]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/futex.c
futex: Move futex exit handling into futex code
[mirror_ubuntu-bionic-kernel.git] / kernel / futex.c
CommitLineData
1da177e4
LT
1/*
2 * Fast Userspace Mutexes (which I call "Futexes!").
3 * (C) Rusty Russell, IBM 2002
4 *
5 * Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
6 * (C) Copyright 2003 Red Hat Inc, All Rights Reserved
7 *
8 * Removed page pinning, fix privately mapped COW pages and other cleanups
9 * (C) Copyright 2003, 2004 Jamie Lokier
10 *
0771dfef
IM
11 * Robust futex support started by Ingo Molnar
12 * (C) Copyright 2006 Red Hat Inc, All Rights Reserved
13 * Thanks to Thomas Gleixner for suggestions, analysis and fixes.
14 *
c87e2837
IM
15 * PI-futex support started by Ingo Molnar and Thomas Gleixner
16 * Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
17 * Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
18 *
34f01cc1
ED
19 * PRIVATE futexes by Eric Dumazet
20 * Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
21 *
52400ba9
DH
22 * Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
23 * Copyright (C) IBM Corporation, 2009
24 * Thanks to Thomas Gleixner for conceptual design and careful reviews.
25 *
1da177e4
LT
26 * Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
27 * enough at me, Linus for the original (flawed) idea, Matthew
28 * Kirkwood for proof-of-concept implementation.
29 *
30 * "The futexes are also cursed."
31 * "But they come in a choice of three flavours!"
32 *
33 * This program is free software; you can redistribute it and/or modify
34 * it under the terms of the GNU General Public License as published by
35 * the Free Software Foundation; either version 2 of the License, or
36 * (at your option) any later version.
37 *
38 * This program is distributed in the hope that it will be useful,
39 * but WITHOUT ANY WARRANTY; without even the implied warranty of
40 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
41 * GNU General Public License for more details.
42 *
43 * You should have received a copy of the GNU General Public License
44 * along with this program; if not, write to the Free Software
45 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
46 */
f6d7b233 47#include <linux/compat.h>
1da177e4
LT
48#include <linux/slab.h>
49#include <linux/poll.h>
50#include <linux/fs.h>
51#include <linux/file.h>
52#include <linux/jhash.h>
53#include <linux/init.h>
54#include <linux/futex.h>
55#include <linux/mount.h>
56#include <linux/pagemap.h>
57#include <linux/syscalls.h>
7ed20e1a 58#include <linux/signal.h>
9984de1a 59#include <linux/export.h>
fd5eea42 60#include <linux/magic.h>
b488893a
PE
61#include <linux/pid.h>
62#include <linux/nsproxy.h>
bdbb776f 63#include <linux/ptrace.h>
8bd75c77 64#include <linux/sched/rt.h>
84f001e1 65#include <linux/sched/wake_q.h>
6e84f315 66#include <linux/sched/mm.h>
13d60f4b 67#include <linux/hugetlb.h>
88c8004f 68#include <linux/freezer.h>
a52b89eb 69#include <linux/bootmem.h>
ab51fbab 70#include <linux/fault-inject.h>
b488893a 71
4732efbe 72#include <asm/futex.h>
1da177e4 73
1696a8be 74#include "locking/rtmutex_common.h"
c87e2837 75
99b60ce6 76/*
d7e8af1a
DB
77 * READ this before attempting to hack on futexes!
78 *
79 * Basic futex operation and ordering guarantees
80 * =============================================
99b60ce6
TG
81 *
82 * The waiter reads the futex value in user space and calls
83 * futex_wait(). This function computes the hash bucket and acquires
84 * the hash bucket lock. After that it reads the futex user space value
b0c29f79
DB
85 * again and verifies that the data has not changed. If it has not changed
86 * it enqueues itself into the hash bucket, releases the hash bucket lock
87 * and schedules.
99b60ce6
TG
88 *
89 * The waker side modifies the user space value of the futex and calls
b0c29f79
DB
90 * futex_wake(). This function computes the hash bucket and acquires the
91 * hash bucket lock. Then it looks for waiters on that futex in the hash
92 * bucket and wakes them.
99b60ce6 93 *
b0c29f79
DB
94 * In futex wake up scenarios where no tasks are blocked on a futex, taking
95 * the hb spinlock can be avoided and simply return. In order for this
96 * optimization to work, ordering guarantees must exist so that the waiter
97 * being added to the list is acknowledged when the list is concurrently being
98 * checked by the waker, avoiding scenarios like the following:
99b60ce6
TG
99 *
100 * CPU 0 CPU 1
101 * val = *futex;
102 * sys_futex(WAIT, futex, val);
103 * futex_wait(futex, val);
104 * uval = *futex;
105 * *futex = newval;
106 * sys_futex(WAKE, futex);
107 * futex_wake(futex);
108 * if (queue_empty())
109 * return;
110 * if (uval == val)
111 * lock(hash_bucket(futex));
112 * queue();
113 * unlock(hash_bucket(futex));
114 * schedule();
115 *
116 * This would cause the waiter on CPU 0 to wait forever because it
117 * missed the transition of the user space value from val to newval
118 * and the waker did not find the waiter in the hash bucket queue.
99b60ce6 119 *
b0c29f79
DB
120 * The correct serialization ensures that a waiter either observes
121 * the changed user space value before blocking or is woken by a
122 * concurrent waker:
123 *
124 * CPU 0 CPU 1
99b60ce6
TG
125 * val = *futex;
126 * sys_futex(WAIT, futex, val);
127 * futex_wait(futex, val);
b0c29f79 128 *
d7e8af1a 129 * waiters++; (a)
8ad7b378
DB
130 * smp_mb(); (A) <-- paired with -.
131 * |
132 * lock(hash_bucket(futex)); |
133 * |
134 * uval = *futex; |
135 * | *futex = newval;
136 * | sys_futex(WAKE, futex);
137 * | futex_wake(futex);
138 * |
139 * `--------> smp_mb(); (B)
99b60ce6 140 * if (uval == val)
b0c29f79 141 * queue();
99b60ce6 142 * unlock(hash_bucket(futex));
b0c29f79
DB
143 * schedule(); if (waiters)
144 * lock(hash_bucket(futex));
d7e8af1a
DB
145 * else wake_waiters(futex);
146 * waiters--; (b) unlock(hash_bucket(futex));
b0c29f79 147 *
d7e8af1a
DB
148 * Where (A) orders the waiters increment and the futex value read through
149 * atomic operations (see hb_waiters_inc) and where (B) orders the write
993b2ff2
DB
150 * to futex and the waiters read -- this is done by the barriers for both
151 * shared and private futexes in get_futex_key_refs().
b0c29f79
DB
152 *
153 * This yields the following case (where X:=waiters, Y:=futex):
154 *
155 * X = Y = 0
156 *
157 * w[X]=1 w[Y]=1
158 * MB MB
159 * r[Y]=y r[X]=x
160 *
161 * Which guarantees that x==0 && y==0 is impossible; which translates back into
162 * the guarantee that we cannot both miss the futex variable change and the
163 * enqueue.
d7e8af1a
DB
164 *
165 * Note that a new waiter is accounted for in (a) even when it is possible that
166 * the wait call can return error, in which case we backtrack from it in (b).
167 * Refer to the comment in queue_lock().
168 *
169 * Similarly, in order to account for waiters being requeued on another
170 * address we always increment the waiters for the destination bucket before
171 * acquiring the lock. It then decrements them again after releasing it -
172 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
173 * will do the additional required waiter count housekeeping. This is done for
174 * double_lock_hb() and double_unlock_hb(), respectively.
99b60ce6
TG
175 */
176
f6d7b233
AB
177#ifdef CONFIG_HAVE_FUTEX_CMPXCHG
178#define futex_cmpxchg_enabled 1
179#else
180static int __read_mostly futex_cmpxchg_enabled;
03b8c7b6 181#endif
a0c1e907 182
b41277dc
DH
183/*
184 * Futex flags used to encode options to functions and preserve them across
185 * restarts.
186 */
784bdf3b
TG
187#ifdef CONFIG_MMU
188# define FLAGS_SHARED 0x01
189#else
190/*
191 * NOMMU does not have per process address space. Let the compiler optimize
192 * code away.
193 */
194# define FLAGS_SHARED 0x00
195#endif
b41277dc
DH
196#define FLAGS_CLOCKRT 0x02
197#define FLAGS_HAS_TIMEOUT 0x04
198
c87e2837
IM
199/*
200 * Priority Inheritance state:
201 */
202struct futex_pi_state {
203 /*
204 * list of 'owned' pi_state instances - these have to be
205 * cleaned up in do_exit() if the task exits prematurely:
206 */
207 struct list_head list;
208
209 /*
210 * The PI object:
211 */
212 struct rt_mutex pi_mutex;
213
214 struct task_struct *owner;
215 atomic_t refcount;
216
217 union futex_key key;
3859a271 218} __randomize_layout;
c87e2837 219
d8d88fbb
DH
220/**
221 * struct futex_q - The hashed futex queue entry, one per waiting task
fb62db2b 222 * @list: priority-sorted list of tasks waiting on this futex
d8d88fbb
DH
223 * @task: the task waiting on the futex
224 * @lock_ptr: the hash bucket lock
225 * @key: the key the futex is hashed on
226 * @pi_state: optional priority inheritance state
227 * @rt_waiter: rt_waiter storage for use with requeue_pi
228 * @requeue_pi_key: the requeue_pi target futex key
229 * @bitset: bitset for the optional bitmasked wakeup
230 *
ac6424b9 231 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
1da177e4
LT
232 * we can wake only the relevant ones (hashed queues may be shared).
233 *
234 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
ec92d082 235 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
fb62db2b 236 * The order of wakeup is always to make the first condition true, then
d8d88fbb
DH
237 * the second.
238 *
239 * PI futexes are typically woken before they are removed from the hash list via
240 * the rt_mutex code. See unqueue_me_pi().
1da177e4
LT
241 */
242struct futex_q {
ec92d082 243 struct plist_node list;
1da177e4 244
d8d88fbb 245 struct task_struct *task;
1da177e4 246 spinlock_t *lock_ptr;
1da177e4 247 union futex_key key;
c87e2837 248 struct futex_pi_state *pi_state;
52400ba9 249 struct rt_mutex_waiter *rt_waiter;
84bc4af5 250 union futex_key *requeue_pi_key;
cd689985 251 u32 bitset;
3859a271 252} __randomize_layout;
1da177e4 253
5bdb05f9
DH
254static const struct futex_q futex_q_init = {
255 /* list gets initialized in queue_me()*/
256 .key = FUTEX_KEY_INIT,
257 .bitset = FUTEX_BITSET_MATCH_ANY
258};
259
1da177e4 260/*
b2d0994b
DH
261 * Hash buckets are shared by all the futex_keys that hash to the same
262 * location. Each key may have multiple futex_q structures, one for each task
263 * waiting on a futex.
1da177e4
LT
264 */
265struct futex_hash_bucket {
11d4616b 266 atomic_t waiters;
ec92d082
PP
267 spinlock_t lock;
268 struct plist_head chain;
a52b89eb 269} ____cacheline_aligned_in_smp;
1da177e4 270
ac742d37
RV
271/*
272 * The base of the bucket array and its size are always used together
273 * (after initialization only in hash_futex()), so ensure that they
274 * reside in the same cacheline.
275 */
276static struct {
277 struct futex_hash_bucket *queues;
278 unsigned long hashsize;
279} __futex_data __read_mostly __aligned(2*sizeof(long));
280#define futex_queues (__futex_data.queues)
281#define futex_hashsize (__futex_data.hashsize)
a52b89eb 282
1da177e4 283
ab51fbab
DB
284/*
285 * Fault injections for futexes.
286 */
287#ifdef CONFIG_FAIL_FUTEX
288
289static struct {
290 struct fault_attr attr;
291
621a5f7a 292 bool ignore_private;
ab51fbab
DB
293} fail_futex = {
294 .attr = FAULT_ATTR_INITIALIZER,
621a5f7a 295 .ignore_private = false,
ab51fbab
DB
296};
297
298static int __init setup_fail_futex(char *str)
299{
300 return setup_fault_attr(&fail_futex.attr, str);
301}
302__setup("fail_futex=", setup_fail_futex);
303
5d285a7f 304static bool should_fail_futex(bool fshared)
ab51fbab
DB
305{
306 if (fail_futex.ignore_private && !fshared)
307 return false;
308
309 return should_fail(&fail_futex.attr, 1);
310}
311
312#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
313
314static int __init fail_futex_debugfs(void)
315{
316 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
317 struct dentry *dir;
318
319 dir = fault_create_debugfs_attr("fail_futex", NULL,
320 &fail_futex.attr);
321 if (IS_ERR(dir))
322 return PTR_ERR(dir);
323
324 if (!debugfs_create_bool("ignore-private", mode, dir,
325 &fail_futex.ignore_private)) {
326 debugfs_remove_recursive(dir);
327 return -ENOMEM;
328 }
329
330 return 0;
331}
332
333late_initcall(fail_futex_debugfs);
334
335#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
336
337#else
338static inline bool should_fail_futex(bool fshared)
339{
340 return false;
341}
342#endif /* CONFIG_FAIL_FUTEX */
343
e891c8f7
TG
344#ifdef CONFIG_COMPAT
345static void compat_exit_robust_list(struct task_struct *curr);
346#else
347static inline void compat_exit_robust_list(struct task_struct *curr) { }
348#endif
349
b0c29f79
DB
350static inline void futex_get_mm(union futex_key *key)
351{
f1f10076 352 mmgrab(key->private.mm);
b0c29f79
DB
353 /*
354 * Ensure futex_get_mm() implies a full barrier such that
355 * get_futex_key() implies a full barrier. This is relied upon
8ad7b378 356 * as smp_mb(); (B), see the ordering comment above.
b0c29f79 357 */
4e857c58 358 smp_mb__after_atomic();
b0c29f79
DB
359}
360
11d4616b
LT
361/*
362 * Reflects a new waiter being added to the waitqueue.
363 */
364static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
b0c29f79
DB
365{
366#ifdef CONFIG_SMP
11d4616b 367 atomic_inc(&hb->waiters);
b0c29f79 368 /*
11d4616b 369 * Full barrier (A), see the ordering comment above.
b0c29f79 370 */
4e857c58 371 smp_mb__after_atomic();
11d4616b
LT
372#endif
373}
374
375/*
376 * Reflects a waiter being removed from the waitqueue by wakeup
377 * paths.
378 */
379static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
380{
381#ifdef CONFIG_SMP
382 atomic_dec(&hb->waiters);
383#endif
384}
b0c29f79 385
11d4616b
LT
386static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
387{
388#ifdef CONFIG_SMP
389 return atomic_read(&hb->waiters);
b0c29f79 390#else
11d4616b 391 return 1;
b0c29f79
DB
392#endif
393}
394
e8b61b3f
TG
395/**
396 * hash_futex - Return the hash bucket in the global hash
397 * @key: Pointer to the futex key for which the hash is calculated
398 *
399 * We hash on the keys returned from get_futex_key (see below) and return the
400 * corresponding hash bucket in the global hash.
1da177e4
LT
401 */
402static struct futex_hash_bucket *hash_futex(union futex_key *key)
403{
404 u32 hash = jhash2((u32*)&key->both.word,
405 (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
406 key->both.offset);
a52b89eb 407 return &futex_queues[hash & (futex_hashsize - 1)];
1da177e4
LT
408}
409
e8b61b3f
TG
410
411/**
412 * match_futex - Check whether two futex keys are equal
413 * @key1: Pointer to key1
414 * @key2: Pointer to key2
415 *
1da177e4
LT
416 * Return 1 if two futex_keys are equal, 0 otherwise.
417 */
418static inline int match_futex(union futex_key *key1, union futex_key *key2)
419{
2bc87203
DH
420 return (key1 && key2
421 && key1->both.word == key2->both.word
1da177e4
LT
422 && key1->both.ptr == key2->both.ptr
423 && key1->both.offset == key2->both.offset);
424}
425
38d47c1b
PZ
426/*
427 * Take a reference to the resource addressed by a key.
428 * Can be called while holding spinlocks.
429 *
430 */
431static void get_futex_key_refs(union futex_key *key)
432{
433 if (!key->both.ptr)
434 return;
435
784bdf3b
TG
436 /*
437 * On MMU less systems futexes are always "private" as there is no per
438 * process address space. We need the smp wmb nevertheless - yes,
439 * arch/blackfin has MMU less SMP ...
440 */
441 if (!IS_ENABLED(CONFIG_MMU)) {
442 smp_mb(); /* explicit smp_mb(); (B) */
443 return;
444 }
445
38d47c1b
PZ
446 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
447 case FUT_OFF_INODE:
8ad7b378 448 ihold(key->shared.inode); /* implies smp_mb(); (B) */
38d47c1b
PZ
449 break;
450 case FUT_OFF_MMSHARED:
8ad7b378 451 futex_get_mm(key); /* implies smp_mb(); (B) */
38d47c1b 452 break;
76835b0e 453 default:
993b2ff2
DB
454 /*
455 * Private futexes do not hold reference on an inode or
456 * mm, therefore the only purpose of calling get_futex_key_refs
457 * is because we need the barrier for the lockless waiter check.
458 */
8ad7b378 459 smp_mb(); /* explicit smp_mb(); (B) */
38d47c1b
PZ
460 }
461}
462
463/*
464 * Drop a reference to the resource addressed by a key.
993b2ff2
DB
465 * The hash bucket spinlock must not be held. This is
466 * a no-op for private futexes, see comment in the get
467 * counterpart.
38d47c1b
PZ
468 */
469static void drop_futex_key_refs(union futex_key *key)
470{
90621c40
DH
471 if (!key->both.ptr) {
472 /* If we're here then we tried to put a key we failed to get */
473 WARN_ON_ONCE(1);
38d47c1b 474 return;
90621c40 475 }
38d47c1b 476
784bdf3b
TG
477 if (!IS_ENABLED(CONFIG_MMU))
478 return;
479
38d47c1b
PZ
480 switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
481 case FUT_OFF_INODE:
482 iput(key->shared.inode);
483 break;
484 case FUT_OFF_MMSHARED:
485 mmdrop(key->private.mm);
486 break;
487 }
488}
489
34f01cc1 490/**
d96ee56c
DH
491 * get_futex_key() - Get parameters which are the keys for a futex
492 * @uaddr: virtual address of the futex
493 * @fshared: 0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
494 * @key: address where result is stored.
9ea71503
SB
495 * @rw: mapping needs to be read/write (values: VERIFY_READ,
496 * VERIFY_WRITE)
34f01cc1 497 *
6c23cbbd
RD
498 * Return: a negative error code or 0
499 *
7b4ff1ad 500 * The key words are stored in @key on success.
1da177e4 501 *
6131ffaa 502 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
1da177e4
LT
503 * offset_within_page). For private mappings, it's (uaddr, current->mm).
504 * We can usually work out the index without swapping in the page.
505 *
b2d0994b 506 * lock_page() might sleep, the caller should not hold a spinlock.
1da177e4 507 */
64d1304a 508static int
9ea71503 509get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
1da177e4 510{
e2970f2f 511 unsigned long address = (unsigned long)uaddr;
1da177e4 512 struct mm_struct *mm = current->mm;
077fa7ae 513 struct page *page, *tail;
14d27abd 514 struct address_space *mapping;
9ea71503 515 int err, ro = 0;
1da177e4
LT
516
517 /*
518 * The futex address must be "naturally" aligned.
