]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - lib/swiotlb.c
idr: fix invalid ptr dereference on item delete
[mirror_ubuntu-bionic-kernel.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
20#include <linux/cache.h>
17e5ad6c 21#include <linux/dma-mapping.h>
1da177e4 22#include <linux/mm.h>
8bc3bcc9 23#include <linux/export.h>
1da177e4
LT
24#include <linux/spinlock.h>
25#include <linux/string.h>
0016fdee 26#include <linux/swiotlb.h>
fb05a379 27#include <linux/pfn.h>
1da177e4
LT
28#include <linux/types.h>
29#include <linux/ctype.h>
ef9b1893 30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/gfp.h>
84be456f 32#include <linux/scatterlist.h>
c7753208 33#include <linux/mem_encrypt.h>
1da177e4
LT
34
35#include <asm/io.h>
1da177e4
LT
36#include <asm/dma.h>
37
38#include <linux/init.h>
39#include <linux/bootmem.h>
a8522509 40#include <linux/iommu-helper.h>
1da177e4 41
ce5be5a1 42#define CREATE_TRACE_POINTS
2b2b614d
ZK
43#include <trace/events/swiotlb.h>
44
1da177e4
LT
45#define OFFSET(val,align) ((unsigned long) \
46 ( (val) & ( (align) - 1)))
47
0b9afede
AW
48#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
49
50/*
51 * Minimum IO TLB size to bother booting with. Systems with mainly
52 * 64bit capable cards will only lightly use the swiotlb. If we can't
53 * allocate a contiguous 1MB, we're probably in trouble anyway.
54 */
55#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
56
ae7871be 57enum swiotlb_force swiotlb_force;
1da177e4
LT
58
59/*
bfc5501f
KRW
60 * Used to do a quick range check in swiotlb_tbl_unmap_single and
61 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
62 * API.
63 */
ff7204a7 64static phys_addr_t io_tlb_start, io_tlb_end;
1da177e4
LT
65
66/*
b595076a 67 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
1da177e4
LT
68 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
69 */
70static unsigned long io_tlb_nslabs;
71
72/*
73 * When the IOMMU overflows we return a fallback buffer. This sets the size.
74 */
75static unsigned long io_tlb_overflow = 32*1024;
76
ee3f6ba8 77static phys_addr_t io_tlb_overflow_buffer;
1da177e4
LT
78
79/*
80 * This is a free list describing the number of free entries available from
81 * each index
82 */
83static unsigned int *io_tlb_list;
84static unsigned int io_tlb_index;
85
7453c549
KRW
86/*
87 * Max segment that we can provide which (if pages are contingous) will
88 * not be bounced (unless SWIOTLB_FORCE is set).
89 */
90unsigned int max_segment;
91
1da177e4
LT
92/*
93 * We need to save away the original address corresponding to a mapped entry
94 * for the sync operations.
95 */
8e0629c1 96#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
bc40ac66 97static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
98
99/*
100 * Protect the above data structures in the map and unmap calls
101 */
102static DEFINE_SPINLOCK(io_tlb_lock);
103
5740afdb
FT
104static int late_alloc;
105
1da177e4
LT
106static int __init
107setup_io_tlb_npages(char *str)
108{
109 if (isdigit(*str)) {
e8579e72 110 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
111 /* avoid tail segment of size < IO_TLB_SEGSIZE */
112 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
113 }
114 if (*str == ',')
115 ++str;
fff5d992 116 if (!strcmp(str, "force")) {
ae7871be 117 swiotlb_force = SWIOTLB_FORCE;
fff5d992
GU
118 } else if (!strcmp(str, "noforce")) {
119 swiotlb_force = SWIOTLB_NO_FORCE;
120 io_tlb_nslabs = 1;
121 }
b18485e7 122
c729de8f 123 return 0;
1da177e4 124}
c729de8f 125early_param("swiotlb", setup_io_tlb_npages);
1da177e4
LT
126/* make io_tlb_overflow tunable too? */
127
f21ffe9f 128unsigned long swiotlb_nr_tbl(void)
5f98ecdb
FT
129{
130 return io_tlb_nslabs;
131}
f21ffe9f 132EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
c729de8f 133
7453c549
KRW
134unsigned int swiotlb_max_segment(void)
135{
136 return max_segment;
137}
138EXPORT_SYMBOL_GPL(swiotlb_max_segment);
139
140void swiotlb_set_max_segment(unsigned int val)
141{
142 if (swiotlb_force == SWIOTLB_FORCE)
143 max_segment = 1;
144 else
145 max_segment = rounddown(val, PAGE_SIZE);
