]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - lib/radix-tree.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / lib / radix-tree.c
CommitLineData
1da177e4
LT
1/*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
cde53535 4 * Copyright (C) 2005 SGI, Christoph Lameter
7cf9c2c7 5 * Copyright (C) 2006 Nick Piggin
78c1d784 6 * Copyright (C) 2012 Konstantin Khlebnikov
6b053b8e
MW
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
1da177e4
LT
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
0a835c4f
MW
25#include <linux/bitmap.h>
26#include <linux/bitops.h>
e157b555 27#include <linux/cpu.h>
1da177e4 28#include <linux/errno.h>
0a835c4f
MW
29#include <linux/export.h>
30#include <linux/idr.h>
1da177e4
LT
31#include <linux/init.h>
32#include <linux/kernel.h>
0a835c4f 33#include <linux/kmemleak.h>
1da177e4 34#include <linux/percpu.h>
0a835c4f
MW
35#include <linux/preempt.h> /* in_interrupt() */
36#include <linux/radix-tree.h>
37#include <linux/rcupdate.h>
1da177e4 38#include <linux/slab.h>
1da177e4 39#include <linux/string.h>
1da177e4
LT
40
41
c78c66d1
KS
42/* Number of nodes in fully populated tree of given height */
43static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
44
1da177e4
LT
45/*
46 * Radix tree node cache.
47 */
e18b890b 48static struct kmem_cache *radix_tree_node_cachep;
1da177e4 49
55368052
NP
50/*
51 * The radix tree is variable-height, so an insert operation not only has
52 * to build the branch to its corresponding item, it also has to build the
53 * branch to existing items if the size has to be increased (by
54 * radix_tree_extend).
55 *
56 * The worst case is a zero height tree with just a single item at index 0,
57 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
58 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
59 * Hence:
60 */
61#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
62
0a835c4f
MW
63/*
64 * The IDR does not have to be as high as the radix tree since it uses
65 * signed integers, not unsigned longs.
66 */
67#define IDR_INDEX_BITS (8 /* CHAR_BIT */ * sizeof(int) - 1)
68#define IDR_MAX_PATH (DIV_ROUND_UP(IDR_INDEX_BITS, \
69 RADIX_TREE_MAP_SHIFT))
70#define IDR_PRELOAD_SIZE (IDR_MAX_PATH * 2 - 1)
71
7ad3d4d8
MW
72/*
73 * The IDA is even shorter since it uses a bitmap at the last level.
74 */
75#define IDA_INDEX_BITS (8 * sizeof(int) - 1 - ilog2(IDA_BITMAP_BITS))
76#define IDA_MAX_PATH (DIV_ROUND_UP(IDA_INDEX_BITS, \
77 RADIX_TREE_MAP_SHIFT))
78#define IDA_PRELOAD_SIZE (IDA_MAX_PATH * 2 - 1)
79
1da177e4
LT
80/*
81 * Per-cpu pool of preloaded nodes
82 */
83struct radix_tree_preload {
2fcd9005 84 unsigned nr;
1293d5c5 85 /* nodes->parent points to next preallocated node */
9d2a8da0 86 struct radix_tree_node *nodes;
1da177e4 87};
8cef7d57 88static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
1da177e4 89
148deab2
MW
90static inline struct radix_tree_node *entry_to_node(void *ptr)
91{
92 return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
93}
94
a4db4dce 95static inline void *node_to_entry(void *ptr)
27d20fdd 96{
30ff46cc 97 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
27d20fdd
NP
98}
99
a4db4dce 100#define RADIX_TREE_RETRY node_to_entry(NULL)
afe0e395 101
db050f29
MW
102#ifdef CONFIG_RADIX_TREE_MULTIORDER
103/* Sibling slots point directly to another slot in the same node */
35534c86
MW
104static inline
105bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
db050f29 106{
d7b62727 107 void __rcu **ptr = node;
db050f29
MW
108 return (parent->slots <= ptr) &&
109 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
110}
111#else
35534c86
MW
112static inline
113bool is_sibling_entry(const struct radix_tree_node *parent, void *node)
db050f29
MW
114{
115 return false;
116}
117#endif
118
d7b62727
MW
119static inline unsigned long
120get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
db050f29
MW
121{
122 return slot - parent->slots;
123}
124
35534c86 125static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
9e85d811 126 struct radix_tree_node **nodep, unsigned long index)
db050f29 127{
9e85d811 128 unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
d7b62727 129 void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
db050f29
MW
130
131#ifdef CONFIG_RADIX_TREE_MULTIORDER
b194d16c 132 if (radix_tree_is_internal_node(entry)) {
8d2c0d36 133 if (is_sibling_entry(parent, entry)) {
d7b62727
MW
134 void __rcu **sibentry;
135 sibentry = (void __rcu **) entry_to_node(entry);
8d2c0d36
LT
136 offset = get_slot_offset(parent, sibentry);
137 entry = rcu_dereference_raw(*sibentry);
db050f29
MW
138 }
139 }
140#endif
141
142 *nodep = (void *)entry;
143 return offset;
144}
145
35534c86 146static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
612d6c19
NP
147{
148 return root->gfp_mask & __GFP_BITS_MASK;
149}
150
643b52b9
NP
151static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
152 int offset)
153{
154 __set_bit(offset, node->tags[tag]);
155}
156
157static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
158 int offset)
159{
160 __clear_bit(offset, node->tags[tag]);
161}
162
35534c86 163static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
643b52b9
NP
164 int offset)
165{
166 return test_bit(offset, node->tags[tag]);
167}
168
35534c86 169static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
643b52b9 170{
0a835c4f 171 root->gfp_mask |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
172}
173
2fcd9005 174static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
643b52b9 175{
0a835c4f 176 root->gfp_mask &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
177}
178
179static inline void root_tag_clear_all(struct radix_tree_root *root)
180{
0a835c4f 181 root->gfp_mask &= (1 << ROOT_TAG_SHIFT) - 1;
643b52b9
NP
182}
183
35534c86 184static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
643b52b9 185{
0a835c4f 186 return (__force int)root->gfp_mask & (1 << (tag + ROOT_TAG_SHIFT));
643b52b9
NP
187}
188
35534c86 189static inline unsigned root_tags_get(const struct radix_tree_root *root)
643b52b9 190{
0a835c4f 191 return (__force unsigned)root->gfp_mask >> ROOT_TAG_SHIFT;
643b52b9
NP
192}
193
0a835c4f 194static inline bool is_idr(const struct radix_tree_root *root)
7b60e9ad 195{
0a835c4f 196 return !!(root->gfp_mask & ROOT_IS_IDR);
7b60e9ad
MW
197}
198
643b52b9
NP
199/*
200 * Returns 1 if any slot in the node has this tag set.
201 * Otherwise returns 0.
202 */
35534c86
MW
203static inline int any_tag_set(const struct radix_tree_node *node,
204 unsigned int tag)
643b52b9 205{
2fcd9005 206 unsigned idx;
643b52b9
NP
207 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
208 if (node->tags[tag][idx])
209 return 1;
210 }
211 return 0;
212}
78c1d784 213
0a835c4f
MW
214static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
215{
216 bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
217}
218
78c1d784
KK
219/**
220 * radix_tree_find_next_bit - find the next set bit in a memory region
221 *
222 * @addr: The address to base the search on
223 * @size: The bitmap size in bits
224 * @offset: The bitnumber to start searching at
225 *
226 * Unrollable variant of find_next_bit() for constant size arrays.
227 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
228 * Returns next bit offset, or size if nothing found.
229 */
230static __always_inline unsigned long
bc412fca
MW
231radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
232 unsigned long offset)
78c1d784 233{
bc412fca 234 const unsigned long *addr = node->tags[tag];
78c1d784 235
bc412fca 236 if (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
237 unsigned long tmp;
238
239 addr += offset / BITS_PER_LONG;
240 tmp = *addr >> (offset % BITS_PER_LONG);
241 if (tmp)
242 return __ffs(tmp) + offset;
243 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
bc412fca 244 while (offset < RADIX_TREE_MAP_SIZE) {
78c1d784
KK
245 tmp = *++addr;
246 if (tmp)
247 return __ffs(tmp) + offset;
248 offset += BITS_PER_LONG;
249 }
250 }
bc412fca 251 return RADIX_TREE_MAP_SIZE;
78c1d784
KK
252}
253
268f42de
MW
254static unsigned int iter_offset(const struct radix_tree_iter *iter)
255{
256 return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
257}
258
218ed750
MW
259/*
260 * The maximum index which can be stored in a radix tree
261 */
262static inline unsigned long shift_maxindex(unsigned int shift)
263{
264 return (RADIX_TREE_MAP_SIZE << shift) - 1;
265}
266
35534c86 267static inline unsigned long node_maxindex(const struct radix_tree_node *node)
218ed750
MW
268{
269 return shift_maxindex(node->shift);
270}
271
0a835c4f
MW
272static unsigned long next_index(unsigned long index,
273 const struct radix_tree_node *node,
274 unsigned long offset)
275{
276 return (index & ~node_maxindex(node)) + (offset << node->shift);
277}
278
0796c583 279#ifndef __KERNEL__
d0891265 280static void dump_node(struct radix_tree_node *node, unsigned long index)
7cf19af4 281{
0796c583 282 unsigned long i;
7cf19af4 283
218ed750
MW
284 pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
285 node, node->offset, index, index | node_maxindex(node),
286 node->parent,
0796c583 287 node->tags[0][0], node->tags[1][0], node->tags[2][0],
218ed750 288 node->shift, node->count, node->exceptional);
0796c583
RZ
289
290 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
d0891265
MW
291 unsigned long first = index | (i << node->shift);
292 unsigned long last = first | ((1UL << node->shift) - 1);
0796c583
RZ
293 void *entry = node->slots[i];
294 if (!entry)
295 continue;
218ed750
MW
296 if (entry == RADIX_TREE_RETRY) {
297 pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
298 i, first, last, node);
b194d16c 299 } else if (!radix_tree_is_internal_node(entry)) {
218ed750
MW
300 pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
301 entry, i, first, last, node);
302 } else if (is_sibling_entry(node, entry)) {
303 pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
304 entry, i, first, last, node,
305 *(void **)entry_to_node(entry));
0796c583 306 } else {
4dd6c098 307 dump_node(entry_to_node(entry), first);
0796c583
RZ
308 }
309 }
7cf19af4
MW
310}
311
312/* For debug */
313static void radix_tree_dump(struct radix_tree_root *root)
314{
d0891265
MW
315 pr_debug("radix root: %p rnode %p tags %x\n",
316 root, root->rnode,
0a835c4f 317 root->gfp_mask >> ROOT_TAG_SHIFT);
b194d16c 318 if (!radix_tree_is_internal_node(root->rnode))
7cf19af4 319 return;
4dd6c098 320 dump_node(entry_to_node(root->rnode), 0);
7cf19af4 321}
0a835c4f
MW
322
323static void dump_ida_node(void *entry, unsigned long index)
324{
325 unsigned long i;
326
327 if (!entry)
328 return;
329
330 if (radix_tree_is_internal_node(entry)) {
331 struct radix_tree_node *node = entry_to_node(entry);
332
333 pr_debug("ida node: %p offset %d indices %lu-%lu parent %p free %lx shift %d count %d\n",
334 node, node->offset, index * IDA_BITMAP_BITS,
335 ((index | node_maxindex(node)) + 1) *
336 IDA_BITMAP_BITS - 1,
337 node->parent, node->tags[0][0], node->shift,
338 node->count);
339 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++)
340 dump_ida_node(node->slots[i],
341 index | (i << node->shift));
d37cacc5
MW
342 } else if (radix_tree_exceptional_entry(entry)) {
343 pr_debug("ida excp: %p offset %d indices %lu-%lu data %lx\n",
344 entry, (int)(index & RADIX_TREE_MAP_MASK),
345 index * IDA_BITMAP_BITS,
346 index * IDA_BITMAP_BITS + BITS_PER_LONG -
347 RADIX_TREE_EXCEPTIONAL_SHIFT,
348 (unsigned long)entry >>
349 RADIX_TREE_EXCEPTIONAL_SHIFT);
0a835c4f
MW
350 } else {
351 struct ida_bitmap *bitmap = entry;
352
353 pr_debug("ida btmp: %p offset %d indices %lu-%lu data", bitmap,
354 (int)(index & RADIX_TREE_MAP_MASK),
355 index * IDA_BITMAP_BITS,
356 (index + 1) * IDA_BITMAP_BITS - 1);
357 for (i = 0; i < IDA_BITMAP_LONGS; i++)
358 pr_cont(" %lx", bitmap->bitmap[i]);
359 pr_cont("\n");
360 }
361}
362
363static void ida_dump(struct ida *ida)
364{
365 struct radix_tree_root *root = &ida->ida_rt;
7ad3d4d8
MW
366 pr_debug("ida: %p node %p free %d\n", ida, root->rnode,
367 root->gfp_mask >> ROOT_TAG_SHIFT);
0a835c4f
MW
368 dump_ida_node(root->rnode, 0);
369}
7cf19af4
MW
370#endif
371
1da177e4
LT
372/*
373 * This assumes that the caller has performed appropriate preallocation, and
374 * that the caller has pinned this thread of control to the current CPU.
