict);
f1174f77
EC
1093 case PTR_TO_MAP_VALUE:
1094 pointer_desc = "value ";
1095 break;
1096 case PTR_TO_CTX:
1097 pointer_desc = "context ";
1098 break;
1099 case PTR_TO_STACK:
1100 pointer_desc = "stack ";
a5ec6ae1
JH
1101 /* The stack spill tracking logic in check_stack_write()
1102 * and check_stack_read() relies on stack accesses being
1103 * aligned.
1104 */
1105 strict = true;
f1174f77 1106 break;
79adffcd 1107 default:
f1174f77 1108 break;
79adffcd 1109 }
61bd5218
JK
1110 return check_generic_ptr_alignment(env, reg, pointer_desc, off, size,
1111 strict);
79adffcd
DB
1112}
1113
0c17d1d2
JH
1114/* truncate register to smaller size (in bytes)
1115 * must be called with size < BPF_REG_SIZE
1116 */
1117static void coerce_reg_to_size(struct bpf_reg_state *reg, int size)
1118{
1119 u64 mask;
1120
1121 /* clear high bits in bit representation */
1122 reg->var_off = tnum_cast(reg->var_off, size);
1123
1124 /* fix arithmetic bounds */
1125 mask = ((u64)1 << (size * 8)) - 1;
1126 if ((reg->umin_value & ~mask) == (reg->umax_value & ~mask)) {
1127 reg->umin_value &= mask;
1128 reg->umax_value &= mask;
1129 } else {
1130 reg->umin_value = 0;
1131 reg->umax_value = mask;
1132 }
1133 reg->smin_value = reg->umin_value;
1134 reg->smax_value = reg->umax_value;
1135}
1136
17a52670
AS
1137/* check whether memory at (regno + off) is accessible for t = (read | write)
1138 * if t==write, value_regno is a register which value is stored into memory
1139 * if t==read, value_regno is a register which will receive the value from memory
1140 * if t==write && value_regno==-1, some unknown value is stored into memory
1141 * if t==read && value_regno==-1, don't care what we read from memory
1142 */
57b4a36e
DB
1143static int check_mem_access(struct bpf_verifier_env *env, int insn_idx, u32 regno,
1144 int off, int bpf_size, enum bpf_access_type t,
1145 int value_regno, bool strict_alignment_once)
17a52670 1146{
638f5b90
AS
1147 struct bpf_verifier_state *state = env->cur_state;
1148 struct bpf_reg_state *regs = cur_regs(env);
1149 struct bpf_reg_state *reg = regs + regno;
17a52670
AS
1150 int size, err = 0;
1151
1152 size = bpf_size_to_bytes(bpf_size);
1153 if (size < 0)
1154 return size;
1155
f1174f77 1156 /* alignment checks will add in reg->off themselves */
57b4a36e 1157 err = check_ptr_alignment(env, reg, off, size, strict_alignment_once);
969bf05e
AS
1158 if (err)
1159 return err;
17a52670 1160
f1174f77
EC
1161 /* for access checks, reg->off is just part of off */
1162 off += reg->off;
1163
1164 if (reg->type == PTR_TO_MAP_VALUE) {
1be7f75d
AS
1165 if (t == BPF_WRITE && value_regno >= 0 &&
1166 is_pointer_value(env, value_regno)) {
61bd5218 1167 verbose(env, "R%d leaks addr into map\n", value_regno);
1be7f75d
AS
1168 return -EACCES;
1169 }
48461135 1170
9fd29c08 1171 err = check_map_access(env, regno, off, size, false);
17a52670 1172 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1173 mark_reg_unknown(env, regs, value_regno);
17a52670 1174
1a0dc1ac 1175 } else if (reg->type == PTR_TO_CTX) {
f1174f77 1176 enum bpf_reg_type reg_type = SCALAR_VALUE;
19de99f7 1177
1be7f75d
AS
1178 if (t == BPF_WRITE && value_regno >= 0 &&
1179 is_pointer_value(env, value_regno)) {
61bd5218 1180 verbose(env, "R%d leaks addr into ctx\n", value_regno);
1be7f75d
AS
1181 return -EACCES;
1182 }
f1174f77
EC
1183 /* ctx accesses must be at a fixed offset, so that we can
1184 * determine what type of data were returned.
1185 */
28e33f9d 1186 if (reg->off) {
f8ddadc4
DM
1187 verbose(env,
1188 "dereference of modified ctx ptr R%d off=%d+%d, ctx+const is allowed, ctx+const+const is not\n",
28e33f9d
JK
1189 regno, reg->off, off - reg->off);
1190 return -EACCES;
1191 }
1192 if (!tnum_is_const(reg->var_off) || reg->var_off.value) {
f1174f77
EC
1193 char tn_buf[48];
1194
1195 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218
JK
1196 verbose(env,
1197 "variable ctx access var_off=%s off=%d size=%d",
f1174f77
EC
1198 tn_buf, off, size);
1199 return -EACCES;
1200 }
31fd8581 1201 err = check_ctx_access(env, insn_idx, off, size, t, &reg_type);
969bf05e 1202 if (!err && t == BPF_READ && value_regno >= 0) {
f1174f77 1203 /* ctx access returns either a scalar, or a
de8f3a83
DB
1204 * PTR_TO_PACKET[_META,_END]. In the latter
1205 * case, we know the offset is zero.
f1174f77
EC
1206 */
1207 if (reg_type == SCALAR_VALUE)
638f5b90 1208 mark_reg_unknown(env, regs, value_regno);
f1174f77 1209 else
638f5b90 1210 mark_reg_known_zero(env, regs,
61bd5218 1211 value_regno);
638f5b90
AS
1212 regs[value_regno].id = 0;
1213 regs[value_regno].off = 0;
1214 regs[value_regno].range = 0;
1215 regs[value_regno].type = reg_type;
969bf05e 1216 }
17a52670 1217
f1174f77
EC
1218 } else if (reg->type == PTR_TO_STACK) {
1219 /* stack accesses must be at a fixed offset, so that we can
1220 * determine what type of data were returned.
1221 * See check_stack_read().
1222 */
1223 if (!tnum_is_const(reg->var_off)) {
1224 char tn_buf[48];
1225
1226 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 1227 verbose(env, "variable stack access var_off=%s off=%d size=%d",
f1174f77
EC
1228 tn_buf, off, size);
1229 return -EACCES;
1230 }
1231 off += reg->var_off.value;
17a52670 1232 if (off >= 0 || off < -MAX_BPF_STACK) {
61bd5218
JK
1233 verbose(env, "invalid stack off=%d size=%d\n", off,
1234 size);
17a52670
AS
1235 return -EACCES;
1236 }
8726679a
AS
1237
1238 if (env->prog->aux->stack_depth < -off)
1239 env->prog->aux->stack_depth = -off;
1240
638f5b90 1241 if (t == BPF_WRITE)
61bd5218 1242 err = check_stack_write(env, state, off, size,
abd098e0 1243 value_regno, insn_idx);
638f5b90 1244 else
61bd5218
JK
1245 err = check_stack_read(env, state, off, size,
1246 value_regno);
de8f3a83 1247 } else if (reg_is_pkt_pointer(reg)) {
3a0af8fd 1248 if (t == BPF_WRITE && !may_access_direct_pkt_data(env, NULL, t)) {
61bd5218 1249 verbose(env, "cannot write into packet\n");
969bf05e
AS
1250 return -EACCES;
1251 }
4acf6c0b
BB
1252 if (t == BPF_WRITE && value_regno >= 0 &&
1253 is_pointer_value(env, value_regno)) {
61bd5218
JK
1254 verbose(env, "R%d leaks addr into packet\n",
1255 value_regno);
4acf6c0b
BB
1256 return -EACCES;
1257 }
9fd29c08 1258 err = check_packet_access(env, regno, off, size, false);
969bf05e 1259 if (!err && t == BPF_READ && value_regno >= 0)
638f5b90 1260 mark_reg_unknown(env, regs, value_regno);
17a52670 1261 } else {
61bd5218
JK
1262 verbose(env, "R%d invalid mem access '%s'\n", regno,
1263 reg_type_str[reg->type]);
17a52670
AS
1264 return -EACCES;
1265 }
969bf05e 1266
f1174f77 1267 if (!err && size < BPF_REG_SIZE && value_regno >= 0 && t == BPF_READ &&
638f5b90 1268 regs[value_regno].type == SCALAR_VALUE) {
f1174f77 1269 /* b/h/w load zero-extends, mark upper bits as known 0 */
0c17d1d2 1270 coerce_reg_to_size(&regs[value_regno], size);
969bf05e 1271 }
17a52670
AS
1272 return err;
1273}
1274
31fd8581 1275static int check_xadd(struct bpf_verifier_env *env, int insn_idx, struct bpf_insn *insn)
17a52670 1276{
17a52670
AS
1277 int err;
1278
1279 if ((BPF_SIZE(insn->code) != BPF_W && BPF_SIZE(insn->code) != BPF_DW) ||
1280 insn->imm != 0) {
61bd5218 1281 verbose(env, "BPF_XADD uses reserved fields\n");
17a52670
AS
1282 return -EINVAL;
1283 }
1284
1285 /* check src1 operand */
dc503a8a 1286 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
1287 if (err)
1288 return err;
1289
1290 /* check src2 operand */
dc503a8a 1291 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
1292 if (err)
1293 return err;
1294
6bdf6abc 1295 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 1296 verbose(env, "R%d leaks addr into mem\n", insn->src_reg);
6bdf6abc
DB
1297 return -EACCES;
1298 }
1299
57b4a36e
DB
1300 if (is_ctx_reg(env, insn->dst_reg) ||
1301 is_pkt_reg(env, insn->dst_reg)) {
1302 verbose(env, "BPF_XADD stores into R%d %s is not allowed\n",
1303 insn->dst_reg, is_ctx_reg(env, insn->dst_reg) ?
1304 "context" : "packet");
f37a8cb8
DB
1305 return -EACCES;
1306 }
1307
17a52670 1308 /* check whether atomic_add can read the memory */
31fd8581 1309 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
57b4a36e 1310 BPF_SIZE(insn->code), BPF_READ, -1, true);
17a52670
AS
1311 if (err)
1312 return err;
1313
1314 /* check whether atomic_add can write into the same memory */
31fd8581 1315 return check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
57b4a36e 1316 BPF_SIZE(insn->code), BPF_WRITE, -1, true);
17a52670
AS
1317}
1318
f1174f77
EC
1319/* Does this register contain a constant zero? */
1320static bool register_is_null(struct bpf_reg_state reg)
1321{
1322 return reg.type == SCALAR_VALUE && tnum_equals_const(reg.var_off, 0);
1323}
1324
17a52670
AS
1325/* when register 'regno' is passed into function that will read 'access_size'
1326 * bytes from that pointer, make sure that it's within stack boundary
f1174f77
EC
1327 * and all elements of stack are initialized.
1328 * Unlike most pointer bounds-checking functions, this one doesn't take an
1329 * 'off' argument, so it has to add in reg->off itself.
17a52670 1330 */
58e2af8b 1331static int check_stack_boundary(struct bpf_verifier_env *env, int regno,
435faee1
DB
1332 int access_size, bool zero_size_allowed,
1333 struct bpf_call_arg_meta *meta)
17a52670 1334{
638f5b90 1335 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1336 struct bpf_reg_state *regs = state->regs;
638f5b90 1337 int off, i, slot, spi;
17a52670 1338
8e2fe1d9 1339 if (regs[regno].type != PTR_TO_STACK) {
f1174f77 1340 /* Allow zero-byte read from NULL, regardless of pointer type */
8e2fe1d9 1341 if (zero_size_allowed && access_size == 0 &&
f1174f77 1342 register_is_null(regs[regno]))
8e2fe1d9
DB
1343 return 0;
1344
61bd5218 1345 verbose(env, "R%d type=%s expected=%s\n", regno,
8e2fe1d9
DB
1346 reg_type_str[regs[regno].type],
1347 reg_type_str[PTR_TO_STACK]);
17a52670 1348 return -EACCES;
8e2fe1d9 1349 }
17a52670 1350
f1174f77
EC
1351 /* Only allow fixed-offset stack reads */
1352 if (!tnum_is_const(regs[regno].var_off)) {
1353 char tn_buf[48];
1354
1355 tnum_strn(tn_buf, sizeof(tn_buf), regs[regno].var_off);
61bd5218 1356 verbose(env, "invalid variable stack read R%d var_off=%s\n",
f1174f77 1357 regno, tn_buf);
ea25f914 1358 return -EACCES;
f1174f77
EC
1359 }
1360 off = regs[regno].off + regs[regno].var_off.value;
17a52670 1361 if (off >= 0 || off < -MAX_BPF_STACK || off + access_size > 0 ||
9fd29c08 1362 access_size < 0 || (access_size == 0 && !zero_size_allowed)) {
61bd5218 1363 verbose(env, "invalid stack type R%d off=%d access_size=%d\n",
17a52670
AS
1364 regno, off, access_size);
1365 return -EACCES;
1366 }
1367
8726679a
AS
1368 if (env->prog->aux->stack_depth < -off)
1369 env->prog->aux->stack_depth = -off;
1370
435faee1
DB
1371 if (meta && meta->raw_mode) {
1372 meta->access_size = access_size;
1373 meta->regno = regno;
1374 return 0;
1375 }
1376
17a52670 1377 for (i = 0; i < access_size; i++) {
638f5b90
AS
1378 slot = -(off + i) - 1;
1379 spi = slot / BPF_REG_SIZE;
1380 if (state->allocated_stack <= slot ||
1381 state->stack[spi].slot_type[slot % BPF_REG_SIZE] !=
1382 STACK_MISC) {
61bd5218 1383 verbose(env, "invalid indirect read from stack off %d+%d size %d\n",
17a52670
AS
1384 off, i, access_size);
1385 return -EACCES;
1386 }
1387 }
1388 return 0;
1389}
1390
06c1c049
GB
1391static int check_helper_mem_access(struct bpf_verifier_env *env, int regno,
1392 int access_size, bool zero_size_allowed,
1393 struct bpf_call_arg_meta *meta)
1394{
638f5b90 1395 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
06c1c049 1396
f1174f77 1397 switch (reg->type) {
06c1c049 1398 case PTR_TO_PACKET:
de8f3a83 1399 case PTR_TO_PACKET_META:
9fd29c08
YS
1400 return check_packet_access(env, regno, reg->off, access_size,
1401 zero_size_allowed);
06c1c049 1402 case PTR_TO_MAP_VALUE:
9fd29c08
YS
1403 return check_map_access(env, regno, reg->off, access_size,
1404 zero_size_allowed);
f1174f77 1405 default: /* scalar_value|ptr_to_stack or invalid ptr */
06c1c049
GB
1406 return check_stack_boundary(env, regno, access_size,
1407 zero_size_allowed, meta);
1408 }
1409}
1410
58e2af8b 1411static int check_func_arg(struct bpf_verifier_env *env, u32 regno,
33ff9823
DB
1412 enum bpf_arg_type arg_type,
1413 struct bpf_call_arg_meta *meta)
17a52670 1414{
638f5b90 1415 struct bpf_reg_state *regs = cur_regs(env), *reg = &regs[regno];
6841de8b 1416 enum bpf_reg_type expected_type, type = reg->type;
17a52670
AS
1417 int err = 0;
1418
80f1d68c 1419 if (arg_type == ARG_DONTCARE)
17a52670
AS
1420 return 0;
1421
dc503a8a
EC
1422 err = check_reg_arg(env, regno, SRC_OP);
1423 if (err)
1424 return err;
17a52670 1425
1be7f75d
AS
1426 if (arg_type == ARG_ANYTHING) {
1427 if (is_pointer_value(env, regno)) {
61bd5218
JK
1428 verbose(env, "R%d leaks addr into helper function\n",
1429 regno);
1be7f75d
AS
1430 return -EACCES;
1431 }
80f1d68c 1432 return 0;
1be7f75d 1433 }
80f1d68c 1434
de8f3a83 1435 if (type_is_pkt_pointer(type) &&
3a0af8fd 1436 !may_access_direct_pkt_data(env, meta, BPF_READ)) {
61bd5218 1437 verbose(env, "helper access to the packet is not allowed\n");
6841de8b
AS
1438 return -EACCES;
1439 }
1440
8e2fe1d9 1441 if (arg_type == ARG_PTR_TO_MAP_KEY ||
17a52670
AS
1442 arg_type == ARG_PTR_TO_MAP_VALUE) {
1443 expected_type = PTR_TO_STACK;
de8f3a83
DB
1444 if (!type_is_pkt_pointer(type) &&
1445 type != expected_type)
6841de8b 1446 goto err_type;
39f19ebb
AS
1447 } else if (arg_type == ARG_CONST_SIZE ||
1448 arg_type == ARG_CONST_SIZE_OR_ZERO) {
f1174f77
EC
1449 expected_type = SCALAR_VALUE;
1450 if (type != expected_type)
6841de8b 1451 goto err_type;
17a52670
AS
1452 } else if (arg_type == ARG_CONST_MAP_PTR) {
1453 expected_type = CONST_PTR_TO_MAP;
6841de8b
AS
1454 if (type != expected_type)
1455 goto err_type;
608cd71a
AS
1456 } else if (arg_type == ARG_PTR_TO_CTX) {
1457 expected_type = PTR_TO_CTX;
6841de8b
AS
1458 if (type != expected_type)
1459 goto err_type;
39f19ebb 1460 } else if (arg_type == ARG_PTR_TO_MEM ||
db1ac496 1461 arg_type == ARG_PTR_TO_MEM_OR_NULL ||
39f19ebb 1462 arg_type == ARG_PTR_TO_UNINIT_MEM) {
8e2fe1d9
DB
1463 expected_type = PTR_TO_STACK;
1464 /* One exception here. In case function allows for NULL to be
f1174f77 1465 * passed in as argument, it's a SCALAR_VALUE type. Final test
8e2fe1d9
DB
1466 * happens during stack boundary checking.
1467 */
db1ac496
GB
1468 if (register_is_null(*reg) &&
1469 arg_type == ARG_PTR_TO_MEM_OR_NULL)
6841de8b 1470 /* final test in check_stack_boundary() */;
de8f3a83
DB
1471 else if (!type_is_pkt_pointer(type) &&
1472 type != PTR_TO_MAP_VALUE &&
f1174f77 1473 type != expected_type)
6841de8b 1474 goto err_type;
39f19ebb 1475 meta->raw_mode = arg_type == ARG_PTR_TO_UNINIT_MEM;
17a52670 1476 } else {
61bd5218 1477 verbose(env, "unsupported arg_type %d\n", arg_type);
17a52670
AS
1478 return -EFAULT;
1479 }
1480
17a52670
AS
1481 if (arg_type == ARG_CONST_MAP_PTR) {
1482 /* bpf_map_xxx(map_ptr) call: remember that map_ptr */
33ff9823 1483 meta->map_ptr = reg->map_ptr;
17a52670
AS
1484 } else if (arg_type == ARG_PTR_TO_MAP_KEY) {
1485 /* bpf_map_xxx(..., map_ptr, ..., key) call:
1486 * check that [key, key + map->key_size) are within
1487 * stack limits and initialized
1488 */
33ff9823 1489 if (!meta->map_ptr) {
17a52670
AS
1490 /* in function declaration map_ptr must come before
1491 * map_key, so that it's verified and known before
1492 * we have to check map_key here. Otherwise it means
1493 * that kernel subsystem misconfigured verifier
1494 */
61bd5218 1495 verbose(env, "invalid map_ptr to access map->key\n");
17a52670
AS
1496 return -EACCES;
1497 }
de8f3a83 1498 if (type_is_pkt_pointer(type))
f1174f77 1499 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1500 meta->map_ptr->key_size,
1501 false);
6841de8b
AS
1502 else
1503 err = check_stack_boundary(env, regno,
1504 meta->map_ptr->key_size,
1505 false, NULL);
17a52670
AS
1506 } else if (arg_type == ARG_PTR_TO_MAP_VALUE) {
1507 /* bpf_map_xxx(..., map_ptr, ..., value) call:
1508 * check [value, value + map->value_size) validity
1509 */
33ff9823 1510 if (!meta->map_ptr) {
17a52670 1511 /* kernel subsystem misconfigured verifier */
61bd5218 1512 verbose(env, "invalid map_ptr to access map->value\n");
17a52670
AS
1513 return -EACCES;
1514 }
de8f3a83 1515 if (type_is_pkt_pointer(type))
f1174f77 1516 err = check_packet_access(env, regno, reg->off,
9fd29c08
YS
1517 meta->map_ptr->value_size,
1518 false);
6841de8b
AS
1519 else
1520 err = check_stack_boundary(env, regno,
1521 meta->map_ptr->value_size,
1522 false, NULL);
39f19ebb
AS
1523 } else if (arg_type == ARG_CONST_SIZE ||
1524 arg_type == ARG_CONST_SIZE_OR_ZERO) {
1525 bool zero_size_allowed = (arg_type == ARG_CONST_SIZE_OR_ZERO);
17a52670 1526
17a52670
AS
1527 /* bpf_xxx(..., buf, len) call will access 'len' bytes
1528 * from stack pointer 'buf'. Check it
1529 * note: regno == len, regno - 1 == buf
1530 */
1531 if (regno == 0) {
1532 /* kernel subsystem misconfigured verifier */
61bd5218
JK
1533 verbose(env,
1534 "ARG_CONST_SIZE cannot be first argument\n");
17a52670
AS
1535 return -EACCES;
1536 }
06c1c049 1537
f1174f77
EC
1538 /* The register is SCALAR_VALUE; the access check
1539 * happens using its boundaries.
