]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - kernel/time/timer.c
timer: Pass timer_list pointer to callbacks unconditionally
[mirror_ubuntu-bionic-kernel.git] / kernel / time / timer.c
CommitLineData
1da177e4
LT
1/*
2 * linux/kernel/timer.c
3 *
4a22f166 4 * Kernel internal timers
1da177e4
LT
5 *
6 * Copyright (C) 1991, 1992 Linus Torvalds
7 *
8 * 1997-01-28 Modified by Finn Arne Gangstad to make timers scale better.
9 *
10 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
11 * "A Kernel Model for Precision Timekeeping" by Dave Mills
12 * 1998-12-24 Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
13 * serialize accesses to xtime/lost_ticks).
14 * Copyright (C) 1998 Andrea Arcangeli
15 * 1999-03-10 Improved NTP compatibility by Ulrich Windl
16 * 2002-05-31 Move sys_sysinfo here and make its locking sane, Robert Love
17 * 2000-10-05 Implemented scalable SMP per-CPU timer handling.
18 * Copyright (C) 2000, 2001, 2002 Ingo Molnar
19 * Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
20 */
21
22#include <linux/kernel_stat.h>
9984de1a 23#include <linux/export.h>
1da177e4
LT
24#include <linux/interrupt.h>
25#include <linux/percpu.h>
26#include <linux/init.h>
27#include <linux/mm.h>
28#include <linux/swap.h>
b488893a 29#include <linux/pid_namespace.h>
1da177e4
LT
30#include <linux/notifier.h>
31#include <linux/thread_info.h>
32#include <linux/time.h>
33#include <linux/jiffies.h>
34#include <linux/posix-timers.h>
35#include <linux/cpu.h>
36#include <linux/syscalls.h>
97a41e26 37#include <linux/delay.h>
79bf2bb3 38#include <linux/tick.h>
82f67cd9 39#include <linux/kallsyms.h>
e360adbe 40#include <linux/irq_work.h>
174cd4b1 41#include <linux/sched/signal.h>
cf4aebc2 42#include <linux/sched/sysctl.h>
370c9135 43#include <linux/sched/nohz.h>
b17b0153 44#include <linux/sched/debug.h>
5a0e3ad6 45#include <linux/slab.h>
1a0df594 46#include <linux/compat.h>
1da177e4 47
7c0f6ba6 48#include <linux/uaccess.h>
1da177e4
LT
49#include <asm/unistd.h>
50#include <asm/div64.h>
51#include <asm/timex.h>
52#include <asm/io.h>
53
c1ad348b
TG
54#include "tick-internal.h"
55
2b022e3d
XG
56#define CREATE_TRACE_POINTS
57#include <trace/events/timer.h>
58
40747ffa 59__visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
ecea8d19
TG
60
61EXPORT_SYMBOL(jiffies_64);
62
1da177e4 63/*
500462a9
TG
64 * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
65 * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
66 * level has a different granularity.
67 *
68 * The level granularity is: LVL_CLK_DIV ^ lvl
69 * The level clock frequency is: HZ / (LVL_CLK_DIV ^ level)
70 *
71 * The array level of a newly armed timer depends on the relative expiry
72 * time. The farther the expiry time is away the higher the array level and
73 * therefor the granularity becomes.
74 *
75 * Contrary to the original timer wheel implementation, which aims for 'exact'
76 * expiry of the timers, this implementation removes the need for recascading
77 * the timers into the lower array levels. The previous 'classic' timer wheel
78 * implementation of the kernel already violated the 'exact' expiry by adding
79 * slack to the expiry time to provide batched expiration. The granularity
80 * levels provide implicit batching.
81 *
82 * This is an optimization of the original timer wheel implementation for the
83 * majority of the timer wheel use cases: timeouts. The vast majority of
84 * timeout timers (networking, disk I/O ...) are canceled before expiry. If
85 * the timeout expires it indicates that normal operation is disturbed, so it
86 * does not matter much whether the timeout comes with a slight delay.
87 *
88 * The only exception to this are networking timers with a small expiry
89 * time. They rely on the granularity. Those fit into the first wheel level,
90 * which has HZ granularity.
91 *
92 * We don't have cascading anymore. timers with a expiry time above the
93 * capacity of the last wheel level are force expired at the maximum timeout
94 * value of the last wheel level. From data sampling we know that the maximum
95 * value observed is 5 days (network connection tracking), so this should not
96 * be an issue.
97 *
98 * The currently chosen array constants values are a good compromise between
99 * array size and granularity.
100 *
101 * This results in the following granularity and range levels:
102 *
103 * HZ 1000 steps
104 * Level Offset Granularity Range
105 * 0 0 1 ms 0 ms - 63 ms
106 * 1 64 8 ms 64 ms - 511 ms
107 * 2 128 64 ms 512 ms - 4095 ms (512ms - ~4s)
108 * 3 192 512 ms 4096 ms - 32767 ms (~4s - ~32s)
109 * 4 256 4096 ms (~4s) 32768 ms - 262143 ms (~32s - ~4m)
110 * 5 320 32768 ms (~32s) 262144 ms - 2097151 ms (~4m - ~34m)
111 * 6 384 262144 ms (~4m) 2097152 ms - 16777215 ms (~34m - ~4h)
112 * 7 448 2097152 ms (~34m) 16777216 ms - 134217727 ms (~4h - ~1d)
113 * 8 512 16777216 ms (~4h) 134217728 ms - 1073741822 ms (~1d - ~12d)
114 *
115 * HZ 300
116 * Level Offset Granularity Range
117 * 0 0 3 ms 0 ms - 210 ms
118 * 1 64 26 ms 213 ms - 1703 ms (213ms - ~1s)
119 * 2 128 213 ms 1706 ms - 13650 ms (~1s - ~13s)
120 * 3 192 1706 ms (~1s) 13653 ms - 109223 ms (~13s - ~1m)
121 * 4 256 13653 ms (~13s) 109226 ms - 873810 ms (~1m - ~14m)
122 * 5 320 109226 ms (~1m) 873813 ms - 6990503 ms (~14m - ~1h)
123 * 6 384 873813 ms (~14m) 6990506 ms - 55924050 ms (~1h - ~15h)
124 * 7 448 6990506 ms (~1h) 55924053 ms - 447392423 ms (~15h - ~5d)
125 * 8 512 55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
126 *
127 * HZ 250
128 * Level Offset Granularity Range
129 * 0 0 4 ms 0 ms - 255 ms
130 * 1 64 32 ms 256 ms - 2047 ms (256ms - ~2s)
131 * 2 128 256 ms 2048 ms - 16383 ms (~2s - ~16s)
132 * 3 192 2048 ms (~2s) 16384 ms - 131071 ms (~16s - ~2m)
133 * 4 256 16384 ms (~16s) 131072 ms - 1048575 ms (~2m - ~17m)
134 * 5 320 131072 ms (~2m) 1048576 ms - 8388607 ms (~17m - ~2h)
135 * 6 384 1048576 ms (~17m) 8388608 ms - 67108863 ms (~2h - ~18h)
136 * 7 448 8388608 ms (~2h) 67108864 ms - 536870911 ms (~18h - ~6d)
137 * 8 512 67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
138 *
139 * HZ 100
140 * Level Offset Granularity Range
141 * 0 0 10 ms 0 ms - 630 ms
142 * 1 64 80 ms 640 ms - 5110 ms (640ms - ~5s)
143 * 2 128 640 ms 5120 ms - 40950 ms (~5s - ~40s)
144 * 3 192 5120 ms (~5s) 40960 ms - 327670 ms (~40s - ~5m)
145 * 4 256 40960 ms (~40s) 327680 ms - 2621430 ms (~5m - ~43m)
146 * 5 320 327680 ms (~5m) 2621440 ms - 20971510 ms (~43m - ~5h)
147 * 6 384 2621440 ms (~43m) 20971520 ms - 167772150 ms (~5h - ~1d)
148 * 7 448 20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
1da177e4 149 */
1da177e4 150
500462a9
TG
151/* Clock divisor for the next level */
152#define LVL_CLK_SHIFT 3
153#define LVL_CLK_DIV (1UL << LVL_CLK_SHIFT)
154#define LVL_CLK_MASK (LVL_CLK_DIV - 1)
155#define LVL_SHIFT(n) ((n) * LVL_CLK_SHIFT)
156#define LVL_GRAN(n) (1UL << LVL_SHIFT(n))
1da177e4 157
500462a9
TG
158/*
159 * The time start value for each level to select the bucket at enqueue
160 * time.
161 */
162#define LVL_START(n) ((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
163
164/* Size of each clock level */
165#define LVL_BITS 6
166#define LVL_SIZE (1UL << LVL_BITS)
167#define LVL_MASK (LVL_SIZE - 1)
168#define LVL_OFFS(n) ((n) * LVL_SIZE)
169
170/* Level depth */
171#if HZ > 100
172# define LVL_DEPTH 9
173# else
174# define LVL_DEPTH 8
175#endif
176
177/* The cutoff (max. capacity of the wheel) */
178#define WHEEL_TIMEOUT_CUTOFF (LVL_START(LVL_DEPTH))
179#define WHEEL_TIMEOUT_MAX (WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
180
181/*
182 * The resulting wheel size. If NOHZ is configured we allocate two
183 * wheels so we have a separate storage for the deferrable timers.