146}
147
c729de8f
YL
148/* default to 64MB */
149#define IO_TLB_DEFAULT_SIZE (64UL<<20)
150unsigned long swiotlb_size_or_default(void)
151{
152 unsigned long size;
153
154 size = io_tlb_nslabs << IO_TLB_SHIFT;
155
156 return size ? size : (IO_TLB_DEFAULT_SIZE);
157}
158
c7753208
TL
159void __weak swiotlb_set_mem_attributes(void *vaddr, unsigned long size) { }
160
161/* For swiotlb, clear memory encryption mask from dma addresses */
162static dma_addr_t swiotlb_phys_to_dma(struct device *hwdev,
163 phys_addr_t address)
164{
165 return __sme_clr(phys_to_dma(hwdev, address));
166}
167
02ca646e 168/* Note that this doesn't work with highmem page */
70a7d3cc
JF
169static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
170 volatile void *address)
e08e1f7a 171{
862d196b 172 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
173}
174
ac2cbab2
YL
175static bool no_iotlb_memory;
176
ad32e8cb 177void swiotlb_print_info(void)
2e5b2b86 178{
ad32e8cb 179 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
ff7204a7 180 unsigned char *vstart, *vend;
2e5b2b86 181
ac2cbab2
YL
182 if (no_iotlb_memory) {
183 pr_warn("software IO TLB: No low mem\n");
184 return;
185 }
186
ff7204a7 187 vstart = phys_to_virt(io_tlb_start);
c40dba06 188 vend = phys_to_virt(io_tlb_end);
2e5b2b86 189
3af684c7 190 printk(KERN_INFO "software IO TLB [mem %#010llx-%#010llx] (%luMB) mapped at [%p-%p]\n",
ff7204a7 191 (unsigned long long)io_tlb_start,
c40dba06 192 (unsigned long long)io_tlb_end,
ff7204a7 193 bytes >> 20, vstart, vend - 1);
2e5b2b86
IC
194}
195
c7753208
TL
196/*
197 * Early SWIOTLB allocation may be too early to allow an architecture to
198 * perform the desired operations. This function allows the architecture to
199 * call SWIOTLB when the operations are possible. It needs to be called
200 * before the SWIOTLB memory is used.
201 */
202void __init swiotlb_update_mem_attributes(void)
203{
204 void *vaddr;
205 unsigned long bytes;
206
207 if (no_iotlb_memory || late_alloc)
208 return;
209
210 vaddr = phys_to_virt(io_tlb_start);
211 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
212 swiotlb_set_mem_attributes(vaddr, bytes);
213 memset(vaddr, 0, bytes);
214
215 vaddr = phys_to_virt(io_tlb_overflow_buffer);
216 bytes = PAGE_ALIGN(io_tlb_overflow);
217 swiotlb_set_mem_attributes(vaddr, bytes);
218 memset(vaddr, 0, bytes);
219}
220
ac2cbab2 221int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 222{
ee3f6ba8 223 void *v_overflow_buffer;
563aaf06 224 unsigned long i, bytes;
1da177e4 225
abbceff7 226 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 227
abbceff7 228 io_tlb_nslabs = nslabs;
ff7204a7
AD
229 io_tlb_start = __pa(tlb);
230 io_tlb_end = io_tlb_start + bytes;
1da177e4 231
ee3f6ba8
AD
232 /*
233 * Get the overflow emergency buffer
234 */
ad6492b8 235 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
457ff1de
SS
236 PAGE_ALIGN(io_tlb_overflow),
237 PAGE_SIZE);
ee3f6ba8 238 if (!v_overflow_buffer)
ac2cbab2 239 return -ENOMEM;
ee3f6ba8
AD
240
241 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
242
1da177e4
LT
243 /*
244 * Allocate and initialize the free list array. This array is used
245 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
246 * between io_tlb_start and io_tlb_end.
247 */
457ff1de
SS
248 io_tlb_list = memblock_virt_alloc(
249 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
250 PAGE_SIZE);
457ff1de
SS
251 io_tlb_orig_addr = memblock_virt_alloc(
252 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
253 PAGE_SIZE);
8e0629c1
JB
254 for (i = 0; i < io_tlb_nslabs; i++) {
255 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
256 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
257 }
258 io_tlb_index = 0;
1da177e4 259
ad32e8cb
FT
260 if (verbose)
261 swiotlb_print_info();
ac2cbab2 262
7453c549 263 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
ac2cbab2 264 return 0;
1da177e4
LT
265}
266
abbceff7
FT
267/*
268 * Statically reserve bounce buffer space and initialize bounce buffer data
269 * structures for the software IO TLB used to implement the DMA API.