519 */
e2970f2f 520 key->both.offset = address % PAGE_SIZE;
34f01cc1 521 if (unlikely((address % sizeof(u32)) != 0))
1da177e4 522 return -EINVAL;
e2970f2f 523 address -= key->both.offset;
1da177e4 524
5cdec2d8
LT
525 if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
526 return -EFAULT;
527
ab51fbab
DB
528 if (unlikely(should_fail_futex(fshared)))
529 return -EFAULT;
530
34f01cc1
ED
531 /*
532 * PROCESS_PRIVATE futexes are fast.
533 * As the mm cannot disappear under us and the 'key' only needs
534 * virtual address, we dont even have to find the underlying vma.
535 * Note : We do have to check 'uaddr' is a valid user address,
536 * but access_ok() should be faster than find_vma()
537 */
538 if (!fshared) {
34f01cc1
ED
539 key->private.mm = mm;
540 key->private.address = address;
8ad7b378 541 get_futex_key_refs(key); /* implies smp_mb(); (B) */
34f01cc1
ED
542 return 0;
543 }
1da177e4 544
38d47c1b 545again:
ab51fbab
DB
546 /* Ignore any VERIFY_READ mapping (futex common case) */
547 if (unlikely(should_fail_futex(fshared)))
548 return -EFAULT;
549
7485d0d3 550 err = get_user_pages_fast(address, 1, 1, &page);
9ea71503
SB
551 /*
552 * If write access is not required (eg. FUTEX_WAIT), try
553 * and get read-only access.
554 */
555 if (err == -EFAULT && rw == VERIFY_READ) {
556 err = get_user_pages_fast(address, 1, 0, &page);
557 ro = 1;
558 }
38d47c1b
PZ
559 if (err < 0)
560 return err;
9ea71503
SB
561 else
562 err = 0;
38d47c1b 563
65d8fc77
MG
564 /*
565 * The treatment of mapping from this point on is critical. The page
566 * lock protects many things but in this context the page lock
567 * stabilizes mapping, prevents inode freeing in the shared
568 * file-backed region case and guards against movement to swap cache.
569 *
570 * Strictly speaking the page lock is not needed in all cases being
571 * considered here and page lock forces unnecessarily serialization
572 * From this point on, mapping will be re-verified if necessary and
573 * page lock will be acquired only if it is unavoidable
077fa7ae
MG
574 *
575 * Mapping checks require the head page for any compound page so the
576 * head page and mapping is looked up now. For anonymous pages, it
577 * does not matter if the page splits in the future as the key is
578 * based on the address. For filesystem-backed pages, the tail is
579 * required as the index of the page determines the key. For
580 * base pages, there is no tail page and tail == page.
65d8fc77 581 */
077fa7ae 582 tail = page;
65d8fc77
MG
583 page = compound_head(page);
584 mapping = READ_ONCE(page->mapping);
585
e6780f72 586 /*
14d27abd 587 * If page->mapping is NULL, then it cannot be a PageAnon
e6780f72
HD
588 * page; but it might be the ZERO_PAGE or in the gate area or
589 * in a special mapping (all cases which we are happy to fail);
590 * or it may have been a good file page when get_user_pages_fast
591 * found it, but truncated or holepunched or subjected to
592 * invalidate_complete_page2 before we got the page lock (also
593 * cases which we are happy to fail). And we hold a reference,
594 * so refcount care in invalidate_complete_page's remove_mapping
595 * prevents drop_caches from setting mapping to NULL beneath us.
596 *
597 * The case we do have to guard against is when memory pressure made
598 * shmem_writepage move it from filecache to swapcache beneath us:
14d27abd 599 * an unlikely race, but we do need to retry for page->mapping.
e6780f72 600 */
65d8fc77
MG
601 if (unlikely(!mapping)) {
602 int shmem_swizzled;
603
604 /*
605 * Page lock is required to identify which special case above
606 * applies. If this is really a shmem page then the page lock
607 * will prevent unexpected transitions.
608 */
609 lock_page(page);
610 shmem_swizzled = PageSwapCache(page) || page->mapping;
14d27abd
KS
611 unlock_page(page);
612 put_page(page);
65d8fc77 613
e6780f72
HD
614 if (shmem_swizzled)
615 goto again;
65d8fc77 616
e6780f72 617 return -EFAULT;
38d47c1b 618 }
1da177e4
LT
619
620 /*
621 * Private mappings are handled in a simple way.
622 *
65d8fc77
MG
623 * If the futex key is stored on an anonymous page, then the associated
624 * object is the mm which is implicitly pinned by the calling process.
625 *
1da177e4
LT
626 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
627 * it's a read-only handle, it's expected that futexes attach to
38d47c1b 628 * the object not the particular process.
1da177e4 629 */
14d27abd 630 if (PageAnon(page)) {
9ea71503
SB
631 /*
632 * A RO anonymous page will never change and thus doesn't make
633 * sense for futex operations.
634 */
ab51fbab 635 if (unlikely(should_fail_futex(fshared)) || ro) {
9ea71503
SB
636 err = -EFAULT;
637 goto out;
638 }
639
38d47c1b 640 key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
1da177e4 641 key->private.mm = mm;
e2970f2f 642 key->private.address = address;
65d8fc77
MG
643
644 get_futex_key_refs(key); /* implies smp_mb(); (B) */
645
38d47c1b 646 } else {
65d8fc77
MG
647 struct inode *inode;
648
649 /*
650 * The associated futex object in this case is the inode and
651 * the page->mapping must be traversed. Ordinarily this should
652 * be stabilised under page lock but it's not strictly
653 * necessary in this case as we just want to pin the inode, not
654 * update the radix tree or anything like that.
655 *
656 * The RCU read lock is taken as the inode is finally freed
657 * under RCU. If the mapping still matches expectations then the
658 * mapping->host can be safely accessed as being a valid inode.
659 */
660 rcu_read_lock();
661
662 if (READ_ONCE(page->mapping) != mapping) {
663 rcu_read_unlock();
664 put_page(page);
665
666 goto again;
667 }
668
669 inode = READ_ONCE(mapping->host);
670 if (!inode) {
671 rcu_read_unlock();
672 put_page(page);
673
674 goto again;
675 }
676
677 /*
678 * Take a reference unless it is about to be freed. Previously
679 * this reference was taken by ihold under the page lock
680 * pinning the inode in place so i_lock was unnecessary. The
681 * only way for this check to fail is if the inode was
48fb6f4d
MG
682 * truncated in parallel which is almost certainly an
683 * application bug. In such a case, just retry.
65d8fc77
MG
684 *
685 * We are not calling into get_futex_key_refs() in file-backed
686 * cases, therefore a successful atomic_inc return below will
687 * guarantee that get_futex_key() will still imply smp_mb(); (B).
688 */
48fb6f4d 689 if (!atomic_inc_not_zero(&inode->i_count)) {
65d8fc77
MG
690 rcu_read_unlock();
691 put_page(page);
692
693 goto again;
694 }
695
696 /* Should be impossible but lets be paranoid for now */
697 if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
698 err = -EFAULT;
699 rcu_read_unlock();
700 iput(inode);
701
702 goto out;
703 }
704
38d47c1b 705 key->both.offset |= FUT_OFF_INODE; /* inode-based key */
65d8fc77 706 key->shared.inode = inode;
077fa7ae 707 key->shared.pgoff = basepage_index(tail);
65d8fc77 708 rcu_read_unlock();
1da177e4
LT
709 }
710
9ea71503 711out:
14d27abd 712 put_page(page);
9ea71503 713 return err;
1da177e4
LT
714}
715
ae791a2d 716static inline void put_futex_key(union futex_key *key)
1da177e4 717{
38d47c1b 718 drop_futex_key_refs(key);
1da177e4
LT
719}
720
d96ee56c
DH
721/**
722 * fault_in_user_writeable() - Fault in user address and verify RW access
d0725992
TG
723 * @uaddr: pointer to faulting user space address
724 *
725 * Slow path to fixup the fault we just took in the atomic write
726 * access to @uaddr.
727 *
fb62db2b 728 * We have no generic implementation of a non-destructive write to the
d0725992
TG
729 * user address. We know that we faulted in the atomic pagefault
730 * disabled section so we can as well avoid the #PF overhead by
731 * calling get_user_pages() right away.
732 */
733static int fault_in_user_writeable(u32 __user *uaddr)
734{
722d0172
AK
735 struct mm_struct *mm = current->mm;
736 int ret;
737
738 down_read(&mm->mmap_sem);
2efaca92 739 ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
4a9e1cda 740 FAULT_FLAG_WRITE, NULL);
722d0172
AK
741 up_read(&mm->mmap_sem);
742
d0725992
TG
743 return ret < 0 ? ret : 0;
744}
745
4b1c486b
DH
746/**
747 * futex_top_waiter() - Return the highest priority waiter on a futex
d96ee56c
DH
748 * @hb: the hash bucket the futex_q's reside in
749 * @key: the futex key (to distinguish it from other futex futex_q's)
4b1c486b
DH
750 *
751 * Must be called with the hb lock held.
752 */
753static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
754 union futex_key *key)
755{
756 struct futex_q *this;
757
758 plist_for_each_entry(this, &hb->chain, list) {
759 if (match_futex(&this->key, key))
760 return this;
761 }
762 return NULL;
763}
764
37a9d912
ML
765static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
766 u32 uval, u32 newval)
36cf3b5c 767{
37a9d912 768 int ret;
36cf3b5c
TG
769
770 pagefault_disable();
37a9d912 771 ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
36cf3b5c
TG
772 pagefault_enable();
773
37a9d912 774 return ret;
36cf3b5c
TG
775}
776
777static int get_futex_value_locked(u32 *dest, u32 __user *from)
1da177e4
LT
778{
779 int ret;
780
a866374a 781 pagefault_disable();
bd28b145 782 ret = __get_user(*dest, from);
a866374a 783 pagefault_enable();
1da177e4
LT
784
785 return ret ? -EFAULT : 0;
786}
787
c87e2837
IM
788
789/*
790 * PI code:
791 */
792static int refill_pi_state_cache(void)
793{
794 struct futex_pi_state *pi_state;
795
796 if (likely(current->pi_state_cache))
797 return 0;
798
4668edc3 799 pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
c87e2837
IM
800
801 if (!pi_state)
802 return -ENOMEM;
803
c87e2837
IM
804 INIT_LIST_HEAD(&pi_state->list);
805 /* pi_mutex gets initialized later */
806 pi_state->owner = NULL;
807 atomic_set(&pi_state->refcount, 1);
38d47c1b 808 pi_state->key = FUTEX_KEY_INIT;
c87e2837
IM
809
810 current->pi_state_cache = pi_state;
811
812 return 0;
813}
814
bf92cf3a 815static struct futex_pi_state *alloc_pi_state(void)
c87e2837
IM
816{
817 struct futex_pi_state *pi_state = current->pi_state_cache;
818
819 WARN_ON(!pi_state);
820 current->pi_state_cache = NULL;
821
822 return pi_state;
823}
824
bf92cf3a
PZ
825static void get_pi_state(struct futex_pi_state *pi_state)
826{
827 WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
828}
829
30a6b803 830/*
29e9ee5d
TG
831 * Drops a reference to the pi_state object and frees or caches it
832 * when the last reference is gone.
30a6b803 833 */
29e9ee5d 834static void put_pi_state(struct futex_pi_state *pi_state)
c87e2837 835{
30a6b803
BS
836 if (!pi_state)
837 return;
838
c87e2837
IM
839 if (!atomic_dec_and_test(&pi_state->refcount))
840 return;
841
842 /*
843 * If pi_state->owner is NULL, the owner is most probably dying
844 * and has cleaned up the pi_state already
845 */
846 if (pi_state->owner) {
c74aef2d 847 struct task_struct *owner;
c87e2837 848
c74aef2d
PZ
849 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
850 owner = pi_state->owner;
851 if (owner) {
852 raw_spin_lock(&owner->pi_lock);
853 list_del_init(&pi_state->list);
854 raw_spin_unlock(&owner->pi_lock);
855 }
856 rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
857 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
858 }
859
c74aef2d 860 if (current->pi_state_cache) {
c87e2837 861 kfree(pi_state);
c74aef2d 862 } else {
c87e2837
IM
863 /*
864 * pi_state->list is already empty.
865 * clear pi_state->owner.
866 * refcount is at 0 - put it back to 1.
867 */
868 pi_state->owner = NULL;
869 atomic_set(&pi_state->refcount, 1);
870 current->pi_state_cache = pi_state;
871 }
872}
873
874/*
875 * Look up the task based on what TID userspace gave us.
876 * We dont trust it.
877 */
bf92cf3a 878static struct task_struct *futex_find_get_task(pid_t pid)
c87e2837
IM
879{
880 struct task_struct *p;
881
d359b549 882 rcu_read_lock();
228ebcbe 883 p = find_task_by_vpid(pid);
7a0ea09a
MH
884 if (p)
885 get_task_struct(p);
a06381fe 886
d359b549 887 rcu_read_unlock();
c87e2837
IM
888
889 return p;
890}
891
bc2eecd7
NP
892#ifdef CONFIG_FUTEX_PI
893
c87e2837
IM
894/*
895 * This task is holding PI mutexes at exit time => bad.
896 * Kernel cleans up PI-state, but userspace is likely hosed.
897 * (Robust-futex cleanup is separate and might save the day for userspace.)
898 */
e891c8f7 899static void exit_pi_state_list(struct task_struct *curr)
c87e2837 900{
c87e2837
IM
901 struct list_head *next, *head = &curr->pi_state_list;
902 struct futex_pi_state *pi_state;
627371d7 903 struct futex_hash_bucket *hb;
38d47c1b 904 union futex_key key = FUTEX_KEY_INIT;
c87e2837 905
a0c1e907
TG
906 if (!futex_cmpxchg_enabled)
907 return;
c87e2837
IM
908 /*
909 * We are a ZOMBIE and nobody can enqueue itself on
910 * pi_state_list anymore, but we have to be careful
627371d7 911 * versus waiters unqueueing themselves:
c87e2837 912 */
1d615482 913 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 914 while (!list_empty(head)) {
c87e2837
IM
915 next = head->next;
916 pi_state = list_entry(next, struct futex_pi_state, list);
917 key = pi_state->key;
627371d7 918 hb = hash_futex(&key);
153fbd12
PZ
919
920 /*
921 * We can race against put_pi_state() removing itself from the
922 * list (a waiter going away). put_pi_state() will first
923 * decrement the reference count and then modify the list, so
924 * its possible to see the list entry but fail this reference
925 * acquire.
926 *
927 * In that case; drop the locks to let put_pi_state() make
928 * progress and retry the loop.
929 */
930 if (!atomic_inc_not_zero(&pi_state->refcount)) {
931 raw_spin_unlock_irq(&curr->pi_lock);
932 cpu_relax();
933 raw_spin_lock_irq(&curr->pi_lock);
934 continue;
935 }
1d615482 936 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 937
c87e2837 938 spin_lock(&hb->lock);
c74aef2d
PZ
939 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
940 raw_spin_lock(&curr->pi_lock);
627371d7
IM
941 /*
942 * We dropped the pi-lock, so re-check whether this
943 * task still owns the PI-state:
944 */
c87e2837 945 if (head->next != next) {
153fbd12 946 /* retain curr->pi_lock for the loop invariant */
c74aef2d 947 raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
c87e2837 948 spin_unlock(&hb->lock);
153fbd12 949 put_pi_state(pi_state);
c87e2837
IM
950 continue;
951 }
952
c87e2837 953 WARN_ON(pi_state->owner != curr);
627371d7
IM
954 WARN_ON(list_empty(&pi_state->list));
955 list_del_init(&pi_state->list);
c87e2837 956 pi_state->owner = NULL;
c87e2837 957
153fbd12 958 raw_spin_unlock(&curr->pi_lock);
c74aef2d 959 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
c87e2837
IM
960 spin_unlock(&hb->lock);
961
16ffa12d
PZ
962 rt_mutex_futex_unlock(&pi_state->pi_mutex);
963 put_pi_state(pi_state);
964
1d615482 965 raw_spin_lock_irq(&curr->pi_lock);
c87e2837 966 }
1d615482 967 raw_spin_unlock_irq(&curr->pi_lock);
c87e2837 968}
e891c8f7
TG
969#else
970static inline void exit_pi_state_list(struct task_struct *curr) { }
bc2eecd7
NP
971#endif
972
54a21788
TG
973/*
974 * We need to check the following states:
975 *
976 * Waiter | pi_state | pi->owner | uTID | uODIED | ?
977 *
978 * [1] NULL | --- | --- | 0 | 0/1 | Valid
979 * [2] NULL | --- | --- | >0 | 0/1 | Valid
980 *
981 * [3] Found | NULL | -- | Any | 0/1 | Invalid
982 *
983 * [4] Found | Found | NULL | 0 | 1 | Valid
984 * [5] Found | Found | NULL | >0 | 1 | Invalid
985 *
986 * [6] Found | Found | task | 0 | 1 | Valid
987 *
988 * [7] Found | Found | NULL | Any | 0 | Invalid
989 *
990 * [8] Found | Found | task | ==taskTID | 0/1 | Valid
991 * [9] Found | Found | task | 0 | 0 | Invalid
992 * [10] Found | Found | task | !=taskTID | 0/1 | Invalid
993 *
994 * [1] Indicates that the kernel can acquire the futex atomically. We
995 * came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
996 *
997 * [2] Valid, if TID does not belong to a kernel thread. If no matching
998 * thread is found then it indicates that the owner TID has died.
999 *
1000 * [3] Invalid. The waiter is queued on a non PI futex
1001 *
1002 * [4] Valid state after exit_robust_list(), which sets the user space
1003 * value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
1004 *
1005 * [5] The user space value got manipulated between exit_robust_list()
1006 * and exit_pi_state_list()
1007 *
1008 * [6] Valid state after exit_pi_state_list() which sets the new owner in
1009 * the pi_state but cannot access the user space value.
1010 *
1011 * [7] pi_state->owner can only be NULL when the OWNER_DIED bit is set.
1012 *
1013 * [8] Owner and user space value match
1014 *
1015 * [9] There is no transient state which sets the user space TID to 0
1016 * except exit_robust_list(), but this is indicated by the
1017 * FUTEX_OWNER_DIED bit. See [4]
1018 *
1019 * [10] There is no transient state which leaves owner and user space
1020 * TID out of sync.
734009e9
PZ
1021 *
1022 *
1023 * Serialization and lifetime rules:
1024 *
1025 * hb->lock:
1026 *
1027 * hb -> futex_q, relation
1028 * futex_q -> pi_state, relation
1029 *
1030 * (cannot be raw because hb can contain arbitrary amount
1031 * of futex_q's)
1032 *
1033 * pi_mutex->wait_lock:
1034 *
1035 * {uval, pi_state}
1036 *
1037 * (and pi_mutex 'obviously')
1038 *
1039 * p->pi_lock:
1040 *
1041 * p->pi_state_list -> pi_state->list, relation
1042 *
1043 * pi_state->refcount:
1044 *
1045 * pi_state lifetime
1046 *
1047 *
1048 * Lock order:
1049 *
1050 * hb->lock
1051 * pi_mutex->wait_lock
1052 * p->pi_lock
1053 *
54a21788 1054 */
e60cbc5c
TG
1055
1056/*
1057 * Validate that the existing waiter has a pi_state and sanity check
1058 * the pi_state against the user space value. If correct, attach to
1059 * it.
