]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/sched.c
sched: fix typos in documentation
[mirror_ubuntu-bionic-kernel.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4
LT
34#include <linux/highmem.h>
35#include <linux/smp_lock.h>
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
57#include <linux/kthread.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
5517d86b 66#include <linux/reciprocal_div.h>
dff06c15 67#include <linux/unistd.h>
f5ff8422 68#include <linux/pagemap.h>
8f4d37ec 69#include <linux/hrtimer.h>
30914a58 70#include <linux/tick.h>
434d53b0 71#include <linux/bootmem.h>
f00b45c1
PZ
72#include <linux/debugfs.h>
73#include <linux/ctype.h>
6cd8a4bb 74#include <linux/ftrace.h>
0a16b607 75#include <trace/sched.h>
1da177e4 76
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
1da177e4 79
6e0534f2
GH
80#include "sched_cpupri.h"
81
1da177e4
LT
82/*
83 * Convert user-nice values [ -20 ... 0 ... 19 ]
84 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
85 * and back.
86 */
87#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
88#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
89#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
90
91/*
92 * 'User priority' is the nice value converted to something we
93 * can work with better when scaling various scheduler parameters,
94 * it's a [ 0 ... 39 ] range.
95 */
96#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
97#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
98#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
99
100/*
d7876a08 101 * Helpers for converting nanosecond timing to jiffy resolution
1da177e4 102 */
d6322faf 103#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
1da177e4 104
6aa645ea
IM
105#define NICE_0_LOAD SCHED_LOAD_SCALE
106#define NICE_0_SHIFT SCHED_LOAD_SHIFT
107
1da177e4
LT
108/*
109 * These are the 'tuning knobs' of the scheduler:
110 *
a4ec24b4 111 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
112 * Timeslices get refilled after they expire.
113 */
1da177e4 114#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 115
d0b27fa7
PZ
116/*
117 * single value that denotes runtime == period, ie unlimited time.
118 */
119#define RUNTIME_INF ((u64)~0ULL)
120
7e066fb8
MD
121DEFINE_TRACE(sched_wait_task);
122DEFINE_TRACE(sched_wakeup);
123DEFINE_TRACE(sched_wakeup_new);
124DEFINE_TRACE(sched_switch);
125DEFINE_TRACE(sched_migrate_task);
126
5517d86b 127#ifdef CONFIG_SMP
fd2ab30b
SN
128
129static void double_rq_lock(struct rq *rq1, struct rq *rq2);
130
5517d86b
ED
131/*
132 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
133 * Since cpu_power is a 'constant', we can use a reciprocal divide.
134 */
135static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
136{
137 return reciprocal_divide(load, sg->reciprocal_cpu_power);
138}
139
140/*
141 * Each time a sched group cpu_power is changed,
142 * we must compute its reciprocal value
143 */
144static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
145{
146 sg->__cpu_power += val;
147 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
148}
149#endif
150
e05606d3
IM
151static inline int rt_policy(int policy)
152{
3f33a7ce 153 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
e05606d3
IM
154 return 1;
155 return 0;
156}
157
158static inline int task_has_rt_policy(struct task_struct *p)
159{
160 return rt_policy(p->policy);
161}
162
1da177e4 163/*
6aa645ea 164 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 165 */
6aa645ea
IM
166struct rt_prio_array {
167 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
168 struct list_head queue[MAX_RT_PRIO];
169};
170
d0b27fa7 171struct rt_bandwidth {
ea736ed5
IM
172 /* nests inside the rq lock: */
173 spinlock_t rt_runtime_lock;
174 ktime_t rt_period;
175 u64 rt_runtime;
176 struct hrtimer rt_period_timer;
d0b27fa7
PZ
177};
178
179static struct rt_bandwidth def_rt_bandwidth;
180
181static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
182
183static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
184{
185 struct rt_bandwidth *rt_b =
186 container_of(timer, struct rt_bandwidth, rt_period_timer);
187 ktime_t now;
188 int overrun;
189 int idle = 0;
190
191 for (;;) {
192 now = hrtimer_cb_get_time(timer);
193 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
194
195 if (!overrun)
196 break;
197
198 idle = do_sched_rt_period_timer(rt_b, overrun);
199 }
200
201 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
202}
203
204static
205void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
206{
207 rt_b->rt_period = ns_to_ktime(period);
208 rt_b->rt_runtime = runtime;
209
ac086bc2
PZ
210 spin_lock_init(&rt_b->rt_runtime_lock);
211
d0b27fa7
PZ
212 hrtimer_init(&rt_b->rt_period_timer,
213 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
214 rt_b->rt_period_timer.function = sched_rt_period_timer;
d0b27fa7
PZ
215}
216
c8bfff6d
KH
217static inline int rt_bandwidth_enabled(void)
218{
219 return sysctl_sched_rt_runtime >= 0;
d0b27fa7
PZ
220}
221
222static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
223{
224 ktime_t now;
225
cac64d00 226 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
d0b27fa7
PZ
227 return;
228
229 if (hrtimer_active(&rt_b->rt_period_timer))
230 return;
231
232 spin_lock(&rt_b->rt_runtime_lock);
233 for (;;) {
234 if (hrtimer_active(&rt_b->rt_period_timer))
235 break;
236
237 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
238 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
cc584b21
AV
239 hrtimer_start_expires(&rt_b->rt_period_timer,
240 HRTIMER_MODE_ABS);
d0b27fa7
PZ
241 }
242 spin_unlock(&rt_b->rt_runtime_lock);
243}
244
245#ifdef CONFIG_RT_GROUP_SCHED
246static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
247{
248 hrtimer_cancel(&rt_b->rt_period_timer);
249}
250#endif
251
712555ee
HC
252/*
253 * sched_domains_mutex serializes calls to arch_init_sched_domains,
254 * detach_destroy_domains and partition_sched_domains.
255 */
256static DEFINE_MUTEX(sched_domains_mutex);
257
052f1dc7 258#ifdef CONFIG_GROUP_SCHED
29f59db3 259
68318b8e
SV
260#include <linux/cgroup.h>
261
29f59db3
SV
262struct cfs_rq;
263
6f505b16
PZ
264static LIST_HEAD(task_groups);
265
29f59db3 266/* task group related information */
4cf86d77 267struct task_group {
052f1dc7 268#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
269 struct cgroup_subsys_state css;
270#endif
052f1dc7 271
6c415b92
AB
272#ifdef CONFIG_USER_SCHED
273 uid_t uid;
274#endif
275
052f1dc7 276#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
277 /* schedulable entities of this group on each cpu */
278 struct sched_entity **se;
279 /* runqueue "owned" by this group on each cpu */
280 struct cfs_rq **cfs_rq;
281 unsigned long shares;
052f1dc7
PZ
282#endif
283
284#ifdef CONFIG_RT_GROUP_SCHED
285 struct sched_rt_entity **rt_se;
286 struct rt_rq **rt_rq;
287
d0b27fa7 288 struct rt_bandwidth rt_bandwidth;
052f1dc7 289#endif
6b2d7700 290
ae8393e5 291 struct rcu_head rcu;
6f505b16 292 struct list_head list;
f473aa5e
PZ
293
294 struct task_group *parent;
295 struct list_head siblings;
296 struct list_head children;
29f59db3
SV
297};
298
354d60c2 299#ifdef CONFIG_USER_SCHED
eff766a6 300
6c415b92
AB
301/* Helper function to pass uid information to create_sched_user() */
302void set_tg_uid(struct user_struct *user)
303{
304 user->tg->uid = user->uid;
305}
306
eff766a6
PZ
307/*
308 * Root task group.
309 * Every UID task group (including init_task_group aka UID-0) will
310 * be a child to this group.
311 */
312struct task_group root_task_group;
313
052f1dc7 314#ifdef CONFIG_FAIR_GROUP_SCHED
29f59db3
SV
315/* Default task group's sched entity on each cpu */
316static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
317/* Default task group's cfs_rq on each cpu */
318static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 319#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
320
321#ifdef CONFIG_RT_GROUP_SCHED
322static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
323static DEFINE_PER_CPU(struct rt_rq, init_rt_rq) ____cacheline_aligned_in_smp;
6d6bc0ad 324#endif /* CONFIG_RT_GROUP_SCHED */
9a7e0b18 325#else /* !CONFIG_USER_SCHED */
eff766a6 326#define root_task_group init_task_group
9a7e0b18 327#endif /* CONFIG_USER_SCHED */
6f505b16 328
8ed36996 329/* task_group_lock serializes add/remove of task groups and also changes to
ec2c507f
SV
330 * a task group's cpu shares.
331 */
8ed36996 332static DEFINE_SPINLOCK(task_group_lock);
ec2c507f 333
57310a98
PZ
334#ifdef CONFIG_SMP
335static int root_task_group_empty(void)
336{
337 return list_empty(&root_task_group.children);
338}
339#endif
340
052f1dc7 341#ifdef CONFIG_FAIR_GROUP_SCHED
052f1dc7
PZ
342#ifdef CONFIG_USER_SCHED
343# define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
6d6bc0ad 344#else /* !CONFIG_USER_SCHED */
052f1dc7 345# define INIT_TASK_GROUP_LOAD NICE_0_LOAD
6d6bc0ad 346#endif /* CONFIG_USER_SCHED */
052f1dc7 347
cb4ad1ff 348/*
2e084786
LJ
349 * A weight of 0 or 1 can cause arithmetics problems.
350 * A weight of a cfs_rq is the sum of weights of which entities
351 * are queued on this cfs_rq, so a weight of a entity should not be
352 * too large, so as the shares value of a task group.
cb4ad1ff
MX
353 * (The default weight is 1024 - so there's no practical
354 * limitation from this.)
355 */
18d95a28 356#define MIN_SHARES 2
2e084786 357#define MAX_SHARES (1UL << 18)
18d95a28 358
052f1dc7
PZ
359static int init_task_group_load = INIT_TASK_GROUP_LOAD;
360#endif
361
29f59db3 362/* Default task group.
3a252015 363 * Every task in system belong to this group at bootup.
29f59db3 364 */
434d53b0 365struct task_group init_task_group;
29f59db3
SV
366
367/* return group to which a task belongs */
4cf86d77 368static inline struct task_group *task_group(struct task_struct *p)
29f59db3 369{
4cf86d77 370 struct task_group *tg;
9b5b7751 371
052f1dc7 372#ifdef CONFIG_USER_SCHED
c69e8d9c
DH
373 rcu_read_lock();
374 tg = __task_cred(p)->user->tg;
375 rcu_read_unlock();
052f1dc7 376#elif defined(CONFIG_CGROUP_SCHED)
68318b8e
SV
377 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
378 struct task_group, css);
24e377a8 379#else
41a2d6cf 380 tg = &init_task_group;
24e377a8 381#endif
9b5b7751 382 return tg;
29f59db3
SV
383}
384
385/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
6f505b16 386static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
29f59db3 387{
052f1dc7 388#ifdef CONFIG_FAIR_GROUP_SCHED
ce96b5ac
DA
389 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
390 p->se.parent = task_group(p)->se[cpu];
052f1dc7 391#endif
6f505b16 392
052f1dc7 393#ifdef CONFIG_RT_GROUP_SCHED
6f505b16
PZ
394 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
395 p->rt.parent = task_group(p)->rt_se[cpu];
052f1dc7 396#endif
29f59db3
SV
397}
398
399#else
400
57310a98
PZ
401#ifdef CONFIG_SMP
402static int root_task_group_empty(void)
403{
404 return 1;
405}
406#endif
407
6f505b16 408static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
83378269
PZ
409static inline struct task_group *task_group(struct task_struct *p)
410{
411 return NULL;
412}
29f59db3 413
052f1dc7 414#endif /* CONFIG_GROUP_SCHED */
29f59db3 415
6aa645ea
IM
416/* CFS-related fields in a runqueue */
417struct cfs_rq {
418 struct load_weight load;
419 unsigned long nr_running;
420
6aa645ea 421 u64 exec_clock;
e9acbff6 422 u64 min_vruntime;
6aa645ea
IM
423
424 struct rb_root tasks_timeline;
425 struct rb_node *rb_leftmost;
4a55bd5e
PZ
426
427 struct list_head tasks;
428 struct list_head *balance_iterator;
429
430 /*
431 * 'curr' points to currently running entity on this cfs_rq.
6aa645ea
IM
432 * It is set to NULL otherwise (i.e when none are currently running).
433 */
4793241b 434 struct sched_entity *curr, *next, *last;
ddc97297 435
5ac5c4d6 436 unsigned int nr_spread_over;
ddc97297 437
62160e3f 438#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
439 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
440
41a2d6cf
IM
441 /*
442 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
6aa645ea
IM
443 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
444 * (like users, containers etc.)
445 *
446 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
447 * list is used during load balance.
448 */
41a2d6cf
IM
449 struct list_head leaf_cfs_rq_list;
450 struct task_group *tg; /* group that "owns" this runqueue */
c09595f6
PZ
451
452#ifdef CONFIG_SMP
c09595f6 453 /*
c8cba857 454 * the part of load.weight contributed by tasks
c09595f6 455 */
c8cba857 456 unsigned long task_weight;
c09595f6 457
c8cba857
PZ
458 /*
459 * h_load = weight * f(tg)
460 *
461 * Where f(tg) is the recursive weight fraction assigned to
462 * this group.
463 */
464 unsigned long h_load;
c09595f6 465
c8cba857
PZ
466 /*
467 * this cpu's part of tg->shares
468 */
469 unsigned long shares;
f1d239f7
PZ
470
471 /*
472 * load.weight at the time we set shares
473 */
474 unsigned long rq_weight;
c09595f6 475#endif
6aa645ea
IM
476#endif
477};
1da177e4 478
6aa645ea
IM
479/* Real-Time classes' related field in a runqueue: */
480struct rt_rq {
481 struct rt_prio_array active;
63489e45 482 unsigned long rt_nr_running;
052f1dc7 483#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499
GH
484 struct {
485 int curr; /* highest queued rt task prio */
398a153b 486#ifdef CONFIG_SMP
e864c499 487 int next; /* next highest */
398a153b 488#endif
e864c499 489 } highest_prio;
6f505b16 490#endif
fa85ae24 491#ifdef CONFIG_SMP
73fe6aae 492 unsigned long rt_nr_migratory;
a22d7fc1 493 int overloaded;
917b627d 494 struct plist_head pushable_tasks;
fa85ae24 495#endif
6f505b16 496 int rt_throttled;
fa85ae24 497 u64 rt_time;
ac086bc2 498 u64 rt_runtime;
ea736ed5 499 /* Nests inside the rq lock: */
ac086bc2 500 spinlock_t rt_runtime_lock;
6f505b16 501
052f1dc7 502#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc
PZ
503 unsigned long rt_nr_boosted;
504
6f505b16
PZ
505 struct rq *rq;
506 struct list_head leaf_rt_rq_list;
507 struct task_group *tg;
508 struct sched_rt_entity *rt_se;
509#endif
6aa645ea
IM
510};
511
57d885fe
GH
512#ifdef CONFIG_SMP
513
514/*
515 * We add the notion of a root-domain which will be used to define per-domain
0eab9146
IM
516 * variables. Each exclusive cpuset essentially defines an island domain by
517 * fully partitioning the member cpus from any other cpuset. Whenever a new
57d885fe
GH
518 * exclusive cpuset is created, we also create and attach a new root-domain
519 * object.
520 *
57d885fe
GH
521 */
522struct root_domain {
523 atomic_t refcount;
c6c4927b
RR
524 cpumask_var_t span;
525 cpumask_var_t online;
637f5085 526
0eab9146 527 /*
637f5085
GH
528 * The "RT overload" flag: it gets set if a CPU has more than
529 * one runnable RT task.
530 */
c6c4927b 531 cpumask_var_t rto_mask;
0eab9146 532 atomic_t rto_count;
6e0534f2
GH
533#ifdef CONFIG_SMP
534 struct cpupri cpupri;
535#endif
7a09b1a2
VS
536#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
537 /*
538 * Preferred wake up cpu nominated by sched_mc balance that will be
539 * used when most cpus are idle in the system indicating overall very
540 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
541 */
542 unsigned int sched_mc_preferred_wakeup_cpu;
543#endif
57d885fe
GH
544};
545
dc938520
GH
546/*
547 * By default the system creates a single root-domain with all cpus as
548 * members (mimicking the global state we have today).
549 */
57d885fe
GH
550static struct root_domain def_root_domain;
551
552#endif
553
1da177e4
LT
554/*
555 * This is the main, per-CPU runqueue data structure.
556 *
557 * Locking rule: those places that want to lock multiple runqueues
558 * (such as the load balancing or the thread migration code), lock
559 * acquire operations must be ordered by ascending &runqueue.
560 */
70b97a7f 561struct rq {
d8016491
IM
562 /* runqueue lock: */
563 spinlock_t lock;
1da177e4
LT
564
565 /*
566 * nr_running and cpu_load should be in the same cacheline because
567 * remote CPUs use both these fields when doing load calculation.
568 */
569 unsigned long nr_running;
6aa645ea
IM
570 #define CPU_LOAD_IDX_MAX 5
571 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
46cb4b7c 572#ifdef CONFIG_NO_HZ
15934a37 573 unsigned long last_tick_seen;
46cb4b7c
SS
574 unsigned char in_nohz_recently;
575#endif
d8016491
IM
576 /* capture load from *all* tasks on this cpu: */
577 struct load_weight load;
6aa645ea
IM
578 unsigned long nr_load_updates;
579 u64 nr_switches;
580
581 struct cfs_rq cfs;
6f505b16 582 struct rt_rq rt;
6f505b16 583
6aa645ea 584#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
585 /* list of leaf cfs_rq on this cpu: */
586 struct list_head leaf_cfs_rq_list;
052f1dc7
PZ
587#endif
588#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 589 struct list_head leaf_rt_rq_list;
1da177e4 590#endif
1da177e4
LT
591
592 /*
593 * This is part of a global counter where only the total sum
594 * over all CPUs matters. A task can increase this counter on
595 * one CPU and if it got migrated afterwards it may decrease
596 * it on another CPU. Always updated under the runqueue lock:
597 */
598 unsigned long nr_uninterruptible;
599
36c8b586 600 struct task_struct *curr, *idle;
c9819f45 601 unsigned long next_balance;
1da177e4 602 struct mm_struct *prev_mm;
6aa645ea 603
3e51f33f 604 u64 clock;
6aa645ea 605
1da177e4
LT
606 atomic_t nr_iowait;
607
608#ifdef CONFIG_SMP
0eab9146 609 struct root_domain *rd;
1da177e4
LT
610 struct sched_domain *sd;
611
a0a522ce 612 unsigned char idle_at_tick;
1da177e4
LT
613 /* For active balancing */
614 int active_balance;
615 int push_cpu;
d8016491
IM
616 /* cpu of this runqueue: */
617 int cpu;
1f11eb6a 618 int online;
1da177e4 619
a8a51d5e 620 unsigned long avg_load_per_task;
1da177e4 621
36c8b586 622 struct task_struct *migration_thread;
1da177e4
LT
623 struct list_head migration_queue;
624#endif
625
8f4d37ec 626#ifdef CONFIG_SCHED_HRTICK
31656519
PZ
627#ifdef CONFIG_SMP
628 int hrtick_csd_pending;
629 struct call_single_data hrtick_csd;
630#endif
8f4d37ec
PZ
631 struct hrtimer hrtick_timer;
632#endif
633
1da177e4
LT
634#ifdef CONFIG_SCHEDSTATS
635 /* latency stats */
636 struct sched_info rq_sched_info;
9c2c4802
KC
637 unsigned long long rq_cpu_time;
638 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
1da177e4
LT
639
640 /* sys_sched_yield() stats */
480b9434
KC
641 unsigned int yld_exp_empty;
642 unsigned int yld_act_empty;
643 unsigned int yld_both_empty;
644 unsigned int yld_count;
1da177e4
LT
645
646 /* schedule() stats */
480b9434
KC
647 unsigned int sched_switch;
648 unsigned int sched_count;
649 unsigned int sched_goidle;
1da177e4
LT
650
651 /* try_to_wake_up() stats */
480b9434
KC
652 unsigned int ttwu_count;
653 unsigned int ttwu_local;
b8efb561
IM
654
655 /* BKL stats */
480b9434 656 unsigned int bkl_count;
1da177e4
LT
657#endif
658};
659
f34e3b61 660static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
1da177e4 661
15afe09b 662static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
dd41f596 663{
15afe09b 664 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
dd41f596
IM
665}
666
0a2966b4
CL
667static inline int cpu_of(struct rq *rq)
668{
669#ifdef CONFIG_SMP
670 return rq->cpu;
671#else
672 return 0;
673#endif
674}
675
674311d5
NP
676/*
677 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 678 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
679 *
680 * The domain tree of any CPU may only be accessed from within
681 * preempt-disabled sections.
682 */
48f24c4d
IM
683#define for_each_domain(cpu, __sd) \
684 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
685
686#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
687#define this_rq() (&__get_cpu_var(runqueues))
688#define task_rq(p) cpu_rq(task_cpu(p))
689#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
690
3e51f33f
PZ
691static inline void update_rq_clock(struct rq *rq)
692{
693 rq->clock = sched_clock_cpu(cpu_of(rq));
694}
695
bf5c91ba
IM
696/*
697 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
698 */
699#ifdef CONFIG_SCHED_DEBUG
700# define const_debug __read_mostly
701#else
702# define const_debug static const
703#endif
704
017730c1
IM
705/**
706 * runqueue_is_locked
707 *
708 * Returns true if the current cpu runqueue is locked.
709 * This interface allows printk to be called with the runqueue lock
710 * held and know whether or not it is OK to wake up the klogd.
711 */
712int runqueue_is_locked(void)
713{
714 int cpu = get_cpu();
715 struct rq *rq = cpu_rq(cpu);
716 int ret;
717
718 ret = spin_is_locked(&rq->lock);
719 put_cpu();
720 return ret;
721}
722
bf5c91ba
IM
723/*
724 * Debugging: various feature bits
725 */
f00b45c1
PZ
726
727#define SCHED_FEAT(name, enabled) \
728 __SCHED_FEAT_##name ,
729
bf5c91ba 730enum {
f00b45c1 731#include "sched_features.h"
bf5c91ba
IM
732};
733
f00b45c1
PZ
734#undef SCHED_FEAT
735
736#define SCHED_FEAT(name, enabled) \
737 (1UL << __SCHED_FEAT_##name) * enabled |
738
bf5c91ba 739const_debug unsigned int sysctl_sched_features =
f00b45c1
PZ
740#include "sched_features.h"
741 0;
742
743#undef SCHED_FEAT
744
745#ifdef CONFIG_SCHED_DEBUG
746#define SCHED_FEAT(name, enabled) \
747 #name ,
748
983ed7a6 749static __read_mostly char *sched_feat_names[] = {
f00b45c1
PZ
750#include "sched_features.h"
751 NULL
752};
753
754#undef SCHED_FEAT
755
34f3a814 756static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 757{
f00b45c1
PZ
758 int i;
759
760 for (i = 0; sched_feat_names[i]; i++) {
34f3a814
LZ
761 if (!(sysctl_sched_features & (1UL << i)))
762 seq_puts(m, "NO_");
763 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 764 }
34f3a814 765 seq_puts(m, "\n");
f00b45c1 766
34f3a814 767 return 0;
f00b45c1
PZ
768}
769
770static ssize_t
771sched_feat_write(struct file *filp, const char __user *ubuf,
772 size_t cnt, loff_t *ppos)
773{
774 char buf[64];
775 char *cmp = buf;
776 int neg = 0;
777 int i;
778
779 if (cnt > 63)
780 cnt = 63;
781
782 if (copy_from_user(&buf, ubuf, cnt))
783 return -EFAULT;
784
785 buf[cnt] = 0;
786
c24b7c52 787 if (strncmp(buf, "NO_", 3) == 0) {
f00b45c1
PZ
788 neg = 1;
789 cmp += 3;
790 }
791
792 for (i = 0; sched_feat_names[i]; i++) {
793 int len = strlen(sched_feat_names[i]);
794
795 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
796 if (neg)
797 sysctl_sched_features &= ~(1UL << i);
798 else
799 sysctl_sched_features |= (1UL << i);
800 break;
801 }
802 }
803
804 if (!sched_feat_names[i])
805 return -EINVAL;
806
807 filp->f_pos += cnt;
808
809 return cnt;
810}
811
34f3a814
LZ
812static int sched_feat_open(struct inode *inode, struct file *filp)
813{
814 return single_open(filp, sched_feat_show, NULL);
815}
816
f00b45c1 817static struct file_operations sched_feat_fops = {
34f3a814
LZ
818 .open = sched_feat_open,
819 .write = sched_feat_write,
820 .read = seq_read,
821 .llseek = seq_lseek,
822 .release = single_release,
f00b45c1
PZ
823};
824
825static __init int sched_init_debug(void)
826{
f00b45c1
PZ
827 debugfs_create_file("sched_features", 0644, NULL, NULL,
828 &sched_feat_fops);
829
830 return 0;
831}
832late_initcall(sched_init_debug);
833
834#endif
835
836#define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
bf5c91ba 837
b82d9fdd
PZ
838/*
839 * Number of tasks to iterate in a single balance run.
840 * Limited because this is done with IRQs disabled.
841 */
842const_debug unsigned int sysctl_sched_nr_migrate = 32;
843
2398f2c6
PZ
844/*
845 * ratelimit for updating the group shares.
55cd5340 846 * default: 0.25ms
2398f2c6 847 */
55cd5340 848unsigned int sysctl_sched_shares_ratelimit = 250000;
2398f2c6 849
ffda12a1
PZ
850/*
851 * Inject some fuzzyness into changing the per-cpu group shares
852 * this avoids remote rq-locks at the expense of fairness.
853 * default: 4
854 */
855unsigned int sysctl_sched_shares_thresh = 4;
856
fa85ae24 857/*
9f0c1e56 858 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
859 * default: 1s
860 */
9f0c1e56 861unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 862
6892b75e
IM
863static __read_mostly int scheduler_running;
864
9f0c1e56
PZ
865/*
866 * part of the period that we allow rt tasks to run in us.
867 * default: 0.95s
868 */
869int sysctl_sched_rt_runtime = 950000;
fa85ae24 870
d0b27fa7
PZ
871static inline u64 global_rt_period(void)
872{
873 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
874}
875
876static inline u64 global_rt_runtime(void)
877{
e26873bb 878 if (sysctl_sched_rt_runtime < 0)
d0b27fa7
PZ
879 return RUNTIME_INF;
880
881 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
882}
fa85ae24 883
1da177e4 884#ifndef prepare_arch_switch
4866cde0
NP
885# define prepare_arch_switch(next) do { } while (0)
886#endif
887#ifndef finish_arch_switch
888# define finish_arch_switch(prev) do { } while (0)
889#endif
890
051a1d1a
DA
891static inline int task_current(struct rq *rq, struct task_struct *p)
892{
893 return rq->curr == p;
894}
895
4866cde0 896#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 897static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0 898{
051a1d1a 899 return task_current(rq, p);
4866cde0
NP
900}
901
70b97a7f 902static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
903{
904}
905
70b97a7f 906static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 907{
da04c035
IM
908#ifdef CONFIG_DEBUG_SPINLOCK
909 /* this is a valid case when another task releases the spinlock */
910 rq->lock.owner = current;
911#endif
8a25d5de
IM
912 /*
913 * If we are tracking spinlock dependencies then we have to
914 * fix up the runqueue lock - which gets 'carried over' from
915 * prev into current:
916 */
917 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
918
4866cde0
NP
919 spin_unlock_irq(&rq->lock);
920}
921
922#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 923static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
924{
925#ifdef CONFIG_SMP
926 return p->oncpu;
927#else
051a1d1a 928 return task_current(rq, p);
4866cde0
NP
929#endif
930}
931
70b97a7f 932static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
933{
934#ifdef CONFIG_SMP
935 /*
936 * We can optimise this out completely for !SMP, because the
937 * SMP rebalancing from interrupt is the only thing that cares
938 * here.
939 */
940 next->oncpu = 1;
941#endif
942#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
943 spin_unlock_irq(&rq->lock);
944#else
945 spin_unlock(&rq->lock);
946#endif
947}
948
70b97a7f 949static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
950{
951#ifdef CONFIG_SMP
952 /*
953 * After ->oncpu is cleared, the task can be moved to a different CPU.
954 * We must ensure this doesn't happen until the switch is completely
955 * finished.
956 */
957 smp_wmb();
958 prev->oncpu = 0;
959#endif
960#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
961 local_irq_enable();
1da177e4 962#endif
4866cde0
NP
963}
964#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 965
b29739f9
IM
966/*
967 * __task_rq_lock - lock the runqueue a given task resides on.
968 * Must be called interrupts disabled.
969 */
70b97a7f 970static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
971 __acquires(rq->lock)
972{
3a5c359a
AK
973 for (;;) {
974 struct rq *rq = task_rq(p);
975 spin_lock(&rq->lock);
976 if (likely(rq == task_rq(p)))
977 return rq;
b29739f9 978 spin_unlock(&rq->lock);
b29739f9 979 }
b29739f9
IM
980}
981
1da177e4
LT
982/*
983 * task_rq_lock - lock the runqueue a given task resides on and disable
41a2d6cf 984 * interrupts. Note the ordering: we can safely lookup the task_rq without
1da177e4
LT
985 * explicitly disabling preemption.
986 */
70b97a7f 987static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
988 __acquires(rq->lock)
989{
70b97a7f 990 struct rq *rq;
1da177e4 991
3a5c359a
AK
992 for (;;) {
993 local_irq_save(*flags);
994 rq = task_rq(p);
995 spin_lock(&rq->lock);
996 if (likely(rq == task_rq(p)))
997 return rq;
1da177e4 998 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 999 }
1da177e4
LT
1000}
1001
ad474cac
ON
1002void task_rq_unlock_wait(struct task_struct *p)
1003{
1004 struct rq *rq = task_rq(p);
1005
1006 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1007 spin_unlock_wait(&rq->lock);
1008}
1009
a9957449 1010static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
1011 __releases(rq->lock)
1012{
1013 spin_unlock(&rq->lock);
1014}
1015
70b97a7f 1016static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
1017 __releases(rq->lock)
1018{
1019 spin_unlock_irqrestore(&rq->lock, *flags);
1020}
1021
1da177e4 1022/*
cc2a73b5 1023 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 1024 */
a9957449 1025static struct rq *this_rq_lock(void)
1da177e4
LT
1026 __acquires(rq->lock)
1027{
70b97a7f 1028 struct rq *rq;
1da177e4
LT
1029
1030 local_irq_disable();
1031 rq = this_rq();
1032 spin_lock(&rq->lock);
1033
1034 return rq;
1035}
1036
8f4d37ec
PZ
1037#ifdef CONFIG_SCHED_HRTICK
1038/*
1039 * Use HR-timers to deliver accurate preemption points.
1040 *
1041 * Its all a bit involved since we cannot program an hrt while holding the
1042 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1043 * reschedule event.
1044 *
1045 * When we get rescheduled we reprogram the hrtick_timer outside of the
1046 * rq->lock.
1047 */
8f4d37ec
PZ
1048
1049/*
1050 * Use hrtick when:
1051 * - enabled by features
1052 * - hrtimer is actually high res
1053 */
1054static inline int hrtick_enabled(struct rq *rq)
1055{
1056 if (!sched_feat(HRTICK))
1057 return 0;
ba42059f 1058 if (!cpu_active(cpu_of(rq)))
b328ca18 1059 return 0;
8f4d37ec
PZ
1060 return hrtimer_is_hres_active(&rq->hrtick_timer);
1061}
1062
8f4d37ec
PZ
1063static void hrtick_clear(struct rq *rq)
1064{
1065 if (hrtimer_active(&rq->hrtick_timer))
1066 hrtimer_cancel(&rq->hrtick_timer);
1067}
1068
8f4d37ec
PZ
1069/*
1070 * High-resolution timer tick.
1071 * Runs from hardirq context with interrupts disabled.
1072 */
1073static enum hrtimer_restart hrtick(struct hrtimer *timer)
1074{
1075 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1076
1077 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1078
1079 spin_lock(&rq->lock);
3e51f33f 1080 update_rq_clock(rq);
8f4d37ec
PZ
1081 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1082 spin_unlock(&rq->lock);
1083
1084 return HRTIMER_NORESTART;
1085}
1086
95e904c7 1087#ifdef CONFIG_SMP
31656519
PZ
1088/*
1089 * called from hardirq (IPI) context
1090 */
1091static void __hrtick_start(void *arg)
b328ca18 1092{
31656519 1093 struct rq *rq = arg;
b328ca18 1094
31656519
PZ
1095 spin_lock(&rq->lock);
1096 hrtimer_restart(&rq->hrtick_timer);
1097 rq->hrtick_csd_pending = 0;
1098 spin_unlock(&rq->lock);
b328ca18
PZ
1099}
1100
31656519
PZ
1101/*
1102 * Called to set the hrtick timer state.
1103 *
1104 * called with rq->lock held and irqs disabled
1105 */
1106static void hrtick_start(struct rq *rq, u64 delay)
b328ca18 1107{
31656519
PZ
1108 struct hrtimer *timer = &rq->hrtick_timer;
1109 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 1110
cc584b21 1111 hrtimer_set_expires(timer, time);
31656519
PZ
1112
1113 if (rq == this_rq()) {
1114 hrtimer_restart(timer);
1115 } else if (!rq->hrtick_csd_pending) {
1116 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd);
1117 rq->hrtick_csd_pending = 1;
1118 }
b328ca18
PZ
1119}
1120
1121static int
1122hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1123{
1124 int cpu = (int)(long)hcpu;
1125
1126 switch (action) {
1127 case CPU_UP_CANCELED:
1128 case CPU_UP_CANCELED_FROZEN:
1129 case CPU_DOWN_PREPARE:
1130 case CPU_DOWN_PREPARE_FROZEN:
1131 case CPU_DEAD:
1132 case CPU_DEAD_FROZEN:
31656519 1133 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
1134 return NOTIFY_OK;
1135 }
1136
1137 return NOTIFY_DONE;
1138}
1139
fa748203 1140static __init void init_hrtick(void)
b328ca18
PZ
1141{
1142 hotcpu_notifier(hotplug_hrtick, 0);
1143}
31656519
PZ
1144#else
1145/*
1146 * Called to set the hrtick timer state.
1147 *
1148 * called with rq->lock held and irqs disabled
1149 */
1150static void hrtick_start(struct rq *rq, u64 delay)
1151{
1152 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), HRTIMER_MODE_REL);
1153}
b328ca18 1154
006c75f1 1155static inline void init_hrtick(void)
8f4d37ec 1156{
8f4d37ec 1157}
31656519 1158#endif /* CONFIG_SMP */
8f4d37ec 1159
31656519 1160static void init_rq_hrtick(struct rq *rq)
8f4d37ec 1161{
31656519
PZ
1162#ifdef CONFIG_SMP
1163 rq->hrtick_csd_pending = 0;
8f4d37ec 1164
31656519
PZ
1165 rq->hrtick_csd.flags = 0;
1166 rq->hrtick_csd.func = __hrtick_start;
1167 rq->hrtick_csd.info = rq;
1168#endif
8f4d37ec 1169
31656519
PZ
1170 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1171 rq->hrtick_timer.function = hrtick;
8f4d37ec 1172}
006c75f1 1173#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
1174static inline void hrtick_clear(struct rq *rq)
1175{
1176}
1177
8f4d37ec
PZ
1178static inline void init_rq_hrtick(struct rq *rq)
1179{
1180}
1181
b328ca18
PZ
1182static inline void init_hrtick(void)
1183{
1184}
006c75f1 1185#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 1186
c24d20db
IM
1187/*
1188 * resched_task - mark a task 'to be rescheduled now'.
1189 *
1190 * On UP this means the setting of the need_resched flag, on SMP it
1191 * might also involve a cross-CPU call to trigger the scheduler on
1192 * the target CPU.
1193 */
1194#ifdef CONFIG_SMP
1195
1196#ifndef tsk_is_polling
1197#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1198#endif
1199
31656519 1200static void resched_task(struct task_struct *p)
c24d20db
IM
1201{
1202 int cpu;
1203
1204 assert_spin_locked(&task_rq(p)->lock);
1205
5ed0cec0 1206 if (test_tsk_need_resched(p))
c24d20db
IM
1207 return;
1208
5ed0cec0 1209 set_tsk_need_resched(p);
c24d20db
IM
1210
1211 cpu = task_cpu(p);
1212 if (cpu == smp_processor_id())
1213 return;
1214
1215 /* NEED_RESCHED must be visible before we test polling */
1216 smp_mb();
1217 if (!tsk_is_polling(p))
1218 smp_send_reschedule(cpu);
1219}
1220
1221static void resched_cpu(int cpu)
1222{
1223 struct rq *rq = cpu_rq(cpu);
1224 unsigned long flags;
1225
1226 if (!spin_trylock_irqsave(&rq->lock, flags))
1227 return;
1228 resched_task(cpu_curr(cpu));
1229 spin_unlock_irqrestore(&rq->lock, flags);
1230}
06d8308c
TG
1231
1232#ifdef CONFIG_NO_HZ
1233/*
1234 * When add_timer_on() enqueues a timer into the timer wheel of an
1235 * idle CPU then this timer might expire before the next timer event
1236 * which is scheduled to wake up that CPU. In case of a completely
1237 * idle system the next event might even be infinite time into the
1238 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1239 * leaves the inner idle loop so the newly added timer is taken into
1240 * account when the CPU goes back to idle and evaluates the timer
1241 * wheel for the next timer event.
1242 */
1243void wake_up_idle_cpu(int cpu)
1244{
1245 struct rq *rq = cpu_rq(cpu);
1246
1247 if (cpu == smp_processor_id())
1248 return;
1249
1250 /*
1251 * This is safe, as this function is called with the timer
1252 * wheel base lock of (cpu) held. When the CPU is on the way
1253 * to idle and has not yet set rq->curr to idle then it will
1254 * be serialized on the timer wheel base lock and take the new
1255 * timer into account automatically.
1256 */
1257 if (rq->curr != rq->idle)
1258 return;
1259
1260 /*
1261 * We can set TIF_RESCHED on the idle task of the other CPU
1262 * lockless. The worst case is that the other CPU runs the
1263 * idle task through an additional NOOP schedule()
1264 */
5ed0cec0 1265 set_tsk_need_resched(rq->idle);
06d8308c
TG
1266
1267 /* NEED_RESCHED must be visible before we test polling */
1268 smp_mb();
1269 if (!tsk_is_polling(rq->idle))
1270 smp_send_reschedule(cpu);
1271}
6d6bc0ad 1272#endif /* CONFIG_NO_HZ */
06d8308c 1273
6d6bc0ad 1274#else /* !CONFIG_SMP */
31656519 1275static void resched_task(struct task_struct *p)
c24d20db
IM
1276{
1277 assert_spin_locked(&task_rq(p)->lock);
31656519 1278 set_tsk_need_resched(p);
c24d20db 1279}
6d6bc0ad 1280#endif /* CONFIG_SMP */
c24d20db 1281
45bf76df
IM
1282#if BITS_PER_LONG == 32
1283# define WMULT_CONST (~0UL)
1284#else
1285# define WMULT_CONST (1UL << 32)
1286#endif
1287
1288#define WMULT_SHIFT 32
1289
194081eb
IM
1290/*
1291 * Shift right and round:
1292 */
cf2ab469 1293#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 1294
a7be37ac
PZ
1295/*
1296 * delta *= weight / lw
1297 */
cb1c4fc9 1298static unsigned long
45bf76df
IM
1299calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1300 struct load_weight *lw)
1301{
1302 u64 tmp;
1303
7a232e03
LJ
1304 if (!lw->inv_weight) {
1305 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1306 lw->inv_weight = 1;
1307 else
1308 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1309 / (lw->weight+1);
1310 }
45bf76df
IM
1311
1312 tmp = (u64)delta_exec * weight;
1313 /*
1314 * Check whether we'd overflow the 64-bit multiplication:
1315 */
194081eb 1316 if (unlikely(tmp > WMULT_CONST))
cf2ab469 1317 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
1318 WMULT_SHIFT/2);
1319 else
cf2ab469 1320 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 1321
ecf691da 1322 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
1323}
1324
1091985b 1325static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
1326{
1327 lw->weight += inc;
e89996ae 1328 lw->inv_weight = 0;
45bf76df
IM
1329}
1330
1091985b 1331static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
1332{
1333 lw->weight -= dec;
e89996ae 1334 lw->inv_weight = 0;
45bf76df
IM
1335}
1336
2dd73a4f
PW
1337/*
1338 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1339 * of tasks with abnormal "nice" values across CPUs the contribution that
1340 * each task makes to its run queue's load is weighted according to its
41a2d6cf 1341 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
2dd73a4f
PW
1342 * scaled version of the new time slice allocation that they receive on time
1343 * slice expiry etc.
1344 */
1345
cce7ade8
PZ
1346#define WEIGHT_IDLEPRIO 3
1347#define WMULT_IDLEPRIO 1431655765
dd41f596
IM
1348
1349/*
1350 * Nice levels are multiplicative, with a gentle 10% change for every
1351 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1352 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1353 * that remained on nice 0.