06c1c049 1540 */
f1174f77
EC
1541
1542 if (!tnum_is_const(reg->var_off))
06c1c049
GB
1543 /* For unprivileged variable accesses, disable raw
1544 * mode so that the program is required to
1545 * initialize all the memory that the helper could
1546 * just partially fill up.
1547 */
1548 meta = NULL;
1549
b03c9f9f 1550 if (reg->smin_value < 0) {
61bd5218 1551 verbose(env, "R%d min value is negative, either use unsigned or 'var &= const'\n",
f1174f77
EC
1552 regno);
1553 return -EACCES;
1554 }
06c1c049 1555
b03c9f9f 1556 if (reg->umin_value == 0) {
f1174f77
EC
1557 err = check_helper_mem_access(env, regno - 1, 0,
1558 zero_size_allowed,
1559 meta);
06c1c049
GB
1560 if (err)
1561 return err;
06c1c049 1562 }
f1174f77 1563
b03c9f9f 1564 if (reg->umax_value >= BPF_MAX_VAR_SIZ) {
61bd5218 1565 verbose(env, "R%d unbounded memory access, use 'var &= const' or 'if (var < const)'\n",
f1174f77
EC
1566 regno);
1567 return -EACCES;
1568 }
1569 err = check_helper_mem_access(env, regno - 1,
b03c9f9f 1570 reg->umax_value,
f1174f77 1571 zero_size_allowed, meta);
17a52670
AS
1572 }
1573
1574 return err;
6841de8b 1575err_type:
61bd5218 1576 verbose(env, "R%d type=%s expected=%s\n", regno,
6841de8b
AS
1577 reg_type_str[type], reg_type_str[expected_type]);
1578 return -EACCES;
17a52670
AS
1579}
1580
61bd5218
JK
1581static int check_map_func_compatibility(struct bpf_verifier_env *env,
1582 struct bpf_map *map, int func_id)
35578d79 1583{
35578d79
KX
1584 if (!map)
1585 return 0;
1586
6aff67c8
AS
1587 /* We need a two way check, first is from map perspective ... */
1588 switch (map->map_type) {
1589 case BPF_MAP_TYPE_PROG_ARRAY:
1590 if (func_id != BPF_FUNC_tail_call)
1591 goto error;
1592 break;
1593 case BPF_MAP_TYPE_PERF_EVENT_ARRAY:
1594 if (func_id != BPF_FUNC_perf_event_read &&
908432ca
YS
1595 func_id != BPF_FUNC_perf_event_output &&
1596 func_id != BPF_FUNC_perf_event_read_value)
6aff67c8
AS
1597 goto error;
1598 break;
1599 case BPF_MAP_TYPE_STACK_TRACE:
1600 if (func_id != BPF_FUNC_get_stackid)
1601 goto error;
1602 break;
4ed8ec52 1603 case BPF_MAP_TYPE_CGROUP_ARRAY:
60747ef4 1604 if (func_id != BPF_FUNC_skb_under_cgroup &&
60d20f91 1605 func_id != BPF_FUNC_current_task_under_cgroup)
4a482f34
MKL
1606 goto error;
1607 break;
546ac1ff
JF
1608 /* devmap returns a pointer to a live net_device ifindex that we cannot
1609 * allow to be modified from bpf side. So do not allow lookup elements
1610 * for now.
1611 */
1612 case BPF_MAP_TYPE_DEVMAP:
2ddf71e2 1613 if (func_id != BPF_FUNC_redirect_map)
546ac1ff
JF
1614 goto error;
1615 break;
6710e112
JDB
1616 /* Restrict bpf side of cpumap, open when use-cases appear */
1617 case BPF_MAP_TYPE_CPUMAP:
1618 if (func_id != BPF_FUNC_redirect_map)
1619 goto error;
1620 break;
56f668df 1621 case BPF_MAP_TYPE_ARRAY_OF_MAPS:
bcc6b1b7 1622 case BPF_MAP_TYPE_HASH_OF_MAPS:
56f668df
MKL
1623 if (func_id != BPF_FUNC_map_lookup_elem)
1624 goto error;
16a43625 1625 break;
174a79ff
JF
1626 case BPF_MAP_TYPE_SOCKMAP:
1627 if (func_id != BPF_FUNC_sk_redirect_map &&
1628 func_id != BPF_FUNC_sock_map_update &&
1629 func_id != BPF_FUNC_map_delete_elem)
1630 goto error;
1631 break;
6aff67c8
AS
1632 default:
1633 break;
1634 }
1635
1636 /* ... and second from the function itself. */
1637 switch (func_id) {
1638 case BPF_FUNC_tail_call:
1639 if (map->map_type != BPF_MAP_TYPE_PROG_ARRAY)
1640 goto error;
1641 break;
1642 case BPF_FUNC_perf_event_read:
1643 case BPF_FUNC_perf_event_output:
908432ca 1644 case BPF_FUNC_perf_event_read_value:
6aff67c8
AS
1645 if (map->map_type != BPF_MAP_TYPE_PERF_EVENT_ARRAY)
1646 goto error;
1647 break;
1648 case BPF_FUNC_get_stackid:
1649 if (map->map_type != BPF_MAP_TYPE_STACK_TRACE)
1650 goto error;
1651 break;
60d20f91 1652 case BPF_FUNC_current_task_under_cgroup:
747ea55e 1653 case BPF_FUNC_skb_under_cgroup:
4a482f34
MKL
1654 if (map->map_type != BPF_MAP_TYPE_CGROUP_ARRAY)
1655 goto error;
1656 break;
97f91a7c 1657 case BPF_FUNC_redirect_map:
9c270af3
JDB
1658 if (map->map_type != BPF_MAP_TYPE_DEVMAP &&
1659 map->map_type != BPF_MAP_TYPE_CPUMAP)
97f91a7c
JF
1660 goto error;
1661 break;
174a79ff
JF
1662 case BPF_FUNC_sk_redirect_map:
1663 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1664 goto error;
1665 break;
1666 case BPF_FUNC_sock_map_update:
1667 if (map->map_type != BPF_MAP_TYPE_SOCKMAP)
1668 goto error;
1669 break;
6aff67c8
AS
1670 default:
1671 break;
35578d79
KX
1672 }
1673
1674 return 0;
6aff67c8 1675error:
61bd5218 1676 verbose(env, "cannot pass map_type %d into func %s#%d\n",
ebb676da 1677 map->map_type, func_id_name(func_id), func_id);
6aff67c8 1678 return -EINVAL;
35578d79
KX
1679}
1680
435faee1
DB
1681static int check_raw_mode(const struct bpf_func_proto *fn)
1682{
1683 int count = 0;
1684
39f19ebb 1685 if (fn->arg1_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1686 count++;
39f19ebb 1687 if (fn->arg2_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1688 count++;
39f19ebb 1689 if (fn->arg3_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1690 count++;
39f19ebb 1691 if (fn->arg4_type == ARG_PTR_TO_UNINIT_MEM)
435faee1 1692 count++;
39f19ebb 1693 if (fn->arg5_type == ARG_PTR_TO_UNINIT_MEM)
435faee1
DB
1694 count++;
1695
1696 return count > 1 ? -EINVAL : 0;
1697}
1698
de8f3a83
DB
1699/* Packet data might have moved, any old PTR_TO_PACKET[_META,_END]
1700 * are now invalid, so turn them into unknown SCALAR_VALUE.
f1174f77 1701 */
58e2af8b 1702static void clear_all_pkt_pointers(struct bpf_verifier_env *env)
969bf05e 1703{
638f5b90 1704 struct bpf_verifier_state *state = env->cur_state;
58e2af8b 1705 struct bpf_reg_state *regs = state->regs, *reg;
969bf05e
AS
1706 int i;
1707
1708 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 1709 if (reg_is_pkt_pointer_any(&regs[i]))
61bd5218 1710 mark_reg_unknown(env, regs, i);
969bf05e 1711
638f5b90
AS
1712 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
1713 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 1714 continue;
638f5b90 1715 reg = &state->stack[i].spilled_ptr;
de8f3a83
DB
1716 if (reg_is_pkt_pointer_any(reg))
1717 __mark_reg_unknown(reg);
969bf05e
AS
1718 }
1719}
1720
81ed18ab 1721static int check_call(struct bpf_verifier_env *env, int func_id, int insn_idx)
17a52670 1722{
17a52670 1723 const struct bpf_func_proto *fn = NULL;
638f5b90 1724 struct bpf_reg_state *regs;
33ff9823 1725 struct bpf_call_arg_meta meta;
969bf05e 1726 bool changes_data;
17a52670
AS
1727 int i, err;
1728
1729 /* find function prototype */
1730 if (func_id < 0 || func_id >= __BPF_FUNC_MAX_ID) {
61bd5218
JK
1731 verbose(env, "invalid func %s#%d\n", func_id_name(func_id),
1732 func_id);
17a52670
AS
1733 return -EINVAL;
1734 }
1735
00176a34
JK
1736 if (env->ops->get_func_proto)
1737 fn = env->ops->get_func_proto(func_id);
17a52670
AS
1738
1739 if (!fn) {
61bd5218
JK
1740 verbose(env, "unknown func %s#%d\n", func_id_name(func_id),
1741 func_id);
17a52670
AS
1742 return -EINVAL;
1743 }
1744
1745 /* eBPF programs must be GPL compatible to use GPL-ed functions */
24701ece 1746 if (!env->prog->gpl_compatible && fn->gpl_only) {
61bd5218 1747 verbose(env, "cannot call GPL only function from proprietary program\n");
17a52670
AS
1748 return -EINVAL;
1749 }
1750
04514d13 1751 /* With LD_ABS/IND some JITs save/restore skb from r1. */
17bedab2 1752 changes_data = bpf_helper_changes_pkt_data(fn->func);
04514d13
DB
1753 if (changes_data && fn->arg1_type != ARG_PTR_TO_CTX) {
1754 verbose(env, "kernel subsystem misconfigured func %s#%d: r1 != ctx\n",
1755 func_id_name(func_id), func_id);
1756 return -EINVAL;
1757 }
969bf05e 1758
33ff9823 1759 memset(&meta, 0, sizeof(meta));
36bbef52 1760 meta.pkt_access = fn->pkt_access;
33ff9823 1761
435faee1
DB
1762 /* We only support one arg being in raw mode at the moment, which
1763 * is sufficient for the helper functions we have right now.
1764 */
1765 err = check_raw_mode(fn);
1766 if (err) {
61bd5218 1767 verbose(env, "kernel subsystem misconfigured func %s#%d\n",
ebb676da 1768 func_id_name(func_id), func_id);
435faee1
DB
1769 return err;
1770 }
1771
17a52670 1772 /* check args */
33ff9823 1773 err = check_func_arg(env, BPF_REG_1, fn->arg1_type, &meta);
17a52670
AS
1774 if (err)
1775 return err;
33ff9823 1776 err = check_func_arg(env, BPF_REG_2, fn->arg2_type, &meta);
17a52670
AS
1777 if (err)
1778 return err;
b2157399
AS
1779 if (func_id == BPF_FUNC_tail_call) {
1780 if (meta.map_ptr == NULL) {
1781 verbose(env, "verifier bug\n");
1782 return -EINVAL;
1783 }
1784 env->insn_aux_data[insn_idx].map_ptr = meta.map_ptr;
1785 }
33ff9823 1786 err = check_func_arg(env, BPF_REG_3, fn->arg3_type, &meta);
17a52670
AS
1787 if (err)
1788 return err;
33ff9823 1789 err = check_func_arg(env, BPF_REG_4, fn->arg4_type, &meta);
17a52670
AS
1790 if (err)
1791 return err;
33ff9823 1792 err = check_func_arg(env, BPF_REG_5, fn->arg5_type, &meta);
17a52670
AS
1793 if (err)
1794 return err;
1795
435faee1
DB
1796 /* Mark slots with STACK_MISC in case of raw mode, stack offset
1797 * is inferred from register state.
1798 */
1799 for (i = 0; i < meta.access_size; i++) {
57b4a36e
DB
1800 err = check_mem_access(env, insn_idx, meta.regno, i, BPF_B,
1801 BPF_WRITE, -1, false);
435faee1
DB
1802 if (err)
1803 return err;
1804 }
1805
638f5b90 1806 regs = cur_regs(env);
17a52670 1807 /* reset caller saved regs */
dc503a8a 1808 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 1809 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
1810 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
1811 }
17a52670 1812
dc503a8a 1813 /* update return register (already marked as written above) */
17a52670 1814 if (fn->ret_type == RET_INTEGER) {
f1174f77 1815 /* sets type to SCALAR_VALUE */
61bd5218 1816 mark_reg_unknown(env, regs, BPF_REG_0);
17a52670
AS
1817 } else if (fn->ret_type == RET_VOID) {
1818 regs[BPF_REG_0].type = NOT_INIT;
1819 } else if (fn->ret_type == RET_PTR_TO_MAP_VALUE_OR_NULL) {
fad73a1a
MKL
1820 struct bpf_insn_aux_data *insn_aux;
1821
17a52670 1822 regs[BPF_REG_0].type = PTR_TO_MAP_VALUE_OR_NULL;
f1174f77 1823 /* There is no offset yet applied, variable or fixed */
61bd5218 1824 mark_reg_known_zero(env, regs, BPF_REG_0);
f1174f77 1825 regs[BPF_REG_0].off = 0;
17a52670
AS
1826 /* remember map_ptr, so that check_map_access()
1827 * can check 'value_size' boundary of memory access
1828 * to map element returned from bpf_map_lookup_elem()
1829 */
33ff9823 1830 if (meta.map_ptr == NULL) {
61bd5218
JK
1831 verbose(env,
1832 "kernel subsystem misconfigured verifier\n");
17a52670
AS
1833 return -EINVAL;
1834 }
33ff9823 1835 regs[BPF_REG_0].map_ptr = meta.map_ptr;
57a09bf0 1836 regs[BPF_REG_0].id = ++env->id_gen;
fad73a1a
MKL
1837 insn_aux = &env->insn_aux_data[insn_idx];
1838 if (!insn_aux->map_ptr)
1839 insn_aux->map_ptr = meta.map_ptr;
1840 else if (insn_aux->map_ptr != meta.map_ptr)
1841 insn_aux->map_ptr = BPF_MAP_PTR_POISON;
17a52670 1842 } else {
61bd5218 1843 verbose(env, "unknown return type %d of func %s#%d\n",
ebb676da 1844 fn->ret_type, func_id_name(func_id), func_id);
17a52670
AS
1845 return -EINVAL;
1846 }
04fd61ab 1847
61bd5218 1848 err = check_map_func_compatibility(env, meta.map_ptr, func_id);
35578d79
KX
1849 if (err)
1850 return err;
04fd61ab 1851
969bf05e
AS
1852 if (changes_data)
1853 clear_all_pkt_pointers(env);
1854 return 0;
1855}
1856
b03c9f9f
EC
1857static bool signed_add_overflows(s64 a, s64 b)
1858{
1859 /* Do the add in u64, where overflow is well-defined */
1860 s64 res = (s64)((u64)a + (u64)b);
1861
1862 if (b < 0)
1863 return res > a;
1864 return res < a;
1865}
1866
1867static bool signed_sub_overflows(s64 a, s64 b)
1868{
1869 /* Do the sub in u64, where overflow is well-defined */
1870 s64 res = (s64)((u64)a - (u64)b);
1871
1872 if (b < 0)
1873 return res < a;
1874 return res > a;
969bf05e
AS
1875}
1876
bb7f0f98
AS
1877static bool check_reg_sane_offset(struct bpf_verifier_env *env,
1878 const struct bpf_reg_state *reg,
1879 enum bpf_reg_type type)
1880{
1881 bool known = tnum_is_const(reg->var_off);
1882 s64 val = reg->var_off.value;
1883 s64 smin = reg->smin_value;
1884
1885 if (known && (val >= BPF_MAX_VAR_OFF || val <= -BPF_MAX_VAR_OFF)) {
1886 verbose(env, "math between %s pointer and %lld is not allowed\n",
1887 reg_type_str[type], val);
1888 return false;
1889 }
1890
1891 if (reg->off >= BPF_MAX_VAR_OFF || reg->off <= -BPF_MAX_VAR_OFF) {
1892 verbose(env, "%s pointer offset %d is not allowed\n",
1893 reg_type_str[type], reg->off);
1894 return false;
1895 }
1896
1897 if (smin == S64_MIN) {
1898 verbose(env, "math between %s pointer and register with unbounded min value is not allowed\n",
1899 reg_type_str[type]);
1900 return false;
1901 }
1902
1903 if (smin >= BPF_MAX_VAR_OFF || smin <= -BPF_MAX_VAR_OFF) {
1904 verbose(env, "value %lld makes %s pointer be out of bounds\n",
1905 smin, reg_type_str[type]);
1906 return false;
1907 }
1908
1909 return true;
1910}
1911
f1174f77 1912/* Handles arithmetic on a pointer and a scalar: computes new min/max and var_off.
f1174f77
EC
1913 * Caller should also handle BPF_MOV case separately.
1914 * If we return -EACCES, caller may want to try again treating pointer as a
1915 * scalar. So we only emit a diagnostic if !env->allow_ptr_leaks.
1916 */
1917static int adjust_ptr_min_max_vals(struct bpf_verifier_env *env,
1918 struct bpf_insn *insn,
1919 const struct bpf_reg_state *ptr_reg,
1920 const struct bpf_reg_state *off_reg)
969bf05e 1921{
638f5b90 1922 struct bpf_reg_state *regs = cur_regs(env), *dst_reg;
f1174f77 1923 bool known = tnum_is_const(off_reg->var_off);
b03c9f9f
EC
1924 s64 smin_val = off_reg->smin_value, smax_val = off_reg->smax_value,
1925 smin_ptr = ptr_reg->smin_value, smax_ptr = ptr_reg->smax_value;
1926 u64 umin_val = off_reg->umin_value, umax_val = off_reg->umax_value,
1927 umin_ptr = ptr_reg->umin_value, umax_ptr = ptr_reg->umax_value;
969bf05e 1928 u8 opcode = BPF_OP(insn->code);
f1174f77 1929 u32 dst = insn->dst_reg;
969bf05e 1930
f1174f77 1931 dst_reg = &regs[dst];
969bf05e 1932
6f16101e
DB
1933 if ((known && (smin_val != smax_val || umin_val != umax_val)) ||
1934 smin_val > smax_val || umin_val > umax_val) {
1935 /* Taint dst register if offset had invalid bounds derived from
1936 * e.g. dead branches.
1937 */
1938 __mark_reg_unknown(dst_reg);
1939 return 0;
f1174f77
EC
1940 }
1941
1942 if (BPF_CLASS(insn->code) != BPF_ALU64) {
1943 /* 32-bit ALU ops on pointers produce (meaningless) scalars */
82abbf8d
AS
1944 verbose(env,
1945 "R%d 32-bit pointer arithmetic prohibited\n",
1946 dst);
f1174f77 1947 return -EACCES;
969bf05e
AS
1948 }
1949
f1174f77 1950 if (ptr_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
82abbf8d
AS
1951 verbose(env, "R%d pointer arithmetic on PTR_TO_MAP_VALUE_OR_NULL prohibited, null-check it first\n",
1952 dst);
f1174f77
EC
1953 return -EACCES;
1954 }
1955 if (ptr_reg->type == CONST_PTR_TO_MAP) {
82abbf8d
AS
1956 verbose(env, "R%d pointer arithmetic on CONST_PTR_TO_MAP prohibited\n",
1957 dst);
f1174f77
EC
1958 return -EACCES;
1959 }
1960 if (ptr_reg->type == PTR_TO_PACKET_END) {
82abbf8d
AS
1961 verbose(env, "R%d pointer arithmetic on PTR_TO_PACKET_END prohibited\n",
1962 dst);
f1174f77
EC
1963 return -EACCES;
1964 }
1965
1966 /* In case of 'scalar += pointer', dst_reg inherits pointer type and id.
1967 * The id may be overwritten later if we create a new variable offset.
969bf05e 1968 */
f1174f77
EC
1969 dst_reg->type = ptr_reg->type;
1970 dst_reg->id = ptr_reg->id;
969bf05e 1971
bb7f0f98
AS
1972 if (!check_reg_sane_offset(env, off_reg, ptr_reg->type) ||
1973 !check_reg_sane_offset(env, ptr_reg, ptr_reg->type))
1974 return -EINVAL;
1975
f1174f77
EC
1976 switch (opcode) {
1977 case BPF_ADD:
1978 /* We can take a fixed offset as long as it doesn't overflow
1979 * the s32 'off' field
969bf05e 1980 */
b03c9f9f
EC
1981 if (known && (ptr_reg->off + smin_val ==
1982 (s64)(s32)(ptr_reg->off + smin_val))) {
f1174f77 1983 /* pointer += K. Accumulate it into fixed offset */
b03c9f9f
EC
1984 dst_reg->smin_value = smin_ptr;
1985 dst_reg->smax_value = smax_ptr;
1986 dst_reg->umin_value = umin_ptr;
1987 dst_reg->umax_value = umax_ptr;
f1174f77 1988 dst_reg->var_off = ptr_reg->var_off;
b03c9f9f 1989 dst_reg->off = ptr_reg->off + smin_val;
f1174f77
EC
1990 dst_reg->range = ptr_reg->range;
1991 break;
1992 }
f1174f77
EC
1993 /* A new variable offset is created. Note that off_reg->off
1994 * == 0, since it's a scalar.