184 */
185#define WHEEL_SIZE (LVL_SIZE * LVL_DEPTH)
186
187#ifdef CONFIG_NO_HZ_COMMON
188# define NR_BASES 2
189# define BASE_STD 0
190# define BASE_DEF 1
191#else
192# define NR_BASES 1
193# define BASE_STD 0
194# define BASE_DEF 0
195#endif
1da177e4 196
494af3ed 197struct timer_base {
2287d866 198 raw_spinlock_t lock;
500462a9
TG
199 struct timer_list *running_timer;
200 unsigned long clk;
a683f390 201 unsigned long next_expiry;
500462a9
TG
202 unsigned int cpu;
203 bool migration_enabled;
204 bool nohz_active;
a683f390 205 bool is_idle;
2fe59f50 206 bool must_forward_clk;
500462a9
TG
207 DECLARE_BITMAP(pending_map, WHEEL_SIZE);
208 struct hlist_head vectors[WHEEL_SIZE];
6e453a67 209} ____cacheline_aligned;
e52b1db3 210
500462a9 211static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
6e453a67 212
bc7a34b8
TG
213#if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
214unsigned int sysctl_timer_migration = 1;
215
683be13a 216void timers_update_migration(bool update_nohz)
bc7a34b8
TG
217{
218 bool on = sysctl_timer_migration && tick_nohz_active;
219 unsigned int cpu;
220
221 /* Avoid the loop, if nothing to update */
500462a9 222 if (this_cpu_read(timer_bases[BASE_STD].migration_enabled) == on)
bc7a34b8
TG
223 return;
224
225 for_each_possible_cpu(cpu) {
500462a9
TG
226 per_cpu(timer_bases[BASE_STD].migration_enabled, cpu) = on;
227 per_cpu(timer_bases[BASE_DEF].migration_enabled, cpu) = on;
bc7a34b8 228 per_cpu(hrtimer_bases.migration_enabled, cpu) = on;
683be13a
TG
229 if (!update_nohz)
230 continue;
500462a9
TG
231 per_cpu(timer_bases[BASE_STD].nohz_active, cpu) = true;
232 per_cpu(timer_bases[BASE_DEF].nohz_active, cpu) = true;
683be13a 233 per_cpu(hrtimer_bases.nohz_active, cpu) = true;
bc7a34b8
TG
234 }
235}
236
237int timer_migration_handler(struct ctl_table *table, int write,
238 void __user *buffer, size_t *lenp,
239 loff_t *ppos)
240{
241 static DEFINE_MUTEX(mutex);
242 int ret;
243
244 mutex_lock(&mutex);
b94bf594 245 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
bc7a34b8 246 if (!ret && write)
683be13a 247 timers_update_migration(false);
bc7a34b8
TG
248 mutex_unlock(&mutex);
249 return ret;
250}
bc7a34b8
TG
251#endif
252
9c133c46
AS
253static unsigned long round_jiffies_common(unsigned long j, int cpu,
254 bool force_up)
4c36a5de
AV
255{
256 int rem;
257 unsigned long original = j;
258
259 /*
260 * We don't want all cpus firing their timers at once hitting the
261 * same lock or cachelines, so we skew each extra cpu with an extra
262 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
263 * already did this.
264 * The skew is done by adding 3*cpunr, then round, then subtract this
265 * extra offset again.
266 */
267 j += cpu * 3;
268
269 rem = j % HZ;
270
271 /*
272 * If the target jiffie is just after a whole second (which can happen
273 * due to delays of the timer irq, long irq off times etc etc) then
274 * we should round down to the whole second, not up. Use 1/4th second
275 * as cutoff for this rounding as an extreme upper bound for this.
9c133c46 276 * But never round down if @force_up is set.
4c36a5de 277 */
9c133c46 278 if (rem < HZ/4 && !force_up) /* round down */
4c36a5de
AV
279 j = j - rem;
280 else /* round up */
281 j = j - rem + HZ;
282
283 /* now that we have rounded, subtract the extra skew again */
284 j -= cpu * 3;
285
9e04d380
BVA
286 /*
287 * Make sure j is still in the future. Otherwise return the
288 * unmodified value.
289 */
290 return time_is_after_jiffies(j) ? j : original;
4c36a5de 291}
9c133c46
AS
292
293/**
294 * __round_jiffies - function to round jiffies to a full second
295 * @j: the time in (absolute) jiffies that should be rounded
296 * @cpu: the processor number on which the timeout will happen
297 *
298 * __round_jiffies() rounds an absolute time in the future (in jiffies)
299 * up or down to (approximately) full seconds. This is useful for timers
300 * for which the exact time they fire does not matter too much, as long as
301 * they fire approximately every X seconds.
302 *
303 * By rounding these timers to whole seconds, all such timers will fire
304 * at the same time, rather than at various times spread out. The goal
305 * of this is to have the CPU wake up less, which saves power.
306 *
307 * The exact rounding is skewed for each processor to avoid all
308 * processors firing at the exact same time, which could lead
309 * to lock contention or spurious cache line bouncing.
310 *
311 * The return value is the rounded version of the @j parameter.
312 */
313unsigned long __round_jiffies(unsigned long j, int cpu)
314{
315 return round_jiffies_common(j, cpu, false);
316}
4c36a5de
AV
317EXPORT_SYMBOL_GPL(__round_jiffies);
318
319/**
320 * __round_jiffies_relative - function to round jiffies to a full second
321 * @j: the time in (relative) jiffies that should be rounded
322 * @cpu: the processor number on which the timeout will happen
323 *
72fd4a35 324 * __round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
325 * up or down to (approximately) full seconds. This is useful for timers
326 * for which the exact time they fire does not matter too much, as long as
327 * they fire approximately every X seconds.
328 *
329 * By rounding these timers to whole seconds, all such timers will fire
330 * at the same time, rather than at various times spread out. The goal
331 * of this is to have the CPU wake up less, which saves power.
332 *
333 * The exact rounding is skewed for each processor to avoid all
334 * processors firing at the exact same time, which could lead
335 * to lock contention or spurious cache line bouncing.
336 *
72fd4a35 337 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
338 */
339unsigned long __round_jiffies_relative(unsigned long j, int cpu)
340{
9c133c46
AS
341 unsigned long j0 = jiffies;
342
343 /* Use j0 because jiffies might change while we run */
344 return round_jiffies_common(j + j0, cpu, false) - j0;
4c36a5de
AV
345}
346EXPORT_SYMBOL_GPL(__round_jiffies_relative);
347
348/**
349 * round_jiffies - function to round jiffies to a full second
350 * @j: the time in (absolute) jiffies that should be rounded
351 *
72fd4a35 352 * round_jiffies() rounds an absolute time in the future (in jiffies)
4c36a5de
AV
353 * up or down to (approximately) full seconds. This is useful for timers
354 * for which the exact time they fire does not matter too much, as long as
355 * they fire approximately every X seconds.
356 *
357 * By rounding these timers to whole seconds, all such timers will fire
358 * at the same time, rather than at various times spread out. The goal
359 * of this is to have the CPU wake up less, which saves power.
360 *
72fd4a35 361 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
362 */
363unsigned long round_jiffies(unsigned long j)
364{
9c133c46 365 return round_jiffies_common(j, raw_smp_processor_id(), false);
4c36a5de
AV
366}
367EXPORT_SYMBOL_GPL(round_jiffies);
368
369/**
370 * round_jiffies_relative - function to round jiffies to a full second
371 * @j: the time in (relative) jiffies that should be rounded
372 *
72fd4a35 373 * round_jiffies_relative() rounds a time delta in the future (in jiffies)
4c36a5de
AV
374 * up or down to (approximately) full seconds. This is useful for timers
375 * for which the exact time they fire does not matter too much, as long as
376 * they fire approximately every X seconds.
377 *
378 * By rounding these timers to whole seconds, all such timers will fire
379 * at the same time, rather than at various times spread out. The goal
380 * of this is to have the CPU wake up less, which saves power.
381 *
72fd4a35 382 * The return value is the rounded version of the @j parameter.
4c36a5de
AV
383 */
384unsigned long round_jiffies_relative(unsigned long j)
385{
386 return __round_jiffies_relative(j, raw_smp_processor_id());
387}
388EXPORT_SYMBOL_GPL(round_jiffies_relative);
389
9c133c46
AS
390/**
391 * __round_jiffies_up - function to round jiffies up to a full second
392 * @j: the time in (absolute) jiffies that should be rounded
393 * @cpu: the processor number on which the timeout will happen
394 *
395 * This is the same as __round_jiffies() except that it will never
396 * round down. This is useful for timeouts for which the exact time
397 * of firing does not matter too much, as long as they don't fire too
398 * early.
399 */
400unsigned long __round_jiffies_up(unsigned long j, int cpu)
401{
402 return round_jiffies_common(j, cpu, true);
403}
404EXPORT_SYMBOL_GPL(__round_jiffies_up);
405
406/**
407 * __round_jiffies_up_relative - function to round jiffies up to a full second
408 * @j: the time in (relative) jiffies that should be rounded
409 * @cpu: the processor number on which the timeout will happen
410 *
411 * This is the same as __round_jiffies_relative() except that it will never
412 * round down. This is useful for timeouts for which the exact time
413 * of firing does not matter too much, as long as they don't fire too
414 * early.
415 */
416unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
417{
418 unsigned long j0 = jiffies;
419
420 /* Use j0 because jiffies might change while we run */
421 return round_jiffies_common(j + j0, cpu, true) - j0;
422}
423EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
424
425/**
426 * round_jiffies_up - function to round jiffies up to a full second
427 * @j: the time in (absolute) jiffies that should be rounded
428 *
429 * This is the same as round_jiffies() except that it will never
430 * round down. This is useful for timeouts for which the exact time
431 * of firing does not matter too much, as long as they don't fire too
432 * early.
433 */
434unsigned long round_jiffies_up(unsigned long j)
435{
436 return round_jiffies_common(j, raw_smp_processor_id(), true);
437}
438EXPORT_SYMBOL_GPL(round_jiffies_up);
439
440/**
441 * round_jiffies_up_relative - function to round jiffies up to a full second
442 * @j: the time in (relative) jiffies that should be rounded
443 *
444 * This is the same as round_jiffies_relative() except that it will never
445 * round down. This is useful for timeouts for which the exact time
446 * of firing does not matter too much, as long as they don't fire too
447 * early.
