]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - lib/flex_array.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / lib / flex_array.c
CommitLineData
534acc05
DH
1/*
2 * Flexible array managed in PAGE_SIZE parts
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corporation, 2009
19 *
20 * Author: Dave Hansen <dave@linux.vnet.ibm.com>
21 */
22
23#include <linux/flex_array.h>
24#include <linux/slab.h>
25#include <linux/stddef.h>
8bc3bcc9 26#include <linux/export.h>
704f15dd 27#include <linux/reciprocal_div.h>
534acc05
DH
28
29struct flex_array_part {
30 char elements[FLEX_ARRAY_PART_SIZE];
31};
32
534acc05
DH
33/*
34 * If a user requests an allocation which is small
35 * enough, we may simply use the space in the
36 * flex_array->parts[] array to store the user
37 * data.
38 */
39static inline int elements_fit_in_base(struct flex_array *fa)
40{
41 int data_size = fa->element_size * fa->total_nr_elements;
45b588d6 42 if (data_size <= FLEX_ARRAY_BASE_BYTES_LEFT)
534acc05
DH
43 return 1;
44 return 0;
45}
46
47/**
48 * flex_array_alloc - allocate a new flexible array
49 * @element_size: the size of individual elements in the array
50 * @total: total number of elements that this should hold
fc0d8d94 51 * @flags: page allocation flags to use for base array
534acc05
DH
52 *
53 * Note: all locking must be provided by the caller.
54 *
55 * @total is used to size internal structures. If the user ever
56 * accesses any array indexes >=@total, it will produce errors.
57 *
58 * The maximum number of elements is defined as: the number of
59 * elements that can be stored in a page times the number of
60 * page pointers that we can fit in the base structure or (using
61 * integer math):
62 *
63 * (PAGE_SIZE/element_size) * (PAGE_SIZE-8)/sizeof(void *)
64 *
65 * Here's a table showing example capacities. Note that the maximum
66 * index that the get/put() functions is just nr_objects-1. This
67 * basically means that you get 4MB of storage on 32-bit and 2MB on
68 * 64-bit.
69 *
70 *
71 * Element size | Objects | Objects |
72 * PAGE_SIZE=4k | 32-bit | 64-bit |
73 * ---------------------------------|
704f15dd
JG
74 * 1 bytes | 4177920 | 2088960 |
75 * 2 bytes | 2088960 | 1044480 |
76 * 3 bytes | 1392300 | 696150 |
77 * 4 bytes | 1044480 | 522240 |
78 * 32 bytes | 130560 | 65408 |
79 * 33 bytes | 126480 | 63240 |
80 * 2048 bytes | 2040 | 1020 |
81 * 2049 bytes | 1020 | 510 |
82 * void * | 1044480 | 261120 |
534acc05
DH
83 *
84 * Since 64-bit pointers are twice the size, we lose half the
85 * capacity in the base structure. Also note that no effort is made
86 * to efficiently pack objects across page boundaries.
