]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - lib/bitmap.c
lib/test_kasan.c: fix memory leak in kmalloc_oob_krealloc_more()
[mirror_ubuntu-bionic-kernel.git] / lib / bitmap.c
CommitLineData
1da177e4
LT
1/*
2 * lib/bitmap.c
3 * Helper functions for bitmap.h.
4 *
5 * This source code is licensed under the GNU General Public License,
6 * Version 2. See the file COPYING for more details.
7 */
8bc3bcc9
PG
8#include <linux/export.h>
9#include <linux/thread_info.h>
1da177e4
LT
10#include <linux/ctype.h>
11#include <linux/errno.h>
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
50af5ead 14#include <linux/bug.h>
e52bc7c2 15#include <linux/kernel.h>
b2917089 16#include <linux/slab.h>
e9983f65 17#include <linux/mm.h>
e52bc7c2 18#include <linux/string.h>
13d4ea09 19#include <linux/uaccess.h>
5aaba363
SH
20
21#include <asm/page.h>
1da177e4 22
7d7363e4
RD
23/**
24 * DOC: bitmap introduction
25 *
1da177e4
LT
26 * bitmaps provide an array of bits, implemented using an an
27 * array of unsigned longs. The number of valid bits in a
28 * given bitmap does _not_ need to be an exact multiple of
29 * BITS_PER_LONG.
30 *
31 * The possible unused bits in the last, partially used word
32 * of a bitmap are 'don't care'. The implementation makes
33 * no particular effort to keep them zero. It ensures that
34 * their value will not affect the results of any operation.
35 * The bitmap operations that return Boolean (bitmap_empty,
36 * for example) or scalar (bitmap_weight, for example) results
37 * carefully filter out these unused bits from impacting their
38 * results.
39 *
40 * These operations actually hold to a slightly stronger rule:
41 * if you don't input any bitmaps to these ops that have some
42 * unused bits set, then they won't output any set unused bits
43 * in output bitmaps.
44 *
45 * The byte ordering of bitmaps is more natural on little
46 * endian architectures. See the big-endian headers
47 * include/asm-ppc64/bitops.h and include/asm-s390/bitops.h
48 * for the best explanations of this ordering.
49 */
50
1da177e4 51int __bitmap_equal(const unsigned long *bitmap1,
5e068069 52 const unsigned long *bitmap2, unsigned int bits)
1da177e4 53{
5e068069 54 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
55 for (k = 0; k < lim; ++k)
56 if (bitmap1[k] != bitmap2[k])
57 return 0;
58
59 if (bits % BITS_PER_LONG)
60 if ((bitmap1[k] ^ bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
61 return 0;
62
63 return 1;
64}
65EXPORT_SYMBOL(__bitmap_equal);
66
3d6684f4 67void __bitmap_complement(unsigned long *dst, const unsigned long *src, unsigned int bits)
1da177e4 68{
3d6684f4 69 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
70 for (k = 0; k < lim; ++k)
71 dst[k] = ~src[k];
72
73 if (bits % BITS_PER_LONG)
65b4ee62 74 dst[k] = ~src[k];
1da177e4
LT
75}
76EXPORT_SYMBOL(__bitmap_complement);
77
72fd4a35 78/**
1da177e4 79 * __bitmap_shift_right - logical right shift of the bits in a bitmap
05fb6bf0
RD
80 * @dst : destination bitmap
81 * @src : source bitmap
82 * @shift : shift by this many bits
2fbad299 83 * @nbits : bitmap size, in bits
1da177e4
LT
84 *
85 * Shifting right (dividing) means moving bits in the MS -> LS bit
86 * direction. Zeros are fed into the vacated MS positions and the
87 * LS bits shifted off the bottom are lost.
88 */
2fbad299
RV
89void __bitmap_shift_right(unsigned long *dst, const unsigned long *src,
90 unsigned shift, unsigned nbits)
1da177e4 91{
cfac1d08 92 unsigned k, lim = BITS_TO_LONGS(nbits);
2fbad299 93 unsigned off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
cfac1d08 94 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1da177e4
LT
95 for (k = 0; off + k < lim; ++k) {
96 unsigned long upper, lower;
97
98 /*
99 * If shift is not word aligned, take lower rem bits of
100 * word above and make them the top rem bits of result.
101 */
102 if (!rem || off + k + 1 >= lim)
103 upper = 0;
104 else {
105 upper = src[off + k + 1];
cfac1d08 106 if (off + k + 1 == lim - 1)
1da177e4 107 upper &= mask;
9d8a6b2a 108 upper <<= (BITS_PER_LONG - rem);
1da177e4
LT
109 }
110 lower = src[off + k];
cfac1d08 111 if (off + k == lim - 1)
1da177e4 112 lower &= mask;
9d8a6b2a
RV
113 lower >>= rem;
114 dst[k] = lower | upper;
1da177e4
LT
115 }
116 if (off)
117 memset(&dst[lim - off], 0, off*sizeof(unsigned long));
118}
119EXPORT_SYMBOL(__bitmap_shift_right);
120
121
72fd4a35 122/**
1da177e4 123 * __bitmap_shift_left - logical left shift of the bits in a bitmap
05fb6bf0
RD
124 * @dst : destination bitmap
125 * @src : source bitmap
126 * @shift : shift by this many bits
dba94c25 127 * @nbits : bitmap size, in bits
1da177e4
LT
128 *
129 * Shifting left (multiplying) means moving bits in the LS -> MS
130 * direction. Zeros are fed into the vacated LS bit positions
131 * and those MS bits shifted off the top are lost.
132 */
133
dba94c25
RV
134void __bitmap_shift_left(unsigned long *dst, const unsigned long *src,
135 unsigned int shift, unsigned int nbits)
1da177e4 136{
dba94c25 137 int k;
7f590657 138 unsigned int lim = BITS_TO_LONGS(nbits);
dba94c25 139 unsigned int off = shift/BITS_PER_LONG, rem = shift % BITS_PER_LONG;
1da177e4
LT
140 for (k = lim - off - 1; k >= 0; --k) {
141 unsigned long upper, lower;
142
143 /*
144 * If shift is not word aligned, take upper rem bits of
145 * word below and make them the bottom rem bits of result.