270 */
ac2cbab2
YL
271void __init
272swiotlb_init(int verbose)
abbceff7 273{
c729de8f 274 size_t default_size = IO_TLB_DEFAULT_SIZE;
ff7204a7 275 unsigned char *vstart;
abbceff7
FT
276 unsigned long bytes;
277
278 if (!io_tlb_nslabs) {
279 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
280 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
281 }
282
283 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
284
ac2cbab2 285 /* Get IO TLB memory from the low pages */
ad6492b8 286 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
ac2cbab2
YL
287 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
288 return;
abbceff7 289
ac2cbab2 290 if (io_tlb_start)
457ff1de
SS
291 memblock_free_early(io_tlb_start,
292 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
ac2cbab2
YL
293 pr_warn("Cannot allocate SWIOTLB buffer");
294 no_iotlb_memory = true;
1da177e4
LT
295}
296
0b9afede
AW
297/*
298 * Systems with larger DMA zones (those that don't support ISA) can
299 * initialize the swiotlb later using the slab allocator if needed.
300 * This should be just like above, but with some error catching.
301 */
302int
563aaf06 303swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 304{
74838b75 305 unsigned long bytes, req_nslabs = io_tlb_nslabs;
ff7204a7 306 unsigned char *vstart = NULL;
0b9afede 307 unsigned int order;
74838b75 308 int rc = 0;
0b9afede
AW
309
310 if (!io_tlb_nslabs) {
311 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
312 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
313 }
314
315 /*
316 * Get IO TLB memory from the low pages
317 */
563aaf06 318 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 319 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 320 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
321
322 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
ff7204a7
AD
323 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
324 order);
325 if (vstart)
0b9afede
AW
326 break;
327 order--;
328 }
329
ff7204a7 330 if (!vstart) {
74838b75
KRW
331 io_tlb_nslabs = req_nslabs;
332 return -ENOMEM;
333 }
563aaf06 334 if (order != get_order(bytes)) {
0b9afede
AW
335 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
336 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
337 io_tlb_nslabs = SLABS_PER_PAGE << order;
338 }
ff7204a7 339 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
74838b75 340 if (rc)
ff7204a7 341 free_pages((unsigned long)vstart, order);
7453c549 342
74838b75
KRW
343 return rc;
344}
345
346int
347swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
348{
349 unsigned long i, bytes;
ee3f6ba8 350 unsigned char *v_overflow_buffer;
74838b75
KRW
351
352 bytes = nslabs << IO_TLB_SHIFT;
353
354 io_tlb_nslabs = nslabs;
ff7204a7
AD
355 io_tlb_start = virt_to_phys(tlb);
356 io_tlb_end = io_tlb_start + bytes;
74838b75 357
c7753208 358 swiotlb_set_mem_attributes(tlb, bytes);
ff7204a7 359 memset(tlb, 0, bytes);
0b9afede 360
ee3f6ba8
AD
361 /*
362 * Get the overflow emergency buffer
363 */
364 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
365 get_order(io_tlb_overflow));
366 if (!v_overflow_buffer)
367 goto cleanup2;
368
c7753208
TL
369 swiotlb_set_mem_attributes(v_overflow_buffer, io_tlb_overflow);
370 memset(v_overflow_buffer, 0, io_tlb_overflow);
ee3f6ba8
AD
371 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
372
0b9afede
AW
373 /*
374 * Allocate and initialize the free list array. This array is used
375 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
376 * between io_tlb_start and io_tlb_end.