1060 */
734009e9
PZ
1061static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1062 struct futex_pi_state *pi_state,
e60cbc5c 1063 struct futex_pi_state **ps)
c87e2837 1064{
778e9a9c 1065 pid_t pid = uval & FUTEX_TID_MASK;
94ffac5d
PZ
1066 u32 uval2;
1067 int ret;
c87e2837 1068
e60cbc5c
TG
1069 /*
1070 * Userspace might have messed up non-PI and PI futexes [3]
1071 */
1072 if (unlikely(!pi_state))
1073 return -EINVAL;
06a9ec29 1074
734009e9
PZ
1075 /*
1076 * We get here with hb->lock held, and having found a
1077 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1078 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1079 * which in turn means that futex_lock_pi() still has a reference on
1080 * our pi_state.
16ffa12d
PZ
1081 *
1082 * The waiter holding a reference on @pi_state also protects against
1083 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1084 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1085 * free pi_state before we can take a reference ourselves.
734009e9 1086 */
e60cbc5c 1087 WARN_ON(!atomic_read(&pi_state->refcount));
59647b6a 1088
734009e9
PZ
1089 /*
1090 * Now that we have a pi_state, we can acquire wait_lock
1091 * and do the state validation.
1092 */
1093 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1094
1095 /*
1096 * Since {uval, pi_state} is serialized by wait_lock, and our current
1097 * uval was read without holding it, it can have changed. Verify it
1098 * still is what we expect it to be, otherwise retry the entire
1099 * operation.
1100 */
1101 if (get_futex_value_locked(&uval2, uaddr))
1102 goto out_efault;
1103
1104 if (uval != uval2)
1105 goto out_eagain;
1106
e60cbc5c
TG
1107 /*
1108 * Handle the owner died case:
1109 */
1110 if (uval & FUTEX_OWNER_DIED) {
bd1dbcc6 1111 /*
e60cbc5c
TG
1112 * exit_pi_state_list sets owner to NULL and wakes the
1113 * topmost waiter. The task which acquires the
1114 * pi_state->rt_mutex will fixup owner.
bd1dbcc6 1115 */
e60cbc5c 1116 if (!pi_state->owner) {
59647b6a 1117 /*
e60cbc5c
TG
1118 * No pi state owner, but the user space TID
1119 * is not 0. Inconsistent state. [5]
59647b6a 1120 */
e60cbc5c 1121 if (pid)
734009e9 1122 goto out_einval;
bd1dbcc6 1123 /*
e60cbc5c 1124 * Take a ref on the state and return success. [4]
866293ee 1125 */
734009e9 1126 goto out_attach;
c87e2837 1127 }
bd1dbcc6
TG
1128
1129 /*
e60cbc5c
TG
1130 * If TID is 0, then either the dying owner has not
1131 * yet executed exit_pi_state_list() or some waiter
1132 * acquired the rtmutex in the pi state, but did not
1133 * yet fixup the TID in user space.
1134 *
1135 * Take a ref on the state and return success. [6]
1136 */
1137 if (!pid)
734009e9 1138 goto out_attach;
e60cbc5c
TG
1139 } else {
1140 /*
1141 * If the owner died bit is not set, then the pi_state
1142 * must have an owner. [7]
bd1dbcc6 1143 */
e60cbc5c 1144 if (!pi_state->owner)
734009e9 1145 goto out_einval;
c87e2837
IM
1146 }
1147
e60cbc5c
TG
1148 /*
1149 * Bail out if user space manipulated the futex value. If pi
1150 * state exists then the owner TID must be the same as the
1151 * user space TID. [9/10]
1152 */
1153 if (pid != task_pid_vnr(pi_state->owner))
734009e9
PZ
1154 goto out_einval;
1155
1156out_attach:
bf92cf3a 1157 get_pi_state(pi_state);
734009e9 1158 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
e60cbc5c
TG
1159 *ps = pi_state;
1160 return 0;
734009e9
PZ
1161
1162out_einval:
1163 ret = -EINVAL;
1164 goto out_error;
1165
1166out_eagain:
1167 ret = -EAGAIN;
1168 goto out_error;
1169
1170out_efault:
1171 ret = -EFAULT;
1172 goto out_error;
1173
1174out_error:
1175 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1176 return ret;
e60cbc5c
TG
1177}
1178
d2dfa785
TG
1179static int handle_exit_race(u32 __user *uaddr, u32 uval,
1180 struct task_struct *tsk)
1181{
1182 u32 uval2;
1183
1184 /*
1185 * If PF_EXITPIDONE is not yet set, then try again.
1186 */
1187 if (tsk && !(tsk->flags & PF_EXITPIDONE))
1188 return -EAGAIN;
1189
1190 /*
1191 * Reread the user space value to handle the following situation:
1192 *
1193 * CPU0 CPU1
1194 *
1195 * sys_exit() sys_futex()
1196 * do_exit() futex_lock_pi()
1197 * futex_lock_pi_atomic()
1198 * exit_signals(tsk) No waiters:
1199 * tsk->flags |= PF_EXITING; *uaddr == 0x00000PID
1200 * mm_release(tsk) Set waiter bit
1201 * exit_robust_list(tsk) { *uaddr = 0x80000PID;
1202 * Set owner died attach_to_pi_owner() {
1203 * *uaddr = 0xC0000000; tsk = get_task(PID);
1204 * } if (!tsk->flags & PF_EXITING) {
1205 * ... attach();
1206 * tsk->flags |= PF_EXITPIDONE; } else {
1207 * if (!(tsk->flags & PF_EXITPIDONE))
1208 * return -EAGAIN;
1209 * return -ESRCH; <--- FAIL
1210 * }
1211 *
1212 * Returning ESRCH unconditionally is wrong here because the
1213 * user space value has been changed by the exiting task.
1214 *
1215 * The same logic applies to the case where the exiting task is
1216 * already gone.
1217 */
1218 if (get_futex_value_locked(&uval2, uaddr))
1219 return -EFAULT;
1220
1221 /* If the user space value has changed, try again. */
1222 if (uval2 != uval)
1223 return -EAGAIN;
1224
1225 /*
1226 * The exiting task did not have a robust list, the robust list was
1227 * corrupted or the user space value in *uaddr is simply bogus.
1228 * Give up and tell user space.
1229 */
1230 return -ESRCH;
1231}
1232
04e1b2e5
TG
1233/*
1234 * Lookup the task for the TID provided from user space and attach to
1235 * it after doing proper sanity checks.
1236 */
d2dfa785 1237static int attach_to_pi_owner(u32 __user *uaddr, u32 uval, union futex_key *key,
04e1b2e5 1238 struct futex_pi_state **ps)
e60cbc5c 1239{
e60cbc5c 1240 pid_t pid = uval & FUTEX_TID_MASK;
04e1b2e5
TG
1241 struct futex_pi_state *pi_state;
1242 struct task_struct *p;
e60cbc5c 1243
c87e2837 1244 /*
e3f2ddea 1245 * We are the first waiter - try to look up the real owner and attach
54a21788 1246 * the new pi_state to it, but bail out when TID = 0 [1]
d2dfa785
TG
1247 *
1248 * The !pid check is paranoid. None of the call sites should end up
1249 * with pid == 0, but better safe than sorry. Let the caller retry
c87e2837 1250 */
778e9a9c 1251 if (!pid)
d2dfa785 1252 return -EAGAIN;
c87e2837 1253 p = futex_find_get_task(pid);
7a0ea09a 1254 if (!p)
d2dfa785 1255 return handle_exit_race(uaddr, uval, NULL);
778e9a9c 1256
a2129464 1257 if (unlikely(p->flags & PF_KTHREAD)) {
f0d71b3d
TG
1258 put_task_struct(p);
1259 return -EPERM;
1260 }
1261
778e9a9c
AK
1262 /*
1263 * We need to look at the task state flags to figure out,
1264 * whether the task is exiting. To protect against the do_exit
1265 * change of the task flags, we do this protected by
1266 * p->pi_lock:
1267 */
1d615482 1268 raw_spin_lock_irq(&p->pi_lock);
778e9a9c
AK
1269 if (unlikely(p->flags & PF_EXITING)) {
1270 /*
1271 * The task is on the way out. When PF_EXITPIDONE is
1272 * set, we know that the task has finished the
1273 * cleanup:
1274 */
d2dfa785 1275 int ret = handle_exit_race(uaddr, uval, p);
778e9a9c 1276
1d615482 1277 raw_spin_unlock_irq(&p->pi_lock);
778e9a9c
AK
1278 put_task_struct(p);
1279 return ret;
1280 }
c87e2837 1281
54a21788
TG
1282 /*
1283 * No existing pi state. First waiter. [2]
734009e9
PZ
1284 *
1285 * This creates pi_state, we have hb->lock held, this means nothing can
1286 * observe this state, wait_lock is irrelevant.
54a21788 1287 */
c87e2837
IM
1288 pi_state = alloc_pi_state();
1289
1290 /*
04e1b2e5 1291 * Initialize the pi_mutex in locked state and make @p
c87e2837
IM
1292 * the owner of it:
1293 */
1294 rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1295
1296 /* Store the key for possible exit cleanups: */
d0aa7a70 1297 pi_state->key = *key;
c87e2837 1298
627371d7 1299 WARN_ON(!list_empty(&pi_state->list));
c87e2837 1300 list_add(&pi_state->list, &p->pi_state_list);
c74aef2d
PZ
1301 /*
1302 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1303 * because there is no concurrency as the object is not published yet.
1304 */
c87e2837 1305 pi_state->owner = p;
1d615482 1306 raw_spin_unlock_irq(&p->pi_lock);
c87e2837
IM
1307
1308 put_task_struct(p);
1309
d0aa7a70 1310 *ps = pi_state;
c87e2837
IM
1311
1312 return 0;
1313}
1314
734009e9
PZ
1315static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1316 struct futex_hash_bucket *hb,
04e1b2e5
TG
1317 union futex_key *key, struct futex_pi_state **ps)
1318{
499f5aca 1319 struct futex_q *top_waiter = futex_top_waiter(hb, key);
04e1b2e5
TG
1320
1321 /*
1322 * If there is a waiter on that futex, validate it and
1323 * attach to the pi_state when the validation succeeds.
1324 */
499f5aca 1325 if (top_waiter)
734009e9 1326 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
04e1b2e5
TG
1327
1328 /*
1329 * We are the first waiter - try to look up the owner based on
1330 * @uval and attach to it.
1331 */
d2dfa785 1332 return attach_to_pi_owner(uaddr, uval, key, ps);
04e1b2e5
TG
1333}
1334
af54d6a1
TG
1335static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1336{
e5733e53 1337 int err;
af54d6a1
TG
1338 u32 uninitialized_var(curval);
1339
ab51fbab
DB
1340 if (unlikely(should_fail_futex(true)))
1341 return -EFAULT;
1342
e5733e53
WD
1343 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1344 if (unlikely(err))
1345 return err;
af54d6a1 1346
734009e9 1347 /* If user space value changed, let the caller retry */
af54d6a1
TG
1348 return curval != uval ? -EAGAIN : 0;
1349}
1350
1a52084d 1351/**
d96ee56c 1352 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
bab5bc9e
DH
1353 * @uaddr: the pi futex user address
1354 * @hb: the pi futex hash bucket
1355 * @key: the futex key associated with uaddr and hb
1356 * @ps: the pi_state pointer where we store the result of the
1357 * lookup
1358 * @task: the task to perform the atomic lock work for. This will
1359 * be "current" except in the case of requeue pi.
1360 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
1a52084d 1361 *
6c23cbbd 1362 * Return:
7b4ff1ad
MCC
1363 * - 0 - ready to wait;
1364 * - 1 - acquired the lock;
1365 * - <0 - error
1a52084d
DH
1366 *
1367 * The hb->lock and futex_key refs shall be held by the caller.
1368 */
1369static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1370 union futex_key *key,
1371 struct futex_pi_state **ps,
bab5bc9e 1372 struct task_struct *task, int set_waiters)
1a52084d 1373{
af54d6a1 1374 u32 uval, newval, vpid = task_pid_vnr(task);
499f5aca 1375 struct futex_q *top_waiter;
af54d6a1 1376 int ret;
1a52084d
DH
1377
1378 /*
af54d6a1
TG
1379 * Read the user space value first so we can validate a few
1380 * things before proceeding further.
1a52084d 1381 */
af54d6a1 1382 if (get_futex_value_locked(&uval, uaddr))
1a52084d
DH
1383 return -EFAULT;
1384
ab51fbab
DB
1385 if (unlikely(should_fail_futex(true)))
1386 return -EFAULT;
1387
1a52084d
DH
1388 /*
1389 * Detect deadlocks.
1390 */
af54d6a1 1391 if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1a52084d
DH
1392 return -EDEADLK;
1393
ab51fbab
DB
1394 if ((unlikely(should_fail_futex(true))))
1395 return -EDEADLK;
1396
1a52084d 1397 /*
af54d6a1
TG
1398 * Lookup existing state first. If it exists, try to attach to
1399 * its pi_state.
1a52084d 1400 */
499f5aca
PZ
1401 top_waiter = futex_top_waiter(hb, key);
1402 if (top_waiter)
734009e9 1403 return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1a52084d
DH
1404
1405 /*
af54d6a1
TG
1406 * No waiter and user TID is 0. We are here because the
1407 * waiters or the owner died bit is set or called from
1408 * requeue_cmp_pi or for whatever reason something took the
1409 * syscall.
1a52084d 1410 */
af54d6a1 1411 if (!(uval & FUTEX_TID_MASK)) {
59fa6245 1412 /*
af54d6a1
TG
1413 * We take over the futex. No other waiters and the user space
1414 * TID is 0. We preserve the owner died bit.
59fa6245 1415 */
af54d6a1
TG
1416 newval = uval & FUTEX_OWNER_DIED;
1417 newval |= vpid;
1a52084d 1418
af54d6a1
TG
1419 /* The futex requeue_pi code can enforce the waiters bit */
1420 if (set_waiters)
1421 newval |= FUTEX_WAITERS;
1422
1423 ret = lock_pi_update_atomic(uaddr, uval, newval);
1424 /* If the take over worked, return 1 */
1425 return ret < 0 ? ret : 1;
1426 }
1a52084d
DH
1427
1428 /*
af54d6a1
TG
1429 * First waiter. Set the waiters bit before attaching ourself to
1430 * the owner. If owner tries to unlock, it will be forced into
1431 * the kernel and blocked on hb->lock.
1a52084d 1432 */
af54d6a1
TG
1433 newval = uval | FUTEX_WAITERS;
1434 ret = lock_pi_update_atomic(uaddr, uval, newval);
1435 if (ret)
1436 return ret;
1a52084d 1437 /*
af54d6a1
TG
1438 * If the update of the user space value succeeded, we try to
1439 * attach to the owner. If that fails, no harm done, we only
1440 * set the FUTEX_WAITERS bit in the user space variable.
1a52084d 1441 */
d2dfa785 1442 return attach_to_pi_owner(uaddr, newval, key, ps);
1a52084d
DH
1443}
1444
2e12978a
LJ
1445/**
1446 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1447 * @q: The futex_q to unqueue
1448 *
1449 * The q->lock_ptr must not be NULL and must be held by the caller.
1450 */
1451static void __unqueue_futex(struct futex_q *q)
1452{
1453 struct futex_hash_bucket *hb;
1454
29096202
SR
1455 if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1456 || WARN_ON(plist_node_empty(&q->list)))
2e12978a
LJ
1457 return;
1458
1459 hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1460 plist_del(&q->list, &hb->chain);
11d4616b 1461 hb_waiters_dec(hb);
2e12978a
LJ
1462}
1463
1da177e4
LT
1464/*
1465 * The hash bucket lock must be held when this is called.
1d0dcb3a
DB
1466 * Afterwards, the futex_q must not be accessed. Callers
1467 * must ensure to later call wake_up_q() for the actual
1468 * wakeups to occur.
1da177e4 1469 */
1d0dcb3a 1470static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1da177e4 1471{
f1a11e05
TG
1472 struct task_struct *p = q->task;
1473
aa10990e
DH
1474 if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1475 return;
1476
1408661c 1477 get_task_struct(p);
2e12978a 1478 __unqueue_futex(q);
1da177e4 1479 /*
38fcd06e
DHV
1480 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1481 * is written, without taking any locks. This is possible in the event
1482 * of a spurious wakeup, for example. A memory barrier is required here
1483 * to prevent the following store to lock_ptr from getting ahead of the
1484 * plist_del in __unqueue_futex().
1da177e4 1485 */
1b367ece 1486 smp_store_release(&q->lock_ptr, NULL);
1408661c
PZ
1487
1488 /*
1489 * Queue the task for later wakeup for after we've released
1490 * the hb->lock. wake_q_add() grabs reference to p.
1491 */
1492 wake_q_add(wake_q, p);
1493 put_task_struct(p);
1da177e4
LT
1494}
1495
16ffa12d
PZ
1496/*
1497 * Caller must hold a reference on @pi_state.
1498 */
1499static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
c87e2837 1500{
7cfdaf38 1501 u32 uninitialized_var(curval), newval;
16ffa12d 1502 struct task_struct *new_owner;
aa2bfe55 1503 bool postunlock = false;
194a6b5b 1504 DEFINE_WAKE_Q(wake_q);
13fbca4c 1505 int ret = 0;
c87e2837 1506
c87e2837 1507 new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
bebe5b51 1508 if (WARN_ON_ONCE(!new_owner)) {
16ffa12d 1509 /*
bebe5b51 1510 * As per the comment in futex_unlock_pi() this should not happen.
16ffa12d
PZ
1511 *
1512 * When this happens, give up our locks and try again, giving
1513 * the futex_lock_pi() instance time to complete, either by
1514 * waiting on the rtmutex or removing itself from the futex
1515 * queue.
1516 */
1517 ret = -EAGAIN;
1518 goto out_unlock;
73d786bd 1519 }
c87e2837
IM
1520
1521 /*
16ffa12d
PZ
1522 * We pass it to the next owner. The WAITERS bit is always kept
1523 * enabled while there is PI state around. We cleanup the owner
1524 * died bit, because we are the owner.
c87e2837 1525 */
13fbca4c 1526 newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
e3f2ddea 1527
ab51fbab
DB
1528 if (unlikely(should_fail_futex(true)))
1529 ret = -EFAULT;
1530
e5733e53
WD
1531 ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
1532 if (!ret && (curval != uval)) {
89e9e66b
SAS
1533 /*
1534 * If a unconditional UNLOCK_PI operation (user space did not
1535 * try the TID->0 transition) raced with a waiter setting the
1536 * FUTEX_WAITERS flag between get_user() and locking the hash
1537 * bucket lock, retry the operation.
1538 */
1539 if ((FUTEX_TID_MASK & curval) == uval)
1540 ret = -EAGAIN;
1541 else
1542 ret = -EINVAL;
1543 }
734009e9 1544
16ffa12d
PZ
1545 if (ret)
1546 goto out_unlock;
c87e2837 1547
94ffac5d
PZ
1548 /*
1549 * This is a point of no return; once we modify the uval there is no
1550 * going back and subsequent operations must not fail.