146 */
147 if (rem && k > 0)
6d874eca 148 lower = src[k - 1] >> (BITS_PER_LONG - rem);
1da177e4
LT
149 else
150 lower = 0;
7f590657 151 upper = src[k] << rem;
6d874eca 152 dst[k + off] = lower | upper;
1da177e4
LT
153 }
154 if (off)
155 memset(dst, 0, off*sizeof(unsigned long));
156}
157EXPORT_SYMBOL(__bitmap_shift_left);
158
f4b0373b 159int __bitmap_and(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 160 const unsigned long *bitmap2, unsigned int bits)
1da177e4 161{
2f9305eb 162 unsigned int k;
7e5f97d1 163 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 164 unsigned long result = 0;
1da177e4 165
7e5f97d1 166 for (k = 0; k < lim; k++)
f4b0373b 167 result |= (dst[k] = bitmap1[k] & bitmap2[k]);
7e5f97d1
RV
168 if (bits % BITS_PER_LONG)
169 result |= (dst[k] = bitmap1[k] & bitmap2[k] &
170 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 171 return result != 0;
1da177e4
LT
172}
173EXPORT_SYMBOL(__bitmap_and);
174
175void __bitmap_or(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 176 const unsigned long *bitmap2, unsigned int bits)
1da177e4 177{
2f9305eb
RV
178 unsigned int k;
179 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
180
181 for (k = 0; k < nr; k++)
182 dst[k] = bitmap1[k] | bitmap2[k];
183}
184EXPORT_SYMBOL(__bitmap_or);
185
186void __bitmap_xor(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 187 const unsigned long *bitmap2, unsigned int bits)
1da177e4 188{
2f9305eb
RV
189 unsigned int k;
190 unsigned int nr = BITS_TO_LONGS(bits);
1da177e4
LT
191
192 for (k = 0; k < nr; k++)
193 dst[k] = bitmap1[k] ^ bitmap2[k];
194}
195EXPORT_SYMBOL(__bitmap_xor);
196
f4b0373b 197int __bitmap_andnot(unsigned long *dst, const unsigned long *bitmap1,
2f9305eb 198 const unsigned long *bitmap2, unsigned int bits)
1da177e4 199{
2f9305eb 200 unsigned int k;
74e76531 201 unsigned int lim = bits/BITS_PER_LONG;
f4b0373b 202 unsigned long result = 0;
1da177e4 203
74e76531 204 for (k = 0; k < lim; k++)
f4b0373b 205 result |= (dst[k] = bitmap1[k] & ~bitmap2[k]);
74e76531
RV
206 if (bits % BITS_PER_LONG)
207 result |= (dst[k] = bitmap1[k] & ~bitmap2[k] &
208 BITMAP_LAST_WORD_MASK(bits));
f4b0373b 209 return result != 0;
1da177e4
LT
210}
211EXPORT_SYMBOL(__bitmap_andnot);
212
213int __bitmap_intersects(const unsigned long *bitmap1,
6dfe9799 214 const unsigned long *bitmap2, unsigned int bits)
1da177e4 215{
6dfe9799 216 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
217 for (k = 0; k < lim; ++k)
218 if (bitmap1[k] & bitmap2[k])
219 return 1;
220
221 if (bits % BITS_PER_LONG)
222 if ((bitmap1[k] & bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
223 return 1;
224 return 0;
225}
226EXPORT_SYMBOL(__bitmap_intersects);
227
228int __bitmap_subset(const unsigned long *bitmap1,
5be20213 229 const unsigned long *bitmap2, unsigned int bits)
1da177e4 230{
5be20213 231 unsigned int k, lim = bits/BITS_PER_LONG;
1da177e4
LT
232 for (k = 0; k < lim; ++k)
233 if (bitmap1[k] & ~bitmap2[k])
234 return 0;
235
236 if (bits % BITS_PER_LONG)
237 if ((bitmap1[k] & ~bitmap2[k]) & BITMAP_LAST_WORD_MASK(bits))
238 return 0;
239 return 1;
240}
241EXPORT_SYMBOL(__bitmap_subset);
242
877d9f3b 243int __bitmap_weight(const unsigned long *bitmap, unsigned int bits)
1da177e4 244{
877d9f3b
RV
245 unsigned int k, lim = bits/BITS_PER_LONG;
246 int w = 0;
1da177e4
LT
247
248 for (k = 0; k < lim; k++)
37d54111 249 w += hweight_long(bitmap[k]);
1da177e4
LT
250
251 if (bits % BITS_PER_LONG)
37d54111 252 w += hweight_long(bitmap[k] & BITMAP_LAST_WORD_MASK(bits));
1da177e4
LT
253
254 return w;
255}
1da177e4
LT
256EXPORT_SYMBOL(__bitmap_weight);
257
e5af323c 258void __bitmap_set(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
259{
260 unsigned long *p = map + BIT_WORD(start);
fb5ac542 261 const unsigned int size = start + len;
c1a2a962
AM
262 int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
263 unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
264
fb5ac542 265 while (len - bits_to_set >= 0) {
c1a2a962 266 *p |= mask_to_set;
fb5ac542 267 len -= bits_to_set;
c1a2a962
AM
268 bits_to_set = BITS_PER_LONG;
269 mask_to_set = ~0UL;
270 p++;
271 }
fb5ac542 272 if (len) {
c1a2a962
AM
273 mask_to_set &= BITMAP_LAST_WORD_MASK(size);
274 *p |= mask_to_set;
275 }
276}
e5af323c 277EXPORT_SYMBOL(__bitmap_set);
c1a2a962 278
e5af323c 279void __bitmap_clear(unsigned long *map, unsigned int start, int len)
c1a2a962
AM
280{
281 unsigned long *p = map + BIT_WORD(start);
154f5e38 282 const unsigned int size = start + len;
c1a2a962
AM
283 int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
284 unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
285
154f5e38 286 while (len - bits_to_clear >= 0) {
c1a2a962 287 *p &= ~mask_to_clear;
154f5e38 288 len -= bits_to_clear;
c1a2a962
AM
289 bits_to_clear = BITS_PER_LONG;
290 mask_to_clear = ~0UL;
291 p++;
292 }
154f5e38 293 if (len) {
c1a2a962
AM
294 mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
295 *p &= ~mask_to_clear;
296 }
297}
e5af323c 298EXPORT_SYMBOL(__bitmap_clear);
c1a2a962 299
5e19b013
MN
300/**
301 * bitmap_find_next_zero_area_off - find a contiguous aligned zero area
c1a2a962
AM
302 * @map: The address to base the search on
303 * @size: The bitmap size in bits
304 * @start: The bitnumber to start searching at
305 * @nr: The number of zeroed bits we're looking for
306 * @align_mask: Alignment mask for zero area
5e19b013 307 * @align_offset: Alignment offset for zero area.
c1a2a962
AM
308 *
309 * The @align_mask should be one less than a power of 2; the effect is that
5e19b013
MN
310 * the bit offset of all zero areas this function finds plus @align_offset
311 * is multiple of that power of 2.
c1a2a962 312 */
5e19b013
MN
313unsigned long bitmap_find_next_zero_area_off(unsigned long *map,
314 unsigned long size,
315 unsigned long start,
316 unsigned int nr,
317 unsigned long align_mask,
318 unsigned long align_offset)
c1a2a962
AM
319{
320 unsigned long index, end, i;
321again:
322 index = find_next_zero_bit(map, size, start);
323
324 /* Align allocation */
5e19b013 325 index = __ALIGN_MASK(index + align_offset, align_mask) - align_offset;
c1a2a962
AM
326
327 end = index + nr;
328 if (end > size)
329 return end;
330 i = find_next_bit(map, end, index);
331 if (i < end) {
332 start = i + 1;
333 goto again;
334 }
335 return index;
336}
5e19b013 337EXPORT_SYMBOL(bitmap_find_next_zero_area_off);
c1a2a962 338
1da177e4 339/*
6d49e352 340 * Bitmap printing & parsing functions: first version by Nadia Yvette Chambers,
1da177e4
LT
341 * second version by Paul Jackson, third by Joe Korty.