448 */
449unsigned long round_jiffies_up_relative(unsigned long j)
450{
451 return __round_jiffies_up_relative(j, raw_smp_processor_id());
452}
453EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
454
3bbb9ec9 455
500462a9 456static inline unsigned int timer_get_idx(struct timer_list *timer)
3bbb9ec9 457{
500462a9 458 return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
3bbb9ec9 459}
3bbb9ec9 460
500462a9 461static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
1da177e4 462{
500462a9
TG
463 timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
464 idx << TIMER_ARRAYSHIFT;
465}
1da177e4 466
500462a9
TG
467/*
468 * Helper function to calculate the array index for a given expiry
469 * time.
470 */
471static inline unsigned calc_index(unsigned expires, unsigned lvl)
472{
473 expires = (expires + LVL_GRAN(lvl)) >> LVL_SHIFT(lvl);
474 return LVL_OFFS(lvl) + (expires & LVL_MASK);
475}
476
ffdf0477 477static int calc_wheel_index(unsigned long expires, unsigned long clk)
1da177e4 478{
ffdf0477 479 unsigned long delta = expires - clk;
500462a9
TG
480 unsigned int idx;
481
482 if (delta < LVL_START(1)) {
483 idx = calc_index(expires, 0);
484 } else if (delta < LVL_START(2)) {
485 idx = calc_index(expires, 1);
486 } else if (delta < LVL_START(3)) {
487 idx = calc_index(expires, 2);
488 } else if (delta < LVL_START(4)) {
489 idx = calc_index(expires, 3);
490 } else if (delta < LVL_START(5)) {
491 idx = calc_index(expires, 4);
492 } else if (delta < LVL_START(6)) {
493 idx = calc_index(expires, 5);
494 } else if (delta < LVL_START(7)) {
495 idx = calc_index(expires, 6);
496 } else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
497 idx = calc_index(expires, 7);
498 } else if ((long) delta < 0) {
ffdf0477 499 idx = clk & LVL_MASK;
1da177e4 500 } else {
500462a9
TG
501 /*
502 * Force expire obscene large timeouts to expire at the
503 * capacity limit of the wheel.
1da177e4 504 */
500462a9
TG
505 if (expires >= WHEEL_TIMEOUT_CUTOFF)
506 expires = WHEEL_TIMEOUT_MAX;
1bd04bf6 507
500462a9 508 idx = calc_index(expires, LVL_DEPTH - 1);
1da177e4 509 }
ffdf0477
AMG
510 return idx;
511}
1bd04bf6 512
ffdf0477
AMG
513/*
514 * Enqueue the timer into the hash bucket, mark it pending in
515 * the bitmap and store the index in the timer flags.
516 */
517static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
518 unsigned int idx)
519{
520 hlist_add_head(&timer->entry, base->vectors + idx);
500462a9
TG
521 __set_bit(idx, base->pending_map);
522 timer_set_idx(timer, idx);
1da177e4
LT
523}
524
ffdf0477
AMG
525static void
526__internal_add_timer(struct timer_base *base, struct timer_list *timer)
facbb4a7 527{
ffdf0477
AMG
528 unsigned int idx;
529
530 idx = calc_wheel_index(timer->expires, base->clk);
531 enqueue_timer(base, timer, idx);
532}
9f6d9baa 533
ffdf0477
AMG
534static void
535trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
536{
a683f390
TG
537 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
538 return;
3bb475a3 539
facbb4a7 540 /*
a683f390
TG
541 * TODO: This wants some optimizing similar to the code below, but we
542 * will do that when we switch from push to pull for deferrable timers.
facbb4a7 543 */
a683f390
TG
544 if (timer->flags & TIMER_DEFERRABLE) {
545 if (tick_nohz_full_cpu(base->cpu))
683be13a 546 wake_up_nohz_cpu(base->cpu);
a683f390 547 return;
99d5f3aa 548 }
9f6d9baa
VK
549
550 /*
a683f390
TG
551 * We might have to IPI the remote CPU if the base is idle and the
552 * timer is not deferrable. If the other CPU is on the way to idle
553 * then it can't set base->is_idle as we hold the base lock:
9f6d9baa 554 */
a683f390
TG
555 if (!base->is_idle)
556 return;
557
558 /* Check whether this is the new first expiring timer: */
559 if (time_after_eq(timer->expires, base->next_expiry))
560 return;
561
562 /*
563 * Set the next expiry time and kick the CPU so it can reevaluate the
564 * wheel:
565 */
566 base->next_expiry = timer->expires;
ffdf0477
AMG
567 wake_up_nohz_cpu(base->cpu);
568}
569
570static void
571internal_add_timer(struct timer_base *base, struct timer_list *timer)
572{
573 __internal_add_timer(base, timer);
574 trigger_dyntick_cpu(base, timer);
facbb4a7
TG
575}
576
c6f3a97f
TG
577#ifdef CONFIG_DEBUG_OBJECTS_TIMERS
578
579static struct debug_obj_descr timer_debug_descr;
580
99777288
SG
581static void *timer_debug_hint(void *addr)
582{
583 return ((struct timer_list *) addr)->function;
584}
585
b9fdac7f
DC
586static bool timer_is_static_object(void *addr)
587{
588 struct timer_list *timer = addr;
589
590 return (timer->entry.pprev == NULL &&
591 timer->entry.next == TIMER_ENTRY_STATIC);
592}
593
c6f3a97f
TG
594/*
595 * fixup_init is called when:
596 * - an active object is initialized
55c888d6 597 */
e3252464 598static bool timer_fixup_init(void *addr, enum debug_obj_state state)
c6f3a97f
TG
599{
600 struct timer_list *timer = addr;
601
602 switch (state) {
603 case ODEBUG_STATE_ACTIVE:
604 del_timer_sync(timer);
605 debug_object_init(timer, &timer_debug_descr);
e3252464 606 return true;
c6f3a97f 607 default:
e3252464 608 return false;
c6f3a97f
TG
609 }
610}
611
fb16b8cf 612/* Stub timer callback for improperly used timers. */
ba16490e 613static void stub_timer(struct timer_list *unused)
fb16b8cf
SB
614{
615 WARN_ON(1);
616}
617
c6f3a97f
TG
618/*
619 * fixup_activate is called when:
620 * - an active object is activated
b9fdac7f 621 * - an unknown non-static object is activated
c6f3a97f 622 */
e3252464 623static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
c6f3a97f
TG
624{
625 struct timer_list *timer = addr;
626
627 switch (state) {
c6f3a97f 628 case ODEBUG_STATE_NOTAVAILABLE:
ba16490e 629 timer_setup(timer, stub_timer, 0);
b9fdac7f 630 return true;
c6f3a97f
TG
631
632 case ODEBUG_STATE_ACTIVE:
633 WARN_ON(1);
634
635 default:
e3252464 636 return false;
c6f3a97f
TG
637 }
638}
639
640/*
641 * fixup_free is called when:
642 * - an active object is freed
643 */
e3252464 644static bool timer_fixup_free(void *addr, enum debug_obj_state state)
c6f3a97f
TG
645{
646 struct timer_list *timer = addr;
647
648 switch (state) {
649 case ODEBUG_STATE_ACTIVE:
650 del_timer_sync(timer);
651 debug_object_free(timer, &timer_debug_descr);
e3252464 652 return true;
c6f3a97f 653 default:
e3252464 654 return false;
c6f3a97f
TG
655 }
656}
657
dc4218bd
CC
658/*
659 * fixup_assert_init is called when:
660 * - an untracked/uninit-ed object is found
661 */
e3252464 662static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
dc4218bd
CC
663{
664 struct timer_list *timer = addr;
665
666 switch (state) {
667 case ODEBUG_STATE_NOTAVAILABLE:
ba16490e 668 timer_setup(timer, stub_timer, 0);
b9fdac7f 669 return true;
dc4218bd 670 default:
e3252464 671 return false;
dc4218bd
CC
672 }
673}
674
c6f3a97f 675static struct debug_obj_descr timer_debug_descr = {
dc4218bd
CC
676 .name = "timer_list",
677 .debug_hint = timer_debug_hint,
b9fdac7f 678 .is_static_object = timer_is_static_object,
dc4218bd
CC
679 .fixup_init = timer_fixup_init,
680 .fixup_activate = timer_fixup_activate,
681 .fixup_free = timer_fixup_free,
682 .fixup_assert_init = timer_fixup_assert_init,
c6f3a97f
TG
683};
684
685static inline void debug_timer_init(struct timer_list *timer)
686{
687 debug_object_init(timer, &timer_debug_descr);
688}
689
690static inline void debug_timer_activate(struct timer_list *timer)
691{
692 debug_object_activate(timer, &timer_debug_descr);
693}
694
695static inline void debug_timer_deactivate(struct timer_list *timer)
696{
697 debug_object_deactivate(timer, &timer_debug_descr);
698}
699
700static inline void debug_timer_free(struct timer_list *timer)
701{
702 debug_object_free(timer, &timer_debug_descr);
703}
704
dc4218bd
CC
705static inline void debug_timer_assert_init(struct timer_list *timer)
706{
707 debug_object_assert_init(timer, &timer_debug_descr);
708}
709
fc683995
TH
710static void do_init_timer(struct timer_list *timer, unsigned int flags,
711 const char *name, struct lock_class_key *key);
c6f3a97f 712
fc683995
TH
713void init_timer_on_stack_key(struct timer_list *timer, unsigned int flags,
714 const char *name, struct lock_class_key *key)
c6f3a97f
TG
715{
716 debug_object_init_on_stack(timer, &timer_debug_descr);
fc683995 717 do_init_timer(timer, flags, name, key);
c6f3a97f 718}
6f2b9b9a 719EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
c6f3a97f
TG
720
721void destroy_timer_on_stack(struct timer_list *timer)
722{
723 debug_object_free(timer, &timer_debug_descr);
724}
725EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
726
727#else
728static inline void debug_timer_init(struct timer_list *timer) { }
729static inline void debug_timer_activate(struct timer_list *timer) { }
730static inline void debug_timer_deactivate(struct timer_list *timer) { }
dc4218bd 731static inline void debug_timer_assert_init(struct timer_list *timer) { }
c6f3a97f
TG
732#endif
733
2b022e3d
XG
734static inline void debug_init(struct timer_list *timer)
735{
736 debug_timer_init(timer);
737 trace_timer_init(timer);
738}
739
740static inline void
741debug_activate(struct timer_list *timer, unsigned long expires)
742{
743 debug_timer_activate(timer);
0eeda71b 744 trace_timer_start(timer, expires, timer->flags);
2b022e3d
XG
745}
746
747static inline void debug_deactivate(struct timer_list *timer)
748{
749 debug_timer_deactivate(timer);
750 trace_timer_cancel(timer);
751}
752
dc4218bd
CC
753static inline void debug_assert_init(struct timer_list *timer)
754{
755 debug_timer_assert_init(timer);
756}
757
fc683995
TH
758static void do_init_timer(struct timer_list *timer, unsigned int flags,
759 const char *name, struct lock_class_key *key)
55c888d6 760{
1dabbcec 761 timer->entry.pprev = NULL;
0eeda71b 762 timer->flags = flags | raw_smp_processor_id();
6f2b9b9a 763 lockdep_init_map(&timer->lockdep_map, name, key, 0);
55c888d6 764}
c6f3a97f
TG
765
766/**
633fe795 767 * init_timer_key - initialize a timer
c6f3a97f 768 * @timer: the timer to be initialized
fc683995 769 * @flags: timer flags
633fe795
RD
770 * @name: name of the timer
771 * @key: lockdep class key of the fake lock used for tracking timer
772 * sync lock dependencies
c6f3a97f 773 *
633fe795 774 * init_timer_key() must be done to a timer prior calling *any* of the
c6f3a97f
TG
775 * other timer functions.