1551 */
1552
b4abf910 1553 raw_spin_lock(&pi_state->owner->pi_lock);
627371d7
IM
1554 WARN_ON(list_empty(&pi_state->list));
1555 list_del_init(&pi_state->list);
b4abf910 1556 raw_spin_unlock(&pi_state->owner->pi_lock);
627371d7 1557
b4abf910 1558 raw_spin_lock(&new_owner->pi_lock);
627371d7 1559 WARN_ON(!list_empty(&pi_state->list));
c87e2837
IM
1560 list_add(&pi_state->list, &new_owner->pi_state_list);
1561 pi_state->owner = new_owner;
b4abf910 1562 raw_spin_unlock(&new_owner->pi_lock);
627371d7 1563
aa2bfe55 1564 postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
5293c2ef 1565
16ffa12d 1566out_unlock:
5293c2ef 1567 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
5293c2ef 1568
aa2bfe55
PZ
1569 if (postunlock)
1570 rt_mutex_postunlock(&wake_q);
c87e2837 1571
16ffa12d 1572 return ret;
c87e2837
IM
1573}
1574
8b8f319f
IM
1575/*
1576 * Express the locking dependencies for lockdep:
1577 */
1578static inline void
1579double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1580{
1581 if (hb1 <= hb2) {
1582 spin_lock(&hb1->lock);
1583 if (hb1 < hb2)
1584 spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1585 } else { /* hb1 > hb2 */
1586 spin_lock(&hb2->lock);
1587 spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1588 }
1589}
1590
5eb3dc62
DH
1591static inline void
1592double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1593{
f061d351 1594 spin_unlock(&hb1->lock);
88f502fe
IM
1595 if (hb1 != hb2)
1596 spin_unlock(&hb2->lock);
5eb3dc62
DH
1597}
1598
1da177e4 1599/*
b2d0994b 1600 * Wake up waiters matching bitset queued on this futex (uaddr).
1da177e4 1601 */
b41277dc
DH
1602static int
1603futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1da177e4 1604{
e2970f2f 1605 struct futex_hash_bucket *hb;
1da177e4 1606 struct futex_q *this, *next;
38d47c1b 1607 union futex_key key = FUTEX_KEY_INIT;
1da177e4 1608 int ret;
194a6b5b 1609 DEFINE_WAKE_Q(wake_q);
1da177e4 1610
cd689985
TG
1611 if (!bitset)
1612 return -EINVAL;
1613
9ea71503 1614 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1da177e4
LT
1615 if (unlikely(ret != 0))
1616 goto out;
1617
e2970f2f 1618 hb = hash_futex(&key);
b0c29f79
DB
1619
1620 /* Make sure we really have tasks to wakeup */
1621 if (!hb_waiters_pending(hb))
1622 goto out_put_key;
1623
e2970f2f 1624 spin_lock(&hb->lock);
1da177e4 1625
0d00c7b2 1626 plist_for_each_entry_safe(this, next, &hb->chain, list) {
1da177e4 1627 if (match_futex (&this->key, &key)) {
52400ba9 1628 if (this->pi_state || this->rt_waiter) {
ed6f7b10
IM
1629 ret = -EINVAL;
1630 break;
1631 }
cd689985
TG
1632
1633 /* Check if one of the bits is set in both bitsets */
1634 if (!(this->bitset & bitset))
1635 continue;
1636
1d0dcb3a 1637 mark_wake_futex(&wake_q, this);
1da177e4
LT
1638 if (++ret >= nr_wake)
1639 break;
1640 }
1641 }
1642
e2970f2f 1643 spin_unlock(&hb->lock);
1d0dcb3a 1644 wake_up_q(&wake_q);
b0c29f79 1645out_put_key:
ae791a2d 1646 put_futex_key(&key);
42d35d48 1647out:
1da177e4
LT
1648 return ret;
1649}
1650
30d6e0a4
JS
1651static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1652{
1653 unsigned int op = (encoded_op & 0x70000000) >> 28;
1654 unsigned int cmp = (encoded_op & 0x0f000000) >> 24;
d70ef228
JS
1655 int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1656 int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
30d6e0a4
JS
1657 int oldval, ret;
1658
1659 if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
e78c38f6
JS
1660 if (oparg < 0 || oparg > 31) {
1661 char comm[sizeof(current->comm)];
1662 /*
1663 * kill this print and return -EINVAL when userspace
1664 * is sane again
1665 */
1666 pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1667 get_task_comm(comm, current), oparg);
1668 oparg &= 31;
1669 }
30d6e0a4
JS
1670 oparg = 1 << oparg;
1671 }
1672
1673 if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1674 return -EFAULT;
1675
1676 ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1677 if (ret)
1678 return ret;
1679
1680 switch (cmp) {
1681 case FUTEX_OP_CMP_EQ:
1682 return oldval == cmparg;
1683 case FUTEX_OP_CMP_NE:
1684 return oldval != cmparg;
1685 case FUTEX_OP_CMP_LT:
1686 return oldval < cmparg;
1687 case FUTEX_OP_CMP_GE:
1688 return oldval >= cmparg;
1689 case FUTEX_OP_CMP_LE:
1690 return oldval <= cmparg;
1691 case FUTEX_OP_CMP_GT:
1692 return oldval > cmparg;
1693 default:
1694 return -ENOSYS;
1695 }
1696}
1697
4732efbe
JJ
1698/*
1699 * Wake up all waiters hashed on the physical page that is mapped
1700 * to this virtual address:
1701 */
e2970f2f 1702static int
b41277dc 1703futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
e2970f2f 1704 int nr_wake, int nr_wake2, int op)
4732efbe 1705{
38d47c1b 1706 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
e2970f2f 1707 struct futex_hash_bucket *hb1, *hb2;
4732efbe 1708 struct futex_q *this, *next;
e4dc5b7a 1709 int ret, op_ret;
194a6b5b 1710 DEFINE_WAKE_Q(wake_q);
4732efbe 1711
e4dc5b7a 1712retry:
9ea71503 1713 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
4732efbe
JJ
1714 if (unlikely(ret != 0))
1715 goto out;
9ea71503 1716 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
4732efbe 1717 if (unlikely(ret != 0))
42d35d48 1718 goto out_put_key1;
4732efbe 1719
e2970f2f
IM
1720 hb1 = hash_futex(&key1);
1721 hb2 = hash_futex(&key2);
4732efbe 1722
e4dc5b7a 1723retry_private:
eaaea803 1724 double_lock_hb(hb1, hb2);
e2970f2f 1725 op_ret = futex_atomic_op_inuser(op, uaddr2);
4732efbe 1726 if (unlikely(op_ret < 0)) {
5eb3dc62 1727 double_unlock_hb(hb1, hb2);
4732efbe 1728
e5733e53
WD
1729 if (!IS_ENABLED(CONFIG_MMU) ||
1730 unlikely(op_ret != -EFAULT && op_ret != -EAGAIN)) {
1731 /*
1732 * we don't get EFAULT from MMU faults if we don't have
1733 * an MMU, but we might get them from range checking
1734 */
796f8d9b 1735 ret = op_ret;
42d35d48 1736 goto out_put_keys;
796f8d9b
DG
1737 }
1738
e5733e53
WD
1739 if (op_ret == -EFAULT) {
1740 ret = fault_in_user_writeable(uaddr2);
1741 if (ret)
1742 goto out_put_keys;
1743 }
4732efbe 1744
e5733e53
WD
1745 if (!(flags & FLAGS_SHARED)) {
1746 cond_resched();
e4dc5b7a 1747 goto retry_private;
e5733e53 1748 }
e4dc5b7a 1749
ae791a2d
TG
1750 put_futex_key(&key2);
1751 put_futex_key(&key1);
e5733e53 1752 cond_resched();
e4dc5b7a 1753 goto retry;
4732efbe
JJ
1754 }
1755
0d00c7b2 1756 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
4732efbe 1757 if (match_futex (&this->key, &key1)) {
aa10990e
DH
1758 if (this->pi_state || this->rt_waiter) {
1759 ret = -EINVAL;
1760 goto out_unlock;
1761 }
1d0dcb3a 1762 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1763 if (++ret >= nr_wake)
1764 break;
1765 }
1766 }
1767
1768 if (op_ret > 0) {
4732efbe 1769 op_ret = 0;
0d00c7b2 1770 plist_for_each_entry_safe(this, next, &hb2->chain, list) {
4732efbe 1771 if (match_futex (&this->key, &key2)) {
aa10990e
DH
1772 if (this->pi_state || this->rt_waiter) {
1773 ret = -EINVAL;
1774 goto out_unlock;
1775 }
1d0dcb3a 1776 mark_wake_futex(&wake_q, this);
4732efbe
JJ
1777 if (++op_ret >= nr_wake2)
1778 break;
1779 }
1780 }
1781 ret += op_ret;
1782 }
1783
aa10990e 1784out_unlock:
5eb3dc62 1785 double_unlock_hb(hb1, hb2);
1d0dcb3a 1786 wake_up_q(&wake_q);
42d35d48 1787out_put_keys:
ae791a2d 1788 put_futex_key(&key2);
42d35d48 1789out_put_key1:
ae791a2d 1790 put_futex_key(&key1);
42d35d48 1791out:
4732efbe
JJ
1792 return ret;
1793}
1794
9121e478
DH
1795/**
1796 * requeue_futex() - Requeue a futex_q from one hb to another
1797 * @q: the futex_q to requeue
1798 * @hb1: the source hash_bucket
1799 * @hb2: the target hash_bucket
1800 * @key2: the new key for the requeued futex_q
1801 */
1802static inline
1803void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1804 struct futex_hash_bucket *hb2, union futex_key *key2)
1805{
1806
1807 /*
1808 * If key1 and key2 hash to the same bucket, no need to
1809 * requeue.
1810 */
1811 if (likely(&hb1->chain != &hb2->chain)) {
1812 plist_del(&q->list, &hb1->chain);
11d4616b 1813 hb_waiters_dec(hb1);
11d4616b 1814 hb_waiters_inc(hb2);
fe1bce9e 1815 plist_add(&q->list, &hb2->chain);
9121e478 1816 q->lock_ptr = &hb2->lock;
9121e478
DH
1817 }
1818 get_futex_key_refs(key2);
1819 q->key = *key2;
1820}
1821
52400ba9
DH
1822/**
1823 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
d96ee56c
DH
1824 * @q: the futex_q
1825 * @key: the key of the requeue target futex
1826 * @hb: the hash_bucket of the requeue target futex
52400ba9
DH
1827 *
1828 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1829 * target futex if it is uncontended or via a lock steal. Set the futex_q key
1830 * to the requeue target futex so the waiter can detect the wakeup on the right
1831 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
beda2c7e
DH
1832 * atomic lock acquisition. Set the q->lock_ptr to the requeue target hb->lock
1833 * to protect access to the pi_state to fixup the owner later. Must be called
1834 * with both q->lock_ptr and hb->lock held.
52400ba9
DH
1835 */
1836static inline
beda2c7e
DH
1837void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1838 struct futex_hash_bucket *hb)
52400ba9 1839{
52400ba9
DH
1840 get_futex_key_refs(key);
1841 q->key = *key;
1842
2e12978a 1843 __unqueue_futex(q);
52400ba9
DH
1844
1845 WARN_ON(!q->rt_waiter);
1846 q->rt_waiter = NULL;
1847
beda2c7e 1848 q->lock_ptr = &hb->lock;
beda2c7e 1849
f1a11e05 1850 wake_up_state(q->task, TASK_NORMAL);
52400ba9
DH
1851}
1852
1853/**
1854 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
bab5bc9e
DH
1855 * @pifutex: the user address of the to futex
1856 * @hb1: the from futex hash bucket, must be locked by the caller
1857 * @hb2: the to futex hash bucket, must be locked by the caller
1858 * @key1: the from futex key
1859 * @key2: the to futex key
1860 * @ps: address to store the pi_state pointer
1861 * @set_waiters: force setting the FUTEX_WAITERS bit (1) or not (0)
52400ba9
DH
1862 *
1863 * Try and get the lock on behalf of the top waiter if we can do it atomically.
bab5bc9e
DH
1864 * Wake the top waiter if we succeed. If the caller specified set_waiters,
1865 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1866 * hb1 and hb2 must be held by the caller.
52400ba9 1867 *
6c23cbbd 1868 * Return:
7b4ff1ad
MCC
1869 * - 0 - failed to acquire the lock atomically;
1870 * - >0 - acquired the lock, return value is vpid of the top_waiter
1871 * - <0 - error
52400ba9
DH
1872 */
1873static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1874 struct futex_hash_bucket *hb1,
1875 struct futex_hash_bucket *hb2,
1876 union futex_key *key1, union futex_key *key2,
bab5bc9e 1877 struct futex_pi_state **ps, int set_waiters)
52400ba9 1878{
bab5bc9e 1879 struct futex_q *top_waiter = NULL;
52400ba9 1880 u32 curval;
866293ee 1881 int ret, vpid;
52400ba9
DH
1882
1883 if (get_futex_value_locked(&curval, pifutex))
1884 return -EFAULT;
1885
ab51fbab
DB
1886 if (unlikely(should_fail_futex(true)))
1887 return -EFAULT;
1888
bab5bc9e
DH
1889 /*
1890 * Find the top_waiter and determine if there are additional waiters.
1891 * If the caller intends to requeue more than 1 waiter to pifutex,
1892 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1893 * as we have means to handle the possible fault. If not, don't set
1894 * the bit unecessarily as it will force the subsequent unlock to enter
1895 * the kernel.
1896 */
52400ba9
DH
1897 top_waiter = futex_top_waiter(hb1, key1);
1898
1899 /* There are no waiters, nothing for us to do. */
1900 if (!top_waiter)
1901 return 0;
1902
84bc4af5
DH
1903 /* Ensure we requeue to the expected futex. */
1904 if (!match_futex(top_waiter->requeue_pi_key, key2))
1905 return -EINVAL;
1906
52400ba9 1907 /*
bab5bc9e
DH
1908 * Try to take the lock for top_waiter. Set the FUTEX_WAITERS bit in
1909 * the contended case or if set_waiters is 1. The pi_state is returned
1910 * in ps in contended cases.
52400ba9 1911 */
866293ee 1912 vpid = task_pid_vnr(top_waiter->task);
bab5bc9e
DH
1913 ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1914 set_waiters);
866293ee 1915 if (ret == 1) {
beda2c7e 1916 requeue_pi_wake_futex(top_waiter, key2, hb2);
866293ee
TG
1917 return vpid;
1918 }
52400ba9
DH
1919 return ret;
1920}
1921
1922/**
1923 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
fb62db2b 1924 * @uaddr1: source futex user address
b41277dc 1925 * @flags: futex flags (FLAGS_SHARED, etc.)
fb62db2b
RD
1926 * @uaddr2: target futex user address
1927 * @nr_wake: number of waiters to wake (must be 1 for requeue_pi)
1928 * @nr_requeue: number of waiters to requeue (0-INT_MAX)
1929 * @cmpval: @uaddr1 expected value (or %NULL)
1930 * @requeue_pi: if we are attempting to requeue from a non-pi futex to a
b41277dc 1931 * pi futex (pi to pi requeue is not supported)
52400ba9
DH
1932 *
1933 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1934 * uaddr2 atomically on behalf of the top waiter.
1935 *
6c23cbbd 1936 * Return:
7b4ff1ad
MCC
1937 * - >=0 - on success, the number of tasks requeued or woken;
1938 * - <0 - on error
1da177e4 1939 */
b41277dc
DH
1940static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1941 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1942 u32 *cmpval, int requeue_pi)
1da177e4 1943{
38d47c1b 1944 union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
52400ba9
DH
1945 int drop_count = 0, task_count = 0, ret;
1946 struct futex_pi_state *pi_state = NULL;
e2970f2f 1947 struct futex_hash_bucket *hb1, *hb2;
1da177e4 1948 struct futex_q *this, *next;
194a6b5b 1949 DEFINE_WAKE_Q(wake_q);
52400ba9 1950
fbe0e839
LJ
1951 if (nr_wake < 0 || nr_requeue < 0)
1952 return -EINVAL;
1953
bc2eecd7
NP
1954 /*
1955 * When PI not supported: return -ENOSYS if requeue_pi is true,
1956 * consequently the compiler knows requeue_pi is always false past
1957 * this point which will optimize away all the conditional code
1958 * further down.
1959 */
1960 if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1961 return -ENOSYS;
1962
52400ba9 1963 if (requeue_pi) {
e9c243a5
TG
1964 /*
1965 * Requeue PI only works on two distinct uaddrs. This
1966 * check is only valid for private futexes. See below.
1967 */
1968 if (uaddr1 == uaddr2)
1969 return -EINVAL;
1970
52400ba9
DH
1971 /*
1972 * requeue_pi requires a pi_state, try to allocate it now
1973 * without any locks in case it fails.
1974 */
1975 if (refill_pi_state_cache())
1976 return -ENOMEM;
1977 /*
1978 * requeue_pi must wake as many tasks as it can, up to nr_wake
1979 * + nr_requeue, since it acquires the rt_mutex prior to
1980 * returning to userspace, so as to not leave the rt_mutex with
1981 * waiters and no owner. However, second and third wake-ups
1982 * cannot be predicted as they involve race conditions with the
1983 * first wake and a fault while looking up the pi_state. Both
1984 * pthread_cond_signal() and pthread_cond_broadcast() should
1985 * use nr_wake=1.
1986 */
1987 if (nr_wake != 1)
1988 return -EINVAL;
1989 }
1da177e4 1990
42d35d48 1991retry:
9ea71503 1992 ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1da177e4
LT
1993 if (unlikely(ret != 0))
1994 goto out;
9ea71503
SB
1995 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1996 requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1da177e4 1997 if (unlikely(ret != 0))
42d35d48 1998 goto out_put_key1;
1da177e4 1999
e9c243a5
TG
2000 /*
2001 * The check above which compares uaddrs is not sufficient for
2002 * shared futexes. We need to compare the keys:
2003 */
2004 if (requeue_pi && match_futex(&key1, &key2)) {
2005 ret = -EINVAL;
2006 goto out_put_keys;
2007 }
2008
e2970f2f
IM
2009 hb1 = hash_futex(&key1);
2010 hb2 = hash_futex(&key2);
1da177e4 2011
e4dc5b7a 2012retry_private:
69cd9eba 2013 hb_waiters_inc(hb2);
8b8f319f 2014 double_lock_hb(hb1, hb2);
1da177e4 2015
e2970f2f
IM
2016 if (likely(cmpval != NULL)) {
2017 u32 curval;
1da177e4 2018
e2970f2f 2019 ret = get_futex_value_locked(&curval, uaddr1);
1da177e4
LT
2020
2021 if (unlikely(ret)) {
5eb3dc62 2022 double_unlock_hb(hb1, hb2);
69cd9eba 2023 hb_waiters_dec(hb2);
1da177e4 2024
e2970f2f 2025 ret = get_user(curval, uaddr1);
e4dc5b7a
DH
2026 if (ret)
2027 goto out_put_keys;
1da177e4 2028
b41277dc 2029 if (!(flags & FLAGS_SHARED))
e4dc5b7a 2030 goto retry_private;
1da177e4 2031
ae791a2d
TG
2032 put_futex_key(&key2);
2033 put_futex_key(&key1);
e4dc5b7a 2034 goto retry;
1da177e4 2035 }
e2970f2f 2036 if (curval != *cmpval) {
1da177e4
LT
2037 ret = -EAGAIN;
2038 goto out_unlock;
2039 }
2040 }
2041
52400ba9 2042 if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
bab5bc9e
DH
2043 /*
2044 * Attempt to acquire uaddr2 and wake the top waiter. If we
2045 * intend to requeue waiters, force setting the FUTEX_WAITERS
2046 * bit. We force this here where we are able to easily handle
2047 * faults rather in the requeue loop below.