342 */
343
344#define CHUNKSZ 32
345#define nbits_to_hold_value(val) fls(val)
1da177e4
LT
346#define BASEDEC 10 /* fancier cpuset lists input in decimal */
347
1da177e4 348/**
01a3ee2b
RC
349 * __bitmap_parse - convert an ASCII hex string into a bitmap.
350 * @buf: pointer to buffer containing string.
351 * @buflen: buffer size in bytes. If string is smaller than this
1da177e4 352 * then it must be terminated with a \0.
01a3ee2b 353 * @is_user: location of buffer, 0 indicates kernel space
1da177e4
LT
354 * @maskp: pointer to bitmap array that will contain result.
355 * @nmaskbits: size of bitmap, in bits.
356 *
357 * Commas group hex digits into chunks. Each chunk defines exactly 32
358 * bits of the resultant bitmask. No chunk may specify a value larger
6e1907ff
RD
359 * than 32 bits (%-EOVERFLOW), and if a chunk specifies a smaller value
360 * then leading 0-bits are prepended. %-EINVAL is returned for illegal
1da177e4
LT
361 * characters and for grouping errors such as "1,,5", ",44", "," and "".
362 * Leading and trailing whitespace accepted, but not embedded whitespace.
363 */
01a3ee2b
RC
364int __bitmap_parse(const char *buf, unsigned int buflen,
365 int is_user, unsigned long *maskp,
366 int nmaskbits)
1da177e4
LT
367{
368 int c, old_c, totaldigits, ndigits, nchunks, nbits;
369 u32 chunk;
b9c321fd 370 const char __user __force *ubuf = (const char __user __force *)buf;
1da177e4
LT
371
372 bitmap_zero(maskp, nmaskbits);
373
374 nchunks = nbits = totaldigits = c = 0;
375 do {
d21c3d4d
PX
376 chunk = 0;
377 ndigits = totaldigits;
1da177e4
LT
378
379 /* Get the next chunk of the bitmap */
01a3ee2b 380 while (buflen) {
1da177e4 381 old_c = c;
01a3ee2b
RC
382 if (is_user) {
383 if (__get_user(c, ubuf++))
384 return -EFAULT;
385 }
386 else
387 c = *buf++;
388 buflen--;
1da177e4
LT
389 if (isspace(c))
390 continue;
391
392 /*
393 * If the last character was a space and the current
394 * character isn't '\0', we've got embedded whitespace.
395 * This is a no-no, so throw an error.
396 */
397 if (totaldigits && c && isspace(old_c))
398 return -EINVAL;
399
400 /* A '\0' or a ',' signal the end of the chunk */
401 if (c == '\0' || c == ',')
402 break;
403
404 if (!isxdigit(c))
405 return -EINVAL;
406
407 /*
408 * Make sure there are at least 4 free bits in 'chunk'.
409 * If not, this hexdigit will overflow 'chunk', so
410 * throw an error.
411 */
412 if (chunk & ~((1UL << (CHUNKSZ - 4)) - 1))
413 return -EOVERFLOW;
414
66f1991b 415 chunk = (chunk << 4) | hex_to_bin(c);
d21c3d4d 416 totaldigits++;
1da177e4 417 }
d21c3d4d 418 if (ndigits == totaldigits)
1da177e4
LT
419 return -EINVAL;
420 if (nchunks == 0 && chunk == 0)
421 continue;
422
423 __bitmap_shift_left(maskp, maskp, CHUNKSZ, nmaskbits);
424 *maskp |= chunk;
425 nchunks++;
426 nbits += (nchunks == 1) ? nbits_to_hold_value(chunk) : CHUNKSZ;
427 if (nbits > nmaskbits)
428 return -EOVERFLOW;
01a3ee2b 429 } while (buflen && c == ',');
1da177e4
LT
430
431 return 0;
432}
01a3ee2b
RC
433EXPORT_SYMBOL(__bitmap_parse);
434
435/**
9a86e2ba 436 * bitmap_parse_user - convert an ASCII hex string in a user buffer into a bitmap
01a3ee2b
RC
437 *
438 * @ubuf: pointer to user buffer containing string.
439 * @ulen: buffer size in bytes. If string is smaller than this
440 * then it must be terminated with a \0.
441 * @maskp: pointer to bitmap array that will contain result.
442 * @nmaskbits: size of bitmap, in bits.
443 *
444 * Wrapper for __bitmap_parse(), providing it with user buffer.
445 *
446 * We cannot have this as an inline function in bitmap.h because it needs
447 * linux/uaccess.h to get the access_ok() declaration and this causes
448 * cyclic dependencies.
449 */
450int bitmap_parse_user(const char __user *ubuf,
451 unsigned int ulen, unsigned long *maskp,
452 int nmaskbits)
453{
454 if (!access_ok(VERIFY_READ, ubuf, ulen))
455 return -EFAULT;
b9c321fd
HS
456 return __bitmap_parse((const char __force *)ubuf,
457 ulen, 1, maskp, nmaskbits);
458
01a3ee2b
RC
459}
460EXPORT_SYMBOL(bitmap_parse_user);
1da177e4 461
5aaba363
SH
462/**
463 * bitmap_print_to_pagebuf - convert bitmap to list or hex format ASCII string
464 * @list: indicates whether the bitmap must be list
465 * @buf: page aligned buffer into which string is placed
466 * @maskp: pointer to bitmap to convert
467 * @nmaskbits: size of bitmap, in bits
468 *
469 * Output format is a comma-separated list of decimal numbers and
470 * ranges if list is specified or hex digits grouped into comma-separated
471 * sets of 8 digits/set. Returns the number of characters written to buf.
9cf79d11 472 *
e9983f65
RV
473 * It is assumed that @buf is a pointer into a PAGE_SIZE, page-aligned
474 * area and that sufficient storage remains at @buf to accommodate the
475 * bitmap_print_to_pagebuf() output. Returns the number of characters
476 * actually printed to @buf, excluding terminating '\0'.