776 */
fc683995
TH
777void init_timer_key(struct timer_list *timer, unsigned int flags,
778 const char *name, struct lock_class_key *key)
c6f3a97f 779{
2b022e3d 780 debug_init(timer);
fc683995 781 do_init_timer(timer, flags, name, key);
c6f3a97f 782}
6f2b9b9a 783EXPORT_SYMBOL(init_timer_key);
55c888d6 784
ec44bc7a 785static inline void detach_timer(struct timer_list *timer, bool clear_pending)
55c888d6 786{
1dabbcec 787 struct hlist_node *entry = &timer->entry;
55c888d6 788
2b022e3d 789 debug_deactivate(timer);
c6f3a97f 790
1dabbcec 791 __hlist_del(entry);
55c888d6 792 if (clear_pending)
1dabbcec
TG
793 entry->pprev = NULL;
794 entry->next = LIST_POISON2;
55c888d6
ON
795}
796
494af3ed 797static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
ec44bc7a
TG
798 bool clear_pending)
799{
500462a9
TG
800 unsigned idx = timer_get_idx(timer);
801
ec44bc7a
TG
802 if (!timer_pending(timer))
803 return 0;
804
500462a9
TG
805 if (hlist_is_singular_node(&timer->entry, base->vectors + idx))
806 __clear_bit(idx, base->pending_map);
807
ec44bc7a 808 detach_timer(timer, clear_pending);
ec44bc7a
TG
809 return 1;
810}
811
500462a9
TG
812static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
813{
814 struct timer_base *base = per_cpu_ptr(&timer_bases[BASE_STD], cpu);
815
816 /*
817 * If the timer is deferrable and nohz is active then we need to use
818 * the deferrable base.
819 */
820 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
821 (tflags & TIMER_DEFERRABLE))
822 base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
823 return base;
824}
825
826static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
827{
828 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
829
830 /*
831 * If the timer is deferrable and nohz is active then we need to use
832 * the deferrable base.
833 */
834 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active &&
835 (tflags & TIMER_DEFERRABLE))
836 base = this_cpu_ptr(&timer_bases[BASE_DEF]);
837 return base;
838}
839
840static inline struct timer_base *get_timer_base(u32 tflags)
841{
842 return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
843}
844
a683f390
TG
845#ifdef CONFIG_NO_HZ_COMMON
846static inline struct timer_base *
6bad6bcc 847get_target_base(struct timer_base *base, unsigned tflags)
500462a9 848{
a683f390 849#ifdef CONFIG_SMP
500462a9
TG
850 if ((tflags & TIMER_PINNED) || !base->migration_enabled)
851 return get_timer_this_cpu_base(tflags);
852 return get_timer_cpu_base(tflags, get_nohz_timer_target());
853#else
854 return get_timer_this_cpu_base(tflags);
855#endif
856}
857
a683f390
TG
858static inline void forward_timer_base(struct timer_base *base)
859{
2fe59f50 860 unsigned long jnow;
6bad6bcc 861
a683f390 862 /*
2fe59f50
NP
863 * We only forward the base when we are idle or have just come out of
864 * idle (must_forward_clk logic), and have a delta between base clock
865 * and jiffies. In the common case, run_timers will take care of it.
a683f390 866 */
2fe59f50
NP
867 if (likely(!base->must_forward_clk))
868 return;
869
870 jnow = READ_ONCE(jiffies);
871 base->must_forward_clk = base->is_idle;
872 if ((long)(jnow - base->clk) < 2)
a683f390
TG
873 return;
874
875 /*
876 * If the next expiry value is > jiffies, then we fast forward to
877 * jiffies otherwise we forward to the next expiry value.
878 */
6bad6bcc
TG
879 if (time_after(base->next_expiry, jnow))
880 base->clk = jnow;
a683f390
TG
881 else
882 base->clk = base->next_expiry;
883}
884#else
885static inline struct timer_base *
6bad6bcc 886get_target_base(struct timer_base *base, unsigned tflags)
a683f390
TG
887{
888 return get_timer_this_cpu_base(tflags);
889}
890
891static inline void forward_timer_base(struct timer_base *base) { }
892#endif
893
a683f390 894
55c888d6 895/*
500462a9
TG
896 * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
897 * that all timers which are tied to this base are locked, and the base itself
898 * is locked too.
55c888d6
ON
899 *
900 * So __run_timers/migrate_timers can safely modify all timers which could
500462a9 901 * be found in the base->vectors array.
55c888d6 902 *
500462a9
TG
903 * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
904 * to wait until the migration is done.
55c888d6 905 */
494af3ed 906static struct timer_base *lock_timer_base(struct timer_list *timer,
500462a9 907 unsigned long *flags)
89e7e374 908 __acquires(timer->base->lock)
55c888d6 909{
55c888d6 910 for (;;) {
494af3ed 911 struct timer_base *base;
b831275a
TG
912 u32 tf;
913
914 /*
915 * We need to use READ_ONCE() here, otherwise the compiler
916 * might re-read @tf between the check for TIMER_MIGRATING
917 * and spin_lock().
918 */
919 tf = READ_ONCE(timer->flags);
0eeda71b
TG
920
921 if (!(tf & TIMER_MIGRATING)) {
500462a9 922 base = get_timer_base(tf);
2287d866 923 raw_spin_lock_irqsave(&base->lock, *flags);
0eeda71b 924 if (timer->flags == tf)
55c888d6 925 return base;
2287d866 926 raw_spin_unlock_irqrestore(&base->lock, *flags);
55c888d6
ON
927 }
928 cpu_relax();
929 }
930}
931
b24591e2
DH
932#define MOD_TIMER_PENDING_ONLY 0x01
933#define MOD_TIMER_REDUCE 0x02
934
74019224 935static inline int
b24591e2 936__mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1da177e4 937{
494af3ed 938 struct timer_base *base, *new_base;
f00c0afd
AMG
939 unsigned int idx = UINT_MAX;
940 unsigned long clk = 0, flags;
bc7a34b8 941 int ret = 0;
1da177e4 942
4da9152a
TG
943 BUG_ON(!timer->function);
944
500462a9 945 /*
f00c0afd
AMG
946 * This is a common optimization triggered by the networking code - if
947 * the timer is re-modified to have the same timeout or ends up in the
948 * same array bucket then just return:
500462a9
TG
949 */
950 if (timer_pending(timer)) {
2fe59f50
NP
951 /*
952 * The downside of this optimization is that it can result in
953 * larger granularity than you would get from adding a new
954 * timer with this expiry.
955 */
b24591e2
DH
956 long diff = timer->expires - expires;
957
958 if (!diff)
959 return 1;
960 if (options & MOD_TIMER_REDUCE && diff <= 0)
500462a9 961 return 1;
4da9152a 962
f00c0afd 963 /*
4da9152a
TG
964 * We lock timer base and calculate the bucket index right
965 * here. If the timer ends up in the same bucket, then we
966 * just update the expiry time and avoid the whole
967 * dequeue/enqueue dance.
f00c0afd 968 */
4da9152a 969 base = lock_timer_base(timer, &flags);
2fe59f50 970 forward_timer_base(base);
f00c0afd 971
b24591e2
DH
972 if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
973 time_before_eq(timer->expires, expires)) {
974 ret = 1;
975 goto out_unlock;
976 }
977
4da9152a 978 clk = base->clk;
f00c0afd
AMG
979 idx = calc_wheel_index(expires, clk);
980
981 /*
982 * Retrieve and compare the array index of the pending
983 * timer. If it matches set the expiry to the new value so a
984 * subsequent call will exit in the expires check above.
985 */
986 if (idx == timer_get_idx(timer)) {
b24591e2
DH
987 if (!(options & MOD_TIMER_REDUCE))
988 timer->expires = expires;
989 else if (time_after(timer->expires, expires))
990 timer->expires = expires;
4da9152a
TG
991 ret = 1;
992 goto out_unlock;
f00c0afd 993 }
4da9152a
TG
994 } else {
995 base = lock_timer_base(timer, &flags);
2fe59f50 996 forward_timer_base(base);
500462a9
TG
997 }
998
ec44bc7a 999 ret = detach_if_pending(timer, base, false);
b24591e2 1000 if (!ret && (options & MOD_TIMER_PENDING_ONLY))
ec44bc7a 1001 goto out_unlock;
55c888d6 1002
2b022e3d 1003 debug_activate(timer, expires);
c6f3a97f 1004
500462a9 1005 new_base = get_target_base(base, timer->flags);
eea08f32 1006
3691c519 1007 if (base != new_base) {
1da177e4 1008 /*
500462a9 1009 * We are trying to schedule the timer on the new base.