1354 *
1355 * The "10% effect" is relative and cumulative: from _any_ nice level,
1356 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
1357 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1358 * If a task goes up by ~10% and another task goes down by ~10% then
1359 * the relative distance between them is ~25%.)
dd41f596
IM
1360 */
1361static const int prio_to_weight[40] = {
254753dc
IM
1362 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1363 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1364 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1365 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1366 /* 0 */ 1024, 820, 655, 526, 423,
1367 /* 5 */ 335, 272, 215, 172, 137,
1368 /* 10 */ 110, 87, 70, 56, 45,
1369 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
1370};
1371
5714d2de
IM
1372/*
1373 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1374 *
1375 * In cases where the weight does not change often, we can use the
1376 * precalculated inverse to speed up arithmetics by turning divisions
1377 * into multiplications:
1378 */
dd41f596 1379static const u32 prio_to_wmult[40] = {
254753dc
IM
1380 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1381 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1382 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1383 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1384 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1385 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1386 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1387 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 1388};
2dd73a4f 1389
dd41f596
IM
1390static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1391
1392/*
1393 * runqueue iterator, to support SMP load-balancing between different
1394 * scheduling classes, without having to expose their internal data
1395 * structures to the load-balancing proper:
1396 */
1397struct rq_iterator {
1398 void *arg;
1399 struct task_struct *(*start)(void *);
1400 struct task_struct *(*next)(void *);
1401};
1402
e1d1484f
PW
1403#ifdef CONFIG_SMP
1404static unsigned long
1405balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1406 unsigned long max_load_move, struct sched_domain *sd,
1407 enum cpu_idle_type idle, int *all_pinned,
1408 int *this_best_prio, struct rq_iterator *iterator);
1409
1410static int
1411iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1412 struct sched_domain *sd, enum cpu_idle_type idle,
1413 struct rq_iterator *iterator);
e1d1484f 1414#endif
dd41f596 1415
d842de87
SV
1416#ifdef CONFIG_CGROUP_CPUACCT
1417static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1418#else
1419static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1420#endif
1421
18d95a28
PZ
1422static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1423{
1424 update_load_add(&rq->load, load);
1425}
1426
1427static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1428{
1429 update_load_sub(&rq->load, load);
1430}
1431
7940ca36 1432#if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
eb755805 1433typedef int (*tg_visitor)(struct task_group *, void *);
c09595f6
PZ
1434
1435/*
1436 * Iterate the full tree, calling @down when first entering a node and @up when
1437 * leaving it for the final time.
1438 */
eb755805 1439static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
1440{
1441 struct task_group *parent, *child;
eb755805 1442 int ret;
c09595f6
PZ
1443
1444 rcu_read_lock();
1445 parent = &root_task_group;
1446down:
eb755805
PZ
1447 ret = (*down)(parent, data);
1448 if (ret)
1449 goto out_unlock;
c09595f6
PZ
1450 list_for_each_entry_rcu(child, &parent->children, siblings) {
1451 parent = child;
1452 goto down;
1453
1454up:
1455 continue;
1456 }
eb755805
PZ
1457 ret = (*up)(parent, data);
1458 if (ret)
1459 goto out_unlock;
c09595f6
PZ
1460
1461 child = parent;
1462 parent = parent->parent;
1463 if (parent)
1464 goto up;
eb755805 1465out_unlock:
c09595f6 1466 rcu_read_unlock();
eb755805
PZ
1467
1468 return ret;
c09595f6
PZ
1469}
1470
eb755805
PZ
1471static int tg_nop(struct task_group *tg, void *data)
1472{
1473 return 0;
c09595f6 1474}
eb755805
PZ
1475#endif
1476
1477#ifdef CONFIG_SMP
1478static unsigned long source_load(int cpu, int type);
1479static unsigned long target_load(int cpu, int type);
1480static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1481
1482static unsigned long cpu_avg_load_per_task(int cpu)
1483{
1484 struct rq *rq = cpu_rq(cpu);
af6d596f 1485 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
eb755805 1486
4cd42620
SR
1487 if (nr_running)
1488 rq->avg_load_per_task = rq->load.weight / nr_running;
a2d47777
BS
1489 else
1490 rq->avg_load_per_task = 0;
eb755805
PZ
1491
1492 return rq->avg_load_per_task;
1493}
1494
1495#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 1496
c09595f6
PZ
1497static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1498
1499/*
1500 * Calculate and set the cpu's group shares.
1501 */
1502static void
ffda12a1
PZ
1503update_group_shares_cpu(struct task_group *tg, int cpu,
1504 unsigned long sd_shares, unsigned long sd_rq_weight)
18d95a28 1505{
c09595f6
PZ
1506 unsigned long shares;
1507 unsigned long rq_weight;
1508
c8cba857 1509 if (!tg->se[cpu])
c09595f6
PZ
1510 return;
1511
ec4e0e2f 1512 rq_weight = tg->cfs_rq[cpu]->rq_weight;
c8cba857 1513
c09595f6
PZ
1514 /*
1515 * \Sum shares * rq_weight
1516 * shares = -----------------------
1517 * \Sum rq_weight
1518 *
1519 */
ec4e0e2f 1520 shares = (sd_shares * rq_weight) / sd_rq_weight;
ffda12a1 1521 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
c09595f6 1522
ffda12a1
PZ
1523 if (abs(shares - tg->se[cpu]->load.weight) >
1524 sysctl_sched_shares_thresh) {
1525 struct rq *rq = cpu_rq(cpu);
1526 unsigned long flags;
c09595f6 1527
ffda12a1 1528 spin_lock_irqsave(&rq->lock, flags);
ec4e0e2f 1529 tg->cfs_rq[cpu]->shares = shares;
c09595f6 1530
ffda12a1
PZ
1531 __set_se_shares(tg->se[cpu], shares);
1532 spin_unlock_irqrestore(&rq->lock, flags);
1533 }
18d95a28 1534}
c09595f6
PZ
1535
1536/*
c8cba857
PZ
1537 * Re-compute the task group their per cpu shares over the given domain.
1538 * This needs to be done in a bottom-up fashion because the rq weight of a
1539 * parent group depends on the shares of its child groups.
c09595f6 1540 */
eb755805 1541static int tg_shares_up(struct task_group *tg, void *data)
c09595f6 1542{
ec4e0e2f 1543 unsigned long weight, rq_weight = 0;
c8cba857 1544 unsigned long shares = 0;
eb755805 1545 struct sched_domain *sd = data;
c8cba857 1546 int i;
c09595f6 1547
758b2cdc 1548 for_each_cpu(i, sched_domain_span(sd)) {
ec4e0e2f
KC
1549 /*
1550 * If there are currently no tasks on the cpu pretend there
1551 * is one of average load so that when a new task gets to
1552 * run here it will not get delayed by group starvation.
1553 */
1554 weight = tg->cfs_rq[i]->load.weight;
1555 if (!weight)
1556 weight = NICE_0_LOAD;
1557
1558 tg->cfs_rq[i]->rq_weight = weight;
1559 rq_weight += weight;
c8cba857 1560 shares += tg->cfs_rq[i]->shares;
c09595f6 1561 }
c09595f6 1562
c8cba857
PZ
1563 if ((!shares && rq_weight) || shares > tg->shares)
1564 shares = tg->shares;
1565
1566 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1567 shares = tg->shares;
c09595f6 1568
758b2cdc 1569 for_each_cpu(i, sched_domain_span(sd))
ffda12a1 1570 update_group_shares_cpu(tg, i, shares, rq_weight);
eb755805
PZ
1571
1572 return 0;
c09595f6
PZ
1573}
1574
1575/*
c8cba857
PZ
1576 * Compute the cpu's hierarchical load factor for each task group.
1577 * This needs to be done in a top-down fashion because the load of a child
1578 * group is a fraction of its parents load.
c09595f6 1579 */
eb755805 1580static int tg_load_down(struct task_group *tg, void *data)
c09595f6 1581{
c8cba857 1582 unsigned long load;
eb755805 1583 long cpu = (long)data;
c09595f6 1584
c8cba857
PZ
1585 if (!tg->parent) {
1586 load = cpu_rq(cpu)->load.weight;
1587 } else {
1588 load = tg->parent->cfs_rq[cpu]->h_load;
1589 load *= tg->cfs_rq[cpu]->shares;
1590 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1591 }
c09595f6 1592
c8cba857 1593 tg->cfs_rq[cpu]->h_load = load;
c09595f6 1594
eb755805 1595 return 0;
c09595f6
PZ
1596}
1597
c8cba857 1598static void update_shares(struct sched_domain *sd)
4d8d595d 1599{
2398f2c6
PZ
1600 u64 now = cpu_clock(raw_smp_processor_id());
1601 s64 elapsed = now - sd->last_update;
1602
1603 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1604 sd->last_update = now;
eb755805 1605 walk_tg_tree(tg_nop, tg_shares_up, sd);
2398f2c6 1606 }
4d8d595d
PZ
1607}
1608
3e5459b4
PZ
1609static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1610{
1611 spin_unlock(&rq->lock);
1612 update_shares(sd);
1613 spin_lock(&rq->lock);
1614}
1615
eb755805 1616static void update_h_load(long cpu)
c09595f6 1617{
eb755805 1618 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
c09595f6
PZ
1619}
1620
c09595f6
PZ
1621#else
1622
c8cba857 1623static inline void update_shares(struct sched_domain *sd)
4d8d595d
PZ
1624{
1625}
1626
3e5459b4
PZ
1627static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1628{
1629}
1630
18d95a28
PZ
1631#endif
1632
8f45e2b5
GH
1633#ifdef CONFIG_PREEMPT
1634
70574a99 1635/*
8f45e2b5
GH
1636 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1637 * way at the expense of forcing extra atomic operations in all
1638 * invocations. This assures that the double_lock is acquired using the
1639 * same underlying policy as the spinlock_t on this architecture, which
1640 * reduces latency compared to the unfair variant below. However, it
1641 * also adds more overhead and therefore may reduce throughput.
70574a99 1642 */
8f45e2b5
GH
1643static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1644 __releases(this_rq->lock)
1645 __acquires(busiest->lock)
1646 __acquires(this_rq->lock)
1647{
1648 spin_unlock(&this_rq->lock);
1649 double_rq_lock(this_rq, busiest);
1650
1651 return 1;
1652}
1653
1654#else
1655/*
1656 * Unfair double_lock_balance: Optimizes throughput at the expense of
1657 * latency by eliminating extra atomic operations when the locks are
1658 * already in proper order on entry. This favors lower cpu-ids and will
1659 * grant the double lock to lower cpus over higher ids under contention,
1660 * regardless of entry order into the function.
1661 */
1662static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
70574a99
AD
1663 __releases(this_rq->lock)
1664 __acquires(busiest->lock)
1665 __acquires(this_rq->lock)
1666{
1667 int ret = 0;
1668
70574a99
AD
1669 if (unlikely(!spin_trylock(&busiest->lock))) {
1670 if (busiest < this_rq) {
1671 spin_unlock(&this_rq->lock);
1672 spin_lock(&busiest->lock);
1673 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1674 ret = 1;
1675 } else
1676 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1677 }
1678 return ret;
1679}
1680
8f45e2b5
GH
1681#endif /* CONFIG_PREEMPT */
1682
1683/*
1684 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1685 */
1686static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1687{
1688 if (unlikely(!irqs_disabled())) {
1689 /* printk() doesn't work good under rq->lock */
1690 spin_unlock(&this_rq->lock);
1691 BUG_ON(1);
1692 }
1693
1694 return _double_lock_balance(this_rq, busiest);
1695}
1696
70574a99
AD
1697static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1698 __releases(busiest->lock)
1699{
1700 spin_unlock(&busiest->lock);
1701 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1702}
18d95a28
PZ
1703#endif
1704
30432094 1705#ifdef CONFIG_FAIR_GROUP_SCHED
34e83e85
IM
1706static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1707{
30432094 1708#ifdef CONFIG_SMP
34e83e85
IM
1709 cfs_rq->shares = shares;
1710#endif
1711}
30432094 1712#endif
e7693a36 1713
dd41f596 1714#include "sched_stats.h"
dd41f596 1715#include "sched_idletask.c"
5522d5d5
IM
1716#include "sched_fair.c"
1717#include "sched_rt.c"
dd41f596
IM
1718#ifdef CONFIG_SCHED_DEBUG
1719# include "sched_debug.c"
1720#endif
1721
1722#define sched_class_highest (&rt_sched_class)
1f11eb6a
GH
1723#define for_each_class(class) \
1724 for (class = sched_class_highest; class; class = class->next)
dd41f596 1725
c09595f6 1726static void inc_nr_running(struct rq *rq)
9c217245
IM
1727{
1728 rq->nr_running++;
9c217245
IM
1729}
1730
c09595f6 1731static void dec_nr_running(struct rq *rq)
9c217245
IM
1732{
1733 rq->nr_running--;
9c217245
IM
1734}
1735
45bf76df
IM
1736static void set_load_weight(struct task_struct *p)
1737{
1738 if (task_has_rt_policy(p)) {
dd41f596
IM
1739 p->se.load.weight = prio_to_weight[0] * 2;
1740 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1741 return;
1742 }
45bf76df 1743
dd41f596
IM
1744 /*
1745 * SCHED_IDLE tasks get minimal weight:
1746 */
1747 if (p->policy == SCHED_IDLE) {
1748 p->se.load.weight = WEIGHT_IDLEPRIO;
1749 p->se.load.inv_weight = WMULT_IDLEPRIO;
1750 return;
1751 }
71f8bd46 1752
dd41f596
IM
1753 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1754 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
1755}
1756
2087a1ad
GH
1757static void update_avg(u64 *avg, u64 sample)
1758{
1759 s64 diff = sample - *avg;
1760 *avg += diff >> 3;
1761}
1762
8159f87e 1763static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 1764{
831451ac
PZ
1765 if (wakeup)
1766 p->se.start_runtime = p->se.sum_exec_runtime;
1767
dd41f596 1768 sched_info_queued(p);
fd390f6a 1769 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 1770 p->se.on_rq = 1;
71f8bd46
IM
1771}
1772
69be72c1 1773static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 1774{
831451ac
PZ
1775 if (sleep) {
1776 if (p->se.last_wakeup) {
1777 update_avg(&p->se.avg_overlap,
1778 p->se.sum_exec_runtime - p->se.last_wakeup);
1779 p->se.last_wakeup = 0;
1780 } else {
1781 update_avg(&p->se.avg_wakeup,
1782 sysctl_sched_wakeup_granularity);
1783 }
2087a1ad
GH
1784 }
1785
46ac22ba 1786 sched_info_dequeued(p);
f02231e5 1787 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 1788 p->se.on_rq = 0;
71f8bd46
IM
1789}
1790
14531189 1791/*
dd41f596 1792 * __normal_prio - return the priority that is based on the static prio
14531189 1793 */
14531189
IM
1794static inline int __normal_prio(struct task_struct *p)
1795{
dd41f596 1796 return p->static_prio;
14531189
IM
1797}
1798
b29739f9
IM
1799/*
1800 * Calculate the expected normal priority: i.e. priority
1801 * without taking RT-inheritance into account. Might be
1802 * boosted by interactivity modifiers. Changes upon fork,
1803 * setprio syscalls, and whenever the interactivity
1804 * estimator recalculates.
1805 */
36c8b586 1806static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1807{
1808 int prio;
1809
e05606d3 1810 if (task_has_rt_policy(p))
b29739f9
IM
1811 prio = MAX_RT_PRIO-1 - p->rt_priority;
1812 else
1813 prio = __normal_prio(p);
1814 return prio;
1815}
1816
1817/*
1818 * Calculate the current priority, i.e. the priority
1819 * taken into account by the scheduler. This value might
1820 * be boosted by RT tasks, or might be boosted by
1821 * interactivity modifiers. Will be RT if the task got
1822 * RT-boosted. If not then it returns p->normal_prio.
1823 */
36c8b586 1824static int effective_prio(struct task_struct *p)
b29739f9
IM
1825{
1826 p->normal_prio = normal_prio(p);
1827 /*
1828 * If we are RT tasks or we were boosted to RT priority,
1829 * keep the priority unchanged. Otherwise, update priority
1830 * to the normal priority:
1831 */
1832 if (!rt_prio(p->prio))
1833 return p->normal_prio;
1834 return p->prio;
1835}
1836
1da177e4 1837/*
dd41f596 1838 * activate_task - move a task to the runqueue.
1da177e4 1839 */
dd41f596 1840static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 1841{
d9514f6c 1842 if (task_contributes_to_load(p))
dd41f596 1843 rq->nr_uninterruptible--;
1da177e4 1844
8159f87e 1845 enqueue_task(rq, p, wakeup);
c09595f6 1846 inc_nr_running(rq);
1da177e4
LT
1847}
1848
1da177e4
LT
1849/*
1850 * deactivate_task - remove a task from the runqueue.
1851 */
2e1cb74a 1852static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 1853{
d9514f6c 1854 if (task_contributes_to_load(p))
dd41f596
IM
1855 rq->nr_uninterruptible++;
1856
69be72c1 1857 dequeue_task(rq, p, sleep);
c09595f6 1858 dec_nr_running(rq);
1da177e4
LT
1859}
1860
1da177e4
LT
1861/**
1862 * task_curr - is this task currently executing on a CPU?
1863 * @p: the task in question.
1864 */
36c8b586 1865inline int task_curr(const struct task_struct *p)
1da177e4
LT
1866{
1867 return cpu_curr(task_cpu(p)) == p;
1868}
1869
dd41f596
IM
1870static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1871{
6f505b16 1872 set_task_rq(p, cpu);
dd41f596 1873#ifdef CONFIG_SMP
ce96b5ac
DA
1874 /*
1875 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1876 * successfuly executed on another CPU. We must ensure that updates of
1877 * per-task data have been completed by this moment.
1878 */
1879 smp_wmb();
dd41f596 1880 task_thread_info(p)->cpu = cpu;
dd41f596 1881#endif
2dd73a4f
PW
1882}
1883
cb469845
SR
1884static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1885 const struct sched_class *prev_class,
1886 int oldprio, int running)
1887{
1888 if (prev_class != p->sched_class) {
1889 if (prev_class->switched_from)
1890 prev_class->switched_from(rq, p, running);
1891 p->sched_class->switched_to(rq, p, running);
1892 } else
1893 p->sched_class->prio_changed(rq, p, oldprio, running);
1894}
1895
1da177e4 1896#ifdef CONFIG_SMP
c65cc870 1897
e958b360
TG
1898/* Used instead of source_load when we know the type == 0 */
1899static unsigned long weighted_cpuload(const int cpu)
1900{
1901 return cpu_rq(cpu)->load.weight;
1902}
1903
cc367732
IM
1904/*
1905 * Is this task likely cache-hot:
1906 */
e7693a36 1907static int
cc367732
IM
1908task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1909{
1910 s64 delta;
1911
f540a608
IM
1912 /*
1913 * Buddy candidates are cache hot:
1914 */
4793241b
PZ
1915 if (sched_feat(CACHE_HOT_BUDDY) &&
1916 (&p->se == cfs_rq_of(&p->se)->next ||
1917 &p->se == cfs_rq_of(&p->se)->last))
f540a608
IM
1918 return 1;
1919
cc367732
IM
1920 if (p->sched_class != &fair_sched_class)
1921 return 0;
1922
6bc1665b
IM
1923 if (sysctl_sched_migration_cost == -1)
1924 return 1;
1925 if (sysctl_sched_migration_cost == 0)
1926 return 0;
1927
cc367732
IM
1928 delta = now - p->se.exec_start;
1929
1930 return delta < (s64)sysctl_sched_migration_cost;
1931}
1932
1933
dd41f596 1934void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1935{
dd41f596
IM
1936 int old_cpu = task_cpu(p);
1937 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1938 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1939 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1940 u64 clock_offset;
dd41f596
IM
1941
1942 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d 1943
cbc34ed1
PZ
1944 trace_sched_migrate_task(p, task_cpu(p), new_cpu);
1945
6cfb0d5d
IM
1946#ifdef CONFIG_SCHEDSTATS
1947 if (p->se.wait_start)
1948 p->se.wait_start -= clock_offset;
dd41f596
IM
1949 if (p->se.sleep_start)
1950 p->se.sleep_start -= clock_offset;
1951 if (p->se.block_start)
1952 p->se.block_start -= clock_offset;
cc367732
IM
1953 if (old_cpu != new_cpu) {
1954 schedstat_inc(p, se.nr_migrations);
1955 if (task_hot(p, old_rq->clock, NULL))
1956 schedstat_inc(p, se.nr_forced2_migrations);
1957 }
6cfb0d5d 1958#endif
2830cf8c
SV
1959 p->se.vruntime -= old_cfsrq->min_vruntime -
1960 new_cfsrq->min_vruntime;
dd41f596
IM
1961
1962 __set_task_cpu(p, new_cpu);
c65cc870
IM
1963}
1964
70b97a7f 1965struct migration_req {
1da177e4 1966 struct list_head list;
1da177e4 1967
36c8b586 1968 struct task_struct *task;
1da177e4
LT
1969 int dest_cpu;
1970
1da177e4 1971 struct completion done;
70b97a7f 1972};
1da177e4
LT
1973
1974/*
1975 * The task's runqueue lock must be held.
1976 * Returns true if you have to wait for migration thread.
1977 */
36c8b586 1978static int
70b97a7f 1979migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1980{
70b97a7f 1981 struct rq *rq = task_rq(p);
1da177e4
LT
1982
1983 /*
1984 * If the task is not on a runqueue (and not running), then
1985 * it is sufficient to simply update the task's cpu field.
1986 */
dd41f596 1987 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1988 set_task_cpu(p, dest_cpu);
1989 return 0;
1990 }
1991
1992 init_completion(&req->done);
1da177e4
LT
1993 req->task = p;
1994 req->dest_cpu = dest_cpu;
1995 list_add(&req->list, &rq->migration_queue);
48f24c4d 1996
1da177e4
LT
1997 return 1;
1998}
1999
2000/*
2001 * wait_task_inactive - wait for a thread to unschedule.
2002 *
85ba2d86
RM
2003 * If @match_state is nonzero, it's the @p->state value just checked and
2004 * not expected to change. If it changes, i.e. @p might have woken up,
2005 * then return zero. When we succeed in waiting for @p to be off its CPU,
2006 * we return a positive number (its total switch count). If a second call
2007 * a short while later returns the same number, the caller can be sure that
2008 * @p has remained unscheduled the whole time.
2009 *
1da177e4
LT
2010 * The caller must ensure that the task *will* unschedule sometime soon,
2011 * else this function might spin for a *long* time. This function can't
2012 * be called with interrupts off, or it may introduce deadlock with
2013 * smp_call_function() if an IPI is sent by the same process we are
2014 * waiting to become inactive.
2015 */
85ba2d86 2016unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
2017{
2018 unsigned long flags;
dd41f596 2019 int running, on_rq;
85ba2d86 2020 unsigned long ncsw;
70b97a7f 2021 struct rq *rq;
1da177e4 2022
3a5c359a
AK
2023 for (;;) {
2024 /*
2025 * We do the initial early heuristics without holding
2026 * any task-queue locks at all. We'll only try to get
2027 * the runqueue lock when things look like they will
2028 * work out!
2029 */
2030 rq = task_rq(p);
fa490cfd 2031
3a5c359a
AK
2032 /*
2033 * If the task is actively running on another CPU
2034 * still, just relax and busy-wait without holding
2035 * any locks.
2036 *
2037 * NOTE! Since we don't hold any locks, it's not
2038 * even sure that "rq" stays as the right runqueue!
2039 * But we don't care, since "task_running()" will
2040 * return false if the runqueue has changed and p
2041 * is actually now running somewhere else!
2042 */
85ba2d86
RM
2043 while (task_running(rq, p)) {
2044 if (match_state && unlikely(p->state != match_state))
2045 return 0;
3a5c359a 2046 cpu_relax();
85ba2d86 2047 }
fa490cfd 2048
3a5c359a
AK
2049 /*
2050 * Ok, time to look more closely! We need the rq
2051 * lock now, to be *sure*. If we're wrong, we'll
2052 * just go back and repeat.
2053 */
2054 rq = task_rq_lock(p, &flags);
0a16b607 2055 trace_sched_wait_task(rq, p);
3a5c359a
AK
2056 running = task_running(rq, p);
2057 on_rq = p->se.on_rq;
85ba2d86 2058 ncsw = 0;
f31e11d8 2059 if (!match_state || p->state == match_state)
93dcf55f 2060 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
3a5c359a 2061 task_rq_unlock(rq, &flags);
fa490cfd 2062
85ba2d86
RM
2063 /*
2064 * If it changed from the expected state, bail out now.
2065 */
2066 if (unlikely(!ncsw))
2067 break;
2068
3a5c359a
AK
2069 /*
2070 * Was it really running after all now that we
2071 * checked with the proper locks actually held?
2072 *
2073 * Oops. Go back and try again..
2074 */
2075 if (unlikely(running)) {
2076 cpu_relax();
2077 continue;
2078 }
fa490cfd 2079
3a5c359a
AK
2080 /*
2081 * It's not enough that it's not actively running,
2082 * it must be off the runqueue _entirely_, and not
2083 * preempted!
2084 *
80dd99b3 2085 * So if it was still runnable (but just not actively
3a5c359a
AK
2086 * running right now), it's preempted, and we should
2087 * yield - it could be a while.
2088 */
2089 if (unlikely(on_rq)) {
2090 schedule_timeout_uninterruptible(1);
2091 continue;
2092 }
fa490cfd 2093
3a5c359a
AK
2094 /*
2095 * Ahh, all good. It wasn't running, and it wasn't
2096 * runnable, which means that it will never become
2097 * running in the future either. We're all done!
2098 */
2099 break;
2100 }
85ba2d86
RM
2101
2102 return ncsw;
1da177e4
LT
2103}
2104
2105/***
2106 * kick_process - kick a running thread to enter/exit the kernel
2107 * @p: the to-be-kicked thread
2108 *
2109 * Cause a process which is running on another CPU to enter
2110 * kernel-mode, without any delay. (to get signals handled.)
2111 *
2112 * NOTE: this function doesnt have to take the runqueue lock,
2113 * because all it wants to ensure is that the remote task enters
2114 * the kernel. If the IPI races and the task has been migrated
2115 * to another CPU then no harm is done and the purpose has been
2116 * achieved as well.
2117 */
36c8b586 2118void kick_process(struct task_struct *p)
1da177e4
LT
2119{
2120 int cpu;
2121
2122 preempt_disable();
2123 cpu = task_cpu(p);
2124 if ((cpu != smp_processor_id()) && task_curr(p))
2125 smp_send_reschedule(cpu);
2126 preempt_enable();
2127}
2128
2129/*
2dd73a4f
PW
2130 * Return a low guess at the load of a migration-source cpu weighted
2131 * according to the scheduling class and "nice" value.
1da177e4
LT
2132 *
2133 * We want to under-estimate the load of migration sources, to
2134 * balance conservatively.
2135 */
a9957449 2136static unsigned long source_load(int cpu, int type)
1da177e4 2137{
70b97a7f 2138 struct rq *rq = cpu_rq(cpu);
dd41f596 2139 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2140
93b75217 2141 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2142 return total;
b910472d 2143
dd41f596 2144 return min(rq->cpu_load[type-1], total);
1da177e4
LT
2145}
2146
2147/*
2dd73a4f
PW
2148 * Return a high guess at the load of a migration-target cpu weighted
2149 * according to the scheduling class and "nice" value.
1da177e4 2150 */
a9957449 2151static unsigned long target_load(int cpu, int type)
1da177e4 2152{
70b97a7f 2153 struct rq *rq = cpu_rq(cpu);
dd41f596 2154 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 2155
93b75217 2156 if (type == 0 || !sched_feat(LB_BIAS))
dd41f596 2157 return total;
3b0bd9bc 2158
dd41f596 2159 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
2160}
2161
147cbb4b
NP
2162/*
2163 * find_idlest_group finds and returns the least busy CPU group within the
2164 * domain.
2165 */
2166static struct sched_group *
2167find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2168{
2169 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2170 unsigned long min_load = ULONG_MAX, this_load = 0;
2171 int load_idx = sd->forkexec_idx;
2172 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2173
2174 do {
2175 unsigned long load, avg_load;
2176 int local_group;
2177 int i;
2178
da5a5522 2179 /* Skip over this group if it has no CPUs allowed */
758b2cdc
RR
2180 if (!cpumask_intersects(sched_group_cpus(group),
2181 &p->cpus_allowed))
3a5c359a 2182 continue;
da5a5522 2183
758b2cdc
RR
2184 local_group = cpumask_test_cpu(this_cpu,
2185 sched_group_cpus(group));
147cbb4b
NP
2186
2187 /* Tally up the load of all CPUs in the group */
2188 avg_load = 0;
2189
758b2cdc 2190 for_each_cpu(i, sched_group_cpus(group)) {
147cbb4b
NP
2191 /* Bias balancing toward cpus of our domain */
2192 if (local_group)
2193 load = source_load(i, load_idx);
2194 else
2195 load = target_load(i, load_idx);
2196
2197 avg_load += load;
2198 }
2199
2200 /* Adjust by relative CPU power of the group */
5517d86b
ED
2201 avg_load = sg_div_cpu_power(group,
2202 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
2203
2204 if (local_group) {
2205 this_load = avg_load;
2206 this = group;
2207 } else if (avg_load < min_load) {
2208 min_load = avg_load;
2209 idlest = group;
2210 }
3a5c359a 2211 } while (group = group->next, group != sd->groups);
147cbb4b
NP
2212
2213 if (!idlest || 100*this_load < imbalance*min_load)
2214 return NULL;
2215 return idlest;
2216}
2217
2218/*
0feaece9 2219 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 2220 */
95cdf3b7 2221static int
758b2cdc 2222find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b
NP
2223{
2224 unsigned long load, min_load = ULONG_MAX;
2225 int idlest = -1;
2226 int i;
2227
da5a5522 2228 /* Traverse only the allowed CPUs */
758b2cdc 2229 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2dd73a4f 2230 load = weighted_cpuload(i);
147cbb4b
NP
2231
2232 if (load < min_load || (load == min_load && i == this_cpu)) {
2233 min_load = load;
2234 idlest = i;
2235 }
2236 }
2237
2238 return idlest;
2239}
2240
476d139c
NP
2241/*
2242 * sched_balance_self: balance the current task (running on cpu) in domains
2243 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2244 * SD_BALANCE_EXEC.
2245 *
2246 * Balance, ie. select the least loaded group.
2247 *
2248 * Returns the target CPU number, or the same CPU if no balancing is needed.
2249 *
2250 * preempt must be disabled.
2251 */
2252static int sched_balance_self(int cpu, int flag)
2253{
2254 struct task_struct *t = current;
2255 struct sched_domain *tmp, *sd = NULL;
147cbb4b 2256
c96d145e 2257 for_each_domain(cpu, tmp) {
9761eea8
IM
2258 /*
2259 * If power savings logic is enabled for a domain, stop there.
2260 */
5c45bf27
SS
2261 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2262 break;
476d139c
NP
2263 if (tmp->flags & flag)
2264 sd = tmp;
c96d145e 2265 }
476d139c 2266
039a1c41
PZ
2267 if (sd)
2268 update_shares(sd);
2269
476d139c 2270 while (sd) {
476d139c 2271 struct sched_group *group;
1a848870
SS
2272 int new_cpu, weight;
2273
2274 if (!(sd->flags & flag)) {
2275 sd = sd->child;
2276 continue;
2277 }
476d139c 2278
476d139c 2279 group = find_idlest_group(sd, t, cpu);
1a848870
SS
2280 if (!group) {
2281 sd = sd->child;
2282 continue;
2283 }
476d139c 2284
758b2cdc 2285 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
2286 if (new_cpu == -1 || new_cpu == cpu) {
2287 /* Now try balancing at a lower domain level of cpu */
2288 sd = sd->child;
2289 continue;
2290 }
476d139c 2291
1a848870 2292 /* Now try balancing at a lower domain level of new_cpu */
476d139c 2293 cpu = new_cpu;
758b2cdc 2294 weight = cpumask_weight(sched_domain_span(sd));
476d139c 2295 sd = NULL;
476d139c 2296 for_each_domain(cpu, tmp) {
758b2cdc 2297 if (weight <= cpumask_weight(sched_domain_span(tmp)))
476d139c
NP
2298 break;
2299 if (tmp->flags & flag)
2300 sd = tmp;
2301 }
2302 /* while loop will break here if sd == NULL */
2303 }
2304
2305 return cpu;
2306}
2307
2308#endif /* CONFIG_SMP */
1da177e4 2309
1da177e4
LT
2310/***
2311 * try_to_wake_up - wake up a thread
2312 * @p: the to-be-woken-up thread
2313 * @state: the mask of task states that can be woken
2314 * @sync: do a synchronous wakeup?
2315 *
2316 * Put it on the run-queue if it's not already there. The "current"
2317 * thread is always on the run-queue (except when the actual
2318 * re-schedule is in progress), and as such you're allowed to do
2319 * the simpler "current->state = TASK_RUNNING" to mark yourself
2320 * runnable without the overhead of this.
2321 *
2322 * returns failure only if the task is already active.
2323 */
36c8b586 2324static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 2325{
cc367732 2326 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
2327 unsigned long flags;
2328 long old_state;
70b97a7f 2329 struct rq *rq;
1da177e4 2330
b85d0667
IM
2331 if (!sched_feat(SYNC_WAKEUPS))
2332 sync = 0;
2333
2398f2c6 2334#ifdef CONFIG_SMP
57310a98 2335 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2398f2c6
PZ
2336 struct sched_domain *sd;
2337
2338 this_cpu = raw_smp_processor_id();
2339 cpu = task_cpu(p);
2340
2341 for_each_domain(this_cpu, sd) {
758b2cdc 2342 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2398f2c6
PZ
2343 update_shares(sd);
2344 break;
2345 }
2346 }
2347 }
2348#endif
2349
04e2f174 2350 smp_wmb();
1da177e4 2351 rq = task_rq_lock(p, &flags);
03e89e45 2352 update_rq_clock(rq);
1da177e4
LT
2353 old_state = p->state;
2354 if (!(old_state & state))
2355 goto out;
2356
dd41f596 2357 if (p->se.on_rq)
1da177e4
LT
2358 goto out_running;
2359
2360 cpu = task_cpu(p);
cc367732 2361 orig_cpu = cpu;
1da177e4
LT
2362 this_cpu = smp_processor_id();
2363
2364#ifdef CONFIG_SMP
2365 if (unlikely(task_running(rq, p)))
2366 goto out_activate;
2367
5d2f5a61
DA
2368 cpu = p->sched_class->select_task_rq(p, sync);
2369 if (cpu != orig_cpu) {
2370 set_task_cpu(p, cpu);
1da177e4
LT
2371 task_rq_unlock(rq, &flags);
2372 /* might preempt at this point */
2373 rq = task_rq_lock(p, &flags);
2374 old_state = p->state;
2375 if (!(old_state & state))
2376 goto out;
dd41f596 2377 if (p->se.on_rq)
1da177e4
LT
2378 goto out_running;
2379
2380 this_cpu = smp_processor_id();
2381 cpu = task_cpu(p);
2382 }
2383
e7693a36
GH
2384#ifdef CONFIG_SCHEDSTATS
2385 schedstat_inc(rq, ttwu_count);
2386 if (cpu == this_cpu)
2387 schedstat_inc(rq, ttwu_local);
2388 else {
2389 struct sched_domain *sd;
2390 for_each_domain(this_cpu, sd) {
758b2cdc 2391 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
e7693a36
GH
2392 schedstat_inc(sd, ttwu_wake_remote);
2393 break;
2394 }
2395 }
2396 }
6d6bc0ad 2397#endif /* CONFIG_SCHEDSTATS */
e7693a36 2398
1da177e4
LT
2399out_activate:
2400#endif /* CONFIG_SMP */
cc367732
IM
2401 schedstat_inc(p, se.nr_wakeups);
2402 if (sync)
2403 schedstat_inc(p, se.nr_wakeups_sync);
2404 if (orig_cpu != cpu)
2405 schedstat_inc(p, se.nr_wakeups_migrate);
2406 if (cpu == this_cpu)
2407 schedstat_inc(p, se.nr_wakeups_local);
2408 else
2409 schedstat_inc(p, se.nr_wakeups_remote);
dd41f596 2410 activate_task(rq, p, 1);
1da177e4
LT
2411 success = 1;
2412
831451ac
PZ
2413 /*
2414 * Only attribute actual wakeups done by this task.
2415 */
2416 if (!in_interrupt()) {
2417 struct sched_entity *se = &current->se;
2418 u64 sample = se->sum_exec_runtime;
2419
2420 if (se->last_wakeup)
2421 sample -= se->last_wakeup;
2422 else
2423 sample -= se->start_runtime;
2424 update_avg(&se->avg_wakeup, sample);
2425
2426 se->last_wakeup = se->sum_exec_runtime;
2427 }
2428
1da177e4 2429out_running:
468a15bb 2430 trace_sched_wakeup(rq, p, success);
15afe09b 2431 check_preempt_curr(rq, p, sync);
4ae7d5ce 2432
1da177e4 2433 p->state = TASK_RUNNING;
9a897c5a
SR
2434#ifdef CONFIG_SMP
2435 if (p->sched_class->task_wake_up)
2436 p->sched_class->task_wake_up(rq, p);
2437#endif
1da177e4
LT
2438out:
2439 task_rq_unlock(rq, &flags);
2440
2441 return success;
2442}
2443
7ad5b3a5 2444int wake_up_process(struct task_struct *p)
1da177e4 2445{
d9514f6c 2446 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 2447}
1da177e4
LT
2448EXPORT_SYMBOL(wake_up_process);
2449
7ad5b3a5 2450int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2451{
2452 return try_to_wake_up(p, state, 0);
2453}
2454
1da177e4
LT
2455/*
2456 * Perform scheduler related setup for a newly forked process p.
2457 * p is forked by current.
dd41f596
IM
2458 *
2459 * __sched_fork() is basic setup used by init_idle() too:
2460 */
2461static void __sched_fork(struct task_struct *p)
2462{
dd41f596
IM
2463 p->se.exec_start = 0;
2464 p->se.sum_exec_runtime = 0;
f6cf891c 2465 p->se.prev_sum_exec_runtime = 0;
4ae7d5ce
IM
2466 p->se.last_wakeup = 0;
2467 p->se.avg_overlap = 0;
831451ac
PZ
2468 p->se.start_runtime = 0;
2469 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
6cfb0d5d
IM
2470
2471#ifdef CONFIG_SCHEDSTATS
2472 p->se.wait_start = 0;
dd41f596
IM
2473 p->se.sum_sleep_runtime = 0;
2474 p->se.sleep_start = 0;
dd41f596
IM
2475 p->se.block_start = 0;
2476 p->se.sleep_max = 0;
2477 p->se.block_max = 0;
2478 p->se.exec_max = 0;
eba1ed4b 2479 p->se.slice_max = 0;
dd41f596 2480 p->se.wait_max = 0;
6cfb0d5d 2481#endif
476d139c 2482
fa717060 2483 INIT_LIST_HEAD(&p->rt.run_list);
dd41f596 2484 p->se.on_rq = 0;
4a55bd5e 2485 INIT_LIST_HEAD(&p->se.group_node);
476d139c 2486
e107be36
AK
2487#ifdef CONFIG_PREEMPT_NOTIFIERS
2488 INIT_HLIST_HEAD(&p->preempt_notifiers);
2489#endif
2490
1da177e4
LT
2491 /*
2492 * We mark the process as running here, but have not actually
2493 * inserted it onto the runqueue yet. This guarantees that
2494 * nobody will actually run it, and a signal or other external
2495 * event cannot wake it up and insert it on the runqueue either.
2496 */
2497 p->state = TASK_RUNNING;
dd41f596
IM
2498}
2499
2500/*
2501 * fork()/clone()-time setup:
2502 */
2503void sched_fork(struct task_struct *p, int clone_flags)
2504{
2505 int cpu = get_cpu();
2506
2507 __sched_fork(p);
2508
2509#ifdef CONFIG_SMP
2510 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2511#endif
02e4bac2 2512 set_task_cpu(p, cpu);
b29739f9
IM
2513
2514 /*
2515 * Make sure we do not leak PI boosting priority to the child:
2516 */
2517 p->prio = current->normal_prio;
2ddbf952
HS
2518 if (!rt_prio(p->prio))
2519 p->sched_class = &fair_sched_class;
b29739f9 2520
52f17b6c 2521#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 2522 if (likely(sched_info_on()))
52f17b6c 2523 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2524#endif
d6077cb8 2525#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
2526 p->oncpu = 0;
2527#endif
1da177e4 2528#ifdef CONFIG_PREEMPT
4866cde0 2529 /* Want to start with kernel preemption disabled. */
a1261f54 2530 task_thread_info(p)->preempt_count = 1;
1da177e4 2531#endif
917b627d
GH
2532 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2533
476d139c 2534 put_cpu();
1da177e4
LT
2535}
2536
2537/*
2538 * wake_up_new_task - wake up a newly created task for the first time.
2539 *
2540 * This function will do some initial scheduler statistics housekeeping
2541 * that must be done for every newly created context, then puts the task
2542 * on the runqueue and wakes it.
2543 */
7ad5b3a5 2544void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
2545{
2546 unsigned long flags;
dd41f596 2547 struct rq *rq;
1da177e4
LT
2548
2549 rq = task_rq_lock(p, &flags);
147cbb4b 2550 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 2551 update_rq_clock(rq);
1da177e4
LT
2552
2553 p->prio = effective_prio(p);
2554
b9dca1e0 2555 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 2556 activate_task(rq, p, 0);
1da177e4 2557 } else {
1da177e4 2558 /*
dd41f596
IM
2559 * Let the scheduling class do new task startup
2560 * management (if any):
1da177e4 2561 */
ee0827d8 2562 p->sched_class->task_new(rq, p);
c09595f6 2563 inc_nr_running(rq);
1da177e4 2564 }
c71dd42d 2565 trace_sched_wakeup_new(rq, p, 1);
15afe09b 2566 check_preempt_curr(rq, p, 0);
9a897c5a
SR
2567#ifdef CONFIG_SMP
2568 if (p->sched_class->task_wake_up)
2569 p->sched_class->task_wake_up(rq, p);
2570#endif
dd41f596 2571 task_rq_unlock(rq, &flags);
1da177e4
LT
2572}
2573
e107be36
AK
2574#ifdef CONFIG_PREEMPT_NOTIFIERS
2575
2576/**
80dd99b3 2577 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2578 * @notifier: notifier struct to register
e107be36
AK
2579 */
2580void preempt_notifier_register(struct preempt_notifier *notifier)
2581{
2582 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2583}
2584EXPORT_SYMBOL_GPL(preempt_notifier_register);
2585
2586/**
2587 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2588 * @notifier: notifier struct to unregister
e107be36
AK
2589 *
2590 * This is safe to call from within a preemption notifier.