5aaba363
SH
477 */
478int bitmap_print_to_pagebuf(bool list, char *buf, const unsigned long *maskp,
479 int nmaskbits)
480{
e9983f65 481 ptrdiff_t len = PAGE_SIZE - offset_in_page(buf);
5aaba363
SH
482 int n = 0;
483
9cf79d11
SH
484 if (len > 1)
485 n = list ? scnprintf(buf, len, "%*pbl\n", nmaskbits, maskp) :
486 scnprintf(buf, len, "%*pb\n", nmaskbits, maskp);
5aaba363
SH
487 return n;
488}
489EXPORT_SYMBOL(bitmap_print_to_pagebuf);
490
1da177e4 491/**
4b060420 492 * __bitmap_parselist - convert list format ASCII string to bitmap
b0825ee3 493 * @buf: read nul-terminated user string from this buffer
4b060420
MT
494 * @buflen: buffer size in bytes. If string is smaller than this
495 * then it must be terminated with a \0.
496 * @is_user: location of buffer, 0 indicates kernel space
6e1907ff 497 * @maskp: write resulting mask here
1da177e4
LT
498 * @nmaskbits: number of bits in mask to be written
499 *
500 * Input format is a comma-separated list of decimal numbers and
501 * ranges. Consecutively set bits are shown as two hyphen-separated
502 * decimal numbers, the smallest and largest bit numbers set in
503 * the range.
2d13e6ca
NC
504 * Optionally each range can be postfixed to denote that only parts of it
505 * should be set. The range will divided to groups of specific size.
506 * From each group will be used only defined amount of bits.
507 * Syntax: range:used_size/group_size
508 * Example: 0-1023:2/256 ==> 0,1,256,257,512,513,768,769
1da177e4 509 *
40bf19a8
MCC
510 * Returns: 0 on success, -errno on invalid input strings. Error values:
511 *
512 * - ``-EINVAL``: second number in range smaller than first
513 * - ``-EINVAL``: invalid character in string
514 * - ``-ERANGE``: bit number specified too large for mask
1da177e4 515 */
4b060420
MT
516static int __bitmap_parselist(const char *buf, unsigned int buflen,
517 int is_user, unsigned long *maskp,
518 int nmaskbits)
1da177e4 519{
2d13e6ca 520 unsigned int a, b, old_a, old_b;
0a5ce083 521 unsigned int group_size, used_size, off;
9bf98f16 522 int c, old_c, totaldigits, ndigits;
b9c321fd 523 const char __user __force *ubuf = (const char __user __force *)buf;
2d13e6ca 524 int at_start, in_range, in_partial_range;
1da177e4 525
4b060420 526 totaldigits = c = 0;
2d13e6ca
NC
527 old_a = old_b = 0;
528 group_size = used_size = 0;
1da177e4
LT
529 bitmap_zero(maskp, nmaskbits);
530 do {
2528a8b8 531 at_start = 1;
4b060420 532 in_range = 0;
2d13e6ca 533 in_partial_range = 0;
4b060420 534 a = b = 0;
9bf98f16 535 ndigits = totaldigits;
4b060420
MT
536
537 /* Get the next cpu# or a range of cpu#'s */
538 while (buflen) {
539 old_c = c;
540 if (is_user) {
541 if (__get_user(c, ubuf++))
542 return -EFAULT;
543 } else
544 c = *buf++;
545 buflen--;
546 if (isspace(c))
547 continue;
548
4b060420
MT
549 /* A '\0' or a ',' signal the end of a cpu# or range */
550 if (c == '\0' || c == ',')
551 break;
9bf98f16
PX
552 /*
553 * whitespaces between digits are not allowed,
554 * but it's ok if whitespaces are on head or tail.
555 * when old_c is whilespace,
556 * if totaldigits == ndigits, whitespace is on head.
557 * if whitespace is on tail, it should not run here.
558 * as c was ',' or '\0',
559 * the last code line has broken the current loop.
560 */
561 if ((totaldigits != ndigits) && isspace(old_c))
562 return -EINVAL;
4b060420 563
2d13e6ca
NC
564 if (c == '/') {
565 used_size = a;
566 at_start = 1;
567 in_range = 0;
568 a = b = 0;
569 continue;
570 }
571
572 if (c == ':') {
573 old_a = a;
574 old_b = b;
575 at_start = 1;
576 in_range = 0;
577 in_partial_range = 1;
578 a = b = 0;
579 continue;
580 }
581
4b060420 582 if (c == '-') {
2528a8b8 583 if (at_start || in_range)
4b060420
MT
584 return -EINVAL;
585 b = 0;
586 in_range = 1;
d9282cb6 587 at_start = 1;
4b060420
MT
588 continue;
589 }
590
591 if (!isdigit(c))
1da177e4 592 return -EINVAL;
4b060420
MT
593
594 b = b * 10 + (c - '0');
595 if (!in_range)
596 a = b;
2528a8b8 597 at_start = 0;
4b060420 598 totaldigits++;
1da177e4 599 }
9bf98f16
PX
600 if (ndigits == totaldigits)
601 continue;
2d13e6ca
NC
602 if (in_partial_range) {
603 group_size = a;
604 a = old_a;
605 b = old_b;
606 old_a = old_b = 0;
0a5ce083
YN
607 } else {
608 used_size = group_size = b - a + 1;
2d13e6ca 609 }
d9282cb6
PX
610 /* if no digit is after '-', it's wrong*/
611 if (at_start && in_range)
612 return -EINVAL;
dad4f5a6 613 if (!(a <= b) || group_size == 0 || !(used_size <= group_size))
1da177e4
LT
614 return -EINVAL;
615 if (b >= nmaskbits)
616 return -ERANGE;
9bf98f16 617 while (a <= b) {
0a5ce083
YN
618 off = min(b - a + 1, used_size);
619 bitmap_set(maskp, a, off);
620 a += group_size;
1da177e4 621 }
4b060420 622 } while (buflen && c == ',');
1da177e4
LT
623 return 0;
624}
4b060420
MT
625
626int bitmap_parselist(const char *bp, unsigned long *maskp, int nmaskbits)
627{
bc5be182
RV
628 char *nl = strchrnul(bp, '\n');
629 int len = nl - bp;
4b060420
MT
630
631 return __bitmap_parselist(bp, len, 0, maskp, nmaskbits);
632}
1da177e4
LT
633EXPORT_SYMBOL(bitmap_parselist);
634
4b060420
MT
635
636/**
637 * bitmap_parselist_user()
638 *
639 * @ubuf: pointer to user buffer containing string.
640 * @ulen: buffer size in bytes. If string is smaller than this
641 * then it must be terminated with a \0.
642 * @maskp: pointer to bitmap array that will contain result.
643 * @nmaskbits: size of bitmap, in bits.
644 *
645 * Wrapper for bitmap_parselist(), providing it with user buffer.
646 *
647 * We cannot have this as an inline function in bitmap.h because it needs
648 * linux/uaccess.h to get the access_ok() declaration and this causes
649 * cyclic dependencies.