1995 * dst_reg gets the pointer type and since some positive
1996 * integer value was added to the pointer, give it a new 'id'
1997 * if it's a PTR_TO_PACKET.
1998 * this creates a new 'base' pointer, off_reg (variable) gets
1999 * added into the variable offset, and we copy the fixed offset
2000 * from ptr_reg.
969bf05e 2001 */
b03c9f9f
EC
2002 if (signed_add_overflows(smin_ptr, smin_val) ||
2003 signed_add_overflows(smax_ptr, smax_val)) {
2004 dst_reg->smin_value = S64_MIN;
2005 dst_reg->smax_value = S64_MAX;
2006 } else {
2007 dst_reg->smin_value = smin_ptr + smin_val;
2008 dst_reg->smax_value = smax_ptr + smax_val;
2009 }
2010 if (umin_ptr + umin_val < umin_ptr ||
2011 umax_ptr + umax_val < umax_ptr) {
2012 dst_reg->umin_value = 0;
2013 dst_reg->umax_value = U64_MAX;
2014 } else {
2015 dst_reg->umin_value = umin_ptr + umin_val;
2016 dst_reg->umax_value = umax_ptr + umax_val;
2017 }
f1174f77
EC
2018 dst_reg->var_off = tnum_add(ptr_reg->var_off, off_reg->var_off);
2019 dst_reg->off = ptr_reg->off;
de8f3a83 2020 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2021 dst_reg->id = ++env->id_gen;
2022 /* something was added to pkt_ptr, set range to zero */
2023 dst_reg->range = 0;
2024 }
2025 break;
2026 case BPF_SUB:
2027 if (dst_reg == off_reg) {
2028 /* scalar -= pointer. Creates an unknown scalar */
82abbf8d
AS
2029 verbose(env, "R%d tried to subtract pointer from scalar\n",
2030 dst);
f1174f77
EC
2031 return -EACCES;
2032 }
2033 /* We don't allow subtraction from FP, because (according to
2034 * test_verifier.c test "invalid fp arithmetic", JITs might not
2035 * be able to deal with it.
969bf05e 2036 */
f1174f77 2037 if (ptr_reg->type == PTR_TO_STACK) {
82abbf8d
AS
2038 verbose(env, "R%d subtraction from stack pointer prohibited\n",
2039 dst);
f1174f77
EC
2040 return -EACCES;
2041 }
b03c9f9f
EC
2042 if (known && (ptr_reg->off - smin_val ==
2043 (s64)(s32)(ptr_reg->off - smin_val))) {
f1174f77 2044 /* pointer -= K. Subtract it from fixed offset */
b03c9f9f
EC
2045 dst_reg->smin_value = smin_ptr;
2046 dst_reg->smax_value = smax_ptr;
2047 dst_reg->umin_value = umin_ptr;
2048 dst_reg->umax_value = umax_ptr;
f1174f77
EC
2049 dst_reg->var_off = ptr_reg->var_off;
2050 dst_reg->id = ptr_reg->id;
b03c9f9f 2051 dst_reg->off = ptr_reg->off - smin_val;
f1174f77
EC
2052 dst_reg->range = ptr_reg->range;
2053 break;
2054 }
f1174f77
EC
2055 /* A new variable offset is created. If the subtrahend is known
2056 * nonnegative, then any reg->range we had before is still good.
969bf05e 2057 */
b03c9f9f
EC
2058 if (signed_sub_overflows(smin_ptr, smax_val) ||
2059 signed_sub_overflows(smax_ptr, smin_val)) {
2060 /* Overflow possible, we know nothing */
2061 dst_reg->smin_value = S64_MIN;
2062 dst_reg->smax_value = S64_MAX;
2063 } else {
2064 dst_reg->smin_value = smin_ptr - smax_val;
2065 dst_reg->smax_value = smax_ptr - smin_val;
2066 }
2067 if (umin_ptr < umax_val) {
2068 /* Overflow possible, we know nothing */
2069 dst_reg->umin_value = 0;
2070 dst_reg->umax_value = U64_MAX;
2071 } else {
2072 /* Cannot overflow (as long as bounds are consistent) */
2073 dst_reg->umin_value = umin_ptr - umax_val;
2074 dst_reg->umax_value = umax_ptr - umin_val;
2075 }
f1174f77
EC
2076 dst_reg->var_off = tnum_sub(ptr_reg->var_off, off_reg->var_off);
2077 dst_reg->off = ptr_reg->off;
de8f3a83 2078 if (reg_is_pkt_pointer(ptr_reg)) {
f1174f77
EC
2079 dst_reg->id = ++env->id_gen;
2080 /* something was added to pkt_ptr, set range to zero */
b03c9f9f 2081 if (smin_val < 0)
f1174f77 2082 dst_reg->range = 0;
43188702 2083 }
f1174f77
EC
2084 break;
2085 case BPF_AND:
2086 case BPF_OR:
2087 case BPF_XOR:
82abbf8d
AS
2088 /* bitwise ops on pointers are troublesome, prohibit. */
2089 verbose(env, "R%d bitwise operator %s on pointer prohibited\n",
2090 dst, bpf_alu_string[opcode >> 4]);
f1174f77
EC
2091 return -EACCES;
2092 default:
2093 /* other operators (e.g. MUL,LSH) produce non-pointer results */
82abbf8d
AS
2094 verbose(env, "R%d pointer arithmetic with %s operator prohibited\n",
2095 dst, bpf_alu_string[opcode >> 4]);
f1174f77 2096 return -EACCES;
43188702
JF
2097 }
2098
bb7f0f98
AS
2099 if (!check_reg_sane_offset(env, dst_reg, ptr_reg->type))
2100 return -EINVAL;
2101
b03c9f9f
EC
2102 __update_reg_bounds(dst_reg);
2103 __reg_deduce_bounds(dst_reg);
2104 __reg_bound_offset(dst_reg);
43188702
JF
2105 return 0;
2106}
2107
468f6eaf
JH
2108/* WARNING: This function does calculations on 64-bit values, but the actual
2109 * execution may occur on 32-bit values. Therefore, things like bitshifts
2110 * need extra checks in the 32-bit case.
2111 */
f1174f77
EC
2112static int adjust_scalar_min_max_vals(struct bpf_verifier_env *env,
2113 struct bpf_insn *insn,
2114 struct bpf_reg_state *dst_reg,
2115 struct bpf_reg_state src_reg)
969bf05e 2116{
638f5b90 2117 struct bpf_reg_state *regs = cur_regs(env);
48461135 2118 u8 opcode = BPF_OP(insn->code);
f1174f77 2119 bool src_known, dst_known;
b03c9f9f
EC
2120 s64 smin_val, smax_val;
2121 u64 umin_val, umax_val;
468f6eaf 2122 u64 insn_bitness = (BPF_CLASS(insn->code) == BPF_ALU64) ? 64 : 32;
48461135 2123
4c6d059c
JH
2124 if (insn_bitness == 32) {
2125 /* Relevant for 32-bit RSH: Information can propagate towards
2126 * LSB, so it isn't sufficient to only truncate the output to
2127 * 32 bits.
2128 */
2129 coerce_reg_to_size(dst_reg, 4);
2130 coerce_reg_to_size(&src_reg, 4);
2131 }
2132
b03c9f9f
EC
2133 smin_val = src_reg.smin_value;
2134 smax_val = src_reg.smax_value;
2135 umin_val = src_reg.umin_value;
2136 umax_val = src_reg.umax_value;
f1174f77
EC
2137 src_known = tnum_is_const(src_reg.var_off);
2138 dst_known = tnum_is_const(dst_reg->var_off);
f23cc643 2139
6f16101e
DB
2140 if ((src_known && (smin_val != smax_val || umin_val != umax_val)) ||
2141 smin_val > smax_val || umin_val > umax_val) {
2142 /* Taint dst register if offset had invalid bounds derived from
2143 * e.g. dead branches.
2144 */
2145 __mark_reg_unknown(dst_reg);
2146 return 0;
2147 }
2148
bb7f0f98
AS
2149 if (!src_known &&
2150 opcode != BPF_ADD && opcode != BPF_SUB && opcode != BPF_AND) {
2151 __mark_reg_unknown(dst_reg);
2152 return 0;
2153 }
2154
48461135
JB
2155 switch (opcode) {
2156 case BPF_ADD:
b03c9f9f
EC
2157 if (signed_add_overflows(dst_reg->smin_value, smin_val) ||
2158 signed_add_overflows(dst_reg->smax_value, smax_val)) {
2159 dst_reg->smin_value = S64_MIN;
2160 dst_reg->smax_value = S64_MAX;
2161 } else {
2162 dst_reg->smin_value += smin_val;
2163 dst_reg->smax_value += smax_val;
2164 }
2165 if (dst_reg->umin_value + umin_val < umin_val ||
2166 dst_reg->umax_value + umax_val < umax_val) {
2167 dst_reg->umin_value = 0;
2168 dst_reg->umax_value = U64_MAX;
2169 } else {
2170 dst_reg->umin_value += umin_val;
2171 dst_reg->umax_value += umax_val;
2172 }
f1174f77 2173 dst_reg->var_off = tnum_add(dst_reg->var_off, src_reg.var_off);
48461135
JB
2174 break;
2175 case BPF_SUB:
b03c9f9f
EC
2176 if (signed_sub_overflows(dst_reg->smin_value, smax_val) ||
2177 signed_sub_overflows(dst_reg->smax_value, smin_val)) {
2178 /* Overflow possible, we know nothing */
2179 dst_reg->smin_value = S64_MIN;
2180 dst_reg->smax_value = S64_MAX;
2181 } else {
2182 dst_reg->smin_value -= smax_val;
2183 dst_reg->smax_value -= smin_val;
2184 }
2185 if (dst_reg->umin_value < umax_val) {
2186 /* Overflow possible, we know nothing */
2187 dst_reg->umin_value = 0;
2188 dst_reg->umax_value = U64_MAX;
2189 } else {
2190 /* Cannot overflow (as long as bounds are consistent) */
2191 dst_reg->umin_value -= umax_val;
2192 dst_reg->umax_value -= umin_val;
2193 }
f1174f77 2194 dst_reg->var_off = tnum_sub(dst_reg->var_off, src_reg.var_off);
48461135
JB
2195 break;
2196 case BPF_MUL:
b03c9f9f
EC
2197 dst_reg->var_off = tnum_mul(dst_reg->var_off, src_reg.var_off);
2198 if (smin_val < 0 || dst_reg->smin_value < 0) {
f1174f77 2199 /* Ain't nobody got time to multiply that sign */
b03c9f9f
EC
2200 __mark_reg_unbounded(dst_reg);
2201 __update_reg_bounds(dst_reg);
f1174f77
EC
2202 break;
2203 }
b03c9f9f
EC
2204 /* Both values are positive, so we can work with unsigned and
2205 * copy the result to signed (unless it exceeds S64_MAX).
f1174f77 2206 */
b03c9f9f
EC
2207 if (umax_val > U32_MAX || dst_reg->umax_value > U32_MAX) {
2208 /* Potential overflow, we know nothing */
2209 __mark_reg_unbounded(dst_reg);
2210 /* (except what we can learn from the var_off) */
2211 __update_reg_bounds(dst_reg);
2212 break;
2213 }
2214 dst_reg->umin_value *= umin_val;
2215 dst_reg->umax_value *= umax_val;
2216 if (dst_reg->umax_value > S64_MAX) {
2217 /* Overflow possible, we know nothing */
2218 dst_reg->smin_value = S64_MIN;
2219 dst_reg->smax_value = S64_MAX;
2220 } else {
2221 dst_reg->smin_value = dst_reg->umin_value;
2222 dst_reg->smax_value = dst_reg->umax_value;
2223 }
48461135
JB
2224 break;
2225 case BPF_AND:
f1174f77 2226 if (src_known && dst_known) {
b03c9f9f
EC
2227 __mark_reg_known(dst_reg, dst_reg->var_off.value &
2228 src_reg.var_off.value);
f1174f77
EC
2229 break;
2230 }
b03c9f9f
EC
2231 /* We get our minimum from the var_off, since that's inherently
2232 * bitwise. Our maximum is the minimum of the operands' maxima.
f23cc643 2233 */
f1174f77 2234 dst_reg->var_off = tnum_and(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2235 dst_reg->umin_value = dst_reg->var_off.value;
2236 dst_reg->umax_value = min(dst_reg->umax_value, umax_val);
2237 if (dst_reg->smin_value < 0 || smin_val < 0) {
2238 /* Lose signed bounds when ANDing negative numbers,
2239 * ain't nobody got time for that.
2240 */
2241 dst_reg->smin_value = S64_MIN;
2242 dst_reg->smax_value = S64_MAX;
2243 } else {
2244 /* ANDing two positives gives a positive, so safe to
2245 * cast result into s64.
2246 */
2247 dst_reg->smin_value = dst_reg->umin_value;
2248 dst_reg->smax_value = dst_reg->umax_value;
2249 }
2250 /* We may learn something more from the var_off */
2251 __update_reg_bounds(dst_reg);
f1174f77
EC
2252 break;
2253 case BPF_OR:
2254 if (src_known && dst_known) {
b03c9f9f
EC
2255 __mark_reg_known(dst_reg, dst_reg->var_off.value |
2256 src_reg.var_off.value);
f1174f77
EC
2257 break;
2258 }
b03c9f9f
EC
2259 /* We get our maximum from the var_off, and our minimum is the
2260 * maximum of the operands' minima
f1174f77
EC
2261 */
2262 dst_reg->var_off = tnum_or(dst_reg->var_off, src_reg.var_off);
b03c9f9f
EC
2263 dst_reg->umin_value = max(dst_reg->umin_value, umin_val);
2264 dst_reg->umax_value = dst_reg->var_off.value |
2265 dst_reg->var_off.mask;
2266 if (dst_reg->smin_value < 0 || smin_val < 0) {
2267 /* Lose signed bounds when ORing negative numbers,
2268 * ain't nobody got time for that.
2269 */
2270 dst_reg->smin_value = S64_MIN;
2271 dst_reg->smax_value = S64_MAX;
f1174f77 2272 } else {
b03c9f9f
EC
2273 /* ORing two positives gives a positive, so safe to
2274 * cast result into s64.
2275 */
2276 dst_reg->smin_value = dst_reg->umin_value;
2277 dst_reg->smax_value = dst_reg->umax_value;
f1174f77 2278 }
b03c9f9f
EC
2279 /* We may learn something more from the var_off */
2280 __update_reg_bounds(dst_reg);
48461135
JB
2281 break;
2282 case BPF_LSH:
468f6eaf
JH
2283 if (umax_val >= insn_bitness) {
2284 /* Shifts greater than 31 or 63 are undefined.
2285 * This includes shifts by a negative number.
b03c9f9f 2286 */
61bd5218 2287 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2288 break;
2289 }
b03c9f9f
EC
2290 /* We lose all sign bit information (except what we can pick
2291 * up from var_off)
48461135 2292 */
b03c9f9f
EC
2293 dst_reg->smin_value = S64_MIN;
2294 dst_reg->smax_value = S64_MAX;
2295 /* If we might shift our top bit out, then we know nothing */
2296 if (dst_reg->umax_value > 1ULL << (63 - umax_val)) {
2297 dst_reg->umin_value = 0;
2298 dst_reg->umax_value = U64_MAX;
d1174416 2299 } else {
b03c9f9f
EC
2300 dst_reg->umin_value <<= umin_val;
2301 dst_reg->umax_value <<= umax_val;
d1174416 2302 }
b03c9f9f
EC
2303 if (src_known)
2304 dst_reg->var_off = tnum_lshift(dst_reg->var_off, umin_val);
2305 else
2306 dst_reg->var_off = tnum_lshift(tnum_unknown, umin_val);
2307 /* We may learn something more from the var_off */
2308 __update_reg_bounds(dst_reg);
48461135
JB
2309 break;
2310 case BPF_RSH:
468f6eaf
JH
2311 if (umax_val >= insn_bitness) {
2312 /* Shifts greater than 31 or 63 are undefined.
2313 * This includes shifts by a negative number.
b03c9f9f 2314 */
61bd5218 2315 mark_reg_unknown(env, regs, insn->dst_reg);
f1174f77
EC
2316 break;
2317 }
4374f256
EC
2318 /* BPF_RSH is an unsigned shift. If the value in dst_reg might
2319 * be negative, then either:
2320 * 1) src_reg might be zero, so the sign bit of the result is
2321 * unknown, so we lose our signed bounds
2322 * 2) it's known negative, thus the unsigned bounds capture the
2323 * signed bounds
2324 * 3) the signed bounds cross zero, so they tell us nothing
2325 * about the result
2326 * If the value in dst_reg is known nonnegative, then again the
2327 * unsigned bounts capture the signed bounds.
2328 * Thus, in all cases it suffices to blow away our signed bounds
2329 * and rely on inferring new ones from the unsigned bounds and
2330 * var_off of the result.
2331 */
2332 dst_reg->smin_value = S64_MIN;
2333 dst_reg->smax_value = S64_MAX;
f1174f77 2334 if (src_known)
b03c9f9f
EC
2335 dst_reg->var_off = tnum_rshift(dst_reg->var_off,
2336 umin_val);
f1174f77 2337 else
b03c9f9f
EC
2338 dst_reg->var_off = tnum_rshift(tnum_unknown, umin_val);
2339 dst_reg->umin_value >>= umax_val;
2340 dst_reg->umax_value >>= umin_val;
2341 /* We may learn something more from the var_off */
2342 __update_reg_bounds(dst_reg);
48461135
JB
2343 break;
2344 default:
61bd5218 2345 mark_reg_unknown(env, regs, insn->dst_reg);
48461135
JB
2346 break;
2347 }
2348
468f6eaf
JH
2349 if (BPF_CLASS(insn->code) != BPF_ALU64) {
2350 /* 32-bit ALU ops are (32,32)->32 */
2351 coerce_reg_to_size(dst_reg, 4);
468f6eaf
JH
2352 }
2353
b03c9f9f
EC
2354 __reg_deduce_bounds(dst_reg);
2355 __reg_bound_offset(dst_reg);
f1174f77
EC
2356 return 0;
2357}
2358
2359/* Handles ALU ops other than BPF_END, BPF_NEG and BPF_MOV: computes new min/max
2360 * and var_off.
2361 */
2362static int adjust_reg_min_max_vals(struct bpf_verifier_env *env,
2363 struct bpf_insn *insn)
2364{
638f5b90 2365 struct bpf_reg_state *regs = cur_regs(env), *dst_reg, *src_reg;
f1174f77
EC
2366 struct bpf_reg_state *ptr_reg = NULL, off_reg = {0};
2367 u8 opcode = BPF_OP(insn->code);
f1174f77
EC
2368
2369 dst_reg = &regs[insn->dst_reg];
f1174f77
EC
2370 src_reg = NULL;
2371 if (dst_reg->type != SCALAR_VALUE)
2372 ptr_reg = dst_reg;
2373 if (BPF_SRC(insn->code) == BPF_X) {
2374 src_reg = &regs[insn->src_reg];
f1174f77
EC
2375 if (src_reg->type != SCALAR_VALUE) {
2376 if (dst_reg->type != SCALAR_VALUE) {
2377 /* Combining two pointers by any ALU op yields
82abbf8d
AS
2378 * an arbitrary scalar. Disallow all math except
2379 * pointer subtraction
f1174f77 2380 */
82abbf8d
AS
2381 if (opcode == BPF_SUB){
2382 mark_reg_unknown(env, regs, insn->dst_reg);
2383 return 0;
f1174f77 2384 }
82abbf8d
AS
2385 verbose(env, "R%d pointer %s pointer prohibited\n",
2386 insn->dst_reg,
2387 bpf_alu_string[opcode >> 4]);
2388 return -EACCES;
f1174f77
EC
2389 } else {
2390 /* scalar += pointer
2391 * This is legal, but we have to reverse our
2392 * src/dest handling in computing the range
2393 */
82abbf8d
AS
2394 return adjust_ptr_min_max_vals(env, insn,
2395 src_reg, dst_reg);
f1174f77
EC
2396 }
2397 } else if (ptr_reg) {
2398 /* pointer += scalar */
82abbf8d
AS
2399 return adjust_ptr_min_max_vals(env, insn,
2400 dst_reg, src_reg);
f1174f77
EC
2401 }
2402 } else {
2403 /* Pretend the src is a reg with a known value, since we only
2404 * need to be able to read from this state.