375 */
376static struct radix_tree_node *
0a835c4f 377radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
d58275bc 378 struct radix_tree_root *root,
e8de4340
MW
379 unsigned int shift, unsigned int offset,
380 unsigned int count, unsigned int exceptional)
1da177e4 381{
e2848a0e 382 struct radix_tree_node *ret = NULL;
1da177e4 383
5e4c0d97 384 /*
2fcd9005
MW
385 * Preload code isn't irq safe and it doesn't make sense to use
386 * preloading during an interrupt anyway as all the allocations have
387 * to be atomic. So just do normal allocation when in interrupt.
5e4c0d97 388 */
d0164adc 389 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
1da177e4
LT
390 struct radix_tree_preload *rtp;
391
58e698af
VD
392 /*
393 * Even if the caller has preloaded, try to allocate from the
05eb6e72
VD
394 * cache first for the new node to get accounted to the memory
395 * cgroup.
58e698af
VD
396 */
397 ret = kmem_cache_alloc(radix_tree_node_cachep,
05eb6e72 398 gfp_mask | __GFP_NOWARN);
58e698af
VD
399 if (ret)
400 goto out;
401
e2848a0e
NP
402 /*
403 * Provided the caller has preloaded here, we will always
404 * succeed in getting a node here (and never reach
405 * kmem_cache_alloc)
406 */
7c8e0181 407 rtp = this_cpu_ptr(&radix_tree_preloads);
1da177e4 408 if (rtp->nr) {
9d2a8da0 409 ret = rtp->nodes;
1293d5c5 410 rtp->nodes = ret->parent;
1da177e4
LT
411 rtp->nr--;
412 }
ce80b067
CM
413 /*
414 * Update the allocation stack trace as this is more useful
415 * for debugging.
416 */
417 kmemleak_update_trace(ret);
58e698af 418 goto out;
1da177e4 419 }
05eb6e72 420 ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
58e698af 421out:
b194d16c 422 BUG_ON(radix_tree_is_internal_node(ret));
e8de4340 423 if (ret) {
e8de4340
MW
424 ret->shift = shift;
425 ret->offset = offset;
426 ret->count = count;
427 ret->exceptional = exceptional;
d58275bc
MW
428 ret->parent = parent;
429 ret->root = root;
e8de4340 430 }
1da177e4
LT
431 return ret;
432}
433
7cf9c2c7
NP
434static void radix_tree_node_rcu_free(struct rcu_head *head)
435{
436 struct radix_tree_node *node =
437 container_of(head, struct radix_tree_node, rcu_head);
643b52b9
NP
438
439 /*
175542f5
MW
440 * Must only free zeroed nodes into the slab. We can be left with
441 * non-NULL entries by radix_tree_free_nodes, so clear the entries
442 * and tags here.
643b52b9 443 */
175542f5
MW
444 memset(node->slots, 0, sizeof(node->slots));
445 memset(node->tags, 0, sizeof(node->tags));
91d9c05a 446 INIT_LIST_HEAD(&node->private_list);
643b52b9 447
7cf9c2c7
NP
448 kmem_cache_free(radix_tree_node_cachep, node);
449}
450
1da177e4
LT
451static inline void
452radix_tree_node_free(struct radix_tree_node *node)
453{
7cf9c2c7 454 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
1da177e4
LT
455}
456
457/*
458 * Load up this CPU's radix_tree_node buffer with sufficient objects to
459 * ensure that the addition of a single element in the tree cannot fail. On
460 * success, return zero, with preemption disabled. On error, return -ENOMEM
461 * with preemption not disabled.
b34df792
DH
462 *
463 * To make use of this facility, the radix tree must be initialised without
d0164adc 464 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
1da177e4 465 */
bc9ae224 466static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
1da177e4
LT
467{
468 struct radix_tree_preload *rtp;
469 struct radix_tree_node *node;
470 int ret = -ENOMEM;
471
05eb6e72
VD
472 /*
473 * Nodes preloaded by one cgroup can be be used by another cgroup, so
474 * they should never be accounted to any particular memory cgroup.
475 */
476 gfp_mask &= ~__GFP_ACCOUNT;
477
1da177e4 478 preempt_disable();
7c8e0181 479 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 480 while (rtp->nr < nr) {
1da177e4 481 preempt_enable();
488514d1 482 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
1da177e4
LT
483 if (node == NULL)
484 goto out;
485 preempt_disable();
7c8e0181 486 rtp = this_cpu_ptr(&radix_tree_preloads);
c78c66d1 487 if (rtp->nr < nr) {
1293d5c5 488 node->parent = rtp->nodes;
9d2a8da0
KS
489 rtp->nodes = node;
490 rtp->nr++;
491 } else {
1da177e4 492 kmem_cache_free(radix_tree_node_cachep, node);
9d2a8da0 493 }
1da177e4
LT
494 }
495 ret = 0;
496out:
497 return ret;
498}
5e4c0d97
JK
499
500/*
501 * Load up this CPU's radix_tree_node buffer with sufficient objects to
502 * ensure that the addition of a single element in the tree cannot fail. On
503 * success, return zero, with preemption disabled. On error, return -ENOMEM
504 * with preemption not disabled.
505 *
506 * To make use of this facility, the radix tree must be initialised without
d0164adc 507 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
5e4c0d97
JK
508 */
509int radix_tree_preload(gfp_t gfp_mask)
510{
511 /* Warn on non-sensical use... */
d0164adc 512 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
c78c66d1 513 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97 514}
d7f0923d 515EXPORT_SYMBOL(radix_tree_preload);
1da177e4 516
5e4c0d97
JK
517/*
518 * The same as above function, except we don't guarantee preloading happens.
519 * We do it, if we decide it helps. On success, return zero with preemption
520 * disabled. On error, return -ENOMEM with preemption not disabled.
521 */
522int radix_tree_maybe_preload(gfp_t gfp_mask)
523{
d0164adc 524 if (gfpflags_allow_blocking(gfp_mask))
c78c66d1 525 return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
5e4c0d97
JK
526 /* Preloading doesn't help anything with this gfp mask, skip it */
527 preempt_disable();
528 return 0;
529}
530EXPORT_SYMBOL(radix_tree_maybe_preload);
531
2791653a
MW
532#ifdef CONFIG_RADIX_TREE_MULTIORDER
533/*
534 * Preload with enough objects to ensure that we can split a single entry
535 * of order @old_order into many entries of size @new_order
536 */
537int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
538 gfp_t gfp_mask)
539{
540 unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
541 unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
542 (new_order / RADIX_TREE_MAP_SHIFT);
543 unsigned nr = 0;
544
545 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
546 BUG_ON(new_order >= old_order);
547
548 while (layers--)
549 nr = nr * RADIX_TREE_MAP_SIZE + 1;
550 return __radix_tree_preload(gfp_mask, top * nr);
551}
552#endif
553
c78c66d1
KS
554/*
555 * The same as function above, but preload number of nodes required to insert
556 * (1 << order) continuous naturally-aligned elements.
557 */
558int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
559{
560 unsigned long nr_subtrees;
561 int nr_nodes, subtree_height;
562
563 /* Preloading doesn't help anything with this gfp mask, skip it */
564 if (!gfpflags_allow_blocking(gfp_mask)) {
565 preempt_disable();
566 return 0;
567 }
568
569 /*
570 * Calculate number and height of fully populated subtrees it takes to
571 * store (1 << order) elements.
572 */
573 nr_subtrees = 1 << order;
574 for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
575 subtree_height++)
576 nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
577
578 /*
579 * The worst case is zero height tree with a single item at index 0 and
580 * then inserting items starting at ULONG_MAX - (1 << order).
581 *
582 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
583 * 0-index item.
584 */
585 nr_nodes = RADIX_TREE_MAX_PATH;
586
587 /* Plus branch to fully populated subtrees. */
588 nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
589
590 /* Root node is shared. */
591 nr_nodes--;
592
593 /* Plus nodes required to build subtrees. */
594 nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
595
596 return __radix_tree_preload(gfp_mask, nr_nodes);
597}
598
35534c86 599static unsigned radix_tree_load_root(const struct radix_tree_root *root,
1456a439
MW
600 struct radix_tree_node **nodep, unsigned long *maxindex)
601{
602 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
603
604 *nodep = node;
605
b194d16c 606 if (likely(radix_tree_is_internal_node(node))) {
4dd6c098 607 node = entry_to_node(node);
1456a439 608 *maxindex = node_maxindex(node);
c12e51b0 609 return node->shift + RADIX_TREE_MAP_SHIFT;
1456a439
MW
610 }
611
612 *maxindex = 0;
613 return 0;
614}
615
1da177e4
LT
616/*
617 * Extend a radix tree so it can store key @index.