650 */
651int bitmap_parselist_user(const char __user *ubuf,
652 unsigned int ulen, unsigned long *maskp,
653 int nmaskbits)
654{
655 if (!access_ok(VERIFY_READ, ubuf, ulen))
656 return -EFAULT;
b9c321fd 657 return __bitmap_parselist((const char __force *)ubuf,
4b060420
MT
658 ulen, 1, maskp, nmaskbits);
659}
660EXPORT_SYMBOL(bitmap_parselist_user);
661
662
72fd4a35 663/**
9a86e2ba 664 * bitmap_pos_to_ord - find ordinal of set bit at given position in bitmap
fb5eeeee 665 * @buf: pointer to a bitmap
df1d80a9
RV
666 * @pos: a bit position in @buf (0 <= @pos < @nbits)
667 * @nbits: number of valid bit positions in @buf
fb5eeeee 668 *
df1d80a9 669 * Map the bit at position @pos in @buf (of length @nbits) to the
fb5eeeee 670 * ordinal of which set bit it is. If it is not set or if @pos
96b7f341 671 * is not a valid bit position, map to -1.
fb5eeeee
PJ
672 *
673 * If for example, just bits 4 through 7 are set in @buf, then @pos
674 * values 4 through 7 will get mapped to 0 through 3, respectively,
a8551748 675 * and other @pos values will get mapped to -1. When @pos value 7
fb5eeeee
PJ
676 * gets mapped to (returns) @ord value 3 in this example, that means
677 * that bit 7 is the 3rd (starting with 0th) set bit in @buf.
678 *
679 * The bit positions 0 through @bits are valid positions in @buf.
680 */
df1d80a9 681static int bitmap_pos_to_ord(const unsigned long *buf, unsigned int pos, unsigned int nbits)
fb5eeeee 682{
df1d80a9 683 if (pos >= nbits || !test_bit(pos, buf))
96b7f341 684 return -1;
fb5eeeee 685
df1d80a9 686 return __bitmap_weight(buf, pos);
fb5eeeee
PJ
687}
688
689/**
9a86e2ba 690 * bitmap_ord_to_pos - find position of n-th set bit in bitmap
fb5eeeee
PJ
691 * @buf: pointer to bitmap
692 * @ord: ordinal bit position (n-th set bit, n >= 0)
f6a1f5db 693 * @nbits: number of valid bit positions in @buf
fb5eeeee
PJ
694 *
695 * Map the ordinal offset of bit @ord in @buf to its position in @buf.
f6a1f5db
RV
696 * Value of @ord should be in range 0 <= @ord < weight(buf). If @ord
697 * >= weight(buf), returns @nbits.
fb5eeeee
PJ
698 *
699 * If for example, just bits 4 through 7 are set in @buf, then @ord
700 * values 0 through 3 will get mapped to 4 through 7, respectively,
f6a1f5db 701 * and all other @ord values returns @nbits. When @ord value 3
fb5eeeee
PJ
702 * gets mapped to (returns) @pos value 7 in this example, that means
703 * that the 3rd set bit (starting with 0th) is at position 7 in @buf.
704 *
f6a1f5db 705 * The bit positions 0 through @nbits-1 are valid positions in @buf.
fb5eeeee 706 */
f6a1f5db 707unsigned int bitmap_ord_to_pos(const unsigned long *buf, unsigned int ord, unsigned int nbits)
fb5eeeee 708{
f6a1f5db 709 unsigned int pos;
fb5eeeee 710
f6a1f5db
RV
711 for (pos = find_first_bit(buf, nbits);
712 pos < nbits && ord;
713 pos = find_next_bit(buf, nbits, pos + 1))
714 ord--;
fb5eeeee
PJ
715
716 return pos;
717}
718
719/**
720 * bitmap_remap - Apply map defined by a pair of bitmaps to another bitmap
fb5eeeee 721 * @dst: remapped result
96b7f341 722 * @src: subset to be remapped
fb5eeeee
PJ
723 * @old: defines domain of map
724 * @new: defines range of map
9814ec13 725 * @nbits: number of bits in each of these bitmaps
fb5eeeee
PJ
726 *
727 * Let @old and @new define a mapping of bit positions, such that
728 * whatever position is held by the n-th set bit in @old is mapped
729 * to the n-th set bit in @new. In the more general case, allowing
730 * for the possibility that the weight 'w' of @new is less than the
731 * weight of @old, map the position of the n-th set bit in @old to
732 * the position of the m-th set bit in @new, where m == n % w.
733 *
96b7f341
PJ
734 * If either of the @old and @new bitmaps are empty, or if @src and
735 * @dst point to the same location, then this routine copies @src
736 * to @dst.
fb5eeeee 737 *
96b7f341
PJ
738 * The positions of unset bits in @old are mapped to themselves
739 * (the identify map).
fb5eeeee
PJ
740 *
741 * Apply the above specified mapping to @src, placing the result in
742 * @dst, clearing any bits previously set in @dst.
743 *
fb5eeeee
PJ
744 * For example, lets say that @old has bits 4 through 7 set, and
745 * @new has bits 12 through 15 set. This defines the mapping of bit
746 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
747 * bit positions unchanged. So if say @src comes into this routine
748 * with bits 1, 5 and 7 set, then @dst should leave with bits 1,
749 * 13 and 15 set.
fb5eeeee
PJ
750 */
751void bitmap_remap(unsigned long *dst, const unsigned long *src,
752 const unsigned long *old, const unsigned long *new,
9814ec13 753 unsigned int nbits)
fb5eeeee 754{
9814ec13 755 unsigned int oldbit, w;
fb5eeeee 756
fb5eeeee
PJ
757 if (dst == src) /* following doesn't handle inplace remaps */
758 return;
9814ec13 759 bitmap_zero(dst, nbits);
96b7f341 760
9814ec13
RV
761 w = bitmap_weight(new, nbits);
762 for_each_set_bit(oldbit, src, nbits) {
763 int n = bitmap_pos_to_ord(old, oldbit, nbits);
08564fb7 764
96b7f341
PJ
765 if (n < 0 || w == 0)
766 set_bit(oldbit, dst); /* identity map */
767 else
9814ec13 768 set_bit(bitmap_ord_to_pos(new, n % w, nbits), dst);
fb5eeeee
PJ
769 }
770}
771EXPORT_SYMBOL(bitmap_remap);
772
773/**
774 * bitmap_bitremap - Apply map defined by a pair of bitmaps to a single bit
6e1907ff
RD
775 * @oldbit: bit position to be mapped
776 * @old: defines domain of map
777 * @new: defines range of map
778 * @bits: number of bits in each of these bitmaps
fb5eeeee
PJ
779 *
780 * Let @old and @new define a mapping of bit positions, such that
781 * whatever position is held by the n-th set bit in @old is mapped
782 * to the n-th set bit in @new. In the more general case, allowing
783 * for the possibility that the weight 'w' of @new is less than the
784 * weight of @old, map the position of the n-th set bit in @old to
785 * the position of the m-th set bit in @new, where m == n % w.
786 *
96b7f341
PJ
787 * The positions of unset bits in @old are mapped to themselves
788 * (the identify map).
fb5eeeee
PJ
789 *
790 * Apply the above specified mapping to bit position @oldbit, returning
791 * the new bit position.