87 */
b62e408c
DR
88struct flex_array *flex_array_alloc(int element_size, unsigned int total,
89 gfp_t flags)
534acc05
DH
90{
91 struct flex_array *ret;
704f15dd 92 int elems_per_part = 0;
a8d05c81 93 int max_size = 0;
809fa972 94 struct reciprocal_value reciprocal_elems = { 0 };
a8d05c81 95
704f15dd
JG
96 if (element_size) {
97 elems_per_part = FLEX_ARRAY_ELEMENTS_PER_PART(element_size);
98 reciprocal_elems = reciprocal_value(elems_per_part);
99 max_size = FLEX_ARRAY_NR_BASE_PTRS * elems_per_part;
100 }
534acc05
DH
101
102 /* max_size will end up 0 if element_size > PAGE_SIZE */
103 if (total > max_size)
104 return NULL;
105 ret = kzalloc(sizeof(struct flex_array), flags);
106 if (!ret)
107 return NULL;
108 ret->element_size = element_size;
109 ret->total_nr_elements = total;
704f15dd
JG
110 ret->elems_per_part = elems_per_part;
111 ret->reciprocal_elems = reciprocal_elems;
19da3dd1 112 if (elements_fit_in_base(ret) && !(flags & __GFP_ZERO))
e59464c7 113 memset(&ret->parts[0], FLEX_ARRAY_FREE,
45b588d6 114 FLEX_ARRAY_BASE_BYTES_LEFT);
534acc05
DH
115 return ret;
116}
78c377d1 117EXPORT_SYMBOL(flex_array_alloc);
534acc05 118
b62e408c
DR
119static int fa_element_to_part_nr(struct flex_array *fa,
120 unsigned int element_nr)
534acc05 121{
809fa972
HFS
122 /*
123 * if element_size == 0 we don't get here, so we never touch
124 * the zeroed fa->reciprocal_elems, which would yield invalid
125 * results
126 */
704f15dd 127 return reciprocal_divide(element_nr, fa->reciprocal_elems);
534acc05
DH
128}
129
130/**
131 * flex_array_free_parts - just free the second-level pages
fc0d8d94 132 * @fa: the flex array from which to free parts
534acc05
DH
133 *
134 * This is to be used in cases where the base 'struct flex_array'
135 * has been statically allocated and should not be free.
136 */
137void flex_array_free_parts(struct flex_array *fa)
138{
139 int part_nr;
534acc05
DH
140
141 if (elements_fit_in_base(fa))
142 return;
45b588d6 143 for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++)
534acc05
DH
144 kfree(fa->parts[part_nr]);
145}
78c377d1 146EXPORT_SYMBOL(flex_array_free_parts);
534acc05
DH
147
148void flex_array_free(struct flex_array *fa)
149{
150 flex_array_free_parts(fa);
151 kfree(fa);
152}
78c377d1 153EXPORT_SYMBOL(flex_array_free);
534acc05 154
b62e408c 155static unsigned int index_inside_part(struct flex_array *fa,
704f15dd
JG
156 unsigned int element_nr,
157 unsigned int part_nr)
534acc05 158{
b62e408c 159 unsigned int part_offset;
534acc05 160
704f15dd 161 part_offset = element_nr - part_nr * fa->elems_per_part;
534acc05
DH
162 return part_offset * fa->element_size;
163}
164
165static struct flex_array_part *
166__fa_get_part(struct flex_array *fa, int part_nr, gfp_t flags)
167{
168 struct flex_array_part *part = fa->parts[part_nr];
169 if (!part) {
19da3dd1 170 part = kmalloc(sizeof(struct flex_array_part), flags);
534acc05
DH
171 if (!part)
172 return NULL;
19da3dd1
DR
173 if (!(flags & __GFP_ZERO))
174 memset(part, FLEX_ARRAY_FREE,
175 sizeof(struct flex_array_part));
534acc05
DH
176 fa->parts[part_nr] = part;
177 }
178 return part;
179}
180
181/**
182 * flex_array_put - copy data into the array at @element_nr
fc0d8d94 183 * @fa: the flex array to copy data into
534acc05
DH
184 * @element_nr: index of the position in which to insert
185 * the new element.
fc0d8d94
DR
186 * @src: address of data to copy into the array
187 * @flags: page allocation flags to use for array expansion
188 *
534acc05
DH
189 *
190 * Note that this *copies* the contents of @src into
191 * the array. If you are trying to store an array of
192 * pointers, make sure to pass in &ptr instead of ptr.
ea98eed9
EP
193 * You may instead wish to use the flex_array_put_ptr()
194 * helper function.
534acc05
DH
195 *
196 * Locking must be provided by the caller.