2591 */
2592void preempt_notifier_unregister(struct preempt_notifier *notifier)
2593{
2594 hlist_del(&notifier->link);
2595}
2596EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2597
2598static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2599{
2600 struct preempt_notifier *notifier;
2601 struct hlist_node *node;
2602
2603 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2604 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2605}
2606
2607static void
2608fire_sched_out_preempt_notifiers(struct task_struct *curr,
2609 struct task_struct *next)
2610{
2611 struct preempt_notifier *notifier;
2612 struct hlist_node *node;
2613
2614 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2615 notifier->ops->sched_out(notifier, next);
2616}
2617
6d6bc0ad 2618#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2619
2620static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2621{
2622}
2623
2624static void
2625fire_sched_out_preempt_notifiers(struct task_struct *curr,
2626 struct task_struct *next)
2627{
2628}
2629
6d6bc0ad 2630#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2631
4866cde0
NP
2632/**
2633 * prepare_task_switch - prepare to switch tasks
2634 * @rq: the runqueue preparing to switch
421cee29 2635 * @prev: the current task that is being switched out
4866cde0
NP
2636 * @next: the task we are going to switch to.
2637 *
2638 * This is called with the rq lock held and interrupts off. It must
2639 * be paired with a subsequent finish_task_switch after the context
2640 * switch.
2641 *
2642 * prepare_task_switch sets up locking and calls architecture specific
2643 * hooks.
2644 */
e107be36
AK
2645static inline void
2646prepare_task_switch(struct rq *rq, struct task_struct *prev,
2647 struct task_struct *next)
4866cde0 2648{
e107be36 2649 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2650 prepare_lock_switch(rq, next);
2651 prepare_arch_switch(next);
2652}
2653
1da177e4
LT
2654/**
2655 * finish_task_switch - clean up after a task-switch
344babaa 2656 * @rq: runqueue associated with task-switch
1da177e4
LT
2657 * @prev: the thread we just switched away from.
2658 *
4866cde0
NP
2659 * finish_task_switch must be called after the context switch, paired
2660 * with a prepare_task_switch call before the context switch.
2661 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2662 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2663 *
2664 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2665 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2666 * with the lock held can cause deadlocks; see schedule() for
2667 * details.)
2668 */
a9957449 2669static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
2670 __releases(rq->lock)
2671{
1da177e4 2672 struct mm_struct *mm = rq->prev_mm;
55a101f8 2673 long prev_state;
967fc046
GH
2674#ifdef CONFIG_SMP
2675 int post_schedule = 0;
2676
2677 if (current->sched_class->needs_post_schedule)
2678 post_schedule = current->sched_class->needs_post_schedule(rq);
2679#endif
1da177e4
LT
2680
2681 rq->prev_mm = NULL;
2682
2683 /*
2684 * A task struct has one reference for the use as "current".
c394cc9f 2685 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2686 * schedule one last time. The schedule call will never return, and
2687 * the scheduled task must drop that reference.
c394cc9f 2688 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2689 * still held, otherwise prev could be scheduled on another cpu, die
2690 * there before we look at prev->state, and then the reference would
2691 * be dropped twice.
2692 * Manfred Spraul <manfred@colorfullife.com>
2693 */
55a101f8 2694 prev_state = prev->state;
4866cde0
NP
2695 finish_arch_switch(prev);
2696 finish_lock_switch(rq, prev);
9a897c5a 2697#ifdef CONFIG_SMP
967fc046 2698 if (post_schedule)
9a897c5a
SR
2699 current->sched_class->post_schedule(rq);
2700#endif
e8fa1362 2701
e107be36 2702 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2703 if (mm)
2704 mmdrop(mm);
c394cc9f 2705 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 2706 /*
2707 * Remove function-return probe instances associated with this
2708 * task and put them back on the free list.
9761eea8 2709 */
c6fd91f0 2710 kprobe_flush_task(prev);
1da177e4 2711 put_task_struct(prev);
c6fd91f0 2712 }
1da177e4
LT
2713}
2714
2715/**
2716 * schedule_tail - first thing a freshly forked thread must call.
2717 * @prev: the thread we just switched away from.
2718 */
36c8b586 2719asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2720 __releases(rq->lock)
2721{
70b97a7f
IM
2722 struct rq *rq = this_rq();
2723
4866cde0
NP
2724 finish_task_switch(rq, prev);
2725#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2726 /* In this case, finish_task_switch does not reenable preemption */
2727 preempt_enable();
2728#endif
1da177e4 2729 if (current->set_child_tid)
b488893a 2730 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2731}
2732
2733/*
2734 * context_switch - switch to the new MM and the new
2735 * thread's register state.
2736 */
dd41f596 2737static inline void
70b97a7f 2738context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2739 struct task_struct *next)
1da177e4 2740{
dd41f596 2741 struct mm_struct *mm, *oldmm;
1da177e4 2742
e107be36 2743 prepare_task_switch(rq, prev, next);
0a16b607 2744 trace_sched_switch(rq, prev, next);
dd41f596
IM
2745 mm = next->mm;
2746 oldmm = prev->active_mm;
9226d125
ZA
2747 /*
2748 * For paravirt, this is coupled with an exit in switch_to to
2749 * combine the page table reload and the switch backend into
2750 * one hypercall.
2751 */
2752 arch_enter_lazy_cpu_mode();
2753
dd41f596 2754 if (unlikely(!mm)) {
1da177e4
LT
2755 next->active_mm = oldmm;
2756 atomic_inc(&oldmm->mm_count);
2757 enter_lazy_tlb(oldmm, next);
2758 } else
2759 switch_mm(oldmm, mm, next);
2760
dd41f596 2761 if (unlikely(!prev->mm)) {
1da177e4 2762 prev->active_mm = NULL;
1da177e4
LT
2763 rq->prev_mm = oldmm;
2764 }
3a5f5e48
IM
2765 /*
2766 * Since the runqueue lock will be released by the next
2767 * task (which is an invalid locking op but in the case
2768 * of the scheduler it's an obvious special-case), so we
2769 * do an early lockdep release here:
2770 */
2771#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2772 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2773#endif
1da177e4
LT
2774
2775 /* Here we just switch the register state and the stack. */
2776 switch_to(prev, next, prev);
2777
dd41f596
IM
2778 barrier();
2779 /*
2780 * this_rq must be evaluated again because prev may have moved
2781 * CPUs since it called schedule(), thus the 'rq' on its stack
2782 * frame will be invalid.
2783 */
2784 finish_task_switch(this_rq(), prev);
1da177e4
LT
2785}
2786
2787/*
2788 * nr_running, nr_uninterruptible and nr_context_switches:
2789 *
2790 * externally visible scheduler statistics: current number of runnable
2791 * threads, current number of uninterruptible-sleeping threads, total
2792 * number of context switches performed since bootup.
2793 */
2794unsigned long nr_running(void)
2795{
2796 unsigned long i, sum = 0;
2797
2798 for_each_online_cpu(i)
2799 sum += cpu_rq(i)->nr_running;
2800
2801 return sum;
2802}
2803
2804unsigned long nr_uninterruptible(void)
2805{
2806 unsigned long i, sum = 0;
2807
0a945022 2808 for_each_possible_cpu(i)
1da177e4
LT
2809 sum += cpu_rq(i)->nr_uninterruptible;
2810
2811 /*
2812 * Since we read the counters lockless, it might be slightly
2813 * inaccurate. Do not allow it to go below zero though:
2814 */
2815 if (unlikely((long)sum < 0))
2816 sum = 0;
2817
2818 return sum;
2819}
2820
2821unsigned long long nr_context_switches(void)
2822{
cc94abfc
SR
2823 int i;
2824 unsigned long long sum = 0;
1da177e4 2825
0a945022 2826 for_each_possible_cpu(i)
1da177e4
LT
2827 sum += cpu_rq(i)->nr_switches;
2828
2829 return sum;
2830}
2831
2832unsigned long nr_iowait(void)
2833{
2834 unsigned long i, sum = 0;
2835
0a945022 2836 for_each_possible_cpu(i)
1da177e4
LT
2837 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2838
2839 return sum;
2840}
2841
db1b1fef
JS
2842unsigned long nr_active(void)
2843{
2844 unsigned long i, running = 0, uninterruptible = 0;
2845
2846 for_each_online_cpu(i) {
2847 running += cpu_rq(i)->nr_running;
2848 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2849 }
2850
2851 if (unlikely((long)uninterruptible < 0))
2852 uninterruptible = 0;
2853
2854 return running + uninterruptible;
2855}
2856
48f24c4d 2857/*
dd41f596
IM
2858 * Update rq->cpu_load[] statistics. This function is usually called every
2859 * scheduler tick (TICK_NSEC).
48f24c4d 2860 */
dd41f596 2861static void update_cpu_load(struct rq *this_rq)
48f24c4d 2862{
495eca49 2863 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2864 int i, scale;
2865
2866 this_rq->nr_load_updates++;
dd41f596
IM
2867
2868 /* Update our load: */
2869 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2870 unsigned long old_load, new_load;
2871
2872 /* scale is effectively 1 << i now, and >> i divides by scale */
2873
2874 old_load = this_rq->cpu_load[i];
2875 new_load = this_load;
a25707f3
IM
2876 /*
2877 * Round up the averaging division if load is increasing. This
2878 * prevents us from getting stuck on 9 if the load is 10, for
2879 * example.
2880 */
2881 if (new_load > old_load)
2882 new_load += scale-1;
dd41f596
IM
2883 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2884 }
48f24c4d
IM
2885}
2886
dd41f596
IM
2887#ifdef CONFIG_SMP
2888
1da177e4
LT
2889/*
2890 * double_rq_lock - safely lock two runqueues
2891 *
2892 * Note this does not disable interrupts like task_rq_lock,
2893 * you need to do so manually before calling.
2894 */
70b97a7f 2895static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2896 __acquires(rq1->lock)
2897 __acquires(rq2->lock)
2898{
054b9108 2899 BUG_ON(!irqs_disabled());
1da177e4
LT
2900 if (rq1 == rq2) {
2901 spin_lock(&rq1->lock);
2902 __acquire(rq2->lock); /* Fake it out ;) */
2903 } else {
c96d145e 2904 if (rq1 < rq2) {
1da177e4 2905 spin_lock(&rq1->lock);
5e710e37 2906 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2907 } else {
2908 spin_lock(&rq2->lock);
5e710e37 2909 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1da177e4
LT
2910 }
2911 }
6e82a3be
IM
2912 update_rq_clock(rq1);
2913 update_rq_clock(rq2);
1da177e4
LT
2914}
2915
2916/*
2917 * double_rq_unlock - safely unlock two runqueues
2918 *
2919 * Note this does not restore interrupts like task_rq_unlock,
2920 * you need to do so manually after calling.
2921 */
70b97a7f 2922static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2923 __releases(rq1->lock)
2924 __releases(rq2->lock)
2925{
2926 spin_unlock(&rq1->lock);
2927 if (rq1 != rq2)
2928 spin_unlock(&rq2->lock);
2929 else
2930 __release(rq2->lock);
2931}
2932
1da177e4
LT
2933/*
2934 * If dest_cpu is allowed for this process, migrate the task to it.
2935 * This is accomplished by forcing the cpu_allowed mask to only
41a2d6cf 2936 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
1da177e4
LT
2937 * the cpu_allowed mask is restored.
2938 */
36c8b586 2939static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2940{
70b97a7f 2941 struct migration_req req;
1da177e4 2942 unsigned long flags;
70b97a7f 2943 struct rq *rq;
1da177e4
LT
2944
2945 rq = task_rq_lock(p, &flags);
96f874e2 2946 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
e761b772 2947 || unlikely(!cpu_active(dest_cpu)))
1da177e4
LT
2948 goto out;
2949
2950 /* force the process onto the specified CPU */
2951 if (migrate_task(p, dest_cpu, &req)) {
2952 /* Need to wait for migration thread (might exit: take ref). */
2953 struct task_struct *mt = rq->migration_thread;
36c8b586 2954
1da177e4
LT
2955 get_task_struct(mt);
2956 task_rq_unlock(rq, &flags);
2957 wake_up_process(mt);
2958 put_task_struct(mt);
2959 wait_for_completion(&req.done);
36c8b586 2960
1da177e4
LT
2961 return;
2962 }
2963out:
2964 task_rq_unlock(rq, &flags);
2965}
2966
2967/*
476d139c
NP
2968 * sched_exec - execve() is a valuable balancing opportunity, because at
2969 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2970 */
2971void sched_exec(void)
2972{
1da177e4 2973 int new_cpu, this_cpu = get_cpu();
476d139c 2974 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2975 put_cpu();
476d139c
NP
2976 if (new_cpu != this_cpu)
2977 sched_migrate_task(current, new_cpu);
1da177e4
LT
2978}
2979
2980/*
2981 * pull_task - move a task from a remote runqueue to the local runqueue.
2982 * Both runqueues must be locked.
2983 */
dd41f596
IM
2984static void pull_task(struct rq *src_rq, struct task_struct *p,
2985 struct rq *this_rq, int this_cpu)
1da177e4 2986{
2e1cb74a 2987 deactivate_task(src_rq, p, 0);
1da177e4 2988 set_task_cpu(p, this_cpu);
dd41f596 2989 activate_task(this_rq, p, 0);
1da177e4
LT
2990 /*
2991 * Note that idle threads have a prio of MAX_PRIO, for this test
2992 * to be always true for them.
2993 */
15afe09b 2994 check_preempt_curr(this_rq, p, 0);
1da177e4
LT
2995}
2996
2997/*
2998 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2999 */
858119e1 3000static
70b97a7f 3001int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 3002 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 3003 int *all_pinned)
1da177e4
LT
3004{
3005 /*
3006 * We do not migrate tasks that are:
3007 * 1) running (obviously), or
3008 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3009 * 3) are cache-hot on their current CPU.
3010 */
96f874e2 3011 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
cc367732 3012 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 3013 return 0;
cc367732 3014 }
81026794
NP
3015 *all_pinned = 0;
3016
cc367732
IM
3017 if (task_running(rq, p)) {
3018 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 3019 return 0;
cc367732 3020 }
1da177e4 3021
da84d961
IM
3022 /*
3023 * Aggressive migration if:
3024 * 1) task is cache cold, or
3025 * 2) too many balance attempts have failed.
3026 */
3027
6bc1665b
IM
3028 if (!task_hot(p, rq->clock, sd) ||
3029 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 3030#ifdef CONFIG_SCHEDSTATS
cc367732 3031 if (task_hot(p, rq->clock, sd)) {
da84d961 3032 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
3033 schedstat_inc(p, se.nr_forced_migrations);
3034 }
da84d961
IM
3035#endif
3036 return 1;
3037 }
3038
cc367732
IM
3039 if (task_hot(p, rq->clock, sd)) {
3040 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 3041 return 0;
cc367732 3042 }
1da177e4
LT
3043 return 1;
3044}
3045
e1d1484f
PW
3046static unsigned long
3047balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3048 unsigned long max_load_move, struct sched_domain *sd,
3049 enum cpu_idle_type idle, int *all_pinned,
3050 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 3051{
051c6764 3052 int loops = 0, pulled = 0, pinned = 0;
dd41f596
IM
3053 struct task_struct *p;
3054 long rem_load_move = max_load_move;
1da177e4 3055
e1d1484f 3056 if (max_load_move == 0)
1da177e4
LT
3057 goto out;
3058
81026794
NP
3059 pinned = 1;
3060
1da177e4 3061 /*
dd41f596 3062 * Start the load-balancing iterator:
1da177e4 3063 */
dd41f596
IM
3064 p = iterator->start(iterator->arg);
3065next:
b82d9fdd 3066 if (!p || loops++ > sysctl_sched_nr_migrate)
1da177e4 3067 goto out;
051c6764
PZ
3068
3069 if ((p->se.load.weight >> 1) > rem_load_move ||
dd41f596 3070 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
3071 p = iterator->next(iterator->arg);
3072 goto next;
1da177e4
LT
3073 }
3074
dd41f596 3075 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 3076 pulled++;
dd41f596 3077 rem_load_move -= p->se.load.weight;
1da177e4 3078
7e96fa58
GH
3079#ifdef CONFIG_PREEMPT
3080 /*
3081 * NEWIDLE balancing is a source of latency, so preemptible kernels
3082 * will stop after the first task is pulled to minimize the critical
3083 * section.
3084 */
3085 if (idle == CPU_NEWLY_IDLE)
3086 goto out;
3087#endif
3088
2dd73a4f 3089 /*
b82d9fdd 3090 * We only want to steal up to the prescribed amount of weighted load.
2dd73a4f 3091 */
e1d1484f 3092 if (rem_load_move > 0) {
a4ac01c3
PW
3093 if (p->prio < *this_best_prio)
3094 *this_best_prio = p->prio;
dd41f596
IM
3095 p = iterator->next(iterator->arg);
3096 goto next;
1da177e4
LT
3097 }
3098out:
3099 /*
e1d1484f 3100 * Right now, this is one of only two places pull_task() is called,
1da177e4
LT
3101 * so we can safely collect pull_task() stats here rather than
3102 * inside pull_task().
3103 */
3104 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
3105
3106 if (all_pinned)
3107 *all_pinned = pinned;
e1d1484f
PW
3108
3109 return max_load_move - rem_load_move;
1da177e4
LT
3110}
3111
dd41f596 3112/*
43010659
PW
3113 * move_tasks tries to move up to max_load_move weighted load from busiest to
3114 * this_rq, as part of a balancing operation within domain "sd".
3115 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
3116 *
3117 * Called with both runqueues locked.
3118 */
3119static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 3120 unsigned long max_load_move,
dd41f596
IM
3121 struct sched_domain *sd, enum cpu_idle_type idle,
3122 int *all_pinned)
3123{
5522d5d5 3124 const struct sched_class *class = sched_class_highest;
43010659 3125 unsigned long total_load_moved = 0;
a4ac01c3 3126 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
3127
3128 do {
43010659
PW
3129 total_load_moved +=
3130 class->load_balance(this_rq, this_cpu, busiest,
e1d1484f 3131 max_load_move - total_load_moved,
a4ac01c3 3132 sd, idle, all_pinned, &this_best_prio);
dd41f596 3133 class = class->next;
c4acb2c0 3134
7e96fa58
GH
3135#ifdef CONFIG_PREEMPT
3136 /*
3137 * NEWIDLE balancing is a source of latency, so preemptible
3138 * kernels will stop after the first task is pulled to minimize
3139 * the critical section.
3140 */
c4acb2c0
GH
3141 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3142 break;
7e96fa58 3143#endif
43010659 3144 } while (class && max_load_move > total_load_moved);
dd41f596 3145
43010659
PW
3146 return total_load_moved > 0;
3147}
3148
e1d1484f
PW
3149static int
3150iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3151 struct sched_domain *sd, enum cpu_idle_type idle,
3152 struct rq_iterator *iterator)
3153{
3154 struct task_struct *p = iterator->start(iterator->arg);
3155 int pinned = 0;
3156
3157 while (p) {
3158 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3159 pull_task(busiest, p, this_rq, this_cpu);
3160 /*
3161 * Right now, this is only the second place pull_task()
3162 * is called, so we can safely collect pull_task()
3163 * stats here rather than inside pull_task().
3164 */
3165 schedstat_inc(sd, lb_gained[idle]);
3166
3167 return 1;
3168 }
3169 p = iterator->next(iterator->arg);
3170 }
3171
3172 return 0;
3173}
3174
43010659
PW
3175/*
3176 * move_one_task tries to move exactly one task from busiest to this_rq, as
3177 * part of active balancing operations within "domain".
3178 * Returns 1 if successful and 0 otherwise.
3179 *
3180 * Called with both runqueues locked.
3181 */
3182static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3183 struct sched_domain *sd, enum cpu_idle_type idle)
3184{
5522d5d5 3185 const struct sched_class *class;
43010659
PW
3186
3187 for (class = sched_class_highest; class; class = class->next)
e1d1484f 3188 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
43010659
PW
3189 return 1;
3190
3191 return 0;
dd41f596
IM
3192}
3193
1da177e4
LT
3194/*
3195 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
3196 * domain. It calculates and returns the amount of weighted load which
3197 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
3198 */
3199static struct sched_group *
3200find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596 3201 unsigned long *imbalance, enum cpu_idle_type idle,
96f874e2 3202 int *sd_idle, const struct cpumask *cpus, int *balance)
1da177e4
LT
3203{
3204 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
3205 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 3206 unsigned long max_pull;
2dd73a4f
PW
3207 unsigned long busiest_load_per_task, busiest_nr_running;
3208 unsigned long this_load_per_task, this_nr_running;
908a7c1b 3209 int load_idx, group_imb = 0;
5c45bf27
SS
3210#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3211 int power_savings_balance = 1;
3212 unsigned long leader_nr_running = 0, min_load_per_task = 0;
3213 unsigned long min_nr_running = ULONG_MAX;
3214 struct sched_group *group_min = NULL, *group_leader = NULL;
3215#endif
1da177e4
LT
3216
3217 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
3218 busiest_load_per_task = busiest_nr_running = 0;
3219 this_load_per_task = this_nr_running = 0;
408ed066 3220
d15bcfdb 3221 if (idle == CPU_NOT_IDLE)
7897986b 3222 load_idx = sd->busy_idx;
d15bcfdb 3223 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
3224 load_idx = sd->newidle_idx;
3225 else
3226 load_idx = sd->idle_idx;
1da177e4
LT
3227
3228 do {
908a7c1b 3229 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
3230 int local_group;
3231 int i;
908a7c1b 3232 int __group_imb = 0;
783609c6 3233 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 3234 unsigned long sum_nr_running, sum_weighted_load;
408ed066
PZ
3235 unsigned long sum_avg_load_per_task;
3236 unsigned long avg_load_per_task;
1da177e4 3237
758b2cdc
RR
3238 local_group = cpumask_test_cpu(this_cpu,
3239 sched_group_cpus(group));
1da177e4 3240
783609c6 3241 if (local_group)
758b2cdc 3242 balance_cpu = cpumask_first(sched_group_cpus(group));
783609c6 3243
1da177e4 3244 /* Tally up the load of all CPUs in the group */
2dd73a4f 3245 sum_weighted_load = sum_nr_running = avg_load = 0;
408ed066
PZ
3246 sum_avg_load_per_task = avg_load_per_task = 0;
3247
908a7c1b
KC
3248 max_cpu_load = 0;
3249 min_cpu_load = ~0UL;
1da177e4 3250
758b2cdc
RR
3251 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3252 struct rq *rq = cpu_rq(i);
2dd73a4f 3253
9439aab8 3254 if (*sd_idle && rq->nr_running)
5969fe06
NP
3255 *sd_idle = 0;
3256
1da177e4 3257 /* Bias balancing toward cpus of our domain */
783609c6
SS
3258 if (local_group) {
3259 if (idle_cpu(i) && !first_idle_cpu) {
3260 first_idle_cpu = 1;
3261 balance_cpu = i;
3262 }
3263
a2000572 3264 load = target_load(i, load_idx);
908a7c1b 3265 } else {
a2000572 3266 load = source_load(i, load_idx);
908a7c1b
KC
3267 if (load > max_cpu_load)
3268 max_cpu_load = load;
3269 if (min_cpu_load > load)
3270 min_cpu_load = load;
3271 }
1da177e4
LT
3272
3273 avg_load += load;
2dd73a4f 3274 sum_nr_running += rq->nr_running;
dd41f596 3275 sum_weighted_load += weighted_cpuload(i);
408ed066
PZ
3276
3277 sum_avg_load_per_task += cpu_avg_load_per_task(i);
1da177e4
LT
3278 }
3279
783609c6
SS
3280 /*
3281 * First idle cpu or the first cpu(busiest) in this sched group
3282 * is eligible for doing load balancing at this and above
9439aab8
SS
3283 * domains. In the newly idle case, we will allow all the cpu's
3284 * to do the newly idle load balance.
783609c6 3285 */
9439aab8
SS
3286 if (idle != CPU_NEWLY_IDLE && local_group &&
3287 balance_cpu != this_cpu && balance) {
783609c6
SS
3288 *balance = 0;
3289 goto ret;
3290 }
3291
1da177e4 3292 total_load += avg_load;
5517d86b 3293 total_pwr += group->__cpu_power;
1da177e4
LT
3294
3295 /* Adjust by relative CPU power of the group */
5517d86b
ED
3296 avg_load = sg_div_cpu_power(group,
3297 avg_load * SCHED_LOAD_SCALE);
1da177e4 3298
408ed066
PZ
3299
3300 /*
3301 * Consider the group unbalanced when the imbalance is larger
3302 * than the average weight of two tasks.
3303 *
3304 * APZ: with cgroup the avg task weight can vary wildly and
3305 * might not be a suitable number - should we keep a
3306 * normalized nr_running number somewhere that negates
3307 * the hierarchy?
3308 */
3309 avg_load_per_task = sg_div_cpu_power(group,
3310 sum_avg_load_per_task * SCHED_LOAD_SCALE);
3311
3312 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
908a7c1b
KC
3313 __group_imb = 1;
3314
5517d86b 3315 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 3316
1da177e4
LT
3317 if (local_group) {
3318 this_load = avg_load;
3319 this = group;
2dd73a4f
PW
3320 this_nr_running = sum_nr_running;
3321 this_load_per_task = sum_weighted_load;
3322 } else if (avg_load > max_load &&
908a7c1b 3323 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
3324 max_load = avg_load;
3325 busiest = group;
2dd73a4f
PW
3326 busiest_nr_running = sum_nr_running;
3327 busiest_load_per_task = sum_weighted_load;
908a7c1b 3328 group_imb = __group_imb;
1da177e4 3329 }
5c45bf27
SS
3330
3331#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3332 /*
3333 * Busy processors will not participate in power savings
3334 * balance.
3335 */
dd41f596
IM
3336 if (idle == CPU_NOT_IDLE ||
3337 !(sd->flags & SD_POWERSAVINGS_BALANCE))
3338 goto group_next;
5c45bf27
SS
3339
3340 /*
3341 * If the local group is idle or completely loaded
3342 * no need to do power savings balance at this domain
3343 */
3344 if (local_group && (this_nr_running >= group_capacity ||
3345 !this_nr_running))
3346 power_savings_balance = 0;
3347
dd41f596 3348 /*
5c45bf27
SS
3349 * If a group is already running at full capacity or idle,
3350 * don't include that group in power savings calculations
dd41f596
IM
3351 */
3352 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 3353 || !sum_nr_running)
dd41f596 3354 goto group_next;
5c45bf27 3355
dd41f596 3356 /*
5c45bf27 3357 * Calculate the group which has the least non-idle load.
dd41f596
IM
3358 * This is the group from where we need to pick up the load
3359 * for saving power
3360 */
3361 if ((sum_nr_running < min_nr_running) ||
3362 (sum_nr_running == min_nr_running &&
d5679bd1 3363 cpumask_first(sched_group_cpus(group)) >
758b2cdc 3364 cpumask_first(sched_group_cpus(group_min)))) {
dd41f596
IM
3365 group_min = group;
3366 min_nr_running = sum_nr_running;
5c45bf27
SS
3367 min_load_per_task = sum_weighted_load /
3368 sum_nr_running;
dd41f596 3369 }
5c45bf27 3370
dd41f596 3371 /*
5c45bf27 3372 * Calculate the group which is almost near its
dd41f596
IM
3373 * capacity but still has some space to pick up some load
3374 * from other group and save more power
3375 */
3376 if (sum_nr_running <= group_capacity - 1) {
3377 if (sum_nr_running > leader_nr_running ||
3378 (sum_nr_running == leader_nr_running &&
d5679bd1 3379 cpumask_first(sched_group_cpus(group)) <
758b2cdc 3380 cpumask_first(sched_group_cpus(group_leader)))) {
dd41f596
IM
3381 group_leader = group;
3382 leader_nr_running = sum_nr_running;
3383 }
48f24c4d 3384 }
5c45bf27
SS
3385group_next:
3386#endif
1da177e4
LT
3387 group = group->next;
3388 } while (group != sd->groups);
3389
2dd73a4f 3390 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
3391 goto out_balanced;
3392
3393 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
3394
3395 if (this_load >= avg_load ||
3396 100*max_load <= sd->imbalance_pct*this_load)
3397 goto out_balanced;
3398
2dd73a4f 3399 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
3400 if (group_imb)
3401 busiest_load_per_task = min(busiest_load_per_task, avg_load);
3402
1da177e4
LT
3403 /*
3404 * We're trying to get all the cpus to the average_load, so we don't
3405 * want to push ourselves above the average load, nor do we wish to
3406 * reduce the max loaded cpu below the average load, as either of these
3407 * actions would just result in more rebalancing later, and ping-pong
3408 * tasks around. Thus we look for the minimum possible imbalance.
3409 * Negative imbalances (*we* are more loaded than anyone else) will
3410 * be counted as no imbalance for these purposes -- we can't fix that
41a2d6cf 3411 * by pulling tasks to us. Be careful of negative numbers as they'll
1da177e4
LT
3412 * appear as very large values with unsigned longs.
3413 */
2dd73a4f
PW
3414 if (max_load <= busiest_load_per_task)
3415 goto out_balanced;
3416
3417 /*
3418 * In the presence of smp nice balancing, certain scenarios can have
3419 * max load less than avg load(as we skip the groups at or below
3420 * its cpu_power, while calculating max_load..)
3421 */
3422 if (max_load < avg_load) {
3423 *imbalance = 0;
3424 goto small_imbalance;
3425 }
0c117f1b
SS
3426
3427 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 3428 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 3429
1da177e4 3430 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
3431 *imbalance = min(max_pull * busiest->__cpu_power,
3432 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
3433 / SCHED_LOAD_SCALE;
3434
2dd73a4f
PW
3435 /*
3436 * if *imbalance is less than the average load per runnable task
3437 * there is no gaurantee that any tasks will be moved so we'll have
3438 * a think about bumping its value to force at least one task to be
3439 * moved
3440 */
7fd0d2dd 3441 if (*imbalance < busiest_load_per_task) {
48f24c4d 3442 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
3443 unsigned int imbn;
3444
3445small_imbalance:
3446 pwr_move = pwr_now = 0;
3447 imbn = 2;
3448 if (this_nr_running) {
3449 this_load_per_task /= this_nr_running;
3450 if (busiest_load_per_task > this_load_per_task)
3451 imbn = 1;
3452 } else
408ed066 3453 this_load_per_task = cpu_avg_load_per_task(this_cpu);
1da177e4 3454
01c8c57d 3455 if (max_load - this_load + busiest_load_per_task >=
dd41f596 3456 busiest_load_per_task * imbn) {
2dd73a4f 3457 *imbalance = busiest_load_per_task;
1da177e4
LT
3458 return busiest;
3459 }
3460
3461 /*
3462 * OK, we don't have enough imbalance to justify moving tasks,
3463 * however we may be able to increase total CPU power used by
3464 * moving them.
3465 */
3466
5517d86b
ED
3467 pwr_now += busiest->__cpu_power *
3468 min(busiest_load_per_task, max_load);
3469 pwr_now += this->__cpu_power *
3470 min(this_load_per_task, this_load);
1da177e4
LT
3471 pwr_now /= SCHED_LOAD_SCALE;
3472
3473 /* Amount of load we'd subtract */
5517d86b
ED
3474 tmp = sg_div_cpu_power(busiest,
3475 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 3476 if (max_load > tmp)
5517d86b 3477 pwr_move += busiest->__cpu_power *
2dd73a4f 3478 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
3479
3480 /* Amount of load we'd add */
5517d86b 3481 if (max_load * busiest->__cpu_power <
33859f7f 3482 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
3483 tmp = sg_div_cpu_power(this,
3484 max_load * busiest->__cpu_power);
1da177e4 3485 else
5517d86b
ED
3486 tmp = sg_div_cpu_power(this,
3487 busiest_load_per_task * SCHED_LOAD_SCALE);
3488 pwr_move += this->__cpu_power *
3489 min(this_load_per_task, this_load + tmp);
1da177e4
LT
3490 pwr_move /= SCHED_LOAD_SCALE;
3491
3492 /* Move if we gain throughput */
7fd0d2dd
SS
3493 if (pwr_move > pwr_now)
3494 *imbalance = busiest_load_per_task;
1da177e4
LT
3495 }
3496
1da177e4
LT
3497 return busiest;
3498
3499out_balanced:
5c45bf27 3500#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 3501 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 3502 goto ret;
1da177e4 3503
5c45bf27
SS
3504 if (this == group_leader && group_leader != group_min) {
3505 *imbalance = min_load_per_task;
7a09b1a2
VS
3506 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3507 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
9924da43 3508 cpumask_first(sched_group_cpus(group_leader));
7a09b1a2 3509 }
5c45bf27
SS
3510 return group_min;
3511 }
5c45bf27 3512#endif
783609c6 3513ret:
1da177e4
LT
3514 *imbalance = 0;
3515 return NULL;
3516}
3517
3518/*
3519 * find_busiest_queue - find the busiest runqueue among the cpus in group.
3520 */
70b97a7f 3521static struct rq *
d15bcfdb 3522find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
96f874e2 3523 unsigned long imbalance, const struct cpumask *cpus)
1da177e4 3524{
70b97a7f 3525 struct rq *busiest = NULL, *rq;
2dd73a4f 3526 unsigned long max_load = 0;
1da177e4
LT
3527 int i;
3528
758b2cdc 3529 for_each_cpu(i, sched_group_cpus(group)) {
dd41f596 3530 unsigned long wl;
0a2966b4 3531
96f874e2 3532 if (!cpumask_test_cpu(i, cpus))
0a2966b4
CL
3533 continue;
3534
48f24c4d 3535 rq = cpu_rq(i);
dd41f596 3536 wl = weighted_cpuload(i);
2dd73a4f 3537
dd41f596 3538 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 3539 continue;
1da177e4 3540
dd41f596
IM
3541 if (wl > max_load) {
3542 max_load = wl;
48f24c4d 3543 busiest = rq;
1da177e4
LT
3544 }
3545 }
3546
3547 return busiest;
3548}
3549
77391d71
NP
3550/*
3551 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
3552 * so long as it is large enough.
3553 */
3554#define MAX_PINNED_INTERVAL 512
3555
1da177e4
LT
3556/*
3557 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3558 * tasks if there is an imbalance.
1da177e4 3559 */
70b97a7f 3560static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 3561 struct sched_domain *sd, enum cpu_idle_type idle,
96f874e2 3562 int *balance, struct cpumask *cpus)
1da177e4 3563{
43010659 3564 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 3565 struct sched_group *group;
1da177e4 3566 unsigned long imbalance;
70b97a7f 3567 struct rq *busiest;
fe2eea3f 3568 unsigned long flags;
5969fe06 3569
96f874e2 3570 cpumask_setall(cpus);
7c16ec58 3571
89c4710e
SS
3572 /*
3573 * When power savings policy is enabled for the parent domain, idle
3574 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 3575 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 3576 * portraying it as CPU_NOT_IDLE.
89c4710e 3577 */
d15bcfdb 3578 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3579 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3580 sd_idle = 1;
1da177e4 3581
2d72376b 3582 schedstat_inc(sd, lb_count[idle]);
1da177e4 3583
0a2966b4 3584redo:
c8cba857 3585 update_shares(sd);
0a2966b4 3586 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
7c16ec58 3587 cpus, balance);
783609c6 3588
06066714 3589 if (*balance == 0)
783609c6 3590 goto out_balanced;
783609c6 3591
1da177e4
LT
3592 if (!group) {
3593 schedstat_inc(sd, lb_nobusyg[idle]);
3594 goto out_balanced;
3595 }
3596
7c16ec58 3597 busiest = find_busiest_queue(group, idle, imbalance, cpus);
1da177e4
LT
3598 if (!busiest) {
3599 schedstat_inc(sd, lb_nobusyq[idle]);
3600 goto out_balanced;
3601 }
3602
db935dbd 3603 BUG_ON(busiest == this_rq);
1da177e4
LT
3604
3605 schedstat_add(sd, lb_imbalance[idle], imbalance);
3606
43010659 3607 ld_moved = 0;
1da177e4
LT
3608 if (busiest->nr_running > 1) {
3609 /*
3610 * Attempt to move tasks. If find_busiest_group has found
3611 * an imbalance but busiest->nr_running <= 1, the group is
43010659 3612 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
3613 * correctly treated as an imbalance.
3614 */
fe2eea3f 3615 local_irq_save(flags);
e17224bf 3616 double_rq_lock(this_rq, busiest);
43010659 3617 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 3618 imbalance, sd, idle, &all_pinned);
e17224bf 3619 double_rq_unlock(this_rq, busiest);
fe2eea3f 3620 local_irq_restore(flags);
81026794 3621
46cb4b7c
SS
3622 /*
3623 * some other cpu did the load balance for us.
3624 */
43010659 3625 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
3626 resched_cpu(this_cpu);
3627
81026794 3628 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4 3629 if (unlikely(all_pinned)) {
96f874e2
RR
3630 cpumask_clear_cpu(cpu_of(busiest), cpus);
3631 if (!cpumask_empty(cpus))
0a2966b4 3632 goto redo;
81026794 3633 goto out_balanced;
0a2966b4 3634 }
1da177e4 3635 }
81026794 3636
43010659 3637 if (!ld_moved) {
1da177e4
LT
3638 schedstat_inc(sd, lb_failed[idle]);
3639 sd->nr_balance_failed++;
3640
3641 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 3642
fe2eea3f 3643 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
3644
3645 /* don't kick the migration_thread, if the curr
3646 * task on busiest cpu can't be moved to this_cpu
3647 */
96f874e2
RR
3648 if (!cpumask_test_cpu(this_cpu,
3649 &busiest->curr->cpus_allowed)) {
fe2eea3f 3650 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
3651 all_pinned = 1;
3652 goto out_one_pinned;
3653 }
3654
1da177e4
LT
3655 if (!busiest->active_balance) {
3656 busiest->active_balance = 1;
3657 busiest->push_cpu = this_cpu;
81026794 3658 active_balance = 1;
1da177e4 3659 }
fe2eea3f 3660 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 3661 if (active_balance)
1da177e4
LT
3662 wake_up_process(busiest->migration_thread);
3663
3664 /*
3665 * We've kicked active balancing, reset the failure
3666 * counter.
3667 */
39507451 3668 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 3669 }
81026794 3670 } else
1da177e4
LT
3671 sd->nr_balance_failed = 0;
3672
81026794 3673 if (likely(!active_balance)) {
1da177e4
LT
3674 /* We were unbalanced, so reset the balancing interval */
3675 sd->balance_interval = sd->min_interval;
81026794
NP
3676 } else {
3677 /*
3678 * If we've begun active balancing, start to back off. This
3679 * case may not be covered by the all_pinned logic if there
3680 * is only 1 task on the busy runqueue (because we don't call
3681 * move_tasks).
3682 */
3683 if (sd->balance_interval < sd->max_interval)
3684 sd->balance_interval *= 2;
1da177e4
LT
3685 }
3686
43010659 3687 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3688 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3689 ld_moved = -1;
3690
3691 goto out;
1da177e4
LT
3692
3693out_balanced:
1da177e4
LT
3694 schedstat_inc(sd, lb_balanced[idle]);
3695
16cfb1c0 3696 sd->nr_balance_failed = 0;
fa3b6ddc
SS
3697
3698out_one_pinned:
1da177e4 3699 /* tune up the balancing interval */
77391d71
NP
3700 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
3701 (sd->balance_interval < sd->max_interval))
1da177e4
LT
3702 sd->balance_interval *= 2;
3703
48f24c4d 3704 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3705 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
c09595f6
PZ
3706 ld_moved = -1;
3707 else
3708 ld_moved = 0;
3709out:
c8cba857
PZ
3710 if (ld_moved)
3711 update_shares(sd);
c09595f6 3712 return ld_moved;
1da177e4
LT
3713}
3714
3715/*
3716 * Check this_cpu to ensure it is balanced within domain. Attempt to move
3717 * tasks if there is an imbalance.
3718 *
d15bcfdb 3719 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
3720 * this_rq is locked.
3721 */
48f24c4d 3722static int
7c16ec58 3723load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd,
96f874e2 3724 struct cpumask *cpus)
1da177e4
LT
3725{
3726 struct sched_group *group;
70b97a7f 3727 struct rq *busiest = NULL;
1da177e4 3728 unsigned long imbalance;
43010659 3729 int ld_moved = 0;
5969fe06 3730 int sd_idle = 0;
969bb4e4 3731 int all_pinned = 0;
7c16ec58 3732
96f874e2 3733 cpumask_setall(cpus);
5969fe06 3734
89c4710e
SS
3735 /*
3736 * When power savings policy is enabled for the parent domain, idle
3737 * sibling can pick up load irrespective of busy siblings. In this case,
3738 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 3739 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
3740 */
3741 if (sd->flags & SD_SHARE_CPUPOWER &&
3742 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3743 sd_idle = 1;
1da177e4 3744
2d72376b 3745 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 3746redo:
3e5459b4 3747 update_shares_locked(this_rq, sd);
d15bcfdb 3748 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
7c16ec58 3749 &sd_idle, cpus, NULL);
1da177e4 3750 if (!group) {
d15bcfdb 3751 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 3752 goto out_balanced;
1da177e4
LT
3753 }
3754
7c16ec58 3755 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
db935dbd 3756 if (!busiest) {
d15bcfdb 3757 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 3758 goto out_balanced;
1da177e4
LT
3759 }
3760
db935dbd
NP
3761 BUG_ON(busiest == this_rq);
3762
d15bcfdb 3763 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 3764
43010659 3765 ld_moved = 0;
d6d5cfaf
NP
3766 if (busiest->nr_running > 1) {
3767 /* Attempt to move tasks */
3768 double_lock_balance(this_rq, busiest);
6e82a3be
IM
3769 /* this_rq->clock is already updated */
3770 update_rq_clock(busiest);
43010659 3771 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
3772 imbalance, sd, CPU_NEWLY_IDLE,
3773 &all_pinned);
1b12bbc7 3774 double_unlock_balance(this_rq, busiest);
0a2966b4 3775
969bb4e4 3776 if (unlikely(all_pinned)) {
96f874e2
RR
3777 cpumask_clear_cpu(cpu_of(busiest), cpus);
3778 if (!cpumask_empty(cpus))
0a2966b4
CL
3779 goto redo;
3780 }
d6d5cfaf
NP
3781 }
3782
43010659 3783 if (!ld_moved) {
36dffab6 3784 int active_balance = 0;
ad273b32 3785
d15bcfdb 3786 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
3787 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
3788 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3789 return -1;
ad273b32
VS
3790
3791 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
3792 return -1;
3793
3794 if (sd->nr_balance_failed++ < 2)
3795 return -1;
3796
3797 /*
3798 * The only task running in a non-idle cpu can be moved to this
3799 * cpu in an attempt to completely freeup the other CPU
3800 * package. The same method used to move task in load_balance()
3801 * have been extended for load_balance_newidle() to speedup
3802 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
3803 *
3804 * The package power saving logic comes from
3805 * find_busiest_group(). If there are no imbalance, then
3806 * f_b_g() will return NULL. However when sched_mc={1,2} then
3807 * f_b_g() will select a group from which a running task may be
3808 * pulled to this cpu in order to make the other package idle.