2405 */
2406 off_reg.type = SCALAR_VALUE;
b03c9f9f 2407 __mark_reg_known(&off_reg, insn->imm);
f1174f77 2408 src_reg = &off_reg;
82abbf8d
AS
2409 if (ptr_reg) /* pointer += K */
2410 return adjust_ptr_min_max_vals(env, insn,
2411 ptr_reg, src_reg);
f1174f77
EC
2412 }
2413
2414 /* Got here implies adding two SCALAR_VALUEs */
2415 if (WARN_ON_ONCE(ptr_reg)) {
638f5b90 2416 print_verifier_state(env, env->cur_state);
61bd5218 2417 verbose(env, "verifier internal error: unexpected ptr_reg\n");
f1174f77
EC
2418 return -EINVAL;
2419 }
2420 if (WARN_ON(!src_reg)) {
638f5b90 2421 print_verifier_state(env, env->cur_state);
61bd5218 2422 verbose(env, "verifier internal error: no src_reg\n");
f1174f77
EC
2423 return -EINVAL;
2424 }
2425 return adjust_scalar_min_max_vals(env, insn, dst_reg, *src_reg);
48461135
JB
2426}
2427
17a52670 2428/* check validity of 32-bit and 64-bit arithmetic operations */
58e2af8b 2429static int check_alu_op(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 2430{
638f5b90 2431 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
2432 u8 opcode = BPF_OP(insn->code);
2433 int err;
2434
2435 if (opcode == BPF_END || opcode == BPF_NEG) {
2436 if (opcode == BPF_NEG) {
2437 if (BPF_SRC(insn->code) != 0 ||
2438 insn->src_reg != BPF_REG_0 ||
2439 insn->off != 0 || insn->imm != 0) {
61bd5218 2440 verbose(env, "BPF_NEG uses reserved fields\n");
17a52670
AS
2441 return -EINVAL;
2442 }
2443 } else {
2444 if (insn->src_reg != BPF_REG_0 || insn->off != 0 ||
e67b8a68
EC
2445 (insn->imm != 16 && insn->imm != 32 && insn->imm != 64) ||
2446 BPF_CLASS(insn->code) == BPF_ALU64) {
61bd5218 2447 verbose(env, "BPF_END uses reserved fields\n");
17a52670
AS
2448 return -EINVAL;
2449 }
2450 }
2451
2452 /* check src operand */
dc503a8a 2453 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2454 if (err)
2455 return err;
2456
1be7f75d 2457 if (is_pointer_value(env, insn->dst_reg)) {
61bd5218 2458 verbose(env, "R%d pointer arithmetic prohibited\n",
1be7f75d
AS
2459 insn->dst_reg);
2460 return -EACCES;
2461 }
2462
17a52670 2463 /* check dest operand */
dc503a8a 2464 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2465 if (err)
2466 return err;
2467
2468 } else if (opcode == BPF_MOV) {
2469
2470 if (BPF_SRC(insn->code) == BPF_X) {
2471 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2472 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2473 return -EINVAL;
2474 }
2475
2476 /* check src operand */
dc503a8a 2477 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2478 if (err)
2479 return err;
2480 } else {
2481 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2482 verbose(env, "BPF_MOV uses reserved fields\n");
17a52670
AS
2483 return -EINVAL;
2484 }
2485 }
2486
2487 /* check dest operand */
dc503a8a 2488 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
2489 if (err)
2490 return err;
2491
2492 if (BPF_SRC(insn->code) == BPF_X) {
2493 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2494 /* case: R1 = R2
2495 * copy register state to dest reg
2496 */
2497 regs[insn->dst_reg] = regs[insn->src_reg];
8fe2d6cc 2498 regs[insn->dst_reg].live |= REG_LIVE_WRITTEN;
17a52670 2499 } else {
f1174f77 2500 /* R1 = (u32) R2 */
1be7f75d 2501 if (is_pointer_value(env, insn->src_reg)) {
61bd5218
JK
2502 verbose(env,
2503 "R%d partial copy of pointer\n",
1be7f75d
AS
2504 insn->src_reg);
2505 return -EACCES;
2506 }
61bd5218 2507 mark_reg_unknown(env, regs, insn->dst_reg);
0c17d1d2 2508 coerce_reg_to_size(&regs[insn->dst_reg], 4);
17a52670
AS
2509 }
2510 } else {
2511 /* case: R = imm
2512 * remember the value we stored into this reg
2513 */
f1174f77 2514 regs[insn->dst_reg].type = SCALAR_VALUE;
95a762e2
JH
2515 if (BPF_CLASS(insn->code) == BPF_ALU64) {
2516 __mark_reg_known(regs + insn->dst_reg,
2517 insn->imm);
2518 } else {
2519 __mark_reg_known(regs + insn->dst_reg,
2520 (u32)insn->imm);
2521 }
17a52670
AS
2522 }
2523
2524 } else if (opcode > BPF_END) {
61bd5218 2525 verbose(env, "invalid BPF_ALU opcode %x\n", opcode);
17a52670
AS
2526 return -EINVAL;
2527
2528 } else { /* all other ALU ops: and, sub, xor, add, ... */
2529
17a52670
AS
2530 if (BPF_SRC(insn->code) == BPF_X) {
2531 if (insn->imm != 0 || insn->off != 0) {
61bd5218 2532 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2533 return -EINVAL;
2534 }
2535 /* check src1 operand */
dc503a8a 2536 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
2537 if (err)
2538 return err;
2539 } else {
2540 if (insn->src_reg != BPF_REG_0 || insn->off != 0) {
61bd5218 2541 verbose(env, "BPF_ALU uses reserved fields\n");
17a52670
AS
2542 return -EINVAL;
2543 }
2544 }
2545
2546 /* check src2 operand */
dc503a8a 2547 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
2548 if (err)
2549 return err;
2550
2551 if ((opcode == BPF_MOD || opcode == BPF_DIV) &&
2552 BPF_SRC(insn->code) == BPF_K && insn->imm == 0) {
61bd5218 2553 verbose(env, "div by zero\n");
17a52670
AS
2554 return -EINVAL;
2555 }
2556
7891a87e
DB
2557 if (opcode == BPF_ARSH && BPF_CLASS(insn->code) != BPF_ALU64) {
2558 verbose(env, "BPF_ARSH not supported for 32 bit ALU\n");
2559 return -EINVAL;
2560 }
2561
229394e8
RV
2562 if ((opcode == BPF_LSH || opcode == BPF_RSH ||
2563 opcode == BPF_ARSH) && BPF_SRC(insn->code) == BPF_K) {
2564 int size = BPF_CLASS(insn->code) == BPF_ALU64 ? 64 : 32;
2565
2566 if (insn->imm < 0 || insn->imm >= size) {
61bd5218 2567 verbose(env, "invalid shift %d\n", insn->imm);
229394e8
RV
2568 return -EINVAL;
2569 }
2570 }
2571
1a0dc1ac 2572 /* check dest operand */
dc503a8a 2573 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
1a0dc1ac
AS
2574 if (err)
2575 return err;
2576
f1174f77 2577 return adjust_reg_min_max_vals(env, insn);
17a52670
AS
2578 }
2579
2580 return 0;
2581}
2582
58e2af8b 2583static void find_good_pkt_pointers(struct bpf_verifier_state *state,
de8f3a83 2584 struct bpf_reg_state *dst_reg,
f8ddadc4 2585 enum bpf_reg_type type,
fb2a311a 2586 bool range_right_open)
969bf05e 2587{
58e2af8b 2588 struct bpf_reg_state *regs = state->regs, *reg;
fb2a311a 2589 u16 new_range;
969bf05e 2590 int i;
2d2be8ca 2591
fb2a311a
DB
2592 if (dst_reg->off < 0 ||
2593 (dst_reg->off == 0 && range_right_open))
f1174f77
EC
2594 /* This doesn't give us any range */
2595 return;
2596
b03c9f9f
EC
2597 if (dst_reg->umax_value > MAX_PACKET_OFF ||
2598 dst_reg->umax_value + dst_reg->off > MAX_PACKET_OFF)
f1174f77
EC
2599 /* Risk of overflow. For instance, ptr + (1<<63) may be less
2600 * than pkt_end, but that's because it's also less than pkt.
2601 */
2602 return;
2603
fb2a311a
DB
2604 new_range = dst_reg->off;
2605 if (range_right_open)
2606 new_range--;
2607
2608 /* Examples for register markings:
2d2be8ca 2609 *
fb2a311a 2610 * pkt_data in dst register:
2d2be8ca
DB
2611 *
2612 * r2 = r3;
2613 * r2 += 8;
2614 * if (r2 > pkt_end) goto <handle exception>
2615 * <access okay>
2616 *
b4e432f1
DB
2617 * r2 = r3;
2618 * r2 += 8;
2619 * if (r2 < pkt_end) goto <access okay>
2620 * <handle exception>
2621 *
2d2be8ca
DB
2622 * Where:
2623 * r2 == dst_reg, pkt_end == src_reg
2624 * r2=pkt(id=n,off=8,r=0)
2625 * r3=pkt(id=n,off=0,r=0)
2626 *
fb2a311a 2627 * pkt_data in src register:
2d2be8ca
DB
2628 *
2629 * r2 = r3;
2630 * r2 += 8;
2631 * if (pkt_end >= r2) goto <access okay>
2632 * <handle exception>
2633 *
b4e432f1
DB
2634 * r2 = r3;
2635 * r2 += 8;
2636 * if (pkt_end <= r2) goto <handle exception>
2637 * <access okay>
2638 *
2d2be8ca
DB
2639 * Where:
2640 * pkt_end == dst_reg, r2 == src_reg
2641 * r2=pkt(id=n,off=8,r=0)
2642 * r3=pkt(id=n,off=0,r=0)
2643 *
2644 * Find register r3 and mark its range as r3=pkt(id=n,off=0,r=8)
fb2a311a
DB
2645 * or r3=pkt(id=n,off=0,r=8-1), so that range of bytes [r3, r3 + 8)
2646 * and [r3, r3 + 8-1) respectively is safe to access depending on
2647 * the check.
969bf05e 2648 */
2d2be8ca 2649
f1174f77
EC
2650 /* If our ids match, then we must have the same max_value. And we
2651 * don't care about the other reg's fixed offset, since if it's too big
2652 * the range won't allow anything.
2653 * dst_reg->off is known < MAX_PACKET_OFF, therefore it fits in a u16.
2654 */
969bf05e 2655 for (i = 0; i < MAX_BPF_REG; i++)
de8f3a83 2656 if (regs[i].type == type && regs[i].id == dst_reg->id)
b1977682 2657 /* keep the maximum range already checked */
fb2a311a 2658 regs[i].range = max(regs[i].range, new_range);
969bf05e 2659
638f5b90
AS
2660 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2661 if (state->stack[i].slot_type[0] != STACK_SPILL)
969bf05e 2662 continue;
638f5b90 2663 reg = &state->stack[i].spilled_ptr;
de8f3a83 2664 if (reg->type == type && reg->id == dst_reg->id)
b06723da 2665 reg->range = max(reg->range, new_range);
969bf05e
AS
2666 }
2667}
2668
48461135
JB
2669/* Adjusts the register min/max values in the case that the dst_reg is the
2670 * variable register that we are working on, and src_reg is a constant or we're
2671 * simply doing a BPF_K check.
f1174f77 2672 * In JEQ/JNE cases we also adjust the var_off values.
48461135
JB
2673 */
2674static void reg_set_min_max(struct bpf_reg_state *true_reg,
2675 struct bpf_reg_state *false_reg, u64 val,
2676 u8 opcode)
2677{
f1174f77
EC
2678 /* If the dst_reg is a pointer, we can't learn anything about its
2679 * variable offset from the compare (unless src_reg were a pointer into
2680 * the same object, but we don't bother with that.
2681 * Since false_reg and true_reg have the same type by construction, we
2682 * only need to check one of them for pointerness.
2683 */
2684 if (__is_pointer_value(false, false_reg))
2685 return;
4cabc5b1 2686
48461135
JB
2687 switch (opcode) {
2688 case BPF_JEQ:
2689 /* If this is false then we know nothing Jon Snow, but if it is
2690 * true then we know for sure.
2691 */
b03c9f9f 2692 __mark_reg_known(true_reg, val);
48461135
JB
2693 break;
2694 case BPF_JNE:
2695 /* If this is true we know nothing Jon Snow, but if it is false
2696 * we know the value for sure;
2697 */
b03c9f9f 2698 __mark_reg_known(false_reg, val);
48461135
JB
2699 break;
2700 case BPF_JGT:
b03c9f9f
EC
2701 false_reg->umax_value = min(false_reg->umax_value, val);
2702 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2703 break;
48461135 2704 case BPF_JSGT:
b03c9f9f
EC
2705 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2706 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
48461135 2707 break;
b4e432f1
DB
2708 case BPF_JLT:
2709 false_reg->umin_value = max(false_reg->umin_value, val);
2710 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2711 break;
2712 case BPF_JSLT:
2713 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
2714 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2715 break;
48461135 2716 case BPF_JGE:
b03c9f9f
EC
2717 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2718 true_reg->umin_value = max(true_reg->umin_value, val);
2719 break;
48461135 2720 case BPF_JSGE:
b03c9f9f
EC
2721 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2722 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
48461135 2723 break;
b4e432f1
DB
2724 case BPF_JLE:
2725 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2726 true_reg->umax_value = min(true_reg->umax_value, val);
2727 break;
2728 case BPF_JSLE:
2729 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
2730 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2731 break;
48461135
JB
2732 default:
2733 break;
2734 }
2735
b03c9f9f
EC
2736 __reg_deduce_bounds(false_reg);
2737 __reg_deduce_bounds(true_reg);
2738 /* We might have learned some bits from the bounds. */
2739 __reg_bound_offset(false_reg);
2740 __reg_bound_offset(true_reg);
2741 /* Intersecting with the old var_off might have improved our bounds
2742 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2743 * then new var_off is (0; 0x7f...fc) which improves our umax.
2744 */
2745 __update_reg_bounds(false_reg);
2746 __update_reg_bounds(true_reg);
48461135
JB
2747}
2748
f1174f77
EC
2749/* Same as above, but for the case that dst_reg holds a constant and src_reg is
2750 * the variable reg.
48461135
JB
2751 */
2752static void reg_set_min_max_inv(struct bpf_reg_state *true_reg,
2753 struct bpf_reg_state *false_reg, u64 val,
2754 u8 opcode)
2755{
f1174f77
EC
2756 if (__is_pointer_value(false, false_reg))
2757 return;
4cabc5b1 2758
48461135
JB
2759 switch (opcode) {
2760 case BPF_JEQ:
2761 /* If this is false then we know nothing Jon Snow, but if it is
2762 * true then we know for sure.
2763 */
b03c9f9f 2764 __mark_reg_known(true_reg, val);
48461135
JB
2765 break;
2766 case BPF_JNE:
2767 /* If this is true we know nothing Jon Snow, but if it is false
2768 * we know the value for sure;
2769 */
b03c9f9f 2770 __mark_reg_known(false_reg, val);
48461135
JB
2771 break;
2772 case BPF_JGT:
b03c9f9f
EC
2773 true_reg->umax_value = min(true_reg->umax_value, val - 1);
2774 false_reg->umin_value = max(false_reg->umin_value, val);
2775 break;
48461135 2776 case BPF_JSGT:
b03c9f9f
EC
2777 true_reg->smax_value = min_t(s64, true_reg->smax_value, val - 1);
2778 false_reg->smin_value = max_t(s64, false_reg->smin_value, val);
48461135 2779 break;
b4e432f1
DB
2780 case BPF_JLT:
2781 true_reg->umin_value = max(true_reg->umin_value, val + 1);
2782 false_reg->umax_value = min(false_reg->umax_value, val);
2783 break;
2784 case BPF_JSLT:
2785 true_reg->smin_value = max_t(s64, true_reg->smin_value, val + 1);
2786 false_reg->smax_value = min_t(s64, false_reg->smax_value, val);
2787 break;
48461135 2788 case BPF_JGE:
b03c9f9f
EC
2789 true_reg->umax_value = min(true_reg->umax_value, val);
2790 false_reg->umin_value = max(false_reg->umin_value, val + 1);
2791 break;
48461135 2792 case BPF_JSGE:
b03c9f9f
EC
2793 true_reg->smax_value = min_t(s64, true_reg->smax_value, val);
2794 false_reg->smin_value = max_t(s64, false_reg->smin_value, val + 1);
48461135 2795 break;
b4e432f1
DB
2796 case BPF_JLE:
2797 true_reg->umin_value = max(true_reg->umin_value, val);
2798 false_reg->umax_value = min(false_reg->umax_value, val - 1);
2799 break;
2800 case BPF_JSLE:
2801 true_reg->smin_value = max_t(s64, true_reg->smin_value, val);
2802 false_reg->smax_value = min_t(s64, false_reg->smax_value, val - 1);
2803 break;
48461135
JB
2804 default:
2805 break;
2806 }
2807
b03c9f9f
EC
2808 __reg_deduce_bounds(false_reg);
2809 __reg_deduce_bounds(true_reg);
2810 /* We might have learned some bits from the bounds. */
2811 __reg_bound_offset(false_reg);
2812 __reg_bound_offset(true_reg);
2813 /* Intersecting with the old var_off might have improved our bounds
2814 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2815 * then new var_off is (0; 0x7f...fc) which improves our umax.
2816 */
2817 __update_reg_bounds(false_reg);
2818 __update_reg_bounds(true_reg);
f1174f77
EC
2819}
2820
2821/* Regs are known to be equal, so intersect their min/max/var_off */
2822static void __reg_combine_min_max(struct bpf_reg_state *src_reg,
2823 struct bpf_reg_state *dst_reg)
2824{
b03c9f9f
EC
2825 src_reg->umin_value = dst_reg->umin_value = max(src_reg->umin_value,
2826 dst_reg->umin_value);
2827 src_reg->umax_value = dst_reg->umax_value = min(src_reg->umax_value,
2828 dst_reg->umax_value);
2829 src_reg->smin_value = dst_reg->smin_value = max(src_reg->smin_value,
2830 dst_reg->smin_value);
2831 src_reg->smax_value = dst_reg->smax_value = min(src_reg->smax_value,
2832 dst_reg->smax_value);
f1174f77
EC
2833 src_reg->var_off = dst_reg->var_off = tnum_intersect(src_reg->var_off,
2834 dst_reg->var_off);
b03c9f9f
EC
2835 /* We might have learned new bounds from the var_off. */
2836 __update_reg_bounds(src_reg);
2837 __update_reg_bounds(dst_reg);
2838 /* We might have learned something about the sign bit. */
2839 __reg_deduce_bounds(src_reg);
2840 __reg_deduce_bounds(dst_reg);
2841 /* We might have learned some bits from the bounds. */
2842 __reg_bound_offset(src_reg);
2843 __reg_bound_offset(dst_reg);
2844 /* Intersecting with the old var_off might have improved our bounds
2845 * slightly. e.g. if umax was 0x7f...f and var_off was (0; 0xf...fc),
2846 * then new var_off is (0; 0x7f...fc) which improves our umax.
2847 */
2848 __update_reg_bounds(src_reg);
2849 __update_reg_bounds(dst_reg);
f1174f77
EC
2850}
2851
2852static void reg_combine_min_max(struct bpf_reg_state *true_src,
2853 struct bpf_reg_state *true_dst,
2854 struct bpf_reg_state *false_src,
2855 struct bpf_reg_state *false_dst,
2856 u8 opcode)
2857{
2858 switch (opcode) {
2859 case BPF_JEQ:
2860 __reg_combine_min_max(true_src, true_dst);
2861 break;
2862 case BPF_JNE:
2863 __reg_combine_min_max(false_src, false_dst);
b03c9f9f 2864 break;
4cabc5b1 2865 }
48461135
JB
2866}
2867
57a09bf0 2868static void mark_map_reg(struct bpf_reg_state *regs, u32 regno, u32 id,
f1174f77 2869 bool is_null)
57a09bf0
TG
2870{
2871 struct bpf_reg_state *reg = &regs[regno];
2872
2873 if (reg->type == PTR_TO_MAP_VALUE_OR_NULL && reg->id == id) {
f1174f77
EC
2874 /* Old offset (both fixed and variable parts) should
2875 * have been known-zero, because we don't allow pointer
2876 * arithmetic on pointers that might be NULL.
2877 */
b03c9f9f
EC
2878 if (WARN_ON_ONCE(reg->smin_value || reg->smax_value ||
2879 !tnum_equals_const(reg->var_off, 0) ||
f1174f77 2880 reg->off)) {
b03c9f9f
EC
2881 __mark_reg_known_zero(reg);
2882 reg->off = 0;
f1174f77
EC
2883 }
2884 if (is_null) {
2885 reg->type = SCALAR_VALUE;
56f668df
MKL
2886 } else if (reg->map_ptr->inner_map_meta) {
2887 reg->type = CONST_PTR_TO_MAP;
2888 reg->map_ptr = reg->map_ptr->inner_map_meta;
2889 } else {
f1174f77 2890 reg->type = PTR_TO_MAP_VALUE;
56f668df 2891 }
a08dd0da
DB
2892 /* We don't need id from this point onwards anymore, thus we
2893 * should better reset it, so that state pruning has chances
2894 * to take effect.
2895 */
2896 reg->id = 0;
57a09bf0
TG
2897 }
2898}
2899
2900/* The logic is similar to find_good_pkt_pointers(), both could eventually
2901 * be folded together at some point.