197 */
b62e408c
DR
198int flex_array_put(struct flex_array *fa, unsigned int element_nr, void *src,
199 gfp_t flags)
534acc05 200{
704f15dd 201 int part_nr = 0;
534acc05
DH
202 struct flex_array_part *part;
203 void *dst;
204
205 if (element_nr >= fa->total_nr_elements)
206 return -ENOSPC;
a8d05c81
EP
207 if (!fa->element_size)
208 return 0;
534acc05
DH
209 if (elements_fit_in_base(fa))
210 part = (struct flex_array_part *)&fa->parts[0];
a30b595d 211 else {
a8d05c81 212 part_nr = fa_element_to_part_nr(fa, element_nr);
534acc05 213 part = __fa_get_part(fa, part_nr, flags);
a30b595d
DR
214 if (!part)
215 return -ENOMEM;
216 }
704f15dd 217 dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
534acc05
DH
218 memcpy(dst, src, fa->element_size);
219 return 0;
220}
78c377d1 221EXPORT_SYMBOL(flex_array_put);
534acc05 222
e6de3988
DR
223/**
224 * flex_array_clear - clear element in array at @element_nr
fc0d8d94 225 * @fa: the flex array of the element.
e6de3988
DR
226 * @element_nr: index of the position to clear.
227 *
228 * Locking must be provided by the caller.
229 */
230int flex_array_clear(struct flex_array *fa, unsigned int element_nr)
231{
704f15dd 232 int part_nr = 0;
e6de3988
DR
233 struct flex_array_part *part;
234 void *dst;
235
236 if (element_nr >= fa->total_nr_elements)
237 return -ENOSPC;
a8d05c81
EP
238 if (!fa->element_size)
239 return 0;
e6de3988
DR
240 if (elements_fit_in_base(fa))
241 part = (struct flex_array_part *)&fa->parts[0];
242 else {
a8d05c81 243 part_nr = fa_element_to_part_nr(fa, element_nr);
e6de3988
DR
244 part = fa->parts[part_nr];
245 if (!part)
246 return -EINVAL;
247 }
704f15dd 248 dst = &part->elements[index_inside_part(fa, element_nr, part_nr)];
19da3dd1 249 memset(dst, FLEX_ARRAY_FREE, fa->element_size);
e6de3988
DR
250 return 0;
251}
78c377d1 252EXPORT_SYMBOL(flex_array_clear);
e6de3988 253
534acc05
DH
254/**
255 * flex_array_prealloc - guarantee that array space exists
5a3ea878
EP
256 * @fa: the flex array for which to preallocate parts
257 * @start: index of first array element for which space is allocated
258 * @nr_elements: number of elements for which space is allocated
259 * @flags: page allocation flags
534acc05
DH
260 *
261 * This will guarantee that no future calls to flex_array_put()
262 * will allocate memory. It can be used if you are expecting to
263 * be holding a lock or in some atomic context while writing
264 * data into the array.
265 *
266 * Locking must be provided by the caller.
267 */
b62e408c 268int flex_array_prealloc(struct flex_array *fa, unsigned int start,
5a3ea878 269 unsigned int nr_elements, gfp_t flags)
534acc05
DH
270{
271 int start_part;
272 int end_part;
273 int part_nr;
5a3ea878 274 unsigned int end;
534acc05
DH
275 struct flex_array_part *part;
276
150cdf6e
EP
277 if (!start && !nr_elements)
278 return 0;
279 if (start >= fa->total_nr_elements)
280 return -ENOSPC;
281 if (!nr_elements)
282 return 0;
283
5a3ea878
EP
284 end = start + nr_elements - 1;
285
150cdf6e 286 if (end >= fa->total_nr_elements)
534acc05 287 return -ENOSPC;
a8d05c81
EP
288 if (!fa->element_size)
289 return 0;
534acc05
DH
290 if (elements_fit_in_base(fa))
291 return 0;
292 start_part = fa_element_to_part_nr(fa, start);
293 end_part = fa_element_to_part_nr(fa, end);
294 for (part_nr = start_part; part_nr <= end_part; part_nr++) {
295 part = __fa_get_part(fa, part_nr, flags);
296 if (!part)
297 return -ENOMEM;
298 }
299 return 0;
300}
78c377d1 301EXPORT_SYMBOL(flex_array_prealloc);
534acc05
DH
302
303/**
304 * flex_array_get - pull data back out of the array
fc0d8d94 305 * @fa: the flex array from which to extract data
534acc05
DH
306 * @element_nr: index of the element to fetch from the array
307 *
308 * Returns a pointer to the data at index @element_nr. Note
309 * that this is a copy of the data that was passed in. If you
ea98eed9
EP
310 * are using this to store pointers, you'll get back &ptr. You
311 * may instead wish to use the flex_array_get_ptr helper.