377 */
378 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
379 get_order(io_tlb_nslabs * sizeof(int)));
380 if (!io_tlb_list)
ee3f6ba8 381 goto cleanup3;
0b9afede 382
bc40ac66
BB
383 io_tlb_orig_addr = (phys_addr_t *)
384 __get_free_pages(GFP_KERNEL,
385 get_order(io_tlb_nslabs *
386 sizeof(phys_addr_t)));
0b9afede 387 if (!io_tlb_orig_addr)
ee3f6ba8 388 goto cleanup4;
0b9afede 389
8e0629c1
JB
390 for (i = 0; i < io_tlb_nslabs; i++) {
391 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
392 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
393 }
394 io_tlb_index = 0;
0b9afede 395
ad32e8cb 396 swiotlb_print_info();
0b9afede 397
5740afdb
FT
398 late_alloc = 1;
399
7453c549
KRW
400 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
401
0b9afede
AW
402 return 0;
403
404cleanup4:
25667d67
TL
405 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
406 sizeof(int)));
0b9afede 407 io_tlb_list = NULL;
ee3f6ba8
AD
408cleanup3:
409 free_pages((unsigned long)v_overflow_buffer,
410 get_order(io_tlb_overflow));
411 io_tlb_overflow_buffer = 0;
0b9afede 412cleanup2:
c40dba06 413 io_tlb_end = 0;
ff7204a7 414 io_tlb_start = 0;
74838b75 415 io_tlb_nslabs = 0;
7453c549 416 max_segment = 0;
0b9afede
AW
417 return -ENOMEM;
418}
419
5740afdb
FT
420void __init swiotlb_free(void)
421{
ee3f6ba8 422 if (!io_tlb_orig_addr)
5740afdb
FT
423 return;
424
425 if (late_alloc) {
ee3f6ba8 426 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
5740afdb
FT
427 get_order(io_tlb_overflow));
428 free_pages((unsigned long)io_tlb_orig_addr,
429 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
430 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
431 sizeof(int)));
ff7204a7 432 free_pages((unsigned long)phys_to_virt(io_tlb_start),
5740afdb
FT
433 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
434 } else {
457ff1de
SS
435 memblock_free_late(io_tlb_overflow_buffer,
436 PAGE_ALIGN(io_tlb_overflow));
437 memblock_free_late(__pa(io_tlb_orig_addr),
438 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
439 memblock_free_late(__pa(io_tlb_list),
440 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
441 memblock_free_late(io_tlb_start,
442 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
5740afdb 443 }
f21ffe9f 444 io_tlb_nslabs = 0;
7453c549 445 max_segment = 0;
5740afdb
FT
446}
447
9c5a3621 448int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 449{
ff7204a7 450 return paddr >= io_tlb_start && paddr < io_tlb_end;
640aebfe
FT
451}
452
fb05a379
BB
453/*
454 * Bounce: copy the swiotlb buffer back to the original dma location
455 */
af51a9f1
AD
456static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
457 size_t size, enum dma_data_direction dir)
fb05a379 458{
af51a9f1
AD
459 unsigned long pfn = PFN_DOWN(orig_addr);
460 unsigned char *vaddr = phys_to_virt(tlb_addr);
fb05a379
BB
461
462 if (PageHighMem(pfn_to_page(pfn))) {
463 /* The buffer does not have a mapping. Map it in and copy */
af51a9f1 464 unsigned int offset = orig_addr & ~PAGE_MASK;
fb05a379
BB
465 char *buffer;
466 unsigned int sz = 0;
467 unsigned long flags;
468
469 while (size) {
67131ad0 470 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
471
472 local_irq_save(flags);
c3eede8e 473 buffer = kmap_atomic(pfn_to_page(pfn));
fb05a379 474 if (dir == DMA_TO_DEVICE)
af51a9f1 475 memcpy(vaddr, buffer + offset, sz);
ef9b1893 476 else
af51a9f1 477 memcpy(buffer + offset, vaddr, sz);
c3eede8e 478 kunmap_atomic(buffer);
ef9b1893 479 local_irq_restore(flags);
fb05a379
BB
480
481 size -= sz;
482 pfn++;
af51a9f1 483 vaddr += sz;
fb05a379 484 offset = 0;
ef9b1893 485 }
af51a9f1
AD
486 } else if (dir == DMA_TO_DEVICE) {
487 memcpy(vaddr, phys_to_virt(orig_addr), size);
ef9b1893 488 } else {
af51a9f1 489 memcpy(phys_to_virt(orig_addr), vaddr, size);
ef9b1893 490 }
1b548f66
JF
491}
492
e05ed4d1
AD
493phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
494 dma_addr_t tbl_dma_addr,
495 phys_addr_t orig_addr, size_t size,
0443fa00
AD
496 enum dma_data_direction dir,
497 unsigned long attrs)
1da177e4
LT
498{
499 unsigned long flags;
e05ed4d1 500 phys_addr_t tlb_addr;
1da177e4
LT
501 unsigned int nslots, stride, index, wrap;
502 int i;
681cc5cd
FT
503 unsigned long mask;
504 unsigned long offset_slots;
505 unsigned long max_slots;
506
ac2cbab2
YL
507 if (no_iotlb_memory)
508 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
509
d7b417fa
TL
510 if (mem_encrypt_active())
511 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
512 sme_active() ? "SME" : "SEV");
648babb7 513
681cc5cd 514 mask = dma_get_seg_boundary(hwdev);
681cc5cd 515
eb605a57
FT
516 tbl_dma_addr &= mask;
517
518 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
519
520 /*
521 * Carefully handle integer overflow which can occur when mask == ~0UL.