55c888d6
ON
1010 * However we can't change timer's base while it is running,
1011 * otherwise del_timer_sync() can't detect that the timer's
500462a9
TG
1012 * handler yet has not finished. This also guarantees that the
1013 * timer is serialized wrt itself.
1da177e4 1014 */
a2c348fe 1015 if (likely(base->running_timer != timer)) {
55c888d6 1016 /* See the comment in lock_timer_base() */
0eeda71b
TG
1017 timer->flags |= TIMER_MIGRATING;
1018
2287d866 1019 raw_spin_unlock(&base->lock);
a2c348fe 1020 base = new_base;
2287d866 1021 raw_spin_lock(&base->lock);
d0023a14
ED
1022 WRITE_ONCE(timer->flags,
1023 (timer->flags & ~TIMER_BASEMASK) | base->cpu);
2fe59f50 1024 forward_timer_base(base);
1da177e4
LT
1025 }
1026 }
1027
1da177e4 1028 timer->expires = expires;
f00c0afd
AMG
1029 /*
1030 * If 'idx' was calculated above and the base time did not advance
4da9152a
TG
1031 * between calculating 'idx' and possibly switching the base, only
1032 * enqueue_timer() and trigger_dyntick_cpu() is required. Otherwise
1033 * we need to (re)calculate the wheel index via
1034 * internal_add_timer().
f00c0afd
AMG
1035 */
1036 if (idx != UINT_MAX && clk == base->clk) {
1037 enqueue_timer(base, timer, idx);
1038 trigger_dyntick_cpu(base, timer);
1039 } else {
1040 internal_add_timer(base, timer);
1041 }
74019224
IM
1042
1043out_unlock:
2287d866 1044 raw_spin_unlock_irqrestore(&base->lock, flags);
1da177e4
LT
1045
1046 return ret;
1047}
1048
2aae4a10 1049/**
74019224
IM
1050 * mod_timer_pending - modify a pending timer's timeout
1051 * @timer: the pending timer to be modified
1052 * @expires: new timeout in jiffies
1da177e4 1053 *
74019224
IM
1054 * mod_timer_pending() is the same for pending timers as mod_timer(),
1055 * but will not re-activate and modify already deleted timers.
1056 *
1057 * It is useful for unserialized use of timers.
1da177e4 1058 */
74019224 1059int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1da177e4 1060{
b24591e2 1061 return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1da177e4 1062}
74019224 1063EXPORT_SYMBOL(mod_timer_pending);
1da177e4 1064
2aae4a10 1065/**
1da177e4
LT
1066 * mod_timer - modify a timer's timeout
1067 * @timer: the timer to be modified
2aae4a10 1068 * @expires: new timeout in jiffies
1da177e4 1069 *
72fd4a35 1070 * mod_timer() is a more efficient way to update the expire field of an
1da177e4
LT
1071 * active timer (if the timer is inactive it will be activated)
1072 *
1073 * mod_timer(timer, expires) is equivalent to:
1074 *
1075 * del_timer(timer); timer->expires = expires; add_timer(timer);
1076 *
1077 * Note that if there are multiple unserialized concurrent users of the
1078 * same timer, then mod_timer() is the only safe way to modify the timeout,
1079 * since add_timer() cannot modify an already running timer.
1080 *
1081 * The function returns whether it has modified a pending timer or not.
1082 * (ie. mod_timer() of an inactive timer returns 0, mod_timer() of an
1083 * active timer returns 1.)
1084 */
1085int mod_timer(struct timer_list *timer, unsigned long expires)
1086{
b24591e2 1087 return __mod_timer(timer, expires, 0);
1da177e4 1088}
1da177e4
LT
1089EXPORT_SYMBOL(mod_timer);
1090
b24591e2
DH
1091/**
1092 * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1093 * @timer: The timer to be modified
1094 * @expires: New timeout in jiffies
1095 *
1096 * timer_reduce() is very similar to mod_timer(), except that it will only
1097 * modify a running timer if that would reduce the expiration time (it will
1098 * start a timer that isn't running).
1099 */
1100int timer_reduce(struct timer_list *timer, unsigned long expires)
1101{
1102 return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1103}
1104EXPORT_SYMBOL(timer_reduce);
1105
74019224
IM
1106/**
1107 * add_timer - start a timer
1108 * @timer: the timer to be added
1109 *
c1eba5bc 1110 * The kernel will do a ->function(@timer) callback from the
74019224
IM
1111 * timer interrupt at the ->expires point in the future. The
1112 * current time is 'jiffies'.
1113 *
c1eba5bc
KC
1114 * The timer's ->expires, ->function fields must be set prior calling this
1115 * function.
74019224
IM
1116 *
1117 * Timers with an ->expires field in the past will be executed in the next
1118 * timer tick.
1119 */
1120void add_timer(struct timer_list *timer)
1121{
1122 BUG_ON(timer_pending(timer));
1123 mod_timer(timer, timer->expires);
1124}
1125EXPORT_SYMBOL(add_timer);
1126
1127/**
1128 * add_timer_on - start a timer on a particular CPU
1129 * @timer: the timer to be added
1130 * @cpu: the CPU to start it on
1131 *
1132 * This is not very scalable on SMP. Double adds are not possible.
1133 */
1134void add_timer_on(struct timer_list *timer, int cpu)
1135{
500462a9 1136 struct timer_base *new_base, *base;
74019224
IM
1137 unsigned long flags;
1138
74019224 1139 BUG_ON(timer_pending(timer) || !timer->function);
22b886dd 1140
500462a9
TG
1141 new_base = get_timer_cpu_base(timer->flags, cpu);
1142
22b886dd
TH
1143 /*
1144 * If @timer was on a different CPU, it should be migrated with the
1145 * old base locked to prevent other operations proceeding with the
1146 * wrong base locked. See lock_timer_base().
1147 */
1148 base = lock_timer_base(timer, &flags);
1149 if (base != new_base) {
1150 timer->flags |= TIMER_MIGRATING;
1151
2287d866 1152 raw_spin_unlock(&base->lock);
22b886dd 1153 base = new_base;
2287d866 1154 raw_spin_lock(&base->lock);
22b886dd
TH
1155 WRITE_ONCE(timer->flags,
1156 (timer->flags & ~TIMER_BASEMASK) | cpu);
1157 }
2fe59f50 1158 forward_timer_base(base);
22b886dd 1159
2b022e3d 1160 debug_activate(timer, timer->expires);
74019224 1161 internal_add_timer(base, timer);
2287d866 1162 raw_spin_unlock_irqrestore(&base->lock, flags);
74019224 1163}
a9862e05 1164EXPORT_SYMBOL_GPL(add_timer_on);
74019224 1165
2aae4a10 1166/**
0ba42a59 1167 * del_timer - deactivate a timer.
1da177e4
LT
1168 * @timer: the timer to be deactivated
1169 *
1170 * del_timer() deactivates a timer - this works on both active and inactive
1171 * timers.
1172 *
1173 * The function returns whether it has deactivated a pending timer or not.
1174 * (ie. del_timer() of an inactive timer returns 0, del_timer() of an
1175 * active timer returns 1.)
1176 */
1177int del_timer(struct timer_list *timer)
1178{
494af3ed 1179 struct timer_base *base;
1da177e4 1180 unsigned long flags;
55c888d6 1181 int ret = 0;
1da177e4 1182
dc4218bd
CC
1183 debug_assert_init(timer);
1184
55c888d6
ON
1185 if (timer_pending(timer)) {
1186 base = lock_timer_base(timer, &flags);
ec44bc7a 1187 ret = detach_if_pending(timer, base, true);
2287d866 1188 raw_spin_unlock_irqrestore(&base->lock, flags);
1da177e4 1189 }
1da177e4 1190
55c888d6 1191 return ret;
1da177e4 1192}
1da177e4
LT
1193EXPORT_SYMBOL(del_timer);
1194
2aae4a10
REB
1195/**
1196 * try_to_del_timer_sync - Try to deactivate a timer
d15bc69a 1197 * @timer: timer to delete
2aae4a10 1198 *
fd450b73
ON
1199 * This function tries to deactivate a timer. Upon successful (ret >= 0)
1200 * exit the timer is not queued and the handler is not running on any CPU.
fd450b73
ON
1201 */
1202int try_to_del_timer_sync(struct timer_list *timer)
1203{
494af3ed 1204 struct timer_base *base;
fd450b73
ON
1205 unsigned long flags;
1206 int ret = -1;
1207
dc4218bd
CC
1208 debug_assert_init(timer);
1209
fd450b73
ON
1210 base = lock_timer_base(timer, &flags);
1211
dfb4357d 1212 if (base->running_timer != timer)
ec44bc7a 1213 ret = detach_if_pending(timer, base, true);
dfb4357d 1214
2287d866 1215 raw_spin_unlock_irqrestore(&base->lock, flags);
fd450b73
ON
1216
1217 return ret;
1218}
e19dff1f
DH
1219EXPORT_SYMBOL(try_to_del_timer_sync);
1220
6f1bc451 1221#ifdef CONFIG_SMP
2aae4a10 1222/**
1da177e4
LT
1223 * del_timer_sync - deactivate a timer and wait for the handler to finish.
1224 * @timer: the timer to be deactivated
1225 *
1226 * This function only differs from del_timer() on SMP: besides deactivating
1227 * the timer it also makes sure the handler has finished executing on other
1228 * CPUs.