3809 * If there is no opportunity to make a package idle and if
3810 * there are no imbalance, then f_b_g() will return NULL and no
3811 * action will be taken in load_balance_newidle().
3812 *
3813 * Under normal task pull operation due to imbalance, there
3814 * will be more than one task in the source run queue and
3815 * move_tasks() will succeed. ld_moved will be true and this
3816 * active balance code will not be triggered.
3817 */
3818
3819 /* Lock busiest in correct order while this_rq is held */
3820 double_lock_balance(this_rq, busiest);
3821
3822 /*
3823 * don't kick the migration_thread, if the curr
3824 * task on busiest cpu can't be moved to this_cpu
3825 */
6ca09dfc 3826 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
ad273b32
VS
3827 double_unlock_balance(this_rq, busiest);
3828 all_pinned = 1;
3829 return ld_moved;
3830 }
3831
3832 if (!busiest->active_balance) {
3833 busiest->active_balance = 1;
3834 busiest->push_cpu = this_cpu;
3835 active_balance = 1;
3836 }
3837
3838 double_unlock_balance(this_rq, busiest);
da8d5089
PZ
3839 /*
3840 * Should not call ttwu while holding a rq->lock
3841 */
3842 spin_unlock(&this_rq->lock);
ad273b32
VS
3843 if (active_balance)
3844 wake_up_process(busiest->migration_thread);
da8d5089 3845 spin_lock(&this_rq->lock);
ad273b32 3846
5969fe06 3847 } else
16cfb1c0 3848 sd->nr_balance_failed = 0;
1da177e4 3849
3e5459b4 3850 update_shares_locked(this_rq, sd);
43010659 3851 return ld_moved;
16cfb1c0
NP
3852
3853out_balanced:
d15bcfdb 3854 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 3855 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 3856 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 3857 return -1;
16cfb1c0 3858 sd->nr_balance_failed = 0;
48f24c4d 3859
16cfb1c0 3860 return 0;
1da177e4
LT
3861}
3862
3863/*
3864 * idle_balance is called by schedule() if this_cpu is about to become
3865 * idle. Attempts to pull tasks from other CPUs.
3866 */
70b97a7f 3867static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
3868{
3869 struct sched_domain *sd;
efbe027e 3870 int pulled_task = 0;
dd41f596 3871 unsigned long next_balance = jiffies + HZ;
4d2732c6
RR
3872 cpumask_var_t tmpmask;
3873
3874 if (!alloc_cpumask_var(&tmpmask, GFP_ATOMIC))
3875 return;
1da177e4
LT
3876
3877 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
3878 unsigned long interval;
3879
3880 if (!(sd->flags & SD_LOAD_BALANCE))
3881 continue;
3882
3883 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 3884 /* If we've pulled tasks over stop searching: */
7c16ec58 3885 pulled_task = load_balance_newidle(this_cpu, this_rq,
4d2732c6 3886 sd, tmpmask);
92c4ca5c
CL
3887
3888 interval = msecs_to_jiffies(sd->balance_interval);
3889 if (time_after(next_balance, sd->last_balance + interval))
3890 next_balance = sd->last_balance + interval;
3891 if (pulled_task)
3892 break;
1da177e4 3893 }
dd41f596 3894 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
3895 /*
3896 * We are going idle. next_balance may be set based on
3897 * a busy processor. So reset next_balance.
3898 */
3899 this_rq->next_balance = next_balance;
dd41f596 3900 }
4d2732c6 3901 free_cpumask_var(tmpmask);
1da177e4
LT
3902}
3903
3904/*
3905 * active_load_balance is run by migration threads. It pushes running tasks
3906 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
3907 * running on each physical CPU where possible, and avoids physical /
3908 * logical imbalances.
3909 *
3910 * Called with busiest_rq locked.
3911 */
70b97a7f 3912static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 3913{
39507451 3914 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
3915 struct sched_domain *sd;
3916 struct rq *target_rq;
39507451 3917
48f24c4d 3918 /* Is there any task to move? */
39507451 3919 if (busiest_rq->nr_running <= 1)
39507451
NP
3920 return;
3921
3922 target_rq = cpu_rq(target_cpu);
1da177e4
LT
3923
3924 /*
39507451 3925 * This condition is "impossible", if it occurs
41a2d6cf 3926 * we need to fix it. Originally reported by
39507451 3927 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 3928 */
39507451 3929 BUG_ON(busiest_rq == target_rq);
1da177e4 3930
39507451
NP
3931 /* move a task from busiest_rq to target_rq */
3932 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
3933 update_rq_clock(busiest_rq);
3934 update_rq_clock(target_rq);
39507451
NP
3935
3936 /* Search for an sd spanning us and the target CPU. */
c96d145e 3937 for_each_domain(target_cpu, sd) {
39507451 3938 if ((sd->flags & SD_LOAD_BALANCE) &&
758b2cdc 3939 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
39507451 3940 break;
c96d145e 3941 }
39507451 3942
48f24c4d 3943 if (likely(sd)) {
2d72376b 3944 schedstat_inc(sd, alb_count);
39507451 3945
43010659
PW
3946 if (move_one_task(target_rq, target_cpu, busiest_rq,
3947 sd, CPU_IDLE))
48f24c4d
IM
3948 schedstat_inc(sd, alb_pushed);
3949 else
3950 schedstat_inc(sd, alb_failed);
3951 }
1b12bbc7 3952 double_unlock_balance(busiest_rq, target_rq);
1da177e4
LT
3953}
3954
46cb4b7c
SS
3955#ifdef CONFIG_NO_HZ
3956static struct {
3957 atomic_t load_balancer;
7d1e6a9b 3958 cpumask_var_t cpu_mask;
46cb4b7c
SS
3959} nohz ____cacheline_aligned = {
3960 .load_balancer = ATOMIC_INIT(-1),
46cb4b7c
SS
3961};
3962
7835b98b 3963/*
46cb4b7c
SS
3964 * This routine will try to nominate the ilb (idle load balancing)
3965 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3966 * load balancing on behalf of all those cpus. If all the cpus in the system
3967 * go into this tickless mode, then there will be no ilb owner (as there is
3968 * no need for one) and all the cpus will sleep till the next wakeup event
3969 * arrives...
3970 *
3971 * For the ilb owner, tick is not stopped. And this tick will be used
3972 * for idle load balancing. ilb owner will still be part of
3973 * nohz.cpu_mask..
7835b98b 3974 *
46cb4b7c
SS
3975 * While stopping the tick, this cpu will become the ilb owner if there
3976 * is no other owner. And will be the owner till that cpu becomes busy
3977 * or if all cpus in the system stop their ticks at which point
3978 * there is no need for ilb owner.
3979 *
3980 * When the ilb owner becomes busy, it nominates another owner, during the
3981 * next busy scheduler_tick()
3982 */
3983int select_nohz_load_balancer(int stop_tick)
3984{
3985 int cpu = smp_processor_id();
3986
3987 if (stop_tick) {
46cb4b7c
SS
3988 cpu_rq(cpu)->in_nohz_recently = 1;
3989
483b4ee6
SS
3990 if (!cpu_active(cpu)) {
3991 if (atomic_read(&nohz.load_balancer) != cpu)
3992 return 0;
3993
3994 /*
3995 * If we are going offline and still the leader,
3996 * give up!
3997 */
46cb4b7c
SS
3998 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3999 BUG();
483b4ee6 4000
46cb4b7c
SS
4001 return 0;
4002 }
4003
483b4ee6
SS
4004 cpumask_set_cpu(cpu, nohz.cpu_mask);
4005
46cb4b7c 4006 /* time for ilb owner also to sleep */
7d1e6a9b 4007 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4008 if (atomic_read(&nohz.load_balancer) == cpu)
4009 atomic_set(&nohz.load_balancer, -1);
4010 return 0;
4011 }
4012
4013 if (atomic_read(&nohz.load_balancer) == -1) {
4014 /* make me the ilb owner */
4015 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4016 return 1;
4017 } else if (atomic_read(&nohz.load_balancer) == cpu)
4018 return 1;
4019 } else {
7d1e6a9b 4020 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4021 return 0;
4022
7d1e6a9b 4023 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4024
4025 if (atomic_read(&nohz.load_balancer) == cpu)
4026 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4027 BUG();
4028 }
4029 return 0;
4030}
4031#endif
4032
4033static DEFINE_SPINLOCK(balancing);
4034
4035/*
7835b98b
CL
4036 * It checks each scheduling domain to see if it is due to be balanced,
4037 * and initiates a balancing operation if so.
4038 *
4039 * Balancing parameters are set up in arch_init_sched_domains.
4040 */
a9957449 4041static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 4042{
46cb4b7c
SS
4043 int balance = 1;
4044 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
4045 unsigned long interval;
4046 struct sched_domain *sd;
46cb4b7c 4047 /* Earliest time when we have to do rebalance again */
c9819f45 4048 unsigned long next_balance = jiffies + 60*HZ;
f549da84 4049 int update_next_balance = 0;
d07355f5 4050 int need_serialize;
a0e90245
RR
4051 cpumask_var_t tmp;
4052
4053 /* Fails alloc? Rebalancing probably not a priority right now. */
4054 if (!alloc_cpumask_var(&tmp, GFP_ATOMIC))
4055 return;
1da177e4 4056
46cb4b7c 4057 for_each_domain(cpu, sd) {
1da177e4
LT
4058 if (!(sd->flags & SD_LOAD_BALANCE))
4059 continue;
4060
4061 interval = sd->balance_interval;
d15bcfdb 4062 if (idle != CPU_IDLE)
1da177e4
LT
4063 interval *= sd->busy_factor;
4064
4065 /* scale ms to jiffies */
4066 interval = msecs_to_jiffies(interval);
4067 if (unlikely(!interval))
4068 interval = 1;
dd41f596
IM
4069 if (interval > HZ*NR_CPUS/10)
4070 interval = HZ*NR_CPUS/10;
4071
d07355f5 4072 need_serialize = sd->flags & SD_SERIALIZE;
1da177e4 4073
d07355f5 4074 if (need_serialize) {
08c183f3
CL
4075 if (!spin_trylock(&balancing))
4076 goto out;
4077 }
4078
c9819f45 4079 if (time_after_eq(jiffies, sd->last_balance + interval)) {
a0e90245 4080 if (load_balance(cpu, rq, sd, idle, &balance, tmp)) {
fa3b6ddc
SS
4081 /*
4082 * We've pulled tasks over so either we're no
5969fe06
NP
4083 * longer idle, or one of our SMT siblings is
4084 * not idle.
4085 */
d15bcfdb 4086 idle = CPU_NOT_IDLE;
1da177e4 4087 }
1bd77f2d 4088 sd->last_balance = jiffies;
1da177e4 4089 }
d07355f5 4090 if (need_serialize)
08c183f3
CL
4091 spin_unlock(&balancing);
4092out:
f549da84 4093 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 4094 next_balance = sd->last_balance + interval;
f549da84
SS
4095 update_next_balance = 1;
4096 }
783609c6
SS
4097
4098 /*
4099 * Stop the load balance at this level. There is another
4100 * CPU in our sched group which is doing load balancing more
4101 * actively.
4102 */
4103 if (!balance)
4104 break;
1da177e4 4105 }
f549da84
SS
4106
4107 /*
4108 * next_balance will be updated only when there is a need.
4109 * When the cpu is attached to null domain for ex, it will not be
4110 * updated.
4111 */
4112 if (likely(update_next_balance))
4113 rq->next_balance = next_balance;
a0e90245
RR
4114
4115 free_cpumask_var(tmp);
46cb4b7c
SS
4116}
4117
4118/*
4119 * run_rebalance_domains is triggered when needed from the scheduler tick.
4120 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4121 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4122 */
4123static void run_rebalance_domains(struct softirq_action *h)
4124{
dd41f596
IM
4125 int this_cpu = smp_processor_id();
4126 struct rq *this_rq = cpu_rq(this_cpu);
4127 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4128 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 4129
dd41f596 4130 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
4131
4132#ifdef CONFIG_NO_HZ
4133 /*
4134 * If this cpu is the owner for idle load balancing, then do the
4135 * balancing on behalf of the other idle cpus whose ticks are
4136 * stopped.
4137 */
dd41f596
IM
4138 if (this_rq->idle_at_tick &&
4139 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
4140 struct rq *rq;
4141 int balance_cpu;
4142
7d1e6a9b
RR
4143 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4144 if (balance_cpu == this_cpu)
4145 continue;
4146
46cb4b7c
SS
4147 /*
4148 * If this cpu gets work to do, stop the load balancing
4149 * work being done for other cpus. Next load
4150 * balancing owner will pick it up.
4151 */
4152 if (need_resched())
4153 break;
4154
de0cf899 4155 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
4156
4157 rq = cpu_rq(balance_cpu);
dd41f596
IM
4158 if (time_after(this_rq->next_balance, rq->next_balance))
4159 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
4160 }
4161 }
4162#endif
4163}
4164
8a0be9ef
FW
4165static inline int on_null_domain(int cpu)
4166{
4167 return !rcu_dereference(cpu_rq(cpu)->sd);
4168}
4169
46cb4b7c
SS
4170/*
4171 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4172 *
4173 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4174 * idle load balancing owner or decide to stop the periodic load balancing,
4175 * if the whole system is idle.
4176 */
dd41f596 4177static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 4178{
46cb4b7c
SS
4179#ifdef CONFIG_NO_HZ
4180 /*
4181 * If we were in the nohz mode recently and busy at the current
4182 * scheduler tick, then check if we need to nominate new idle
4183 * load balancer.
4184 */
4185 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4186 rq->in_nohz_recently = 0;
4187
4188 if (atomic_read(&nohz.load_balancer) == cpu) {
7d1e6a9b 4189 cpumask_clear_cpu(cpu, nohz.cpu_mask);
46cb4b7c
SS
4190 atomic_set(&nohz.load_balancer, -1);
4191 }
4192
4193 if (atomic_read(&nohz.load_balancer) == -1) {
4194 /*
4195 * simple selection for now: Nominate the
4196 * first cpu in the nohz list to be the next
4197 * ilb owner.
4198 *
4199 * TBD: Traverse the sched domains and nominate
4200 * the nearest cpu in the nohz.cpu_mask.
4201 */
7d1e6a9b 4202 int ilb = cpumask_first(nohz.cpu_mask);
46cb4b7c 4203
434d53b0 4204 if (ilb < nr_cpu_ids)
46cb4b7c
SS
4205 resched_cpu(ilb);
4206 }
4207 }
4208
4209 /*
4210 * If this cpu is idle and doing idle load balancing for all the
4211 * cpus with ticks stopped, is it time for that to stop?
4212 */
4213 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
7d1e6a9b 4214 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
46cb4b7c
SS
4215 resched_cpu(cpu);
4216 return;
4217 }
4218
4219 /*
4220 * If this cpu is idle and the idle load balancing is done by
4221 * someone else, then no need raise the SCHED_SOFTIRQ
4222 */
4223 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
7d1e6a9b 4224 cpumask_test_cpu(cpu, nohz.cpu_mask))
46cb4b7c
SS
4225 return;
4226#endif
8a0be9ef
FW
4227 /* Don't need to rebalance while attached to NULL domain */
4228 if (time_after_eq(jiffies, rq->next_balance) &&
4229 likely(!on_null_domain(cpu)))
46cb4b7c 4230 raise_softirq(SCHED_SOFTIRQ);
1da177e4 4231}
dd41f596
IM
4232
4233#else /* CONFIG_SMP */
4234
1da177e4
LT
4235/*
4236 * on UP we do not need to balance between CPUs:
4237 */
70b97a7f 4238static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
4239{
4240}
dd41f596 4241
1da177e4
LT
4242#endif
4243
1da177e4
LT
4244DEFINE_PER_CPU(struct kernel_stat, kstat);
4245
4246EXPORT_PER_CPU_SYMBOL(kstat);
4247
4248/*
f06febc9
FM
4249 * Return any ns on the sched_clock that have not yet been banked in
4250 * @p in case that task is currently running.
1da177e4 4251 */
bb34d92f 4252unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 4253{
1da177e4 4254 unsigned long flags;
41b86e9c 4255 struct rq *rq;
bb34d92f 4256 u64 ns = 0;
48f24c4d 4257
41b86e9c 4258 rq = task_rq_lock(p, &flags);
1508487e 4259
051a1d1a 4260 if (task_current(rq, p)) {
f06febc9
FM
4261 u64 delta_exec;
4262
a8e504d2
IM
4263 update_rq_clock(rq);
4264 delta_exec = rq->clock - p->se.exec_start;
41b86e9c 4265 if ((s64)delta_exec > 0)
bb34d92f 4266 ns = delta_exec;
41b86e9c 4267 }
48f24c4d 4268
41b86e9c 4269 task_rq_unlock(rq, &flags);
48f24c4d 4270
1da177e4
LT
4271 return ns;
4272}
4273
1da177e4
LT
4274/*
4275 * Account user cpu time to a process.
4276 * @p: the process that the cpu time gets accounted to
1da177e4 4277 * @cputime: the cpu time spent in user space since the last update
457533a7 4278 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 4279 */
457533a7
MS
4280void account_user_time(struct task_struct *p, cputime_t cputime,
4281 cputime_t cputime_scaled)
1da177e4
LT
4282{
4283 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4284 cputime64_t tmp;
4285
457533a7 4286 /* Add user time to process. */
1da177e4 4287 p->utime = cputime_add(p->utime, cputime);
457533a7 4288 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4289 account_group_user_time(p, cputime);
1da177e4
LT
4290
4291 /* Add user time to cpustat. */
4292 tmp = cputime_to_cputime64(cputime);
4293 if (TASK_NICE(p) > 0)
4294 cpustat->nice = cputime64_add(cpustat->nice, tmp);
4295 else
4296 cpustat->user = cputime64_add(cpustat->user, tmp);
49b5cf34
JL
4297 /* Account for user time used */
4298 acct_update_integrals(p);
1da177e4
LT
4299}
4300
94886b84
LV
4301/*
4302 * Account guest cpu time to a process.
4303 * @p: the process that the cpu time gets accounted to
4304 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 4305 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 4306 */
457533a7
MS
4307static void account_guest_time(struct task_struct *p, cputime_t cputime,
4308 cputime_t cputime_scaled)
94886b84
LV
4309{
4310 cputime64_t tmp;
4311 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4312
4313 tmp = cputime_to_cputime64(cputime);
4314
457533a7 4315 /* Add guest time to process. */
94886b84 4316 p->utime = cputime_add(p->utime, cputime);
457533a7 4317 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
f06febc9 4318 account_group_user_time(p, cputime);
94886b84
LV
4319 p->gtime = cputime_add(p->gtime, cputime);
4320
457533a7 4321 /* Add guest time to cpustat. */
94886b84
LV
4322 cpustat->user = cputime64_add(cpustat->user, tmp);
4323 cpustat->guest = cputime64_add(cpustat->guest, tmp);
4324}
4325
1da177e4
LT
4326/*
4327 * Account system cpu time to a process.
4328 * @p: the process that the cpu time gets accounted to
4329 * @hardirq_offset: the offset to subtract from hardirq_count()
4330 * @cputime: the cpu time spent in kernel space since the last update
457533a7 4331 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
4332 */
4333void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 4334 cputime_t cputime, cputime_t cputime_scaled)
1da177e4
LT
4335{
4336 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
1da177e4
LT
4337 cputime64_t tmp;
4338
983ed7a6 4339 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 4340 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
4341 return;
4342 }
94886b84 4343
457533a7 4344 /* Add system time to process. */
1da177e4 4345 p->stime = cputime_add(p->stime, cputime);
457533a7 4346 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
f06febc9 4347 account_group_system_time(p, cputime);
1da177e4
LT
4348
4349 /* Add system time to cpustat. */
4350 tmp = cputime_to_cputime64(cputime);
4351 if (hardirq_count() - hardirq_offset)
4352 cpustat->irq = cputime64_add(cpustat->irq, tmp);
4353 else if (softirq_count())
4354 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
1da177e4 4355 else
79741dd3
MS
4356 cpustat->system = cputime64_add(cpustat->system, tmp);
4357
1da177e4
LT
4358 /* Account for system time used */
4359 acct_update_integrals(p);
1da177e4
LT
4360}
4361
c66f08be 4362/*
1da177e4 4363 * Account for involuntary wait time.
1da177e4 4364 * @steal: the cpu time spent in involuntary wait
c66f08be 4365 */
79741dd3 4366void account_steal_time(cputime_t cputime)
c66f08be 4367{
79741dd3
MS
4368 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
4369 cputime64_t cputime64 = cputime_to_cputime64(cputime);
4370
4371 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
c66f08be
MN
4372}
4373
1da177e4 4374/*
79741dd3
MS
4375 * Account for idle time.
4376 * @cputime: the cpu time spent in idle wait
1da177e4 4377 */
79741dd3 4378void account_idle_time(cputime_t cputime)
1da177e4
LT
4379{
4380 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
79741dd3 4381 cputime64_t cputime64 = cputime_to_cputime64(cputime);
70b97a7f 4382 struct rq *rq = this_rq();
1da177e4 4383
79741dd3
MS
4384 if (atomic_read(&rq->nr_iowait) > 0)
4385 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
4386 else
4387 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
1da177e4
LT
4388}
4389
79741dd3
MS
4390#ifndef CONFIG_VIRT_CPU_ACCOUNTING
4391
4392/*
4393 * Account a single tick of cpu time.
4394 * @p: the process that the cpu time gets accounted to
4395 * @user_tick: indicates if the tick is a user or a system tick
4396 */
4397void account_process_tick(struct task_struct *p, int user_tick)
4398{
4399 cputime_t one_jiffy = jiffies_to_cputime(1);
4400 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
4401 struct rq *rq = this_rq();
4402
4403 if (user_tick)
4404 account_user_time(p, one_jiffy, one_jiffy_scaled);
4405 else if (p != rq->idle)
4406 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
4407 one_jiffy_scaled);
4408 else
4409 account_idle_time(one_jiffy);
4410}
4411
4412/*
4413 * Account multiple ticks of steal time.
4414 * @p: the process from which the cpu time has been stolen
4415 * @ticks: number of stolen ticks
4416 */
4417void account_steal_ticks(unsigned long ticks)
4418{
4419 account_steal_time(jiffies_to_cputime(ticks));
4420}
4421
4422/*
4423 * Account multiple ticks of idle time.
4424 * @ticks: number of stolen ticks
4425 */
4426void account_idle_ticks(unsigned long ticks)
4427{
4428 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
4429}
4430
79741dd3
MS
4431#endif
4432
49048622
BS
4433/*
4434 * Use precise platform statistics if available:
4435 */
4436#ifdef CONFIG_VIRT_CPU_ACCOUNTING
4437cputime_t task_utime(struct task_struct *p)
4438{
4439 return p->utime;
4440}
4441
4442cputime_t task_stime(struct task_struct *p)
4443{
4444 return p->stime;
4445}
4446#else
4447cputime_t task_utime(struct task_struct *p)
4448{
4449 clock_t utime = cputime_to_clock_t(p->utime),
4450 total = utime + cputime_to_clock_t(p->stime);
4451 u64 temp;
4452
4453 /*
4454 * Use CFS's precise accounting:
4455 */
4456 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
4457
4458 if (total) {
4459 temp *= utime;
4460 do_div(temp, total);
4461 }
4462 utime = (clock_t)temp;
4463
4464 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
4465 return p->prev_utime;
4466}
4467
4468cputime_t task_stime(struct task_struct *p)
4469{
4470 clock_t stime;
4471
4472 /*
4473 * Use CFS's precise accounting. (we subtract utime from
4474 * the total, to make sure the total observed by userspace
4475 * grows monotonically - apps rely on that):
4476 */
4477 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
4478 cputime_to_clock_t(task_utime(p));
4479
4480 if (stime >= 0)
4481 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
4482
4483 return p->prev_stime;
4484}
4485#endif
4486
4487inline cputime_t task_gtime(struct task_struct *p)
4488{
4489 return p->gtime;
4490}
4491
7835b98b
CL
4492/*
4493 * This function gets called by the timer code, with HZ frequency.
4494 * We call it with interrupts disabled.
4495 *
4496 * It also gets called by the fork code, when changing the parent's
4497 * timeslices.
4498 */
4499void scheduler_tick(void)
4500{
7835b98b
CL
4501 int cpu = smp_processor_id();
4502 struct rq *rq = cpu_rq(cpu);
dd41f596 4503 struct task_struct *curr = rq->curr;
3e51f33f
PZ
4504
4505 sched_clock_tick();
dd41f596
IM
4506
4507 spin_lock(&rq->lock);
3e51f33f 4508 update_rq_clock(rq);
f1a438d8 4509 update_cpu_load(rq);
fa85ae24 4510 curr->sched_class->task_tick(rq, curr, 0);
dd41f596 4511 spin_unlock(&rq->lock);
7835b98b 4512
e418e1c2 4513#ifdef CONFIG_SMP
dd41f596
IM
4514 rq->idle_at_tick = idle_cpu(cpu);
4515 trigger_load_balance(rq, cpu);
e418e1c2 4516#endif
1da177e4
LT
4517}
4518
6cd8a4bb
SR
4519#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
4520 defined(CONFIG_PREEMPT_TRACER))
4521
4522static inline unsigned long get_parent_ip(unsigned long addr)
4523{
4524 if (in_lock_functions(addr)) {
4525 addr = CALLER_ADDR2;
4526 if (in_lock_functions(addr))
4527 addr = CALLER_ADDR3;
4528 }
4529 return addr;
4530}
1da177e4 4531
43627582 4532void __kprobes add_preempt_count(int val)
1da177e4 4533{
6cd8a4bb 4534#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4535 /*
4536 * Underflow?
4537 */
9a11b49a
IM
4538 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
4539 return;
6cd8a4bb 4540#endif
1da177e4 4541 preempt_count() += val;
6cd8a4bb 4542#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4543 /*
4544 * Spinlock count overflowing soon?
4545 */
33859f7f
MOS
4546 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
4547 PREEMPT_MASK - 10);
6cd8a4bb
SR
4548#endif
4549 if (preempt_count() == val)
4550 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4551}
4552EXPORT_SYMBOL(add_preempt_count);
4553
43627582 4554void __kprobes sub_preempt_count(int val)
1da177e4 4555{
6cd8a4bb 4556#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
4557 /*
4558 * Underflow?
4559 */
01e3eb82 4560 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 4561 return;
1da177e4
LT
4562 /*
4563 * Is the spinlock portion underflowing?
4564 */
9a11b49a
IM
4565 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
4566 !(preempt_count() & PREEMPT_MASK)))
4567 return;
6cd8a4bb 4568#endif
9a11b49a 4569
6cd8a4bb
SR
4570 if (preempt_count() == val)
4571 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
4572 preempt_count() -= val;
4573}
4574EXPORT_SYMBOL(sub_preempt_count);
4575
4576#endif
4577
4578/*
dd41f596 4579 * Print scheduling while atomic bug:
1da177e4 4580 */
dd41f596 4581static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 4582{
838225b4
SS
4583 struct pt_regs *regs = get_irq_regs();
4584
4585 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
4586 prev->comm, prev->pid, preempt_count());
4587
dd41f596 4588 debug_show_held_locks(prev);
e21f5b15 4589 print_modules();
dd41f596
IM
4590 if (irqs_disabled())
4591 print_irqtrace_events(prev);
838225b4
SS
4592
4593 if (regs)
4594 show_regs(regs);
4595 else
4596 dump_stack();
dd41f596 4597}
1da177e4 4598
dd41f596
IM
4599/*
4600 * Various schedule()-time debugging checks and statistics:
4601 */
4602static inline void schedule_debug(struct task_struct *prev)
4603{
1da177e4 4604 /*
41a2d6cf 4605 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
4606 * schedule() atomically, we ignore that path for now.
4607 * Otherwise, whine if we are scheduling when we should not be.
4608 */
3f33a7ce 4609 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596
IM
4610 __schedule_bug(prev);
4611
1da177e4
LT
4612 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
4613
2d72376b 4614 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
4615#ifdef CONFIG_SCHEDSTATS
4616 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
4617 schedstat_inc(this_rq(), bkl_count);
4618 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
4619 }
4620#endif
dd41f596
IM
4621}
4622
df1c99d4
MG
4623static void put_prev_task(struct rq *rq, struct task_struct *prev)
4624{
4625 if (prev->state == TASK_RUNNING) {
4626 u64 runtime = prev->se.sum_exec_runtime;
4627
4628 runtime -= prev->se.prev_sum_exec_runtime;
4629 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
4630
4631 /*
4632 * In order to avoid avg_overlap growing stale when we are
4633 * indeed overlapping and hence not getting put to sleep, grow
4634 * the avg_overlap on preemption.
4635 *
4636 * We use the average preemption runtime because that
4637 * correlates to the amount of cache footprint a task can
4638 * build up.
4639 */
4640 update_avg(&prev->se.avg_overlap, runtime);
4641 }
4642 prev->sched_class->put_prev_task(rq, prev);
4643}
4644
dd41f596
IM
4645/*
4646 * Pick up the highest-prio task:
4647 */
4648static inline struct task_struct *
b67802ea 4649pick_next_task(struct rq *rq)
dd41f596 4650{
5522d5d5 4651 const struct sched_class *class;
dd41f596 4652 struct task_struct *p;
1da177e4
LT
4653
4654 /*
dd41f596
IM
4655 * Optimization: we know that if all tasks are in
4656 * the fair class we can call that function directly:
1da177e4 4657 */
dd41f596 4658 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 4659 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
4660 if (likely(p))
4661 return p;
1da177e4
LT
4662 }
4663
dd41f596
IM
4664 class = sched_class_highest;
4665 for ( ; ; ) {
fb8d4724 4666 p = class->pick_next_task(rq);
dd41f596
IM
4667 if (p)
4668 return p;
4669 /*
4670 * Will never be NULL as the idle class always
4671 * returns a non-NULL p:
4672 */
4673 class = class->next;
4674 }
4675}
1da177e4 4676
dd41f596
IM
4677/*
4678 * schedule() is the main scheduler function.
4679 */
4680asmlinkage void __sched schedule(void)
4681{
4682 struct task_struct *prev, *next;
67ca7bde 4683 unsigned long *switch_count;
dd41f596 4684 struct rq *rq;
31656519 4685 int cpu;
dd41f596
IM
4686
4687need_resched:
4688 preempt_disable();
4689 cpu = smp_processor_id();
4690 rq = cpu_rq(cpu);
4691 rcu_qsctr_inc(cpu);
4692 prev = rq->curr;
4693 switch_count = &prev->nivcsw;
4694
4695 release_kernel_lock(prev);
4696need_resched_nonpreemptible:
4697
4698 schedule_debug(prev);
1da177e4 4699
31656519 4700 if (sched_feat(HRTICK))
f333fdc9 4701 hrtick_clear(rq);
8f4d37ec 4702
8cd162ce 4703 spin_lock_irq(&rq->lock);
3e51f33f 4704 update_rq_clock(rq);
1e819950 4705 clear_tsk_need_resched(prev);
1da177e4 4706
1da177e4 4707 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
16882c1e 4708 if (unlikely(signal_pending_state(prev->state, prev)))
1da177e4 4709 prev->state = TASK_RUNNING;
16882c1e 4710 else
2e1cb74a 4711 deactivate_task(rq, prev, 1);
dd41f596 4712 switch_count = &prev->nvcsw;
1da177e4
LT
4713 }
4714
9a897c5a
SR
4715#ifdef CONFIG_SMP
4716 if (prev->sched_class->pre_schedule)
4717 prev->sched_class->pre_schedule(rq, prev);
4718#endif
f65eda4f 4719
dd41f596 4720 if (unlikely(!rq->nr_running))
1da177e4 4721 idle_balance(cpu, rq);
1da177e4 4722
df1c99d4 4723 put_prev_task(rq, prev);
b67802ea 4724 next = pick_next_task(rq);
1da177e4 4725
1da177e4 4726 if (likely(prev != next)) {
673a90a1
DS
4727 sched_info_switch(prev, next);
4728
1da177e4
LT
4729 rq->nr_switches++;
4730 rq->curr = next;
4731 ++*switch_count;
4732
dd41f596 4733 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec
PZ
4734 /*
4735 * the context switch might have flipped the stack from under
4736 * us, hence refresh the local variables.
4737 */
4738 cpu = smp_processor_id();
4739 rq = cpu_rq(cpu);
1da177e4
LT
4740 } else
4741 spin_unlock_irq(&rq->lock);
4742
8f4d37ec 4743 if (unlikely(reacquire_kernel_lock(current) < 0))
1da177e4 4744 goto need_resched_nonpreemptible;
8f4d37ec 4745
1da177e4
LT
4746 preempt_enable_no_resched();
4747 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
4748 goto need_resched;
4749}
1da177e4
LT
4750EXPORT_SYMBOL(schedule);
4751
4752#ifdef CONFIG_PREEMPT
4753/*
2ed6e34f 4754 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 4755 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
4756 * occur there and call schedule directly.
4757 */
4758asmlinkage void __sched preempt_schedule(void)
4759{
4760 struct thread_info *ti = current_thread_info();
6478d880 4761
1da177e4
LT
4762 /*
4763 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 4764 * we do not want to preempt the current task. Just return..
1da177e4 4765 */
beed33a8 4766 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
4767 return;
4768
3a5c359a
AK
4769 do {
4770 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 4771 schedule();
3a5c359a 4772 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4773
3a5c359a
AK
4774 /*
4775 * Check again in case we missed a preemption opportunity
4776 * between schedule and now.
4777 */
4778 barrier();
5ed0cec0 4779 } while (need_resched());
1da177e4 4780}
1da177e4
LT
4781EXPORT_SYMBOL(preempt_schedule);
4782
4783/*
2ed6e34f 4784 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
4785 * off of irq context.
4786 * Note, that this is called and return with irqs disabled. This will
4787 * protect us against recursive calling from irq.
4788 */
4789asmlinkage void __sched preempt_schedule_irq(void)
4790{
4791 struct thread_info *ti = current_thread_info();
6478d880 4792
2ed6e34f 4793 /* Catch callers which need to be fixed */
1da177e4
LT
4794 BUG_ON(ti->preempt_count || !irqs_disabled());
4795
3a5c359a
AK
4796 do {
4797 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a
AK
4798 local_irq_enable();
4799 schedule();
4800 local_irq_disable();
3a5c359a 4801 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 4802
3a5c359a
AK
4803 /*
4804 * Check again in case we missed a preemption opportunity
4805 * between schedule and now.
4806 */
4807 barrier();
5ed0cec0 4808 } while (need_resched());
1da177e4
LT
4809}
4810
4811#endif /* CONFIG_PREEMPT */
4812
95cdf3b7
IM
4813int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
4814 void *key)
1da177e4 4815{
48f24c4d 4816 return try_to_wake_up(curr->private, mode, sync);
1da177e4 4817}
1da177e4
LT
4818EXPORT_SYMBOL(default_wake_function);
4819
4820/*
41a2d6cf
IM
4821 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
4822 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
4823 * number) then we wake all the non-exclusive tasks and one exclusive task.
4824 *
4825 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 4826 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
4827 * zero in this (rare) case, and we handle it by continuing to scan the queue.
4828 */
777c6c5f
JW
4829void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
4830 int nr_exclusive, int sync, void *key)
1da177e4 4831{
2e45874c 4832 wait_queue_t *curr, *next;
1da177e4 4833
2e45874c 4834 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
4835 unsigned flags = curr->flags;
4836
1da177e4 4837 if (curr->func(curr, mode, sync, key) &&
48f24c4d 4838 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
4839 break;
4840 }
4841}
4842
4843/**
4844 * __wake_up - wake up threads blocked on a waitqueue.
4845 * @q: the waitqueue
4846 * @mode: which threads
4847 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 4848 * @key: is directly passed to the wakeup function
1da177e4 4849 */
7ad5b3a5 4850void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 4851 int nr_exclusive, void *key)
1da177e4
LT
4852{
4853 unsigned long flags;
4854
4855 spin_lock_irqsave(&q->lock, flags);
4856 __wake_up_common(q, mode, nr_exclusive, 0, key);
4857 spin_unlock_irqrestore(&q->lock, flags);
4858}
1da177e4
LT
4859EXPORT_SYMBOL(__wake_up);
4860
4861/*
4862 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
4863 */
7ad5b3a5 4864void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
1da177e4
LT
4865{
4866 __wake_up_common(q, mode, 1, 0, NULL);
4867}
4868
4869/**
67be2dd1 4870 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
4871 * @q: the waitqueue
4872 * @mode: which threads
4873 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4874 *
4875 * The sync wakeup differs that the waker knows that it will schedule
4876 * away soon, so while the target thread will be woken up, it will not
4877 * be migrated to another CPU - ie. the two threads are 'synchronized'
4878 * with each other. This can prevent needless bouncing between CPUs.
4879 *
4880 * On UP it can prevent extra preemption.
4881 */
7ad5b3a5 4882void
95cdf3b7 4883__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
4884{
4885 unsigned long flags;
4886 int sync = 1;
4887
4888 if (unlikely(!q))
4889 return;
4890
4891 if (unlikely(!nr_exclusive))
4892 sync = 0;
4893
4894 spin_lock_irqsave(&q->lock, flags);
4895 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
4896 spin_unlock_irqrestore(&q->lock, flags);
4897}
4898EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
4899
65eb3dc6
KD
4900/**
4901 * complete: - signals a single thread waiting on this completion
4902 * @x: holds the state of this particular completion
4903 *
4904 * This will wake up a single thread waiting on this completion. Threads will be
4905 * awakened in the same order in which they were queued.
4906 *
4907 * See also complete_all(), wait_for_completion() and related routines.
4908 */
b15136e9 4909void complete(struct completion *x)
1da177e4
LT
4910{
4911 unsigned long flags;
4912
4913 spin_lock_irqsave(&x->wait.lock, flags);
4914 x->done++;
d9514f6c 4915 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
4916 spin_unlock_irqrestore(&x->wait.lock, flags);
4917}
4918EXPORT_SYMBOL(complete);
4919
65eb3dc6
KD
4920/**
4921 * complete_all: - signals all threads waiting on this completion
4922 * @x: holds the state of this particular completion
4923 *
4924 * This will wake up all threads waiting on this particular completion event.
4925 */
b15136e9 4926void complete_all(struct completion *x)
1da177e4
LT
4927{
4928 unsigned long flags;
4929
4930 spin_lock_irqsave(&x->wait.lock, flags);
4931 x->done += UINT_MAX/2;
d9514f6c 4932 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
4933 spin_unlock_irqrestore(&x->wait.lock, flags);
4934}
4935EXPORT_SYMBOL(complete_all);
4936
8cbbe86d
AK
4937static inline long __sched
4938do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4939{
1da177e4
LT
4940 if (!x->done) {
4941 DECLARE_WAITQUEUE(wait, current);
4942
4943 wait.flags |= WQ_FLAG_EXCLUSIVE;
4944 __add_wait_queue_tail(&x->wait, &wait);
4945 do {
94d3d824 4946 if (signal_pending_state(state, current)) {
ea71a546
ON
4947 timeout = -ERESTARTSYS;
4948 break;
8cbbe86d
AK
4949 }
4950 __set_current_state(state);
1da177e4
LT
4951 spin_unlock_irq(&x->wait.lock);
4952 timeout = schedule_timeout(timeout);
4953 spin_lock_irq(&x->wait.lock);
ea71a546 4954 } while (!x->done && timeout);
1da177e4 4955 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
4956 if (!x->done)
4957 return timeout;
1da177e4
LT
4958 }
4959 x->done--;
ea71a546 4960 return timeout ?: 1;
1da177e4 4961}
1da177e4 4962
8cbbe86d
AK
4963static long __sched
4964wait_for_common(struct completion *x, long timeout, int state)
1da177e4 4965{
1da177e4
LT
4966 might_sleep();
4967
4968 spin_lock_irq(&x->wait.lock);
8cbbe86d 4969 timeout = do_wait_for_common(x, timeout, state);
1da177e4 4970 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
4971 return timeout;
4972}
1da177e4 4973
65eb3dc6
KD
4974/**
4975 * wait_for_completion: - waits for completion of a task
4976 * @x: holds the state of this particular completion
4977 *
4978 * This waits to be signaled for completion of a specific task. It is NOT
4979 * interruptible and there is no timeout.
4980 *
4981 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4982 * and interrupt capability. Also see complete().
4983 */
b15136e9 4984void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
4985{
4986 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 4987}
8cbbe86d 4988EXPORT_SYMBOL(wait_for_completion);
1da177e4 4989
65eb3dc6
KD
4990/**
4991 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4992 * @x: holds the state of this particular completion
4993 * @timeout: timeout value in jiffies
4994 *
4995 * This waits for either a completion of a specific task to be signaled or for a
4996 * specified timeout to expire. The timeout is in jiffies. It is not
4997 * interruptible.
4998 */
b15136e9 4999unsigned long __sched
8cbbe86d 5000wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 5001{
8cbbe86d 5002 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 5003}
8cbbe86d 5004EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 5005
65eb3dc6
KD
5006/**
5007 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5008 * @x: holds the state of this particular completion
5009 *
5010 * This waits for completion of a specific task to be signaled. It is
5011 * interruptible.