618 */
0a835c4f 619static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
d0891265 620 unsigned long index, unsigned int shift)
1da177e4 621{
d7b62727 622 void *entry;
d0891265 623 unsigned int maxshift;
1da177e4
LT
624 int tag;
625
d0891265
MW
626 /* Figure out what the shift should be. */
627 maxshift = shift;
628 while (index > shift_maxindex(maxshift))
629 maxshift += RADIX_TREE_MAP_SHIFT;
1da177e4 630
d7b62727
MW
631 entry = rcu_dereference_raw(root->rnode);
632 if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
1da177e4 633 goto out;
1da177e4 634
1da177e4 635 do {
0a835c4f 636 struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
d58275bc 637 root, shift, 0, 1, 0);
2fcd9005 638 if (!node)
1da177e4
LT
639 return -ENOMEM;
640
0a835c4f
MW
641 if (is_idr(root)) {
642 all_tag_set(node, IDR_FREE);
643 if (!root_tag_get(root, IDR_FREE)) {
644 tag_clear(node, IDR_FREE, 0);
645 root_tag_set(root, IDR_FREE);
646 }
647 } else {
648 /* Propagate the aggregated tag info to the new child */
649 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
650 if (root_tag_get(root, tag))
651 tag_set(node, tag, 0);
652 }
1da177e4
LT
653 }
654
d0891265 655 BUG_ON(shift > BITS_PER_LONG);
d7b62727
MW
656 if (radix_tree_is_internal_node(entry)) {
657 entry_to_node(entry)->parent = node;
658 } else if (radix_tree_exceptional_entry(entry)) {
f7942430 659 /* Moving an exceptional root->rnode to a node */
e8de4340 660 node->exceptional = 1;
f7942430 661 }
d7b62727
MW
662 /*
663 * entry was already in the radix tree, so we do not need
664 * rcu_assign_pointer here
665 */
666 node->slots[0] = (void __rcu *)entry;
667 entry = node_to_entry(node);
668 rcu_assign_pointer(root->rnode, entry);
d0891265 669 shift += RADIX_TREE_MAP_SHIFT;
d0891265 670 } while (shift <= maxshift);
1da177e4 671out:
d0891265 672 return maxshift + RADIX_TREE_MAP_SHIFT;
1da177e4
LT
673}
674
f4b109c6
JW
675/**
676 * radix_tree_shrink - shrink radix tree to minimum height
677 * @root radix tree root
678 */
0ac398ef 679static inline bool radix_tree_shrink(struct radix_tree_root *root,
c7df8ad2 680 radix_tree_update_node_t update_node)
f4b109c6 681{
0ac398ef
MW
682 bool shrunk = false;
683
f4b109c6 684 for (;;) {
12320d0f 685 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
f4b109c6
JW
686 struct radix_tree_node *child;
687
688 if (!radix_tree_is_internal_node(node))
689 break;
690 node = entry_to_node(node);
691
692 /*
693 * The candidate node has more than one child, or its child
694 * is not at the leftmost slot, or the child is a multiorder
695 * entry, we cannot shrink.
696 */
697 if (node->count != 1)
698 break;
12320d0f 699 child = rcu_dereference_raw(node->slots[0]);
f4b109c6
JW
700 if (!child)
701 break;
702 if (!radix_tree_is_internal_node(child) && node->shift)
703 break;
704
705 if (radix_tree_is_internal_node(child))
706 entry_to_node(child)->parent = NULL;
707
708 /*
709 * We don't need rcu_assign_pointer(), since we are simply
710 * moving the node from one part of the tree to another: if it
711 * was safe to dereference the old pointer to it
712 * (node->slots[0]), it will be safe to dereference the new
713 * one (root->rnode) as far as dependent read barriers go.
714 */
d7b62727 715 root->rnode = (void __rcu *)child;
0a835c4f
MW
716 if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
717 root_tag_clear(root, IDR_FREE);
f4b109c6
JW
718
719 /*
720 * We have a dilemma here. The node's slot[0] must not be
721 * NULLed in case there are concurrent lookups expecting to
722 * find the item. However if this was a bottom-level node,
723 * then it may be subject to the slot pointer being visible
724 * to callers dereferencing it. If item corresponding to
725 * slot[0] is subsequently deleted, these callers would expect
726 * their slot to become empty sooner or later.
727 *
728 * For example, lockless pagecache will look up a slot, deref
729 * the page pointer, and if the page has 0 refcount it means it
730 * was concurrently deleted from pagecache so try the deref
731 * again. Fortunately there is already a requirement for logic
732 * to retry the entire slot lookup -- the indirect pointer
733 * problem (replacing direct root node with an indirect pointer
734 * also results in a stale slot). So tag the slot as indirect
735 * to force callers to retry.
736 */
4d693d08
JW
737 node->count = 0;
738 if (!radix_tree_is_internal_node(child)) {
d7b62727 739 node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
4d693d08 740 if (update_node)
c7df8ad2 741 update_node(node);
4d693d08 742 }
f4b109c6 743
ea07b862 744 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 745 radix_tree_node_free(node);
0ac398ef 746 shrunk = true;
f4b109c6 747 }
0ac398ef
MW
748
749 return shrunk;
f4b109c6
JW
750}
751
0ac398ef 752static bool delete_node(struct radix_tree_root *root,
4d693d08 753 struct radix_tree_node *node,
c7df8ad2 754 radix_tree_update_node_t update_node)
f4b109c6 755{
0ac398ef
MW
756 bool deleted = false;
757
f4b109c6
JW
758 do {
759 struct radix_tree_node *parent;
760
761 if (node->count) {
12320d0f
MW
762 if (node_to_entry(node) ==
763 rcu_dereference_raw(root->rnode))
c7df8ad2
MG
764 deleted |= radix_tree_shrink(root,
765 update_node);
0ac398ef 766 return deleted;
f4b109c6
JW
767 }
768
769 parent = node->parent;
770 if (parent) {
771 parent->slots[node->offset] = NULL;
772 parent->count--;
773 } else {
0a835c4f
MW
774 /*
775 * Shouldn't the tags already have all been cleared
776 * by the caller?
777 */
778 if (!is_idr(root))
779 root_tag_clear_all(root);
f4b109c6
JW
780 root->rnode = NULL;
781 }
782
ea07b862 783 WARN_ON_ONCE(!list_empty(&node->private_list));
f4b109c6 784 radix_tree_node_free(node);
0ac398ef 785 deleted = true;
f4b109c6
JW
786
787 node = parent;
788 } while (node);
0ac398ef
MW
789
790 return deleted;
f4b109c6
JW
791}
792
1da177e4 793/**
139e5616 794 * __radix_tree_create - create a slot in a radix tree
1da177e4
LT
795 * @root: radix tree root
796 * @index: index key
e6145236 797 * @order: index occupies 2^order aligned slots
139e5616
JW
798 * @nodep: returns node
799 * @slotp: returns slot
1da177e4 800 *
139e5616
JW
801 * Create, if necessary, and return the node and slot for an item
802 * at position @index in the radix tree @root.
803 *
804 * Until there is more than one item in the tree, no nodes are
805 * allocated and @root->rnode is used as a direct slot instead of
806 * pointing to a node, in which case *@nodep will be NULL.
807 *
808 * Returns -ENOMEM, or 0 for success.
1da177e4 809 */
139e5616 810int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
e6145236 811 unsigned order, struct radix_tree_node **nodep,
d7b62727 812 void __rcu ***slotp)
1da177e4 813{
89148aa4 814 struct radix_tree_node *node = NULL, *child;
d7b62727 815 void __rcu **slot = (void __rcu **)&root->rnode;
49ea6ebc 816 unsigned long maxindex;
89148aa4 817 unsigned int shift, offset = 0;
49ea6ebc 818 unsigned long max = index | ((1UL << order) - 1);
0a835c4f 819 gfp_t gfp = root_gfp_mask(root);
49ea6ebc 820
89148aa4 821 shift = radix_tree_load_root(root, &child, &maxindex);
1da177e4
LT
822
823 /* Make sure the tree is high enough. */
175542f5
MW
824 if (order > 0 && max == ((1UL << order) - 1))
825 max++;
49ea6ebc 826 if (max > maxindex) {
0a835c4f 827 int error = radix_tree_extend(root, gfp, max, shift);
49ea6ebc 828 if (error < 0)
1da177e4 829 return error;
49ea6ebc 830 shift = error;
12320d0f 831 child = rcu_dereference_raw(root->rnode);
1da177e4
LT
832 }
833
e6145236 834 while (shift > order) {
c12e51b0 835 shift -= RADIX_TREE_MAP_SHIFT;
89148aa4 836 if (child == NULL) {
1da177e4 837 /* Have to add a child node. */
d58275bc 838 child = radix_tree_node_alloc(gfp, node, root, shift,
e8de4340 839 offset, 0, 0);
89148aa4 840 if (!child)
1da177e4 841 return -ENOMEM;
89148aa4
MW
842 rcu_assign_pointer(*slot, node_to_entry(child));
843 if (node)
1da177e4 844 node->count++;
89148aa4 845 } else if (!radix_tree_is_internal_node(child))
e6145236 846 break;
1da177e4
LT
847
848 /* Go a level down */
89148aa4 849 node = entry_to_node(child);
9e85d811 850 offset = radix_tree_descend(node, &child, index);
89148aa4 851 slot = &node->slots[offset];
e6145236
MW
852 }
853
175542f5
MW
854 if (nodep)
855 *nodep = node;
856 if (slotp)
857 *slotp = slot;
858 return 0;
859}
860
175542f5
MW
861/*
862 * Free any nodes below this node. The tree is presumed to not need
863 * shrinking, and any user data in the tree is presumed to not need a
864 * destructor called on it. If we need to add a destructor, we can
865 * add that functionality later. Note that we may not clear tags or
866 * slots from the tree as an RCU walker may still have a pointer into
867 * this subtree. We could replace the entries with RADIX_TREE_RETRY,
868 * but we'll still have to clear those in rcu_free.