792 *
793 * For example, lets say that @old has bits 4 through 7 set, and
794 * @new has bits 12 through 15 set. This defines the mapping of bit
795 * position 4 to 12, 5 to 13, 6 to 14 and 7 to 15, and of all other
96b7f341
PJ
796 * bit positions unchanged. So if say @oldbit is 5, then this routine
797 * returns 13.
fb5eeeee
PJ
798 */
799int bitmap_bitremap(int oldbit, const unsigned long *old,
800 const unsigned long *new, int bits)
801{
96b7f341
PJ
802 int w = bitmap_weight(new, bits);
803 int n = bitmap_pos_to_ord(old, oldbit, bits);
804 if (n < 0 || w == 0)
805 return oldbit;
806 else
807 return bitmap_ord_to_pos(new, n % w, bits);
fb5eeeee
PJ
808}
809EXPORT_SYMBOL(bitmap_bitremap);
810
7ea931c9
PJ
811/**
812 * bitmap_onto - translate one bitmap relative to another
813 * @dst: resulting translated bitmap
814 * @orig: original untranslated bitmap
815 * @relmap: bitmap relative to which translated
816 * @bits: number of bits in each of these bitmaps
817 *
818 * Set the n-th bit of @dst iff there exists some m such that the
819 * n-th bit of @relmap is set, the m-th bit of @orig is set, and
820 * the n-th bit of @relmap is also the m-th _set_ bit of @relmap.
821 * (If you understood the previous sentence the first time your
822 * read it, you're overqualified for your current job.)
823 *
824 * In other words, @orig is mapped onto (surjectively) @dst,
da3dae54 825 * using the map { <n, m> | the n-th bit of @relmap is the
7ea931c9
PJ
826 * m-th set bit of @relmap }.
827 *
828 * Any set bits in @orig above bit number W, where W is the
829 * weight of (number of set bits in) @relmap are mapped nowhere.
830 * In particular, if for all bits m set in @orig, m >= W, then
831 * @dst will end up empty. In situations where the possibility
832 * of such an empty result is not desired, one way to avoid it is
833 * to use the bitmap_fold() operator, below, to first fold the
834 * @orig bitmap over itself so that all its set bits x are in the
835 * range 0 <= x < W. The bitmap_fold() operator does this by
836 * setting the bit (m % W) in @dst, for each bit (m) set in @orig.
837 *
838 * Example [1] for bitmap_onto():
839 * Let's say @relmap has bits 30-39 set, and @orig has bits
840 * 1, 3, 5, 7, 9 and 11 set. Then on return from this routine,
841 * @dst will have bits 31, 33, 35, 37 and 39 set.
842 *
843 * When bit 0 is set in @orig, it means turn on the bit in
844 * @dst corresponding to whatever is the first bit (if any)
845 * that is turned on in @relmap. Since bit 0 was off in the
846 * above example, we leave off that bit (bit 30) in @dst.
847 *
848 * When bit 1 is set in @orig (as in the above example), it
849 * means turn on the bit in @dst corresponding to whatever
850 * is the second bit that is turned on in @relmap. The second
851 * bit in @relmap that was turned on in the above example was
852 * bit 31, so we turned on bit 31 in @dst.
853 *
854 * Similarly, we turned on bits 33, 35, 37 and 39 in @dst,
855 * because they were the 4th, 6th, 8th and 10th set bits
856 * set in @relmap, and the 4th, 6th, 8th and 10th bits of
857 * @orig (i.e. bits 3, 5, 7 and 9) were also set.
858 *
859 * When bit 11 is set in @orig, it means turn on the bit in
25985edc 860 * @dst corresponding to whatever is the twelfth bit that is
7ea931c9
PJ
861 * turned on in @relmap. In the above example, there were
862 * only ten bits turned on in @relmap (30..39), so that bit
863 * 11 was set in @orig had no affect on @dst.
864 *
865 * Example [2] for bitmap_fold() + bitmap_onto():
40bf19a8
MCC
866 * Let's say @relmap has these ten bits set::
867 *
7ea931c9 868 * 40 41 42 43 45 48 53 61 74 95
40bf19a8 869 *
7ea931c9
PJ
870 * (for the curious, that's 40 plus the first ten terms of the
871 * Fibonacci sequence.)
872 *
873 * Further lets say we use the following code, invoking
874 * bitmap_fold() then bitmap_onto, as suggested above to
40bf19a8 875 * avoid the possibility of an empty @dst result::
7ea931c9
PJ
876 *
877 * unsigned long *tmp; // a temporary bitmap's bits
878 *
879 * bitmap_fold(tmp, orig, bitmap_weight(relmap, bits), bits);
880 * bitmap_onto(dst, tmp, relmap, bits);
881 *
882 * Then this table shows what various values of @dst would be, for
883 * various @orig's. I list the zero-based positions of each set bit.
884 * The tmp column shows the intermediate result, as computed by
885 * using bitmap_fold() to fold the @orig bitmap modulo ten
40bf19a8 886 * (the weight of @relmap):
7ea931c9 887 *
40bf19a8 888 * =============== ============== =================
7ea931c9
PJ
889 * @orig tmp @dst
890 * 0 0 40
891 * 1 1 41
892 * 9 9 95
40bf19a8 893 * 10 0 40 [#f1]_
7ea931c9
PJ
894 * 1 3 5 7 1 3 5 7 41 43 48 61
895 * 0 1 2 3 4 0 1 2 3 4 40 41 42 43 45
896 * 0 9 18 27 0 9 8 7 40 61 74 95
897 * 0 10 20 30 0 40
898 * 0 11 22 33 0 1 2 3 40 41 42 43
899 * 0 12 24 36 0 2 4 6 40 42 45 53
40bf19a8
MCC
900 * 78 102 211 1 2 8 41 42 74 [#f1]_
901 * =============== ============== =================
902 *
903 * .. [#f1]
7ea931c9 904 *
40bf19a8 905 * For these marked lines, if we hadn't first done bitmap_fold()
7ea931c9
PJ
906 * into tmp, then the @dst result would have been empty.
907 *
908 * If either of @orig or @relmap is empty (no set bits), then @dst
909 * will be returned empty.
910 *
911 * If (as explained above) the only set bits in @orig are in positions
912 * m where m >= W, (where W is the weight of @relmap) then @dst will
913 * once again be returned empty.
914 *
915 * All bits in @dst not set by the above rule are cleared.