534acc05
DH
312 *
313 * Locking must be provided by the caller.
314 */
b62e408c 315void *flex_array_get(struct flex_array *fa, unsigned int element_nr)
534acc05 316{
704f15dd 317 int part_nr = 0;
534acc05 318 struct flex_array_part *part;
534acc05 319
a8d05c81
EP
320 if (!fa->element_size)
321 return NULL;
534acc05
DH
322 if (element_nr >= fa->total_nr_elements)
323 return NULL;
534acc05
DH
324 if (elements_fit_in_base(fa))
325 part = (struct flex_array_part *)&fa->parts[0];
a30b595d 326 else {
a8d05c81 327 part_nr = fa_element_to_part_nr(fa, element_nr);
534acc05 328 part = fa->parts[part_nr];
a30b595d
DR
329 if (!part)
330 return NULL;
331 }
704f15dd 332 return &part->elements[index_inside_part(fa, element_nr, part_nr)];
534acc05 333}
78c377d1 334EXPORT_SYMBOL(flex_array_get);
4af5a2f7 335
ea98eed9
EP
336/**
337 * flex_array_get_ptr - pull a ptr back out of the array
338 * @fa: the flex array from which to extract data
339 * @element_nr: index of the element to fetch from the array
340 *
341 * Returns the pointer placed in the flex array at element_nr using
342 * flex_array_put_ptr(). This function should not be called if the
343 * element in question was not set using the _put_ptr() helper.
344 */
345void *flex_array_get_ptr(struct flex_array *fa, unsigned int element_nr)
346{
347 void **tmp;
348
349 tmp = flex_array_get(fa, element_nr);
350 if (!tmp)
351 return NULL;
352
353 return *tmp;
354}
78c377d1 355EXPORT_SYMBOL(flex_array_get_ptr);
ea98eed9 356
4af5a2f7
DR
357static int part_is_free(struct flex_array_part *part)
358{
359 int i;
360
361 for (i = 0; i < sizeof(struct flex_array_part); i++)
362 if (part->elements[i] != FLEX_ARRAY_FREE)
363 return 0;
364 return 1;
365}
366
367/**
368 * flex_array_shrink - free unused second-level pages
fc0d8d94 369 * @fa: the flex array to shrink
4af5a2f7
DR
370 *
371 * Frees all second-level pages that consist solely of unused
372 * elements. Returns the number of pages freed.
373 *
374 * Locking must be provided by the caller.
375 */
376int flex_array_shrink(struct flex_array *fa)
377{
378 struct flex_array_part *part;
4af5a2f7
DR
379 int part_nr;
380 int ret = 0;
381
a8d05c81 382 if (!fa->total_nr_elements || !fa->element_size)
150cdf6e 383 return 0;
4af5a2f7
DR
384 if (elements_fit_in_base(fa))
385 return ret;
45b588d6 386 for (part_nr = 0; part_nr < FLEX_ARRAY_NR_BASE_PTRS; part_nr++) {
4af5a2f7
DR
387 part = fa->parts[part_nr];
388 if (!part)
389 continue;
390 if (part_is_free(part)) {
391 fa->parts[part_nr] = NULL;
392 kfree(part);
393 ret++;
394 }
395 }
396 return ret;
397}
78c377d1 398EXPORT_SYMBOL(flex_array_shrink);