869 */
870static void radix_tree_free_nodes(struct radix_tree_node *node)
871{
872 unsigned offset = 0;
873 struct radix_tree_node *child = entry_to_node(node);
874
875 for (;;) {
12320d0f 876 void *entry = rcu_dereference_raw(child->slots[offset]);
175542f5
MW
877 if (radix_tree_is_internal_node(entry) &&
878 !is_sibling_entry(child, entry)) {
879 child = entry_to_node(entry);
880 offset = 0;
881 continue;
882 }
883 offset++;
884 while (offset == RADIX_TREE_MAP_SIZE) {
885 struct radix_tree_node *old = child;
886 offset = child->offset + 1;
887 child = child->parent;
dd040b6f 888 WARN_ON_ONCE(!list_empty(&old->private_list));
175542f5
MW
889 radix_tree_node_free(old);
890 if (old == entry_to_node(node))
891 return;
892 }
893 }
894}
895
0a835c4f 896#ifdef CONFIG_RADIX_TREE_MULTIORDER
d7b62727
MW
897static inline int insert_entries(struct radix_tree_node *node,
898 void __rcu **slot, void *item, unsigned order, bool replace)
175542f5
MW
899{
900 struct radix_tree_node *child;
901 unsigned i, n, tag, offset, tags = 0;
902
903 if (node) {
e157b555
MW
904 if (order > node->shift)
905 n = 1 << (order - node->shift);
906 else
907 n = 1;
175542f5
MW
908 offset = get_slot_offset(node, slot);
909 } else {
910 n = 1;
911 offset = 0;
912 }
913
914 if (n > 1) {
e6145236 915 offset = offset & ~(n - 1);
89148aa4 916 slot = &node->slots[offset];
175542f5
MW
917 }
918 child = node_to_entry(slot);
919
920 for (i = 0; i < n; i++) {
921 if (slot[i]) {
922 if (replace) {
923 node->count--;
924 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
925 if (tag_get(node, tag, offset + i))
926 tags |= 1 << tag;
927 } else
e6145236
MW
928 return -EEXIST;
929 }
175542f5 930 }
e6145236 931
175542f5 932 for (i = 0; i < n; i++) {
12320d0f 933 struct radix_tree_node *old = rcu_dereference_raw(slot[i]);
175542f5 934 if (i) {
89148aa4 935 rcu_assign_pointer(slot[i], child);
175542f5
MW
936 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
937 if (tags & (1 << tag))
938 tag_clear(node, tag, offset + i);
939 } else {
940 rcu_assign_pointer(slot[i], item);
941 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
942 if (tags & (1 << tag))
943 tag_set(node, tag, offset);
e6145236 944 }
175542f5 945 if (radix_tree_is_internal_node(old) &&
e157b555
MW
946 !is_sibling_entry(node, old) &&
947 (old != RADIX_TREE_RETRY))
175542f5
MW
948 radix_tree_free_nodes(old);
949 if (radix_tree_exceptional_entry(old))
950 node->exceptional--;
612d6c19 951 }
175542f5
MW
952 if (node) {
953 node->count += n;
954 if (radix_tree_exceptional_entry(item))
955 node->exceptional += n;
956 }
957 return n;
139e5616 958}
175542f5 959#else
d7b62727
MW
960static inline int insert_entries(struct radix_tree_node *node,
961 void __rcu **slot, void *item, unsigned order, bool replace)
175542f5
MW
962{
963 if (*slot)
964 return -EEXIST;
965 rcu_assign_pointer(*slot, item);
966 if (node) {
967 node->count++;
968 if (radix_tree_exceptional_entry(item))
969 node->exceptional++;
970 }
971 return 1;
972}
973#endif
139e5616
JW
974
975/**
e6145236 976 * __radix_tree_insert - insert into a radix tree
139e5616
JW
977 * @root: radix tree root
978 * @index: index key
e6145236 979 * @order: key covers the 2^order indices around index
139e5616
JW
980 * @item: item to insert
981 *
982 * Insert an item into the radix tree at position @index.
983 */
e6145236
MW
984int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
985 unsigned order, void *item)
139e5616
JW
986{
987 struct radix_tree_node *node;
d7b62727 988 void __rcu **slot;
139e5616
JW
989 int error;
990
b194d16c 991 BUG_ON(radix_tree_is_internal_node(item));
139e5616 992
e6145236 993 error = __radix_tree_create(root, index, order, &node, &slot);
139e5616
JW
994 if (error)
995 return error;
175542f5
MW
996
997 error = insert_entries(node, slot, item, order, false);
998 if (error < 0)
999 return error;
201b6264 1000
612d6c19 1001 if (node) {
7b60e9ad 1002 unsigned offset = get_slot_offset(node, slot);
7b60e9ad
MW
1003 BUG_ON(tag_get(node, 0, offset));
1004 BUG_ON(tag_get(node, 1, offset));
1005 BUG_ON(tag_get(node, 2, offset));
612d6c19 1006 } else {
7b60e9ad 1007 BUG_ON(root_tags_get(root));
612d6c19 1008 }
1da177e4 1009
1da177e4
LT
1010 return 0;
1011}
e6145236 1012EXPORT_SYMBOL(__radix_tree_insert);
1da177e4 1013
139e5616
JW
1014/**
1015 * __radix_tree_lookup - lookup an item in a radix tree
1016 * @root: radix tree root
1017 * @index: index key
1018 * @nodep: returns node
1019 * @slotp: returns slot
1020 *
1021 * Lookup and return the item at position @index in the radix
1022 * tree @root.
1023 *
1024 * Until there is more than one item in the tree, no nodes are
1025 * allocated and @root->rnode is used as a direct slot instead of
1026 * pointing to a node, in which case *@nodep will be NULL.
7cf9c2c7 1027 */
35534c86
MW
1028void *__radix_tree_lookup(const struct radix_tree_root *root,
1029 unsigned long index, struct radix_tree_node **nodep,
d7b62727 1030 void __rcu ***slotp)
1da177e4 1031{
139e5616 1032 struct radix_tree_node *node, *parent;
85829954 1033 unsigned long maxindex;
d7b62727 1034 void __rcu **slot;
612d6c19 1035
85829954
MW
1036 restart:
1037 parent = NULL;
d7b62727 1038 slot = (void __rcu **)&root->rnode;
9e85d811 1039 radix_tree_load_root(root, &node, &maxindex);
85829954 1040 if (index > maxindex)
1da177e4
LT
1041 return NULL;
1042
b194d16c 1043 while (radix_tree_is_internal_node(node)) {
85829954 1044 unsigned offset;
1da177e4 1045
85829954
MW
1046 if (node == RADIX_TREE_RETRY)
1047 goto restart;
4dd6c098 1048 parent = entry_to_node(node);
9e85d811 1049 offset = radix_tree_descend(parent, &node, index);
85829954
MW
1050 slot = parent->slots + offset;
1051 }
1da177e4 1052
139e5616
JW
1053 if (nodep)
1054 *nodep = parent;
1055 if (slotp)
1056 *slotp = slot;
1057 return node;
b72b71c6
HS
1058}
1059
1060/**
1061 * radix_tree_lookup_slot - lookup a slot in a radix tree
1062 * @root: radix tree root
1063 * @index: index key
1064 *
1065 * Returns: the slot corresponding to the position @index in the
1066 * radix tree @root. This is useful for update-if-exists operations.
1067 *
1068 * This function can be called under rcu_read_lock iff the slot is not
1069 * modified by radix_tree_replace_slot, otherwise it must be called
1070 * exclusive from other writers. Any dereference of the slot must be done
1071 * using radix_tree_deref_slot.
1072 */
d7b62727 1073void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
35534c86 1074 unsigned long index)
b72b71c6 1075{
d7b62727 1076 void __rcu **slot;
139e5616
JW
1077
1078 if (!__radix_tree_lookup(root, index, NULL, &slot))
1079 return NULL;
1080 return slot;
a4331366 1081}
a4331366
HR
1082EXPORT_SYMBOL(radix_tree_lookup_slot);
1083
1084/**
1085 * radix_tree_lookup - perform lookup operation on a radix tree
1086 * @root: radix tree root
1087 * @index: index key
1088 *
1089 * Lookup the item at the position @index in the radix tree @root.
7cf9c2c7
NP
1090 *
1091 * This function can be called under rcu_read_lock, however the caller
1092 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
1093 * them safely). No RCU barriers are required to access or modify the
1094 * returned item, however.
a4331366 1095 */
35534c86 1096void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
a4331366 1097{
139e5616 1098 return __radix_tree_lookup(root, index, NULL, NULL);
1da177e4
LT
1099}
1100EXPORT_SYMBOL(radix_tree_lookup);
1101
0a835c4f 1102static inline void replace_sibling_entries(struct radix_tree_node *node,
d7b62727 1103 void __rcu **slot, int count, int exceptional)
a90eb3a2 1104{
a90eb3a2
MW
1105#ifdef CONFIG_RADIX_TREE_MULTIORDER
1106 void *ptr = node_to_entry(slot);
0a835c4f 1107 unsigned offset = get_slot_offset(node, slot) + 1;
a90eb3a2 1108
0a835c4f 1109 while (offset < RADIX_TREE_MAP_SIZE) {
12320d0f 1110 if (rcu_dereference_raw(node->slots[offset]) != ptr)
a90eb3a2 1111 break;
0a835c4f
MW
1112 if (count < 0) {
1113 node->slots[offset] = NULL;
1114 node->count--;
1115 }
1116 node->exceptional += exceptional;
1117 offset++;
a90eb3a2
MW
1118 }
1119#endif
a90eb3a2
MW
1120}
1121
d7b62727
MW
1122static void replace_slot(void __rcu **slot, void *item,
1123 struct radix_tree_node *node, int count, int exceptional)
f7942430 1124{
0a835c4f
MW
1125 if (WARN_ON_ONCE(radix_tree_is_internal_node(item)))
1126 return;
f7942430 1127
0a835c4f 1128 if (node && (count || exceptional)) {
f4b109c6 1129 node->count += count;
0a835c4f
MW
1130 node->exceptional += exceptional;
1131 replace_sibling_entries(node, slot, count, exceptional);
f4b109c6 1132 }
f7942430
JW
1133
1134 rcu_assign_pointer(*slot, item);
1135}
1136
0a835c4f
MW
1137static bool node_tag_get(const struct radix_tree_root *root,
1138 const struct radix_tree_node *node,
1139 unsigned int tag, unsigned int offset)
a90eb3a2 1140{
0a835c4f
MW
1141 if (node)
1142 return tag_get(node, tag, offset);
1143 return root_tag_get(root, tag);
1144}
a90eb3a2 1145
0a835c4f
MW
1146/*
1147 * IDR users want to be able to store NULL in the tree, so if the slot isn't
1148 * free, don't adjust the count, even if it's transitioning between NULL and
1149 * non-NULL. For the IDA, we mark slots as being IDR_FREE while they still
1150 * have empty bits, but it only stores NULL in slots when they're being
1151 * deleted.
1152 */
1153static int calculate_count(struct radix_tree_root *root,
d7b62727 1154 struct radix_tree_node *node, void __rcu **slot,
0a835c4f
MW
1155 void *item, void *old)
1156{
1157 if (is_idr(root)) {
1158 unsigned offset = get_slot_offset(node, slot);
1159 bool free = node_tag_get(root, node, IDR_FREE, offset);
1160 if (!free)
1161 return 0;
1162 if (!old)
1163 return 1;
a90eb3a2 1164 }
0a835c4f 1165 return !!item - !!old;
a90eb3a2
MW
1166}
1167
6d75f366
JW
1168/**
1169 * __radix_tree_replace - replace item in a slot
4d693d08
JW
1170 * @root: radix tree root
1171 * @node: pointer to tree node
1172 * @slot: pointer to slot in @node
1173 * @item: new item to store in the slot.