2902 */
2903static void mark_map_regs(struct bpf_verifier_state *state, u32 regno,
f1174f77 2904 bool is_null)
57a09bf0
TG
2905{
2906 struct bpf_reg_state *regs = state->regs;
a08dd0da 2907 u32 id = regs[regno].id;
57a09bf0
TG
2908 int i;
2909
2910 for (i = 0; i < MAX_BPF_REG; i++)
f1174f77 2911 mark_map_reg(regs, i, id, is_null);
57a09bf0 2912
638f5b90
AS
2913 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE; i++) {
2914 if (state->stack[i].slot_type[0] != STACK_SPILL)
57a09bf0 2915 continue;
638f5b90 2916 mark_map_reg(&state->stack[i].spilled_ptr, 0, id, is_null);
57a09bf0
TG
2917 }
2918}
2919
5beca081
DB
2920static bool try_match_pkt_pointers(const struct bpf_insn *insn,
2921 struct bpf_reg_state *dst_reg,
2922 struct bpf_reg_state *src_reg,
2923 struct bpf_verifier_state *this_branch,
2924 struct bpf_verifier_state *other_branch)
2925{
2926 if (BPF_SRC(insn->code) != BPF_X)
2927 return false;
2928
2929 switch (BPF_OP(insn->code)) {
2930 case BPF_JGT:
2931 if ((dst_reg->type == PTR_TO_PACKET &&
2932 src_reg->type == PTR_TO_PACKET_END) ||
2933 (dst_reg->type == PTR_TO_PACKET_META &&
2934 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2935 /* pkt_data' > pkt_end, pkt_meta' > pkt_data */
2936 find_good_pkt_pointers(this_branch, dst_reg,
2937 dst_reg->type, false);
2938 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2939 src_reg->type == PTR_TO_PACKET) ||
2940 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2941 src_reg->type == PTR_TO_PACKET_META)) {
2942 /* pkt_end > pkt_data', pkt_data > pkt_meta' */
2943 find_good_pkt_pointers(other_branch, src_reg,
2944 src_reg->type, true);
2945 } else {
2946 return false;
2947 }
2948 break;
2949 case BPF_JLT:
2950 if ((dst_reg->type == PTR_TO_PACKET &&
2951 src_reg->type == PTR_TO_PACKET_END) ||
2952 (dst_reg->type == PTR_TO_PACKET_META &&
2953 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2954 /* pkt_data' < pkt_end, pkt_meta' < pkt_data */
2955 find_good_pkt_pointers(other_branch, dst_reg,
2956 dst_reg->type, true);
2957 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2958 src_reg->type == PTR_TO_PACKET) ||
2959 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2960 src_reg->type == PTR_TO_PACKET_META)) {
2961 /* pkt_end < pkt_data', pkt_data > pkt_meta' */
2962 find_good_pkt_pointers(this_branch, src_reg,
2963 src_reg->type, false);
2964 } else {
2965 return false;
2966 }
2967 break;
2968 case BPF_JGE:
2969 if ((dst_reg->type == PTR_TO_PACKET &&
2970 src_reg->type == PTR_TO_PACKET_END) ||
2971 (dst_reg->type == PTR_TO_PACKET_META &&
2972 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2973 /* pkt_data' >= pkt_end, pkt_meta' >= pkt_data */
2974 find_good_pkt_pointers(this_branch, dst_reg,
2975 dst_reg->type, true);
2976 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2977 src_reg->type == PTR_TO_PACKET) ||
2978 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2979 src_reg->type == PTR_TO_PACKET_META)) {
2980 /* pkt_end >= pkt_data', pkt_data >= pkt_meta' */
2981 find_good_pkt_pointers(other_branch, src_reg,
2982 src_reg->type, false);
2983 } else {
2984 return false;
2985 }
2986 break;
2987 case BPF_JLE:
2988 if ((dst_reg->type == PTR_TO_PACKET &&
2989 src_reg->type == PTR_TO_PACKET_END) ||
2990 (dst_reg->type == PTR_TO_PACKET_META &&
2991 reg_is_init_pkt_pointer(src_reg, PTR_TO_PACKET))) {
2992 /* pkt_data' <= pkt_end, pkt_meta' <= pkt_data */
2993 find_good_pkt_pointers(other_branch, dst_reg,
2994 dst_reg->type, false);
2995 } else if ((dst_reg->type == PTR_TO_PACKET_END &&
2996 src_reg->type == PTR_TO_PACKET) ||
2997 (reg_is_init_pkt_pointer(dst_reg, PTR_TO_PACKET) &&
2998 src_reg->type == PTR_TO_PACKET_META)) {
2999 /* pkt_end <= pkt_data', pkt_data <= pkt_meta' */
3000 find_good_pkt_pointers(this_branch, src_reg,
3001 src_reg->type, true);
3002 } else {
3003 return false;
3004 }
3005 break;
3006 default:
3007 return false;
3008 }
3009
3010 return true;
3011}
3012
58e2af8b 3013static int check_cond_jmp_op(struct bpf_verifier_env *env,
17a52670
AS
3014 struct bpf_insn *insn, int *insn_idx)
3015{
638f5b90 3016 struct bpf_verifier_state *other_branch, *this_branch = env->cur_state;
58e2af8b 3017 struct bpf_reg_state *regs = this_branch->regs, *dst_reg;
17a52670
AS
3018 u8 opcode = BPF_OP(insn->code);
3019 int err;
3020
b4e432f1 3021 if (opcode > BPF_JSLE) {
61bd5218 3022 verbose(env, "invalid BPF_JMP opcode %x\n", opcode);
17a52670
AS
3023 return -EINVAL;
3024 }
3025
3026 if (BPF_SRC(insn->code) == BPF_X) {
3027 if (insn->imm != 0) {
61bd5218 3028 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3029 return -EINVAL;
3030 }
3031
3032 /* check src1 operand */
dc503a8a 3033 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3034 if (err)
3035 return err;
1be7f75d
AS
3036
3037 if (is_pointer_value(env, insn->src_reg)) {
61bd5218 3038 verbose(env, "R%d pointer comparison prohibited\n",
1be7f75d
AS
3039 insn->src_reg);
3040 return -EACCES;
3041 }
17a52670
AS
3042 } else {
3043 if (insn->src_reg != BPF_REG_0) {
61bd5218 3044 verbose(env, "BPF_JMP uses reserved fields\n");
17a52670
AS
3045 return -EINVAL;
3046 }
3047 }
3048
3049 /* check src2 operand */
dc503a8a 3050 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
3051 if (err)
3052 return err;
3053
1a0dc1ac
AS
3054 dst_reg = &regs[insn->dst_reg];
3055
17a52670
AS
3056 /* detect if R == 0 where R was initialized to zero earlier */
3057 if (BPF_SRC(insn->code) == BPF_K &&
3058 (opcode == BPF_JEQ || opcode == BPF_JNE) &&
f1174f77
EC
3059 dst_reg->type == SCALAR_VALUE &&
3060 tnum_equals_const(dst_reg->var_off, insn->imm)) {
17a52670
AS
3061 if (opcode == BPF_JEQ) {
3062 /* if (imm == imm) goto pc+off;
3063 * only follow the goto, ignore fall-through
3064 */
3065 *insn_idx += insn->off;
3066 return 0;
3067 } else {
3068 /* if (imm != imm) goto pc+off;
3069 * only follow fall-through branch, since
3070 * that's where the program will go
3071 */
3072 return 0;
3073 }
3074 }
3075
3076 other_branch = push_stack(env, *insn_idx + insn->off + 1, *insn_idx);
3077 if (!other_branch)
3078 return -EFAULT;
3079
48461135
JB
3080 /* detect if we are comparing against a constant value so we can adjust
3081 * our min/max values for our dst register.
f1174f77
EC
3082 * this is only legit if both are scalars (or pointers to the same
3083 * object, I suppose, but we don't support that right now), because
3084 * otherwise the different base pointers mean the offsets aren't
3085 * comparable.
48461135
JB
3086 */
3087 if (BPF_SRC(insn->code) == BPF_X) {
f1174f77
EC
3088 if (dst_reg->type == SCALAR_VALUE &&
3089 regs[insn->src_reg].type == SCALAR_VALUE) {
3090 if (tnum_is_const(regs[insn->src_reg].var_off))
3091 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3092 dst_reg, regs[insn->src_reg].var_off.value,
3093 opcode);
3094 else if (tnum_is_const(dst_reg->var_off))
3095 reg_set_min_max_inv(&other_branch->regs[insn->src_reg],
3096 &regs[insn->src_reg],
3097 dst_reg->var_off.value, opcode);
3098 else if (opcode == BPF_JEQ || opcode == BPF_JNE)
3099 /* Comparing for equality, we can combine knowledge */
3100 reg_combine_min_max(&other_branch->regs[insn->src_reg],
3101 &other_branch->regs[insn->dst_reg],
3102 &regs[insn->src_reg],
3103 &regs[insn->dst_reg], opcode);
3104 }
3105 } else if (dst_reg->type == SCALAR_VALUE) {
48461135
JB
3106 reg_set_min_max(&other_branch->regs[insn->dst_reg],
3107 dst_reg, insn->imm, opcode);
3108 }
3109
58e2af8b 3110 /* detect if R == 0 where R is returned from bpf_map_lookup_elem() */
17a52670 3111 if (BPF_SRC(insn->code) == BPF_K &&
1a0dc1ac
AS
3112 insn->imm == 0 && (opcode == BPF_JEQ || opcode == BPF_JNE) &&
3113 dst_reg->type == PTR_TO_MAP_VALUE_OR_NULL) {
57a09bf0
TG
3114 /* Mark all identical map registers in each branch as either
3115 * safe or unknown depending R == 0 or R != 0 conditional.
3116 */
f1174f77
EC
3117 mark_map_regs(this_branch, insn->dst_reg, opcode == BPF_JNE);
3118 mark_map_regs(other_branch, insn->dst_reg, opcode == BPF_JEQ);
5beca081
DB
3119 } else if (!try_match_pkt_pointers(insn, dst_reg, &regs[insn->src_reg],
3120 this_branch, other_branch) &&
3121 is_pointer_value(env, insn->dst_reg)) {
61bd5218
JK
3122 verbose(env, "R%d pointer comparison prohibited\n",
3123 insn->dst_reg);
1be7f75d 3124 return -EACCES;
17a52670 3125 }
61bd5218
JK
3126 if (env->log.level)
3127 print_verifier_state(env, this_branch);
17a52670
AS
3128 return 0;
3129}
3130
0246e64d
AS
3131/* return the map pointer stored inside BPF_LD_IMM64 instruction */
3132static struct bpf_map *ld_imm64_to_map_ptr(struct bpf_insn *insn)
3133{
3134 u64 imm64 = ((u64) (u32) insn[0].imm) | ((u64) (u32) insn[1].imm) << 32;
3135
3136 return (struct bpf_map *) (unsigned long) imm64;
3137}
3138
17a52670 3139/* verify BPF_LD_IMM64 instruction */
58e2af8b 3140static int check_ld_imm(struct bpf_verifier_env *env, struct bpf_insn *insn)
17a52670 3141{
638f5b90 3142 struct bpf_reg_state *regs = cur_regs(env);
17a52670
AS
3143 int err;
3144
3145 if (BPF_SIZE(insn->code) != BPF_DW) {
61bd5218 3146 verbose(env, "invalid BPF_LD_IMM insn\n");
17a52670
AS
3147 return -EINVAL;
3148 }
3149 if (insn->off != 0) {
61bd5218 3150 verbose(env, "BPF_LD_IMM64 uses reserved fields\n");
17a52670
AS
3151 return -EINVAL;
3152 }
3153
dc503a8a 3154 err = check_reg_arg(env, insn->dst_reg, DST_OP);
17a52670
AS
3155 if (err)
3156 return err;
3157
6b173873 3158 if (insn->src_reg == 0) {
6b173873
JK
3159 u64 imm = ((u64)(insn + 1)->imm << 32) | (u32)insn->imm;
3160
f1174f77 3161 regs[insn->dst_reg].type = SCALAR_VALUE;
b03c9f9f 3162 __mark_reg_known(&regs[insn->dst_reg], imm);
17a52670 3163 return 0;
6b173873 3164 }
17a52670
AS
3165
3166 /* replace_map_fd_with_map_ptr() should have caught bad ld_imm64 */
3167 BUG_ON(insn->src_reg != BPF_PSEUDO_MAP_FD);
3168
3169 regs[insn->dst_reg].type = CONST_PTR_TO_MAP;
3170 regs[insn->dst_reg].map_ptr = ld_imm64_to_map_ptr(insn);
3171 return 0;
3172}
3173
96be4325
DB
3174static bool may_access_skb(enum bpf_prog_type type)
3175{
3176 switch (type) {
3177 case BPF_PROG_TYPE_SOCKET_FILTER:
3178 case BPF_PROG_TYPE_SCHED_CLS:
94caee8c 3179 case BPF_PROG_TYPE_SCHED_ACT:
96be4325
DB
3180 return true;
3181 default:
3182 return false;
3183 }
3184}
3185
ddd872bc
AS
3186/* verify safety of LD_ABS|LD_IND instructions:
3187 * - they can only appear in the programs where ctx == skb
3188 * - since they are wrappers of function calls, they scratch R1-R5 registers,
3189 * preserve R6-R9, and store return value into R0
3190 *
3191 * Implicit input:
3192 * ctx == skb == R6 == CTX
3193 *
3194 * Explicit input:
3195 * SRC == any register
3196 * IMM == 32-bit immediate
3197 *
3198 * Output:
3199 * R0 - 8/16/32-bit skb data converted to cpu endianness
3200 */
58e2af8b 3201static int check_ld_abs(struct bpf_verifier_env *env, struct bpf_insn *insn)
ddd872bc 3202{
638f5b90 3203 struct bpf_reg_state *regs = cur_regs(env);
ddd872bc 3204 u8 mode = BPF_MODE(insn->code);
ddd872bc
AS
3205 int i, err;
3206
24701ece 3207 if (!may_access_skb(env->prog->type)) {
61bd5218 3208 verbose(env, "BPF_LD_[ABS|IND] instructions not allowed for this program type\n");
ddd872bc
AS
3209 return -EINVAL;
3210 }
3211
3212 if (insn->dst_reg != BPF_REG_0 || insn->off != 0 ||
d82bccc6 3213 BPF_SIZE(insn->code) == BPF_DW ||
ddd872bc 3214 (mode == BPF_ABS && insn->src_reg != BPF_REG_0)) {
61bd5218 3215 verbose(env, "BPF_LD_[ABS|IND] uses reserved fields\n");
ddd872bc
AS
3216 return -EINVAL;
3217 }
3218
3219 /* check whether implicit source operand (register R6) is readable */
dc503a8a 3220 err = check_reg_arg(env, BPF_REG_6, SRC_OP);
ddd872bc
AS
3221 if (err)
3222 return err;
3223
3224 if (regs[BPF_REG_6].type != PTR_TO_CTX) {
61bd5218
JK
3225 verbose(env,
3226 "at the time of BPF_LD_ABS|IND R6 != pointer to skb\n");
ddd872bc
AS
3227 return -EINVAL;
3228 }
3229
3230 if (mode == BPF_IND) {
3231 /* check explicit source operand */
dc503a8a 3232 err = check_reg_arg(env, insn->src_reg, SRC_OP);
ddd872bc
AS
3233 if (err)
3234 return err;
3235 }
3236
3237 /* reset caller saved regs to unreadable */
dc503a8a 3238 for (i = 0; i < CALLER_SAVED_REGS; i++) {
61bd5218 3239 mark_reg_not_init(env, regs, caller_saved[i]);
dc503a8a
EC
3240 check_reg_arg(env, caller_saved[i], DST_OP_NO_MARK);
3241 }
ddd872bc
AS
3242
3243 /* mark destination R0 register as readable, since it contains
dc503a8a
EC
3244 * the value fetched from the packet.
3245 * Already marked as written above.
ddd872bc 3246 */
61bd5218 3247 mark_reg_unknown(env, regs, BPF_REG_0);
ddd872bc
AS
3248 return 0;
3249}
3250
390ee7e2
AS
3251static int check_return_code(struct bpf_verifier_env *env)
3252{
3253 struct bpf_reg_state *reg;
3254 struct tnum range = tnum_range(0, 1);
3255
3256 switch (env->prog->type) {
3257 case BPF_PROG_TYPE_CGROUP_SKB:
3258 case BPF_PROG_TYPE_CGROUP_SOCK:
3259 case BPF_PROG_TYPE_SOCK_OPS:
ebc614f6 3260 case BPF_PROG_TYPE_CGROUP_DEVICE:
390ee7e2
AS
3261 break;
3262 default:
3263 return 0;
3264 }
3265
638f5b90 3266 reg = cur_regs(env) + BPF_REG_0;
390ee7e2 3267 if (reg->type != SCALAR_VALUE) {
61bd5218 3268 verbose(env, "At program exit the register R0 is not a known value (%s)\n",
390ee7e2
AS
3269 reg_type_str[reg->type]);
3270 return -EINVAL;
3271 }
3272
3273 if (!tnum_in(range, reg->var_off)) {
61bd5218 3274 verbose(env, "At program exit the register R0 ");
390ee7e2
AS
3275 if (!tnum_is_unknown(reg->var_off)) {
3276 char tn_buf[48];
3277
3278 tnum_strn(tn_buf, sizeof(tn_buf), reg->var_off);
61bd5218 3279 verbose(env, "has value %s", tn_buf);
390ee7e2 3280 } else {
61bd5218 3281 verbose(env, "has unknown scalar value");
390ee7e2 3282 }
61bd5218 3283 verbose(env, " should have been 0 or 1\n");
390ee7e2
AS
3284 return -EINVAL;
3285 }
3286 return 0;
3287}
3288
475fb78f
AS
3289/* non-recursive DFS pseudo code
3290 * 1 procedure DFS-iterative(G,v):
3291 * 2 label v as discovered
3292 * 3 let S be a stack
3293 * 4 S.push(v)
3294 * 5 while S is not empty
3295 * 6 t <- S.pop()
3296 * 7 if t is what we're looking for:
3297 * 8 return t
3298 * 9 for all edges e in G.adjacentEdges(t) do
3299 * 10 if edge e is already labelled
3300 * 11 continue with the next edge
3301 * 12 w <- G.adjacentVertex(t,e)
3302 * 13 if vertex w is not discovered and not explored
3303 * 14 label e as tree-edge
3304 * 15 label w as discovered
3305 * 16 S.push(w)
3306 * 17 continue at 5
3307 * 18 else if vertex w is discovered
3308 * 19 label e as back-edge
3309 * 20 else
3310 * 21 // vertex w is explored
3311 * 22 label e as forward- or cross-edge
3312 * 23 label t as explored
3313 * 24 S.pop()
3314 *
3315 * convention:
3316 * 0x10 - discovered
3317 * 0x11 - discovered and fall-through edge labelled
3318 * 0x12 - discovered and fall-through and branch edges labelled
3319 * 0x20 - explored
3320 */
3321
3322enum {
3323 DISCOVERED = 0x10,
3324 EXPLORED = 0x20,
3325 FALLTHROUGH = 1,
3326 BRANCH = 2,
3327};
3328
58e2af8b 3329#define STATE_LIST_MARK ((struct bpf_verifier_state_list *) -1L)
f1bca824 3330
475fb78f
AS
3331static int *insn_stack; /* stack of insns to process */
3332static int cur_stack; /* current stack index */
3333static int *insn_state;
3334
3335/* t, w, e - match pseudo-code above:
3336 * t - index of current instruction
3337 * w - next instruction
3338 * e - edge
3339 */
58e2af8b 3340static int push_insn(int t, int w, int e, struct bpf_verifier_env *env)
475fb78f
AS
3341{
3342 if (e == FALLTHROUGH && insn_state[t] >= (DISCOVERED | FALLTHROUGH))
3343 return 0;
3344
3345 if (e == BRANCH && insn_state[t] >= (DISCOVERED | BRANCH))
3346 return 0;
3347
3348 if (w < 0 || w >= env->prog->len) {
61bd5218 3349 verbose(env, "jump out of range from insn %d to %d\n", t, w);
475fb78f
AS
3350 return -EINVAL;
3351 }
3352
f1bca824
AS
3353 if (e == BRANCH)
3354 /* mark branch target for state pruning */
3355 env->explored_states[w] = STATE_LIST_MARK;
3356
475fb78f
AS
3357 if (insn_state[w] == 0) {
3358 /* tree-edge */
3359 insn_state[t] = DISCOVERED | e;
3360 insn_state[w] = DISCOVERED;
3361 if (cur_stack >= env->prog->len)
3362 return -E2BIG;
3363 insn_stack[cur_stack++] = w;
3364 return 1;
3365 } else if ((insn_state[w] & 0xF0) == DISCOVERED) {
61bd5218 3366 verbose(env, "back-edge from insn %d to %d\n", t, w);
475fb78f
AS
3367 return -EINVAL;
3368 } else if (insn_state[w] == EXPLORED) {
3369 /* forward- or cross-edge */
3370 insn_state[t] = DISCOVERED | e;
3371 } else {
61bd5218 3372 verbose(env, "insn state internal bug\n");
475fb78f
AS
3373 return -EFAULT;
3374 }
3375 return 0;
3376}
3377
3378/* non-recursive depth-first-search to detect loops in BPF program
3379 * loop == back-edge in directed graph
3380 */
58e2af8b 3381static int check_cfg(struct bpf_verifier_env *env)
475fb78f
AS
3382{
3383 struct bpf_insn *insns = env->prog->insnsi;
3384 int insn_cnt = env->prog->len;
3385 int ret = 0;
3386 int i, t;
3387
3388 insn_state = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3389 if (!insn_state)
3390 return -ENOMEM;
3391
3392 insn_stack = kcalloc(insn_cnt, sizeof(int), GFP_KERNEL);
3393 if (!insn_stack) {
3394 kfree(insn_state);
3395 return -ENOMEM;
3396 }
3397
3398 insn_state[0] = DISCOVERED; /* mark 1st insn as discovered */
3399 insn_stack[0] = 0; /* 0 is the first instruction */
3400 cur_stack = 1;
3401
3402peek_stack:
3403 if (cur_stack == 0)
3404 goto check_state;
3405 t = insn_stack[cur_stack - 1];
3406
3407 if (BPF_CLASS(insns[t].code) == BPF_JMP) {
3408 u8 opcode = BPF_OP(insns[t].code);
3409
3410 if (opcode == BPF_EXIT) {
3411 goto mark_explored;
3412 } else if (opcode == BPF_CALL) {
3413 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3414 if (ret == 1)
3415 goto peek_stack;
3416 else if (ret < 0)
3417 goto err_free;
07016151
DB
3418 if (t + 1 < insn_cnt)
3419 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3420 } else if (opcode == BPF_JA) {
3421 if (BPF_SRC(insns[t].code) != BPF_K) {
3422 ret = -EINVAL;
3423 goto err_free;
3424 }
3425 /* unconditional jump with single edge */
3426 ret = push_insn(t, t + insns[t].off + 1,
3427 FALLTHROUGH, env);
3428 if (ret == 1)
3429 goto peek_stack;
3430 else if (ret < 0)
3431 goto err_free;
f1bca824
AS
3432 /* tell verifier to check for equivalent states
3433 * after every call and jump
3434 */
c3de6317
AS
3435 if (t + 1 < insn_cnt)
3436 env->explored_states[t + 1] = STATE_LIST_MARK;
475fb78f
AS
3437 } else {
3438 /* conditional jump with two edges */
3c2ce60b 3439 env->explored_states[t] = STATE_LIST_MARK;
475fb78f
AS
3440 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3441 if (ret == 1)
3442 goto peek_stack;
3443 else if (ret < 0)
3444 goto err_free;
3445
3446 ret = push_insn(t, t + insns[t].off + 1, BRANCH, env);
3447 if (ret == 1)
3448 goto peek_stack;
3449 else if (ret < 0)
3450 goto err_free;
3451 }
3452 } else {
3453 /* all other non-branch instructions with single
3454 * fall-through edge
3455 */
3456 ret = push_insn(t, t + 1, FALLTHROUGH, env);
3457 if (ret == 1)
3458 goto peek_stack;
3459 else if (ret < 0)
3460 goto err_free;
3461 }
3462
3463mark_explored:
3464 insn_state[t] = EXPLORED;
3465 if (cur_stack-- <= 0) {
61bd5218 3466 verbose(env, "pop stack internal bug\n");
475fb78f
AS
3467 ret = -EFAULT;
3468 goto err_free;
3469 }
3470 goto peek_stack;
3471
3472check_state:
3473 for (i = 0; i < insn_cnt; i++) {
3474 if (insn_state[i] != EXPLORED) {
61bd5218 3475 verbose(env, "unreachable insn %d\n", i);
475fb78f
AS
3476 ret = -EINVAL;
3477 goto err_free;
3478 }
3479 }
3480 ret = 0; /* cfg looks good */
3481
3482err_free:
3483 kfree(insn_state);
3484 kfree(insn_stack);
3485 return ret;
3486}
3487
f1174f77
EC
3488/* check %cur's range satisfies %old's */
3489static bool range_within(struct bpf_reg_state *old,
3490 struct bpf_reg_state *cur)
3491{
b03c9f9f
EC
3492 return old->umin_value <= cur->umin_value &&
3493 old->umax_value >= cur->umax_value &&
3494 old->smin_value <= cur->smin_value &&
3495 old->smax_value >= cur->smax_value;
f1174f77
EC
3496}
3497
3498/* Maximum number of register states that can exist at once */
3499#define ID_MAP_SIZE (MAX_BPF_REG + MAX_BPF_STACK / BPF_REG_SIZE)
3500struct idpair {
3501 u32 old;
3502 u32 cur;
3503};
3504
3505/* If in the old state two registers had the same id, then they need to have
3506 * the same id in the new state as well. But that id could be different from
3507 * the old state, so we need to track the mapping from old to new ids.