522 */
b15a3891
JB
523 max_slots = mask + 1
524 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
525 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
526
527 /*
602d9858
NY
528 * For mappings greater than or equal to a page, we limit the stride
529 * (and hence alignment) to a page size.
1da177e4
LT
530 */
531 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
602d9858 532 if (size >= PAGE_SIZE)
1da177e4
LT
533 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
534 else
535 stride = 1;
536
34814545 537 BUG_ON(!nslots);
1da177e4
LT
538
539 /*
540 * Find suitable number of IO TLB entries size that will fit this
541 * request and allocate a buffer from that IO TLB pool.
542 */
543 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
544 index = ALIGN(io_tlb_index, stride);
545 if (index >= io_tlb_nslabs)
546 index = 0;
547 wrap = index;
548
549 do {
a8522509
FT
550 while (iommu_is_span_boundary(index, nslots, offset_slots,
551 max_slots)) {
b15a3891
JB
552 index += stride;
553 if (index >= io_tlb_nslabs)
554 index = 0;
a7133a15
AM
555 if (index == wrap)
556 goto not_found;
557 }
558
559 /*
560 * If we find a slot that indicates we have 'nslots' number of
561 * contiguous buffers, we allocate the buffers from that slot
562 * and mark the entries as '0' indicating unavailable.
563 */
564 if (io_tlb_list[index] >= nslots) {
565 int count = 0;
566
567 for (i = index; i < (int) (index + nslots); i++)
568 io_tlb_list[i] = 0;
569 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
570 io_tlb_list[i] = ++count;
e05ed4d1 571 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 572
a7133a15
AM
573 /*
574 * Update the indices to avoid searching in the next
575 * round.
576 */
577 io_tlb_index = ((index + nslots) < io_tlb_nslabs
578 ? (index + nslots) : 0);
579
580 goto found;
581 }
582 index += stride;
583 if (index >= io_tlb_nslabs)
584 index = 0;
585 } while (index != wrap);
586
587not_found:
588 spin_unlock_irqrestore(&io_tlb_lock, flags);
f2ab77c0 589 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
0cb637bf 590 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
e05ed4d1 591 return SWIOTLB_MAP_ERROR;
a7133a15 592found:
1da177e4
LT
593 spin_unlock_irqrestore(&io_tlb_lock, flags);
594
595 /*
596 * Save away the mapping from the original address to the DMA address.
597 * This is needed when we sync the memory. Then we sync the buffer if
598 * needed.
599 */
bc40ac66 600 for (i = 0; i < nslots; i++)
e05ed4d1 601 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
0443fa00
AD
602 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
603 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 604 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
1da177e4 605
e05ed4d1 606 return tlb_addr;
1da177e4 607}
d7ef1533 608EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
1da177e4 609
eb605a57
FT
610/*
611 * Allocates bounce buffer and returns its kernel virtual address.
612 */
613
023600f1
AC
614static phys_addr_t
615map_single(struct device *hwdev, phys_addr_t phys, size_t size,
0443fa00 616 enum dma_data_direction dir, unsigned long attrs)
eb605a57 617{
fff5d992
GU
618 dma_addr_t start_dma_addr;
619
620 if (swiotlb_force == SWIOTLB_NO_FORCE) {
621 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
622 &phys);
623 return SWIOTLB_MAP_ERROR;
624 }
eb605a57 625
c7753208 626 start_dma_addr = swiotlb_phys_to_dma(hwdev, io_tlb_start);
0443fa00
AD
627 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
628 dir, attrs);
eb605a57
FT
629}
630
1da177e4
LT
631/*
632 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
633 */
61ca08c3 634void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
0443fa00
AD
635 size_t size, enum dma_data_direction dir,
636 unsigned long attrs)
1da177e4
LT
637{
638 unsigned long flags;
639 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
61ca08c3
AD
640 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
641 phys_addr_t orig_addr = io_tlb_orig_addr[index];
1da177e4
LT
642
643 /*
644 * First, sync the memory before unmapping the entry
645 */
8e0629c1 646 if (orig_addr != INVALID_PHYS_ADDR &&
0443fa00 647 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
8e0629c1 648 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
af51a9f1 649 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
650
651 /*
652 * Return the buffer to the free list by setting the corresponding
af901ca1 653 * entries to indicate the number of contiguous entries available.