1174 * @update_node: callback for changing leaf nodes
6d75f366
JW
1175 *
1176 * For use with __radix_tree_lookup(). Caller must hold tree write locked
1177 * across slot lookup and replacement.
1178 */
1179void __radix_tree_replace(struct radix_tree_root *root,
1180 struct radix_tree_node *node,
d7b62727 1181 void __rcu **slot, void *item,
c7df8ad2 1182 radix_tree_update_node_t update_node)
6d75f366 1183{
0a835c4f
MW
1184 void *old = rcu_dereference_raw(*slot);
1185 int exceptional = !!radix_tree_exceptional_entry(item) -
1186 !!radix_tree_exceptional_entry(old);
1187 int count = calculate_count(root, node, slot, item, old);
1188
6d75f366 1189 /*
f4b109c6
JW
1190 * This function supports replacing exceptional entries and
1191 * deleting entries, but that needs accounting against the
1192 * node unless the slot is root->rnode.
6d75f366 1193 */
d7b62727 1194 WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->rnode) &&
0a835c4f
MW
1195 (count || exceptional));
1196 replace_slot(slot, item, node, count, exceptional);
f4b109c6 1197
4d693d08
JW
1198 if (!node)
1199 return;
1200
1201 if (update_node)
c7df8ad2 1202 update_node(node);
4d693d08 1203
c7df8ad2 1204 delete_node(root, node, update_node);
6d75f366
JW
1205}
1206
1207/**
1208 * radix_tree_replace_slot - replace item in a slot
1209 * @root: radix tree root
1210 * @slot: pointer to slot
1211 * @item: new item to store in the slot.
1212 *
1213 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1214 * radix_tree_gang_lookup_tag_slot(). Caller must hold tree write locked
1215 * across slot lookup and replacement.
1216 *
1217 * NOTE: This cannot be used to switch between non-entries (empty slots),
1218 * regular entries, and exceptional entries, as that requires accounting
f4b109c6 1219 * inside the radix tree node. When switching from one type of entry or
e157b555
MW
1220 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1221 * radix_tree_iter_replace().
6d75f366
JW
1222 */
1223void radix_tree_replace_slot(struct radix_tree_root *root,
d7b62727 1224 void __rcu **slot, void *item)
6d75f366 1225{
c7df8ad2 1226 __radix_tree_replace(root, NULL, slot, item, NULL);
6d75f366 1227}
10257d71 1228EXPORT_SYMBOL(radix_tree_replace_slot);
6d75f366 1229
e157b555
MW
1230/**
1231 * radix_tree_iter_replace - replace item in a slot
1232 * @root: radix tree root
1233 * @slot: pointer to slot
1234 * @item: new item to store in the slot.
1235 *
1236 * For use with radix_tree_split() and radix_tree_for_each_slot().
1237 * Caller must hold tree write locked across split and replacement.
1238 */
1239void radix_tree_iter_replace(struct radix_tree_root *root,
d7b62727
MW
1240 const struct radix_tree_iter *iter,
1241 void __rcu **slot, void *item)
e157b555 1242{
c7df8ad2 1243 __radix_tree_replace(root, iter->node, slot, item, NULL);
e157b555
MW
1244}
1245
175542f5
MW
1246#ifdef CONFIG_RADIX_TREE_MULTIORDER
1247/**
1248 * radix_tree_join - replace multiple entries with one multiorder entry
1249 * @root: radix tree root
1250 * @index: an index inside the new entry
1251 * @order: order of the new entry
1252 * @item: new entry
1253 *
1254 * Call this function to replace several entries with one larger entry.
1255 * The existing entries are presumed to not need freeing as a result of
1256 * this call.
1257 *
1258 * The replacement entry will have all the tags set on it that were set
1259 * on any of the entries it is replacing.
1260 */
1261int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1262 unsigned order, void *item)
1263{
1264 struct radix_tree_node *node;
d7b62727 1265 void __rcu **slot;
175542f5
MW
1266 int error;
1267
1268 BUG_ON(radix_tree_is_internal_node(item));
1269
1270 error = __radix_tree_create(root, index, order, &node, &slot);
1271 if (!error)
1272 error = insert_entries(node, slot, item, order, true);
1273 if (error > 0)
1274 error = 0;
1275
1276 return error;
1277}
e157b555
MW
1278
1279/**
1280 * radix_tree_split - Split an entry into smaller entries
1281 * @root: radix tree root
1282 * @index: An index within the large entry
1283 * @order: Order of new entries
1284 *
1285 * Call this function as the first step in replacing a multiorder entry
1286 * with several entries of lower order. After this function returns,
1287 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1288 * and call radix_tree_iter_replace() to set up each new entry.
1289 *
1290 * The tags from this entry are replicated to all the new entries.
1291 *
1292 * The radix tree should be locked against modification during the entire
1293 * replacement operation. Lock-free lookups will see RADIX_TREE_RETRY which
1294 * should prompt RCU walkers to restart the lookup from the root.
1295 */
1296int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1297 unsigned order)
1298{
1299 struct radix_tree_node *parent, *node, *child;
d7b62727 1300 void __rcu **slot;
e157b555
MW
1301 unsigned int offset, end;
1302 unsigned n, tag, tags = 0;
0a835c4f 1303 gfp_t gfp = root_gfp_mask(root);
e157b555
MW
1304
1305 if (!__radix_tree_lookup(root, index, &parent, &slot))
1306 return -ENOENT;
1307 if (!parent)
1308 return -ENOENT;
1309
1310 offset = get_slot_offset(parent, slot);
1311
1312 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1313 if (tag_get(parent, tag, offset))
1314 tags |= 1 << tag;
1315
1316 for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
12320d0f
MW
1317 if (!is_sibling_entry(parent,
1318 rcu_dereference_raw(parent->slots[end])))
e157b555
MW
1319 break;
1320 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1321 if (tags & (1 << tag))
1322 tag_set(parent, tag, end);
1323 /* rcu_assign_pointer ensures tags are set before RETRY */
1324 rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1325 }
1326 rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1327 parent->exceptional -= (end - offset);
1328
1329 if (order == parent->shift)
1330 return 0;
1331 if (order > parent->shift) {
1332 while (offset < end)
1333 offset += insert_entries(parent, &parent->slots[offset],
1334 RADIX_TREE_RETRY, order, true);
1335 return 0;
1336 }
1337
1338 node = parent;
1339
1340 for (;;) {
1341 if (node->shift > order) {
d58275bc 1342 child = radix_tree_node_alloc(gfp, node, root,
e8de4340
MW
1343 node->shift - RADIX_TREE_MAP_SHIFT,
1344 offset, 0, 0);
e157b555
MW
1345 if (!child)
1346 goto nomem;
e157b555
MW
1347 if (node != parent) {
1348 node->count++;
12320d0f
MW
1349 rcu_assign_pointer(node->slots[offset],
1350 node_to_entry(child));
e157b555
MW
1351 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1352 if (tags & (1 << tag))
1353 tag_set(node, tag, offset);
1354 }
1355
1356 node = child;
1357 offset = 0;
1358 continue;
1359 }
1360
1361 n = insert_entries(node, &node->slots[offset],
1362 RADIX_TREE_RETRY, order, false);
1363 BUG_ON(n > RADIX_TREE_MAP_SIZE);
1364
1365 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1366 if (tags & (1 << tag))
1367 tag_set(node, tag, offset);
1368 offset += n;
1369
1370 while (offset == RADIX_TREE_MAP_SIZE) {
1371 if (node == parent)
1372 break;
1373 offset = node->offset;
1374 child = node;
1375 node = node->parent;
1376 rcu_assign_pointer(node->slots[offset],
1377 node_to_entry(child));
1378 offset++;
1379 }
1380 if ((node == parent) && (offset == end))
1381 return 0;
1382 }
1383
1384 nomem:
1385 /* Shouldn't happen; did user forget to preload? */
1386 /* TODO: free all the allocated nodes */
1387 WARN_ON(1);
1388 return -ENOMEM;
1389}
175542f5
MW
1390#endif
1391
30b888ba
MW
1392static void node_tag_set(struct radix_tree_root *root,
1393 struct radix_tree_node *node,
1394 unsigned int tag, unsigned int offset)
1395{
1396 while (node) {
1397 if (tag_get(node, tag, offset))
1398 return;
1399 tag_set(node, tag, offset);
1400 offset = node->offset;
1401 node = node->parent;
1402 }
1403
1404 if (!root_tag_get(root, tag))
1405 root_tag_set(root, tag);
1406}
1407
1da177e4
LT
1408/**
1409 * radix_tree_tag_set - set a tag on a radix tree node
1410 * @root: radix tree root
1411 * @index: index key
2fcd9005 1412 * @tag: tag index
1da177e4 1413 *
daff89f3
JC
1414 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1415 * corresponding to @index in the radix tree. From
1da177e4
LT
1416 * the root all the way down to the leaf node.
1417 *
2fcd9005 1418 * Returns the address of the tagged item. Setting a tag on a not-present
1da177e4
LT
1419 * item is a bug.
1420 */
1421void *radix_tree_tag_set(struct radix_tree_root *root,
daff89f3 1422 unsigned long index, unsigned int tag)
1da177e4 1423{
fb969909
RZ
1424 struct radix_tree_node *node, *parent;
1425 unsigned long maxindex;
1da177e4 1426
9e85d811 1427 radix_tree_load_root(root, &node, &maxindex);
fb969909 1428 BUG_ON(index > maxindex);
1da177e4 1429
b194d16c 1430 while (radix_tree_is_internal_node(node)) {
fb969909 1431 unsigned offset;
1da177e4 1432
4dd6c098 1433 parent = entry_to_node(node);
9e85d811 1434 offset = radix_tree_descend(parent, &node, index);
fb969909
RZ
1435 BUG_ON(!node);
1436
1437 if (!tag_get(parent, tag, offset))
1438 tag_set(parent, tag, offset);
1da177e4
LT
1439 }
1440
612d6c19 1441 /* set the root's tag bit */
fb969909 1442 if (!root_tag_get(root, tag))
612d6c19
NP
1443 root_tag_set(root, tag);
1444
fb969909 1445 return node;
1da177e4
LT
1446}
1447EXPORT_SYMBOL(radix_tree_tag_set);
1448
30b888ba
MW
1449/**
1450 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1451 * @root: radix tree root
1452 * @iter: iterator state
1453 * @tag: tag to set
1454 */
1455void radix_tree_iter_tag_set(struct radix_tree_root *root,
1456 const struct radix_tree_iter *iter, unsigned int tag)
1457{
1458 node_tag_set(root, iter->node, tag, iter_offset(iter));
1459}
1460
d604c324
MW
1461static void node_tag_clear(struct radix_tree_root *root,
1462 struct radix_tree_node *node,
1463 unsigned int tag, unsigned int offset)
1464{
1465 while (node) {
1466 if (!tag_get(node, tag, offset))
1467 return;
1468 tag_clear(node, tag, offset);
1469 if (any_tag_set(node, tag))
1470 return;
1471
1472 offset = node->offset;
1473 node = node->parent;
1474 }
1475
1476 /* clear the root's tag bit */
1477 if (root_tag_get(root, tag))
1478 root_tag_clear(root, tag);
1479}
1480
1da177e4
LT
1481/**
1482 * radix_tree_tag_clear - clear a tag on a radix tree node
1483 * @root: radix tree root
1484 * @index: index key
2fcd9005 1485 * @tag: tag index
1da177e4 1486 *
daff89f3 1487 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
2fcd9005
MW
1488 * corresponding to @index in the radix tree. If this causes
1489 * the leaf node to have no tags set then clear the tag in the
1da177e4
LT
1490 * next-to-leaf node, etc.