3508 * Once we have seen that, say, a reg with old id 5 had new id 9, any subsequent
3509 * regs with old id 5 must also have new id 9 for the new state to be safe. But
3510 * regs with a different old id could still have new id 9, we don't care about
3511 * that.
3512 * So we look through our idmap to see if this old id has been seen before. If
3513 * so, we require the new id to match; otherwise, we add the id pair to the map.
969bf05e 3514 */
f1174f77 3515static bool check_ids(u32 old_id, u32 cur_id, struct idpair *idmap)
969bf05e 3516{
f1174f77 3517 unsigned int i;
969bf05e 3518
f1174f77
EC
3519 for (i = 0; i < ID_MAP_SIZE; i++) {
3520 if (!idmap[i].old) {
3521 /* Reached an empty slot; haven't seen this id before */
3522 idmap[i].old = old_id;
3523 idmap[i].cur = cur_id;
3524 return true;
3525 }
3526 if (idmap[i].old == old_id)
3527 return idmap[i].cur == cur_id;
3528 }
3529 /* We ran out of idmap slots, which should be impossible */
3530 WARN_ON_ONCE(1);
3531 return false;
3532}
3533
3534/* Returns true if (rold safe implies rcur safe) */
1b688a19
EC
3535static bool regsafe(struct bpf_reg_state *rold, struct bpf_reg_state *rcur,
3536 struct idpair *idmap)
f1174f77 3537{
dc503a8a
EC
3538 if (!(rold->live & REG_LIVE_READ))
3539 /* explored state didn't use this */
3540 return true;
3541
3542 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, live)) == 0)
969bf05e
AS
3543 return true;
3544
f1174f77
EC
3545 if (rold->type == NOT_INIT)
3546 /* explored state can't have used this */
969bf05e 3547 return true;
f1174f77
EC
3548 if (rcur->type == NOT_INIT)
3549 return false;
3550 switch (rold->type) {
3551 case SCALAR_VALUE:
3552 if (rcur->type == SCALAR_VALUE) {
3553 /* new val must satisfy old val knowledge */
3554 return range_within(rold, rcur) &&
3555 tnum_in(rold->var_off, rcur->var_off);
3556 } else {
179d1c56
JH
3557 /* We're trying to use a pointer in place of a scalar.
3558 * Even if the scalar was unbounded, this could lead to
3559 * pointer leaks because scalars are allowed to leak
3560 * while pointers are not. We could make this safe in
3561 * special cases if root is calling us, but it's
3562 * probably not worth the hassle.
f1174f77 3563 */
179d1c56 3564 return false;
f1174f77
EC
3565 }
3566 case PTR_TO_MAP_VALUE:
1b688a19
EC
3567 /* If the new min/max/var_off satisfy the old ones and
3568 * everything else matches, we are OK.
3569 * We don't care about the 'id' value, because nothing
3570 * uses it for PTR_TO_MAP_VALUE (only for ..._OR_NULL)
3571 */
3572 return memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)) == 0 &&
3573 range_within(rold, rcur) &&
3574 tnum_in(rold->var_off, rcur->var_off);
f1174f77
EC
3575 case PTR_TO_MAP_VALUE_OR_NULL:
3576 /* a PTR_TO_MAP_VALUE could be safe to use as a
3577 * PTR_TO_MAP_VALUE_OR_NULL into the same map.
3578 * However, if the old PTR_TO_MAP_VALUE_OR_NULL then got NULL-
3579 * checked, doing so could have affected others with the same
3580 * id, and we can't check for that because we lost the id when
3581 * we converted to a PTR_TO_MAP_VALUE.
3582 */
3583 if (rcur->type != PTR_TO_MAP_VALUE_OR_NULL)
3584 return false;
3585 if (memcmp(rold, rcur, offsetof(struct bpf_reg_state, id)))
3586 return false;
3587 /* Check our ids match any regs they're supposed to */
3588 return check_ids(rold->id, rcur->id, idmap);
de8f3a83 3589 case PTR_TO_PACKET_META:
f1174f77 3590 case PTR_TO_PACKET:
de8f3a83 3591 if (rcur->type != rold->type)
f1174f77
EC
3592 return false;
3593 /* We must have at least as much range as the old ptr
3594 * did, so that any accesses which were safe before are
3595 * still safe. This is true even if old range < old off,
3596 * since someone could have accessed through (ptr - k), or
3597 * even done ptr -= k in a register, to get a safe access.
3598 */
3599 if (rold->range > rcur->range)
3600 return false;
3601 /* If the offsets don't match, we can't trust our alignment;
3602 * nor can we be sure that we won't fall out of range.
3603 */
3604 if (rold->off != rcur->off)
3605 return false;
3606 /* id relations must be preserved */
3607 if (rold->id && !check_ids(rold->id, rcur->id, idmap))
3608 return false;
3609 /* new val must satisfy old val knowledge */
3610 return range_within(rold, rcur) &&
3611 tnum_in(rold->var_off, rcur->var_off);
3612 case PTR_TO_CTX:
3613 case CONST_PTR_TO_MAP:
3614 case PTR_TO_STACK:
3615 case PTR_TO_PACKET_END:
3616 /* Only valid matches are exact, which memcmp() above
3617 * would have accepted
3618 */
3619 default:
3620 /* Don't know what's going on, just say it's not safe */
3621 return false;
3622 }
969bf05e 3623
f1174f77
EC
3624 /* Shouldn't get here; if we do, say it's not safe */
3625 WARN_ON_ONCE(1);
969bf05e
AS
3626 return false;
3627}
3628
638f5b90
AS
3629static bool stacksafe(struct bpf_verifier_state *old,
3630 struct bpf_verifier_state *cur,
3631 struct idpair *idmap)
3632{
3633 int i, spi;
3634
3635 /* if explored stack has more populated slots than current stack
3636 * such stacks are not equivalent
3637 */
3638 if (old->allocated_stack > cur->allocated_stack)
3639 return false;
3640
3641 /* walk slots of the explored stack and ignore any additional
3642 * slots in the current stack, since explored(safe) state
3643 * didn't use them
3644 */
3645 for (i = 0; i < old->allocated_stack; i++) {
3646 spi = i / BPF_REG_SIZE;
3647
3648 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] == STACK_INVALID)
3649 continue;
3650 if (old->stack[spi].slot_type[i % BPF_REG_SIZE] !=
3651 cur->stack[spi].slot_type[i % BPF_REG_SIZE])
3652 /* Ex: old explored (safe) state has STACK_SPILL in
3653 * this stack slot, but current has has STACK_MISC ->
3654 * this verifier states are not equivalent,
3655 * return false to continue verification of this path
3656 */
3657 return false;
3658 if (i % BPF_REG_SIZE)
3659 continue;
3660 if (old->stack[spi].slot_type[0] != STACK_SPILL)
3661 continue;
3662 if (!regsafe(&old->stack[spi].spilled_ptr,
3663 &cur->stack[spi].spilled_ptr,
3664 idmap))
3665 /* when explored and current stack slot are both storing
3666 * spilled registers, check that stored pointers types
3667 * are the same as well.
3668 * Ex: explored safe path could have stored
3669 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -8}
3670 * but current path has stored:
3671 * (bpf_reg_state) {.type = PTR_TO_STACK, .off = -16}
3672 * such verifier states are not equivalent.
3673 * return false to continue verification of this path
3674 */
3675 return false;
3676 }
3677 return true;
3678}
3679
f1bca824
AS
3680/* compare two verifier states
3681 *
3682 * all states stored in state_list are known to be valid, since
3683 * verifier reached 'bpf_exit' instruction through them
3684 *
3685 * this function is called when verifier exploring different branches of
3686 * execution popped from the state stack. If it sees an old state that has
3687 * more strict register state and more strict stack state then this execution
3688 * branch doesn't need to be explored further, since verifier already
3689 * concluded that more strict state leads to valid finish.
3690 *
3691 * Therefore two states are equivalent if register state is more conservative
3692 * and explored stack state is more conservative than the current one.
3693 * Example:
3694 * explored current
3695 * (slot1=INV slot2=MISC) == (slot1=MISC slot2=MISC)
3696 * (slot1=MISC slot2=MISC) != (slot1=INV slot2=MISC)
3697 *
3698 * In other words if current stack state (one being explored) has more
3699 * valid slots than old one that already passed validation, it means
3700 * the verifier can stop exploring and conclude that current state is valid too
3701 *
3702 * Similarly with registers. If explored state has register type as invalid
3703 * whereas register type in current state is meaningful, it means that
3704 * the current state will reach 'bpf_exit' instruction safely
3705 */
48461135
JB
3706static bool states_equal(struct bpf_verifier_env *env,
3707 struct bpf_verifier_state *old,
58e2af8b 3708 struct bpf_verifier_state *cur)
f1bca824 3709{
f1174f77
EC
3710 struct idpair *idmap;
3711 bool ret = false;
f1bca824
AS
3712 int i;
3713
f1174f77
EC
3714 idmap = kcalloc(ID_MAP_SIZE, sizeof(struct idpair), GFP_KERNEL);
3715 /* If we failed to allocate the idmap, just say it's not safe */
3716 if (!idmap)
1a0dc1ac 3717 return false;
f1174f77
EC
3718
3719 for (i = 0; i < MAX_BPF_REG; i++) {
1b688a19 3720 if (!regsafe(&old->regs[i], &cur->regs[i], idmap))
f1174f77 3721 goto out_free;
f1bca824
AS
3722 }
3723
638f5b90
AS
3724 if (!stacksafe(old, cur, idmap))
3725 goto out_free;
f1174f77
EC
3726 ret = true;
3727out_free:
3728 kfree(idmap);
3729 return ret;
f1bca824
AS
3730}
3731
8e9cd9ce
EC
3732/* A write screens off any subsequent reads; but write marks come from the
3733 * straight-line code between a state and its parent. When we arrive at a
3734 * jump target (in the first iteration of the propagate_liveness() loop),
3735 * we didn't arrive by the straight-line code, so read marks in state must
3736 * propagate to parent regardless of state's write marks.
3737 */
dc503a8a
EC
3738static bool do_propagate_liveness(const struct bpf_verifier_state *state,
3739 struct bpf_verifier_state *parent)
3740{
63f45f84 3741 bool writes = parent == state->parent; /* Observe write marks */
dc503a8a
EC
3742 bool touched = false; /* any changes made? */
3743 int i;
3744
3745 if (!parent)
3746 return touched;
3747 /* Propagate read liveness of registers... */
3748 BUILD_BUG_ON(BPF_REG_FP + 1 != MAX_BPF_REG);
3749 /* We don't need to worry about FP liveness because it's read-only */
3750 for (i = 0; i < BPF_REG_FP; i++) {
3751 if (parent->regs[i].live & REG_LIVE_READ)
3752 continue;
63f45f84
EC
3753 if (writes && (state->regs[i].live & REG_LIVE_WRITTEN))
3754 continue;
3755 if (state->regs[i].live & REG_LIVE_READ) {
dc503a8a
EC
3756 parent->regs[i].live |= REG_LIVE_READ;
3757 touched = true;
3758 }
3759 }
3760 /* ... and stack slots */
638f5b90
AS
3761 for (i = 0; i < state->allocated_stack / BPF_REG_SIZE &&
3762 i < parent->allocated_stack / BPF_REG_SIZE; i++) {
3763 if (parent->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3764 continue;
638f5b90 3765 if (state->stack[i].slot_type[0] != STACK_SPILL)
dc503a8a 3766 continue;
638f5b90 3767 if (parent->stack[i].spilled_ptr.live & REG_LIVE_READ)
dc503a8a 3768 continue;
638f5b90
AS
3769 if (writes &&
3770 (state->stack[i].spilled_ptr.live & REG_LIVE_WRITTEN))
63f45f84 3771 continue;
638f5b90
AS
3772 if (state->stack[i].spilled_ptr.live & REG_LIVE_READ) {
3773 parent->stack[i].spilled_ptr.live |= REG_LIVE_READ;
dc503a8a
EC
3774 touched = true;
3775 }
3776 }
3777 return touched;
3778}
3779
8e9cd9ce
EC
3780/* "parent" is "a state from which we reach the current state", but initially
3781 * it is not the state->parent (i.e. "the state whose straight-line code leads
3782 * to the current state"), instead it is the state that happened to arrive at
3783 * a (prunable) equivalent of the current state. See comment above
3784 * do_propagate_liveness() for consequences of this.
3785 * This function is just a more efficient way of calling mark_reg_read() or
3786 * mark_stack_slot_read() on each reg in "parent" that is read in "state",
3787 * though it requires that parent != state->parent in the call arguments.
3788 */
dc503a8a
EC
3789static void propagate_liveness(const struct bpf_verifier_state *state,
3790 struct bpf_verifier_state *parent)
3791{
3792 while (do_propagate_liveness(state, parent)) {
3793 /* Something changed, so we need to feed those changes onward */
3794 state = parent;
3795 parent = state->parent;
3796 }
3797}
3798
58e2af8b 3799static int is_state_visited(struct bpf_verifier_env *env, int insn_idx)
f1bca824 3800{
58e2af8b
JK
3801 struct bpf_verifier_state_list *new_sl;
3802 struct bpf_verifier_state_list *sl;
638f5b90 3803 struct bpf_verifier_state *cur = env->cur_state;
1969db47 3804 int i, err;
f1bca824
AS
3805
3806 sl = env->explored_states[insn_idx];
3807 if (!sl)
3808 /* this 'insn_idx' instruction wasn't marked, so we will not
3809 * be doing state search here
3810 */
3811 return 0;
3812
3813 while (sl != STATE_LIST_MARK) {
638f5b90 3814 if (states_equal(env, &sl->state, cur)) {
f1bca824 3815 /* reached equivalent register/stack state,
dc503a8a
EC
3816 * prune the search.
3817 * Registers read by the continuation are read by us.
8e9cd9ce
EC
3818 * If we have any write marks in env->cur_state, they
3819 * will prevent corresponding reads in the continuation
3820 * from reaching our parent (an explored_state). Our
3821 * own state will get the read marks recorded, but
3822 * they'll be immediately forgotten as we're pruning
3823 * this state and will pop a new one.
f1bca824 3824 */
638f5b90 3825 propagate_liveness(&sl->state, cur);
f1bca824 3826 return 1;
dc503a8a 3827 }
f1bca824
AS
3828 sl = sl->next;
3829 }
3830
3831 /* there were no equivalent states, remember current one.
3832 * technically the current state is not proven to be safe yet,
3833 * but it will either reach bpf_exit (which means it's safe) or
3834 * it will be rejected. Since there are no loops, we won't be
3835 * seeing this 'insn_idx' instruction again on the way to bpf_exit
3836 */
638f5b90 3837 new_sl = kzalloc(sizeof(struct bpf_verifier_state_list), GFP_KERNEL);
f1bca824
AS
3838 if (!new_sl)
3839 return -ENOMEM;
3840
3841 /* add new state to the head of linked list */
1969db47
AS
3842 err = copy_verifier_state(&new_sl->state, cur);
3843 if (err) {
3844 free_verifier_state(&new_sl->state, false);
3845 kfree(new_sl);
3846 return err;
3847 }
f1bca824
AS
3848 new_sl->next = env->explored_states[insn_idx];
3849 env->explored_states[insn_idx] = new_sl;
dc503a8a 3850 /* connect new state to parentage chain */
638f5b90 3851 cur->parent = &new_sl->state;
8e9cd9ce
EC
3852 /* clear write marks in current state: the writes we did are not writes
3853 * our child did, so they don't screen off its reads from us.
3854 * (There are no read marks in current state, because reads always mark
3855 * their parent and current state never has children yet. Only
3856 * explored_states can get read marks.)