1da177e4
LT
654 * While returning the entries to the free list, we merge the entries
655 * with slots below and above the pool being returned.
656 */
657 spin_lock_irqsave(&io_tlb_lock, flags);
658 {
659 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
660 io_tlb_list[index + nslots] : 0);
661 /*
662 * Step 1: return the slots to the free list, merging the
663 * slots with superceeding slots
664 */
8e0629c1 665 for (i = index + nslots - 1; i >= index; i--) {
1da177e4 666 io_tlb_list[i] = ++count;
8e0629c1
JB
667 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
668 }
1da177e4
LT
669 /*
670 * Step 2: merge the returned slots with the preceding slots,
671 * if available (non zero)
672 */
673 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
674 io_tlb_list[i] = ++count;
675 }
676 spin_unlock_irqrestore(&io_tlb_lock, flags);
677}
d7ef1533 678EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
1da177e4 679
fbfda893
AD
680void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
681 size_t size, enum dma_data_direction dir,
682 enum dma_sync_target target)
1da177e4 683{
fbfda893
AD
684 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
685 phys_addr_t orig_addr = io_tlb_orig_addr[index];
bc40ac66 686
8e0629c1
JB
687 if (orig_addr == INVALID_PHYS_ADDR)
688 return;
fbfda893 689 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
df336d1c 690
de69e0f0
JL
691 switch (target) {
692 case SYNC_FOR_CPU:
693 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 694 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 695 size, DMA_FROM_DEVICE);
34814545
ES
696 else
697 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
698 break;
699 case SYNC_FOR_DEVICE:
700 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 701 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 702 size, DMA_TO_DEVICE);
34814545
ES
703 else
704 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
705 break;
706 default:
1da177e4 707 BUG();
de69e0f0 708 }
1da177e4 709}
d7ef1533 710EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
1da177e4
LT
711
712void *
713swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 714 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 715{
f2ab77c0 716 bool warn = !(flags & __GFP_NOWARN);
563aaf06 717 dma_addr_t dev_addr;
1da177e4
LT
718 void *ret;
719 int order = get_order(size);
284901a9 720 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
721
722 if (hwdev && hwdev->coherent_dma_mask)
723 dma_mask = hwdev->coherent_dma_mask;
1da177e4 724
25667d67 725 ret = (void *)__get_free_pages(flags, order);
e05ed4d1
AD
726 if (ret) {
727 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
728 if (dev_addr + size - 1 > dma_mask) {
729 /*
730 * The allocated memory isn't reachable by the device.
731 */
732 free_pages((unsigned long) ret, order);
733 ret = NULL;
734 }
1da177e4
LT
735 }
736 if (!ret) {
737 /*
bfc5501f
KRW
738 * We are either out of memory or the device can't DMA to
739 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 740 * will grab memory from the lowest available address range.
1da177e4 741 */
f2ab77c0
CK
742 phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE,
743 warn ? 0 : DMA_ATTR_NO_WARN);
e05ed4d1 744 if (paddr == SWIOTLB_MAP_ERROR)
94cc81f9 745 goto err_warn;
1da177e4 746
e05ed4d1 747 ret = phys_to_virt(paddr);
c7753208 748 dev_addr = swiotlb_phys_to_dma(hwdev, paddr);
1da177e4 749
61ca08c3
AD
750 /* Confirm address can be DMA'd by device */
751 if (dev_addr + size - 1 > dma_mask) {
752 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
753 (unsigned long long)dma_mask,
754 (unsigned long long)dev_addr);
a2b89b59 755
0443fa00
AD
756 /*
757 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
758 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
759 */
61ca08c3 760 swiotlb_tbl_unmap_single(hwdev, paddr,
0443fa00
AD
761 size, DMA_TO_DEVICE,
762 DMA_ATTR_SKIP_CPU_SYNC);
94cc81f9 763 goto err_warn;
61ca08c3 764 }
1da177e4 765 }
e05ed4d1 766
1da177e4 767 *dma_handle = dev_addr;
e05ed4d1
AD
768 memset(ret, 0, size);
769
1da177e4 770 return ret;
94cc81f9
JR
771
772err_warn:
f2ab77c0
CK
773 if (warn && printk_ratelimit()) {
774 pr_warn("swiotlb: coherent allocation failed for device %s size=%zu\n",
775 dev_name(hwdev), size);
776 dump_stack();
777 }
94cc81f9
JR
778
779 return NULL;
1da177e4 780}
874d6a95 781EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
782
783void
784swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 785 dma_addr_t dev_addr)
1da177e4 786{
862d196b 787 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 788
aa24886e 789 WARN_ON(irqs_disabled());
02ca646e
FT
790 if (!is_swiotlb_buffer(paddr))
791 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 792 else
0443fa00
AD
793 /*
794 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
795 * DMA_ATTR_SKIP_CPU_SYNC is optional.