1229 *
72fd4a35 1230 * Synchronization rules: Callers must prevent restarting of the timer,
1da177e4 1231 * otherwise this function is meaningless. It must not be called from
c5f66e99
TH
1232 * interrupt contexts unless the timer is an irqsafe one. The caller must
1233 * not hold locks which would prevent completion of the timer's
1234 * handler. The timer's handler must not call add_timer_on(). Upon exit the
1235 * timer is not queued and the handler is not running on any CPU.
1da177e4 1236 *
c5f66e99
TH
1237 * Note: For !irqsafe timers, you must not hold locks that are held in
1238 * interrupt context while calling this function. Even if the lock has
1239 * nothing to do with the timer in question. Here's why:
48228f7b
SR
1240 *
1241 * CPU0 CPU1
1242 * ---- ----
1243 * <SOFTIRQ>
1244 * call_timer_fn();
1245 * base->running_timer = mytimer;
1246 * spin_lock_irq(somelock);
1247 * <IRQ>
1248 * spin_lock(somelock);
1249 * del_timer_sync(mytimer);
1250 * while (base->running_timer == mytimer);
1251 *
1252 * Now del_timer_sync() will never return and never release somelock.
1253 * The interrupt on the other CPU is waiting to grab somelock but
1254 * it has interrupted the softirq that CPU0 is waiting to finish.
1255 *
1da177e4 1256 * The function returns whether it has deactivated a pending timer or not.
1da177e4
LT
1257 */
1258int del_timer_sync(struct timer_list *timer)
1259{
6f2b9b9a 1260#ifdef CONFIG_LOCKDEP
f266a511
PZ
1261 unsigned long flags;
1262
48228f7b
SR
1263 /*
1264 * If lockdep gives a backtrace here, please reference
1265 * the synchronization rules above.
1266 */
7ff20792 1267 local_irq_save(flags);
6f2b9b9a
JB
1268 lock_map_acquire(&timer->lockdep_map);
1269 lock_map_release(&timer->lockdep_map);
7ff20792 1270 local_irq_restore(flags);
6f2b9b9a 1271#endif
466bd303
YZ
1272 /*
1273 * don't use it in hardirq context, because it
1274 * could lead to deadlock.
1275 */
0eeda71b 1276 WARN_ON(in_irq() && !(timer->flags & TIMER_IRQSAFE));
fd450b73
ON
1277 for (;;) {
1278 int ret = try_to_del_timer_sync(timer);
1279 if (ret >= 0)
1280 return ret;
a0009652 1281 cpu_relax();
fd450b73 1282 }
1da177e4 1283}
55c888d6 1284EXPORT_SYMBOL(del_timer_sync);
1da177e4
LT
1285#endif
1286
c1eba5bc 1287static void call_timer_fn(struct timer_list *timer, void (*fn)(unsigned long))
576da126 1288{
4a2b4b22 1289 int count = preempt_count();
576da126
TG
1290
1291#ifdef CONFIG_LOCKDEP
1292 /*
1293 * It is permissible to free the timer from inside the
1294 * function that is called from it, this we need to take into
1295 * account for lockdep too. To avoid bogus "held lock freed"
1296 * warnings as well as problems when looking into
1297 * timer->lockdep_map, make a copy and use that here.
1298 */
4d82a1de
PZ
1299 struct lockdep_map lockdep_map;
1300
1301 lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
576da126
TG
1302#endif
1303 /*
1304 * Couple the lock chain with the lock chain at
1305 * del_timer_sync() by acquiring the lock_map around the fn()
1306 * call here and in del_timer_sync().
1307 */
1308 lock_map_acquire(&lockdep_map);
1309
1310 trace_timer_expire_entry(timer);
c1eba5bc 1311 fn((TIMER_DATA_TYPE)timer);
576da126
TG
1312 trace_timer_expire_exit(timer);
1313
1314 lock_map_release(&lockdep_map);
1315
4a2b4b22 1316 if (count != preempt_count()) {
802702e0 1317 WARN_ONCE(1, "timer: %pF preempt leak: %08x -> %08x\n",
4a2b4b22 1318 fn, count, preempt_count());
802702e0
TG
1319 /*
1320 * Restore the preempt count. That gives us a decent
1321 * chance to survive and extract information. If the
1322 * callback kept a lock held, bad luck, but not worse
1323 * than the BUG() we had.
1324 */
4a2b4b22 1325 preempt_count_set(count);
576da126
TG
1326 }
1327}
1328
500462a9 1329static void expire_timers(struct timer_base *base, struct hlist_head *head)
1da177e4 1330{
500462a9
TG
1331 while (!hlist_empty(head)) {
1332 struct timer_list *timer;
1333 void (*fn)(unsigned long);
1da177e4 1334
500462a9 1335 timer = hlist_entry(head->first, struct timer_list, entry);
3bb475a3 1336
500462a9
TG
1337 base->running_timer = timer;
1338 detach_timer(timer, true);
3bb475a3 1339
500462a9 1340 fn = timer->function;
500462a9
TG
1341
1342 if (timer->flags & TIMER_IRQSAFE) {
2287d866 1343 raw_spin_unlock(&base->lock);
c1eba5bc 1344 call_timer_fn(timer, fn);
2287d866 1345 raw_spin_lock(&base->lock);
500462a9 1346 } else {
2287d866 1347 raw_spin_unlock_irq(&base->lock);
c1eba5bc 1348 call_timer_fn(timer, fn);
2287d866 1349 raw_spin_lock_irq(&base->lock);
3bb475a3 1350 }
500462a9
TG
1351 }
1352}
3bb475a3 1353
23696838
AMG
1354static int __collect_expired_timers(struct timer_base *base,
1355 struct hlist_head *heads)
500462a9
TG
1356{
1357 unsigned long clk = base->clk;
1358 struct hlist_head *vec;
1359 int i, levels = 0;
1360 unsigned int idx;
626ab0e6 1361
500462a9
TG
1362 for (i = 0; i < LVL_DEPTH; i++) {
1363 idx = (clk & LVL_MASK) + i * LVL_SIZE;
1364
1365 if (__test_and_clear_bit(idx, base->pending_map)) {
1366 vec = base->vectors + idx;
1367 hlist_move_list(vec, heads++);
1368 levels++;
1da177e4 1369 }
500462a9
TG
1370 /* Is it time to look at the next level? */
1371 if (clk & LVL_CLK_MASK)
1372 break;
1373 /* Shift clock for the next level granularity */
1374 clk >>= LVL_CLK_SHIFT;
1da177e4 1375 }
500462a9 1376 return levels;
1da177e4
LT
1377}
1378
3451d024 1379#ifdef CONFIG_NO_HZ_COMMON
1da177e4 1380/*
23696838
AMG
1381 * Find the next pending bucket of a level. Search from level start (@offset)
1382 * + @clk upwards and if nothing there, search from start of the level
1383 * (@offset) up to @offset + clk.
1da177e4 1384 */
500462a9
TG
1385static int next_pending_bucket(struct timer_base *base, unsigned offset,
1386 unsigned clk)
1387{
1388 unsigned pos, start = offset + clk;
1389 unsigned end = offset + LVL_SIZE;
1390
1391 pos = find_next_bit(base->pending_map, end, start);
1392 if (pos < end)
1393 return pos - start;
1394
1395 pos = find_next_bit(base->pending_map, start, offset);
1396 return pos < start ? pos + LVL_SIZE - start : -1;
1397}
1398
1399/*
23696838
AMG
1400 * Search the first expiring timer in the various clock levels. Caller must
1401 * hold base->lock.
1da177e4 1402 */
494af3ed 1403static unsigned long __next_timer_interrupt(struct timer_base *base)
1da177e4 1404{
500462a9
TG
1405 unsigned long clk, next, adj;
1406 unsigned lvl, offset = 0;
1407
500462a9
TG
1408 next = base->clk + NEXT_TIMER_MAX_DELTA;
1409 clk = base->clk;
1410 for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1411 int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1412
1413 if (pos >= 0) {
1414 unsigned long tmp = clk + (unsigned long) pos;
1415
1416 tmp <<= LVL_SHIFT(lvl);
1417 if (time_before(tmp, next))
1418 next = tmp;
1da177e4 1419 }
500462a9
TG
1420 /*
1421 * Clock for the next level. If the current level clock lower
1422 * bits are zero, we look at the next level as is. If not we
1423 * need to advance it by one because that's going to be the
1424 * next expiring bucket in that level. base->clk is the next
1425 * expiring jiffie. So in case of:
1426 *
1427 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1428 * 0 0 0 0 0 0
1429 *
1430 * we have to look at all levels @index 0. With
1431 *
1432 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1433 * 0 0 0 0 0 2
1434 *
1435 * LVL0 has the next expiring bucket @index 2. The upper
1436 * levels have the next expiring bucket @index 1.
1437 *
1438 * In case that the propagation wraps the next level the same
1439 * rules apply:
1440 *
1441 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1442 * 0 0 0 0 F 2
1443 *
1444 * So after looking at LVL0 we get:
1445 *
1446 * LVL5 LVL4 LVL3 LVL2 LVL1
1447 * 0 0 0 1 0
1448 *
1449 * So no propagation from LVL1 to LVL2 because that happened
1450 * with the add already, but then we need to propagate further
1451 * from LVL2 to LVL3.
1452 *
1453 * So the simple check whether the lower bits of the current
1454 * level are 0 or not is sufficient for all cases.
1455 */
1456 adj = clk & LVL_CLK_MASK ? 1 : 0;
1457 clk >>= LVL_CLK_SHIFT;
1458 clk += adj;
1da177e4 1459 }
500462a9 1460 return next;
1cfd6849 1461}
69239749 1462
1cfd6849
TG
1463/*
1464 * Check, if the next hrtimer event is before the next timer wheel
1465 * event:
1466 */
c1ad348b 1467static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1cfd6849 1468{
c1ad348b 1469 u64 nextevt = hrtimer_get_next_event();
0662b713 1470
9501b6cf 1471 /*
c1ad348b
TG
1472 * If high resolution timers are enabled
1473 * hrtimer_get_next_event() returns KTIME_MAX.