916 */
917void bitmap_onto(unsigned long *dst, const unsigned long *orig,
eb569883 918 const unsigned long *relmap, unsigned int bits)
7ea931c9 919{
eb569883 920 unsigned int n, m; /* same meaning as in above comment */
7ea931c9
PJ
921
922 if (dst == orig) /* following doesn't handle inplace mappings */
923 return;
924 bitmap_zero(dst, bits);
925
926 /*
927 * The following code is a more efficient, but less
928 * obvious, equivalent to the loop:
929 * for (m = 0; m < bitmap_weight(relmap, bits); m++) {
930 * n = bitmap_ord_to_pos(orig, m, bits);
931 * if (test_bit(m, orig))
932 * set_bit(n, dst);
933 * }
934 */
935
936 m = 0;
08564fb7 937 for_each_set_bit(n, relmap, bits) {
7ea931c9
PJ
938 /* m == bitmap_pos_to_ord(relmap, n, bits) */
939 if (test_bit(m, orig))
940 set_bit(n, dst);
941 m++;
942 }
943}
944EXPORT_SYMBOL(bitmap_onto);
945
946/**
947 * bitmap_fold - fold larger bitmap into smaller, modulo specified size
948 * @dst: resulting smaller bitmap
949 * @orig: original larger bitmap
950 * @sz: specified size
b26ad583 951 * @nbits: number of bits in each of these bitmaps
7ea931c9
PJ
952 *
953 * For each bit oldbit in @orig, set bit oldbit mod @sz in @dst.
954 * Clear all other bits in @dst. See further the comment and
955 * Example [2] for bitmap_onto() for why and how to use this.
956 */
957void bitmap_fold(unsigned long *dst, const unsigned long *orig,
b26ad583 958 unsigned int sz, unsigned int nbits)
7ea931c9 959{
b26ad583 960 unsigned int oldbit;
7ea931c9
PJ
961
962 if (dst == orig) /* following doesn't handle inplace mappings */
963 return;
b26ad583 964 bitmap_zero(dst, nbits);
7ea931c9 965
b26ad583 966 for_each_set_bit(oldbit, orig, nbits)
7ea931c9
PJ
967 set_bit(oldbit % sz, dst);
968}
969EXPORT_SYMBOL(bitmap_fold);
970
3cf64b93
PJ
971/*
972 * Common code for bitmap_*_region() routines.
973 * bitmap: array of unsigned longs corresponding to the bitmap
974 * pos: the beginning of the region
975 * order: region size (log base 2 of number of bits)
976 * reg_op: operation(s) to perform on that region of bitmap
1da177e4 977 *
3cf64b93
PJ
978 * Can set, verify and/or release a region of bits in a bitmap,
979 * depending on which combination of REG_OP_* flag bits is set.
1da177e4 980 *
3cf64b93
PJ
981 * A region of a bitmap is a sequence of bits in the bitmap, of
982 * some size '1 << order' (a power of two), aligned to that same
983 * '1 << order' power of two.
984 *
985 * Returns 1 if REG_OP_ISFREE succeeds (region is all zero bits).
986 * Returns 0 in all other cases and reg_ops.
1da177e4 987 */
3cf64b93
PJ
988
989enum {
990 REG_OP_ISFREE, /* true if region is all zero bits */
991 REG_OP_ALLOC, /* set all bits in region */
992 REG_OP_RELEASE, /* clear all bits in region */
993};
994
9279d328 995static int __reg_op(unsigned long *bitmap, unsigned int pos, int order, int reg_op)
1da177e4 996{
3cf64b93
PJ
997 int nbits_reg; /* number of bits in region */
998 int index; /* index first long of region in bitmap */
999 int offset; /* bit offset region in bitmap[index] */
1000 int nlongs_reg; /* num longs spanned by region in bitmap */
74373c6a 1001 int nbitsinlong; /* num bits of region in each spanned long */
3cf64b93 1002 unsigned long mask; /* bitmask for one long of region */
74373c6a 1003 int i; /* scans bitmap by longs */
3cf64b93 1004 int ret = 0; /* return value */
74373c6a 1005
3cf64b93
PJ
1006 /*
1007 * Either nlongs_reg == 1 (for small orders that fit in one long)
1008 * or (offset == 0 && mask == ~0UL) (for larger multiword orders.)
1009 */
1010 nbits_reg = 1 << order;
1011 index = pos / BITS_PER_LONG;
1012 offset = pos - (index * BITS_PER_LONG);
1013 nlongs_reg = BITS_TO_LONGS(nbits_reg);
1014 nbitsinlong = min(nbits_reg, BITS_PER_LONG);
1da177e4 1015
3cf64b93
PJ
1016 /*
1017 * Can't do "mask = (1UL << nbitsinlong) - 1", as that
1018 * overflows if nbitsinlong == BITS_PER_LONG.
1019 */
74373c6a 1020 mask = (1UL << (nbitsinlong - 1));
1da177e4 1021 mask += mask - 1;
3cf64b93 1022 mask <<= offset;
1da177e4 1023
3cf64b93
PJ
1024 switch (reg_op) {
1025 case REG_OP_ISFREE:
1026 for (i = 0; i < nlongs_reg; i++) {
1027 if (bitmap[index + i] & mask)
1028 goto done;
1029 }
1030 ret = 1; /* all bits in region free (zero) */
1031 break;
1032
1033 case REG_OP_ALLOC:
1034 for (i = 0; i < nlongs_reg; i++)
1035 bitmap[index + i] |= mask;
1036 break;
1037
1038 case REG_OP_RELEASE:
1039 for (i = 0; i < nlongs_reg; i++)
1040 bitmap[index + i] &= ~mask;
1041 break;
1da177e4 1042 }
3cf64b93
PJ
1043done:
1044 return ret;
1045}
1046
1047/**
1048 * bitmap_find_free_region - find a contiguous aligned mem region
1049 * @bitmap: array of unsigned longs corresponding to the bitmap
1050 * @bits: number of bits in the bitmap
1051 * @order: region size (log base 2 of number of bits) to find
1052 *
1053 * Find a region of free (zero) bits in a @bitmap of @bits bits and
1054 * allocate them (set them to one). Only consider regions of length
1055 * a power (@order) of two, aligned to that power of two, which
1056 * makes the search algorithm much faster.
1057 *
1058 * Return the bit offset in bitmap of the allocated region,
1059 * or -errno on failure.
1060 */
9279d328 1061int bitmap_find_free_region(unsigned long *bitmap, unsigned int bits, int order)
3cf64b93 1062{
9279d328 1063 unsigned int pos, end; /* scans bitmap by regions of size order */
aa8e4fc6 1064
9279d328 1065 for (pos = 0 ; (end = pos + (1U << order)) <= bits; pos = end) {
aa8e4fc6
LT
1066 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1067 continue;
1068 __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1069 return pos;
1070 }
1071 return -ENOMEM;
1da177e4
LT
1072}
1073EXPORT_SYMBOL(bitmap_find_free_region);
1074
1075/**
87e24802 1076 * bitmap_release_region - release allocated bitmap region
3cf64b93
PJ
1077 * @bitmap: array of unsigned longs corresponding to the bitmap
1078 * @pos: beginning of bit region to release
1079 * @order: region size (log base 2 of number of bits) to release
1da177e4 1080 *
72fd4a35 1081 * This is the complement to __bitmap_find_free_region() and releases
1da177e4 1082 * the found region (by clearing it in the bitmap).