5012 */
8cbbe86d 5013int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 5014{
51e97990
AK
5015 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5016 if (t == -ERESTARTSYS)
5017 return t;
5018 return 0;
0fec171c 5019}
8cbbe86d 5020EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 5021
65eb3dc6
KD
5022/**
5023 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5024 * @x: holds the state of this particular completion
5025 * @timeout: timeout value in jiffies
5026 *
5027 * This waits for either a completion of a specific task to be signaled or for a
5028 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5029 */
b15136e9 5030unsigned long __sched
8cbbe86d
AK
5031wait_for_completion_interruptible_timeout(struct completion *x,
5032 unsigned long timeout)
0fec171c 5033{
8cbbe86d 5034 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 5035}
8cbbe86d 5036EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 5037
65eb3dc6
KD
5038/**
5039 * wait_for_completion_killable: - waits for completion of a task (killable)
5040 * @x: holds the state of this particular completion
5041 *
5042 * This waits to be signaled for completion of a specific task. It can be
5043 * interrupted by a kill signal.
5044 */
009e577e
MW
5045int __sched wait_for_completion_killable(struct completion *x)
5046{
5047 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5048 if (t == -ERESTARTSYS)
5049 return t;
5050 return 0;
5051}
5052EXPORT_SYMBOL(wait_for_completion_killable);
5053
be4de352
DC
5054/**
5055 * try_wait_for_completion - try to decrement a completion without blocking
5056 * @x: completion structure
5057 *
5058 * Returns: 0 if a decrement cannot be done without blocking
5059 * 1 if a decrement succeeded.
5060 *
5061 * If a completion is being used as a counting completion,
5062 * attempt to decrement the counter without blocking. This
5063 * enables us to avoid waiting if the resource the completion
5064 * is protecting is not available.
5065 */
5066bool try_wait_for_completion(struct completion *x)
5067{
5068 int ret = 1;
5069
5070 spin_lock_irq(&x->wait.lock);
5071 if (!x->done)
5072 ret = 0;
5073 else
5074 x->done--;
5075 spin_unlock_irq(&x->wait.lock);
5076 return ret;
5077}
5078EXPORT_SYMBOL(try_wait_for_completion);
5079
5080/**
5081 * completion_done - Test to see if a completion has any waiters
5082 * @x: completion structure
5083 *
5084 * Returns: 0 if there are waiters (wait_for_completion() in progress)
5085 * 1 if there are no waiters.
5086 *
5087 */
5088bool completion_done(struct completion *x)
5089{
5090 int ret = 1;
5091
5092 spin_lock_irq(&x->wait.lock);
5093 if (!x->done)
5094 ret = 0;
5095 spin_unlock_irq(&x->wait.lock);
5096 return ret;
5097}
5098EXPORT_SYMBOL(completion_done);
5099
8cbbe86d
AK
5100static long __sched
5101sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 5102{
0fec171c
IM
5103 unsigned long flags;
5104 wait_queue_t wait;
5105
5106 init_waitqueue_entry(&wait, current);
1da177e4 5107
8cbbe86d 5108 __set_current_state(state);
1da177e4 5109
8cbbe86d
AK
5110 spin_lock_irqsave(&q->lock, flags);
5111 __add_wait_queue(q, &wait);
5112 spin_unlock(&q->lock);
5113 timeout = schedule_timeout(timeout);
5114 spin_lock_irq(&q->lock);
5115 __remove_wait_queue(q, &wait);
5116 spin_unlock_irqrestore(&q->lock, flags);
5117
5118 return timeout;
5119}
5120
5121void __sched interruptible_sleep_on(wait_queue_head_t *q)
5122{
5123 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5124}
1da177e4
LT
5125EXPORT_SYMBOL(interruptible_sleep_on);
5126
0fec171c 5127long __sched
95cdf3b7 5128interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5129{
8cbbe86d 5130 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 5131}
1da177e4
LT
5132EXPORT_SYMBOL(interruptible_sleep_on_timeout);
5133
0fec171c 5134void __sched sleep_on(wait_queue_head_t *q)
1da177e4 5135{
8cbbe86d 5136 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 5137}
1da177e4
LT
5138EXPORT_SYMBOL(sleep_on);
5139
0fec171c 5140long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 5141{
8cbbe86d 5142 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 5143}
1da177e4
LT
5144EXPORT_SYMBOL(sleep_on_timeout);
5145
b29739f9
IM
5146#ifdef CONFIG_RT_MUTEXES
5147
5148/*
5149 * rt_mutex_setprio - set the current priority of a task
5150 * @p: task
5151 * @prio: prio value (kernel-internal form)
5152 *
5153 * This function changes the 'effective' priority of a task. It does
5154 * not touch ->normal_prio like __setscheduler().
5155 *
5156 * Used by the rt_mutex code to implement priority inheritance logic.
5157 */
36c8b586 5158void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
5159{
5160 unsigned long flags;
83b699ed 5161 int oldprio, on_rq, running;
70b97a7f 5162 struct rq *rq;
cb469845 5163 const struct sched_class *prev_class = p->sched_class;
b29739f9
IM
5164
5165 BUG_ON(prio < 0 || prio > MAX_PRIO);
5166
5167 rq = task_rq_lock(p, &flags);
a8e504d2 5168 update_rq_clock(rq);
b29739f9 5169
d5f9f942 5170 oldprio = p->prio;
dd41f596 5171 on_rq = p->se.on_rq;
051a1d1a 5172 running = task_current(rq, p);
0e1f3483 5173 if (on_rq)
69be72c1 5174 dequeue_task(rq, p, 0);
0e1f3483
HS
5175 if (running)
5176 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
5177
5178 if (rt_prio(prio))
5179 p->sched_class = &rt_sched_class;
5180 else
5181 p->sched_class = &fair_sched_class;
5182
b29739f9
IM
5183 p->prio = prio;
5184
0e1f3483
HS
5185 if (running)
5186 p->sched_class->set_curr_task(rq);
dd41f596 5187 if (on_rq) {
8159f87e 5188 enqueue_task(rq, p, 0);
cb469845
SR
5189
5190 check_class_changed(rq, p, prev_class, oldprio, running);
b29739f9
IM
5191 }
5192 task_rq_unlock(rq, &flags);
5193}
5194
5195#endif
5196
36c8b586 5197void set_user_nice(struct task_struct *p, long nice)
1da177e4 5198{
dd41f596 5199 int old_prio, delta, on_rq;
1da177e4 5200 unsigned long flags;
70b97a7f 5201 struct rq *rq;
1da177e4
LT
5202
5203 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
5204 return;
5205 /*
5206 * We have to be careful, if called from sys_setpriority(),
5207 * the task might be in the middle of scheduling on another CPU.
5208 */
5209 rq = task_rq_lock(p, &flags);
a8e504d2 5210 update_rq_clock(rq);
1da177e4
LT
5211 /*
5212 * The RT priorities are set via sched_setscheduler(), but we still
5213 * allow the 'normal' nice value to be set - but as expected
5214 * it wont have any effect on scheduling until the task is
dd41f596 5215 * SCHED_FIFO/SCHED_RR:
1da177e4 5216 */
e05606d3 5217 if (task_has_rt_policy(p)) {
1da177e4
LT
5218 p->static_prio = NICE_TO_PRIO(nice);
5219 goto out_unlock;
5220 }
dd41f596 5221 on_rq = p->se.on_rq;
c09595f6 5222 if (on_rq)
69be72c1 5223 dequeue_task(rq, p, 0);
1da177e4 5224
1da177e4 5225 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 5226 set_load_weight(p);
b29739f9
IM
5227 old_prio = p->prio;
5228 p->prio = effective_prio(p);
5229 delta = p->prio - old_prio;
1da177e4 5230
dd41f596 5231 if (on_rq) {
8159f87e 5232 enqueue_task(rq, p, 0);
1da177e4 5233 /*
d5f9f942
AM
5234 * If the task increased its priority or is running and
5235 * lowered its priority, then reschedule its CPU:
1da177e4 5236 */
d5f9f942 5237 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
5238 resched_task(rq->curr);
5239 }
5240out_unlock:
5241 task_rq_unlock(rq, &flags);
5242}
1da177e4
LT
5243EXPORT_SYMBOL(set_user_nice);
5244
e43379f1
MM
5245/*
5246 * can_nice - check if a task can reduce its nice value
5247 * @p: task
5248 * @nice: nice value
5249 */
36c8b586 5250int can_nice(const struct task_struct *p, const int nice)
e43379f1 5251{
024f4747
MM
5252 /* convert nice value [19,-20] to rlimit style value [1,40] */
5253 int nice_rlim = 20 - nice;
48f24c4d 5254
e43379f1
MM
5255 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
5256 capable(CAP_SYS_NICE));
5257}
5258
1da177e4
LT
5259#ifdef __ARCH_WANT_SYS_NICE
5260
5261/*
5262 * sys_nice - change the priority of the current process.
5263 * @increment: priority increment
5264 *
5265 * sys_setpriority is a more generic, but much slower function that
5266 * does similar things.
5267 */
5add95d4 5268SYSCALL_DEFINE1(nice, int, increment)
1da177e4 5269{
48f24c4d 5270 long nice, retval;
1da177e4
LT
5271
5272 /*
5273 * Setpriority might change our priority at the same moment.
5274 * We don't have to worry. Conceptually one call occurs first
5275 * and we have a single winner.
5276 */
e43379f1
MM
5277 if (increment < -40)
5278 increment = -40;
1da177e4
LT
5279 if (increment > 40)
5280 increment = 40;
5281
2b8f836f 5282 nice = TASK_NICE(current) + increment;
1da177e4
LT
5283 if (nice < -20)
5284 nice = -20;
5285 if (nice > 19)
5286 nice = 19;
5287
e43379f1
MM
5288 if (increment < 0 && !can_nice(current, nice))
5289 return -EPERM;
5290
1da177e4
LT
5291 retval = security_task_setnice(current, nice);
5292 if (retval)
5293 return retval;
5294
5295 set_user_nice(current, nice);
5296 return 0;
5297}
5298
5299#endif
5300
5301/**
5302 * task_prio - return the priority value of a given task.
5303 * @p: the task in question.
5304 *
5305 * This is the priority value as seen by users in /proc.
5306 * RT tasks are offset by -200. Normal tasks are centered
5307 * around 0, value goes from -16 to +15.
5308 */
36c8b586 5309int task_prio(const struct task_struct *p)
1da177e4
LT
5310{
5311 return p->prio - MAX_RT_PRIO;
5312}
5313
5314/**
5315 * task_nice - return the nice value of a given task.
5316 * @p: the task in question.
5317 */
36c8b586 5318int task_nice(const struct task_struct *p)
1da177e4
LT
5319{
5320 return TASK_NICE(p);
5321}
150d8bed 5322EXPORT_SYMBOL(task_nice);
1da177e4
LT
5323
5324/**
5325 * idle_cpu - is a given cpu idle currently?
5326 * @cpu: the processor in question.
5327 */
5328int idle_cpu(int cpu)
5329{
5330 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
5331}
5332
1da177e4
LT
5333/**
5334 * idle_task - return the idle task for a given cpu.
5335 * @cpu: the processor in question.
5336 */
36c8b586 5337struct task_struct *idle_task(int cpu)
1da177e4
LT
5338{
5339 return cpu_rq(cpu)->idle;
5340}
5341
5342/**
5343 * find_process_by_pid - find a process with a matching PID value.
5344 * @pid: the pid in question.
5345 */
a9957449 5346static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 5347{
228ebcbe 5348 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
5349}
5350
5351/* Actually do priority change: must hold rq lock. */
dd41f596
IM
5352static void
5353__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 5354{
dd41f596 5355 BUG_ON(p->se.on_rq);
48f24c4d 5356
1da177e4 5357 p->policy = policy;
dd41f596
IM
5358 switch (p->policy) {
5359 case SCHED_NORMAL:
5360 case SCHED_BATCH:
5361 case SCHED_IDLE:
5362 p->sched_class = &fair_sched_class;
5363 break;
5364 case SCHED_FIFO:
5365 case SCHED_RR:
5366 p->sched_class = &rt_sched_class;
5367 break;
5368 }
5369
1da177e4 5370 p->rt_priority = prio;
b29739f9
IM
5371 p->normal_prio = normal_prio(p);
5372 /* we are holding p->pi_lock already */
5373 p->prio = rt_mutex_getprio(p);
2dd73a4f 5374 set_load_weight(p);
1da177e4
LT
5375}
5376
c69e8d9c
DH
5377/*
5378 * check the target process has a UID that matches the current process's
5379 */
5380static bool check_same_owner(struct task_struct *p)
5381{
5382 const struct cred *cred = current_cred(), *pcred;
5383 bool match;
5384
5385 rcu_read_lock();
5386 pcred = __task_cred(p);
5387 match = (cred->euid == pcred->euid ||
5388 cred->euid == pcred->uid);
5389 rcu_read_unlock();
5390 return match;
5391}
5392
961ccddd
RR
5393static int __sched_setscheduler(struct task_struct *p, int policy,
5394 struct sched_param *param, bool user)
1da177e4 5395{
83b699ed 5396 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 5397 unsigned long flags;
cb469845 5398 const struct sched_class *prev_class = p->sched_class;
70b97a7f 5399 struct rq *rq;
1da177e4 5400
66e5393a
SR
5401 /* may grab non-irq protected spin_locks */
5402 BUG_ON(in_interrupt());
1da177e4
LT
5403recheck:
5404 /* double check policy once rq lock held */
5405 if (policy < 0)
5406 policy = oldpolicy = p->policy;
5407 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
5408 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
5409 policy != SCHED_IDLE)
b0a9499c 5410 return -EINVAL;
1da177e4
LT
5411 /*
5412 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
5413 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
5414 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
5415 */
5416 if (param->sched_priority < 0 ||
95cdf3b7 5417 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 5418 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 5419 return -EINVAL;
e05606d3 5420 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
5421 return -EINVAL;
5422
37e4ab3f
OC
5423 /*
5424 * Allow unprivileged RT tasks to decrease priority:
5425 */
961ccddd 5426 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 5427 if (rt_policy(policy)) {
8dc3e909 5428 unsigned long rlim_rtprio;
8dc3e909
ON
5429
5430 if (!lock_task_sighand(p, &flags))
5431 return -ESRCH;
5432 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
5433 unlock_task_sighand(p, &flags);
5434
5435 /* can't set/change the rt policy */
5436 if (policy != p->policy && !rlim_rtprio)
5437 return -EPERM;
5438
5439 /* can't increase priority */
5440 if (param->sched_priority > p->rt_priority &&
5441 param->sched_priority > rlim_rtprio)
5442 return -EPERM;
5443 }
dd41f596
IM
5444 /*
5445 * Like positive nice levels, dont allow tasks to
5446 * move out of SCHED_IDLE either:
5447 */
5448 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
5449 return -EPERM;
5fe1d75f 5450
37e4ab3f 5451 /* can't change other user's priorities */
c69e8d9c 5452 if (!check_same_owner(p))
37e4ab3f
OC
5453 return -EPERM;
5454 }
1da177e4 5455
725aad24 5456 if (user) {
b68aa230 5457#ifdef CONFIG_RT_GROUP_SCHED
725aad24
JF
5458 /*
5459 * Do not allow realtime tasks into groups that have no runtime
5460 * assigned.
5461 */
9a7e0b18
PZ
5462 if (rt_bandwidth_enabled() && rt_policy(policy) &&
5463 task_group(p)->rt_bandwidth.rt_runtime == 0)
725aad24 5464 return -EPERM;
b68aa230
PZ
5465#endif
5466
725aad24
JF
5467 retval = security_task_setscheduler(p, policy, param);
5468 if (retval)
5469 return retval;
5470 }
5471
b29739f9
IM
5472 /*
5473 * make sure no PI-waiters arrive (or leave) while we are
5474 * changing the priority of the task:
5475 */
5476 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
5477 /*
5478 * To be able to change p->policy safely, the apropriate
5479 * runqueue lock must be held.
5480 */
b29739f9 5481 rq = __task_rq_lock(p);
1da177e4
LT
5482 /* recheck policy now with rq lock held */
5483 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
5484 policy = oldpolicy = -1;
b29739f9
IM
5485 __task_rq_unlock(rq);
5486 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
5487 goto recheck;
5488 }
2daa3577 5489 update_rq_clock(rq);
dd41f596 5490 on_rq = p->se.on_rq;
051a1d1a 5491 running = task_current(rq, p);
0e1f3483 5492 if (on_rq)
2e1cb74a 5493 deactivate_task(rq, p, 0);
0e1f3483
HS
5494 if (running)
5495 p->sched_class->put_prev_task(rq, p);
f6b53205 5496
1da177e4 5497 oldprio = p->prio;
dd41f596 5498 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 5499
0e1f3483
HS
5500 if (running)
5501 p->sched_class->set_curr_task(rq);
dd41f596
IM
5502 if (on_rq) {
5503 activate_task(rq, p, 0);
cb469845
SR
5504
5505 check_class_changed(rq, p, prev_class, oldprio, running);
1da177e4 5506 }
b29739f9
IM
5507 __task_rq_unlock(rq);
5508 spin_unlock_irqrestore(&p->pi_lock, flags);
5509
95e02ca9
TG
5510 rt_mutex_adjust_pi(p);
5511
1da177e4
LT
5512 return 0;
5513}
961ccddd
RR
5514
5515/**
5516 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
5517 * @p: the task in question.
5518 * @policy: new policy.
5519 * @param: structure containing the new RT priority.
5520 *
5521 * NOTE that the task may be already dead.
5522 */
5523int sched_setscheduler(struct task_struct *p, int policy,
5524 struct sched_param *param)
5525{
5526 return __sched_setscheduler(p, policy, param, true);
5527}
1da177e4
LT
5528EXPORT_SYMBOL_GPL(sched_setscheduler);
5529
961ccddd
RR
5530/**
5531 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
5532 * @p: the task in question.
5533 * @policy: new policy.
5534 * @param: structure containing the new RT priority.
5535 *
5536 * Just like sched_setscheduler, only don't bother checking if the
5537 * current context has permission. For example, this is needed in
5538 * stop_machine(): we create temporary high priority worker threads,
5539 * but our caller might not have that capability.
5540 */
5541int sched_setscheduler_nocheck(struct task_struct *p, int policy,
5542 struct sched_param *param)
5543{
5544 return __sched_setscheduler(p, policy, param, false);
5545}
5546
95cdf3b7
IM
5547static int
5548do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 5549{
1da177e4
LT
5550 struct sched_param lparam;
5551 struct task_struct *p;
36c8b586 5552 int retval;
1da177e4
LT
5553
5554 if (!param || pid < 0)
5555 return -EINVAL;
5556 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
5557 return -EFAULT;
5fe1d75f
ON
5558
5559 rcu_read_lock();
5560 retval = -ESRCH;
1da177e4 5561 p = find_process_by_pid(pid);
5fe1d75f
ON
5562 if (p != NULL)
5563 retval = sched_setscheduler(p, policy, &lparam);
5564 rcu_read_unlock();
36c8b586 5565
1da177e4
LT
5566 return retval;
5567}
5568
5569/**
5570 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
5571 * @pid: the pid in question.
5572 * @policy: new policy.
5573 * @param: structure containing the new RT priority.
5574 */
5add95d4
HC
5575SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
5576 struct sched_param __user *, param)
1da177e4 5577{
c21761f1
JB
5578 /* negative values for policy are not valid */
5579 if (policy < 0)
5580 return -EINVAL;
5581
1da177e4
LT
5582 return do_sched_setscheduler(pid, policy, param);
5583}
5584
5585/**
5586 * sys_sched_setparam - set/change the RT priority of a thread
5587 * @pid: the pid in question.
5588 * @param: structure containing the new RT priority.
5589 */
5add95d4 5590SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5591{
5592 return do_sched_setscheduler(pid, -1, param);
5593}
5594
5595/**
5596 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
5597 * @pid: the pid in question.
5598 */
5add95d4 5599SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 5600{
36c8b586 5601 struct task_struct *p;
3a5c359a 5602 int retval;
1da177e4
LT
5603
5604 if (pid < 0)
3a5c359a 5605 return -EINVAL;
1da177e4
LT
5606
5607 retval = -ESRCH;
5608 read_lock(&tasklist_lock);
5609 p = find_process_by_pid(pid);
5610 if (p) {
5611 retval = security_task_getscheduler(p);
5612 if (!retval)
5613 retval = p->policy;
5614 }
5615 read_unlock(&tasklist_lock);
1da177e4
LT
5616 return retval;
5617}
5618
5619/**
5620 * sys_sched_getscheduler - get the RT priority of a thread
5621 * @pid: the pid in question.
5622 * @param: structure containing the RT priority.
5623 */
5add95d4 5624SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
5625{
5626 struct sched_param lp;
36c8b586 5627 struct task_struct *p;
3a5c359a 5628 int retval;
1da177e4
LT
5629
5630 if (!param || pid < 0)
3a5c359a 5631 return -EINVAL;
1da177e4
LT
5632
5633 read_lock(&tasklist_lock);
5634 p = find_process_by_pid(pid);
5635 retval = -ESRCH;
5636 if (!p)
5637 goto out_unlock;
5638
5639 retval = security_task_getscheduler(p);
5640 if (retval)
5641 goto out_unlock;
5642
5643 lp.sched_priority = p->rt_priority;
5644 read_unlock(&tasklist_lock);
5645
5646 /*
5647 * This one might sleep, we cannot do it with a spinlock held ...
5648 */
5649 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
5650
1da177e4
LT
5651 return retval;
5652
5653out_unlock:
5654 read_unlock(&tasklist_lock);
5655 return retval;
5656}
5657
96f874e2 5658long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 5659{
5a16f3d3 5660 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
5661 struct task_struct *p;
5662 int retval;
1da177e4 5663
95402b38 5664 get_online_cpus();
1da177e4
LT
5665 read_lock(&tasklist_lock);
5666
5667 p = find_process_by_pid(pid);
5668 if (!p) {
5669 read_unlock(&tasklist_lock);
95402b38 5670 put_online_cpus();
1da177e4
LT
5671 return -ESRCH;
5672 }
5673
5674 /*
5675 * It is not safe to call set_cpus_allowed with the
41a2d6cf 5676 * tasklist_lock held. We will bump the task_struct's
1da177e4
LT
5677 * usage count and then drop tasklist_lock.
5678 */
5679 get_task_struct(p);
5680 read_unlock(&tasklist_lock);
5681
5a16f3d3
RR
5682 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
5683 retval = -ENOMEM;
5684 goto out_put_task;
5685 }
5686 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
5687 retval = -ENOMEM;
5688 goto out_free_cpus_allowed;
5689 }
1da177e4 5690 retval = -EPERM;
c69e8d9c 5691 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
1da177e4
LT
5692 goto out_unlock;
5693
e7834f8f
DQ
5694 retval = security_task_setscheduler(p, 0, NULL);
5695 if (retval)
5696 goto out_unlock;
5697
5a16f3d3
RR
5698 cpuset_cpus_allowed(p, cpus_allowed);
5699 cpumask_and(new_mask, in_mask, cpus_allowed);
8707d8b8 5700 again:
5a16f3d3 5701 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 5702
8707d8b8 5703 if (!retval) {
5a16f3d3
RR
5704 cpuset_cpus_allowed(p, cpus_allowed);
5705 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
5706 /*
5707 * We must have raced with a concurrent cpuset
5708 * update. Just reset the cpus_allowed to the
5709 * cpuset's cpus_allowed
5710 */
5a16f3d3 5711 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
5712 goto again;
5713 }
5714 }
1da177e4 5715out_unlock:
5a16f3d3
RR
5716 free_cpumask_var(new_mask);
5717out_free_cpus_allowed:
5718 free_cpumask_var(cpus_allowed);
5719out_put_task:
1da177e4 5720 put_task_struct(p);
95402b38 5721 put_online_cpus();
1da177e4
LT
5722 return retval;
5723}
5724
5725static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 5726 struct cpumask *new_mask)
1da177e4 5727{
96f874e2
RR
5728 if (len < cpumask_size())
5729 cpumask_clear(new_mask);
5730 else if (len > cpumask_size())
5731 len = cpumask_size();
5732
1da177e4
LT
5733 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
5734}
5735
5736/**
5737 * sys_sched_setaffinity - set the cpu affinity of a process
5738 * @pid: pid of the process
5739 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5740 * @user_mask_ptr: user-space pointer to the new cpu mask
5741 */
5add95d4
HC
5742SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
5743 unsigned long __user *, user_mask_ptr)
1da177e4 5744{
5a16f3d3 5745 cpumask_var_t new_mask;
1da177e4
LT
5746 int retval;
5747
5a16f3d3
RR
5748 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
5749 return -ENOMEM;
1da177e4 5750
5a16f3d3
RR
5751 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
5752 if (retval == 0)
5753 retval = sched_setaffinity(pid, new_mask);
5754 free_cpumask_var(new_mask);
5755 return retval;
1da177e4
LT
5756}
5757
96f874e2 5758long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 5759{
36c8b586 5760 struct task_struct *p;
1da177e4 5761 int retval;
1da177e4 5762
95402b38 5763 get_online_cpus();
1da177e4
LT
5764 read_lock(&tasklist_lock);
5765
5766 retval = -ESRCH;
5767 p = find_process_by_pid(pid);
5768 if (!p)
5769 goto out_unlock;
5770
e7834f8f
DQ
5771 retval = security_task_getscheduler(p);
5772 if (retval)
5773 goto out_unlock;
5774
96f874e2 5775 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
1da177e4
LT
5776
5777out_unlock:
5778 read_unlock(&tasklist_lock);
95402b38 5779 put_online_cpus();
1da177e4 5780
9531b62f 5781 return retval;
1da177e4
LT
5782}
5783
5784/**
5785 * sys_sched_getaffinity - get the cpu affinity of a process
5786 * @pid: pid of the process
5787 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
5788 * @user_mask_ptr: user-space pointer to hold the current cpu mask
5789 */
5add95d4
HC
5790SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
5791 unsigned long __user *, user_mask_ptr)
1da177e4
LT
5792{
5793 int ret;
f17c8607 5794 cpumask_var_t mask;
1da177e4 5795
f17c8607 5796 if (len < cpumask_size())
1da177e4
LT
5797 return -EINVAL;
5798
f17c8607
RR
5799 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
5800 return -ENOMEM;
1da177e4 5801
f17c8607
RR
5802 ret = sched_getaffinity(pid, mask);
5803 if (ret == 0) {
5804 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
5805 ret = -EFAULT;
5806 else
5807 ret = cpumask_size();
5808 }
5809 free_cpumask_var(mask);
1da177e4 5810
f17c8607 5811 return ret;
1da177e4
LT
5812}
5813
5814/**
5815 * sys_sched_yield - yield the current processor to other threads.
5816 *
dd41f596
IM
5817 * This function yields the current CPU to other tasks. If there are no
5818 * other threads running on this CPU then this function will return.
1da177e4 5819 */
5add95d4 5820SYSCALL_DEFINE0(sched_yield)
1da177e4 5821{
70b97a7f 5822 struct rq *rq = this_rq_lock();
1da177e4 5823
2d72376b 5824 schedstat_inc(rq, yld_count);
4530d7ab 5825 current->sched_class->yield_task(rq);
1da177e4
LT
5826
5827 /*
5828 * Since we are going to call schedule() anyway, there's
5829 * no need to preempt or enable interrupts:
5830 */
5831 __release(rq->lock);
8a25d5de 5832 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
5833 _raw_spin_unlock(&rq->lock);
5834 preempt_enable_no_resched();
5835
5836 schedule();
5837
5838 return 0;
5839}
5840
e7b38404 5841static void __cond_resched(void)
1da177e4 5842{
8e0a43d8
IM
5843#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
5844 __might_sleep(__FILE__, __LINE__);
5845#endif
5bbcfd90
IM
5846 /*
5847 * The BKS might be reacquired before we have dropped
5848 * PREEMPT_ACTIVE, which could trigger a second
5849 * cond_resched() call.
5850 */
1da177e4
LT
5851 do {
5852 add_preempt_count(PREEMPT_ACTIVE);
5853 schedule();
5854 sub_preempt_count(PREEMPT_ACTIVE);
5855 } while (need_resched());
5856}
5857
02b67cc3 5858int __sched _cond_resched(void)
1da177e4 5859{
9414232f
IM
5860 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
5861 system_state == SYSTEM_RUNNING) {
1da177e4
LT
5862 __cond_resched();
5863 return 1;
5864 }
5865 return 0;
5866}
02b67cc3 5867EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
5868
5869/*
5870 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
5871 * call schedule, and on return reacquire the lock.
5872 *
41a2d6cf 5873 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
5874 * operations here to prevent schedule() from being called twice (once via
5875 * spin_unlock(), once by hand).
5876 */
95cdf3b7 5877int cond_resched_lock(spinlock_t *lock)
1da177e4 5878{
95c354fe 5879 int resched = need_resched() && system_state == SYSTEM_RUNNING;
6df3cecb
JK
5880 int ret = 0;
5881
95c354fe 5882 if (spin_needbreak(lock) || resched) {
1da177e4 5883 spin_unlock(lock);
95c354fe
NP
5884 if (resched && need_resched())
5885 __cond_resched();
5886 else
5887 cpu_relax();
6df3cecb 5888 ret = 1;
1da177e4 5889 spin_lock(lock);
1da177e4 5890 }
6df3cecb 5891 return ret;
1da177e4 5892}
1da177e4
LT
5893EXPORT_SYMBOL(cond_resched_lock);
5894
5895int __sched cond_resched_softirq(void)
5896{
5897 BUG_ON(!in_softirq());
5898
9414232f 5899 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 5900 local_bh_enable();
1da177e4
LT
5901 __cond_resched();
5902 local_bh_disable();
5903 return 1;
5904 }
5905 return 0;
5906}
1da177e4
LT
5907EXPORT_SYMBOL(cond_resched_softirq);
5908
1da177e4
LT
5909/**
5910 * yield - yield the current processor to other threads.
5911 *
72fd4a35 5912 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
5913 * thread runnable and calls sys_sched_yield().
5914 */
5915void __sched yield(void)
5916{
5917 set_current_state(TASK_RUNNING);
5918 sys_sched_yield();
5919}
1da177e4
LT
5920EXPORT_SYMBOL(yield);
5921
5922/*
41a2d6cf 5923 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4
LT
5924 * that process accounting knows that this is a task in IO wait state.
5925 *
5926 * But don't do that if it is a deliberate, throttling IO wait (this task
5927 * has set its backing_dev_info: the queue against which it should throttle)
5928 */
5929void __sched io_schedule(void)
5930{
70b97a7f 5931 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 5932
0ff92245 5933 delayacct_blkio_start();
1da177e4
LT
5934 atomic_inc(&rq->nr_iowait);
5935 schedule();
5936 atomic_dec(&rq->nr_iowait);
0ff92245 5937 delayacct_blkio_end();
1da177e4 5938}
1da177e4
LT
5939EXPORT_SYMBOL(io_schedule);
5940
5941long __sched io_schedule_timeout(long timeout)
5942{
70b97a7f 5943 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
5944 long ret;
5945
0ff92245 5946 delayacct_blkio_start();
1da177e4
LT
5947 atomic_inc(&rq->nr_iowait);
5948 ret = schedule_timeout(timeout);
5949 atomic_dec(&rq->nr_iowait);
0ff92245 5950 delayacct_blkio_end();
1da177e4
LT
5951 return ret;
5952}
5953
5954/**
5955 * sys_sched_get_priority_max - return maximum RT priority.
5956 * @policy: scheduling class.
5957 *
5958 * this syscall returns the maximum rt_priority that can be used
5959 * by a given scheduling class.
5960 */
5add95d4 5961SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
5962{
5963 int ret = -EINVAL;
5964
5965 switch (policy) {
5966 case SCHED_FIFO:
5967 case SCHED_RR:
5968 ret = MAX_USER_RT_PRIO-1;
5969 break;
5970 case SCHED_NORMAL:
b0a9499c 5971 case SCHED_BATCH:
dd41f596 5972 case SCHED_IDLE:
1da177e4
LT
5973 ret = 0;
5974 break;
5975 }
5976 return ret;
5977}
5978
5979/**
5980 * sys_sched_get_priority_min - return minimum RT priority.
5981 * @policy: scheduling class.
5982 *
5983 * this syscall returns the minimum rt_priority that can be used
5984 * by a given scheduling class.
5985 */
5add95d4 5986SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
5987{
5988 int ret = -EINVAL;
5989
5990 switch (policy) {
5991 case SCHED_FIFO:
5992 case SCHED_RR:
5993 ret = 1;
5994 break;
5995 case SCHED_NORMAL:
b0a9499c 5996 case SCHED_BATCH:
dd41f596 5997 case SCHED_IDLE:
1da177e4
LT
5998 ret = 0;
5999 }
6000 return ret;
6001}
6002
6003/**
6004 * sys_sched_rr_get_interval - return the default timeslice of a process.
6005 * @pid: pid of the process.
6006 * @interval: userspace pointer to the timeslice value.
6007 *
6008 * this syscall writes the default timeslice value of a given process
6009 * into the user-space timespec buffer. A value of '0' means infinity.
6010 */
17da2bd9 6011SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 6012 struct timespec __user *, interval)
1da177e4 6013{
36c8b586 6014 struct task_struct *p;
a4ec24b4 6015 unsigned int time_slice;
3a5c359a 6016 int retval;
1da177e4 6017 struct timespec t;
1da177e4
LT
6018
6019 if (pid < 0)
3a5c359a 6020 return -EINVAL;
1da177e4
LT
6021
6022 retval = -ESRCH;
6023 read_lock(&tasklist_lock);
6024 p = find_process_by_pid(pid);
6025 if (!p)
6026 goto out_unlock;
6027
6028 retval = security_task_getscheduler(p);
6029 if (retval)
6030 goto out_unlock;
6031
77034937
IM
6032 /*
6033 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6034 * tasks that are on an otherwise idle runqueue:
6035 */
6036 time_slice = 0;
6037 if (p->policy == SCHED_RR) {
a4ec24b4 6038 time_slice = DEF_TIMESLICE;
1868f958 6039 } else if (p->policy != SCHED_FIFO) {
a4ec24b4
DA
6040 struct sched_entity *se = &p->se;
6041 unsigned long flags;
6042 struct rq *rq;
6043
6044 rq = task_rq_lock(p, &flags);
77034937
IM
6045 if (rq->cfs.load.weight)
6046 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
a4ec24b4
DA
6047 task_rq_unlock(rq, &flags);
6048 }
1da177e4 6049 read_unlock(&tasklist_lock);
a4ec24b4 6050 jiffies_to_timespec(time_slice, &t);
1da177e4 6051 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 6052 return retval;
3a5c359a 6053
1da177e4
LT
6054out_unlock:
6055 read_unlock(&tasklist_lock);
6056 return retval;
6057}
6058
7c731e0a 6059static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 6060
82a1fcb9 6061void sched_show_task(struct task_struct *p)
1da177e4 6062{
1da177e4 6063 unsigned long free = 0;
36c8b586 6064 unsigned state;
1da177e4 6065
1da177e4 6066 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 6067 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 6068 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 6069#if BITS_PER_LONG == 32
1da177e4 6070 if (state == TASK_RUNNING)
cc4ea795 6071 printk(KERN_CONT " running ");
1da177e4 6072 else
cc4ea795 6073 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
6074#else
6075 if (state == TASK_RUNNING)
cc4ea795 6076 printk(KERN_CONT " running task ");
1da177e4 6077 else
cc4ea795 6078 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
6079#endif
6080#ifdef CONFIG_DEBUG_STACK_USAGE
6081 {
10ebffde 6082 unsigned long *n = end_of_stack(p);
1da177e4
LT
6083 while (!*n)
6084 n++;
10ebffde 6085 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
6086 }
6087#endif
ba25f9dc 6088 printk(KERN_CONT "%5lu %5d %6d\n", free,
fcfd50af 6089 task_pid_nr(p), task_pid_nr(p->real_parent));
1da177e4 6090
5fb5e6de 6091 show_stack(p, NULL);
1da177e4
LT
6092}
6093
e59e2ae2 6094void show_state_filter(unsigned long state_filter)
1da177e4 6095{
36c8b586 6096 struct task_struct *g, *p;
1da177e4 6097
4bd77321
IM
6098#if BITS_PER_LONG == 32
6099 printk(KERN_INFO
6100 " task PC stack pid father\n");
1da177e4 6101#else
4bd77321
IM
6102 printk(KERN_INFO
6103 " task PC stack pid father\n");
1da177e4
LT
6104#endif
6105 read_lock(&tasklist_lock);
6106 do_each_thread(g, p) {
6107 /*
6108 * reset the NMI-timeout, listing all files on a slow
6109 * console might take alot of time:
6110 */
6111 touch_nmi_watchdog();
39bc89fd 6112 if (!state_filter || (p->state & state_filter))
82a1fcb9 6113 sched_show_task(p);
1da177e4
LT
6114 } while_each_thread(g, p);
6115
04c9167f
JF
6116 touch_all_softlockup_watchdogs();
6117
dd41f596
IM
6118#ifdef CONFIG_SCHED_DEBUG
6119 sysrq_sched_debug_show();
6120#endif
1da177e4 6121 read_unlock(&tasklist_lock);
e59e2ae2
IM
6122 /*
6123 * Only show locks if all tasks are dumped:
6124 */
6125 if (state_filter == -1)
6126 debug_show_all_locks();
1da177e4
LT
6127}
6128
1df21055
IM
6129void __cpuinit init_idle_bootup_task(struct task_struct *idle)
6130{
dd41f596 6131 idle->sched_class = &idle_sched_class;
1df21055
IM
6132}
6133
f340c0d1
IM
6134/**
6135 * init_idle - set up an idle thread for a given CPU
6136 * @idle: task in question
6137 * @cpu: cpu the idle task belongs to
6138 *
6139 * NOTE: this function does not set the idle thread's NEED_RESCHED
6140 * flag, to make booting more robust.
6141 */
5c1e1767 6142void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 6143{
70b97a7f 6144 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
6145 unsigned long flags;
6146
5cbd54ef
IM
6147 spin_lock_irqsave(&rq->lock, flags);
6148
dd41f596
IM
6149 __sched_fork(idle);
6150 idle->se.exec_start = sched_clock();
6151
b29739f9 6152 idle->prio = idle->normal_prio = MAX_PRIO;
96f874e2 6153 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
dd41f596 6154 __set_task_cpu(idle, cpu);
1da177e4 6155
1da177e4 6156 rq->curr = rq->idle = idle;
4866cde0
NP
6157#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
6158 idle->oncpu = 1;
6159#endif
1da177e4
LT
6160 spin_unlock_irqrestore(&rq->lock, flags);
6161
6162 /* Set the preempt count _outside_ the spinlocks! */
8e3e076c
LT
6163#if defined(CONFIG_PREEMPT)
6164 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
6165#else
a1261f54 6166 task_thread_info(idle)->preempt_count = 0;
8e3e076c 6167#endif
dd41f596
IM
6168 /*
6169 * The idle tasks have their own, simple scheduling class:
6170 */
6171 idle->sched_class = &idle_sched_class;
fb52607a 6172 ftrace_graph_init_task(idle);
1da177e4
LT
6173}
6174
6175/*
6176 * In a system that switches off the HZ timer nohz_cpu_mask
6177 * indicates which cpus entered this state. This is used
6178 * in the rcu update to wait only for active cpus. For system
6179 * which do not switch off the HZ timer nohz_cpu_mask should
6a7b3dc3 6180 * always be CPU_BITS_NONE.
1da177e4 6181 */
6a7b3dc3 6182cpumask_var_t nohz_cpu_mask;
1da177e4 6183
19978ca6
IM
6184/*
6185 * Increase the granularity value when there are more CPUs,
6186 * because with more CPUs the 'effective latency' as visible
6187 * to users decreases. But the relationship is not linear,
6188 * so pick a second-best guess by going with the log2 of the
6189 * number of CPUs.
6190 *
6191 * This idea comes from the SD scheduler of Con Kolivas:
6192 */
6193static inline void sched_init_granularity(void)
6194{
6195 unsigned int factor = 1 + ilog2(num_online_cpus());
6196 const unsigned long limit = 200000000;
6197
6198 sysctl_sched_min_granularity *= factor;
6199 if (sysctl_sched_min_granularity > limit)
6200 sysctl_sched_min_granularity = limit;
6201
6202 sysctl_sched_latency *= factor;
6203 if (sysctl_sched_latency > limit)
6204 sysctl_sched_latency = limit;
6205
6206 sysctl_sched_wakeup_granularity *= factor;
55cd5340
PZ
6207
6208 sysctl_sched_shares_ratelimit *= factor;
19978ca6
IM
6209}
6210
1da177e4
LT
6211#ifdef CONFIG_SMP
6212/*
6213 * This is how migration works:
6214 *
70b97a7f 6215 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
6216 * runqueue and wake up that CPU's migration thread.
6217 * 2) we down() the locked semaphore => thread blocks.
6218 * 3) migration thread wakes up (implicitly it forces the migrated
6219 * thread off the CPU)
6220 * 4) it gets the migration request and checks whether the migrated
6221 * task is still in the wrong runqueue.
6222 * 5) if it's in the wrong runqueue then the migration thread removes
6223 * it and puts it into the right queue.
6224 * 6) migration thread up()s the semaphore.
6225 * 7) we wake up and the migration is done.
6226 */
6227
6228/*
6229 * Change a given task's CPU affinity. Migrate the thread to a
6230 * proper CPU and schedule it away if the CPU it's executing on
6231 * is removed from the allowed bitmask.
6232 *
6233 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 6234 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
6235 * call is not atomic; no spinlocks may be held.