9501b6cf 1474 */
c1ad348b
TG
1475 if (expires <= nextevt)
1476 return expires;
eaad084b
TG
1477
1478 /*
c1ad348b
TG
1479 * If the next timer is already expired, return the tick base
1480 * time so the tick is fired immediately.
eaad084b 1481 */
c1ad348b
TG
1482 if (nextevt <= basem)
1483 return basem;
eaad084b 1484
9501b6cf 1485 /*
c1ad348b
TG
1486 * Round up to the next jiffie. High resolution timers are
1487 * off, so the hrtimers are expired in the tick and we need to
1488 * make sure that this tick really expires the timer to avoid
1489 * a ping pong of the nohz stop code.
1490 *
1491 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
9501b6cf 1492 */
c1ad348b 1493 return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
1da177e4 1494}
1cfd6849
TG
1495
1496/**
c1ad348b
TG
1497 * get_next_timer_interrupt - return the time (clock mono) of the next timer
1498 * @basej: base time jiffies
1499 * @basem: base time clock monotonic
1500 *
1501 * Returns the tick aligned clock monotonic time of the next pending
1502 * timer or KTIME_MAX if no timer is pending.
1cfd6849 1503 */
c1ad348b 1504u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
1cfd6849 1505{
500462a9 1506 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
c1ad348b
TG
1507 u64 expires = KTIME_MAX;
1508 unsigned long nextevt;
46c8f0b0 1509 bool is_max_delta;
1cfd6849 1510
dbd87b5a
HC
1511 /*
1512 * Pretend that there is no timer pending if the cpu is offline.
1513 * Possible pending timers will be migrated later to an active cpu.
1514 */
1515 if (cpu_is_offline(smp_processor_id()))
e40468a5
TG
1516 return expires;
1517
2287d866 1518 raw_spin_lock(&base->lock);
500462a9 1519 nextevt = __next_timer_interrupt(base);
46c8f0b0 1520 is_max_delta = (nextevt == base->clk + NEXT_TIMER_MAX_DELTA);
a683f390
TG
1521 base->next_expiry = nextevt;
1522 /*
041ad7bc
TG
1523 * We have a fresh next event. Check whether we can forward the
1524 * base. We can only do that when @basej is past base->clk
1525 * otherwise we might rewind base->clk.
a683f390 1526 */
041ad7bc
TG
1527 if (time_after(basej, base->clk)) {
1528 if (time_after(nextevt, basej))
1529 base->clk = basej;
1530 else if (time_after(nextevt, base->clk))
1531 base->clk = nextevt;
1532 }
23696838 1533
a683f390 1534 if (time_before_eq(nextevt, basej)) {
500462a9 1535 expires = basem;
a683f390
TG
1536 base->is_idle = false;
1537 } else {
46c8f0b0 1538 if (!is_max_delta)
34f41c03 1539 expires = basem + (u64)(nextevt - basej) * TICK_NSEC;
a683f390 1540 /*
2fe59f50
NP
1541 * If we expect to sleep more than a tick, mark the base idle.
1542 * Also the tick is stopped so any added timer must forward
1543 * the base clk itself to keep granularity small. This idle
1544 * logic is only maintained for the BASE_STD base, deferrable
1545 * timers may still see large granularity skew (by design).
a683f390 1546 */
2fe59f50
NP
1547 if ((expires - basem) > TICK_NSEC) {
1548 base->must_forward_clk = true;
a683f390 1549 base->is_idle = true;
2fe59f50 1550 }
e40468a5 1551 }
2287d866 1552 raw_spin_unlock(&base->lock);
1cfd6849 1553
c1ad348b 1554 return cmp_next_hrtimer_event(basem, expires);
1cfd6849 1555}
23696838 1556
a683f390
TG
1557/**
1558 * timer_clear_idle - Clear the idle state of the timer base
1559 *
1560 * Called with interrupts disabled
1561 */
1562void timer_clear_idle(void)
1563{
1564 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1565
1566 /*
1567 * We do this unlocked. The worst outcome is a remote enqueue sending
1568 * a pointless IPI, but taking the lock would just make the window for
1569 * sending the IPI a few instructions smaller for the cost of taking
1570 * the lock in the exit from idle path.
1571 */
1572 base->is_idle = false;
1573}
1574
23696838
AMG
1575static int collect_expired_timers(struct timer_base *base,
1576 struct hlist_head *heads)
1577{
1578 /*
1579 * NOHZ optimization. After a long idle sleep we need to forward the
1580 * base to current jiffies. Avoid a loop by searching the bitfield for
1581 * the next expiring timer.
1582 */
1583 if ((long)(jiffies - base->clk) > 2) {
1584 unsigned long next = __next_timer_interrupt(base);
1585
1586 /*
1587 * If the next timer is ahead of time forward to current
a683f390 1588 * jiffies, otherwise forward to the next expiry time:
23696838
AMG
1589 */
1590 if (time_after(next, jiffies)) {
c310ce4d
ZD
1591 /*
1592 * The call site will increment base->clk and then
1593 * terminate the expiry loop immediately.
1594 */
1595 base->clk = jiffies;
23696838
AMG
1596 return 0;
1597 }
1598 base->clk = next;
1599 }
1600 return __collect_expired_timers(base, heads);
1601}
1602#else
1603static inline int collect_expired_timers(struct timer_base *base,
1604 struct hlist_head *heads)
1605{
1606 return __collect_expired_timers(base, heads);
1607}
1da177e4
LT
1608#endif
1609
1da177e4 1610/*
5b4db0c2 1611 * Called from the timer interrupt handler to charge one tick to the current
1da177e4
LT
1612 * process. user_tick is 1 if the tick is user time, 0 for system.
1613 */
1614void update_process_times(int user_tick)
1615{
1616 struct task_struct *p = current;
1da177e4
LT
1617
1618 /* Note: this timer irq context must be accounted for as well. */
fa13a5a1 1619 account_process_tick(p, user_tick);
1da177e4 1620 run_local_timers();
c3377c2d 1621 rcu_check_callbacks(user_tick);
e360adbe
PZ
1622#ifdef CONFIG_IRQ_WORK
1623 if (in_irq())
76a33061 1624 irq_work_tick();
e360adbe 1625#endif
1da177e4 1626 scheduler_tick();
baa73d9e
NP
1627 if (IS_ENABLED(CONFIG_POSIX_TIMERS))
1628 run_posix_cpu_timers(p);
1da177e4
LT
1629}
1630
73420fea
AMG
1631/**
1632 * __run_timers - run all expired timers (if any) on this CPU.
1633 * @base: the timer vector to be processed.
1634 */
1635static inline void __run_timers(struct timer_base *base)
1636{
1637 struct hlist_head heads[LVL_DEPTH];
1638 int levels;
1639
1640 if (!time_after_eq(jiffies, base->clk))
1641 return;
1642
2287d866 1643 raw_spin_lock_irq(&base->lock);
73420fea
AMG
1644
1645 while (time_after_eq(jiffies, base->clk)) {
1646
1647 levels = collect_expired_timers(base, heads);
1648 base->clk++;
1649
1650 while (levels--)
1651 expire_timers(base, heads + levels);
1652 }
1653 base->running_timer = NULL;
2287d866 1654 raw_spin_unlock_irq(&base->lock);
73420fea
AMG
1655}
1656
1da177e4
LT
1657/*
1658 * This function runs timers and the timer-tq in bottom half context.
1659 */
0766f788 1660static __latent_entropy void run_timer_softirq(struct softirq_action *h)
1da177e4 1661{
500462a9 1662 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1da177e4 1663
2fe59f50
NP
1664 /*
1665 * must_forward_clk must be cleared before running timers so that any
1666 * timer functions that call mod_timer will not try to forward the
1667 * base. idle trcking / clock forwarding logic is only used with
1668 * BASE_STD timers.
1669 *
1670 * The deferrable base does not do idle tracking at all, so we do
1671 * not forward it. This can result in very large variations in
1672 * granularity for deferrable timers, but they can be deferred for
1673 * long periods due to idle.
1674 */
1675 base->must_forward_clk = false;
1676
500462a9
TG
1677 __run_timers(base);
1678 if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && base->nohz_active)
1679 __run_timers(this_cpu_ptr(&timer_bases[BASE_DEF]));
1da177e4
LT
1680}
1681
1682/*
1683 * Called by the local, per-CPU timer interrupt on SMP.
1684 */
1685void run_local_timers(void)
1686{
4e85876a
TG
1687 struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_STD]);
1688
d3d74453 1689 hrtimer_run_queues();
4e85876a
TG
1690 /* Raise the softirq only if required. */
1691 if (time_before(jiffies, base->clk)) {
1692 if (!IS_ENABLED(CONFIG_NO_HZ_COMMON) || !base->nohz_active)
1693 return;
1694 /* CPU is awake, so check the deferrable base. */
1695 base++;
1696 if (time_before(jiffies, base->clk))
1697 return;
1698 }
1da177e4
LT
1699 raise_softirq(TIMER_SOFTIRQ);
1700}
1701
58e1177b
KC
1702/*
1703 * Since schedule_timeout()'s timer is defined on the stack, it must store
1704 * the target task on the stack as well.
1705 */
1706struct process_timer {
1707 struct timer_list timer;
1708 struct task_struct *task;
1709};
1710
1711static void process_timeout(struct timer_list *t)
1da177e4 1712{
58e1177b
KC
1713 struct process_timer *timeout = from_timer(timeout, t, timer);
1714
1715 wake_up_process(timeout->task);
1da177e4
LT
1716}
1717
1718/**
1719 * schedule_timeout - sleep until timeout
1720 * @timeout: timeout value in jiffies
1721 *
1722 * Make the current task sleep until @timeout jiffies have
1723 * elapsed. The routine will return immediately unless
1724 * the current task state has been set (see set_current_state()).