1491 *
1492 * Returns the address of the tagged item on success, else NULL. ie:
1493 * has the same return value and semantics as radix_tree_lookup().
1494 */
1495void *radix_tree_tag_clear(struct radix_tree_root *root,
daff89f3 1496 unsigned long index, unsigned int tag)
1da177e4 1497{
00f47b58
RZ
1498 struct radix_tree_node *node, *parent;
1499 unsigned long maxindex;
e2bdb933 1500 int uninitialized_var(offset);
1da177e4 1501
9e85d811 1502 radix_tree_load_root(root, &node, &maxindex);
00f47b58
RZ
1503 if (index > maxindex)
1504 return NULL;
1da177e4 1505
00f47b58 1506 parent = NULL;
1da177e4 1507
b194d16c 1508 while (radix_tree_is_internal_node(node)) {
4dd6c098 1509 parent = entry_to_node(node);
9e85d811 1510 offset = radix_tree_descend(parent, &node, index);
1da177e4
LT
1511 }
1512
d604c324
MW
1513 if (node)
1514 node_tag_clear(root, parent, tag, offset);
1da177e4 1515
00f47b58 1516 return node;
1da177e4
LT
1517}
1518EXPORT_SYMBOL(radix_tree_tag_clear);
1519
30b888ba
MW
1520/**
1521 * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1522 * @root: radix tree root
1523 * @iter: iterator state
1524 * @tag: tag to clear
1525 */
1526void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1527 const struct radix_tree_iter *iter, unsigned int tag)
1528{
1529 node_tag_clear(root, iter->node, tag, iter_offset(iter));
1530}
1531
1da177e4 1532/**
32605a18
MT
1533 * radix_tree_tag_get - get a tag on a radix tree node
1534 * @root: radix tree root
1535 * @index: index key
2fcd9005 1536 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
1da177e4 1537 *
32605a18 1538 * Return values:
1da177e4 1539 *
612d6c19
NP
1540 * 0: tag not present or not set
1541 * 1: tag set
ce82653d
DH
1542 *
1543 * Note that the return value of this function may not be relied on, even if
1544 * the RCU lock is held, unless tag modification and node deletion are excluded
1545 * from concurrency.
1da177e4 1546 */
35534c86 1547int radix_tree_tag_get(const struct radix_tree_root *root,
daff89f3 1548 unsigned long index, unsigned int tag)
1da177e4 1549{
4589ba6d
RZ
1550 struct radix_tree_node *node, *parent;
1551 unsigned long maxindex;
1da177e4 1552
612d6c19
NP
1553 if (!root_tag_get(root, tag))
1554 return 0;
1555
9e85d811 1556 radix_tree_load_root(root, &node, &maxindex);
4589ba6d
RZ
1557 if (index > maxindex)
1558 return 0;
7cf9c2c7 1559
b194d16c 1560 while (radix_tree_is_internal_node(node)) {
9e85d811 1561 unsigned offset;
1da177e4 1562
4dd6c098 1563 parent = entry_to_node(node);
9e85d811 1564 offset = radix_tree_descend(parent, &node, index);
1da177e4 1565
4589ba6d 1566 if (!tag_get(parent, tag, offset))
3fa36acb 1567 return 0;
4589ba6d
RZ
1568 if (node == RADIX_TREE_RETRY)
1569 break;
1da177e4 1570 }
4589ba6d
RZ
1571
1572 return 1;
1da177e4
LT
1573}
1574EXPORT_SYMBOL(radix_tree_tag_get);
1da177e4 1575
21ef5339
RZ
1576static inline void __set_iter_shift(struct radix_tree_iter *iter,
1577 unsigned int shift)
1578{
1579#ifdef CONFIG_RADIX_TREE_MULTIORDER
1580 iter->shift = shift;
1581#endif
1582}
1583
148deab2
MW
1584/* Construct iter->tags bit-mask from node->tags[tag] array */
1585static void set_iter_tags(struct radix_tree_iter *iter,
1586 struct radix_tree_node *node, unsigned offset,
1587 unsigned tag)
1588{
1589 unsigned tag_long = offset / BITS_PER_LONG;
1590 unsigned tag_bit = offset % BITS_PER_LONG;
1591
0a835c4f
MW
1592 if (!node) {
1593 iter->tags = 1;
1594 return;
1595 }
1596
148deab2
MW
1597 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1598
1599 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1600 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1601 /* Pick tags from next element */
1602 if (tag_bit)
1603 iter->tags |= node->tags[tag][tag_long + 1] <<
1604 (BITS_PER_LONG - tag_bit);
1605 /* Clip chunk size, here only BITS_PER_LONG tags */
1606 iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1607 }
1608}
1609
1610#ifdef CONFIG_RADIX_TREE_MULTIORDER
d7b62727
MW
1611static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1612 void __rcu **slot, struct radix_tree_iter *iter)
148deab2 1613{
148deab2
MW
1614 while (iter->index < iter->next_index) {
1615 *nodep = rcu_dereference_raw(*slot);
354c1078 1616 if (*nodep && !is_sibling_entry(iter->node, *nodep))
148deab2
MW
1617 return slot;
1618 slot++;
1619 iter->index = __radix_tree_iter_add(iter, 1);
1620 iter->tags >>= 1;
1621 }
1622
1623 *nodep = NULL;
1624 return NULL;
1625}
1626
d7b62727
MW
1627void __rcu **__radix_tree_next_slot(void __rcu **slot,
1628 struct radix_tree_iter *iter, unsigned flags)
148deab2
MW
1629{
1630 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
354c1078 1631 struct radix_tree_node *node;
148deab2
MW
1632
1633 slot = skip_siblings(&node, slot, iter);
1634
1635 while (radix_tree_is_internal_node(node)) {
1636 unsigned offset;
1637 unsigned long next_index;
1638
1639 if (node == RADIX_TREE_RETRY)
1640 return slot;
1641 node = entry_to_node(node);
268f42de 1642 iter->node = node;
148deab2
MW
1643 iter->shift = node->shift;
1644
1645 if (flags & RADIX_TREE_ITER_TAGGED) {
1646 offset = radix_tree_find_next_bit(node, tag, 0);
1647 if (offset == RADIX_TREE_MAP_SIZE)
1648 return NULL;
1649 slot = &node->slots[offset];
1650 iter->index = __radix_tree_iter_add(iter, offset);
1651 set_iter_tags(iter, node, offset, tag);
1652 node = rcu_dereference_raw(*slot);
1653 } else {
1654 offset = 0;
1655 slot = &node->slots[0];
1656 for (;;) {
1657 node = rcu_dereference_raw(*slot);
1658 if (node)
1659 break;
1660 slot++;
1661 offset++;
1662 if (offset == RADIX_TREE_MAP_SIZE)
1663 return NULL;
1664 }
1665 iter->index = __radix_tree_iter_add(iter, offset);
1666 }
1667 if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1668 goto none;
1669 next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1670 if (next_index < iter->next_index)
1671 iter->next_index = next_index;
1672 }
1673
1674 return slot;
1675 none:
1676 iter->next_index = 0;
1677 return NULL;
1678}
1679EXPORT_SYMBOL(__radix_tree_next_slot);
1680#else
d7b62727
MW
1681static void __rcu **skip_siblings(struct radix_tree_node **nodep,
1682 void __rcu **slot, struct radix_tree_iter *iter)
148deab2
MW
1683{
1684 return slot;
1685}
1686#endif
1687
d7b62727
MW
1688void __rcu **radix_tree_iter_resume(void __rcu **slot,
1689 struct radix_tree_iter *iter)
148deab2
MW
1690{
1691 struct radix_tree_node *node;
1692
1693 slot++;
1694 iter->index = __radix_tree_iter_add(iter, 1);
148deab2
MW
1695 skip_siblings(&node, slot, iter);
1696 iter->next_index = iter->index;
1697 iter->tags = 0;
1698 return NULL;
1699}
1700EXPORT_SYMBOL(radix_tree_iter_resume);
1701
78c1d784
KK
1702/**
1703 * radix_tree_next_chunk - find next chunk of slots for iteration
1704 *
1705 * @root: radix tree root
1706 * @iter: iterator state
1707 * @flags: RADIX_TREE_ITER_* flags and tag index
1708 * Returns: pointer to chunk first slot, or NULL if iteration is over
1709 */
d7b62727 1710void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
78c1d784
KK
1711 struct radix_tree_iter *iter, unsigned flags)
1712{
9e85d811 1713 unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
8c1244de 1714 struct radix_tree_node *node, *child;
21ef5339 1715 unsigned long index, offset, maxindex;
78c1d784
KK
1716
1717 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1718 return NULL;
1719
1720 /*
1721 * Catch next_index overflow after ~0UL. iter->index never overflows
1722 * during iterating; it can be zero only at the beginning.
1723 * And we cannot overflow iter->next_index in a single step,
1724 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
fffaee36
KK
1725 *
1726 * This condition also used by radix_tree_next_slot() to stop
91b9677c 1727 * contiguous iterating, and forbid switching to the next chunk.
78c1d784
KK
1728 */
1729 index = iter->next_index;
1730 if (!index && iter->index)
1731 return NULL;
1732
21ef5339 1733 restart:
9e85d811 1734 radix_tree_load_root(root, &child, &maxindex);
21ef5339
RZ
1735 if (index > maxindex)
1736 return NULL;
8c1244de
MW
1737 if (!child)
1738 return NULL;
21ef5339 1739
8c1244de 1740 if (!radix_tree_is_internal_node(child)) {
78c1d784 1741 /* Single-slot tree */
21ef5339
RZ
1742 iter->index = index;
1743 iter->next_index = maxindex + 1;
78c1d784 1744 iter->tags = 1;
268f42de 1745 iter->node = NULL;
8c1244de 1746 __set_iter_shift(iter, 0);
d7b62727 1747 return (void __rcu **)&root->rnode;
8c1244de 1748 }
21ef5339 1749
8c1244de
MW
1750 do {
1751 node = entry_to_node(child);
9e85d811 1752 offset = radix_tree_descend(node, &child, index);
21ef5339 1753
78c1d784 1754 if ((flags & RADIX_TREE_ITER_TAGGED) ?