2048 */
52400ba9 2049 ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
bab5bc9e 2050 &key2, &pi_state, nr_requeue);
52400ba9
DH
2051
2052 /*
2053 * At this point the top_waiter has either taken uaddr2 or is
2054 * waiting on it. If the former, then the pi_state will not
2055 * exist yet, look it up one more time to ensure we have a
866293ee
TG
2056 * reference to it. If the lock was taken, ret contains the
2057 * vpid of the top waiter task.
ecb38b78
TG
2058 * If the lock was not taken, we have pi_state and an initial
2059 * refcount on it. In case of an error we have nothing.
52400ba9 2060 */
866293ee 2061 if (ret > 0) {
52400ba9 2062 WARN_ON(pi_state);
89061d3d 2063 drop_count++;
52400ba9 2064 task_count++;
866293ee 2065 /*
ecb38b78
TG
2066 * If we acquired the lock, then the user space value
2067 * of uaddr2 should be vpid. It cannot be changed by
2068 * the top waiter as it is blocked on hb2 lock if it
2069 * tries to do so. If something fiddled with it behind
2070 * our back the pi state lookup might unearth it. So
2071 * we rather use the known value than rereading and
2072 * handing potential crap to lookup_pi_state.
2073 *
2074 * If that call succeeds then we have pi_state and an
2075 * initial refcount on it.
866293ee 2076 */
734009e9 2077 ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
52400ba9
DH
2078 }
2079
2080 switch (ret) {
2081 case 0:
ecb38b78 2082 /* We hold a reference on the pi state. */
52400ba9 2083 break;
4959f2de
TG
2084
2085 /* If the above failed, then pi_state is NULL */
52400ba9
DH
2086 case -EFAULT:
2087 double_unlock_hb(hb1, hb2);
69cd9eba 2088 hb_waiters_dec(hb2);
ae791a2d
TG
2089 put_futex_key(&key2);
2090 put_futex_key(&key1);
d0725992 2091 ret = fault_in_user_writeable(uaddr2);
52400ba9
DH
2092 if (!ret)
2093 goto retry;
2094 goto out;
2095 case -EAGAIN:
af54d6a1
TG
2096 /*
2097 * Two reasons for this:
2098 * - Owner is exiting and we just wait for the
2099 * exit to complete.
2100 * - The user space value changed.
2101 */
52400ba9 2102 double_unlock_hb(hb1, hb2);
69cd9eba 2103 hb_waiters_dec(hb2);
ae791a2d
TG
2104 put_futex_key(&key2);
2105 put_futex_key(&key1);
52400ba9
DH
2106 cond_resched();
2107 goto retry;
2108 default:
2109 goto out_unlock;
2110 }
2111 }
2112
0d00c7b2 2113 plist_for_each_entry_safe(this, next, &hb1->chain, list) {
52400ba9
DH
2114 if (task_count - nr_wake >= nr_requeue)
2115 break;
2116
2117 if (!match_futex(&this->key, &key1))
1da177e4 2118 continue;
52400ba9 2119
392741e0
DH
2120 /*
2121 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2122 * be paired with each other and no other futex ops.
aa10990e
DH
2123 *
2124 * We should never be requeueing a futex_q with a pi_state,
2125 * which is awaiting a futex_unlock_pi().
392741e0
DH
2126 */
2127 if ((requeue_pi && !this->rt_waiter) ||
aa10990e
DH
2128 (!requeue_pi && this->rt_waiter) ||
2129 this->pi_state) {
392741e0
DH
2130 ret = -EINVAL;
2131 break;
2132 }
52400ba9
DH
2133
2134 /*
2135 * Wake nr_wake waiters. For requeue_pi, if we acquired the
2136 * lock, we already woke the top_waiter. If not, it will be
2137 * woken by futex_unlock_pi().
2138 */
2139 if (++task_count <= nr_wake && !requeue_pi) {
1d0dcb3a 2140 mark_wake_futex(&wake_q, this);
52400ba9
DH
2141 continue;
2142 }
1da177e4 2143
84bc4af5
DH
2144 /* Ensure we requeue to the expected futex for requeue_pi. */
2145 if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2146 ret = -EINVAL;
2147 break;
2148 }
2149
52400ba9
DH
2150 /*
2151 * Requeue nr_requeue waiters and possibly one more in the case
2152 * of requeue_pi if we couldn't acquire the lock atomically.
2153 */
2154 if (requeue_pi) {
ecb38b78
TG
2155 /*
2156 * Prepare the waiter to take the rt_mutex. Take a
2157 * refcount on the pi_state and store the pointer in
2158 * the futex_q object of the waiter.
2159 */
bf92cf3a 2160 get_pi_state(pi_state);
52400ba9
DH
2161 this->pi_state = pi_state;
2162 ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2163 this->rt_waiter,
c051b21f 2164 this->task);
52400ba9 2165 if (ret == 1) {
ecb38b78
TG
2166 /*
2167 * We got the lock. We do neither drop the
2168 * refcount on pi_state nor clear
2169 * this->pi_state because the waiter needs the
2170 * pi_state for cleaning up the user space
2171 * value. It will drop the refcount after
2172 * doing so.
2173 */
beda2c7e 2174 requeue_pi_wake_futex(this, &key2, hb2);
89061d3d 2175 drop_count++;
52400ba9
DH
2176 continue;
2177 } else if (ret) {
ecb38b78
TG
2178 /*
2179 * rt_mutex_start_proxy_lock() detected a
2180 * potential deadlock when we tried to queue
2181 * that waiter. Drop the pi_state reference
2182 * which we took above and remove the pointer
2183 * to the state from the waiters futex_q
2184 * object.
2185 */
52400ba9 2186 this->pi_state = NULL;
29e9ee5d 2187 put_pi_state(pi_state);
885c2cb7
TG
2188 /*
2189 * We stop queueing more waiters and let user
2190 * space deal with the mess.
2191 */
2192 break;
52400ba9 2193 }
1da177e4 2194 }
52400ba9
DH
2195 requeue_futex(this, hb1, hb2, &key2);
2196 drop_count++;
1da177e4
LT
2197 }
2198
ecb38b78
TG
2199 /*
2200 * We took an extra initial reference to the pi_state either
2201 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2202 * need to drop it here again.
2203 */
29e9ee5d 2204 put_pi_state(pi_state);
885c2cb7
TG
2205
2206out_unlock:
5eb3dc62 2207 double_unlock_hb(hb1, hb2);
1d0dcb3a 2208 wake_up_q(&wake_q);
69cd9eba 2209 hb_waiters_dec(hb2);
1da177e4 2210
cd84a42f
DH
2211 /*
2212 * drop_futex_key_refs() must be called outside the spinlocks. During
2213 * the requeue we moved futex_q's from the hash bucket at key1 to the
2214 * one at key2 and updated their key pointer. We no longer need to
2215 * hold the references to key1.
2216 */
1da177e4 2217 while (--drop_count >= 0)
9adef58b 2218 drop_futex_key_refs(&key1);
1da177e4 2219
42d35d48 2220out_put_keys:
ae791a2d 2221 put_futex_key(&key2);
42d35d48 2222out_put_key1:
ae791a2d 2223 put_futex_key(&key1);
42d35d48 2224out:
52400ba9 2225 return ret ? ret : task_count;
1da177e4
LT
2226}
2227
2228/* The key must be already stored in q->key. */
82af7aca 2229static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
15e408cd 2230 __acquires(&hb->lock)
1da177e4 2231{
e2970f2f 2232 struct futex_hash_bucket *hb;
1da177e4 2233
e2970f2f 2234 hb = hash_futex(&q->key);
11d4616b
LT
2235
2236 /*
2237 * Increment the counter before taking the lock so that
2238 * a potential waker won't miss a to-be-slept task that is
2239 * waiting for the spinlock. This is safe as all queue_lock()
2240 * users end up calling queue_me(). Similarly, for housekeeping,
2241 * decrement the counter at queue_unlock() when some error has
2242 * occurred and we don't end up adding the task to the list.
2243 */
2244 hb_waiters_inc(hb);
2245
e2970f2f 2246 q->lock_ptr = &hb->lock;
1da177e4 2247
8ad7b378 2248 spin_lock(&hb->lock); /* implies smp_mb(); (A) */
e2970f2f 2249 return hb;
1da177e4
LT
2250}
2251
d40d65c8 2252static inline void
0d00c7b2 2253queue_unlock(struct futex_hash_bucket *hb)
15e408cd 2254 __releases(&hb->lock)
d40d65c8
DH
2255{
2256 spin_unlock(&hb->lock);
11d4616b 2257 hb_waiters_dec(hb);
d40d65c8
DH
2258}
2259
cfafcd11 2260static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1da177e4 2261{
ec92d082
PP
2262 int prio;
2263
2264 /*
2265 * The priority used to register this element is
2266 * - either the real thread-priority for the real-time threads
2267 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2268 * - or MAX_RT_PRIO for non-RT threads.
2269 * Thus, all RT-threads are woken first in priority order, and
2270 * the others are woken last, in FIFO order.
2271 */
2272 prio = min(current->normal_prio, MAX_RT_PRIO);
2273
2274 plist_node_init(&q->list, prio);
ec92d082 2275 plist_add(&q->list, &hb->chain);
c87e2837 2276 q->task = current;
cfafcd11
PZ
2277}
2278
2279/**
2280 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2281 * @q: The futex_q to enqueue
2282 * @hb: The destination hash bucket
2283 *
2284 * The hb->lock must be held by the caller, and is released here. A call to
2285 * queue_me() is typically paired with exactly one call to unqueue_me(). The
2286 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2287 * or nothing if the unqueue is done as part of the wake process and the unqueue
2288 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2289 * an example).
2290 */
2291static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2292 __releases(&hb->lock)
2293{
2294 __queue_me(q, hb);
e2970f2f 2295 spin_unlock(&hb->lock);
1da177e4
LT
2296}
2297
d40d65c8
DH
2298/**
2299 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2300 * @q: The futex_q to unqueue
2301 *
2302 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2303 * be paired with exactly one earlier call to queue_me().
2304 *
6c23cbbd 2305 * Return:
7b4ff1ad
MCC
2306 * - 1 - if the futex_q was still queued (and we removed unqueued it);
2307 * - 0 - if the futex_q was already removed by the waking thread
1da177e4 2308 */
1da177e4
LT
2309static int unqueue_me(struct futex_q *q)
2310{
1da177e4 2311 spinlock_t *lock_ptr;
e2970f2f 2312 int ret = 0;
1da177e4
LT
2313
2314 /* In the common case we don't take the spinlock, which is nice. */
42d35d48 2315retry:
29b75eb2
JZ
2316 /*
2317 * q->lock_ptr can change between this read and the following spin_lock.
2318 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2319 * optimizing lock_ptr out of the logic below.
2320 */
2321 lock_ptr = READ_ONCE(q->lock_ptr);
c80544dc 2322 if (lock_ptr != NULL) {
1da177e4
LT
2323 spin_lock(lock_ptr);
2324 /*
2325 * q->lock_ptr can change between reading it and
2326 * spin_lock(), causing us to take the wrong lock. This
2327 * corrects the race condition.
2328 *
2329 * Reasoning goes like this: if we have the wrong lock,
2330 * q->lock_ptr must have changed (maybe several times)
2331 * between reading it and the spin_lock(). It can
2332 * change again after the spin_lock() but only if it was
2333 * already changed before the spin_lock(). It cannot,
2334 * however, change back to the original value. Therefore
2335 * we can detect whether we acquired the correct lock.
2336 */
2337 if (unlikely(lock_ptr != q->lock_ptr)) {
2338 spin_unlock(lock_ptr);
2339 goto retry;
2340 }
2e12978a 2341 __unqueue_futex(q);
c87e2837
IM
2342
2343 BUG_ON(q->pi_state);
2344
1da177e4
LT
2345 spin_unlock(lock_ptr);
2346 ret = 1;
2347 }
2348
9adef58b 2349 drop_futex_key_refs(&q->key);
1da177e4
LT
2350 return ret;
2351}
2352
c87e2837
IM
2353/*
2354 * PI futexes can not be requeued and must remove themself from the
d0aa7a70
PP
2355 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2356 * and dropped here.
c87e2837 2357 */
d0aa7a70 2358static void unqueue_me_pi(struct futex_q *q)
15e408cd 2359 __releases(q->lock_ptr)
c87e2837 2360{
2e12978a 2361 __unqueue_futex(q);
c87e2837
IM
2362
2363 BUG_ON(!q->pi_state);
29e9ee5d 2364 put_pi_state(q->pi_state);
c87e2837
IM
2365 q->pi_state = NULL;
2366
d0aa7a70 2367 spin_unlock(q->lock_ptr);
c87e2837
IM
2368}
2369
778e9a9c 2370static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
c1e2f0ea 2371 struct task_struct *argowner)
d0aa7a70 2372{
d0aa7a70 2373 struct futex_pi_state *pi_state = q->pi_state;
7cfdaf38 2374 u32 uval, uninitialized_var(curval), newval;
c1e2f0ea
PZ
2375 struct task_struct *oldowner, *newowner;
2376 u32 newtid;
e5733e53 2377 int ret, err = 0;
d0aa7a70 2378
c1e2f0ea
PZ
2379 lockdep_assert_held(q->lock_ptr);
2380
734009e9
PZ
2381 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2382
2383 oldowner = pi_state->owner;
1b7558e4
TG
2384
2385 /*
c1e2f0ea 2386 * We are here because either:
16ffa12d 2387 *
c1e2f0ea
PZ
2388 * - we stole the lock and pi_state->owner needs updating to reflect
2389 * that (@argowner == current),
2390 *
2391 * or:
2392 *
2393 * - someone stole our lock and we need to fix things to point to the
2394 * new owner (@argowner == NULL).
2395 *
2396 * Either way, we have to replace the TID in the user space variable.
8161239a 2397 * This must be atomic as we have to preserve the owner died bit here.
1b7558e4 2398 *
b2d0994b
DH
2399 * Note: We write the user space value _before_ changing the pi_state
2400 * because we can fault here. Imagine swapped out pages or a fork
2401 * that marked all the anonymous memory readonly for cow.
1b7558e4 2402 *
734009e9
PZ
2403 * Modifying pi_state _before_ the user space value would leave the
2404 * pi_state in an inconsistent state when we fault here, because we
2405 * need to drop the locks to handle the fault. This might be observed
2406 * in the PID check in lookup_pi_state.
1b7558e4
TG
2407 */
2408retry:
c1e2f0ea
PZ
2409 if (!argowner) {
2410 if (oldowner != current) {
2411 /*
2412 * We raced against a concurrent self; things are
2413 * already fixed up. Nothing to do.
2414 */
2415 ret = 0;
2416 goto out_unlock;
2417 }
2418
2419 if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2420 /* We got the lock after all, nothing to fix. */
2421 ret = 0;
2422 goto out_unlock;
2423 }
2424
2425 /*
2426 * Since we just failed the trylock; there must be an owner.
2427 */
2428 newowner = rt_mutex_owner(&pi_state->pi_mutex);
2429 BUG_ON(!newowner);
2430 } else {
2431 WARN_ON_ONCE(argowner != current);
2432 if (oldowner == current) {
2433 /*
2434 * We raced against a concurrent self; things are
2435 * already fixed up. Nothing to do.
2436 */
2437 ret = 0;
2438 goto out_unlock;
2439 }
2440 newowner = argowner;
2441 }
2442
2443 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
a97cb0e7
PZ
2444 /* Owner died? */
2445 if (!pi_state->owner)
2446 newtid |= FUTEX_OWNER_DIED;
c1e2f0ea 2447
e5733e53
WD
2448 err = get_futex_value_locked(&uval, uaddr);
2449 if (err)
2450 goto handle_err;
1b7558e4 2451
16ffa12d 2452 for (;;) {
1b7558e4
TG
2453 newval = (uval & FUTEX_OWNER_DIED) | newtid;
2454
e5733e53
WD
2455 err = cmpxchg_futex_value_locked(&curval, uaddr, uval, newval);
2456 if (err)
2457 goto handle_err;
2458
1b7558e4
TG
2459 if (curval == uval)
2460 break;
2461 uval = curval;
2462 }
2463
2464 /*
2465 * We fixed up user space. Now we need to fix the pi_state
2466 * itself.
2467 */
d0aa7a70 2468 if (pi_state->owner != NULL) {
734009e9 2469 raw_spin_lock(&pi_state->owner->pi_lock);
d0aa7a70
PP
2470 WARN_ON(list_empty(&pi_state->list));
2471 list_del_init(&pi_state->list);
734009e9 2472 raw_spin_unlock(&pi_state->owner->pi_lock);
1b7558e4 2473 }
d0aa7a70 2474
cdf71a10 2475 pi_state->owner = newowner;
d0aa7a70 2476
734009e9 2477 raw_spin_lock(&newowner->pi_lock);
d0aa7a70 2478 WARN_ON(!list_empty(&pi_state->list));
cdf71a10 2479 list_add(&pi_state->list, &newowner->pi_state_list);
734009e9
PZ
2480 raw_spin_unlock(&newowner->pi_lock);
2481 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2482
1b7558e4 2483 return 0;
d0aa7a70 2484
d0aa7a70 2485 /*
e5733e53
WD
2486 * In order to reschedule or handle a page fault, we need to drop the
2487 * locks here. In the case of a fault, this gives the other task
2488 * (either the highest priority waiter itself or the task which stole
2489 * the rtmutex) the chance to try the fixup of the pi_state. So once we
2490 * are back from handling the fault we need to check the pi_state after
2491 * reacquiring the locks and before trying to do another fixup. When
2492 * the fixup has been done already we simply return.
734009e9
PZ
2493 *
2494 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2495 * drop hb->lock since the caller owns the hb -> futex_q relation.
2496 * Dropping the pi_mutex->wait_lock requires the state revalidate.
d0aa7a70 2497 */
e5733e53 2498handle_err:
734009e9 2499 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1b7558e4 2500 spin_unlock(q->lock_ptr);
778e9a9c 2501
e5733e53
WD
2502 switch (err) {
2503 case -EFAULT:
2504 ret = fault_in_user_writeable(uaddr);
2505 break;
2506
2507 case -EAGAIN:
2508 cond_resched();
2509 ret = 0;
2510 break;
2511
2512 default:
2513 WARN_ON_ONCE(1);
2514 ret = err;
2515 break;
2516 }
778e9a9c 2517
1b7558e4 2518 spin_lock(q->lock_ptr);
734009e9 2519 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
778e9a9c 2520
1b7558e4
TG
2521 /*
2522 * Check if someone else fixed it for us:
2523 */
734009e9
PZ
2524 if (pi_state->owner != oldowner) {
2525 ret = 0;
2526 goto out_unlock;
2527 }
1b7558e4
TG
2528
2529 if (ret)
734009e9 2530 goto out_unlock;
1b7558e4
TG
2531
2532 goto retry;
734009e9
PZ
2533
2534out_unlock:
2535 raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2536 return ret;
d0aa7a70
PP
2537}
2538
72c1bbf3 2539static long futex_wait_restart(struct restart_block *restart);
36cf3b5c 2540
dd973998
DH
2541/**
2542 * fixup_owner() - Post lock pi_state and corner case management
2543 * @uaddr: user address of the futex
dd973998
DH
2544 * @q: futex_q (contains pi_state and access to the rt_mutex)
2545 * @locked: if the attempt to take the rt_mutex succeeded (1) or not (0)
2546 *
2547 * After attempting to lock an rt_mutex, this function is called to cleanup
2548 * the pi_state owner as well as handle race conditions that may allow us to
2549 * acquire the lock. Must be called with the hb lock held.