3cf64b93
PJ
1083 *
1084 * No return value.
1da177e4 1085 */
9279d328 1086void bitmap_release_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1087{
3cf64b93 1088 __reg_op(bitmap, pos, order, REG_OP_RELEASE);
1da177e4
LT
1089}
1090EXPORT_SYMBOL(bitmap_release_region);
1091
87e24802
PJ
1092/**
1093 * bitmap_allocate_region - allocate bitmap region
3cf64b93
PJ
1094 * @bitmap: array of unsigned longs corresponding to the bitmap
1095 * @pos: beginning of bit region to allocate
1096 * @order: region size (log base 2 of number of bits) to allocate
87e24802
PJ
1097 *
1098 * Allocate (set bits in) a specified region of a bitmap.
3cf64b93 1099 *
6e1907ff 1100 * Return 0 on success, or %-EBUSY if specified region wasn't
87e24802
PJ
1101 * free (not all bits were zero).
1102 */
9279d328 1103int bitmap_allocate_region(unsigned long *bitmap, unsigned int pos, int order)
1da177e4 1104{
3cf64b93
PJ
1105 if (!__reg_op(bitmap, pos, order, REG_OP_ISFREE))
1106 return -EBUSY;
2ac521d3 1107 return __reg_op(bitmap, pos, order, REG_OP_ALLOC);
1da177e4
LT
1108}
1109EXPORT_SYMBOL(bitmap_allocate_region);
ccbe329b 1110
e52bc7c2
DD
1111/**
1112 * bitmap_from_u32array - copy the contents of a u32 array of bits to bitmap
1113 * @bitmap: array of unsigned longs, the destination bitmap, non NULL
1114 * @nbits: number of bits in @bitmap
1115 * @buf: array of u32 (in host byte order), the source bitmap, non NULL
1116 * @nwords: number of u32 words in @buf
1117 *
1118 * copy min(nbits, 32*nwords) bits from @buf to @bitmap, remaining
1119 * bits between nword and nbits in @bitmap (if any) are cleared. In
1120 * last word of @bitmap, the bits beyond nbits (if any) are kept
1121 * unchanged.
1122 *
1123 * Return the number of bits effectively copied.
1124 */
1125unsigned int
1126bitmap_from_u32array(unsigned long *bitmap, unsigned int nbits,
1127 const u32 *buf, unsigned int nwords)
1128{
1129 unsigned int dst_idx, src_idx;
1130
1131 for (src_idx = dst_idx = 0; dst_idx < BITS_TO_LONGS(nbits); ++dst_idx) {
1132 unsigned long part = 0;
1133
1134 if (src_idx < nwords)
1135 part = buf[src_idx++];
1136
1137#if BITS_PER_LONG == 64
1138 if (src_idx < nwords)
1139 part |= ((unsigned long) buf[src_idx++]) << 32;
1140#endif
1141
1142 if (dst_idx < nbits/BITS_PER_LONG)
1143 bitmap[dst_idx] = part;
1144 else {
1145 unsigned long mask = BITMAP_LAST_WORD_MASK(nbits);
1146
1147 bitmap[dst_idx] = (bitmap[dst_idx] & ~mask)
1148 | (part & mask);
1149 }
1150 }
1151
1152 return min_t(unsigned int, nbits, 32*nwords);
1153}
1154EXPORT_SYMBOL(bitmap_from_u32array);
1155
1156/**
1157 * bitmap_to_u32array - copy the contents of bitmap to a u32 array of bits
1158 * @buf: array of u32 (in host byte order), the dest bitmap, non NULL
1159 * @nwords: number of u32 words in @buf
1160 * @bitmap: array of unsigned longs, the source bitmap, non NULL
1161 * @nbits: number of bits in @bitmap
1162 *
1163 * copy min(nbits, 32*nwords) bits from @bitmap to @buf. Remaining
1164 * bits after nbits in @buf (if any) are cleared.
1165 *
1166 * Return the number of bits effectively copied.
1167 */
1168unsigned int
1169bitmap_to_u32array(u32 *buf, unsigned int nwords,
1170 const unsigned long *bitmap, unsigned int nbits)
1171{
1172 unsigned int dst_idx = 0, src_idx = 0;
1173
1174 while (dst_idx < nwords) {
1175 unsigned long part = 0;
1176
1177 if (src_idx < BITS_TO_LONGS(nbits)) {
1178 part = bitmap[src_idx];
1179 if (src_idx >= nbits/BITS_PER_LONG)
1180 part &= BITMAP_LAST_WORD_MASK(nbits);
1181 src_idx++;
1182 }
1183
1184 buf[dst_idx++] = part & 0xffffffffUL;
1185
1186#if BITS_PER_LONG == 64
1187 if (dst_idx < nwords) {
1188 part >>= 32;
1189 buf[dst_idx++] = part & 0xffffffffUL;
1190 }
1191#endif
1192 }
1193
1194 return min_t(unsigned int, nbits, 32*nwords);
1195}
1196EXPORT_SYMBOL(bitmap_to_u32array);
1197
ccbe329b
DV
1198/**
1199 * bitmap_copy_le - copy a bitmap, putting the bits into little-endian order.
1200 * @dst: destination buffer
1201 * @src: bitmap to copy
1202 * @nbits: number of bits in the bitmap
1203 *
1204 * Require nbits % BITS_PER_LONG == 0.
1205 */
e8f24278 1206#ifdef __BIG_ENDIAN
9b6c2d2e 1207void bitmap_copy_le(unsigned long *dst, const unsigned long *src, unsigned int nbits)
ccbe329b 1208{
9b6c2d2e 1209 unsigned int i;
ccbe329b
DV
1210
1211 for (i = 0; i < nbits/BITS_PER_LONG; i++) {
1212 if (BITS_PER_LONG == 64)
9b6c2d2e 1213 dst[i] = cpu_to_le64(src[i]);
ccbe329b 1214 else
9b6c2d2e 1215 dst[i] = cpu_to_le32(src[i]);
ccbe329b
DV
1216 }
1217}
1218EXPORT_SYMBOL(bitmap_copy_le);
e8f24278 1219#endif
b2917089
AS
1220
1221unsigned long *bitmap_alloc(unsigned int nbits, gfp_t flags)
1222{
1223 return kmalloc_array(BITS_TO_LONGS(nbits), sizeof(unsigned long),
1224 flags);
1225}
1226EXPORT_SYMBOL(bitmap_alloc);
1227
1228unsigned long *bitmap_zalloc(unsigned int nbits, gfp_t flags)
1229{
1230 return bitmap_alloc(nbits, flags | __GFP_ZERO);
1231}
1232EXPORT_SYMBOL(bitmap_zalloc);
1233
1234void bitmap_free(const unsigned long *bitmap)
1235{
1236 kfree(bitmap);
1237}
1238EXPORT_SYMBOL(bitmap_free);