6236 */
96f874e2 6237int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4 6238{
70b97a7f 6239 struct migration_req req;
1da177e4 6240 unsigned long flags;
70b97a7f 6241 struct rq *rq;
48f24c4d 6242 int ret = 0;
1da177e4
LT
6243
6244 rq = task_rq_lock(p, &flags);
96f874e2 6245 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
1da177e4
LT
6246 ret = -EINVAL;
6247 goto out;
6248 }
6249
9985b0ba 6250 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
96f874e2 6251 !cpumask_equal(&p->cpus_allowed, new_mask))) {
9985b0ba
DR
6252 ret = -EINVAL;
6253 goto out;
6254 }
6255
73fe6aae 6256 if (p->sched_class->set_cpus_allowed)
cd8ba7cd 6257 p->sched_class->set_cpus_allowed(p, new_mask);
73fe6aae 6258 else {
96f874e2
RR
6259 cpumask_copy(&p->cpus_allowed, new_mask);
6260 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
73fe6aae
GH
6261 }
6262
1da177e4 6263 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 6264 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
6265 goto out;
6266
1e5ce4f4 6267 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
1da177e4
LT
6268 /* Need help from migration thread: drop lock and wait. */
6269 task_rq_unlock(rq, &flags);
6270 wake_up_process(rq->migration_thread);
6271 wait_for_completion(&req.done);
6272 tlb_migrate_finish(p->mm);
6273 return 0;
6274 }
6275out:
6276 task_rq_unlock(rq, &flags);
48f24c4d 6277
1da177e4
LT
6278 return ret;
6279}
cd8ba7cd 6280EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
6281
6282/*
41a2d6cf 6283 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
6284 * this because either it can't run here any more (set_cpus_allowed()
6285 * away from this CPU, or CPU going down), or because we're
6286 * attempting to rebalance this task on exec (sched_exec).
6287 *
6288 * So we race with normal scheduler movements, but that's OK, as long
6289 * as the task is no longer on this CPU.
efc30814
KK
6290 *
6291 * Returns non-zero if task was successfully migrated.
1da177e4 6292 */
efc30814 6293static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 6294{
70b97a7f 6295 struct rq *rq_dest, *rq_src;
dd41f596 6296 int ret = 0, on_rq;
1da177e4 6297
e761b772 6298 if (unlikely(!cpu_active(dest_cpu)))
efc30814 6299 return ret;
1da177e4
LT
6300
6301 rq_src = cpu_rq(src_cpu);
6302 rq_dest = cpu_rq(dest_cpu);
6303
6304 double_rq_lock(rq_src, rq_dest);
6305 /* Already moved. */
6306 if (task_cpu(p) != src_cpu)
b1e38734 6307 goto done;
1da177e4 6308 /* Affinity changed (again). */
96f874e2 6309 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
b1e38734 6310 goto fail;
1da177e4 6311
dd41f596 6312 on_rq = p->se.on_rq;
6e82a3be 6313 if (on_rq)
2e1cb74a 6314 deactivate_task(rq_src, p, 0);
6e82a3be 6315
1da177e4 6316 set_task_cpu(p, dest_cpu);
dd41f596
IM
6317 if (on_rq) {
6318 activate_task(rq_dest, p, 0);
15afe09b 6319 check_preempt_curr(rq_dest, p, 0);
1da177e4 6320 }
b1e38734 6321done:
efc30814 6322 ret = 1;
b1e38734 6323fail:
1da177e4 6324 double_rq_unlock(rq_src, rq_dest);
efc30814 6325 return ret;
1da177e4
LT
6326}
6327
6328/*
6329 * migration_thread - this is a highprio system thread that performs
6330 * thread migration by bumping thread off CPU then 'pushing' onto
6331 * another runqueue.
6332 */
95cdf3b7 6333static int migration_thread(void *data)
1da177e4 6334{
1da177e4 6335 int cpu = (long)data;
70b97a7f 6336 struct rq *rq;
1da177e4
LT
6337
6338 rq = cpu_rq(cpu);
6339 BUG_ON(rq->migration_thread != current);
6340
6341 set_current_state(TASK_INTERRUPTIBLE);
6342 while (!kthread_should_stop()) {
70b97a7f 6343 struct migration_req *req;
1da177e4 6344 struct list_head *head;
1da177e4 6345
1da177e4
LT
6346 spin_lock_irq(&rq->lock);
6347
6348 if (cpu_is_offline(cpu)) {
6349 spin_unlock_irq(&rq->lock);
6350 goto wait_to_die;
6351 }
6352
6353 if (rq->active_balance) {
6354 active_load_balance(rq, cpu);
6355 rq->active_balance = 0;
6356 }
6357
6358 head = &rq->migration_queue;
6359
6360 if (list_empty(head)) {
6361 spin_unlock_irq(&rq->lock);
6362 schedule();
6363 set_current_state(TASK_INTERRUPTIBLE);
6364 continue;
6365 }
70b97a7f 6366 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
6367 list_del_init(head->next);
6368
674311d5
NP
6369 spin_unlock(&rq->lock);
6370 __migrate_task(req->task, cpu, req->dest_cpu);
6371 local_irq_enable();
1da177e4
LT
6372
6373 complete(&req->done);
6374 }
6375 __set_current_state(TASK_RUNNING);
6376 return 0;
6377
6378wait_to_die:
6379 /* Wait for kthread_stop */
6380 set_current_state(TASK_INTERRUPTIBLE);
6381 while (!kthread_should_stop()) {
6382 schedule();
6383 set_current_state(TASK_INTERRUPTIBLE);
6384 }
6385 __set_current_state(TASK_RUNNING);
6386 return 0;
6387}
6388
6389#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
6390
6391static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
6392{
6393 int ret;
6394
6395 local_irq_disable();
6396 ret = __migrate_task(p, src_cpu, dest_cpu);
6397 local_irq_enable();
6398 return ret;
6399}
6400
054b9108 6401/*
3a4fa0a2 6402 * Figure out where task on dead CPU should go, use force if necessary.
054b9108 6403 */
48f24c4d 6404static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 6405{
70b97a7f 6406 int dest_cpu;
6ca09dfc 6407 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
e76bd8d9
RR
6408
6409again:
6410 /* Look for allowed, online CPU in same node. */
6411 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
6412 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
6413 goto move;
6414
6415 /* Any allowed, online CPU? */
6416 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
6417 if (dest_cpu < nr_cpu_ids)
6418 goto move;
6419
6420 /* No more Mr. Nice Guy. */
6421 if (dest_cpu >= nr_cpu_ids) {
e76bd8d9
RR
6422 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
6423 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
1da177e4 6424
e76bd8d9
RR
6425 /*
6426 * Don't tell them about moving exiting tasks or
6427 * kernel threads (both mm NULL), since they never
6428 * leave kernel.
6429 */
6430 if (p->mm && printk_ratelimit()) {
6431 printk(KERN_INFO "process %d (%s) no "
6432 "longer affine to cpu%d\n",
6433 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 6434 }
e76bd8d9
RR
6435 }
6436
6437move:
6438 /* It can have affinity changed while we were choosing. */
6439 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
6440 goto again;
1da177e4
LT
6441}
6442
6443/*
6444 * While a dead CPU has no uninterruptible tasks queued at this point,
6445 * it might still have a nonzero ->nr_uninterruptible counter, because
6446 * for performance reasons the counter is not stricly tracking tasks to
6447 * their home CPUs. So we just add the counter to another CPU's counter,
6448 * to keep the global sum constant after CPU-down:
6449 */
70b97a7f 6450static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 6451{
1e5ce4f4 6452 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
1da177e4
LT
6453 unsigned long flags;
6454
6455 local_irq_save(flags);
6456 double_rq_lock(rq_src, rq_dest);
6457 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
6458 rq_src->nr_uninterruptible = 0;
6459 double_rq_unlock(rq_src, rq_dest);
6460 local_irq_restore(flags);
6461}
6462
6463/* Run through task list and migrate tasks from the dead cpu. */
6464static void migrate_live_tasks(int src_cpu)
6465{
48f24c4d 6466 struct task_struct *p, *t;
1da177e4 6467
f7b4cddc 6468 read_lock(&tasklist_lock);
1da177e4 6469
48f24c4d
IM
6470 do_each_thread(t, p) {
6471 if (p == current)
1da177e4
LT
6472 continue;
6473
48f24c4d
IM
6474 if (task_cpu(p) == src_cpu)
6475 move_task_off_dead_cpu(src_cpu, p);
6476 } while_each_thread(t, p);
1da177e4 6477
f7b4cddc 6478 read_unlock(&tasklist_lock);
1da177e4
LT
6479}
6480
dd41f596
IM
6481/*
6482 * Schedules idle task to be the next runnable task on current CPU.
94bc9a7b
DA
6483 * It does so by boosting its priority to highest possible.
6484 * Used by CPU offline code.
1da177e4
LT
6485 */
6486void sched_idle_next(void)
6487{
48f24c4d 6488 int this_cpu = smp_processor_id();
70b97a7f 6489 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
6490 struct task_struct *p = rq->idle;
6491 unsigned long flags;
6492
6493 /* cpu has to be offline */
48f24c4d 6494 BUG_ON(cpu_online(this_cpu));
1da177e4 6495
48f24c4d
IM
6496 /*
6497 * Strictly not necessary since rest of the CPUs are stopped by now
6498 * and interrupts disabled on the current cpu.
1da177e4
LT
6499 */
6500 spin_lock_irqsave(&rq->lock, flags);
6501
dd41f596 6502 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d 6503
94bc9a7b
DA
6504 update_rq_clock(rq);
6505 activate_task(rq, p, 0);
1da177e4
LT
6506
6507 spin_unlock_irqrestore(&rq->lock, flags);
6508}
6509
48f24c4d
IM
6510/*
6511 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
6512 * offline.
6513 */
6514void idle_task_exit(void)
6515{
6516 struct mm_struct *mm = current->active_mm;
6517
6518 BUG_ON(cpu_online(smp_processor_id()));
6519
6520 if (mm != &init_mm)
6521 switch_mm(mm, &init_mm, current);
6522 mmdrop(mm);
6523}
6524
054b9108 6525/* called under rq->lock with disabled interrupts */
36c8b586 6526static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 6527{
70b97a7f 6528 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
6529
6530 /* Must be exiting, otherwise would be on tasklist. */
270f722d 6531 BUG_ON(!p->exit_state);
1da177e4
LT
6532
6533 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 6534 BUG_ON(p->state == TASK_DEAD);
1da177e4 6535
48f24c4d 6536 get_task_struct(p);
1da177e4
LT
6537
6538 /*
6539 * Drop lock around migration; if someone else moves it,
41a2d6cf 6540 * that's OK. No task can be added to this CPU, so iteration is
1da177e4
LT
6541 * fine.
6542 */
f7b4cddc 6543 spin_unlock_irq(&rq->lock);
48f24c4d 6544 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 6545 spin_lock_irq(&rq->lock);
1da177e4 6546
48f24c4d 6547 put_task_struct(p);
1da177e4
LT
6548}
6549
6550/* release_task() removes task from tasklist, so we won't find dead tasks. */
6551static void migrate_dead_tasks(unsigned int dead_cpu)
6552{
70b97a7f 6553 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 6554 struct task_struct *next;
48f24c4d 6555
dd41f596
IM
6556 for ( ; ; ) {
6557 if (!rq->nr_running)
6558 break;
a8e504d2 6559 update_rq_clock(rq);
b67802ea 6560 next = pick_next_task(rq);
dd41f596
IM
6561 if (!next)
6562 break;
79c53799 6563 next->sched_class->put_prev_task(rq, next);
dd41f596 6564 migrate_dead(dead_cpu, next);
e692ab53 6565
1da177e4
LT
6566 }
6567}
6568#endif /* CONFIG_HOTPLUG_CPU */
6569
e692ab53
NP
6570#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
6571
6572static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
6573 {
6574 .procname = "sched_domain",
c57baf1e 6575 .mode = 0555,
e0361851 6576 },
38605cae 6577 {0, },
e692ab53
NP
6578};
6579
6580static struct ctl_table sd_ctl_root[] = {
e0361851 6581 {
c57baf1e 6582 .ctl_name = CTL_KERN,
e0361851 6583 .procname = "kernel",
c57baf1e 6584 .mode = 0555,
e0361851
AD
6585 .child = sd_ctl_dir,
6586 },
38605cae 6587 {0, },
e692ab53
NP
6588};
6589
6590static struct ctl_table *sd_alloc_ctl_entry(int n)
6591{
6592 struct ctl_table *entry =
5cf9f062 6593 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 6594
e692ab53
NP
6595 return entry;
6596}
6597
6382bc90
MM
6598static void sd_free_ctl_entry(struct ctl_table **tablep)
6599{
cd790076 6600 struct ctl_table *entry;
6382bc90 6601
cd790076
MM
6602 /*
6603 * In the intermediate directories, both the child directory and
6604 * procname are dynamically allocated and could fail but the mode
41a2d6cf 6605 * will always be set. In the lowest directory the names are
cd790076
MM
6606 * static strings and all have proc handlers.
6607 */
6608 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
6609 if (entry->child)
6610 sd_free_ctl_entry(&entry->child);
cd790076
MM
6611 if (entry->proc_handler == NULL)
6612 kfree(entry->procname);
6613 }
6382bc90
MM
6614
6615 kfree(*tablep);
6616 *tablep = NULL;
6617}
6618
e692ab53 6619static void
e0361851 6620set_table_entry(struct ctl_table *entry,
e692ab53
NP
6621 const char *procname, void *data, int maxlen,
6622 mode_t mode, proc_handler *proc_handler)
6623{
e692ab53
NP
6624 entry->procname = procname;
6625 entry->data = data;
6626 entry->maxlen = maxlen;
6627 entry->mode = mode;
6628 entry->proc_handler = proc_handler;
6629}
6630
6631static struct ctl_table *
6632sd_alloc_ctl_domain_table(struct sched_domain *sd)
6633{
a5d8c348 6634 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 6635
ad1cdc1d
MM
6636 if (table == NULL)
6637 return NULL;
6638
e0361851 6639 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 6640 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6641 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 6642 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 6643 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 6644 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6645 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 6646 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6647 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 6648 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6649 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 6650 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6651 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 6652 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6653 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 6654 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 6655 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 6656 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6657 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
6658 &sd->cache_nice_tries,
6659 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 6660 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 6661 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
6662 set_table_entry(&table[11], "name", sd->name,
6663 CORENAME_MAX_SIZE, 0444, proc_dostring);
6664 /* &table[12] is terminator */
e692ab53
NP
6665
6666 return table;
6667}
6668
9a4e7159 6669static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
6670{
6671 struct ctl_table *entry, *table;
6672 struct sched_domain *sd;
6673 int domain_num = 0, i;
6674 char buf[32];
6675
6676 for_each_domain(cpu, sd)
6677 domain_num++;
6678 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
6679 if (table == NULL)
6680 return NULL;
e692ab53
NP
6681
6682 i = 0;
6683 for_each_domain(cpu, sd) {
6684 snprintf(buf, 32, "domain%d", i);
e692ab53 6685 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6686 entry->mode = 0555;
e692ab53
NP
6687 entry->child = sd_alloc_ctl_domain_table(sd);
6688 entry++;
6689 i++;
6690 }
6691 return table;
6692}
6693
6694static struct ctl_table_header *sd_sysctl_header;
6382bc90 6695static void register_sched_domain_sysctl(void)
e692ab53
NP
6696{
6697 int i, cpu_num = num_online_cpus();
6698 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
6699 char buf[32];
6700
7378547f
MM
6701 WARN_ON(sd_ctl_dir[0].child);
6702 sd_ctl_dir[0].child = entry;
6703
ad1cdc1d
MM
6704 if (entry == NULL)
6705 return;
6706
97b6ea7b 6707 for_each_online_cpu(i) {
e692ab53 6708 snprintf(buf, 32, "cpu%d", i);
e692ab53 6709 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 6710 entry->mode = 0555;
e692ab53 6711 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 6712 entry++;
e692ab53 6713 }
7378547f
MM
6714
6715 WARN_ON(sd_sysctl_header);
e692ab53
NP
6716 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
6717}
6382bc90 6718
7378547f 6719/* may be called multiple times per register */
6382bc90
MM
6720static void unregister_sched_domain_sysctl(void)
6721{
7378547f
MM
6722 if (sd_sysctl_header)
6723 unregister_sysctl_table(sd_sysctl_header);
6382bc90 6724 sd_sysctl_header = NULL;
7378547f
MM
6725 if (sd_ctl_dir[0].child)
6726 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 6727}
e692ab53 6728#else
6382bc90
MM
6729static void register_sched_domain_sysctl(void)
6730{
6731}
6732static void unregister_sched_domain_sysctl(void)
e692ab53
NP
6733{
6734}
6735#endif
6736
1f11eb6a
GH
6737static void set_rq_online(struct rq *rq)
6738{
6739 if (!rq->online) {
6740 const struct sched_class *class;
6741
c6c4927b 6742 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6743 rq->online = 1;
6744
6745 for_each_class(class) {
6746 if (class->rq_online)
6747 class->rq_online(rq);
6748 }
6749 }
6750}
6751
6752static void set_rq_offline(struct rq *rq)
6753{
6754 if (rq->online) {
6755 const struct sched_class *class;
6756
6757 for_each_class(class) {
6758 if (class->rq_offline)
6759 class->rq_offline(rq);
6760 }
6761
c6c4927b 6762 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
6763 rq->online = 0;
6764 }
6765}
6766
1da177e4
LT
6767/*
6768 * migration_call - callback that gets triggered when a CPU is added.
6769 * Here we can start up the necessary migration thread for the new CPU.
6770 */
48f24c4d
IM
6771static int __cpuinit
6772migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 6773{
1da177e4 6774 struct task_struct *p;
48f24c4d 6775 int cpu = (long)hcpu;
1da177e4 6776 unsigned long flags;
70b97a7f 6777 struct rq *rq;
1da177e4
LT
6778
6779 switch (action) {
5be9361c 6780
1da177e4 6781 case CPU_UP_PREPARE:
8bb78442 6782 case CPU_UP_PREPARE_FROZEN:
dd41f596 6783 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
6784 if (IS_ERR(p))
6785 return NOTIFY_BAD;
1da177e4
LT
6786 kthread_bind(p, cpu);
6787 /* Must be high prio: stop_machine expects to yield to it. */
6788 rq = task_rq_lock(p, &flags);
dd41f596 6789 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
6790 task_rq_unlock(rq, &flags);
6791 cpu_rq(cpu)->migration_thread = p;
6792 break;
48f24c4d 6793
1da177e4 6794 case CPU_ONLINE:
8bb78442 6795 case CPU_ONLINE_FROZEN:
3a4fa0a2 6796 /* Strictly unnecessary, as first user will wake it. */
1da177e4 6797 wake_up_process(cpu_rq(cpu)->migration_thread);
1f94ef59
GH
6798
6799 /* Update our root-domain */
6800 rq = cpu_rq(cpu);
6801 spin_lock_irqsave(&rq->lock, flags);
6802 if (rq->rd) {
c6c4927b 6803 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
6804
6805 set_rq_online(rq);
1f94ef59
GH
6806 }
6807 spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 6808 break;
48f24c4d 6809
1da177e4
LT
6810#ifdef CONFIG_HOTPLUG_CPU
6811 case CPU_UP_CANCELED:
8bb78442 6812 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
6813 if (!cpu_rq(cpu)->migration_thread)
6814 break;
41a2d6cf 6815 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c 6816 kthread_bind(cpu_rq(cpu)->migration_thread,
1e5ce4f4 6817 cpumask_any(cpu_online_mask));
1da177e4
LT
6818 kthread_stop(cpu_rq(cpu)->migration_thread);
6819 cpu_rq(cpu)->migration_thread = NULL;
6820 break;
48f24c4d 6821
1da177e4 6822 case CPU_DEAD:
8bb78442 6823 case CPU_DEAD_FROZEN:
470fd646 6824 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
6825 migrate_live_tasks(cpu);
6826 rq = cpu_rq(cpu);
6827 kthread_stop(rq->migration_thread);
6828 rq->migration_thread = NULL;
6829 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 6830 spin_lock_irq(&rq->lock);
a8e504d2 6831 update_rq_clock(rq);
2e1cb74a 6832 deactivate_task(rq, rq->idle, 0);
1da177e4 6833 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
6834 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
6835 rq->idle->sched_class = &idle_sched_class;
1da177e4 6836 migrate_dead_tasks(cpu);
d2da272a 6837 spin_unlock_irq(&rq->lock);
470fd646 6838 cpuset_unlock();
1da177e4
LT
6839 migrate_nr_uninterruptible(rq);
6840 BUG_ON(rq->nr_running != 0);
6841
41a2d6cf
IM
6842 /*
6843 * No need to migrate the tasks: it was best-effort if
6844 * they didn't take sched_hotcpu_mutex. Just wake up
6845 * the requestors.
6846 */
1da177e4
LT
6847 spin_lock_irq(&rq->lock);
6848 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
6849 struct migration_req *req;
6850
1da177e4 6851 req = list_entry(rq->migration_queue.next,
70b97a7f 6852 struct migration_req, list);
1da177e4 6853 list_del_init(&req->list);
9a2bd244 6854 spin_unlock_irq(&rq->lock);
1da177e4 6855 complete(&req->done);
9a2bd244 6856 spin_lock_irq(&rq->lock);
1da177e4
LT
6857 }
6858 spin_unlock_irq(&rq->lock);
6859 break;
57d885fe 6860
08f503b0
GH
6861 case CPU_DYING:
6862 case CPU_DYING_FROZEN:
57d885fe
GH
6863 /* Update our root-domain */
6864 rq = cpu_rq(cpu);
6865 spin_lock_irqsave(&rq->lock, flags);
6866 if (rq->rd) {
c6c4927b 6867 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 6868 set_rq_offline(rq);
57d885fe
GH
6869 }
6870 spin_unlock_irqrestore(&rq->lock, flags);
6871 break;
1da177e4
LT
6872#endif
6873 }
6874 return NOTIFY_OK;
6875}
6876
6877/* Register at highest priority so that task migration (migrate_all_tasks)
6878 * happens before everything else.
6879 */
26c2143b 6880static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
6881 .notifier_call = migration_call,
6882 .priority = 10
6883};
6884
7babe8db 6885static int __init migration_init(void)
1da177e4
LT
6886{
6887 void *cpu = (void *)(long)smp_processor_id();
07dccf33 6888 int err;
48f24c4d
IM
6889
6890 /* Start one for the boot CPU: */
07dccf33
AM
6891 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
6892 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
6893 migration_call(&migration_notifier, CPU_ONLINE, cpu);
6894 register_cpu_notifier(&migration_notifier);
7babe8db
EGM
6895
6896 return err;
1da177e4 6897}
7babe8db 6898early_initcall(migration_init);
1da177e4
LT
6899#endif
6900
6901#ifdef CONFIG_SMP
476f3534 6902
3e9830dc 6903#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 6904
7c16ec58 6905static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 6906 struct cpumask *groupmask)
1da177e4 6907{
4dcf6aff 6908 struct sched_group *group = sd->groups;
434d53b0 6909 char str[256];
1da177e4 6910
968ea6d8 6911 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 6912 cpumask_clear(groupmask);
4dcf6aff
IM
6913
6914 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
6915
6916 if (!(sd->flags & SD_LOAD_BALANCE)) {
6917 printk("does not load-balance\n");
6918 if (sd->parent)
6919 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
6920 " has parent");
6921 return -1;
41c7ce9a
NP
6922 }
6923
eefd796a 6924 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 6925
758b2cdc 6926 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
4dcf6aff
IM
6927 printk(KERN_ERR "ERROR: domain->span does not contain "
6928 "CPU%d\n", cpu);
6929 }
758b2cdc 6930 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
4dcf6aff
IM
6931 printk(KERN_ERR "ERROR: domain->groups does not contain"
6932 " CPU%d\n", cpu);
6933 }
1da177e4 6934
4dcf6aff 6935 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 6936 do {
4dcf6aff
IM
6937 if (!group) {
6938 printk("\n");
6939 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
6940 break;
6941 }
6942
4dcf6aff
IM
6943 if (!group->__cpu_power) {
6944 printk(KERN_CONT "\n");
6945 printk(KERN_ERR "ERROR: domain->cpu_power not "
6946 "set\n");
6947 break;
6948 }
1da177e4 6949
758b2cdc 6950 if (!cpumask_weight(sched_group_cpus(group))) {
4dcf6aff
IM
6951 printk(KERN_CONT "\n");
6952 printk(KERN_ERR "ERROR: empty group\n");
6953 break;
6954 }
1da177e4 6955
758b2cdc 6956 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
4dcf6aff
IM
6957 printk(KERN_CONT "\n");
6958 printk(KERN_ERR "ERROR: repeated CPUs\n");
6959 break;
6960 }
1da177e4 6961
758b2cdc 6962 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 6963
968ea6d8 6964 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
4dcf6aff 6965 printk(KERN_CONT " %s", str);
1da177e4 6966
4dcf6aff
IM
6967 group = group->next;
6968 } while (group != sd->groups);
6969 printk(KERN_CONT "\n");
1da177e4 6970
758b2cdc 6971 if (!cpumask_equal(sched_domain_span(sd), groupmask))
4dcf6aff 6972 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 6973
758b2cdc
RR
6974 if (sd->parent &&
6975 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
4dcf6aff
IM
6976 printk(KERN_ERR "ERROR: parent span is not a superset "
6977 "of domain->span\n");
6978 return 0;
6979}
1da177e4 6980
4dcf6aff
IM
6981static void sched_domain_debug(struct sched_domain *sd, int cpu)
6982{
d5dd3db1 6983 cpumask_var_t groupmask;
4dcf6aff 6984 int level = 0;
1da177e4 6985
4dcf6aff
IM
6986 if (!sd) {
6987 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6988 return;
6989 }
1da177e4 6990
4dcf6aff
IM
6991 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6992
d5dd3db1 6993 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7c16ec58
MT
6994 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6995 return;
6996 }
6997
4dcf6aff 6998 for (;;) {
7c16ec58 6999 if (sched_domain_debug_one(sd, cpu, level, groupmask))
4dcf6aff 7000 break;
1da177e4
LT
7001 level++;
7002 sd = sd->parent;
33859f7f 7003 if (!sd)
4dcf6aff
IM
7004 break;
7005 }
d5dd3db1 7006 free_cpumask_var(groupmask);
1da177e4 7007}
6d6bc0ad 7008#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 7009# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 7010#endif /* CONFIG_SCHED_DEBUG */
1da177e4 7011
1a20ff27 7012static int sd_degenerate(struct sched_domain *sd)
245af2c7 7013{
758b2cdc 7014 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
7015 return 1;
7016
7017 /* Following flags need at least 2 groups */
7018 if (sd->flags & (SD_LOAD_BALANCE |
7019 SD_BALANCE_NEWIDLE |
7020 SD_BALANCE_FORK |
89c4710e
SS
7021 SD_BALANCE_EXEC |
7022 SD_SHARE_CPUPOWER |
7023 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
7024 if (sd->groups != sd->groups->next)
7025 return 0;
7026 }
7027
7028 /* Following flags don't use groups */
7029 if (sd->flags & (SD_WAKE_IDLE |
7030 SD_WAKE_AFFINE |
7031 SD_WAKE_BALANCE))
7032 return 0;
7033
7034 return 1;
7035}
7036
48f24c4d
IM
7037static int
7038sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
7039{
7040 unsigned long cflags = sd->flags, pflags = parent->flags;
7041
7042 if (sd_degenerate(parent))
7043 return 1;
7044
758b2cdc 7045 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
7046 return 0;
7047
7048 /* Does parent contain flags not in child? */
7049 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
7050 if (cflags & SD_WAKE_AFFINE)
7051 pflags &= ~SD_WAKE_BALANCE;
7052 /* Flags needing groups don't count if only 1 group in parent */
7053 if (parent->groups == parent->groups->next) {
7054 pflags &= ~(SD_LOAD_BALANCE |
7055 SD_BALANCE_NEWIDLE |
7056 SD_BALANCE_FORK |
89c4710e
SS
7057 SD_BALANCE_EXEC |
7058 SD_SHARE_CPUPOWER |
7059 SD_SHARE_PKG_RESOURCES);
5436499e
KC
7060 if (nr_node_ids == 1)
7061 pflags &= ~SD_SERIALIZE;
245af2c7
SS
7062 }
7063 if (~cflags & pflags)
7064 return 0;
7065
7066 return 1;
7067}
7068
c6c4927b
RR
7069static void free_rootdomain(struct root_domain *rd)
7070{
68e74568
RR
7071 cpupri_cleanup(&rd->cpupri);
7072
c6c4927b
RR
7073 free_cpumask_var(rd->rto_mask);
7074 free_cpumask_var(rd->online);
7075 free_cpumask_var(rd->span);
7076 kfree(rd);
7077}
7078
57d885fe
GH
7079static void rq_attach_root(struct rq *rq, struct root_domain *rd)
7080{
a0490fa3 7081 struct root_domain *old_rd = NULL;
57d885fe 7082 unsigned long flags;
57d885fe
GH
7083
7084 spin_lock_irqsave(&rq->lock, flags);
7085
7086 if (rq->rd) {
a0490fa3 7087 old_rd = rq->rd;
57d885fe 7088
c6c4927b 7089 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 7090 set_rq_offline(rq);
57d885fe 7091
c6c4927b 7092 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 7093
a0490fa3
IM
7094 /*
7095 * If we dont want to free the old_rt yet then
7096 * set old_rd to NULL to skip the freeing later
7097 * in this function:
7098 */
7099 if (!atomic_dec_and_test(&old_rd->refcount))
7100 old_rd = NULL;
57d885fe
GH
7101 }
7102
7103 atomic_inc(&rd->refcount);
7104 rq->rd = rd;
7105
c6c4927b
RR
7106 cpumask_set_cpu(rq->cpu, rd->span);
7107 if (cpumask_test_cpu(rq->cpu, cpu_online_mask))
1f11eb6a 7108 set_rq_online(rq);
57d885fe
GH
7109
7110 spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
7111
7112 if (old_rd)
7113 free_rootdomain(old_rd);
57d885fe
GH
7114}
7115
db2f59c8 7116static int __init_refok init_rootdomain(struct root_domain *rd, bool bootmem)
57d885fe
GH
7117{
7118 memset(rd, 0, sizeof(*rd));
7119
c6c4927b
RR
7120 if (bootmem) {
7121 alloc_bootmem_cpumask_var(&def_root_domain.span);
7122 alloc_bootmem_cpumask_var(&def_root_domain.online);
7123 alloc_bootmem_cpumask_var(&def_root_domain.rto_mask);
68e74568 7124 cpupri_init(&rd->cpupri, true);
c6c4927b
RR
7125 return 0;
7126 }
7127
7128 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 7129 goto out;
c6c4927b
RR
7130 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
7131 goto free_span;
7132 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
7133 goto free_online;
6e0534f2 7134
68e74568
RR
7135 if (cpupri_init(&rd->cpupri, false) != 0)
7136 goto free_rto_mask;
c6c4927b 7137 return 0;
6e0534f2 7138
68e74568
RR
7139free_rto_mask:
7140 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
7141free_online:
7142 free_cpumask_var(rd->online);
7143free_span:
7144 free_cpumask_var(rd->span);
0c910d28 7145out:
c6c4927b 7146 return -ENOMEM;
57d885fe
GH
7147}
7148
7149static void init_defrootdomain(void)
7150{
c6c4927b
RR
7151 init_rootdomain(&def_root_domain, true);
7152
57d885fe
GH
7153 atomic_set(&def_root_domain.refcount, 1);
7154}
7155
dc938520 7156static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
7157{
7158 struct root_domain *rd;
7159
7160 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
7161 if (!rd)
7162 return NULL;
7163
c6c4927b
RR
7164 if (init_rootdomain(rd, false) != 0) {
7165 kfree(rd);
7166 return NULL;
7167 }
57d885fe
GH
7168
7169 return rd;
7170}
7171
1da177e4 7172/*
0eab9146 7173 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
7174 * hold the hotplug lock.
7175 */
0eab9146
IM
7176static void
7177cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 7178{
70b97a7f 7179 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
7180 struct sched_domain *tmp;
7181
7182 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 7183 for (tmp = sd; tmp; ) {
245af2c7
SS
7184 struct sched_domain *parent = tmp->parent;
7185 if (!parent)
7186 break;
f29c9b1c 7187
1a848870 7188 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 7189 tmp->parent = parent->parent;
1a848870
SS
7190 if (parent->parent)
7191 parent->parent->child = tmp;
f29c9b1c
LZ
7192 } else
7193 tmp = tmp->parent;
245af2c7
SS
7194 }
7195
1a848870 7196 if (sd && sd_degenerate(sd)) {
245af2c7 7197 sd = sd->parent;
1a848870
SS
7198 if (sd)
7199 sd->child = NULL;
7200 }
1da177e4
LT
7201
7202 sched_domain_debug(sd, cpu);
7203
57d885fe 7204 rq_attach_root(rq, rd);
674311d5 7205 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
7206}
7207
7208/* cpus with isolated domains */
dcc30a35 7209static cpumask_var_t cpu_isolated_map;
1da177e4
LT
7210
7211/* Setup the mask of cpus configured for isolated domains */
7212static int __init isolated_cpu_setup(char *str)
7213{
968ea6d8 7214 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
7215 return 1;
7216}
7217
8927f494 7218__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
7219
7220/*
6711cab4
SS
7221 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
7222 * to a function which identifies what group(along with sched group) a CPU
96f874e2
RR
7223 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
7224 * (due to the fact that we keep track of groups covered with a struct cpumask).
1da177e4
LT
7225 *
7226 * init_sched_build_groups will build a circular linked list of the groups
7227 * covered by the given span, and will set each group's ->cpumask correctly,
7228 * and ->cpu_power to 0.
7229 */
a616058b 7230static void
96f874e2
RR
7231init_sched_build_groups(const struct cpumask *span,
7232 const struct cpumask *cpu_map,
7233 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
7c16ec58 7234 struct sched_group **sg,
96f874e2
RR
7235 struct cpumask *tmpmask),
7236 struct cpumask *covered, struct cpumask *tmpmask)
1da177e4
LT
7237{
7238 struct sched_group *first = NULL, *last = NULL;
1da177e4
LT
7239 int i;
7240
96f874e2 7241 cpumask_clear(covered);
7c16ec58 7242
abcd083a 7243 for_each_cpu(i, span) {
6711cab4 7244 struct sched_group *sg;
7c16ec58 7245 int group = group_fn(i, cpu_map, &sg, tmpmask);
1da177e4
LT
7246 int j;
7247
758b2cdc 7248 if (cpumask_test_cpu(i, covered))
1da177e4
LT
7249 continue;
7250
758b2cdc 7251 cpumask_clear(sched_group_cpus(sg));
5517d86b 7252 sg->__cpu_power = 0;
1da177e4 7253
abcd083a 7254 for_each_cpu(j, span) {
7c16ec58 7255 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
1da177e4
LT
7256 continue;
7257
96f874e2 7258 cpumask_set_cpu(j, covered);
758b2cdc 7259 cpumask_set_cpu(j, sched_group_cpus(sg));
1da177e4
LT
7260 }
7261 if (!first)
7262 first = sg;
7263 if (last)
7264 last->next = sg;
7265 last = sg;
7266 }
7267 last->next = first;
7268}
7269
9c1cfda2 7270#define SD_NODES_PER_DOMAIN 16
1da177e4 7271
9c1cfda2 7272#ifdef CONFIG_NUMA
198e2f18 7273
9c1cfda2
JH
7274/**
7275 * find_next_best_node - find the next node to include in a sched_domain
7276 * @node: node whose sched_domain we're building
7277 * @used_nodes: nodes already in the sched_domain
7278 *
41a2d6cf 7279 * Find the next node to include in a given scheduling domain. Simply
9c1cfda2
JH
7280 * finds the closest node not already in the @used_nodes map.
7281 *
7282 * Should use nodemask_t.
7283 */
c5f59f08 7284static int find_next_best_node(int node, nodemask_t *used_nodes)
9c1cfda2
JH
7285{
7286 int i, n, val, min_val, best_node = 0;
7287
7288 min_val = INT_MAX;
7289
076ac2af 7290 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2 7291 /* Start at @node */
076ac2af 7292 n = (node + i) % nr_node_ids;
9c1cfda2
JH
7293
7294 if (!nr_cpus_node(n))
7295 continue;
7296
7297 /* Skip already used nodes */
c5f59f08 7298 if (node_isset(n, *used_nodes))
9c1cfda2
JH
7299 continue;
7300
7301 /* Simple min distance search */
7302 val = node_distance(node, n);
7303
7304 if (val < min_val) {
7305 min_val = val;
7306 best_node = n;
7307 }
7308 }
7309
c5f59f08 7310 node_set(best_node, *used_nodes);
9c1cfda2
JH
7311 return best_node;
7312}
7313
7314/**
7315 * sched_domain_node_span - get a cpumask for a node's sched_domain
7316 * @node: node whose cpumask we're constructing
73486722 7317 * @span: resulting cpumask
9c1cfda2 7318 *
41a2d6cf 7319 * Given a node, construct a good cpumask for its sched_domain to span. It
9c1cfda2
JH
7320 * should be one that prevents unnecessary balancing, but also spreads tasks
7321 * out optimally.
7322 */
96f874e2 7323static void sched_domain_node_span(int node, struct cpumask *span)
9c1cfda2 7324{
c5f59f08 7325 nodemask_t used_nodes;
48f24c4d 7326 int i;
9c1cfda2 7327
6ca09dfc 7328 cpumask_clear(span);
c5f59f08 7329 nodes_clear(used_nodes);
9c1cfda2 7330
6ca09dfc 7331 cpumask_or(span, span, cpumask_of_node(node));
c5f59f08 7332 node_set(node, used_nodes);
9c1cfda2
JH
7333
7334 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
c5f59f08 7335 int next_node = find_next_best_node(node, &used_nodes);
48f24c4d 7336
6ca09dfc 7337 cpumask_or(span, span, cpumask_of_node(next_node));
9c1cfda2 7338 }
9c1cfda2 7339}
6d6bc0ad 7340#endif /* CONFIG_NUMA */
9c1cfda2 7341
5c45bf27 7342int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 7343
6c99e9ad
RR
7344/*
7345 * The cpus mask in sched_group and sched_domain hangs off the end.
7346 * FIXME: use cpumask_var_t or dynamic percpu alloc to avoid wasting space
7347 * for nr_cpu_ids < CONFIG_NR_CPUS.
7348 */
7349struct static_sched_group {
7350 struct sched_group sg;
7351 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
7352};
7353
7354struct static_sched_domain {
7355 struct sched_domain sd;
7356 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
7357};
7358
9c1cfda2 7359/*
48f24c4d 7360 * SMT sched-domains:
9c1cfda2 7361 */
1da177e4 7362#ifdef CONFIG_SCHED_SMT
6c99e9ad
RR
7363static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
7364static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
48f24c4d 7365
41a2d6cf 7366static int
96f874e2
RR
7367cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
7368 struct sched_group **sg, struct cpumask *unused)
1da177e4 7369{
6711cab4 7370 if (sg)
6c99e9ad 7371 *sg = &per_cpu(sched_group_cpus, cpu).sg;
1da177e4
LT
7372 return cpu;
7373}
6d6bc0ad 7374#endif /* CONFIG_SCHED_SMT */
1da177e4 7375
48f24c4d
IM
7376/*
7377 * multi-core sched-domains:
7378 */
1e9f28fa 7379#ifdef CONFIG_SCHED_MC
6c99e9ad
RR
7380static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
7381static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6d6bc0ad 7382#endif /* CONFIG_SCHED_MC */
1e9f28fa
SS
7383
7384#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
41a2d6cf 7385static int
96f874e2
RR
7386cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7387 struct sched_group **sg, struct cpumask *mask)
1e9f28fa 7388{
6711cab4 7389 int group;
7c16ec58 7390
96f874e2
RR
7391 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7392 group = cpumask_first(mask);
6711cab4 7393 if (sg)
6c99e9ad 7394 *sg = &per_cpu(sched_group_core, group).sg;
6711cab4 7395 return group;
1e9f28fa
SS
7396}
7397#elif defined(CONFIG_SCHED_MC)
41a2d6cf 7398static int
96f874e2
RR
7399cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
7400 struct sched_group **sg, struct cpumask *unused)
1e9f28fa 7401{
6711cab4 7402 if (sg)
6c99e9ad 7403 *sg = &per_cpu(sched_group_core, cpu).sg;
1e9f28fa
SS
7404 return cpu;
7405}
7406#endif
7407
6c99e9ad
RR
7408static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
7409static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
48f24c4d 7410
41a2d6cf 7411static int
96f874e2
RR
7412cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
7413 struct sched_group **sg, struct cpumask *mask)
1da177e4 7414{
6711cab4 7415 int group;
48f24c4d 7416#ifdef CONFIG_SCHED_MC
6ca09dfc 7417 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
96f874e2 7418 group = cpumask_first(mask);
1e9f28fa 7419#elif defined(CONFIG_SCHED_SMT)
96f874e2
RR
7420 cpumask_and(mask, &per_cpu(cpu_sibling_map, cpu), cpu_map);
7421 group = cpumask_first(mask);
1da177e4 7422#else
6711cab4 7423 group = cpu;
1da177e4 7424#endif
6711cab4 7425 if (sg)
6c99e9ad 7426 *sg = &per_cpu(sched_group_phys, group).sg;
6711cab4 7427 return group;
1da177e4
LT
7428}
7429
7430#ifdef CONFIG_NUMA
1da177e4 7431/*
9c1cfda2
JH
7432 * The init_sched_build_groups can't handle what we want to do with node
7433 * groups, so roll our own. Now each node has its own list of groups which
7434 * gets dynamically allocated.