2550 *
6c23cbbd 2551 * Return:
7b4ff1ad
MCC
2552 * - 1 - success, lock taken;
2553 * - 0 - success, lock not taken;
2554 * - <0 - on error (-EFAULT)
dd973998 2555 */
ae791a2d 2556static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
dd973998 2557{
dd973998
DH
2558 int ret = 0;
2559
2560 if (locked) {
2561 /*
2562 * Got the lock. We might not be the anticipated owner if we
2563 * did a lock-steal - fix up the PI-state in that case:
16ffa12d 2564 *
c1e2f0ea
PZ
2565 * Speculative pi_state->owner read (we don't hold wait_lock);
2566 * since we own the lock pi_state->owner == current is the
2567 * stable state, anything else needs more attention.
dd973998
DH
2568 */
2569 if (q->pi_state->owner != current)
ae791a2d 2570 ret = fixup_pi_state_owner(uaddr, q, current);
dd973998
DH
2571 goto out;
2572 }
2573
c1e2f0ea
PZ
2574 /*
2575 * If we didn't get the lock; check if anybody stole it from us. In
2576 * that case, we need to fix up the uval to point to them instead of
2577 * us, otherwise bad things happen. [10]
2578 *
2579 * Another speculative read; pi_state->owner == current is unstable
2580 * but needs our attention.
2581 */
2582 if (q->pi_state->owner == current) {
2583 ret = fixup_pi_state_owner(uaddr, q, NULL);
2584 goto out;
2585 }
2586
dd973998
DH
2587 /*
2588 * Paranoia check. If we did not take the lock, then we should not be
8161239a 2589 * the owner of the rt_mutex.
dd973998 2590 */
73d786bd 2591 if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
dd973998
DH
2592 printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2593 "pi-state %p\n", ret,
2594 q->pi_state->pi_mutex.owner,
2595 q->pi_state->owner);
73d786bd 2596 }
dd973998
DH
2597
2598out:
2599 return ret ? ret : locked;
2600}
2601
ca5f9524
DH
2602/**
2603 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2604 * @hb: the futex hash bucket, must be locked by the caller
2605 * @q: the futex_q to queue up on
2606 * @timeout: the prepared hrtimer_sleeper, or null for no timeout
ca5f9524
DH
2607 */
2608static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
f1a11e05 2609 struct hrtimer_sleeper *timeout)
ca5f9524 2610{
9beba3c5
DH
2611 /*
2612 * The task state is guaranteed to be set before another task can
b92b8b35 2613 * wake it. set_current_state() is implemented using smp_store_mb() and
9beba3c5
DH
2614 * queue_me() calls spin_unlock() upon completion, both serializing
2615 * access to the hash list and forcing another memory barrier.
2616 */
f1a11e05 2617 set_current_state(TASK_INTERRUPTIBLE);
0729e196 2618 queue_me(q, hb);
ca5f9524
DH
2619
2620 /* Arm the timer */
2e4b0d3f 2621 if (timeout)
ca5f9524 2622 hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
ca5f9524
DH
2623
2624 /*
0729e196
DH
2625 * If we have been removed from the hash list, then another task
2626 * has tried to wake us, and we can skip the call to schedule().
ca5f9524
DH
2627 */
2628 if (likely(!plist_node_empty(&q->list))) {
2629 /*
2630 * If the timer has already expired, current will already be
2631 * flagged for rescheduling. Only call schedule if there
2632 * is no timeout, or if it has yet to expire.
2633 */
2634 if (!timeout || timeout->task)
88c8004f 2635 freezable_schedule();
ca5f9524
DH
2636 }
2637 __set_current_state(TASK_RUNNING);
2638}
2639
f801073f
DH
2640/**
2641 * futex_wait_setup() - Prepare to wait on a futex
2642 * @uaddr: the futex userspace address
2643 * @val: the expected value
b41277dc 2644 * @flags: futex flags (FLAGS_SHARED, etc.)
f801073f
DH
2645 * @q: the associated futex_q
2646 * @hb: storage for hash_bucket pointer to be returned to caller
2647 *
2648 * Setup the futex_q and locate the hash_bucket. Get the futex value and
2649 * compare it with the expected value. Handle atomic faults internally.
2650 * Return with the hb lock held and a q.key reference on success, and unlocked
2651 * with no q.key reference on failure.
2652 *
6c23cbbd 2653 * Return:
7b4ff1ad
MCC
2654 * - 0 - uaddr contains val and hb has been locked;
2655 * - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
f801073f 2656 */
b41277dc 2657static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
f801073f 2658 struct futex_q *q, struct futex_hash_bucket **hb)
1da177e4 2659{
e2970f2f
IM
2660 u32 uval;
2661 int ret;
1da177e4 2662
1da177e4 2663 /*
b2d0994b 2664 * Access the page AFTER the hash-bucket is locked.
1da177e4
LT
2665 * Order is important:
2666 *
2667 * Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2668 * Userspace waker: if (cond(var)) { var = new; futex_wake(&var); }
2669 *
2670 * The basic logical guarantee of a futex is that it blocks ONLY
2671 * if cond(var) is known to be true at the time of blocking, for
8fe8f545
ML
2672 * any cond. If we locked the hash-bucket after testing *uaddr, that
2673 * would open a race condition where we could block indefinitely with
1da177e4
LT
2674 * cond(var) false, which would violate the guarantee.
2675 *
8fe8f545
ML
2676 * On the other hand, we insert q and release the hash-bucket only
2677 * after testing *uaddr. This guarantees that futex_wait() will NOT
2678 * absorb a wakeup if *uaddr does not match the desired values
2679 * while the syscall executes.
1da177e4 2680 */
f801073f 2681retry:
9ea71503 2682 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
f801073f 2683 if (unlikely(ret != 0))
a5a2a0c7 2684 return ret;
f801073f
DH
2685
2686retry_private:
2687 *hb = queue_lock(q);
2688
e2970f2f 2689 ret = get_futex_value_locked(&uval, uaddr);
1da177e4 2690
f801073f 2691 if (ret) {
0d00c7b2 2692 queue_unlock(*hb);
1da177e4 2693
e2970f2f 2694 ret = get_user(uval, uaddr);
e4dc5b7a 2695 if (ret)
f801073f 2696 goto out;
1da177e4 2697
b41277dc 2698 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2699 goto retry_private;
2700
ae791a2d 2701 put_futex_key(&q->key);
e4dc5b7a 2702 goto retry;
1da177e4 2703 }
ca5f9524 2704
f801073f 2705 if (uval != val) {
0d00c7b2 2706 queue_unlock(*hb);
f801073f 2707 ret = -EWOULDBLOCK;
2fff78c7 2708 }
1da177e4 2709
f801073f
DH
2710out:
2711 if (ret)
ae791a2d 2712 put_futex_key(&q->key);
f801073f
DH
2713 return ret;
2714}
2715
b41277dc
DH
2716static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2717 ktime_t *abs_time, u32 bitset)
f801073f
DH
2718{
2719 struct hrtimer_sleeper timeout, *to = NULL;
f801073f
DH
2720 struct restart_block *restart;
2721 struct futex_hash_bucket *hb;
5bdb05f9 2722 struct futex_q q = futex_q_init;
f801073f
DH
2723 int ret;
2724
2725 if (!bitset)
2726 return -EINVAL;
f801073f
DH
2727 q.bitset = bitset;
2728
2729 if (abs_time) {
2730 to = &timeout;
2731
b41277dc
DH
2732 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2733 CLOCK_REALTIME : CLOCK_MONOTONIC,
2734 HRTIMER_MODE_ABS);
f801073f
DH
2735 hrtimer_init_sleeper(to, current);
2736 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2737 current->timer_slack_ns);
2738 }
2739
d58e6576 2740retry:
7ada876a
DH
2741 /*
2742 * Prepare to wait on uaddr. On success, holds hb lock and increments
2743 * q.key refs.
2744 */
b41277dc 2745 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
f801073f
DH
2746 if (ret)
2747 goto out;
2748
ca5f9524 2749 /* queue_me and wait for wakeup, timeout, or a signal. */
f1a11e05 2750 futex_wait_queue_me(hb, &q, to);
1da177e4
LT
2751
2752 /* If we were woken (and unqueued), we succeeded, whatever. */
2fff78c7 2753 ret = 0;
7ada876a 2754 /* unqueue_me() drops q.key ref */
1da177e4 2755 if (!unqueue_me(&q))
7ada876a 2756 goto out;
2fff78c7 2757 ret = -ETIMEDOUT;
ca5f9524 2758 if (to && !to->task)
7ada876a 2759 goto out;
72c1bbf3 2760
e2970f2f 2761 /*
d58e6576
TG
2762 * We expect signal_pending(current), but we might be the
2763 * victim of a spurious wakeup as well.
e2970f2f 2764 */
7ada876a 2765 if (!signal_pending(current))
d58e6576 2766 goto retry;
d58e6576 2767
2fff78c7 2768 ret = -ERESTARTSYS;
c19384b5 2769 if (!abs_time)
7ada876a 2770 goto out;
1da177e4 2771
f56141e3 2772 restart = &current->restart_block;
2fff78c7 2773 restart->fn = futex_wait_restart;
a3c74c52 2774 restart->futex.uaddr = uaddr;
2fff78c7 2775 restart->futex.val = val;
2456e855 2776 restart->futex.time = *abs_time;
2fff78c7 2777 restart->futex.bitset = bitset;
0cd9c649 2778 restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
42d35d48 2779
2fff78c7
PZ
2780 ret = -ERESTART_RESTARTBLOCK;
2781
42d35d48 2782out:
ca5f9524
DH
2783 if (to) {
2784 hrtimer_cancel(&to->timer);
2785 destroy_hrtimer_on_stack(&to->timer);
2786 }
c87e2837
IM
2787 return ret;
2788}
2789
72c1bbf3
NP
2790
2791static long futex_wait_restart(struct restart_block *restart)
2792{
a3c74c52 2793 u32 __user *uaddr = restart->futex.uaddr;
a72188d8 2794 ktime_t t, *tp = NULL;
72c1bbf3 2795
a72188d8 2796 if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2456e855 2797 t = restart->futex.time;
a72188d8
DH
2798 tp = &t;
2799 }
72c1bbf3 2800 restart->fn = do_no_restart_syscall;
b41277dc
DH
2801
2802 return (long)futex_wait(uaddr, restart->futex.flags,
2803 restart->futex.val, tp, restart->futex.bitset);
72c1bbf3
NP
2804}
2805
2806
c87e2837
IM
2807/*
2808 * Userspace tried a 0 -> TID atomic transition of the futex value
2809 * and failed. The kernel side here does the whole locking operation:
767f509c
DB
2810 * if there are waiters then it will block as a consequence of relying
2811 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2812 * a 0 value of the futex too.).
2813 *
2814 * Also serves as futex trylock_pi()'ing, and due semantics.
c87e2837 2815 */
996636dd 2816static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
b41277dc 2817 ktime_t *time, int trylock)
c87e2837 2818{
c5780e97 2819 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 2820 struct futex_pi_state *pi_state = NULL;
cfafcd11 2821 struct rt_mutex_waiter rt_waiter;
c87e2837 2822 struct futex_hash_bucket *hb;
5bdb05f9 2823 struct futex_q q = futex_q_init;
dd973998 2824 int res, ret;
c87e2837 2825
bc2eecd7
NP
2826 if (!IS_ENABLED(CONFIG_FUTEX_PI))
2827 return -ENOSYS;
2828
c87e2837
IM
2829 if (refill_pi_state_cache())
2830 return -ENOMEM;
2831
c19384b5 2832 if (time) {
c5780e97 2833 to = &timeout;
237fc6e7
TG
2834 hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2835 HRTIMER_MODE_ABS);
c5780e97 2836 hrtimer_init_sleeper(to, current);
cc584b21 2837 hrtimer_set_expires(&to->timer, *time);
c5780e97
TG
2838 }
2839
42d35d48 2840retry:
9ea71503 2841 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
c87e2837 2842 if (unlikely(ret != 0))
42d35d48 2843 goto out;
c87e2837 2844
e4dc5b7a 2845retry_private:
82af7aca 2846 hb = queue_lock(&q);
c87e2837 2847
bab5bc9e 2848 ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
c87e2837 2849 if (unlikely(ret)) {
767f509c
DB
2850 /*
2851 * Atomic work succeeded and we got the lock,
2852 * or failed. Either way, we do _not_ block.
2853 */
778e9a9c 2854 switch (ret) {
1a52084d
DH
2855 case 1:
2856 /* We got the lock. */
2857 ret = 0;
2858 goto out_unlock_put_key;
2859 case -EFAULT:
2860 goto uaddr_faulted;
778e9a9c
AK
2861 case -EAGAIN:
2862 /*
af54d6a1
TG
2863 * Two reasons for this:
2864 * - Task is exiting and we just wait for the
2865 * exit to complete.
2866 * - The user space value changed.
778e9a9c 2867 */
0d00c7b2 2868 queue_unlock(hb);
ae791a2d 2869 put_futex_key(&q.key);
778e9a9c
AK
2870 cond_resched();
2871 goto retry;
778e9a9c 2872 default:
42d35d48 2873 goto out_unlock_put_key;
c87e2837 2874 }
c87e2837
IM
2875 }
2876
cfafcd11
PZ
2877 WARN_ON(!q.pi_state);
2878
c87e2837
IM
2879 /*
2880 * Only actually queue now that the atomic ops are done:
2881 */
cfafcd11 2882 __queue_me(&q, hb);
c87e2837 2883
cfafcd11 2884 if (trylock) {
5293c2ef 2885 ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
c87e2837
IM
2886 /* Fixup the trylock return value: */
2887 ret = ret ? 0 : -EWOULDBLOCK;
cfafcd11 2888 goto no_block;
c87e2837
IM
2889 }
2890
56222b21
PZ
2891 rt_mutex_init_waiter(&rt_waiter);
2892
cfafcd11 2893 /*
56222b21
PZ
2894 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2895 * hold it while doing rt_mutex_start_proxy(), because then it will
2896 * include hb->lock in the blocking chain, even through we'll not in
2897 * fact hold it while blocking. This will lead it to report -EDEADLK
2898 * and BUG when futex_unlock_pi() interleaves with this.
2899 *
2900 * Therefore acquire wait_lock while holding hb->lock, but drop the
6e37a39c
TG
2901 * latter before calling __rt_mutex_start_proxy_lock(). This
2902 * interleaves with futex_unlock_pi() -- which does a similar lock
2903 * handoff -- such that the latter can observe the futex_q::pi_state
2904 * before __rt_mutex_start_proxy_lock() is done.
cfafcd11 2905 */
56222b21
PZ
2906 raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2907 spin_unlock(q.lock_ptr);
6e37a39c
TG
2908 /*
2909 * __rt_mutex_start_proxy_lock() unconditionally enqueues the @rt_waiter
2910 * such that futex_unlock_pi() is guaranteed to observe the waiter when
2911 * it sees the futex_q::pi_state.
2912 */
56222b21
PZ
2913 ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2914 raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2915
cfafcd11
PZ
2916 if (ret) {
2917 if (ret == 1)
2918 ret = 0;
6e37a39c 2919 goto cleanup;
cfafcd11
PZ
2920 }
2921
cfafcd11
PZ
2922 if (unlikely(to))
2923 hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2924
2925 ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2926
6e37a39c 2927cleanup:
a99e4e41 2928 spin_lock(q.lock_ptr);
cfafcd11 2929 /*
6e37a39c 2930 * If we failed to acquire the lock (deadlock/signal/timeout), we must
cfafcd11 2931 * first acquire the hb->lock before removing the lock from the
6e37a39c
TG
2932 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex wait
2933 * lists consistent.
56222b21
PZ
2934 *
2935 * In particular; it is important that futex_unlock_pi() can not
2936 * observe this inconsistency.
cfafcd11
PZ
2937 */
2938 if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2939 ret = 0;
2940
2941no_block:
dd973998
DH
2942 /*
2943 * Fixup the pi_state owner and possibly acquire the lock if we
2944 * haven't already.
2945 */
ae791a2d 2946 res = fixup_owner(uaddr, &q, !ret);
dd973998
DH
2947 /*
2948 * If fixup_owner() returned an error, proprogate that. If it acquired
2949 * the lock, clear our -ETIMEDOUT or -EINTR.
2950 */
2951 if (res)
2952 ret = (res < 0) ? res : 0;
c87e2837 2953
e8f6386c 2954 /*
dd973998
DH
2955 * If fixup_owner() faulted and was unable to handle the fault, unlock
2956 * it and return the fault to userspace.
e8f6386c 2957 */
16ffa12d
PZ
2958 if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2959 pi_state = q.pi_state;
2960 get_pi_state(pi_state);
2961 }
e8f6386c 2962
778e9a9c
AK
2963 /* Unqueue and drop the lock */
2964 unqueue_me_pi(&q);
c87e2837 2965
16ffa12d
PZ
2966 if (pi_state) {
2967 rt_mutex_futex_unlock(&pi_state->pi_mutex);
2968 put_pi_state(pi_state);
2969 }
2970
5ecb01cf 2971 goto out_put_key;
c87e2837 2972
42d35d48 2973out_unlock_put_key:
0d00c7b2 2974 queue_unlock(hb);
c87e2837 2975
42d35d48 2976out_put_key:
ae791a2d 2977 put_futex_key(&q.key);
42d35d48 2978out:
97181f9b
TG
2979 if (to) {
2980 hrtimer_cancel(&to->timer);
237fc6e7 2981 destroy_hrtimer_on_stack(&to->timer);
97181f9b 2982 }
dd973998 2983 return ret != -EINTR ? ret : -ERESTARTNOINTR;
c87e2837 2984
42d35d48 2985uaddr_faulted:
0d00c7b2 2986 queue_unlock(hb);
778e9a9c 2987
d0725992 2988 ret = fault_in_user_writeable(uaddr);
e4dc5b7a
DH
2989 if (ret)
2990 goto out_put_key;
c87e2837 2991
b41277dc 2992 if (!(flags & FLAGS_SHARED))
e4dc5b7a
DH
2993 goto retry_private;
2994
ae791a2d 2995 put_futex_key(&q.key);
e4dc5b7a 2996 goto retry;
c87e2837
IM
2997}
2998
c87e2837
IM
2999/*
3000 * Userspace attempted a TID -> 0 atomic transition, and failed.
3001 * This is the in-kernel slowpath: we look up the PI state (if any),
3002 * and do the rt-mutex unlock.