3857 */
dc503a8a 3858 for (i = 0; i < BPF_REG_FP; i++)
638f5b90
AS
3859 cur->regs[i].live = REG_LIVE_NONE;
3860 for (i = 0; i < cur->allocated_stack / BPF_REG_SIZE; i++)
3861 if (cur->stack[i].slot_type[0] == STACK_SPILL)
3862 cur->stack[i].spilled_ptr.live = REG_LIVE_NONE;
f1bca824
AS
3863 return 0;
3864}
3865
13a27dfc
JK
3866static int ext_analyzer_insn_hook(struct bpf_verifier_env *env,
3867 int insn_idx, int prev_insn_idx)
3868{
ab3f0063
JK
3869 if (env->dev_ops && env->dev_ops->insn_hook)
3870 return env->dev_ops->insn_hook(env, insn_idx, prev_insn_idx);
13a27dfc 3871
ab3f0063 3872 return 0;
13a27dfc
JK
3873}
3874
58e2af8b 3875static int do_check(struct bpf_verifier_env *env)
17a52670 3876{
638f5b90 3877 struct bpf_verifier_state *state;
17a52670 3878 struct bpf_insn *insns = env->prog->insnsi;
638f5b90 3879 struct bpf_reg_state *regs;
17a52670
AS
3880 int insn_cnt = env->prog->len;
3881 int insn_idx, prev_insn_idx = 0;
3882 int insn_processed = 0;
3883 bool do_print_state = false;
3884
638f5b90
AS
3885 state = kzalloc(sizeof(struct bpf_verifier_state), GFP_KERNEL);
3886 if (!state)
3887 return -ENOMEM;
3888 env->cur_state = state;
3889 init_reg_state(env, state->regs);
dc503a8a 3890 state->parent = NULL;
17a52670
AS
3891 insn_idx = 0;
3892 for (;;) {
3893 struct bpf_insn *insn;
3894 u8 class;
3895 int err;
3896
3897 if (insn_idx >= insn_cnt) {
61bd5218 3898 verbose(env, "invalid insn idx %d insn_cnt %d\n",
17a52670
AS
3899 insn_idx, insn_cnt);
3900 return -EFAULT;
3901 }
3902
3903 insn = &insns[insn_idx];
3904 class = BPF_CLASS(insn->code);
3905
07016151 3906 if (++insn_processed > BPF_COMPLEXITY_LIMIT_INSNS) {
61bd5218
JK
3907 verbose(env,
3908 "BPF program is too large. Processed %d insn\n",
17a52670
AS
3909 insn_processed);
3910 return -E2BIG;
3911 }
3912
f1bca824
AS
3913 err = is_state_visited(env, insn_idx);
3914 if (err < 0)
3915 return err;
3916 if (err == 1) {
3917 /* found equivalent state, can prune the search */
61bd5218 3918 if (env->log.level) {
f1bca824 3919 if (do_print_state)
61bd5218 3920 verbose(env, "\nfrom %d to %d: safe\n",
f1bca824
AS
3921 prev_insn_idx, insn_idx);
3922 else
61bd5218 3923 verbose(env, "%d: safe\n", insn_idx);
f1bca824
AS
3924 }
3925 goto process_bpf_exit;
3926 }
3927
3c2ce60b
DB
3928 if (need_resched())
3929 cond_resched();
3930
61bd5218
JK
3931 if (env->log.level > 1 || (env->log.level && do_print_state)) {
3932 if (env->log.level > 1)
3933 verbose(env, "%d:", insn_idx);
c5fc9692 3934 else
61bd5218 3935 verbose(env, "\nfrom %d to %d:",
c5fc9692 3936 prev_insn_idx, insn_idx);
638f5b90 3937 print_verifier_state(env, state);
17a52670
AS
3938 do_print_state = false;
3939 }
3940
61bd5218
JK
3941 if (env->log.level) {
3942 verbose(env, "%d: ", insn_idx);
f4ac7e0b
JK
3943 print_bpf_insn(verbose, env, insn,
3944 env->allow_ptr_leaks);
17a52670
AS
3945 }
3946
13a27dfc
JK
3947 err = ext_analyzer_insn_hook(env, insn_idx, prev_insn_idx);
3948 if (err)
3949 return err;
3950
638f5b90 3951 regs = cur_regs(env);
c131187d 3952 env->insn_aux_data[insn_idx].seen = true;
17a52670 3953 if (class == BPF_ALU || class == BPF_ALU64) {
1be7f75d 3954 err = check_alu_op(env, insn);
17a52670
AS
3955 if (err)
3956 return err;
3957
3958 } else if (class == BPF_LDX) {
3df126f3 3959 enum bpf_reg_type *prev_src_type, src_reg_type;
9bac3d6d
AS
3960
3961 /* check for reserved fields is already done */
3962
17a52670 3963 /* check src operand */
dc503a8a 3964 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
3965 if (err)
3966 return err;
3967
dc503a8a 3968 err = check_reg_arg(env, insn->dst_reg, DST_OP_NO_MARK);
17a52670
AS
3969 if (err)
3970 return err;
3971
725f9dcd
AS
3972 src_reg_type = regs[insn->src_reg].type;
3973
17a52670
AS
3974 /* check that memory (src_reg + off) is readable,
3975 * the state of dst_reg will be updated by this func
3976 */
31fd8581 3977 err = check_mem_access(env, insn_idx, insn->src_reg, insn->off,
17a52670 3978 BPF_SIZE(insn->code), BPF_READ,
57b4a36e 3979 insn->dst_reg, false);
17a52670
AS
3980 if (err)
3981 return err;
3982
3df126f3
JK
3983 prev_src_type = &env->insn_aux_data[insn_idx].ptr_type;
3984
3985 if (*prev_src_type == NOT_INIT) {
9bac3d6d
AS
3986 /* saw a valid insn
3987 * dst_reg = *(u32 *)(src_reg + off)
3df126f3 3988 * save type to validate intersecting paths
9bac3d6d 3989 */
3df126f3 3990 *prev_src_type = src_reg_type;
9bac3d6d 3991
3df126f3 3992 } else if (src_reg_type != *prev_src_type &&
9bac3d6d 3993 (src_reg_type == PTR_TO_CTX ||
3df126f3 3994 *prev_src_type == PTR_TO_CTX)) {
9bac3d6d
AS
3995 /* ABuser program is trying to use the same insn
3996 * dst_reg = *(u32*) (src_reg + off)
3997 * with different pointer types:
3998 * src_reg == ctx in one branch and
3999 * src_reg == stack|map in some other branch.
4000 * Reject it.
4001 */
61bd5218 4002 verbose(env, "same insn cannot be used with different pointers\n");
9bac3d6d
AS
4003 return -EINVAL;
4004 }
4005
17a52670 4006 } else if (class == BPF_STX) {
3df126f3 4007 enum bpf_reg_type *prev_dst_type, dst_reg_type;
d691f9e8 4008
17a52670 4009 if (BPF_MODE(insn->code) == BPF_XADD) {
31fd8581 4010 err = check_xadd(env, insn_idx, insn);
17a52670
AS
4011 if (err)
4012 return err;
4013 insn_idx++;
4014 continue;
4015 }
4016
17a52670 4017 /* check src1 operand */
dc503a8a 4018 err = check_reg_arg(env, insn->src_reg, SRC_OP);
17a52670
AS
4019 if (err)
4020 return err;
4021 /* check src2 operand */
dc503a8a 4022 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4023 if (err)
4024 return err;
4025
d691f9e8
AS
4026 dst_reg_type = regs[insn->dst_reg].type;
4027
17a52670 4028 /* check that memory (dst_reg + off) is writeable */
31fd8581 4029 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4030 BPF_SIZE(insn->code), BPF_WRITE,
57b4a36e 4031 insn->src_reg, false);
17a52670
AS
4032 if (err)
4033 return err;
4034
3df126f3
JK
4035 prev_dst_type = &env->insn_aux_data[insn_idx].ptr_type;
4036
4037 if (*prev_dst_type == NOT_INIT) {
4038 *prev_dst_type = dst_reg_type;
4039 } else if (dst_reg_type != *prev_dst_type &&
d691f9e8 4040 (dst_reg_type == PTR_TO_CTX ||
3df126f3 4041 *prev_dst_type == PTR_TO_CTX)) {
61bd5218 4042 verbose(env, "same insn cannot be used with different pointers\n");
d691f9e8
AS
4043 return -EINVAL;
4044 }
4045
17a52670
AS
4046 } else if (class == BPF_ST) {
4047 if (BPF_MODE(insn->code) != BPF_MEM ||
4048 insn->src_reg != BPF_REG_0) {
61bd5218 4049 verbose(env, "BPF_ST uses reserved fields\n");
17a52670
AS
4050 return -EINVAL;
4051 }
4052 /* check src operand */
dc503a8a 4053 err = check_reg_arg(env, insn->dst_reg, SRC_OP);
17a52670
AS
4054 if (err)
4055 return err;
4056
f37a8cb8
DB
4057 if (is_ctx_reg(env, insn->dst_reg)) {
4058 verbose(env, "BPF_ST stores into R%d context is not allowed\n",
4059 insn->dst_reg);
4060 return -EACCES;
4061 }
4062
17a52670 4063 /* check that memory (dst_reg + off) is writeable */
31fd8581 4064 err = check_mem_access(env, insn_idx, insn->dst_reg, insn->off,
17a52670 4065 BPF_SIZE(insn->code), BPF_WRITE,
57b4a36e 4066 -1, false);
17a52670
AS
4067 if (err)
4068 return err;
4069
4070 } else if (class == BPF_JMP) {
4071 u8 opcode = BPF_OP(insn->code);
4072
4073 if (opcode == BPF_CALL) {
4074 if (BPF_SRC(insn->code) != BPF_K ||
4075 insn->off != 0 ||
4076 insn->src_reg != BPF_REG_0 ||
4077 insn->dst_reg != BPF_REG_0) {
61bd5218 4078 verbose(env, "BPF_CALL uses reserved fields\n");
17a52670
AS
4079 return -EINVAL;
4080 }
4081
81ed18ab 4082 err = check_call(env, insn->imm, insn_idx);
17a52670
AS
4083 if (err)
4084 return err;
4085
4086 } else if (opcode == BPF_JA) {
4087 if (BPF_SRC(insn->code) != BPF_K ||
4088 insn->imm != 0 ||
4089 insn->src_reg != BPF_REG_0 ||
4090 insn->dst_reg != BPF_REG_0) {
61bd5218 4091 verbose(env, "BPF_JA uses reserved fields\n");
17a52670
AS
4092 return -EINVAL;
4093 }
4094
4095 insn_idx += insn->off + 1;
4096 continue;
4097
4098 } else if (opcode == BPF_EXIT) {
4099 if (BPF_SRC(insn->code) != BPF_K ||
4100 insn->imm != 0 ||
4101 insn->src_reg != BPF_REG_0 ||
4102 insn->dst_reg != BPF_REG_0) {
61bd5218 4103 verbose(env, "BPF_EXIT uses reserved fields\n");
17a52670
AS
4104 return -EINVAL;
4105 }
4106
4107 /* eBPF calling convetion is such that R0 is used
4108 * to return the value from eBPF program.
4109 * Make sure that it's readable at this time
4110 * of bpf_exit, which means that program wrote
4111 * something into it earlier
4112 */
dc503a8a 4113 err = check_reg_arg(env, BPF_REG_0, SRC_OP);
17a52670
AS
4114 if (err)
4115 return err;
4116
1be7f75d 4117 if (is_pointer_value(env, BPF_REG_0)) {
61bd5218 4118 verbose(env, "R0 leaks addr as return value\n");
1be7f75d
AS
4119 return -EACCES;
4120 }
4121
390ee7e2
AS
4122 err = check_return_code(env);
4123 if (err)
4124 return err;
f1bca824 4125process_bpf_exit:
638f5b90
AS
4126 err = pop_stack(env, &prev_insn_idx, &insn_idx);
4127 if (err < 0) {
4128 if (err != -ENOENT)
4129 return err;
17a52670
AS
4130 break;
4131 } else {
4132 do_print_state = true;
4133 continue;
4134 }
4135 } else {
4136 err = check_cond_jmp_op(env, insn, &insn_idx);
4137 if (err)
4138 return err;
4139 }
4140 } else if (class == BPF_LD) {
4141 u8 mode = BPF_MODE(insn->code);
4142
4143 if (mode == BPF_ABS || mode == BPF_IND) {
ddd872bc
AS
4144 err = check_ld_abs(env, insn);
4145 if (err)
4146 return err;
4147
17a52670
AS
4148 } else if (mode == BPF_IMM) {
4149 err = check_ld_imm(env, insn);
4150 if (err)
4151 return err;
4152
4153 insn_idx++;
c131187d 4154 env->insn_aux_data[insn_idx].seen = true;
17a52670 4155 } else {
61bd5218 4156 verbose(env, "invalid BPF_LD mode\n");
17a52670
AS
4157 return -EINVAL;
4158 }
4159 } else {
61bd5218 4160 verbose(env, "unknown insn class %d\n", class);
17a52670
AS
4161 return -EINVAL;
4162 }
4163
4164 insn_idx++;
4165 }
4166
61bd5218
JK
4167 verbose(env, "processed %d insns, stack depth %d\n", insn_processed,
4168 env->prog->aux->stack_depth);
17a52670
AS
4169 return 0;
4170}
4171
56f668df
MKL
4172static int check_map_prealloc(struct bpf_map *map)
4173{
4174 return (map->map_type != BPF_MAP_TYPE_HASH &&
bcc6b1b7
MKL
4175 map->map_type != BPF_MAP_TYPE_PERCPU_HASH &&
4176 map->map_type != BPF_MAP_TYPE_HASH_OF_MAPS) ||
56f668df
MKL
4177 !(map->map_flags & BPF_F_NO_PREALLOC);
4178}
4179
61bd5218
JK
4180static int check_map_prog_compatibility(struct bpf_verifier_env *env,
4181 struct bpf_map *map,
fdc15d38
AS
4182 struct bpf_prog *prog)
4183
4184{
56f668df
MKL
4185 /* Make sure that BPF_PROG_TYPE_PERF_EVENT programs only use
4186 * preallocated hash maps, since doing memory allocation
4187 * in overflow_handler can crash depending on where nmi got
4188 * triggered.
4189 */
4190 if (prog->type == BPF_PROG_TYPE_PERF_EVENT) {
4191 if (!check_map_prealloc(map)) {
61bd5218 4192 verbose(env, "perf_event programs can only use preallocated hash map\n");
56f668df
MKL
4193 return -EINVAL;
4194 }
4195 if (map->inner_map_meta &&
4196 !check_map_prealloc(map->inner_map_meta)) {
61bd5218 4197 verbose(env, "perf_event programs can only use preallocated inner hash map\n");
56f668df
MKL
4198 return -EINVAL;
4199 }
fdc15d38
AS
4200 }
4201 return 0;
4202}
4203
0246e64d
AS
4204/* look for pseudo eBPF instructions that access map FDs and
4205 * replace them with actual map pointers
4206 */
58e2af8b 4207static int replace_map_fd_with_map_ptr(struct bpf_verifier_env *env)
0246e64d
AS
4208{
4209 struct bpf_insn *insn = env->prog->insnsi;
4210 int insn_cnt = env->prog->len;
fdc15d38 4211 int i, j, err;
0246e64d 4212
f1f7714e 4213 err = bpf_prog_calc_tag(env->prog);
aafe6ae9
DB
4214 if (err)
4215 return err;
4216
0246e64d 4217 for (i = 0; i < insn_cnt; i++, insn++) {
9bac3d6d 4218 if (BPF_CLASS(insn->code) == BPF_LDX &&
d691f9e8 4219 (BPF_MODE(insn->code) != BPF_MEM || insn->imm != 0)) {
61bd5218 4220 verbose(env, "BPF_LDX uses reserved fields\n");
9bac3d6d
AS
4221 return -EINVAL;
4222 }
4223
d691f9e8
AS
4224 if (BPF_CLASS(insn->code) == BPF_STX &&
4225 ((BPF_MODE(insn->code) != BPF_MEM &&
4226 BPF_MODE(insn->code) != BPF_XADD) || insn->imm != 0)) {
61bd5218 4227 verbose(env, "BPF_STX uses reserved fields\n");
d691f9e8
AS
4228 return -EINVAL;
4229 }
4230
0246e64d
AS
4231 if (insn[0].code == (BPF_LD | BPF_IMM | BPF_DW)) {
4232 struct bpf_map *map;
4233 struct fd f;
4234
4235 if (i == insn_cnt - 1 || insn[1].code != 0 ||
4236 insn[1].dst_reg != 0 || insn[1].src_reg != 0 ||
4237 insn[1].off != 0) {
61bd5218 4238 verbose(env, "invalid bpf_ld_imm64 insn\n");
0246e64d
AS
4239 return -EINVAL;
4240 }
4241
4242 if (insn->src_reg == 0)
4243 /* valid generic load 64-bit imm */
4244 goto next_insn;
4245
4246 if (insn->src_reg != BPF_PSEUDO_MAP_FD) {
61bd5218
JK
4247 verbose(env,
4248 "unrecognized bpf_ld_imm64 insn\n");
0246e64d
AS
4249 return -EINVAL;
4250 }
4251
4252 f = fdget(insn->imm);
c2101297 4253 map = __bpf_map_get(f);
0246e64d 4254 if (IS_ERR(map)) {
61bd5218 4255 verbose(env, "fd %d is not pointing to valid bpf_map\n",
0246e64d 4256 insn->imm);
0246e64d
AS
4257 return PTR_ERR(map);
4258 }
4259
61bd5218 4260 err = check_map_prog_compatibility(env, map, env->prog);
fdc15d38
AS
4261 if (err) {
4262 fdput(f);
4263 return err;
4264 }
4265
0246e64d
AS
4266 /* store map pointer inside BPF_LD_IMM64 instruction */
4267 insn[0].imm = (u32) (unsigned long) map;
4268 insn[1].imm = ((u64) (unsigned long) map) >> 32;
4269
4270 /* check whether we recorded this map already */
4271 for (j = 0; j < env->used_map_cnt; j++)
4272 if (env->used_maps[j] == map) {
4273 fdput(f);
4274 goto next_insn;
4275 }
4276
4277 if (env->used_map_cnt >= MAX_USED_MAPS) {
4278 fdput(f);
4279 return -E2BIG;
4280 }
4281
0246e64d
AS
4282 /* hold the map. If the program is rejected by verifier,
4283 * the map will be released by release_maps() or it
4284 * will be used by the valid program until it's unloaded
4285 * and all maps are released in free_bpf_prog_info()
4286 */
92117d84
AS
4287 map = bpf_map_inc(map, false);
4288 if (IS_ERR(map)) {
4289 fdput(f);
4290 return PTR_ERR(map);
4291 }
4292 env->used_maps[env->used_map_cnt++] = map;
4293
0246e64d
AS
4294 fdput(f);
4295next_insn:
4296 insn++;
4297 i++;
4298 }
4299 }
4300
4301 /* now all pseudo BPF_LD_IMM64 instructions load valid
4302 * 'struct bpf_map *' into a register instead of user map_fd.
4303 * These pointers will be used later by verifier to validate map access.
4304 */
4305 return 0;
4306}
4307
4308/* drop refcnt of maps used by the rejected program */
58e2af8b 4309static void release_maps(struct bpf_verifier_env *env)
0246e64d
AS
4310{
4311 int i;
4312
4313 for (i = 0; i < env->used_map_cnt; i++)
4314 bpf_map_put(env->used_maps[i]);
4315}
4316
4317/* convert pseudo BPF_LD_IMM64 into generic BPF_LD_IMM64 */
58e2af8b 4318static void convert_pseudo_ld_imm64(struct bpf_verifier_env *env)
0246e64d
AS
4319{
4320 struct bpf_insn *insn = env->prog->insnsi;
4321 int insn_cnt = env->prog->len;
4322 int i;
4323
4324 for (i = 0; i < insn_cnt; i++, insn++)
4325 if (insn->code == (BPF_LD | BPF_IMM | BPF_DW))
4326 insn->src_reg = 0;
4327}
4328
8041902d
AS
4329/* single env->prog->insni[off] instruction was replaced with the range
4330 * insni[off, off + cnt). Adjust corresponding insn_aux_data by copying
4331 * [0, off) and [off, end) to new locations, so the patched range stays zero
4332 */
4333static int adjust_insn_aux_data(struct bpf_verifier_env *env, u32 prog_len,
4334 u32 off, u32 cnt)
4335{
4336 struct bpf_insn_aux_data *new_data, *old_data = env->insn_aux_data;
c131187d 4337 int i;
8041902d
AS
4338
4339 if (cnt == 1)
4340 return 0;
4341 new_data = vzalloc(sizeof(struct bpf_insn_aux_data) * prog_len);
4342 if (!new_data)
4343 return -ENOMEM;
4344 memcpy(new_data, old_data, sizeof(struct bpf_insn_aux_data) * off);
4345 memcpy(new_data + off + cnt - 1, old_data + off,
4346 sizeof(struct bpf_insn_aux_data) * (prog_len - off - cnt + 1));
c131187d
AS
4347 for (i = off; i < off + cnt - 1; i++)
4348 new_data[i].seen = true;
8041902d
AS
4349 env->insn_aux_data = new_data;
4350 vfree(old_data);
4351 return 0;
4352}
4353
4354static struct bpf_prog *bpf_patch_insn_data(struct bpf_verifier_env *env, u32 off,
4355 const struct bpf_insn *patch, u32 len)
4356{
4357 struct bpf_prog *new_prog;
4358
4359 new_prog = bpf_patch_insn_single(env->prog, off, patch, len);
4360 if (!new_prog)
4361 return NULL;
4362 if (adjust_insn_aux_data(env, new_prog->len, off, len))
4363 return NULL;
4364 return new_prog;
4365}
4366
c131187d
AS
4367/* The verifier does more data flow analysis than llvm and will not explore
4368 * branches that are dead at run time. Malicious programs can have dead code
4369 * too. Therefore replace all dead at-run-time code with nops.