1da177e4 7435 */
62ea9ceb 7436static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
434d53b0 7437static struct sched_group ***sched_group_nodes_bycpu;
1da177e4 7438
62ea9ceb 7439static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6c99e9ad 7440static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
9c1cfda2 7441
96f874e2
RR
7442static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
7443 struct sched_group **sg,
7444 struct cpumask *nodemask)
9c1cfda2 7445{
6711cab4
SS
7446 int group;
7447
6ca09dfc 7448 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
96f874e2 7449 group = cpumask_first(nodemask);
6711cab4
SS
7450
7451 if (sg)
6c99e9ad 7452 *sg = &per_cpu(sched_group_allnodes, group).sg;
6711cab4 7453 return group;
1da177e4 7454}
6711cab4 7455
08069033
SS
7456static void init_numa_sched_groups_power(struct sched_group *group_head)
7457{
7458 struct sched_group *sg = group_head;
7459 int j;
7460
7461 if (!sg)
7462 return;
3a5c359a 7463 do {
758b2cdc 7464 for_each_cpu(j, sched_group_cpus(sg)) {
3a5c359a 7465 struct sched_domain *sd;
08069033 7466
6c99e9ad 7467 sd = &per_cpu(phys_domains, j).sd;
758b2cdc 7468 if (j != cpumask_first(sched_group_cpus(sd->groups))) {
3a5c359a
AK
7469 /*
7470 * Only add "power" once for each
7471 * physical package.
7472 */
7473 continue;
7474 }
08069033 7475
3a5c359a
AK
7476 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
7477 }
7478 sg = sg->next;
7479 } while (sg != group_head);
08069033 7480}
6d6bc0ad 7481#endif /* CONFIG_NUMA */
1da177e4 7482
a616058b 7483#ifdef CONFIG_NUMA
51888ca2 7484/* Free memory allocated for various sched_group structures */
96f874e2
RR
7485static void free_sched_groups(const struct cpumask *cpu_map,
7486 struct cpumask *nodemask)
51888ca2 7487{
a616058b 7488 int cpu, i;
51888ca2 7489
abcd083a 7490 for_each_cpu(cpu, cpu_map) {
51888ca2
SV
7491 struct sched_group **sched_group_nodes
7492 = sched_group_nodes_bycpu[cpu];
7493
51888ca2
SV
7494 if (!sched_group_nodes)
7495 continue;
7496
076ac2af 7497 for (i = 0; i < nr_node_ids; i++) {
51888ca2
SV
7498 struct sched_group *oldsg, *sg = sched_group_nodes[i];
7499
6ca09dfc 7500 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7501 if (cpumask_empty(nodemask))
51888ca2
SV
7502 continue;
7503
7504 if (sg == NULL)
7505 continue;
7506 sg = sg->next;
7507next_sg:
7508 oldsg = sg;
7509 sg = sg->next;
7510 kfree(oldsg);
7511 if (oldsg != sched_group_nodes[i])
7512 goto next_sg;
7513 }
7514 kfree(sched_group_nodes);
7515 sched_group_nodes_bycpu[cpu] = NULL;
7516 }
51888ca2 7517}
6d6bc0ad 7518#else /* !CONFIG_NUMA */
96f874e2
RR
7519static void free_sched_groups(const struct cpumask *cpu_map,
7520 struct cpumask *nodemask)
a616058b
SS
7521{
7522}
6d6bc0ad 7523#endif /* CONFIG_NUMA */
51888ca2 7524
89c4710e
SS
7525/*
7526 * Initialize sched groups cpu_power.
7527 *
7528 * cpu_power indicates the capacity of sched group, which is used while
7529 * distributing the load between different sched groups in a sched domain.
7530 * Typically cpu_power for all the groups in a sched domain will be same unless
7531 * there are asymmetries in the topology. If there are asymmetries, group
7532 * having more cpu_power will pickup more load compared to the group having
7533 * less cpu_power.
7534 *
7535 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
7536 * the maximum number of tasks a group can handle in the presence of other idle
7537 * or lightly loaded groups in the same sched domain.
7538 */
7539static void init_sched_groups_power(int cpu, struct sched_domain *sd)
7540{
7541 struct sched_domain *child;
7542 struct sched_group *group;
7543
7544 WARN_ON(!sd || !sd->groups);
7545
758b2cdc 7546 if (cpu != cpumask_first(sched_group_cpus(sd->groups)))
89c4710e
SS
7547 return;
7548
7549 child = sd->child;
7550
5517d86b
ED
7551 sd->groups->__cpu_power = 0;
7552
89c4710e
SS
7553 /*
7554 * For perf policy, if the groups in child domain share resources
7555 * (for example cores sharing some portions of the cache hierarchy
7556 * or SMT), then set this domain groups cpu_power such that each group
7557 * can handle only one task, when there are other idle groups in the
7558 * same sched domain.
7559 */
7560 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
7561 (child->flags &
7562 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 7563 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
7564 return;
7565 }
7566
89c4710e
SS
7567 /*
7568 * add cpu_power of each child group to this groups cpu_power
7569 */
7570 group = child->groups;
7571 do {
5517d86b 7572 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
7573 group = group->next;
7574 } while (group != child->groups);
7575}
7576
7c16ec58
MT
7577/*
7578 * Initializers for schedule domains
7579 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
7580 */
7581
a5d8c348
IM
7582#ifdef CONFIG_SCHED_DEBUG
7583# define SD_INIT_NAME(sd, type) sd->name = #type
7584#else
7585# define SD_INIT_NAME(sd, type) do { } while (0)
7586#endif
7587
7c16ec58 7588#define SD_INIT(sd, type) sd_init_##type(sd)
a5d8c348 7589
7c16ec58
MT
7590#define SD_INIT_FUNC(type) \
7591static noinline void sd_init_##type(struct sched_domain *sd) \
7592{ \
7593 memset(sd, 0, sizeof(*sd)); \
7594 *sd = SD_##type##_INIT; \
1d3504fc 7595 sd->level = SD_LV_##type; \
a5d8c348 7596 SD_INIT_NAME(sd, type); \
7c16ec58
MT
7597}
7598
7599SD_INIT_FUNC(CPU)
7600#ifdef CONFIG_NUMA
7601 SD_INIT_FUNC(ALLNODES)
7602 SD_INIT_FUNC(NODE)
7603#endif
7604#ifdef CONFIG_SCHED_SMT
7605 SD_INIT_FUNC(SIBLING)
7606#endif
7607#ifdef CONFIG_SCHED_MC
7608 SD_INIT_FUNC(MC)
7609#endif
7610
1d3504fc
HS
7611static int default_relax_domain_level = -1;
7612
7613static int __init setup_relax_domain_level(char *str)
7614{
30e0e178
LZ
7615 unsigned long val;
7616
7617 val = simple_strtoul(str, NULL, 0);
7618 if (val < SD_LV_MAX)
7619 default_relax_domain_level = val;
7620
1d3504fc
HS
7621 return 1;
7622}
7623__setup("relax_domain_level=", setup_relax_domain_level);
7624
7625static void set_domain_attribute(struct sched_domain *sd,
7626 struct sched_domain_attr *attr)
7627{
7628 int request;
7629
7630 if (!attr || attr->relax_domain_level < 0) {
7631 if (default_relax_domain_level < 0)
7632 return;
7633 else
7634 request = default_relax_domain_level;
7635 } else
7636 request = attr->relax_domain_level;
7637 if (request < sd->level) {
7638 /* turn off idle balance on this domain */
7639 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
7640 } else {
7641 /* turn on idle balance on this domain */
7642 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
7643 }
7644}
7645
1da177e4 7646/*
1a20ff27
DG
7647 * Build sched domains for a given set of cpus and attach the sched domains
7648 * to the individual cpus
1da177e4 7649 */
96f874e2 7650static int __build_sched_domains(const struct cpumask *cpu_map,
1d3504fc 7651 struct sched_domain_attr *attr)
1da177e4 7652{
3404c8d9 7653 int i, err = -ENOMEM;
57d885fe 7654 struct root_domain *rd;
3404c8d9
RR
7655 cpumask_var_t nodemask, this_sibling_map, this_core_map, send_covered,
7656 tmpmask;
d1b55138 7657#ifdef CONFIG_NUMA
3404c8d9 7658 cpumask_var_t domainspan, covered, notcovered;
d1b55138 7659 struct sched_group **sched_group_nodes = NULL;
6711cab4 7660 int sd_allnodes = 0;
d1b55138 7661
3404c8d9
RR
7662 if (!alloc_cpumask_var(&domainspan, GFP_KERNEL))
7663 goto out;
7664 if (!alloc_cpumask_var(&covered, GFP_KERNEL))
7665 goto free_domainspan;
7666 if (!alloc_cpumask_var(&notcovered, GFP_KERNEL))
7667 goto free_covered;
7668#endif
7669
7670 if (!alloc_cpumask_var(&nodemask, GFP_KERNEL))
7671 goto free_notcovered;
7672 if (!alloc_cpumask_var(&this_sibling_map, GFP_KERNEL))
7673 goto free_nodemask;
7674 if (!alloc_cpumask_var(&this_core_map, GFP_KERNEL))
7675 goto free_this_sibling_map;
7676 if (!alloc_cpumask_var(&send_covered, GFP_KERNEL))
7677 goto free_this_core_map;
7678 if (!alloc_cpumask_var(&tmpmask, GFP_KERNEL))
7679 goto free_send_covered;
7680
7681#ifdef CONFIG_NUMA
d1b55138
JH
7682 /*
7683 * Allocate the per-node list of sched groups
7684 */
076ac2af 7685 sched_group_nodes = kcalloc(nr_node_ids, sizeof(struct sched_group *),
41a2d6cf 7686 GFP_KERNEL);
d1b55138
JH
7687 if (!sched_group_nodes) {
7688 printk(KERN_WARNING "Can not alloc sched group node list\n");
3404c8d9 7689 goto free_tmpmask;
d1b55138 7690 }
d1b55138 7691#endif
1da177e4 7692
dc938520 7693 rd = alloc_rootdomain();
57d885fe
GH
7694 if (!rd) {
7695 printk(KERN_WARNING "Cannot alloc root domain\n");
3404c8d9 7696 goto free_sched_groups;
57d885fe
GH
7697 }
7698
7c16ec58 7699#ifdef CONFIG_NUMA
96f874e2 7700 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = sched_group_nodes;
7c16ec58
MT
7701#endif
7702
1da177e4 7703 /*
1a20ff27 7704 * Set up domains for cpus specified by the cpu_map.
1da177e4 7705 */
abcd083a 7706 for_each_cpu(i, cpu_map) {
1da177e4 7707 struct sched_domain *sd = NULL, *p;
1da177e4 7708
6ca09dfc 7709 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(i)), cpu_map);
1da177e4
LT
7710
7711#ifdef CONFIG_NUMA
96f874e2
RR
7712 if (cpumask_weight(cpu_map) >
7713 SD_NODES_PER_DOMAIN*cpumask_weight(nodemask)) {
62ea9ceb 7714 sd = &per_cpu(allnodes_domains, i).sd;
7c16ec58 7715 SD_INIT(sd, ALLNODES);
1d3504fc 7716 set_domain_attribute(sd, attr);
758b2cdc 7717 cpumask_copy(sched_domain_span(sd), cpu_map);
7c16ec58 7718 cpu_to_allnodes_group(i, cpu_map, &sd->groups, tmpmask);
9c1cfda2 7719 p = sd;
6711cab4 7720 sd_allnodes = 1;
9c1cfda2
JH
7721 } else
7722 p = NULL;
7723
62ea9ceb 7724 sd = &per_cpu(node_domains, i).sd;
7c16ec58 7725 SD_INIT(sd, NODE);
1d3504fc 7726 set_domain_attribute(sd, attr);
758b2cdc 7727 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
9c1cfda2 7728 sd->parent = p;
1a848870
SS
7729 if (p)
7730 p->child = sd;
758b2cdc
RR
7731 cpumask_and(sched_domain_span(sd),
7732 sched_domain_span(sd), cpu_map);
1da177e4
LT
7733#endif
7734
7735 p = sd;
6c99e9ad 7736 sd = &per_cpu(phys_domains, i).sd;
7c16ec58 7737 SD_INIT(sd, CPU);
1d3504fc 7738 set_domain_attribute(sd, attr);
758b2cdc 7739 cpumask_copy(sched_domain_span(sd), nodemask);
1da177e4 7740 sd->parent = p;
1a848870
SS
7741 if (p)
7742 p->child = sd;
7c16ec58 7743 cpu_to_phys_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4 7744
1e9f28fa
SS
7745#ifdef CONFIG_SCHED_MC
7746 p = sd;
6c99e9ad 7747 sd = &per_cpu(core_domains, i).sd;
7c16ec58 7748 SD_INIT(sd, MC);
1d3504fc 7749 set_domain_attribute(sd, attr);
6ca09dfc
MT
7750 cpumask_and(sched_domain_span(sd), cpu_map,
7751 cpu_coregroup_mask(i));
1e9f28fa 7752 sd->parent = p;
1a848870 7753 p->child = sd;
7c16ec58 7754 cpu_to_core_group(i, cpu_map, &sd->groups, tmpmask);
1e9f28fa
SS
7755#endif
7756
1da177e4
LT
7757#ifdef CONFIG_SCHED_SMT
7758 p = sd;
6c99e9ad 7759 sd = &per_cpu(cpu_domains, i).sd;
7c16ec58 7760 SD_INIT(sd, SIBLING);
1d3504fc 7761 set_domain_attribute(sd, attr);
758b2cdc
RR
7762 cpumask_and(sched_domain_span(sd),
7763 &per_cpu(cpu_sibling_map, i), cpu_map);
1da177e4 7764 sd->parent = p;
1a848870 7765 p->child = sd;
7c16ec58 7766 cpu_to_cpu_group(i, cpu_map, &sd->groups, tmpmask);
1da177e4
LT
7767#endif
7768 }
7769
7770#ifdef CONFIG_SCHED_SMT
7771 /* Set up CPU (sibling) groups */
abcd083a 7772 for_each_cpu(i, cpu_map) {
96f874e2
RR
7773 cpumask_and(this_sibling_map,
7774 &per_cpu(cpu_sibling_map, i), cpu_map);
7775 if (i != cpumask_first(this_sibling_map))
1da177e4
LT
7776 continue;
7777
dd41f596 7778 init_sched_build_groups(this_sibling_map, cpu_map,
7c16ec58
MT
7779 &cpu_to_cpu_group,
7780 send_covered, tmpmask);
1da177e4
LT
7781 }
7782#endif
7783
1e9f28fa
SS
7784#ifdef CONFIG_SCHED_MC
7785 /* Set up multi-core groups */
abcd083a 7786 for_each_cpu(i, cpu_map) {
6ca09dfc 7787 cpumask_and(this_core_map, cpu_coregroup_mask(i), cpu_map);
96f874e2 7788 if (i != cpumask_first(this_core_map))
1e9f28fa 7789 continue;
7c16ec58 7790
dd41f596 7791 init_sched_build_groups(this_core_map, cpu_map,
7c16ec58
MT
7792 &cpu_to_core_group,
7793 send_covered, tmpmask);
1e9f28fa
SS
7794 }
7795#endif
7796
1da177e4 7797 /* Set up physical groups */
076ac2af 7798 for (i = 0; i < nr_node_ids; i++) {
6ca09dfc 7799 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7800 if (cpumask_empty(nodemask))
1da177e4
LT
7801 continue;
7802
7c16ec58
MT
7803 init_sched_build_groups(nodemask, cpu_map,
7804 &cpu_to_phys_group,
7805 send_covered, tmpmask);
1da177e4
LT
7806 }
7807
7808#ifdef CONFIG_NUMA
7809 /* Set up node groups */
7c16ec58 7810 if (sd_allnodes) {
7c16ec58
MT
7811 init_sched_build_groups(cpu_map, cpu_map,
7812 &cpu_to_allnodes_group,
7813 send_covered, tmpmask);
7814 }
9c1cfda2 7815
076ac2af 7816 for (i = 0; i < nr_node_ids; i++) {
9c1cfda2
JH
7817 /* Set up node groups */
7818 struct sched_group *sg, *prev;
9c1cfda2
JH
7819 int j;
7820
96f874e2 7821 cpumask_clear(covered);
6ca09dfc 7822 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
96f874e2 7823 if (cpumask_empty(nodemask)) {
d1b55138 7824 sched_group_nodes[i] = NULL;
9c1cfda2 7825 continue;
d1b55138 7826 }
9c1cfda2 7827
4bdbaad3 7828 sched_domain_node_span(i, domainspan);
96f874e2 7829 cpumask_and(domainspan, domainspan, cpu_map);
9c1cfda2 7830
6c99e9ad
RR
7831 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
7832 GFP_KERNEL, i);
51888ca2
SV
7833 if (!sg) {
7834 printk(KERN_WARNING "Can not alloc domain group for "
7835 "node %d\n", i);
7836 goto error;
7837 }
9c1cfda2 7838 sched_group_nodes[i] = sg;
abcd083a 7839 for_each_cpu(j, nodemask) {
9c1cfda2 7840 struct sched_domain *sd;
9761eea8 7841
62ea9ceb 7842 sd = &per_cpu(node_domains, j).sd;
9c1cfda2 7843 sd->groups = sg;
9c1cfda2 7844 }
5517d86b 7845 sg->__cpu_power = 0;
758b2cdc 7846 cpumask_copy(sched_group_cpus(sg), nodemask);
51888ca2 7847 sg->next = sg;
96f874e2 7848 cpumask_or(covered, covered, nodemask);
9c1cfda2
JH
7849 prev = sg;
7850
076ac2af 7851 for (j = 0; j < nr_node_ids; j++) {
076ac2af 7852 int n = (i + j) % nr_node_ids;
9c1cfda2 7853
96f874e2
RR
7854 cpumask_complement(notcovered, covered);
7855 cpumask_and(tmpmask, notcovered, cpu_map);
7856 cpumask_and(tmpmask, tmpmask, domainspan);
7857 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7858 break;
7859
6ca09dfc 7860 cpumask_and(tmpmask, tmpmask, cpumask_of_node(n));
96f874e2 7861 if (cpumask_empty(tmpmask))
9c1cfda2
JH
7862 continue;
7863
6c99e9ad
RR
7864 sg = kmalloc_node(sizeof(struct sched_group) +
7865 cpumask_size(),
15f0b676 7866 GFP_KERNEL, i);
9c1cfda2
JH
7867 if (!sg) {
7868 printk(KERN_WARNING
7869 "Can not alloc domain group for node %d\n", j);
51888ca2 7870 goto error;
9c1cfda2 7871 }
5517d86b 7872 sg->__cpu_power = 0;
758b2cdc 7873 cpumask_copy(sched_group_cpus(sg), tmpmask);
51888ca2 7874 sg->next = prev->next;
96f874e2 7875 cpumask_or(covered, covered, tmpmask);
9c1cfda2
JH
7876 prev->next = sg;
7877 prev = sg;
7878 }
9c1cfda2 7879 }
1da177e4
LT
7880#endif
7881
7882 /* Calculate CPU power for physical packages and nodes */
5c45bf27 7883#ifdef CONFIG_SCHED_SMT
abcd083a 7884 for_each_cpu(i, cpu_map) {
6c99e9ad 7885 struct sched_domain *sd = &per_cpu(cpu_domains, i).sd;
dd41f596 7886
89c4710e 7887 init_sched_groups_power(i, sd);
5c45bf27 7888 }
1da177e4 7889#endif
1e9f28fa 7890#ifdef CONFIG_SCHED_MC
abcd083a 7891 for_each_cpu(i, cpu_map) {
6c99e9ad 7892 struct sched_domain *sd = &per_cpu(core_domains, i).sd;
dd41f596 7893
89c4710e 7894 init_sched_groups_power(i, sd);
5c45bf27
SS
7895 }
7896#endif
1e9f28fa 7897
abcd083a 7898 for_each_cpu(i, cpu_map) {
6c99e9ad 7899 struct sched_domain *sd = &per_cpu(phys_domains, i).sd;
dd41f596 7900
89c4710e 7901 init_sched_groups_power(i, sd);
1da177e4
LT
7902 }
7903
9c1cfda2 7904#ifdef CONFIG_NUMA
076ac2af 7905 for (i = 0; i < nr_node_ids; i++)
08069033 7906 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 7907
6711cab4
SS
7908 if (sd_allnodes) {
7909 struct sched_group *sg;
f712c0c7 7910
96f874e2 7911 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7c16ec58 7912 tmpmask);
f712c0c7
SS
7913 init_numa_sched_groups_power(sg);
7914 }
9c1cfda2
JH
7915#endif
7916
1da177e4 7917 /* Attach the domains */
abcd083a 7918 for_each_cpu(i, cpu_map) {
1da177e4
LT
7919 struct sched_domain *sd;
7920#ifdef CONFIG_SCHED_SMT
6c99e9ad 7921 sd = &per_cpu(cpu_domains, i).sd;
1e9f28fa 7922#elif defined(CONFIG_SCHED_MC)
6c99e9ad 7923 sd = &per_cpu(core_domains, i).sd;
1da177e4 7924#else
6c99e9ad 7925 sd = &per_cpu(phys_domains, i).sd;
1da177e4 7926#endif
57d885fe 7927 cpu_attach_domain(sd, rd, i);
1da177e4 7928 }
51888ca2 7929
3404c8d9
RR
7930 err = 0;
7931
7932free_tmpmask:
7933 free_cpumask_var(tmpmask);
7934free_send_covered:
7935 free_cpumask_var(send_covered);
7936free_this_core_map:
7937 free_cpumask_var(this_core_map);
7938free_this_sibling_map:
7939 free_cpumask_var(this_sibling_map);
7940free_nodemask:
7941 free_cpumask_var(nodemask);
7942free_notcovered:
7943#ifdef CONFIG_NUMA
7944 free_cpumask_var(notcovered);
7945free_covered:
7946 free_cpumask_var(covered);
7947free_domainspan:
7948 free_cpumask_var(domainspan);
7949out:
7950#endif
7951 return err;
7952
7953free_sched_groups:
7954#ifdef CONFIG_NUMA
7955 kfree(sched_group_nodes);
7956#endif
7957 goto free_tmpmask;
51888ca2 7958
a616058b 7959#ifdef CONFIG_NUMA
51888ca2 7960error:
7c16ec58 7961 free_sched_groups(cpu_map, tmpmask);
c6c4927b 7962 free_rootdomain(rd);
3404c8d9 7963 goto free_tmpmask;
a616058b 7964#endif
1da177e4 7965}
029190c5 7966
96f874e2 7967static int build_sched_domains(const struct cpumask *cpu_map)
1d3504fc
HS
7968{
7969 return __build_sched_domains(cpu_map, NULL);
7970}
7971
96f874e2 7972static struct cpumask *doms_cur; /* current sched domains */
029190c5 7973static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
7974static struct sched_domain_attr *dattr_cur;
7975 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
7976
7977/*
7978 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
7979 * cpumask) fails, then fallback to a single sched domain,
7980 * as determined by the single cpumask fallback_doms.
029190c5 7981 */
4212823f 7982static cpumask_var_t fallback_doms;
029190c5 7983
ee79d1bd
HC
7984/*
7985 * arch_update_cpu_topology lets virtualized architectures update the
7986 * cpu core maps. It is supposed to return 1 if the topology changed
7987 * or 0 if it stayed the same.
7988 */
7989int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 7990{
ee79d1bd 7991 return 0;
22e52b07
HC
7992}
7993
1a20ff27 7994/*
41a2d6cf 7995 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
7996 * For now this just excludes isolated cpus, but could be used to
7997 * exclude other special cases in the future.
1a20ff27 7998 */
96f874e2 7999static int arch_init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 8000{
7378547f
MM
8001 int err;
8002
22e52b07 8003 arch_update_cpu_topology();
029190c5 8004 ndoms_cur = 1;
96f874e2 8005 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
029190c5 8006 if (!doms_cur)
4212823f 8007 doms_cur = fallback_doms;
dcc30a35 8008 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
1d3504fc 8009 dattr_cur = NULL;
7378547f 8010 err = build_sched_domains(doms_cur);
6382bc90 8011 register_sched_domain_sysctl();
7378547f
MM
8012
8013 return err;
1a20ff27
DG
8014}
8015
96f874e2
RR
8016static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
8017 struct cpumask *tmpmask)
1da177e4 8018{
7c16ec58 8019 free_sched_groups(cpu_map, tmpmask);
9c1cfda2 8020}
1da177e4 8021
1a20ff27
DG
8022/*
8023 * Detach sched domains from a group of cpus specified in cpu_map
8024 * These cpus will now be attached to the NULL domain
8025 */
96f874e2 8026static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27 8027{
96f874e2
RR
8028 /* Save because hotplug lock held. */
8029 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
1a20ff27
DG
8030 int i;
8031
abcd083a 8032 for_each_cpu(i, cpu_map)
57d885fe 8033 cpu_attach_domain(NULL, &def_root_domain, i);
1a20ff27 8034 synchronize_sched();
96f874e2 8035 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
1a20ff27
DG
8036}
8037
1d3504fc
HS
8038/* handle null as "default" */
8039static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
8040 struct sched_domain_attr *new, int idx_new)
8041{
8042 struct sched_domain_attr tmp;
8043
8044 /* fast path */
8045 if (!new && !cur)
8046 return 1;
8047
8048 tmp = SD_ATTR_INIT;
8049 return !memcmp(cur ? (cur + idx_cur) : &tmp,
8050 new ? (new + idx_new) : &tmp,
8051 sizeof(struct sched_domain_attr));
8052}
8053
029190c5
PJ
8054/*
8055 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 8056 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
8057 * doms_new[] to the current sched domain partitioning, doms_cur[].
8058 * It destroys each deleted domain and builds each new domain.
8059 *
96f874e2 8060 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
41a2d6cf
IM
8061 * The masks don't intersect (don't overlap.) We should setup one
8062 * sched domain for each mask. CPUs not in any of the cpumasks will
8063 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
8064 * current 'doms_cur' domains and in the new 'doms_new', we can leave
8065 * it as it is.
8066 *
41a2d6cf
IM
8067 * The passed in 'doms_new' should be kmalloc'd. This routine takes
8068 * ownership of it and will kfree it when done with it. If the caller
700018e0
LZ
8069 * failed the kmalloc call, then it can pass in doms_new == NULL &&
8070 * ndoms_new == 1, and partition_sched_domains() will fallback to
8071 * the single partition 'fallback_doms', it also forces the domains
8072 * to be rebuilt.
029190c5 8073 *
96f874e2 8074 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
8075 * ndoms_new == 0 is a special case for destroying existing domains,
8076 * and it will not create the default domain.
dfb512ec 8077 *
029190c5
PJ
8078 * Call with hotplug lock held
8079 */
96f874e2
RR
8080/* FIXME: Change to struct cpumask *doms_new[] */
8081void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
1d3504fc 8082 struct sched_domain_attr *dattr_new)
029190c5 8083{
dfb512ec 8084 int i, j, n;
d65bd5ec 8085 int new_topology;
029190c5 8086
712555ee 8087 mutex_lock(&sched_domains_mutex);
a1835615 8088
7378547f
MM
8089 /* always unregister in case we don't destroy any domains */
8090 unregister_sched_domain_sysctl();
8091
d65bd5ec
HC
8092 /* Let architecture update cpu core mappings. */
8093 new_topology = arch_update_cpu_topology();
8094
dfb512ec 8095 n = doms_new ? ndoms_new : 0;
029190c5
PJ
8096
8097 /* Destroy deleted domains */
8098 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 8099 for (j = 0; j < n && !new_topology; j++) {
96f874e2 8100 if (cpumask_equal(&doms_cur[i], &doms_new[j])
1d3504fc 8101 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
8102 goto match1;
8103 }
8104 /* no match - a current sched domain not in new doms_new[] */
8105 detach_destroy_domains(doms_cur + i);
8106match1:
8107 ;
8108 }
8109
e761b772
MK
8110 if (doms_new == NULL) {
8111 ndoms_cur = 0;
4212823f 8112 doms_new = fallback_doms;
dcc30a35 8113 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
faa2f98f 8114 WARN_ON_ONCE(dattr_new);
e761b772
MK
8115 }
8116
029190c5
PJ
8117 /* Build new domains */
8118 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 8119 for (j = 0; j < ndoms_cur && !new_topology; j++) {
96f874e2 8120 if (cpumask_equal(&doms_new[i], &doms_cur[j])
1d3504fc 8121 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
8122 goto match2;
8123 }
8124 /* no match - add a new doms_new */
1d3504fc
HS
8125 __build_sched_domains(doms_new + i,
8126 dattr_new ? dattr_new + i : NULL);
029190c5
PJ
8127match2:
8128 ;
8129 }
8130
8131 /* Remember the new sched domains */
4212823f 8132 if (doms_cur != fallback_doms)
029190c5 8133 kfree(doms_cur);
1d3504fc 8134 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 8135 doms_cur = doms_new;
1d3504fc 8136 dattr_cur = dattr_new;
029190c5 8137 ndoms_cur = ndoms_new;
7378547f
MM
8138
8139 register_sched_domain_sysctl();
a1835615 8140
712555ee 8141 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
8142}
8143
5c45bf27 8144#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
c70f22d2 8145static void arch_reinit_sched_domains(void)
5c45bf27 8146{
95402b38 8147 get_online_cpus();
dfb512ec
MK
8148
8149 /* Destroy domains first to force the rebuild */
8150 partition_sched_domains(0, NULL, NULL);
8151
e761b772 8152 rebuild_sched_domains();
95402b38 8153 put_online_cpus();
5c45bf27
SS
8154}
8155
8156static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
8157{
afb8a9b7 8158 unsigned int level = 0;
5c45bf27 8159
afb8a9b7
GS
8160 if (sscanf(buf, "%u", &level) != 1)
8161 return -EINVAL;
8162
8163 /*
8164 * level is always be positive so don't check for
8165 * level < POWERSAVINGS_BALANCE_NONE which is 0
8166 * What happens on 0 or 1 byte write,
8167 * need to check for count as well?
8168 */
8169
8170 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
5c45bf27
SS
8171 return -EINVAL;
8172
8173 if (smt)
afb8a9b7 8174 sched_smt_power_savings = level;
5c45bf27 8175 else
afb8a9b7 8176 sched_mc_power_savings = level;
5c45bf27 8177
c70f22d2 8178 arch_reinit_sched_domains();
5c45bf27 8179
c70f22d2 8180 return count;
5c45bf27
SS
8181}
8182
5c45bf27 8183#ifdef CONFIG_SCHED_MC
f718cd4a
AK
8184static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
8185 char *page)
5c45bf27
SS
8186{
8187 return sprintf(page, "%u\n", sched_mc_power_savings);
8188}
f718cd4a 8189static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
48f24c4d 8190 const char *buf, size_t count)
5c45bf27
SS
8191{
8192 return sched_power_savings_store(buf, count, 0);
8193}
f718cd4a
AK
8194static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
8195 sched_mc_power_savings_show,
8196 sched_mc_power_savings_store);
5c45bf27
SS
8197#endif
8198
8199#ifdef CONFIG_SCHED_SMT
f718cd4a
AK
8200static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
8201 char *page)
5c45bf27
SS
8202{
8203 return sprintf(page, "%u\n", sched_smt_power_savings);
8204}
f718cd4a 8205static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
48f24c4d 8206 const char *buf, size_t count)
5c45bf27
SS
8207{
8208 return sched_power_savings_store(buf, count, 1);
8209}
f718cd4a
AK
8210static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
8211 sched_smt_power_savings_show,
6707de00
AB
8212 sched_smt_power_savings_store);
8213#endif
8214
39aac648 8215int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6707de00
AB
8216{
8217 int err = 0;
8218
8219#ifdef CONFIG_SCHED_SMT
8220 if (smt_capable())
8221 err = sysfs_create_file(&cls->kset.kobj,
8222 &attr_sched_smt_power_savings.attr);
8223#endif
8224#ifdef CONFIG_SCHED_MC
8225 if (!err && mc_capable())
8226 err = sysfs_create_file(&cls->kset.kobj,
8227 &attr_sched_mc_power_savings.attr);
8228#endif
8229 return err;
8230}
6d6bc0ad 8231#endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
5c45bf27 8232
e761b772 8233#ifndef CONFIG_CPUSETS
1da177e4 8234/*
e761b772
MK
8235 * Add online and remove offline CPUs from the scheduler domains.
8236 * When cpusets are enabled they take over this function.
1da177e4
LT
8237 */
8238static int update_sched_domains(struct notifier_block *nfb,
8239 unsigned long action, void *hcpu)
e761b772
MK
8240{
8241 switch (action) {
8242 case CPU_ONLINE:
8243 case CPU_ONLINE_FROZEN:
8244 case CPU_DEAD:
8245 case CPU_DEAD_FROZEN:
dfb512ec 8246 partition_sched_domains(1, NULL, NULL);
e761b772
MK
8247 return NOTIFY_OK;
8248
8249 default:
8250 return NOTIFY_DONE;
8251 }
8252}
8253#endif
8254
8255static int update_runtime(struct notifier_block *nfb,
8256 unsigned long action, void *hcpu)
1da177e4 8257{
7def2be1
PZ
8258 int cpu = (int)(long)hcpu;
8259
1da177e4 8260 switch (action) {
1da177e4 8261 case CPU_DOWN_PREPARE:
8bb78442 8262 case CPU_DOWN_PREPARE_FROZEN:
7def2be1 8263 disable_runtime(cpu_rq(cpu));
1da177e4
LT
8264 return NOTIFY_OK;
8265
1da177e4 8266 case CPU_DOWN_FAILED:
8bb78442 8267 case CPU_DOWN_FAILED_FROZEN:
1da177e4 8268 case CPU_ONLINE:
8bb78442 8269 case CPU_ONLINE_FROZEN:
7def2be1 8270 enable_runtime(cpu_rq(cpu));
e761b772
MK
8271 return NOTIFY_OK;
8272
1da177e4
LT
8273 default:
8274 return NOTIFY_DONE;
8275 }
1da177e4 8276}
1da177e4
LT
8277
8278void __init sched_init_smp(void)
8279{
dcc30a35
RR
8280 cpumask_var_t non_isolated_cpus;
8281
8282 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
5c1e1767 8283
434d53b0
MT
8284#if defined(CONFIG_NUMA)
8285 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
8286 GFP_KERNEL);
8287 BUG_ON(sched_group_nodes_bycpu == NULL);
8288#endif
95402b38 8289 get_online_cpus();
712555ee 8290 mutex_lock(&sched_domains_mutex);
dcc30a35
RR
8291 arch_init_sched_domains(cpu_online_mask);
8292 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
8293 if (cpumask_empty(non_isolated_cpus))
8294 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 8295 mutex_unlock(&sched_domains_mutex);
95402b38 8296 put_online_cpus();
e761b772
MK
8297
8298#ifndef CONFIG_CPUSETS
1da177e4
LT
8299 /* XXX: Theoretical race here - CPU may be hotplugged now */
8300 hotcpu_notifier(update_sched_domains, 0);
e761b772
MK
8301#endif
8302
8303 /* RT runtime code needs to handle some hotplug events */
8304 hotcpu_notifier(update_runtime, 0);
8305
b328ca18 8306 init_hrtick();
5c1e1767
NP
8307
8308 /* Move init over to a non-isolated CPU */
dcc30a35 8309 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 8310 BUG();
19978ca6 8311 sched_init_granularity();
dcc30a35 8312 free_cpumask_var(non_isolated_cpus);
4212823f
RR
8313
8314 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
0e3900e6 8315 init_sched_rt_class();
1da177e4
LT
8316}
8317#else
8318void __init sched_init_smp(void)
8319{
19978ca6 8320 sched_init_granularity();
1da177e4
LT
8321}
8322#endif /* CONFIG_SMP */
8323
8324int in_sched_functions(unsigned long addr)
8325{
1da177e4
LT
8326 return in_lock_functions(addr) ||
8327 (addr >= (unsigned long)__sched_text_start
8328 && addr < (unsigned long)__sched_text_end);
8329}
8330
a9957449 8331static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
8332{
8333 cfs_rq->tasks_timeline = RB_ROOT;
4a55bd5e 8334 INIT_LIST_HEAD(&cfs_rq->tasks);
dd41f596
IM
8335#ifdef CONFIG_FAIR_GROUP_SCHED
8336 cfs_rq->rq = rq;
8337#endif
67e9fb2a 8338 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
8339}
8340
fa85ae24
PZ
8341static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
8342{
8343 struct rt_prio_array *array;
8344 int i;
8345
8346 array = &rt_rq->active;
8347 for (i = 0; i < MAX_RT_PRIO; i++) {
8348 INIT_LIST_HEAD(array->queue + i);
8349 __clear_bit(i, array->bitmap);
8350 }
8351 /* delimiter for bitsearch: */
8352 __set_bit(MAX_RT_PRIO, array->bitmap);
8353
052f1dc7 8354#if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
e864c499 8355 rt_rq->highest_prio.curr = MAX_RT_PRIO;
398a153b 8356#ifdef CONFIG_SMP
e864c499 8357 rt_rq->highest_prio.next = MAX_RT_PRIO;
48d5e258 8358#endif
48d5e258 8359#endif
fa85ae24
PZ
8360#ifdef CONFIG_SMP
8361 rt_rq->rt_nr_migratory = 0;
fa85ae24 8362 rt_rq->overloaded = 0;
917b627d 8363 plist_head_init(&rq->rt.pushable_tasks, &rq->lock);
fa85ae24
PZ
8364#endif
8365
8366 rt_rq->rt_time = 0;
8367 rt_rq->rt_throttled = 0;
ac086bc2
PZ
8368 rt_rq->rt_runtime = 0;
8369 spin_lock_init(&rt_rq->rt_runtime_lock);
6f505b16 8370
052f1dc7 8371#ifdef CONFIG_RT_GROUP_SCHED
23b0fdfc 8372 rt_rq->rt_nr_boosted = 0;
6f505b16
PZ
8373 rt_rq->rq = rq;
8374#endif
fa85ae24
PZ
8375}
8376
6f505b16 8377#ifdef CONFIG_FAIR_GROUP_SCHED
ec7dc8ac
DG
8378static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8379 struct sched_entity *se, int cpu, int add,
8380 struct sched_entity *parent)
6f505b16 8381{
ec7dc8ac 8382 struct rq *rq = cpu_rq(cpu);
6f505b16
PZ
8383 tg->cfs_rq[cpu] = cfs_rq;
8384 init_cfs_rq(cfs_rq, rq);
8385 cfs_rq->tg = tg;
8386 if (add)
8387 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
8388
8389 tg->se[cpu] = se;
354d60c2
DG
8390 /* se could be NULL for init_task_group */
8391 if (!se)
8392 return;
8393
ec7dc8ac
DG
8394 if (!parent)
8395 se->cfs_rq = &rq->cfs;
8396 else
8397 se->cfs_rq = parent->my_q;
8398
6f505b16
PZ
8399 se->my_q = cfs_rq;
8400 se->load.weight = tg->shares;
e05510d0 8401 se->load.inv_weight = 0;
ec7dc8ac 8402 se->parent = parent;
6f505b16 8403}
052f1dc7 8404#endif
6f505b16 8405
052f1dc7 8406#ifdef CONFIG_RT_GROUP_SCHED
ec7dc8ac
DG
8407static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
8408 struct sched_rt_entity *rt_se, int cpu, int add,
8409 struct sched_rt_entity *parent)
6f505b16 8410{
ec7dc8ac
DG
8411 struct rq *rq = cpu_rq(cpu);
8412
6f505b16
PZ
8413 tg->rt_rq[cpu] = rt_rq;
8414 init_rt_rq(rt_rq, rq);
8415 rt_rq->tg = tg;
8416 rt_rq->rt_se = rt_se;
ac086bc2 8417 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
6f505b16
PZ
8418 if (add)
8419 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
8420
8421 tg->rt_se[cpu] = rt_se;
354d60c2
DG
8422 if (!rt_se)
8423 return;
8424
ec7dc8ac
DG
8425 if (!parent)
8426 rt_se->rt_rq = &rq->rt;
8427 else
8428 rt_se->rt_rq = parent->my_q;
8429
6f505b16 8430 rt_se->my_q = rt_rq;
ec7dc8ac 8431 rt_se->parent = parent;
6f505b16
PZ
8432 INIT_LIST_HEAD(&rt_se->run_list);
8433}
8434#endif
8435
1da177e4
LT
8436void __init sched_init(void)
8437{
dd41f596 8438 int i, j;
434d53b0
MT
8439 unsigned long alloc_size = 0, ptr;
8440
8441#ifdef CONFIG_FAIR_GROUP_SCHED
8442 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
8443#endif
8444#ifdef CONFIG_RT_GROUP_SCHED
8445 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8446#endif
8447#ifdef CONFIG_USER_SCHED
8448 alloc_size *= 2;
434d53b0
MT
8449#endif
8450 /*
8451 * As sched_init() is called before page_alloc is setup,
8452 * we use alloc_bootmem().