796 */
797 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
798 DMA_ATTR_SKIP_CPU_SYNC);
1da177e4 799}
874d6a95 800EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
801
802static void
22d48269
KRW
803swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
804 int do_panic)
1da177e4 805{
fff5d992
GU
806 if (swiotlb_force == SWIOTLB_NO_FORCE)
807 return;
808
1da177e4
LT
809 /*
810 * Ran out of IOMMU space for this operation. This is very bad.
811 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 812 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
813 * When the mapping is small enough return a static buffer to limit
814 * the damage, or panic when the transfer is too big.
815 */
0d2e1898
GU
816 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
817 size);
1da177e4 818
c7084b35
CD
819 if (size <= io_tlb_overflow || !do_panic)
820 return;
821
822 if (dir == DMA_BIDIRECTIONAL)
823 panic("DMA: Random memory could be DMA accessed\n");
824 if (dir == DMA_FROM_DEVICE)
825 panic("DMA: Random memory could be DMA written\n");
826 if (dir == DMA_TO_DEVICE)
827 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
828}
829
830/*
831 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 832 * physical address to use is returned.
1da177e4
LT
833 *
834 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 835 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 836 */
f98eee8e
FT
837dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
838 unsigned long offset, size_t size,
839 enum dma_data_direction dir,
00085f1e 840 unsigned long attrs)
1da177e4 841{
e05ed4d1 842 phys_addr_t map, phys = page_to_phys(page) + offset;
862d196b 843 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4 844
34814545 845 BUG_ON(dir == DMA_NONE);
1da177e4 846 /*
ceb5ac32 847 * If the address happens to be in the device's DMA window,
1da177e4
LT
848 * we can safely return the device addr and not worry about bounce
849 * buffering it.
850 */
ae7871be 851 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
1da177e4
LT
852 return dev_addr;
853
2b2b614d
ZK
854 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
855
e05ed4d1 856 /* Oh well, have to allocate and map a bounce buffer. */
0443fa00 857 map = map_single(dev, phys, size, dir, attrs);
e05ed4d1 858 if (map == SWIOTLB_MAP_ERROR) {
f98eee8e 859 swiotlb_full(dev, size, dir, 1);
c7753208 860 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4
LT
861 }
862
c7753208 863 dev_addr = swiotlb_phys_to_dma(dev, map);
1da177e4 864
e05ed4d1 865 /* Ensure that the address returned is DMA'ble */
0443fa00
AD
866 if (dma_capable(dev, dev_addr, size))
867 return dev_addr;
868
d29fa0cb
AD
869 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
870 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
1da177e4 871
c7753208 872 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4 873}
f98eee8e 874EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 875
1da177e4
LT
876/*
877 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 878 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
879 * other usages are undefined.
880 *
881 * After this call, reads by the cpu to the buffer are guaranteed to see
882 * whatever the device wrote there.
883 */
7fcebbd2 884static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
0443fa00
AD
885 size_t size, enum dma_data_direction dir,
886 unsigned long attrs)
1da177e4 887{
862d196b 888 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 889
34814545 890 BUG_ON(dir == DMA_NONE);
7fcebbd2 891
02ca646e 892 if (is_swiotlb_buffer(paddr)) {
0443fa00 893 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
7fcebbd2
BB
894 return;
895 }
896
897 if (dir != DMA_FROM_DEVICE)
898 return;
899
02ca646e
FT
900 /*
901 * phys_to_virt doesn't work with hihgmem page but we could
902 * call dma_mark_clean() with hihgmem page here. However, we
903 * are fine since dma_mark_clean() is null on POWERPC. We can
904 * make dma_mark_clean() take a physical address if necessary.