4370 */
4371static void sanitize_dead_code(struct bpf_verifier_env *env)
4372{
4373 struct bpf_insn_aux_data *aux_data = env->insn_aux_data;
4374 struct bpf_insn nop = BPF_MOV64_REG(BPF_REG_0, BPF_REG_0);
4375 struct bpf_insn *insn = env->prog->insnsi;
4376 const int insn_cnt = env->prog->len;
4377 int i;
4378
4379 for (i = 0; i < insn_cnt; i++) {
4380 if (aux_data[i].seen)
4381 continue;
4382 memcpy(insn + i, &nop, sizeof(nop));
4383 }
4384}
4385
9bac3d6d
AS
4386/* convert load instructions that access fields of 'struct __sk_buff'
4387 * into sequence of instructions that access fields of 'struct sk_buff'
4388 */
58e2af8b 4389static int convert_ctx_accesses(struct bpf_verifier_env *env)
9bac3d6d 4390{
00176a34 4391 const struct bpf_verifier_ops *ops = env->ops;
f96da094 4392 int i, cnt, size, ctx_field_size, delta = 0;
3df126f3 4393 const int insn_cnt = env->prog->len;
36bbef52 4394 struct bpf_insn insn_buf[16], *insn;
9bac3d6d 4395 struct bpf_prog *new_prog;
d691f9e8 4396 enum bpf_access_type type;
f96da094
DB
4397 bool is_narrower_load;
4398 u32 target_size;
9bac3d6d 4399
36bbef52
DB
4400 if (ops->gen_prologue) {
4401 cnt = ops->gen_prologue(insn_buf, env->seen_direct_write,
4402 env->prog);
4403 if (cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4404 verbose(env, "bpf verifier is misconfigured\n");
36bbef52
DB
4405 return -EINVAL;
4406 } else if (cnt) {
8041902d 4407 new_prog = bpf_patch_insn_data(env, 0, insn_buf, cnt);
36bbef52
DB
4408 if (!new_prog)
4409 return -ENOMEM;
8041902d 4410
36bbef52 4411 env->prog = new_prog;
3df126f3 4412 delta += cnt - 1;
36bbef52
DB
4413 }
4414 }
4415
4416 if (!ops->convert_ctx_access)
9bac3d6d
AS
4417 return 0;
4418
3df126f3 4419 insn = env->prog->insnsi + delta;
36bbef52 4420
9bac3d6d 4421 for (i = 0; i < insn_cnt; i++, insn++) {
62c7989b
DB
4422 if (insn->code == (BPF_LDX | BPF_MEM | BPF_B) ||
4423 insn->code == (BPF_LDX | BPF_MEM | BPF_H) ||
4424 insn->code == (BPF_LDX | BPF_MEM | BPF_W) ||
ea2e7ce5 4425 insn->code == (BPF_LDX | BPF_MEM | BPF_DW))
d691f9e8 4426 type = BPF_READ;
62c7989b
DB
4427 else if (insn->code == (BPF_STX | BPF_MEM | BPF_B) ||
4428 insn->code == (BPF_STX | BPF_MEM | BPF_H) ||
4429 insn->code == (BPF_STX | BPF_MEM | BPF_W) ||
ea2e7ce5 4430 insn->code == (BPF_STX | BPF_MEM | BPF_DW))
d691f9e8
AS
4431 type = BPF_WRITE;
4432 else
9bac3d6d
AS
4433 continue;
4434
abd098e0
AS
4435 if (type == BPF_WRITE &&
4436 env->insn_aux_data[i + delta].sanitize_stack_off) {
4437 struct bpf_insn patch[] = {
4438 /* Sanitize suspicious stack slot with zero.
4439 * There are no memory dependencies for this store,
4440 * since it's only using frame pointer and immediate
4441 * constant of zero
4442 */
4443 BPF_ST_MEM(BPF_DW, BPF_REG_FP,
4444 env->insn_aux_data[i + delta].sanitize_stack_off,
4445 0),
4446 /* the original STX instruction will immediately
4447 * overwrite the same stack slot with appropriate value
4448 */
4449 *insn,
4450 };
4451
4452 cnt = ARRAY_SIZE(patch);
4453 new_prog = bpf_patch_insn_data(env, i + delta, patch, cnt);
4454 if (!new_prog)
4455 return -ENOMEM;
4456
4457 delta += cnt - 1;
4458 env->prog = new_prog;
4459 insn = new_prog->insnsi + i + delta;
4460 continue;
4461 }
4462
8041902d 4463 if (env->insn_aux_data[i + delta].ptr_type != PTR_TO_CTX)
9bac3d6d 4464 continue;
9bac3d6d 4465
31fd8581 4466 ctx_field_size = env->insn_aux_data[i + delta].ctx_field_size;
f96da094 4467 size = BPF_LDST_BYTES(insn);
31fd8581
YS
4468
4469 /* If the read access is a narrower load of the field,
4470 * convert to a 4/8-byte load, to minimum program type specific
4471 * convert_ctx_access changes. If conversion is successful,
4472 * we will apply proper mask to the result.
4473 */
f96da094 4474 is_narrower_load = size < ctx_field_size;
31fd8581 4475 if (is_narrower_load) {
f96da094
DB
4476 u32 off = insn->off;
4477 u8 size_code;
4478
4479 if (type == BPF_WRITE) {
61bd5218 4480 verbose(env, "bpf verifier narrow ctx access misconfigured\n");
f96da094
DB
4481 return -EINVAL;
4482 }
31fd8581 4483
f96da094 4484 size_code = BPF_H;
31fd8581
YS
4485 if (ctx_field_size == 4)
4486 size_code = BPF_W;
4487 else if (ctx_field_size == 8)
4488 size_code = BPF_DW;
f96da094 4489
31fd8581
YS
4490 insn->off = off & ~(ctx_field_size - 1);
4491 insn->code = BPF_LDX | BPF_MEM | size_code;
4492 }
f96da094
DB
4493
4494 target_size = 0;
4495 cnt = ops->convert_ctx_access(type, insn, insn_buf, env->prog,
4496 &target_size);
4497 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf) ||
4498 (ctx_field_size && !target_size)) {
61bd5218 4499 verbose(env, "bpf verifier is misconfigured\n");
9bac3d6d
AS
4500 return -EINVAL;
4501 }
f96da094
DB
4502
4503 if (is_narrower_load && size < target_size) {
31fd8581
YS
4504 if (ctx_field_size <= 4)
4505 insn_buf[cnt++] = BPF_ALU32_IMM(BPF_AND, insn->dst_reg,
f96da094 4506 (1 << size * 8) - 1);
31fd8581
YS
4507 else
4508 insn_buf[cnt++] = BPF_ALU64_IMM(BPF_AND, insn->dst_reg,
f96da094 4509 (1 << size * 8) - 1);
31fd8581 4510 }
9bac3d6d 4511
8041902d 4512 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
9bac3d6d
AS
4513 if (!new_prog)
4514 return -ENOMEM;
4515
3df126f3 4516 delta += cnt - 1;
9bac3d6d
AS
4517
4518 /* keep walking new program and skip insns we just inserted */
4519 env->prog = new_prog;
3df126f3 4520 insn = new_prog->insnsi + i + delta;
9bac3d6d
AS
4521 }
4522
4523 return 0;
4524}
4525
79741b3b 4526/* fixup insn->imm field of bpf_call instructions
81ed18ab 4527 * and inline eligible helpers as explicit sequence of BPF instructions
e245c5c6
AS
4528 *
4529 * this function is called after eBPF program passed verification
4530 */
79741b3b 4531static int fixup_bpf_calls(struct bpf_verifier_env *env)
e245c5c6 4532{
79741b3b
AS
4533 struct bpf_prog *prog = env->prog;
4534 struct bpf_insn *insn = prog->insnsi;
e245c5c6 4535 const struct bpf_func_proto *fn;
79741b3b 4536 const int insn_cnt = prog->len;
81ed18ab
AS
4537 struct bpf_insn insn_buf[16];
4538 struct bpf_prog *new_prog;
4539 struct bpf_map *map_ptr;
4540 int i, cnt, delta = 0;
e245c5c6 4541
79741b3b 4542 for (i = 0; i < insn_cnt; i++, insn++) {
68fda450
AS
4543 if (insn->code == (BPF_ALU | BPF_MOD | BPF_X) ||
4544 insn->code == (BPF_ALU | BPF_DIV | BPF_X)) {
4545 /* due to JIT bugs clear upper 32-bits of src register
4546 * before div/mod operation
4547 */
4548 insn_buf[0] = BPF_MOV32_REG(insn->src_reg, insn->src_reg);
4549 insn_buf[1] = *insn;
4550 cnt = 2;
4551 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4552 if (!new_prog)
4553 return -ENOMEM;
4554
4555 delta += cnt - 1;
4556 env->prog = prog = new_prog;
4557 insn = new_prog->insnsi + i + delta;
4558 continue;
4559 }
4560
79741b3b
AS
4561 if (insn->code != (BPF_JMP | BPF_CALL))
4562 continue;
e245c5c6 4563
79741b3b
AS
4564 if (insn->imm == BPF_FUNC_get_route_realm)
4565 prog->dst_needed = 1;
4566 if (insn->imm == BPF_FUNC_get_prandom_u32)
4567 bpf_user_rnd_init_once();
79741b3b 4568 if (insn->imm == BPF_FUNC_tail_call) {
7b9f6da1
DM
4569 /* If we tail call into other programs, we
4570 * cannot make any assumptions since they can
4571 * be replaced dynamically during runtime in
4572 * the program array.
4573 */
4574 prog->cb_access = 1;
80a58d02 4575 env->prog->aux->stack_depth = MAX_BPF_STACK;
7b9f6da1 4576
79741b3b
AS
4577 /* mark bpf_tail_call as different opcode to avoid
4578 * conditional branch in the interpeter for every normal
4579 * call and to prevent accidental JITing by JIT compiler
4580 * that doesn't support bpf_tail_call yet
e245c5c6 4581 */
79741b3b 4582 insn->imm = 0;
71189fa9 4583 insn->code = BPF_JMP | BPF_TAIL_CALL;
b2157399
AS
4584
4585 /* instead of changing every JIT dealing with tail_call
4586 * emit two extra insns:
4587 * if (index >= max_entries) goto out;
4588 * index &= array->index_mask;
4589 * to avoid out-of-bounds cpu speculation
4590 */
4591 map_ptr = env->insn_aux_data[i + delta].map_ptr;
4592 if (map_ptr == BPF_MAP_PTR_POISON) {
40950343 4593 verbose(env, "tail_call abusing map_ptr\n");
b2157399
AS
4594 return -EINVAL;
4595 }
4596 if (!map_ptr->unpriv_array)
4597 continue;
4598 insn_buf[0] = BPF_JMP_IMM(BPF_JGE, BPF_REG_3,
4599 map_ptr->max_entries, 2);
4600 insn_buf[1] = BPF_ALU32_IMM(BPF_AND, BPF_REG_3,
4601 container_of(map_ptr,
4602 struct bpf_array,
4603 map)->index_mask);
4604 insn_buf[2] = *insn;
4605 cnt = 3;
4606 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf, cnt);
4607 if (!new_prog)
4608 return -ENOMEM;
4609
4610 delta += cnt - 1;
4611 env->prog = prog = new_prog;
4612 insn = new_prog->insnsi + i + delta;
79741b3b
AS
4613 continue;
4614 }
e245c5c6 4615
89c63074
DB
4616 /* BPF_EMIT_CALL() assumptions in some of the map_gen_lookup
4617 * handlers are currently limited to 64 bit only.
4618 */
4619 if (ebpf_jit_enabled() && BITS_PER_LONG == 64 &&
4620 insn->imm == BPF_FUNC_map_lookup_elem) {
81ed18ab 4621 map_ptr = env->insn_aux_data[i + delta].map_ptr;
fad73a1a
MKL
4622 if (map_ptr == BPF_MAP_PTR_POISON ||
4623 !map_ptr->ops->map_gen_lookup)
81ed18ab
AS
4624 goto patch_call_imm;
4625
4626 cnt = map_ptr->ops->map_gen_lookup(map_ptr, insn_buf);
4627 if (cnt == 0 || cnt >= ARRAY_SIZE(insn_buf)) {
61bd5218 4628 verbose(env, "bpf verifier is misconfigured\n");
81ed18ab
AS
4629 return -EINVAL;
4630 }
4631
4632 new_prog = bpf_patch_insn_data(env, i + delta, insn_buf,
4633 cnt);
4634 if (!new_prog)
4635 return -ENOMEM;
4636
4637 delta += cnt - 1;
4638
4639 /* keep walking new program and skip insns we just inserted */
4640 env->prog = prog = new_prog;
4641 insn = new_prog->insnsi + i + delta;
4642 continue;
4643 }
4644
109980b8 4645 if (insn->imm == BPF_FUNC_redirect_map) {
7c300131
DB
4646 /* Note, we cannot use prog directly as imm as subsequent
4647 * rewrites would still change the prog pointer. The only
4648 * stable address we can use is aux, which also works with
4649 * prog clones during blinding.
4650 */
4651 u64 addr = (unsigned long)prog->aux;
109980b8
DB
4652 struct bpf_insn r4_ld[] = {
4653 BPF_LD_IMM64(BPF_REG_4, addr),
4654 *insn,
4655 };
4656 cnt = ARRAY_SIZE(r4_ld);
4657
4658 new_prog = bpf_patch_insn_data(env, i + delta, r4_ld, cnt);
4659 if (!new_prog)
4660 return -ENOMEM;
4661
4662 delta += cnt - 1;
4663 env->prog = prog = new_prog;
4664 insn = new_prog->insnsi + i + delta;
4665 }
81ed18ab 4666patch_call_imm:
00176a34 4667 fn = env->ops->get_func_proto(insn->imm);
79741b3b
AS
4668 /* all functions that have prototype and verifier allowed
4669 * programs to call them, must be real in-kernel functions
4670 */
4671 if (!fn->func) {
61bd5218
JK
4672 verbose(env,
4673 "kernel subsystem misconfigured func %s#%d\n",
79741b3b
AS
4674 func_id_name(insn->imm), insn->imm);
4675 return -EFAULT;
e245c5c6 4676 }
79741b3b 4677 insn->imm = fn->func - __bpf_call_base;
e245c5c6 4678 }
e245c5c6 4679
79741b3b
AS
4680 return 0;
4681}
e245c5c6 4682
58e2af8b 4683static void free_states(struct bpf_verifier_env *env)
f1bca824 4684{
58e2af8b 4685 struct bpf_verifier_state_list *sl, *sln;
f1bca824
AS
4686 int i;
4687
4688 if (!env->explored_states)
4689 return;
4690
4691 for (i = 0; i < env->prog->len; i++) {
4692 sl = env->explored_states[i];
4693
4694 if (sl)
4695 while (sl != STATE_LIST_MARK) {
4696 sln = sl->next;
1969db47 4697 free_verifier_state(&sl->state, false);
f1bca824
AS
4698 kfree(sl);
4699 sl = sln;
4700 }
4701 }
4702
4703 kfree(env->explored_states);
4704}
4705
9bac3d6d 4706int bpf_check(struct bpf_prog **prog, union bpf_attr *attr)
51580e79 4707{
58e2af8b 4708 struct bpf_verifier_env *env;
61bd5218 4709 struct bpf_verifer_log *log;
51580e79
AS
4710 int ret = -EINVAL;
4711
eba0c929
AB
4712 /* no program is valid */
4713 if (ARRAY_SIZE(bpf_verifier_ops) == 0)
4714 return -EINVAL;
4715
58e2af8b 4716 /* 'struct bpf_verifier_env' can be global, but since it's not small,
cbd35700
AS
4717 * allocate/free it every time bpf_check() is called
4718 */
58e2af8b 4719 env = kzalloc(sizeof(struct bpf_verifier_env), GFP_KERNEL);
cbd35700
AS
4720 if (!env)
4721 return -ENOMEM;
61bd5218 4722 log = &env->log;
cbd35700 4723
3df126f3
JK
4724 env->insn_aux_data = vzalloc(sizeof(struct bpf_insn_aux_data) *
4725 (*prog)->len);
4726 ret = -ENOMEM;
4727 if (!env->insn_aux_data)
4728 goto err_free_env;
9bac3d6d 4729 env->prog = *prog;
00176a34 4730 env->ops = bpf_verifier_ops[env->prog->type];
0246e64d 4731
cbd35700
AS
4732 /* grab the mutex to protect few globals used by verifier */
4733 mutex_lock(&bpf_verifier_lock);
4734
4735 if (attr->log_level || attr->log_buf || attr->log_size) {
4736 /* user requested verbose verifier output
4737 * and supplied buffer to store the verification trace
4738 */
e7bf8249
JK
4739 log->level = attr->log_level;
4740 log->ubuf = (char __user *) (unsigned long) attr->log_buf;
4741 log->len_total = attr->log_size;
cbd35700
AS
4742
4743 ret = -EINVAL;
e7bf8249
JK
4744 /* log attributes have to be sane */
4745 if (log->len_total < 128 || log->len_total > UINT_MAX >> 8 ||
4746 !log->level || !log->ubuf)
3df126f3 4747 goto err_unlock;
cbd35700 4748 }
1ad2f583
DB
4749
4750 env->strict_alignment = !!(attr->prog_flags & BPF_F_STRICT_ALIGNMENT);
4751 if (!IS_ENABLED(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS))
e07b98d9 4752 env->strict_alignment = true;
cbd35700 4753
ab3f0063
JK
4754 if (env->prog->aux->offload) {
4755 ret = bpf_prog_offload_verifier_prep(env);
4756 if (ret)
4757 goto err_unlock;
4758 }
4759
0246e64d
AS
4760 ret = replace_map_fd_with_map_ptr(env);
4761 if (ret < 0)
4762 goto skip_full_check;
4763
9bac3d6d 4764 env->explored_states = kcalloc(env->prog->len,
58e2af8b 4765 sizeof(struct bpf_verifier_state_list *),
f1bca824
AS
4766 GFP_USER);
4767 ret = -ENOMEM;
4768 if (!env->explored_states)
4769 goto skip_full_check;
4770
475fb78f
AS
4771 ret = check_cfg(env);
4772 if (ret < 0)
4773 goto skip_full_check;
4774
1be7f75d
AS
4775 env->allow_ptr_leaks = capable(CAP_SYS_ADMIN);
4776
17a52670 4777 ret = do_check(env);
8c01c4f8
CG
4778 if (env->cur_state) {
4779 free_verifier_state(env->cur_state, true);
4780 env->cur_state = NULL;
4781 }
cbd35700 4782
0246e64d 4783skip_full_check:
638f5b90 4784 while (!pop_stack(env, NULL, NULL));
f1bca824 4785 free_states(env);
0246e64d 4786
c131187d
AS
4787 if (ret == 0)
4788 sanitize_dead_code(env);
4789
9bac3d6d
AS
4790 if (ret == 0)
4791 /* program is valid, convert *(u32*)(ctx + off) accesses */
4792 ret = convert_ctx_accesses(env);
4793
e245c5c6 4794 if (ret == 0)
79741b3b 4795 ret = fixup_bpf_calls(env);
e245c5c6 4796
a2a7d570 4797 if (log->level && bpf_verifier_log_full(log))
cbd35700 4798 ret = -ENOSPC;
a2a7d570 4799 if (log->level && !log->ubuf) {
cbd35700 4800 ret = -EFAULT;
a2a7d570 4801 goto err_release_maps;
cbd35700
AS
4802 }
4803
0246e64d
AS
4804 if (ret == 0 && env->used_map_cnt) {
4805 /* if program passed verifier, update used_maps in bpf_prog_info */
9bac3d6d
AS
4806 env->prog->aux->used_maps = kmalloc_array(env->used_map_cnt,
4807 sizeof(env->used_maps[0]),
4808 GFP_KERNEL);
0246e64d 4809
9bac3d6d 4810 if (!env->prog->aux->used_maps) {
0246e64d 4811 ret = -ENOMEM;
a2a7d570 4812 goto err_release_maps;
0246e64d
AS
4813 }
4814
9bac3d6d 4815 memcpy(env->prog->aux->used_maps, env->used_maps,
0246e64d 4816 sizeof(env->used_maps[0]) * env->used_map_cnt);
9bac3d6d 4817 env->prog->aux->used_map_cnt = env->used_map_cnt;
0246e64d
AS
4818
4819 /* program is valid. Convert pseudo bpf_ld_imm64 into generic
4820 * bpf_ld_imm64 instructions
4821 */
4822 convert_pseudo_ld_imm64(env);
4823 }
cbd35700 4824
a2a7d570 4825err_release_maps:
9bac3d6d 4826 if (!env->prog->aux->used_maps)
0246e64d
AS
4827 /* if we didn't copy map pointers into bpf_prog_info, release
4828 * them now. Otherwise free_bpf_prog_info() will release them.
4829 */
4830 release_maps(env);
9bac3d6d 4831 *prog = env->prog;
3df126f3 4832err_unlock:
cbd35700 4833 mutex_unlock(&bpf_verifier_lock);
3df126f3
JK
4834 vfree(env->insn_aux_data);
4835err_free_env:
4836 kfree(env);
51580e79
AS
4837 return ret;
4838}