8453 */
8454 if (alloc_size) {
5a9d3225 8455 ptr = (unsigned long)alloc_bootmem(alloc_size);
434d53b0
MT
8456
8457#ifdef CONFIG_FAIR_GROUP_SCHED
8458 init_task_group.se = (struct sched_entity **)ptr;
8459 ptr += nr_cpu_ids * sizeof(void **);
8460
8461 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
8462 ptr += nr_cpu_ids * sizeof(void **);
eff766a6
PZ
8463
8464#ifdef CONFIG_USER_SCHED
8465 root_task_group.se = (struct sched_entity **)ptr;
8466 ptr += nr_cpu_ids * sizeof(void **);
8467
8468 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
8469 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8470#endif /* CONFIG_USER_SCHED */
8471#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0
MT
8472#ifdef CONFIG_RT_GROUP_SCHED
8473 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
8474 ptr += nr_cpu_ids * sizeof(void **);
8475
8476 init_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
8477 ptr += nr_cpu_ids * sizeof(void **);
8478
8479#ifdef CONFIG_USER_SCHED
8480 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
8481 ptr += nr_cpu_ids * sizeof(void **);
8482
8483 root_task_group.rt_rq = (struct rt_rq **)ptr;
8484 ptr += nr_cpu_ids * sizeof(void **);
6d6bc0ad
DG
8485#endif /* CONFIG_USER_SCHED */
8486#endif /* CONFIG_RT_GROUP_SCHED */
434d53b0 8487 }
dd41f596 8488
57d885fe
GH
8489#ifdef CONFIG_SMP
8490 init_defrootdomain();
8491#endif
8492
d0b27fa7
PZ
8493 init_rt_bandwidth(&def_rt_bandwidth,
8494 global_rt_period(), global_rt_runtime());
8495
8496#ifdef CONFIG_RT_GROUP_SCHED
8497 init_rt_bandwidth(&init_task_group.rt_bandwidth,
8498 global_rt_period(), global_rt_runtime());
eff766a6
PZ
8499#ifdef CONFIG_USER_SCHED
8500 init_rt_bandwidth(&root_task_group.rt_bandwidth,
8501 global_rt_period(), RUNTIME_INF);
6d6bc0ad
DG
8502#endif /* CONFIG_USER_SCHED */
8503#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 8504
052f1dc7 8505#ifdef CONFIG_GROUP_SCHED
6f505b16 8506 list_add(&init_task_group.list, &task_groups);
f473aa5e
PZ
8507 INIT_LIST_HEAD(&init_task_group.children);
8508
8509#ifdef CONFIG_USER_SCHED
8510 INIT_LIST_HEAD(&root_task_group.children);
8511 init_task_group.parent = &root_task_group;
8512 list_add(&init_task_group.siblings, &root_task_group.children);
6d6bc0ad
DG
8513#endif /* CONFIG_USER_SCHED */
8514#endif /* CONFIG_GROUP_SCHED */
6f505b16 8515
0a945022 8516 for_each_possible_cpu(i) {
70b97a7f 8517 struct rq *rq;
1da177e4
LT
8518
8519 rq = cpu_rq(i);
8520 spin_lock_init(&rq->lock);
7897986b 8521 rq->nr_running = 0;
dd41f596 8522 init_cfs_rq(&rq->cfs, rq);
6f505b16 8523 init_rt_rq(&rq->rt, rq);
dd41f596 8524#ifdef CONFIG_FAIR_GROUP_SCHED
4cf86d77 8525 init_task_group.shares = init_task_group_load;
6f505b16 8526 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2
DG
8527#ifdef CONFIG_CGROUP_SCHED
8528 /*
8529 * How much cpu bandwidth does init_task_group get?
8530 *
8531 * In case of task-groups formed thr' the cgroup filesystem, it
8532 * gets 100% of the cpu resources in the system. This overall
8533 * system cpu resource is divided among the tasks of
8534 * init_task_group and its child task-groups in a fair manner,
8535 * based on each entity's (task or task-group's) weight
8536 * (se->load.weight).
8537 *
8538 * In other words, if init_task_group has 10 tasks of weight
8539 * 1024) and two child groups A0 and A1 (of weight 1024 each),
8540 * then A0's share of the cpu resource is:
8541 *
8542 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
8543 *
8544 * We achieve this by letting init_task_group's tasks sit
8545 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
8546 */
ec7dc8ac 8547 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
354d60c2 8548#elif defined CONFIG_USER_SCHED
eff766a6
PZ
8549 root_task_group.shares = NICE_0_LOAD;
8550 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
354d60c2
DG
8551 /*
8552 * In case of task-groups formed thr' the user id of tasks,
8553 * init_task_group represents tasks belonging to root user.
8554 * Hence it forms a sibling of all subsequent groups formed.
8555 * In this case, init_task_group gets only a fraction of overall
8556 * system cpu resource, based on the weight assigned to root
8557 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
8558 * by letting tasks of init_task_group sit in a separate cfs_rq
8559 * (init_cfs_rq) and having one entity represent this group of
8560 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
8561 */
ec7dc8ac 8562 init_tg_cfs_entry(&init_task_group,
6f505b16 8563 &per_cpu(init_cfs_rq, i),
eff766a6
PZ
8564 &per_cpu(init_sched_entity, i), i, 1,
8565 root_task_group.se[i]);
6f505b16 8566
052f1dc7 8567#endif
354d60c2
DG
8568#endif /* CONFIG_FAIR_GROUP_SCHED */
8569
8570 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 8571#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8572 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
354d60c2 8573#ifdef CONFIG_CGROUP_SCHED
ec7dc8ac 8574 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
354d60c2 8575#elif defined CONFIG_USER_SCHED
eff766a6 8576 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
ec7dc8ac 8577 init_tg_rt_entry(&init_task_group,
6f505b16 8578 &per_cpu(init_rt_rq, i),
eff766a6
PZ
8579 &per_cpu(init_sched_rt_entity, i), i, 1,
8580 root_task_group.rt_se[i]);
354d60c2 8581#endif
dd41f596 8582#endif
1da177e4 8583
dd41f596
IM
8584 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
8585 rq->cpu_load[j] = 0;
1da177e4 8586#ifdef CONFIG_SMP
41c7ce9a 8587 rq->sd = NULL;
57d885fe 8588 rq->rd = NULL;
1da177e4 8589 rq->active_balance = 0;
dd41f596 8590 rq->next_balance = jiffies;
1da177e4 8591 rq->push_cpu = 0;
0a2966b4 8592 rq->cpu = i;
1f11eb6a 8593 rq->online = 0;
1da177e4
LT
8594 rq->migration_thread = NULL;
8595 INIT_LIST_HEAD(&rq->migration_queue);
dc938520 8596 rq_attach_root(rq, &def_root_domain);
1da177e4 8597#endif
8f4d37ec 8598 init_rq_hrtick(rq);
1da177e4 8599 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
8600 }
8601
2dd73a4f 8602 set_load_weight(&init_task);
b50f60ce 8603
e107be36
AK
8604#ifdef CONFIG_PREEMPT_NOTIFIERS
8605 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
8606#endif
8607
c9819f45 8608#ifdef CONFIG_SMP
962cf36c 8609 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
c9819f45
CL
8610#endif
8611
b50f60ce
HC
8612#ifdef CONFIG_RT_MUTEXES
8613 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
8614#endif
8615
1da177e4
LT
8616 /*
8617 * The boot idle thread does lazy MMU switching as well:
8618 */
8619 atomic_inc(&init_mm.mm_count);
8620 enter_lazy_tlb(&init_mm, current);
8621
8622 /*
8623 * Make us the idle thread. Technically, schedule() should not be
8624 * called from this thread, however somewhere below it might be,
8625 * but because we are the idle thread, we just pick up running again
8626 * when this runqueue becomes "idle".
8627 */
8628 init_idle(current, smp_processor_id());
dd41f596
IM
8629 /*
8630 * During early bootup we pretend to be a normal task:
8631 */
8632 current->sched_class = &fair_sched_class;
6892b75e 8633
6a7b3dc3
RR
8634 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
8635 alloc_bootmem_cpumask_var(&nohz_cpu_mask);
bf4d83f6 8636#ifdef CONFIG_SMP
7d1e6a9b
RR
8637#ifdef CONFIG_NO_HZ
8638 alloc_bootmem_cpumask_var(&nohz.cpu_mask);
8639#endif
dcc30a35 8640 alloc_bootmem_cpumask_var(&cpu_isolated_map);
bf4d83f6 8641#endif /* SMP */
6a7b3dc3 8642
6892b75e 8643 scheduler_running = 1;
1da177e4
LT
8644}
8645
8646#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
8647void __might_sleep(char *file, int line)
8648{
48f24c4d 8649#ifdef in_atomic
1da177e4
LT
8650 static unsigned long prev_jiffy; /* ratelimiting */
8651
aef745fc
IM
8652 if ((!in_atomic() && !irqs_disabled()) ||
8653 system_state != SYSTEM_RUNNING || oops_in_progress)
8654 return;
8655 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
8656 return;
8657 prev_jiffy = jiffies;
8658
8659 printk(KERN_ERR
8660 "BUG: sleeping function called from invalid context at %s:%d\n",
8661 file, line);
8662 printk(KERN_ERR
8663 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
8664 in_atomic(), irqs_disabled(),
8665 current->pid, current->comm);
8666
8667 debug_show_held_locks(current);
8668 if (irqs_disabled())
8669 print_irqtrace_events(current);
8670 dump_stack();
1da177e4
LT
8671#endif
8672}
8673EXPORT_SYMBOL(__might_sleep);
8674#endif
8675
8676#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
8677static void normalize_task(struct rq *rq, struct task_struct *p)
8678{
8679 int on_rq;
3e51f33f 8680
3a5e4dc1
AK
8681 update_rq_clock(rq);
8682 on_rq = p->se.on_rq;
8683 if (on_rq)
8684 deactivate_task(rq, p, 0);
8685 __setscheduler(rq, p, SCHED_NORMAL, 0);
8686 if (on_rq) {
8687 activate_task(rq, p, 0);
8688 resched_task(rq->curr);
8689 }
8690}
8691
1da177e4
LT
8692void normalize_rt_tasks(void)
8693{
a0f98a1c 8694 struct task_struct *g, *p;
1da177e4 8695 unsigned long flags;
70b97a7f 8696 struct rq *rq;
1da177e4 8697
4cf5d77a 8698 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 8699 do_each_thread(g, p) {
178be793
IM
8700 /*
8701 * Only normalize user tasks:
8702 */
8703 if (!p->mm)
8704 continue;
8705
6cfb0d5d 8706 p->se.exec_start = 0;
6cfb0d5d 8707#ifdef CONFIG_SCHEDSTATS
dd41f596 8708 p->se.wait_start = 0;
dd41f596 8709 p->se.sleep_start = 0;
dd41f596 8710 p->se.block_start = 0;
6cfb0d5d 8711#endif
dd41f596
IM
8712
8713 if (!rt_task(p)) {
8714 /*
8715 * Renice negative nice level userspace
8716 * tasks back to 0:
8717 */
8718 if (TASK_NICE(p) < 0 && p->mm)
8719 set_user_nice(p, 0);
1da177e4 8720 continue;
dd41f596 8721 }
1da177e4 8722
4cf5d77a 8723 spin_lock(&p->pi_lock);
b29739f9 8724 rq = __task_rq_lock(p);
1da177e4 8725
178be793 8726 normalize_task(rq, p);
3a5e4dc1 8727
b29739f9 8728 __task_rq_unlock(rq);
4cf5d77a 8729 spin_unlock(&p->pi_lock);
a0f98a1c
IM
8730 } while_each_thread(g, p);
8731
4cf5d77a 8732 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
8733}
8734
8735#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
8736
8737#ifdef CONFIG_IA64
8738/*
8739 * These functions are only useful for the IA64 MCA handling.
8740 *
8741 * They can only be called when the whole system has been
8742 * stopped - every CPU needs to be quiescent, and no scheduling
8743 * activity can take place. Using them for anything else would
8744 * be a serious bug, and as a result, they aren't even visible
8745 * under any other configuration.
8746 */
8747
8748/**
8749 * curr_task - return the current task for a given cpu.
8750 * @cpu: the processor in question.
8751 *
8752 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8753 */
36c8b586 8754struct task_struct *curr_task(int cpu)
1df5c10a
LT
8755{
8756 return cpu_curr(cpu);
8757}
8758
8759/**
8760 * set_curr_task - set the current task for a given cpu.
8761 * @cpu: the processor in question.
8762 * @p: the task pointer to set.
8763 *
8764 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
8765 * are serviced on a separate stack. It allows the architecture to switch the
8766 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
8767 * must be called with all CPU's synchronized, and interrupts disabled, the
8768 * and caller must save the original value of the current task (see
8769 * curr_task() above) and restore that value before reenabling interrupts and
8770 * re-starting the system.
8771 *
8772 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8773 */
36c8b586 8774void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
8775{
8776 cpu_curr(cpu) = p;
8777}
8778
8779#endif
29f59db3 8780
bccbe08a
PZ
8781#ifdef CONFIG_FAIR_GROUP_SCHED
8782static void free_fair_sched_group(struct task_group *tg)
6f505b16
PZ
8783{
8784 int i;
8785
8786 for_each_possible_cpu(i) {
8787 if (tg->cfs_rq)
8788 kfree(tg->cfs_rq[i]);
8789 if (tg->se)
8790 kfree(tg->se[i]);
6f505b16
PZ
8791 }
8792
8793 kfree(tg->cfs_rq);
8794 kfree(tg->se);
6f505b16
PZ
8795}
8796
ec7dc8ac
DG
8797static
8798int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
29f59db3 8799{
29f59db3 8800 struct cfs_rq *cfs_rq;
eab17229 8801 struct sched_entity *se;
9b5b7751 8802 struct rq *rq;
29f59db3
SV
8803 int i;
8804
434d53b0 8805 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8806 if (!tg->cfs_rq)
8807 goto err;
434d53b0 8808 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
29f59db3
SV
8809 if (!tg->se)
8810 goto err;
052f1dc7
PZ
8811
8812 tg->shares = NICE_0_LOAD;
29f59db3
SV
8813
8814 for_each_possible_cpu(i) {
9b5b7751 8815 rq = cpu_rq(i);
29f59db3 8816
eab17229
LZ
8817 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8818 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8819 if (!cfs_rq)
8820 goto err;
8821
eab17229
LZ
8822 se = kzalloc_node(sizeof(struct sched_entity),
8823 GFP_KERNEL, cpu_to_node(i));
29f59db3
SV
8824 if (!se)
8825 goto err;
8826
eab17229 8827 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
bccbe08a
PZ
8828 }
8829
8830 return 1;
8831
8832 err:
8833 return 0;
8834}
8835
8836static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8837{
8838 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
8839 &cpu_rq(cpu)->leaf_cfs_rq_list);
8840}
8841
8842static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8843{
8844 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
8845}
6d6bc0ad 8846#else /* !CONFG_FAIR_GROUP_SCHED */
bccbe08a
PZ
8847static inline void free_fair_sched_group(struct task_group *tg)
8848{
8849}
8850
ec7dc8ac
DG
8851static inline
8852int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8853{
8854 return 1;
8855}
8856
8857static inline void register_fair_sched_group(struct task_group *tg, int cpu)
8858{
8859}
8860
8861static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
8862{
8863}
6d6bc0ad 8864#endif /* CONFIG_FAIR_GROUP_SCHED */
052f1dc7
PZ
8865
8866#ifdef CONFIG_RT_GROUP_SCHED
bccbe08a
PZ
8867static void free_rt_sched_group(struct task_group *tg)
8868{
8869 int i;
8870
d0b27fa7
PZ
8871 destroy_rt_bandwidth(&tg->rt_bandwidth);
8872
bccbe08a
PZ
8873 for_each_possible_cpu(i) {
8874 if (tg->rt_rq)
8875 kfree(tg->rt_rq[i]);
8876 if (tg->rt_se)
8877 kfree(tg->rt_se[i]);
8878 }
8879
8880 kfree(tg->rt_rq);
8881 kfree(tg->rt_se);
8882}
8883
ec7dc8ac
DG
8884static
8885int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8886{
8887 struct rt_rq *rt_rq;
eab17229 8888 struct sched_rt_entity *rt_se;
bccbe08a
PZ
8889 struct rq *rq;
8890 int i;
8891
434d53b0 8892 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8893 if (!tg->rt_rq)
8894 goto err;
434d53b0 8895 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
bccbe08a
PZ
8896 if (!tg->rt_se)
8897 goto err;
8898
d0b27fa7
PZ
8899 init_rt_bandwidth(&tg->rt_bandwidth,
8900 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
bccbe08a
PZ
8901
8902 for_each_possible_cpu(i) {
8903 rq = cpu_rq(i);
8904
eab17229
LZ
8905 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8906 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8907 if (!rt_rq)
8908 goto err;
29f59db3 8909
eab17229
LZ
8910 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8911 GFP_KERNEL, cpu_to_node(i));
6f505b16
PZ
8912 if (!rt_se)
8913 goto err;
29f59db3 8914
eab17229 8915 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
29f59db3
SV
8916 }
8917
bccbe08a
PZ
8918 return 1;
8919
8920 err:
8921 return 0;
8922}
8923
8924static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8925{
8926 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8927 &cpu_rq(cpu)->leaf_rt_rq_list);
8928}
8929
8930static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8931{
8932 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8933}
6d6bc0ad 8934#else /* !CONFIG_RT_GROUP_SCHED */
bccbe08a
PZ
8935static inline void free_rt_sched_group(struct task_group *tg)
8936{
8937}
8938
ec7dc8ac
DG
8939static inline
8940int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
bccbe08a
PZ
8941{
8942 return 1;
8943}
8944
8945static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8946{
8947}
8948
8949static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8950{
8951}
6d6bc0ad 8952#endif /* CONFIG_RT_GROUP_SCHED */
bccbe08a 8953
d0b27fa7 8954#ifdef CONFIG_GROUP_SCHED
bccbe08a
PZ
8955static void free_sched_group(struct task_group *tg)
8956{
8957 free_fair_sched_group(tg);
8958 free_rt_sched_group(tg);
8959 kfree(tg);
8960}
8961
8962/* allocate runqueue etc for a new task group */
ec7dc8ac 8963struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
8964{
8965 struct task_group *tg;
8966 unsigned long flags;
8967 int i;
8968
8969 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8970 if (!tg)
8971 return ERR_PTR(-ENOMEM);
8972
ec7dc8ac 8973 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
8974 goto err;
8975
ec7dc8ac 8976 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
8977 goto err;
8978
8ed36996 8979 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 8980 for_each_possible_cpu(i) {
bccbe08a
PZ
8981 register_fair_sched_group(tg, i);
8982 register_rt_sched_group(tg, i);
9b5b7751 8983 }
6f505b16 8984 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
8985
8986 WARN_ON(!parent); /* root should already exist */
8987
8988 tg->parent = parent;
f473aa5e 8989 INIT_LIST_HEAD(&tg->children);
09f2724a 8990 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 8991 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 8992
9b5b7751 8993 return tg;
29f59db3
SV
8994
8995err:
6f505b16 8996 free_sched_group(tg);
29f59db3
SV
8997 return ERR_PTR(-ENOMEM);
8998}
8999
9b5b7751 9000/* rcu callback to free various structures associated with a task group */
6f505b16 9001static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 9002{
29f59db3 9003 /* now it should be safe to free those cfs_rqs */
6f505b16 9004 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
9005}
9006
9b5b7751 9007/* Destroy runqueue etc associated with a task group */
4cf86d77 9008void sched_destroy_group(struct task_group *tg)
29f59db3 9009{
8ed36996 9010 unsigned long flags;
9b5b7751 9011 int i;
29f59db3 9012
8ed36996 9013 spin_lock_irqsave(&task_group_lock, flags);
9b5b7751 9014 for_each_possible_cpu(i) {
bccbe08a
PZ
9015 unregister_fair_sched_group(tg, i);
9016 unregister_rt_sched_group(tg, i);
9b5b7751 9017 }
6f505b16 9018 list_del_rcu(&tg->list);
f473aa5e 9019 list_del_rcu(&tg->siblings);
8ed36996 9020 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 9021
9b5b7751 9022 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 9023 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
9024}
9025
9b5b7751 9026/* change task's runqueue when it moves between groups.
3a252015
IM
9027 * The caller of this function should have put the task in its new group
9028 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
9029 * reflect its new group.
9b5b7751
SV
9030 */
9031void sched_move_task(struct task_struct *tsk)
29f59db3
SV
9032{
9033 int on_rq, running;
9034 unsigned long flags;
9035 struct rq *rq;
9036
9037 rq = task_rq_lock(tsk, &flags);
9038
29f59db3
SV
9039 update_rq_clock(rq);
9040
051a1d1a 9041 running = task_current(rq, tsk);
29f59db3
SV
9042 on_rq = tsk->se.on_rq;
9043
0e1f3483 9044 if (on_rq)
29f59db3 9045 dequeue_task(rq, tsk, 0);
0e1f3483
HS
9046 if (unlikely(running))
9047 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 9048
6f505b16 9049 set_task_rq(tsk, task_cpu(tsk));
29f59db3 9050
810b3817
PZ
9051#ifdef CONFIG_FAIR_GROUP_SCHED
9052 if (tsk->sched_class->moved_group)
9053 tsk->sched_class->moved_group(tsk);
9054#endif
9055
0e1f3483
HS
9056 if (unlikely(running))
9057 tsk->sched_class->set_curr_task(rq);
9058 if (on_rq)
7074badb 9059 enqueue_task(rq, tsk, 0);
29f59db3 9060
29f59db3
SV
9061 task_rq_unlock(rq, &flags);
9062}
6d6bc0ad 9063#endif /* CONFIG_GROUP_SCHED */
29f59db3 9064
052f1dc7 9065#ifdef CONFIG_FAIR_GROUP_SCHED
c09595f6 9066static void __set_se_shares(struct sched_entity *se, unsigned long shares)
29f59db3
SV
9067{
9068 struct cfs_rq *cfs_rq = se->cfs_rq;
29f59db3
SV
9069 int on_rq;
9070
29f59db3 9071 on_rq = se->on_rq;
62fb1851 9072 if (on_rq)
29f59db3
SV
9073 dequeue_entity(cfs_rq, se, 0);
9074
9075 se->load.weight = shares;
e05510d0 9076 se->load.inv_weight = 0;
29f59db3 9077
62fb1851 9078 if (on_rq)
29f59db3 9079 enqueue_entity(cfs_rq, se, 0);
c09595f6 9080}
62fb1851 9081
c09595f6
PZ
9082static void set_se_shares(struct sched_entity *se, unsigned long shares)
9083{
9084 struct cfs_rq *cfs_rq = se->cfs_rq;
9085 struct rq *rq = cfs_rq->rq;
9086 unsigned long flags;
9087
9088 spin_lock_irqsave(&rq->lock, flags);
9089 __set_se_shares(se, shares);
9090 spin_unlock_irqrestore(&rq->lock, flags);
29f59db3
SV
9091}
9092
8ed36996
PZ
9093static DEFINE_MUTEX(shares_mutex);
9094
4cf86d77 9095int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
9096{
9097 int i;
8ed36996 9098 unsigned long flags;
c61935fd 9099
ec7dc8ac
DG
9100 /*
9101 * We can't change the weight of the root cgroup.
9102 */
9103 if (!tg->se[0])
9104 return -EINVAL;
9105
18d95a28
PZ
9106 if (shares < MIN_SHARES)
9107 shares = MIN_SHARES;
cb4ad1ff
MX
9108 else if (shares > MAX_SHARES)
9109 shares = MAX_SHARES;
62fb1851 9110
8ed36996 9111 mutex_lock(&shares_mutex);
9b5b7751 9112 if (tg->shares == shares)
5cb350ba 9113 goto done;
29f59db3 9114
8ed36996 9115 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9116 for_each_possible_cpu(i)
9117 unregister_fair_sched_group(tg, i);
f473aa5e 9118 list_del_rcu(&tg->siblings);
8ed36996 9119 spin_unlock_irqrestore(&task_group_lock, flags);
6b2d7700
SV
9120
9121 /* wait for any ongoing reference to this group to finish */
9122 synchronize_sched();
9123
9124 /*
9125 * Now we are free to modify the group's share on each cpu
9126 * w/o tripping rebalance_share or load_balance_fair.
9127 */
9b5b7751 9128 tg->shares = shares;
c09595f6
PZ
9129 for_each_possible_cpu(i) {
9130 /*
9131 * force a rebalance
9132 */
9133 cfs_rq_set_shares(tg->cfs_rq[i], 0);
cb4ad1ff 9134 set_se_shares(tg->se[i], shares);
c09595f6 9135 }
29f59db3 9136
6b2d7700
SV
9137 /*
9138 * Enable load balance activity on this group, by inserting it back on
9139 * each cpu's rq->leaf_cfs_rq_list.
9140 */
8ed36996 9141 spin_lock_irqsave(&task_group_lock, flags);
bccbe08a
PZ
9142 for_each_possible_cpu(i)
9143 register_fair_sched_group(tg, i);
f473aa5e 9144 list_add_rcu(&tg->siblings, &tg->parent->children);
8ed36996 9145 spin_unlock_irqrestore(&task_group_lock, flags);
5cb350ba 9146done:
8ed36996 9147 mutex_unlock(&shares_mutex);
9b5b7751 9148 return 0;
29f59db3
SV
9149}
9150
5cb350ba
DG
9151unsigned long sched_group_shares(struct task_group *tg)
9152{
9153 return tg->shares;
9154}
052f1dc7 9155#endif
5cb350ba 9156
052f1dc7 9157#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9158/*
9f0c1e56 9159 * Ensure that the real time constraints are schedulable.
6f505b16 9160 */
9f0c1e56
PZ
9161static DEFINE_MUTEX(rt_constraints_mutex);
9162
9163static unsigned long to_ratio(u64 period, u64 runtime)
9164{
9165 if (runtime == RUNTIME_INF)
9a7e0b18 9166 return 1ULL << 20;
9f0c1e56 9167
9a7e0b18 9168 return div64_u64(runtime << 20, period);
9f0c1e56
PZ
9169}
9170
9a7e0b18
PZ
9171/* Must be called with tasklist_lock held */
9172static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 9173{
9a7e0b18 9174 struct task_struct *g, *p;
b40b2e8e 9175
9a7e0b18
PZ
9176 do_each_thread(g, p) {
9177 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
9178 return 1;
9179 } while_each_thread(g, p);
b40b2e8e 9180
9a7e0b18
PZ
9181 return 0;
9182}
b40b2e8e 9183
9a7e0b18
PZ
9184struct rt_schedulable_data {
9185 struct task_group *tg;
9186 u64 rt_period;
9187 u64 rt_runtime;
9188};
b40b2e8e 9189
9a7e0b18
PZ
9190static int tg_schedulable(struct task_group *tg, void *data)
9191{
9192 struct rt_schedulable_data *d = data;
9193 struct task_group *child;
9194 unsigned long total, sum = 0;
9195 u64 period, runtime;
b40b2e8e 9196
9a7e0b18
PZ
9197 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9198 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 9199
9a7e0b18
PZ
9200 if (tg == d->tg) {
9201 period = d->rt_period;
9202 runtime = d->rt_runtime;
b40b2e8e 9203 }
b40b2e8e 9204
98a4826b
PZ
9205#ifdef CONFIG_USER_SCHED
9206 if (tg == &root_task_group) {
9207 period = global_rt_period();
9208 runtime = global_rt_runtime();
9209 }
9210#endif
9211
4653f803
PZ
9212 /*
9213 * Cannot have more runtime than the period.
9214 */
9215 if (runtime > period && runtime != RUNTIME_INF)
9216 return -EINVAL;
6f505b16 9217
4653f803
PZ
9218 /*
9219 * Ensure we don't starve existing RT tasks.
9220 */
9a7e0b18
PZ
9221 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
9222 return -EBUSY;
6f505b16 9223
9a7e0b18 9224 total = to_ratio(period, runtime);
6f505b16 9225
4653f803
PZ
9226 /*
9227 * Nobody can have more than the global setting allows.
9228 */
9229 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
9230 return -EINVAL;
6f505b16 9231
4653f803
PZ
9232 /*
9233 * The sum of our children's runtime should not exceed our own.
9234 */
9a7e0b18
PZ
9235 list_for_each_entry_rcu(child, &tg->children, siblings) {
9236 period = ktime_to_ns(child->rt_bandwidth.rt_period);
9237 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 9238
9a7e0b18
PZ
9239 if (child == d->tg) {
9240 period = d->rt_period;
9241 runtime = d->rt_runtime;
9242 }
6f505b16 9243
9a7e0b18 9244 sum += to_ratio(period, runtime);
9f0c1e56 9245 }
6f505b16 9246
9a7e0b18
PZ
9247 if (sum > total)
9248 return -EINVAL;
9249
9250 return 0;
6f505b16
PZ
9251}
9252
9a7e0b18 9253static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 9254{
9a7e0b18
PZ
9255 struct rt_schedulable_data data = {
9256 .tg = tg,
9257 .rt_period = period,
9258 .rt_runtime = runtime,
9259 };
9260
9261 return walk_tg_tree(tg_schedulable, tg_nop, &data);
521f1a24
DG
9262}
9263
d0b27fa7
PZ
9264static int tg_set_bandwidth(struct task_group *tg,
9265 u64 rt_period, u64 rt_runtime)
6f505b16 9266{
ac086bc2 9267 int i, err = 0;
9f0c1e56 9268
9f0c1e56 9269 mutex_lock(&rt_constraints_mutex);
521f1a24 9270 read_lock(&tasklist_lock);
9a7e0b18
PZ
9271 err = __rt_schedulable(tg, rt_period, rt_runtime);
9272 if (err)
9f0c1e56 9273 goto unlock;
ac086bc2
PZ
9274
9275 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
9276 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
9277 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
9278
9279 for_each_possible_cpu(i) {
9280 struct rt_rq *rt_rq = tg->rt_rq[i];
9281
9282 spin_lock(&rt_rq->rt_runtime_lock);
9283 rt_rq->rt_runtime = rt_runtime;
9284 spin_unlock(&rt_rq->rt_runtime_lock);
9285 }
9286 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
9f0c1e56 9287 unlock:
521f1a24 9288 read_unlock(&tasklist_lock);
9f0c1e56
PZ
9289 mutex_unlock(&rt_constraints_mutex);
9290
9291 return err;
6f505b16
PZ
9292}
9293
d0b27fa7
PZ
9294int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
9295{
9296 u64 rt_runtime, rt_period;
9297
9298 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
9299 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
9300 if (rt_runtime_us < 0)
9301 rt_runtime = RUNTIME_INF;
9302
9303 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9304}
9305
9f0c1e56
PZ
9306long sched_group_rt_runtime(struct task_group *tg)
9307{
9308 u64 rt_runtime_us;
9309
d0b27fa7 9310 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
9311 return -1;
9312
d0b27fa7 9313 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
9314 do_div(rt_runtime_us, NSEC_PER_USEC);
9315 return rt_runtime_us;
9316}
d0b27fa7
PZ
9317
9318int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
9319{
9320 u64 rt_runtime, rt_period;
9321
9322 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
9323 rt_runtime = tg->rt_bandwidth.rt_runtime;
9324
619b0488
R
9325 if (rt_period == 0)
9326 return -EINVAL;
9327
d0b27fa7
PZ
9328 return tg_set_bandwidth(tg, rt_period, rt_runtime);
9329}
9330
9331long sched_group_rt_period(struct task_group *tg)
9332{
9333 u64 rt_period_us;
9334
9335 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
9336 do_div(rt_period_us, NSEC_PER_USEC);
9337 return rt_period_us;
9338}
9339
9340static int sched_rt_global_constraints(void)
9341{
4653f803 9342 u64 runtime, period;
d0b27fa7
PZ
9343 int ret = 0;
9344
ec5d4989
HS
9345 if (sysctl_sched_rt_period <= 0)
9346 return -EINVAL;
9347
4653f803
PZ
9348 runtime = global_rt_runtime();
9349 period = global_rt_period();
9350
9351 /*
9352 * Sanity check on the sysctl variables.
9353 */
9354 if (runtime > period && runtime != RUNTIME_INF)
9355 return -EINVAL;
10b612f4 9356
d0b27fa7 9357 mutex_lock(&rt_constraints_mutex);
9a7e0b18 9358 read_lock(&tasklist_lock);
4653f803 9359 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 9360 read_unlock(&tasklist_lock);
d0b27fa7
PZ
9361 mutex_unlock(&rt_constraints_mutex);
9362
9363 return ret;
9364}
54e99124
DG
9365
9366int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
9367{
9368 /* Don't accept realtime tasks when there is no way for them to run */
9369 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
9370 return 0;
9371
9372 return 1;
9373}
9374
6d6bc0ad 9375#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9376static int sched_rt_global_constraints(void)
9377{
ac086bc2
PZ
9378 unsigned long flags;
9379 int i;
9380
ec5d4989
HS
9381 if (sysctl_sched_rt_period <= 0)
9382 return -EINVAL;
9383
ac086bc2
PZ
9384 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
9385 for_each_possible_cpu(i) {
9386 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
9387
9388 spin_lock(&rt_rq->rt_runtime_lock);
9389 rt_rq->rt_runtime = global_rt_runtime();
9390 spin_unlock(&rt_rq->rt_runtime_lock);
9391 }
9392 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
9393
d0b27fa7
PZ
9394 return 0;
9395}
6d6bc0ad 9396#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
9397
9398int sched_rt_handler(struct ctl_table *table, int write,
9399 struct file *filp, void __user *buffer, size_t *lenp,
9400 loff_t *ppos)
9401{
9402 int ret;
9403 int old_period, old_runtime;
9404 static DEFINE_MUTEX(mutex);
9405
9406 mutex_lock(&mutex);
9407 old_period = sysctl_sched_rt_period;
9408 old_runtime = sysctl_sched_rt_runtime;
9409
9410 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
9411
9412 if (!ret && write) {
9413 ret = sched_rt_global_constraints();
9414 if (ret) {
9415 sysctl_sched_rt_period = old_period;
9416 sysctl_sched_rt_runtime = old_runtime;
9417 } else {
9418 def_rt_bandwidth.rt_runtime = global_rt_runtime();
9419 def_rt_bandwidth.rt_period =
9420 ns_to_ktime(global_rt_period());
9421 }
9422 }
9423 mutex_unlock(&mutex);
9424
9425 return ret;
9426}
68318b8e 9427
052f1dc7 9428#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
9429
9430/* return corresponding task_group object of a cgroup */
2b01dfe3 9431static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 9432{
2b01dfe3
PM
9433 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
9434 struct task_group, css);
68318b8e
SV
9435}
9436
9437static struct cgroup_subsys_state *
2b01dfe3 9438cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9439{
ec7dc8ac 9440 struct task_group *tg, *parent;
68318b8e 9441
2b01dfe3 9442 if (!cgrp->parent) {
68318b8e 9443 /* This is early initialization for the top cgroup */
68318b8e
SV
9444 return &init_task_group.css;
9445 }
9446
ec7dc8ac
DG
9447 parent = cgroup_tg(cgrp->parent);
9448 tg = sched_create_group(parent);
68318b8e
SV
9449 if (IS_ERR(tg))
9450 return ERR_PTR(-ENOMEM);
9451
68318b8e
SV
9452 return &tg->css;
9453}
9454
41a2d6cf
IM
9455static void
9456cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
68318b8e 9457{
2b01dfe3 9458 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9459
9460 sched_destroy_group(tg);
9461}
9462
41a2d6cf
IM
9463static int
9464cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
9465 struct task_struct *tsk)
68318b8e 9466{
b68aa230 9467#ifdef CONFIG_RT_GROUP_SCHED
54e99124 9468 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
b68aa230
PZ
9469 return -EINVAL;
9470#else
68318b8e
SV
9471 /* We don't support RT-tasks being in separate groups */
9472 if (tsk->sched_class != &fair_sched_class)
9473 return -EINVAL;
b68aa230 9474#endif
68318b8e
SV
9475
9476 return 0;
9477}
9478
9479static void
2b01dfe3 9480cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
68318b8e
SV
9481 struct cgroup *old_cont, struct task_struct *tsk)
9482{
9483 sched_move_task(tsk);
9484}
9485
052f1dc7 9486#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 9487static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 9488 u64 shareval)
68318b8e 9489{
2b01dfe3 9490 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
68318b8e
SV
9491}
9492
f4c753b7 9493static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 9494{
2b01dfe3 9495 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
9496
9497 return (u64) tg->shares;
9498}
6d6bc0ad 9499#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 9500
052f1dc7 9501#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 9502static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 9503 s64 val)
6f505b16 9504{
06ecb27c 9505 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
9506}
9507
06ecb27c 9508static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 9509{
06ecb27c 9510 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 9511}
d0b27fa7
PZ
9512
9513static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
9514 u64 rt_period_us)
9515{
9516 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
9517}
9518
9519static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
9520{
9521 return sched_group_rt_period(cgroup_tg(cgrp));
9522}
6d6bc0ad 9523#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 9524
fe5c7cc2 9525static struct cftype cpu_files[] = {
052f1dc7 9526#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
9527 {
9528 .name = "shares",
f4c753b7
PM
9529 .read_u64 = cpu_shares_read_u64,
9530 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 9531 },
052f1dc7
PZ
9532#endif
9533#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 9534 {
9f0c1e56 9535 .name = "rt_runtime_us",
06ecb27c
PM
9536 .read_s64 = cpu_rt_runtime_read,
9537 .write_s64 = cpu_rt_runtime_write,
6f505b16 9538 },
d0b27fa7
PZ
9539 {
9540 .name = "rt_period_us",
f4c753b7
PM
9541 .read_u64 = cpu_rt_period_read_uint,
9542 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 9543 },
052f1dc7 9544#endif
68318b8e
SV
9545};
9546
9547static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
9548{
fe5c7cc2 9549 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
68318b8e
SV
9550}
9551
9552struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
9553 .name = "cpu",
9554 .create = cpu_cgroup_create,
9555 .destroy = cpu_cgroup_destroy,
9556 .can_attach = cpu_cgroup_can_attach,
9557 .attach = cpu_cgroup_attach,
9558 .populate = cpu_cgroup_populate,
9559 .subsys_id = cpu_cgroup_subsys_id,
68318b8e
SV
9560 .early_init = 1,
9561};
9562
052f1dc7 9563#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
9564
9565#ifdef CONFIG_CGROUP_CPUACCT
9566
9567/*
9568 * CPU accounting code for task groups.
9569 *
9570 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
9571 * (balbir@in.ibm.com).
9572 */
9573
934352f2 9574/* track cpu usage of a group of tasks and its child groups */
d842de87
SV
9575struct cpuacct {
9576 struct cgroup_subsys_state css;
9577 /* cpuusage holds pointer to a u64-type object on every cpu */
9578 u64 *cpuusage;
934352f2 9579 struct cpuacct *parent;
d842de87
SV
9580};
9581
9582struct cgroup_subsys cpuacct_subsys;
9583
9584/* return cpu accounting group corresponding to this container */
32cd756a 9585static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
d842de87 9586{
32cd756a 9587 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
d842de87
SV
9588 struct cpuacct, css);
9589}
9590
9591/* return cpu accounting group to which this task belongs */
9592static inline struct cpuacct *task_ca(struct task_struct *tsk)
9593{
9594 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
9595 struct cpuacct, css);
9596}
9597
9598/* create a new cpu accounting group */
9599static struct cgroup_subsys_state *cpuacct_create(
32cd756a 9600 struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87
SV
9601{
9602 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
9603
9604 if (!ca)
9605 return ERR_PTR(-ENOMEM);
9606
9607 ca->cpuusage = alloc_percpu(u64);
9608 if (!ca->cpuusage) {
9609 kfree(ca);
9610 return ERR_PTR(-ENOMEM);
9611 }
9612
934352f2
BR
9613 if (cgrp->parent)
9614 ca->parent = cgroup_ca(cgrp->parent);
9615
d842de87
SV
9616 return &ca->css;
9617}
9618
9619/* destroy an existing cpu accounting group */
41a2d6cf 9620static void
32cd756a 9621cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9622{
32cd756a 9623 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9624
9625 free_percpu(ca->cpuusage);
9626 kfree(ca);
9627}
9628
720f5498
KC
9629static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
9630{
9631 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9632 u64 data;
9633
9634#ifndef CONFIG_64BIT
9635 /*
9636 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
9637 */
9638 spin_lock_irq(&cpu_rq(cpu)->lock);
9639 data = *cpuusage;
9640 spin_unlock_irq(&cpu_rq(cpu)->lock);
9641#else
9642 data = *cpuusage;
9643#endif
9644
9645 return data;
9646}
9647
9648static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
9649{
9650 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
9651
9652#ifndef CONFIG_64BIT
9653 /*
9654 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
9655 */
9656 spin_lock_irq(&cpu_rq(cpu)->lock);
9657 *cpuusage = val;
9658 spin_unlock_irq(&cpu_rq(cpu)->lock);
9659#else
9660 *cpuusage = val;
9661#endif
9662}
9663
d842de87 9664/* return total cpu usage (in nanoseconds) of a group */
32cd756a 9665static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 9666{
32cd756a 9667 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
9668 u64 totalcpuusage = 0;
9669 int i;
9670
720f5498
KC
9671 for_each_present_cpu(i)
9672 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
9673
9674 return totalcpuusage;
9675}
9676
0297b803
DG
9677static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
9678 u64 reset)
9679{
9680 struct cpuacct *ca = cgroup_ca(cgrp);
9681 int err = 0;
9682 int i;
9683
9684 if (reset) {
9685 err = -EINVAL;
9686 goto out;
9687 }
9688
720f5498
KC
9689 for_each_present_cpu(i)
9690 cpuacct_cpuusage_write(ca, i, 0);
0297b803 9691
0297b803
DG
9692out:
9693 return err;
9694}
9695
e9515c3c
KC
9696static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
9697 struct seq_file *m)
9698{
9699 struct cpuacct *ca = cgroup_ca(cgroup);
9700 u64 percpu;
9701 int i;
9702
9703 for_each_present_cpu(i) {
9704 percpu = cpuacct_cpuusage_read(ca, i);
9705 seq_printf(m, "%llu ", (unsigned long long) percpu);
9706 }
9707 seq_printf(m, "\n");
9708 return 0;
9709}
9710
d842de87
SV
9711static struct cftype files[] = {
9712 {
9713 .name = "usage",
f4c753b7
PM
9714 .read_u64 = cpuusage_read,
9715 .write_u64 = cpuusage_write,
d842de87 9716 },
e9515c3c
KC
9717 {
9718 .name = "usage_percpu",
9719 .read_seq_string = cpuacct_percpu_seq_read,
9720 },
9721
d842de87
SV
9722};
9723
32cd756a 9724static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
d842de87 9725{
32cd756a 9726 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
d842de87
SV
9727}
9728
9729/*
9730 * charge this task's execution time to its accounting group.
9731 *
9732 * called with rq->lock held.
9733 */
9734static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
9735{
9736 struct cpuacct *ca;
934352f2 9737 int cpu;
d842de87 9738
c40c6f85 9739 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
9740 return;
9741
934352f2 9742 cpu = task_cpu(tsk);
d842de87 9743 ca = task_ca(tsk);
d842de87 9744
934352f2
BR
9745 for (; ca; ca = ca->parent) {
9746 u64 *cpuusage = percpu_ptr(ca->cpuusage, cpu);
d842de87
SV
9747 *cpuusage += cputime;
9748 }
9749}
9750
9751struct cgroup_subsys cpuacct_subsys = {
9752 .name = "cpuacct",
9753 .create = cpuacct_create,
9754 .destroy = cpuacct_destroy,
9755 .populate = cpuacct_populate,
9756 .subsys_id = cpuacct_subsys_id,
9757};
9758#endif /* CONFIG_CGROUP_CPUACCT */