1725 *
1726 * You can set the task state as follows -
1727 *
1728 * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
4b7e9cf9
DA
1729 * pass before the routine returns unless the current task is explicitly
1730 * woken up, (e.g. by wake_up_process())".
1da177e4
LT
1731 *
1732 * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
4b7e9cf9
DA
1733 * delivered to the current task or the current task is explicitly woken
1734 * up.
1da177e4
LT
1735 *
1736 * The current task state is guaranteed to be TASK_RUNNING when this
1737 * routine returns.
1738 *
1739 * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
1740 * the CPU away without a bound on the timeout. In this case the return
1741 * value will be %MAX_SCHEDULE_TIMEOUT.
1742 *
4b7e9cf9
DA
1743 * Returns 0 when the timer has expired otherwise the remaining time in
1744 * jiffies will be returned. In all cases the return value is guaranteed
1745 * to be non-negative.
1da177e4 1746 */
7ad5b3a5 1747signed long __sched schedule_timeout(signed long timeout)
1da177e4 1748{
58e1177b 1749 struct process_timer timer;
1da177e4
LT
1750 unsigned long expire;
1751
1752 switch (timeout)
1753 {
1754 case MAX_SCHEDULE_TIMEOUT:
1755 /*
1756 * These two special cases are useful to be comfortable
1757 * in the caller. Nothing more. We could take
1758 * MAX_SCHEDULE_TIMEOUT from one of the negative value
1759 * but I' d like to return a valid offset (>=0) to allow
1760 * the caller to do everything it want with the retval.
1761 */
1762 schedule();
1763 goto out;
1764 default:
1765 /*
1766 * Another bit of PARANOID. Note that the retval will be
1767 * 0 since no piece of kernel is supposed to do a check
1768 * for a negative retval of schedule_timeout() (since it
1769 * should never happens anyway). You just have the printk()
1770 * that will tell you if something is gone wrong and where.
1771 */
5b149bcc 1772 if (timeout < 0) {
1da177e4 1773 printk(KERN_ERR "schedule_timeout: wrong timeout "
5b149bcc
AM
1774 "value %lx\n", timeout);
1775 dump_stack();
1da177e4
LT
1776 current->state = TASK_RUNNING;
1777 goto out;
1778 }
1779 }
1780
1781 expire = timeout + jiffies;
1782
58e1177b
KC
1783 timer.task = current;
1784 timer_setup_on_stack(&timer.timer, process_timeout, 0);
b24591e2 1785 __mod_timer(&timer.timer, expire, 0);
1da177e4 1786 schedule();
58e1177b 1787 del_singleshot_timer_sync(&timer.timer);
1da177e4 1788
c6f3a97f 1789 /* Remove the timer from the object tracker */
58e1177b 1790 destroy_timer_on_stack(&timer.timer);
c6f3a97f 1791
1da177e4
LT
1792 timeout = expire - jiffies;
1793
1794 out:
1795 return timeout < 0 ? 0 : timeout;
1796}
1da177e4
LT
1797EXPORT_SYMBOL(schedule_timeout);
1798
8a1c1757
AM
1799/*
1800 * We can use __set_current_state() here because schedule_timeout() calls
1801 * schedule() unconditionally.
1802 */
64ed93a2
NA
1803signed long __sched schedule_timeout_interruptible(signed long timeout)
1804{
a5a0d52c
AM
1805 __set_current_state(TASK_INTERRUPTIBLE);
1806 return schedule_timeout(timeout);
64ed93a2
NA
1807}
1808EXPORT_SYMBOL(schedule_timeout_interruptible);
1809
294d5cc2
MW
1810signed long __sched schedule_timeout_killable(signed long timeout)
1811{
1812 __set_current_state(TASK_KILLABLE);
1813 return schedule_timeout(timeout);
1814}
1815EXPORT_SYMBOL(schedule_timeout_killable);
1816
64ed93a2
NA
1817signed long __sched schedule_timeout_uninterruptible(signed long timeout)
1818{
a5a0d52c
AM
1819 __set_current_state(TASK_UNINTERRUPTIBLE);
1820 return schedule_timeout(timeout);
64ed93a2
NA
1821}
1822EXPORT_SYMBOL(schedule_timeout_uninterruptible);
1823
69b27baf
AM
1824/*
1825 * Like schedule_timeout_uninterruptible(), except this task will not contribute
1826 * to load average.
1827 */
1828signed long __sched schedule_timeout_idle(signed long timeout)
1829{
1830 __set_current_state(TASK_IDLE);
1831 return schedule_timeout(timeout);
1832}
1833EXPORT_SYMBOL(schedule_timeout_idle);
1834
1da177e4 1835#ifdef CONFIG_HOTPLUG_CPU
494af3ed 1836static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
1da177e4
LT
1837{
1838 struct timer_list *timer;
0eeda71b 1839 int cpu = new_base->cpu;
1da177e4 1840
1dabbcec
TG
1841 while (!hlist_empty(head)) {
1842 timer = hlist_entry(head->first, struct timer_list, entry);
ec44bc7a 1843 detach_timer(timer, false);
0eeda71b 1844 timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
1da177e4 1845 internal_add_timer(new_base, timer);
1da177e4 1846 }
1da177e4
LT
1847}
1848
24f73b99 1849int timers_dead_cpu(unsigned int cpu)
1da177e4 1850{
494af3ed
TG
1851 struct timer_base *old_base;
1852 struct timer_base *new_base;
500462a9 1853 int b, i;
1da177e4
LT
1854
1855 BUG_ON(cpu_online(cpu));
55c888d6 1856
500462a9
TG
1857 for (b = 0; b < NR_BASES; b++) {
1858 old_base = per_cpu_ptr(&timer_bases[b], cpu);
1859 new_base = get_cpu_ptr(&timer_bases[b]);
1860 /*
1861 * The caller is globally serialized and nobody else
1862 * takes two locks at once, deadlock is not possible.
1863 */
2287d866
SAS
1864 raw_spin_lock_irq(&new_base->lock);
1865 raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
500462a9
TG
1866
1867 BUG_ON(old_base->running_timer);
1868
1869 for (i = 0; i < WHEEL_SIZE; i++)
1870 migrate_timer_list(new_base, old_base->vectors + i);
8def9060 1871
2287d866
SAS
1872 raw_spin_unlock(&old_base->lock);
1873 raw_spin_unlock_irq(&new_base->lock);
500462a9
TG
1874 put_cpu_ptr(&timer_bases);
1875 }
24f73b99 1876 return 0;
1da177e4 1877}
1da177e4 1878
3650b57f 1879#endif /* CONFIG_HOTPLUG_CPU */
1da177e4 1880
0eeda71b 1881static void __init init_timer_cpu(int cpu)
8def9060 1882{
500462a9
TG
1883 struct timer_base *base;
1884 int i;
8def9060 1885
500462a9
TG
1886 for (i = 0; i < NR_BASES; i++) {
1887 base = per_cpu_ptr(&timer_bases[i], cpu);
1888 base->cpu = cpu;
2287d866 1889 raw_spin_lock_init(&base->lock);
500462a9
TG
1890 base->clk = jiffies;
1891 }
8def9060
VK
1892}
1893
1894static void __init init_timer_cpus(void)
1da177e4 1895{
8def9060
VK
1896 int cpu;
1897
0eeda71b
TG
1898 for_each_possible_cpu(cpu)
1899 init_timer_cpu(cpu);
8def9060 1900}
e52b1db3 1901
8def9060
VK
1902void __init init_timers(void)
1903{
8def9060 1904 init_timer_cpus();
962cf36c 1905 open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
1da177e4
LT
1906}
1907
1da177e4
LT
1908/**
1909 * msleep - sleep safely even with waitqueue interruptions
1910 * @msecs: Time in milliseconds to sleep for
1911 */
1912void msleep(unsigned int msecs)
1913{
1914 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1915
75bcc8c5
NA
1916 while (timeout)
1917 timeout = schedule_timeout_uninterruptible(timeout);
1da177e4
LT
1918}
1919
1920EXPORT_SYMBOL(msleep);
1921
1922/**
96ec3efd 1923 * msleep_interruptible - sleep waiting for signals
1da177e4
LT
1924 * @msecs: Time in milliseconds to sleep for
1925 */
1926unsigned long msleep_interruptible(unsigned int msecs)
1927{
1928 unsigned long timeout = msecs_to_jiffies(msecs) + 1;
1929
75bcc8c5
NA
1930 while (timeout && !signal_pending(current))
1931 timeout = schedule_timeout_interruptible(timeout);
1da177e4
LT
1932 return jiffies_to_msecs(timeout);
1933}
1934
1935EXPORT_SYMBOL(msleep_interruptible);
5e7f5a17 1936
5e7f5a17 1937/**
b5227d03 1938 * usleep_range - Sleep for an approximate time
5e7f5a17
PP
1939 * @min: Minimum time in usecs to sleep
1940 * @max: Maximum time in usecs to sleep
b5227d03
BH
1941 *
1942 * In non-atomic context where the exact wakeup time is flexible, use
1943 * usleep_range() instead of udelay(). The sleep improves responsiveness
1944 * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
1945 * power usage by allowing hrtimers to take advantage of an already-
1946 * scheduled interrupt instead of scheduling a new one just for this sleep.
5e7f5a17 1947 */
2ad5d327 1948void __sched usleep_range(unsigned long min, unsigned long max)
5e7f5a17 1949{
6c5e9059
DA
1950 ktime_t exp = ktime_add_us(ktime_get(), min);
1951 u64 delta = (u64)(max - min) * NSEC_PER_USEC;
1952
1953 for (;;) {
1954 __set_current_state(TASK_UNINTERRUPTIBLE);
1955 /* Do not return before the requested sleep time has elapsed */
1956 if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
1957 break;
1958 }
5e7f5a17
PP
1959}
1960EXPORT_SYMBOL(usleep_range);