8c1244de 1755 !tag_get(node, tag, offset) : !child) {
78c1d784
KK
1756 /* Hole detected */
1757 if (flags & RADIX_TREE_ITER_CONTIG)
1758 return NULL;
1759
1760 if (flags & RADIX_TREE_ITER_TAGGED)
bc412fca 1761 offset = radix_tree_find_next_bit(node, tag,
78c1d784
KK
1762 offset + 1);
1763 else
1764 while (++offset < RADIX_TREE_MAP_SIZE) {
12320d0f
MW
1765 void *slot = rcu_dereference_raw(
1766 node->slots[offset]);
21ef5339
RZ
1767 if (is_sibling_entry(node, slot))
1768 continue;
1769 if (slot)
78c1d784
KK
1770 break;
1771 }
8c1244de 1772 index &= ~node_maxindex(node);
9e85d811 1773 index += offset << node->shift;
78c1d784
KK
1774 /* Overflow after ~0UL */
1775 if (!index)
1776 return NULL;
1777 if (offset == RADIX_TREE_MAP_SIZE)
1778 goto restart;
8c1244de 1779 child = rcu_dereference_raw(node->slots[offset]);
78c1d784
KK
1780 }
1781
e157b555 1782 if (!child)
78c1d784 1783 goto restart;
e157b555
MW
1784 if (child == RADIX_TREE_RETRY)
1785 break;
8c1244de 1786 } while (radix_tree_is_internal_node(child));
78c1d784
KK
1787
1788 /* Update the iterator state */
8c1244de
MW
1789 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1790 iter->next_index = (index | node_maxindex(node)) + 1;
268f42de 1791 iter->node = node;
9e85d811 1792 __set_iter_shift(iter, node->shift);
78c1d784 1793
148deab2
MW
1794 if (flags & RADIX_TREE_ITER_TAGGED)
1795 set_iter_tags(iter, node, offset, tag);
78c1d784
KK
1796
1797 return node->slots + offset;
1798}
1799EXPORT_SYMBOL(radix_tree_next_chunk);
1800
1da177e4
LT
1801/**
1802 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1803 * @root: radix tree root
1804 * @results: where the results of the lookup are placed
1805 * @first_index: start the lookup from this key
1806 * @max_items: place up to this many items at *results
1807 *
1808 * Performs an index-ascending scan of the tree for present items. Places
1809 * them at *@results and returns the number of items which were placed at
1810 * *@results.
1811 *
1812 * The implementation is naive.
7cf9c2c7
NP
1813 *
1814 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1815 * rcu_read_lock. In this case, rather than the returned results being
2fcd9005
MW
1816 * an atomic snapshot of the tree at a single point in time, the
1817 * semantics of an RCU protected gang lookup are as though multiple
1818 * radix_tree_lookups have been issued in individual locks, and results
1819 * stored in 'results'.
1da177e4
LT
1820 */
1821unsigned int
35534c86 1822radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1da177e4
LT
1823 unsigned long first_index, unsigned int max_items)
1824{
cebbd29e 1825 struct radix_tree_iter iter;
d7b62727 1826 void __rcu **slot;
cebbd29e 1827 unsigned int ret = 0;
7cf9c2c7 1828
cebbd29e 1829 if (unlikely(!max_items))
7cf9c2c7 1830 return 0;
1da177e4 1831
cebbd29e 1832 radix_tree_for_each_slot(slot, root, &iter, first_index) {
46437f9a 1833 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1834 if (!results[ret])
1835 continue;
b194d16c 1836 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1837 slot = radix_tree_iter_retry(&iter);
1838 continue;
1839 }
cebbd29e 1840 if (++ret == max_items)
1da177e4 1841 break;
1da177e4 1842 }
7cf9c2c7 1843
1da177e4
LT
1844 return ret;
1845}
1846EXPORT_SYMBOL(radix_tree_gang_lookup);
1847
47feff2c
NP
1848/**
1849 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1850 * @root: radix tree root
1851 * @results: where the results of the lookup are placed
6328650b 1852 * @indices: where their indices should be placed (but usually NULL)
47feff2c
NP
1853 * @first_index: start the lookup from this key
1854 * @max_items: place up to this many items at *results
1855 *
1856 * Performs an index-ascending scan of the tree for present items. Places
1857 * their slots at *@results and returns the number of items which were
1858 * placed at *@results.
1859 *
1860 * The implementation is naive.
1861 *
1862 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1863 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1864 * protection, radix_tree_deref_slot may fail requiring a retry.
1865 */
1866unsigned int
35534c86 1867radix_tree_gang_lookup_slot(const struct radix_tree_root *root,
d7b62727 1868 void __rcu ***results, unsigned long *indices,
47feff2c
NP
1869 unsigned long first_index, unsigned int max_items)
1870{
cebbd29e 1871 struct radix_tree_iter iter;
d7b62727 1872 void __rcu **slot;
cebbd29e 1873 unsigned int ret = 0;
47feff2c 1874
cebbd29e 1875 if (unlikely(!max_items))
47feff2c
NP
1876 return 0;
1877
cebbd29e
KK
1878 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1879 results[ret] = slot;
6328650b 1880 if (indices)
cebbd29e
KK
1881 indices[ret] = iter.index;
1882 if (++ret == max_items)
47feff2c 1883 break;
47feff2c
NP
1884 }
1885
1886 return ret;
1887}
1888EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1889
1da177e4
LT
1890/**
1891 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1892 * based on a tag
1893 * @root: radix tree root
1894 * @results: where the results of the lookup are placed
1895 * @first_index: start the lookup from this key
1896 * @max_items: place up to this many items at *results
daff89f3 1897 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1da177e4
LT
1898 *
1899 * Performs an index-ascending scan of the tree for present items which
1900 * have the tag indexed by @tag set. Places the items at *@results and
1901 * returns the number of items which were placed at *@results.
1902 */
1903unsigned int
35534c86 1904radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
daff89f3
JC
1905 unsigned long first_index, unsigned int max_items,
1906 unsigned int tag)
1da177e4 1907{
cebbd29e 1908 struct radix_tree_iter iter;
d7b62727 1909 void __rcu **slot;
cebbd29e 1910 unsigned int ret = 0;
612d6c19 1911
cebbd29e 1912 if (unlikely(!max_items))
7cf9c2c7
NP
1913 return 0;
1914
cebbd29e 1915 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
46437f9a 1916 results[ret] = rcu_dereference_raw(*slot);
cebbd29e
KK
1917 if (!results[ret])
1918 continue;
b194d16c 1919 if (radix_tree_is_internal_node(results[ret])) {
46437f9a
MW
1920 slot = radix_tree_iter_retry(&iter);
1921 continue;
1922 }
cebbd29e 1923 if (++ret == max_items)
1da177e4 1924 break;
1da177e4 1925 }
7cf9c2c7 1926
1da177e4
LT
1927 return ret;
1928}
1929EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1930
47feff2c
NP
1931/**
1932 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1933 * radix tree based on a tag
1934 * @root: radix tree root
1935 * @results: where the results of the lookup are placed
1936 * @first_index: start the lookup from this key
1937 * @max_items: place up to this many items at *results
1938 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1939 *
1940 * Performs an index-ascending scan of the tree for present items which
1941 * have the tag indexed by @tag set. Places the slots at *@results and
1942 * returns the number of slots which were placed at *@results.
1943 */
1944unsigned int
35534c86 1945radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
d7b62727 1946 void __rcu ***results, unsigned long first_index,
35534c86 1947 unsigned int max_items, unsigned int tag)
47feff2c 1948{
cebbd29e 1949 struct radix_tree_iter iter;
d7b62727 1950 void __rcu **slot;
cebbd29e 1951 unsigned int ret = 0;
47feff2c 1952
cebbd29e 1953 if (unlikely(!max_items))
47feff2c
NP
1954 return 0;
1955
cebbd29e
KK
1956 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1957 results[ret] = slot;
1958 if (++ret == max_items)
47feff2c 1959 break;
47feff2c
NP
1960 }
1961
1962 return ret;
1963}
1964EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1965
139e5616
JW
1966/**
1967 * __radix_tree_delete_node - try to free node after clearing a slot
1968 * @root: radix tree root
139e5616 1969 * @node: node containing @index
ea07b862 1970 * @update_node: callback for changing leaf nodes
139e5616
JW
1971 *
1972 * After clearing the slot at @index in @node from radix tree
1973 * rooted at @root, call this function to attempt freeing the
1974 * node and shrinking the tree.
139e5616 1975 */
14b46879 1976void __radix_tree_delete_node(struct radix_tree_root *root,
ea07b862 1977 struct radix_tree_node *node,
c7df8ad2 1978 radix_tree_update_node_t update_node)
139e5616 1979{
c7df8ad2 1980 delete_node(root, node, update_node);
139e5616
JW
1981}
1982
0ac398ef 1983static bool __radix_tree_delete(struct radix_tree_root *root,
d7b62727 1984 struct radix_tree_node *node, void __rcu **slot)
0ac398ef 1985{
0a835c4f
MW
1986 void *old = rcu_dereference_raw(*slot);
1987 int exceptional = radix_tree_exceptional_entry(old) ? -1 : 0;
0ac398ef
MW
1988 unsigned offset = get_slot_offset(node, slot);
1989 int tag;
1990
0a835c4f
MW
1991 if (is_idr(root))
1992 node_tag_set(root, node, IDR_FREE, offset);
1993 else
1994 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1995 node_tag_clear(root, node, tag, offset);
0ac398ef 1996
0a835c4f 1997 replace_slot(slot, NULL, node, -1, exceptional);
c7df8ad2 1998 return node && delete_node(root, node, NULL);
0ac398ef
MW
1999}
2000
1da177e4 2001/**
0ac398ef
MW
2002 * radix_tree_iter_delete - delete the entry at this iterator position
2003 * @root: radix tree root
2004 * @iter: iterator state
2005 * @slot: pointer to slot
1da177e4 2006 *
0ac398ef
MW
2007 * Delete the entry at the position currently pointed to by the iterator.
2008 * This may result in the current node being freed; if it is, the iterator
2009 * is advanced so that it will not reference the freed memory. This
2010 * function may be called without any locking if there are no other threads
2011 * which can access this tree.