3003 */
b41277dc 3004static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
c87e2837 3005{
ccf9e6a8 3006 u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
38d47c1b 3007 union futex_key key = FUTEX_KEY_INIT;
ccf9e6a8 3008 struct futex_hash_bucket *hb;
499f5aca 3009 struct futex_q *top_waiter;
e4dc5b7a 3010 int ret;
c87e2837 3011
bc2eecd7
NP
3012 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3013 return -ENOSYS;
3014
c87e2837
IM
3015retry:
3016 if (get_user(uval, uaddr))
3017 return -EFAULT;
3018 /*
3019 * We release only a lock we actually own:
3020 */
c0c9ed15 3021 if ((uval & FUTEX_TID_MASK) != vpid)
c87e2837 3022 return -EPERM;
c87e2837 3023
9ea71503 3024 ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
ccf9e6a8
TG
3025 if (ret)
3026 return ret;
c87e2837
IM
3027
3028 hb = hash_futex(&key);
3029 spin_lock(&hb->lock);
3030
c87e2837 3031 /*
ccf9e6a8
TG
3032 * Check waiters first. We do not trust user space values at
3033 * all and we at least want to know if user space fiddled
3034 * with the futex value instead of blindly unlocking.
c87e2837 3035 */
499f5aca
PZ
3036 top_waiter = futex_top_waiter(hb, &key);
3037 if (top_waiter) {
16ffa12d
PZ
3038 struct futex_pi_state *pi_state = top_waiter->pi_state;
3039
3040 ret = -EINVAL;
3041 if (!pi_state)
3042 goto out_unlock;
3043
3044 /*
3045 * If current does not own the pi_state then the futex is
3046 * inconsistent and user space fiddled with the futex value.
3047 */
3048 if (pi_state->owner != current)
3049 goto out_unlock;
3050
bebe5b51 3051 get_pi_state(pi_state);
802ab58d 3052 /*
bebe5b51
PZ
3053 * By taking wait_lock while still holding hb->lock, we ensure
3054 * there is no point where we hold neither; and therefore
3055 * wake_futex_pi() must observe a state consistent with what we
3056 * observed.
6e37a39c
TG
3057 *
3058 * In particular; this forces __rt_mutex_start_proxy() to
3059 * complete such that we're guaranteed to observe the
3060 * rt_waiter. Also see the WARN in wake_futex_pi().
16ffa12d 3061 */
bebe5b51 3062 raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
16ffa12d
PZ
3063 spin_unlock(&hb->lock);
3064
c74aef2d 3065 /* drops pi_state->pi_mutex.wait_lock */
16ffa12d
PZ
3066 ret = wake_futex_pi(uaddr, uval, pi_state);
3067
3068 put_pi_state(pi_state);
3069
3070 /*
3071 * Success, we're done! No tricky corner cases.
802ab58d
SAS
3072 */
3073 if (!ret)
3074 goto out_putkey;
c87e2837 3075 /*
ccf9e6a8
TG
3076 * The atomic access to the futex value generated a
3077 * pagefault, so retry the user-access and the wakeup:
c87e2837
IM
3078 */
3079 if (ret == -EFAULT)
3080 goto pi_faulted;
89e9e66b
SAS
3081 /*
3082 * A unconditional UNLOCK_PI op raced against a waiter
3083 * setting the FUTEX_WAITERS bit. Try again.
3084 */
e5733e53
WD
3085 if (ret == -EAGAIN)
3086 goto pi_retry;
802ab58d
SAS
3087 /*
3088 * wake_futex_pi has detected invalid state. Tell user
3089 * space.
3090 */
16ffa12d 3091 goto out_putkey;
c87e2837 3092 }
ccf9e6a8 3093
c87e2837 3094 /*
ccf9e6a8
TG
3095 * We have no kernel internal state, i.e. no waiters in the
3096 * kernel. Waiters which are about to queue themselves are stuck
3097 * on hb->lock. So we can safely ignore them. We do neither
3098 * preserve the WAITERS bit not the OWNER_DIED one. We are the
3099 * owner.
c87e2837 3100 */
e5733e53 3101 if ((ret = cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))) {
16ffa12d 3102 spin_unlock(&hb->lock);
e5733e53
WD
3103 switch (ret) {
3104 case -EFAULT:
3105 goto pi_faulted;
3106
3107 case -EAGAIN:
3108 goto pi_retry;
3109
3110 default:
3111 WARN_ON_ONCE(1);
3112 goto out_putkey;
3113 }
16ffa12d 3114 }
c87e2837 3115
ccf9e6a8
TG
3116 /*
3117 * If uval has changed, let user space handle it.
3118 */
3119 ret = (curval == uval) ? 0 : -EAGAIN;
3120
c87e2837
IM
3121out_unlock:
3122 spin_unlock(&hb->lock);
802ab58d 3123out_putkey:
ae791a2d 3124 put_futex_key(&key);
c87e2837
IM
3125 return ret;
3126
e5733e53
WD
3127pi_retry:
3128 put_futex_key(&key);
3129 cond_resched();
3130 goto retry;
3131
c87e2837 3132pi_faulted:
ae791a2d 3133 put_futex_key(&key);
c87e2837 3134
d0725992 3135 ret = fault_in_user_writeable(uaddr);
b5686363 3136 if (!ret)
c87e2837
IM
3137 goto retry;
3138
1da177e4
LT
3139 return ret;
3140}
3141
52400ba9
DH
3142/**
3143 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3144 * @hb: the hash_bucket futex_q was original enqueued on
3145 * @q: the futex_q woken while waiting to be requeued
3146 * @key2: the futex_key of the requeue target futex
3147 * @timeout: the timeout associated with the wait (NULL if none)
3148 *
3149 * Detect if the task was woken on the initial futex as opposed to the requeue
3150 * target futex. If so, determine if it was a timeout or a signal that caused
3151 * the wakeup and return the appropriate error code to the caller. Must be
3152 * called with the hb lock held.
3153 *
6c23cbbd 3154 * Return:
7b4ff1ad
MCC
3155 * - 0 = no early wakeup detected;
3156 * - <0 = -ETIMEDOUT or -ERESTARTNOINTR
52400ba9
DH
3157 */
3158static inline
3159int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3160 struct futex_q *q, union futex_key *key2,
3161 struct hrtimer_sleeper *timeout)
3162{
3163 int ret = 0;
3164
3165 /*
3166 * With the hb lock held, we avoid races while we process the wakeup.
3167 * We only need to hold hb (and not hb2) to ensure atomicity as the
3168 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3169 * It can't be requeued from uaddr2 to something else since we don't
3170 * support a PI aware source futex for requeue.
3171 */
3172 if (!match_futex(&q->key, key2)) {
3173 WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3174 /*
3175 * We were woken prior to requeue by a timeout or a signal.
3176 * Unqueue the futex_q and determine which it was.
3177 */
2e12978a 3178 plist_del(&q->list, &hb->chain);
11d4616b 3179 hb_waiters_dec(hb);
52400ba9 3180
d58e6576 3181 /* Handle spurious wakeups gracefully */
11df6ddd 3182 ret = -EWOULDBLOCK;
52400ba9
DH
3183 if (timeout && !timeout->task)
3184 ret = -ETIMEDOUT;
d58e6576 3185 else if (signal_pending(current))
1c840c14 3186 ret = -ERESTARTNOINTR;
52400ba9
DH
3187 }
3188 return ret;
3189}
3190
3191/**
3192 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
56ec1607 3193 * @uaddr: the futex we initially wait on (non-pi)
b41277dc 3194 * @flags: futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
ab51fbab 3195 * the same type, no requeueing from private to shared, etc.
52400ba9
DH
3196 * @val: the expected value of uaddr
3197 * @abs_time: absolute timeout
56ec1607 3198 * @bitset: 32 bit wakeup bitset set by userspace, defaults to all
52400ba9
DH
3199 * @uaddr2: the pi futex we will take prior to returning to user-space
3200 *
3201 * The caller will wait on uaddr and will be requeued by futex_requeue() to
6f7b0a2a
DH
3202 * uaddr2 which must be PI aware and unique from uaddr. Normal wakeup will wake
3203 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3204 * userspace. This ensures the rt_mutex maintains an owner when it has waiters;
3205 * without one, the pi logic would not know which task to boost/deboost, if
3206 * there was a need to.
52400ba9
DH
3207 *
3208 * We call schedule in futex_wait_queue_me() when we enqueue and return there
6c23cbbd 3209 * via the following--
52400ba9 3210 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
cc6db4e6
DH
3211 * 2) wakeup on uaddr2 after a requeue
3212 * 3) signal
3213 * 4) timeout
52400ba9 3214 *
cc6db4e6 3215 * If 3, cleanup and return -ERESTARTNOINTR.
52400ba9
DH
3216 *
3217 * If 2, we may then block on trying to take the rt_mutex and return via:
3218 * 5) successful lock
3219 * 6) signal
3220 * 7) timeout
3221 * 8) other lock acquisition failure
3222 *
cc6db4e6 3223 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
52400ba9
DH
3224 *
3225 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3226 *
6c23cbbd 3227 * Return:
7b4ff1ad
MCC
3228 * - 0 - On success;
3229 * - <0 - On error
52400ba9 3230 */
b41277dc 3231static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
52400ba9 3232 u32 val, ktime_t *abs_time, u32 bitset,
b41277dc 3233 u32 __user *uaddr2)
52400ba9
DH
3234{
3235 struct hrtimer_sleeper timeout, *to = NULL;
16ffa12d 3236 struct futex_pi_state *pi_state = NULL;
52400ba9 3237 struct rt_mutex_waiter rt_waiter;
52400ba9 3238 struct futex_hash_bucket *hb;
5bdb05f9
DH
3239 union futex_key key2 = FUTEX_KEY_INIT;
3240 struct futex_q q = futex_q_init;
52400ba9 3241 int res, ret;
52400ba9 3242
bc2eecd7
NP
3243 if (!IS_ENABLED(CONFIG_FUTEX_PI))
3244 return -ENOSYS;
3245
6f7b0a2a
DH
3246 if (uaddr == uaddr2)
3247 return -EINVAL;
3248
52400ba9
DH
3249 if (!bitset)
3250 return -EINVAL;
3251
3252 if (abs_time) {
3253 to = &timeout;
b41277dc
DH
3254 hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3255 CLOCK_REALTIME : CLOCK_MONOTONIC,
3256 HRTIMER_MODE_ABS);
52400ba9
DH
3257 hrtimer_init_sleeper(to, current);
3258 hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3259 current->timer_slack_ns);
3260 }
3261
3262 /*
3263 * The waiter is allocated on our stack, manipulated by the requeue
3264 * code while we sleep on uaddr.
3265 */
50809358 3266 rt_mutex_init_waiter(&rt_waiter);
52400ba9 3267
9ea71503 3268 ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
52400ba9
DH
3269 if (unlikely(ret != 0))
3270 goto out;
3271
84bc4af5
DH
3272 q.bitset = bitset;
3273 q.rt_waiter = &rt_waiter;
3274 q.requeue_pi_key = &key2;
3275
7ada876a
DH
3276 /*
3277 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3278 * count.
3279 */
b41277dc 3280 ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
c8b15a70
TG
3281 if (ret)
3282 goto out_key2;
52400ba9 3283
e9c243a5
TG
3284 /*
3285 * The check above which compares uaddrs is not sufficient for
3286 * shared futexes. We need to compare the keys:
3287 */
3288 if (match_futex(&q.key, &key2)) {
13c42c2f 3289 queue_unlock(hb);
e9c243a5
TG
3290 ret = -EINVAL;
3291 goto out_put_keys;
3292 }
3293
52400ba9 3294 /* Queue the futex_q, drop the hb lock, wait for wakeup. */
f1a11e05 3295 futex_wait_queue_me(hb, &q, to);
52400ba9
DH
3296
3297 spin_lock(&hb->lock);
3298 ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3299 spin_unlock(&hb->lock);
3300 if (ret)
3301 goto out_put_keys;
3302
3303 /*
3304 * In order for us to be here, we know our q.key == key2, and since
3305 * we took the hb->lock above, we also know that futex_requeue() has
3306 * completed and we no longer have to concern ourselves with a wakeup
7ada876a
DH
3307 * race with the atomic proxy lock acquisition by the requeue code. The
3308 * futex_requeue dropped our key1 reference and incremented our key2
3309 * reference count.
52400ba9
DH
3310 */
3311
3312 /* Check if the requeue code acquired the second futex for us. */
3313 if (!q.rt_waiter) {
3314 /*
3315 * Got the lock. We might not be the anticipated owner if we
3316 * did a lock-steal - fix up the PI-state in that case.
3317 */
3318 if (q.pi_state && (q.pi_state->owner != current)) {
3319 spin_lock(q.lock_ptr);
ae791a2d 3320 ret = fixup_pi_state_owner(uaddr2, &q, current);
16ffa12d
PZ
3321 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3322 pi_state = q.pi_state;
3323 get_pi_state(pi_state);
3324 }
fb75a428
TG
3325 /*
3326 * Drop the reference to the pi state which
3327 * the requeue_pi() code acquired for us.
3328 */
29e9ee5d 3329 put_pi_state(q.pi_state);
52400ba9
DH
3330 spin_unlock(q.lock_ptr);
3331 }
3332 } else {
c236c8e9
PZ
3333 struct rt_mutex *pi_mutex;
3334
52400ba9
DH
3335 /*
3336 * We have been woken up by futex_unlock_pi(), a timeout, or a
3337 * signal. futex_unlock_pi() will not destroy the lock_ptr nor
3338 * the pi_state.
3339 */
f27071cb 3340 WARN_ON(!q.pi_state);
52400ba9 3341 pi_mutex = &q.pi_state->pi_mutex;
38d589f2 3342 ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
52400ba9
DH
3343
3344 spin_lock(q.lock_ptr);
38d589f2
PZ
3345 if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3346 ret = 0;
3347
3348 debug_rt_mutex_free_waiter(&rt_waiter);
52400ba9
DH
3349 /*
3350 * Fixup the pi_state owner and possibly acquire the lock if we
3351 * haven't already.
3352 */
ae791a2d 3353 res = fixup_owner(uaddr2, &q, !ret);
52400ba9
DH
3354 /*
3355 * If fixup_owner() returned an error, proprogate that. If it
56ec1607 3356 * acquired the lock, clear -ETIMEDOUT or -EINTR.
52400ba9
DH
3357 */
3358 if (res)
3359 ret = (res < 0) ? res : 0;
3360
c236c8e9
PZ
3361 /*
3362 * If fixup_pi_state_owner() faulted and was unable to handle
3363 * the fault, unlock the rt_mutex and return the fault to
3364 * userspace.
3365 */
16ffa12d
PZ
3366 if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3367 pi_state = q.pi_state;
3368 get_pi_state(pi_state);
3369 }
c236c8e9 3370
52400ba9
DH
3371 /* Unqueue and drop the lock. */
3372 unqueue_me_pi(&q);
3373 }
3374
16ffa12d
PZ
3375 if (pi_state) {
3376 rt_mutex_futex_unlock(&pi_state->pi_mutex);
3377 put_pi_state(pi_state);
3378 }
3379
c236c8e9 3380 if (ret == -EINTR) {
52400ba9 3381 /*
cc6db4e6
DH
3382 * We've already been requeued, but cannot restart by calling
3383 * futex_lock_pi() directly. We could restart this syscall, but
3384 * it would detect that the user space "val" changed and return
3385 * -EWOULDBLOCK. Save the overhead of the restart and return
3386 * -EWOULDBLOCK directly.
52400ba9 3387 */
2070887f 3388 ret = -EWOULDBLOCK;
52400ba9
DH
3389 }
3390
3391out_put_keys:
ae791a2d 3392 put_futex_key(&q.key);
c8b15a70 3393out_key2:
ae791a2d 3394 put_futex_key(&key2);
52400ba9
DH
3395
3396out:
3397 if (to) {
3398 hrtimer_cancel(&to->timer);
3399 destroy_hrtimer_on_stack(&to->timer);
3400 }
3401 return ret;
3402}
3403
0771dfef
IM
3404/*
3405 * Support for robust futexes: the kernel cleans up held futexes at
3406 * thread exit time.
3407 *
3408 * Implementation: user-space maintains a per-thread list of locks it
3409 * is holding. Upon do_exit(), the kernel carefully walks this list,
3410 * and marks all locks that are owned by this thread with the
c87e2837 3411 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
0771dfef
IM
3412 * always manipulated with the lock held, so the list is private and
3413 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3414 * field, to allow the kernel to clean up if the thread dies after
3415 * acquiring the lock, but just before it could have added itself to
3416 * the list. There can only be one such pending lock.
3417 */
3418
3419/**
d96ee56c
DH
3420 * sys_set_robust_list() - Set the robust-futex list head of a task
3421 * @head: pointer to the list-head
3422 * @len: length of the list-head, as userspace expects
0771dfef 3423 */
836f92ad
HC
3424SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3425 size_t, len)
0771dfef 3426{
a0c1e907
TG
3427 if (!futex_cmpxchg_enabled)
3428 return -ENOSYS;
0771dfef
IM
3429 /*
3430 * The kernel knows only one size for now:
3431 */
3432 if (unlikely(len != sizeof(*head)))
3433 return -EINVAL;
3434
3435 current->robust_list = head;
3436
3437 return 0;
3438}
3439
3440/**
d96ee56c
DH
3441 * sys_get_robust_list() - Get the robust-futex list head of a task
3442 * @pid: pid of the process [zero for current task]
3443 * @head_ptr: pointer to a list-head pointer, the kernel fills it in
3444 * @len_ptr: pointer to a length field, the kernel fills in the header size
0771dfef 3445 */
836f92ad
HC
3446SYSCALL_DEFINE3(get_robust_list, int, pid,
3447 struct robust_list_head __user * __user *, head_ptr,
3448 size_t __user *, len_ptr)
0771dfef 3449{
ba46df98 3450 struct robust_list_head __user *head;
0771dfef 3451 unsigned long ret;
bdbb776f 3452 struct task_struct *p;
0771dfef 3453
a0c1e907
TG
3454 if (!futex_cmpxchg_enabled)
3455 return -ENOSYS;
3456
bdbb776f
KC
3457 rcu_read_lock();
3458
3459 ret = -ESRCH;
0771dfef 3460 if (!pid)
bdbb776f 3461 p = current;
0771dfef 3462 else {
228ebcbe 3463 p = find_task_by_vpid(pid);
0771dfef
IM
3464 if (!p)
3465 goto err_unlock;
0771dfef
IM
3466 }
3467
bdbb776f 3468 ret = -EPERM;
caaee623 3469 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
bdbb776f
KC
3470 goto err_unlock;
3471
3472 head = p->robust_list;
3473 rcu_read_unlock();
3474
0771dfef
IM
3475 if (put_user(sizeof(*head), len_ptr))
3476 return -EFAULT;
3477 return put_user(head, head_ptr);
3478
3479err_unlock:
aaa2a97e 3480 rcu_read_unlock();
0771dfef
IM
3481
3482 return ret;
3483}
3484
6c4e1847
YT
3485/* Constants for the pending_op argument of handle_futex_death */
3486#define HANDLE_DEATH_PENDING true
3487#define HANDLE_DEATH_LIST false
3488
0771dfef
IM
3489/*
3490 * Process a futex-list entry, check whether it's owned by the
3491 * dying task, and do notification if so:
3492 */
6c4e1847
YT
3493static int handle_futex_death(u32 __user *uaddr, struct task_struct *curr,
3494 bool pi, bool pending_op)
0771dfef 3495{
7cfdaf38 3496 u32 uval, uninitialized_var(nval), mval;
e5733e53 3497 int err;
0771dfef 3498
087fad77
CJ
3499 /* Futex address must be 32bit aligned */
3500 if ((((unsigned long)uaddr) % sizeof(*uaddr)) != 0)
3501 return -1;
3502
8f17d3a5
IM
3503retry:
3504 if (get_user(uval, uaddr))
0771dfef
IM
3505 return -1;
3506
6c4e1847
YT
3507 /*
3508 * Special case for regular (non PI) futexes. The unlock path in
3509 * user space has two race scenarios:
3510 *
3511 * 1. The unlock path releases the user space futex value and
3512 * before it can execute the futex() syscall to wake up
3513 * waiters it is killed.