2012 */
2013void radix_tree_iter_delete(struct radix_tree_root *root,
d7b62727 2014 struct radix_tree_iter *iter, void __rcu **slot)
0ac398ef
MW
2015{
2016 if (__radix_tree_delete(root, iter->node, slot))
2017 iter->index = iter->next_index;
2018}
d1b48c1e 2019EXPORT_SYMBOL(radix_tree_iter_delete);
0ac398ef
MW
2020
2021/**
2022 * radix_tree_delete_item - delete an item from a radix tree
2023 * @root: radix tree root
2024 * @index: index key
2025 * @item: expected item
1da177e4 2026 *
0ac398ef 2027 * Remove @item at @index from the radix tree rooted at @root.
1da177e4 2028 *
0ac398ef
MW
2029 * Return: the deleted entry, or %NULL if it was not present
2030 * or the entry at the given @index was not @item.
1da177e4 2031 */
53c59f26
JW
2032void *radix_tree_delete_item(struct radix_tree_root *root,
2033 unsigned long index, void *item)
1da177e4 2034{
0a835c4f 2035 struct radix_tree_node *node = NULL;
49923ccd 2036 void __rcu **slot = NULL;
139e5616 2037 void *entry;
1da177e4 2038
139e5616 2039 entry = __radix_tree_lookup(root, index, &node, &slot);
49923ccd
MW
2040 if (!slot)
2041 return NULL;
0a835c4f
MW
2042 if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
2043 get_slot_offset(node, slot))))
139e5616 2044 return NULL;
1da177e4 2045
139e5616
JW
2046 if (item && entry != item)
2047 return NULL;
2048
0ac398ef 2049 __radix_tree_delete(root, node, slot);
612d6c19 2050
139e5616 2051 return entry;
1da177e4 2052}
53c59f26
JW
2053EXPORT_SYMBOL(radix_tree_delete_item);
2054
2055/**
0ac398ef
MW
2056 * radix_tree_delete - delete an entry from a radix tree
2057 * @root: radix tree root
2058 * @index: index key
53c59f26 2059 *
0ac398ef 2060 * Remove the entry at @index from the radix tree rooted at @root.
53c59f26 2061 *
0ac398ef 2062 * Return: The deleted entry, or %NULL if it was not present.
53c59f26
JW
2063 */
2064void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
2065{
2066 return radix_tree_delete_item(root, index, NULL);
2067}
1da177e4
LT
2068EXPORT_SYMBOL(radix_tree_delete);
2069
d3798ae8
JW
2070void radix_tree_clear_tags(struct radix_tree_root *root,
2071 struct radix_tree_node *node,
d7b62727 2072 void __rcu **slot)
d604c324 2073{
d604c324
MW
2074 if (node) {
2075 unsigned int tag, offset = get_slot_offset(node, slot);
2076 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
2077 node_tag_clear(root, node, tag, offset);
2078 } else {
0a835c4f 2079 root_tag_clear_all(root);
d604c324 2080 }
d604c324
MW
2081}
2082
1da177e4
LT
2083/**
2084 * radix_tree_tagged - test whether any items in the tree are tagged
2085 * @root: radix tree root
2086 * @tag: tag to test
2087 */
35534c86 2088int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1da177e4 2089{
612d6c19 2090 return root_tag_get(root, tag);
1da177e4
LT
2091}
2092EXPORT_SYMBOL(radix_tree_tagged);
2093
0a835c4f
MW
2094/**
2095 * idr_preload - preload for idr_alloc()
2096 * @gfp_mask: allocation mask to use for preloading
2097 *
2098 * Preallocate memory to use for the next call to idr_alloc(). This function
2099 * returns with preemption disabled. It will be enabled by idr_preload_end().
2100 */
2101void idr_preload(gfp_t gfp_mask)
2102{
bc9ae224
ED
2103 if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
2104 preempt_disable();
0a835c4f
MW
2105}
2106EXPORT_SYMBOL(idr_preload);
2107
7ad3d4d8
MW
2108/**
2109 * ida_pre_get - reserve resources for ida allocation
2110 * @ida: ida handle
2111 * @gfp: memory allocation flags
2112 *
2113 * This function should be called before calling ida_get_new_above(). If it
2114 * is unable to allocate memory, it will return %0. On success, it returns %1.
2115 */
2116int ida_pre_get(struct ida *ida, gfp_t gfp)
2117{
7ad3d4d8
MW
2118 /*
2119 * The IDA API has no preload_end() equivalent. Instead,
2120 * ida_get_new() can return -EAGAIN, prompting the caller
2121 * to return to the ida_pre_get() step.
2122 */
bc9ae224
ED
2123 if (!__radix_tree_preload(gfp, IDA_PRELOAD_SIZE))
2124 preempt_enable();
7ad3d4d8
MW
2125
2126 if (!this_cpu_read(ida_bitmap)) {
2127 struct ida_bitmap *bitmap = kmalloc(sizeof(*bitmap), gfp);
2128 if (!bitmap)
2129 return 0;
4ecd9542
MW
2130 if (this_cpu_cmpxchg(ida_bitmap, NULL, bitmap))
2131 kfree(bitmap);
7ad3d4d8
MW
2132 }
2133
2134 return 1;
2135}
2136EXPORT_SYMBOL(ida_pre_get);
2137
388f79fd
CM
2138void __rcu **idr_get_free_cmn(struct radix_tree_root *root,
2139 struct radix_tree_iter *iter, gfp_t gfp,
2140 unsigned long max)
0a835c4f
MW
2141{
2142 struct radix_tree_node *node = NULL, *child;
d7b62727 2143 void __rcu **slot = (void __rcu **)&root->rnode;
0a835c4f 2144 unsigned long maxindex, start = iter->next_index;
0a835c4f
MW
2145 unsigned int shift, offset = 0;
2146
2147 grow:
2148 shift = radix_tree_load_root(root, &child, &maxindex);
2149 if (!radix_tree_tagged(root, IDR_FREE))
2150 start = max(start, maxindex + 1);
2151 if (start > max)
2152 return ERR_PTR(-ENOSPC);
2153
2154 if (start > maxindex) {
2155 int error = radix_tree_extend(root, gfp, start, shift);
2156 if (error < 0)
2157 return ERR_PTR(error);
2158 shift = error;
2159 child = rcu_dereference_raw(root->rnode);
2160 }
2161
2162 while (shift) {
2163 shift -= RADIX_TREE_MAP_SHIFT;
2164 if (child == NULL) {
2165 /* Have to add a child node. */
d58275bc
MW
2166 child = radix_tree_node_alloc(gfp, node, root, shift,
2167 offset, 0, 0);
0a835c4f
MW
2168 if (!child)
2169 return ERR_PTR(-ENOMEM);
2170 all_tag_set(child, IDR_FREE);
2171 rcu_assign_pointer(*slot, node_to_entry(child));
2172 if (node)
2173 node->count++;
2174 } else if (!radix_tree_is_internal_node(child))
2175 break;
2176
2177 node = entry_to_node(child);
2178 offset = radix_tree_descend(node, &child, start);
2179 if (!tag_get(node, IDR_FREE, offset)) {
2180 offset = radix_tree_find_next_bit(node, IDR_FREE,
2181 offset + 1);
2182 start = next_index(start, node, offset);
fafa8858 2183 if (start > max || start == 0)
0a835c4f
MW
2184 return ERR_PTR(-ENOSPC);
2185 while (offset == RADIX_TREE_MAP_SIZE) {
2186 offset = node->offset + 1;
2187 node = node->parent;
2188 if (!node)
2189 goto grow;
2190 shift = node->shift;
2191 }
2192 child = rcu_dereference_raw(node->slots[offset]);
2193 }
2194 slot = &node->slots[offset];
2195 }
2196
2197 iter->index = start;
2198 if (node)
2199 iter->next_index = 1 + min(max, (start | node_maxindex(node)));
2200 else
2201 iter->next_index = 1;
2202 iter->node = node;
2203 __set_iter_shift(iter, shift);
2204 set_iter_tags(iter, node, offset, IDR_FREE);
2205
2206 return slot;
2207}
2208
2209/**
2210 * idr_destroy - release all internal memory from an IDR
2211 * @idr: idr handle
2212 *
2213 * After this function is called, the IDR is empty, and may be reused or
2214 * the data structure containing it may be freed.
2215 *
2216 * A typical clean-up sequence for objects stored in an idr tree will use
2217 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
2218 * free the memory used to keep track of those objects.
2219 */
2220void idr_destroy(struct idr *idr)
2221{
2222 struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.rnode);
2223 if (radix_tree_is_internal_node(node))
2224 radix_tree_free_nodes(node);
2225 idr->idr_rt.rnode = NULL;
2226 root_tag_set(&idr->idr_rt, IDR_FREE);
2227}
2228EXPORT_SYMBOL(idr_destroy);
2229
1da177e4 2230static void
449dd698 2231radix_tree_node_ctor(void *arg)
1da177e4 2232{
449dd698
JW
2233 struct radix_tree_node *node = arg;
2234
2235 memset(node, 0, sizeof(*node));
2236 INIT_LIST_HEAD(&node->private_list);
1da177e4
LT
2237}
2238
c78c66d1
KS
2239static __init unsigned long __maxindex(unsigned int height)
2240{
2241 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
2242 int shift = RADIX_TREE_INDEX_BITS - width;
2243
2244 if (shift < 0)
2245 return ~0UL;
2246 if (shift >= BITS_PER_LONG)
2247 return 0UL;
2248 return ~0UL >> shift;
2249}
2250
2251static __init void radix_tree_init_maxnodes(void)
2252{
2253 unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
2254 unsigned int i, j;
2255
2256 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
2257 height_to_maxindex[i] = __maxindex(i);
2258 for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
2259 for (j = i; j > 0; j--)
2260 height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
2261 }
2262}
2263
d544abd5 2264static int radix_tree_cpu_dead(unsigned int cpu)
1da177e4 2265{
2fcd9005
MW
2266 struct radix_tree_preload *rtp;
2267 struct radix_tree_node *node;
2268
2269 /* Free per-cpu pool of preloaded nodes */
d544abd5
SAS
2270 rtp = &per_cpu(radix_tree_preloads, cpu);
2271 while (rtp->nr) {
2272 node = rtp->nodes;
1293d5c5 2273 rtp->nodes = node->parent;
d544abd5
SAS
2274 kmem_cache_free(radix_tree_node_cachep, node);
2275 rtp->nr--;
2fcd9005 2276 }
7ad3d4d8
MW
2277 kfree(per_cpu(ida_bitmap, cpu));
2278 per_cpu(ida_bitmap, cpu) = NULL;
d544abd5 2279 return 0;
1da177e4 2280}
1da177e4
LT
2281
2282void __init radix_tree_init(void)
2283{
d544abd5 2284 int ret;
7e784422
MH
2285
2286 BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1da177e4
LT
2287 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
2288 sizeof(struct radix_tree_node), 0,
488514d1
CL
2289 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
2290 radix_tree_node_ctor);
c78c66d1 2291 radix_tree_init_maxnodes();
d544abd5
SAS
2292 ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
2293 NULL, radix_tree_cpu_dead);
2294 WARN_ON(ret < 0);
1da177e4 2295}