3514 *
3515 * 2. A woken up waiter is killed before it can acquire the
3516 * futex in user space.
3517 *
3518 * In both cases the TID validation below prevents a wakeup of
3519 * potential waiters which can cause these waiters to block
3520 * forever.
3521 *
3522 * In both cases the following conditions are met:
3523 *
3524 * 1) task->robust_list->list_op_pending != NULL
3525 * @pending_op == true
3526 * 2) User space futex value == 0
3527 * 3) Regular futex: @pi == false
3528 *
3529 * If these conditions are met, it is safe to attempt waking up a
3530 * potential waiter without touching the user space futex value and
3531 * trying to set the OWNER_DIED bit. The user space futex value is
3532 * uncontended and the rest of the user space mutex state is
3533 * consistent, so a woken waiter will just take over the
3534 * uncontended futex. Setting the OWNER_DIED bit would create
3535 * inconsistent state and malfunction of the user space owner died
3536 * handling.
3537 */
3538 if (pending_op && !pi && !uval) {
3539 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3540 return 0;
3541 }
3542
e5733e53
WD
3543 if ((uval & FUTEX_TID_MASK) != task_pid_vnr(curr))
3544 return 0;
3545
3546 /*
3547 * Ok, this dying thread is truly holding a futex
3548 * of interest. Set the OWNER_DIED bit atomically
3549 * via cmpxchg, and if the value had FUTEX_WAITERS
3550 * set, wake up a waiter (if any). (We have to do a
3551 * futex_wake() even if OWNER_DIED is already set -
3552 * to handle the rare but possible case of recursive
3553 * thread-death.) The rest of the cleanup is done in
3554 * userspace.
3555 */
3556 mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3557
3558 /*
3559 * We are not holding a lock here, but we want to have
3560 * the pagefault_disable/enable() protection because
3561 * we want to handle the fault gracefully. If the
3562 * access fails we try to fault in the futex with R/W
3563 * verification via get_user_pages. get_user() above
3564 * does not guarantee R/W access. If that fails we
3565 * give up and leave the futex locked.
3566 */
3567 if ((err = cmpxchg_futex_value_locked(&nval, uaddr, uval, mval))) {
3568 switch (err) {
3569 case -EFAULT:
6e0aa9f8
TG
3570 if (fault_in_user_writeable(uaddr))
3571 return -1;
3572 goto retry;
e5733e53
WD
3573
3574 case -EAGAIN:
3575 cond_resched();
8f17d3a5 3576 goto retry;
0771dfef 3577
e5733e53
WD
3578 default:
3579 WARN_ON_ONCE(1);
3580 return err;
3581 }
0771dfef 3582 }
e5733e53
WD
3583
3584 if (nval != uval)
3585 goto retry;
3586
3587 /*
3588 * Wake robust non-PI futexes here. The wakeup of
3589 * PI futexes happens in exit_pi_state():
3590 */
3591 if (!pi && (uval & FUTEX_WAITERS))
3592 futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3593
0771dfef
IM
3594 return 0;
3595}
3596
e3f2ddea
IM
3597/*
3598 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3599 */
3600static inline int fetch_robust_entry(struct robust_list __user **entry,
ba46df98 3601 struct robust_list __user * __user *head,
1dcc41bb 3602 unsigned int *pi)
e3f2ddea
IM
3603{
3604 unsigned long uentry;
3605
ba46df98 3606 if (get_user(uentry, (unsigned long __user *)head))
e3f2ddea
IM
3607 return -EFAULT;
3608
ba46df98 3609 *entry = (void __user *)(uentry & ~1UL);
e3f2ddea
IM
3610 *pi = uentry & 1;
3611
3612 return 0;
3613}
3614
0771dfef
IM
3615/*
3616 * Walk curr->robust_list (very carefully, it's a userspace list!)
3617 * and mark any locks found there dead, and notify any waiters.
3618 *
3619 * We silently return on any sign of list-walking problem.
3620 */
e891c8f7 3621static void exit_robust_list(struct task_struct *curr)
0771dfef
IM
3622{
3623 struct robust_list_head __user *head = curr->robust_list;
9f96cb1e 3624 struct robust_list __user *entry, *next_entry, *pending;
4c115e95
DH
3625 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3626 unsigned int uninitialized_var(next_pi);
0771dfef 3627 unsigned long futex_offset;
9f96cb1e 3628 int rc;
0771dfef 3629
a0c1e907
TG
3630 if (!futex_cmpxchg_enabled)
3631 return;
3632
0771dfef
IM
3633 /*
3634 * Fetch the list head (which was registered earlier, via
3635 * sys_set_robust_list()):
3636 */
e3f2ddea 3637 if (fetch_robust_entry(&entry, &head->list.next, &pi))
0771dfef
IM
3638 return;
3639 /*
3640 * Fetch the relative futex offset:
3641 */
3642 if (get_user(futex_offset, &head->futex_offset))
3643 return;
3644 /*
3645 * Fetch any possibly pending lock-add first, and handle it
3646 * if it exists:
3647 */
e3f2ddea 3648 if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
0771dfef 3649 return;
e3f2ddea 3650
9f96cb1e 3651 next_entry = NULL; /* avoid warning with gcc */
0771dfef 3652 while (entry != &head->list) {
9f96cb1e
MS
3653 /*
3654 * Fetch the next entry in the list before calling
3655 * handle_futex_death:
3656 */
3657 rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
0771dfef
IM
3658 /*
3659 * A pending lock might already be on the list, so
c87e2837 3660 * don't process it twice:
0771dfef 3661 */
6c4e1847 3662 if (entry != pending) {
ba46df98 3663 if (handle_futex_death((void __user *)entry + futex_offset,
6c4e1847 3664 curr, pi, HANDLE_DEATH_LIST))
0771dfef 3665 return;
6c4e1847 3666 }
9f96cb1e 3667 if (rc)
0771dfef 3668 return;
9f96cb1e
MS
3669 entry = next_entry;
3670 pi = next_pi;
0771dfef
IM
3671 /*
3672 * Avoid excessively long or circular lists:
3673 */
3674 if (!--limit)
3675 break;
3676
3677 cond_resched();
3678 }
9f96cb1e 3679
6c4e1847 3680 if (pending) {
9f96cb1e 3681 handle_futex_death((void __user *)pending + futex_offset,
6c4e1847
YT
3682 curr, pip, HANDLE_DEATH_PENDING);
3683 }
0771dfef
IM
3684}
3685
e891c8f7
TG
3686void futex_mm_release(struct task_struct *tsk)
3687{
3688 if (unlikely(tsk->robust_list)) {
3689 exit_robust_list(tsk);
3690 tsk->robust_list = NULL;
3691 }
3692
3693#ifdef CONFIG_COMPAT
3694 if (unlikely(tsk->compat_robust_list)) {
3695 compat_exit_robust_list(tsk);
3696 tsk->compat_robust_list = NULL;
3697 }
3698#endif
3699
3700 if (unlikely(!list_empty(&tsk->pi_state_list)))
3701 exit_pi_state_list(tsk);
3702}
3703
c19384b5 3704long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
e2970f2f 3705 u32 __user *uaddr2, u32 val2, u32 val3)
1da177e4 3706{
81b40539 3707 int cmd = op & FUTEX_CMD_MASK;
b41277dc 3708 unsigned int flags = 0;
34f01cc1
ED
3709
3710 if (!(op & FUTEX_PRIVATE_FLAG))
b41277dc 3711 flags |= FLAGS_SHARED;
1da177e4 3712
b41277dc
DH
3713 if (op & FUTEX_CLOCK_REALTIME) {
3714 flags |= FLAGS_CLOCKRT;
337f1304
DH
3715 if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3716 cmd != FUTEX_WAIT_REQUEUE_PI)
b41277dc
DH
3717 return -ENOSYS;
3718 }
1da177e4 3719
59263b51
TG
3720 switch (cmd) {
3721 case FUTEX_LOCK_PI:
3722 case FUTEX_UNLOCK_PI:
3723 case FUTEX_TRYLOCK_PI:
3724 case FUTEX_WAIT_REQUEUE_PI:
3725 case FUTEX_CMP_REQUEUE_PI:
3726 if (!futex_cmpxchg_enabled)
3727 return -ENOSYS;
3728 }
3729
34f01cc1 3730 switch (cmd) {
1da177e4 3731 case FUTEX_WAIT:
cd689985
TG
3732 val3 = FUTEX_BITSET_MATCH_ANY;
3733 case FUTEX_WAIT_BITSET:
81b40539 3734 return futex_wait(uaddr, flags, val, timeout, val3);
1da177e4 3735 case FUTEX_WAKE:
cd689985
TG
3736 val3 = FUTEX_BITSET_MATCH_ANY;
3737 case FUTEX_WAKE_BITSET:
81b40539 3738 return futex_wake(uaddr, flags, val, val3);
1da177e4 3739 case FUTEX_REQUEUE:
81b40539 3740 return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
1da177e4 3741 case FUTEX_CMP_REQUEUE:
81b40539 3742 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
4732efbe 3743 case FUTEX_WAKE_OP:
81b40539 3744 return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
c87e2837 3745 case FUTEX_LOCK_PI:
996636dd 3746 return futex_lock_pi(uaddr, flags, timeout, 0);
c87e2837 3747 case FUTEX_UNLOCK_PI:
81b40539 3748 return futex_unlock_pi(uaddr, flags);
c87e2837 3749 case FUTEX_TRYLOCK_PI:
996636dd 3750 return futex_lock_pi(uaddr, flags, NULL, 1);
52400ba9
DH
3751 case FUTEX_WAIT_REQUEUE_PI:
3752 val3 = FUTEX_BITSET_MATCH_ANY;
81b40539
TG
3753 return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3754 uaddr2);
52400ba9 3755 case FUTEX_CMP_REQUEUE_PI:
81b40539 3756 return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
1da177e4 3757 }
81b40539 3758 return -ENOSYS;
1da177e4
LT
3759}
3760
3761
17da2bd9
HC
3762SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3763 struct timespec __user *, utime, u32 __user *, uaddr2,
3764 u32, val3)
1da177e4 3765{
c19384b5
PP
3766 struct timespec ts;
3767 ktime_t t, *tp = NULL;
e2970f2f 3768 u32 val2 = 0;
34f01cc1 3769 int cmd = op & FUTEX_CMD_MASK;
1da177e4 3770
cd689985 3771 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
52400ba9
DH
3772 cmd == FUTEX_WAIT_BITSET ||
3773 cmd == FUTEX_WAIT_REQUEUE_PI)) {
ab51fbab
DB
3774 if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3775 return -EFAULT;
c19384b5 3776 if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
1da177e4 3777 return -EFAULT;
c19384b5 3778 if (!timespec_valid(&ts))
9741ef96 3779 return -EINVAL;
c19384b5
PP
3780
3781 t = timespec_to_ktime(ts);
34f01cc1 3782 if (cmd == FUTEX_WAIT)
5a7780e7 3783 t = ktime_add_safe(ktime_get(), t);
c19384b5 3784 tp = &t;
1da177e4
LT
3785 }
3786 /*
52400ba9 3787 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
f54f0986 3788 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
1da177e4 3789 */
f54f0986 3790 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
ba9c22f2 3791 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
e2970f2f 3792 val2 = (u32) (unsigned long) utime;
1da177e4 3793
c19384b5 3794 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
1da177e4
LT
3795}
3796
f6d7b233
AB
3797#ifdef CONFIG_COMPAT
3798/*
3799 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3800 */
3801static inline int
3802compat_fetch_robust_entry(compat_uptr_t *uentry, struct robust_list __user **entry,
3803 compat_uptr_t __user *head, unsigned int *pi)
3804{
3805 if (get_user(*uentry, head))
3806 return -EFAULT;
3807
3808 *entry = compat_ptr((*uentry) & ~1);
3809 *pi = (unsigned int)(*uentry) & 1;
3810
3811 return 0;
3812}
3813
3814static void __user *futex_uaddr(struct robust_list __user *entry,
3815 compat_long_t futex_offset)
3816{
3817 compat_uptr_t base = ptr_to_compat(entry);
3818 void __user *uaddr = compat_ptr(base + futex_offset);
3819
3820 return uaddr;
3821}
3822
3823/*
3824 * Walk curr->robust_list (very carefully, it's a userspace list!)
3825 * and mark any locks found there dead, and notify any waiters.
3826 *
3827 * We silently return on any sign of list-walking problem.
3828 */
e891c8f7 3829static void compat_exit_robust_list(struct task_struct *curr)
f6d7b233
AB
3830{
3831 struct compat_robust_list_head __user *head = curr->compat_robust_list;
3832 struct robust_list __user *entry, *next_entry, *pending;
3833 unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3834 unsigned int uninitialized_var(next_pi);
3835 compat_uptr_t uentry, next_uentry, upending;
3836 compat_long_t futex_offset;
3837 int rc;
3838
3839 if (!futex_cmpxchg_enabled)
3840 return;
3841
3842 /*
3843 * Fetch the list head (which was registered earlier, via
3844 * sys_set_robust_list()):
3845 */
3846 if (compat_fetch_robust_entry(&uentry, &entry, &head->list.next, &pi))
3847 return;
3848 /*
3849 * Fetch the relative futex offset:
3850 */
3851 if (get_user(futex_offset, &head->futex_offset))
3852 return;
3853 /*
3854 * Fetch any possibly pending lock-add first, and handle it
3855 * if it exists:
3856 */
3857 if (compat_fetch_robust_entry(&upending, &pending,
3858 &head->list_op_pending, &pip))
3859 return;
3860
3861 next_entry = NULL; /* avoid warning with gcc */
3862 while (entry != (struct robust_list __user *) &head->list) {
3863 /*
3864 * Fetch the next entry in the list before calling
3865 * handle_futex_death:
3866 */
3867 rc = compat_fetch_robust_entry(&next_uentry, &next_entry,
3868 (compat_uptr_t __user *)&entry->next, &next_pi);
3869 /*
3870 * A pending lock might already be on the list, so
3871 * dont process it twice:
3872 */
3873 if (entry != pending) {
3874 void __user *uaddr = futex_uaddr(entry, futex_offset);
3875
6c4e1847
YT
3876 if (handle_futex_death(uaddr, curr, pi,
3877 HANDLE_DEATH_LIST))
f6d7b233
AB
3878 return;
3879 }
3880 if (rc)
3881 return;
3882 uentry = next_uentry;
3883 entry = next_entry;
3884 pi = next_pi;
3885 /*
3886 * Avoid excessively long or circular lists:
3887 */
3888 if (!--limit)
3889 break;
3890
3891 cond_resched();
3892 }
3893 if (pending) {
3894 void __user *uaddr = futex_uaddr(pending, futex_offset);
3895
6c4e1847 3896 handle_futex_death(uaddr, curr, pip, HANDLE_DEATH_PENDING);
f6d7b233
AB
3897 }
3898}
3899
3900COMPAT_SYSCALL_DEFINE2(set_robust_list,
3901 struct compat_robust_list_head __user *, head,
3902 compat_size_t, len)
3903{
3904 if (!futex_cmpxchg_enabled)
3905 return -ENOSYS;
3906
3907 if (unlikely(len != sizeof(*head)))
3908 return -EINVAL;
3909
3910 current->compat_robust_list = head;
3911
3912 return 0;
3913}
3914
3915COMPAT_SYSCALL_DEFINE3(get_robust_list, int, pid,
3916 compat_uptr_t __user *, head_ptr,
3917 compat_size_t __user *, len_ptr)
3918{
3919 struct compat_robust_list_head __user *head;
3920 unsigned long ret;
3921 struct task_struct *p;
3922
3923 if (!futex_cmpxchg_enabled)
3924 return -ENOSYS;
3925
3926 rcu_read_lock();
3927
3928 ret = -ESRCH;
3929 if (!pid)
3930 p = current;
3931 else {
3932 p = find_task_by_vpid(pid);
3933 if (!p)
3934 goto err_unlock;
3935 }
3936
3937 ret = -EPERM;
3938 if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3939 goto err_unlock;
3940
3941 head = p->compat_robust_list;
3942 rcu_read_unlock();
3943
3944 if (put_user(sizeof(*head), len_ptr))
3945 return -EFAULT;
3946 return put_user(ptr_to_compat(head), head_ptr);
3947
3948err_unlock:
3949 rcu_read_unlock();
3950
3951 return ret;
3952}
3953
3954COMPAT_SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3955 struct compat_timespec __user *, utime, u32 __user *, uaddr2,
3956 u32, val3)
3957{
3958 struct timespec ts;
3959 ktime_t t, *tp = NULL;
3960 int val2 = 0;
3961 int cmd = op & FUTEX_CMD_MASK;
3962
3963 if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3964 cmd == FUTEX_WAIT_BITSET ||
3965 cmd == FUTEX_WAIT_REQUEUE_PI)) {
3966 if (compat_get_timespec(&ts, utime))
3967 return -EFAULT;
3968 if (!timespec_valid(&ts))
3969 return -EINVAL;
3970
3971 t = timespec_to_ktime(ts);
3972 if (cmd == FUTEX_WAIT)
3973 t = ktime_add_safe(ktime_get(), t);
3974 tp = &t;
3975 }
3976 if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3977 cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3978 val2 = (int) (unsigned long) utime;
3979
3980 return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3981}
3982#endif /* CONFIG_COMPAT */
3983
03b8c7b6 3984static void __init futex_detect_cmpxchg(void)
1da177e4 3985{
03b8c7b6 3986#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
a0c1e907 3987 u32 curval;
03b8c7b6
HC
3988
3989 /*
3990 * This will fail and we want it. Some arch implementations do
3991 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3992 * functionality. We want to know that before we call in any
3993 * of the complex code paths. Also we want to prevent
3994 * registration of robust lists in that case. NULL is
3995 * guaranteed to fault and we get -EFAULT on functional
3996 * implementation, the non-functional ones will return
3997 * -ENOSYS.
3998 */
3999 if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
4000 futex_cmpxchg_enabled = 1;
4001#endif
4002}
4003
4004static int __init futex_init(void)
4005{
63b1a816 4006 unsigned int futex_shift;
a52b89eb
DB
4007 unsigned long i;
4008
4009#if CONFIG_BASE_SMALL
4010 futex_hashsize = 16;
4011#else
4012 futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
4013#endif
4014
4015 futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
4016 futex_hashsize, 0,
4017 futex_hashsize < 256 ? HASH_SMALL : 0,
63b1a816
HC
4018 &futex_shift, NULL,
4019 futex_hashsize, futex_hashsize);
4020 futex_hashsize = 1UL << futex_shift;
03b8c7b6
HC
4021
4022 futex_detect_cmpxchg();
a0c1e907 4023
a52b89eb 4024 for (i = 0; i < futex_hashsize; i++) {
11d4616b 4025 atomic_set(&futex_queues[i].waiters, 0);
732375c6 4026 plist_head_init(&futex_queues[i].chain);
3e4ab747
TG
4027 spin_lock_init(&futex_queues[i].lock);
4028 }
4029
1da177e4
LT
4030 return 0;
4031}
25f71d1c 4032core_initcall(futex_init);