905 */
906 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
907}
908
909void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
910 size_t size, enum dma_data_direction dir,
00085f1e 911 unsigned long attrs)
7fcebbd2 912{
0443fa00 913 unmap_single(hwdev, dev_addr, size, dir, attrs);
1da177e4 914}
f98eee8e 915EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 916
1da177e4
LT
917/*
918 * Make physical memory consistent for a single streaming mode DMA translation
919 * after a transfer.
920 *
ceb5ac32 921 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
922 * using the cpu, yet do not wish to teardown the dma mapping, you must
923 * call this function before doing so. At the next point you give the dma
1da177e4
LT
924 * address back to the card, you must first perform a
925 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
926 */
be6b0267 927static void
8270f3f1 928swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
d7ef1533
KRW
929 size_t size, enum dma_data_direction dir,
930 enum dma_sync_target target)
1da177e4 931{
862d196b 932 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 933
34814545 934 BUG_ON(dir == DMA_NONE);
380d6878 935
02ca646e 936 if (is_swiotlb_buffer(paddr)) {
fbfda893 937 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
380d6878
BB
938 return;
939 }
940
941 if (dir != DMA_FROM_DEVICE)
942 return;
943
02ca646e 944 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
945}
946
8270f3f1
JL
947void
948swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 949 size_t size, enum dma_data_direction dir)
8270f3f1 950{
de69e0f0 951 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 952}
874d6a95 953EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 954
1da177e4
LT
955void
956swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 957 size_t size, enum dma_data_direction dir)
1da177e4 958{
de69e0f0 959 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 960}
874d6a95 961EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
962
963/*
964 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 965 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
966 * interface. Here the scatter gather list elements are each tagged with the
967 * appropriate dma address and length. They are obtained via
968 * sg_dma_{address,length}(SG).
969 *
970 * NOTE: An implementation may be able to use a smaller number of
971 * DMA address/length pairs than there are SG table elements.
972 * (for example via virtual mapping capabilities)
973 * The routine returns the number of addr/length pairs actually
974 * used, at most nents.
975 *
ceb5ac32 976 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
977 * same here.
978 */
979int
309df0c5 980swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
00085f1e 981 enum dma_data_direction dir, unsigned long attrs)
1da177e4 982{
dbfd49fe 983 struct scatterlist *sg;
1da177e4
LT
984 int i;
985
34814545 986 BUG_ON(dir == DMA_NONE);
1da177e4 987
dbfd49fe 988 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 989 phys_addr_t paddr = sg_phys(sg);
862d196b 990 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 991
ae7871be 992 if (swiotlb_force == SWIOTLB_FORCE ||
b9394647 993 !dma_capable(hwdev, dev_addr, sg->length)) {
e05ed4d1 994 phys_addr_t map = map_single(hwdev, sg_phys(sg),
0443fa00 995 sg->length, dir, attrs);
e05ed4d1 996 if (map == SWIOTLB_MAP_ERROR) {
1da177e4
LT
997 /* Don't panic here, we expect map_sg users
998 to do proper error handling. */
999 swiotlb_full(hwdev, sg->length, dir, 0);
d29fa0cb 1000 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
309df0c5
AK
1001 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
1002 attrs);
4d86ec7a 1003 sg_dma_len(sgl) = 0;
1da177e4
LT
1004 return 0;
1005 }
c7753208 1006 sg->dma_address = swiotlb_phys_to_dma(hwdev, map);
1da177e4
LT
1007 } else
1008 sg->dma_address = dev_addr;
4d86ec7a 1009 sg_dma_len(sg) = sg->length;
1da177e4
LT
1010 }
1011 return nelems;
1012}
309df0c5
AK
1013EXPORT_SYMBOL(swiotlb_map_sg_attrs);
1014
1da177e4
LT
1015/*
1016 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 1017 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
1018 */
1019void
309df0c5 1020swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
00085f1e
KK
1021 int nelems, enum dma_data_direction dir,
1022 unsigned long attrs)
1da177e4 1023{
dbfd49fe 1024 struct scatterlist *sg;
1da177e4
LT
1025 int i;
1026
34814545 1027 BUG_ON(dir == DMA_NONE);
1da177e4 1028
7fcebbd2 1029 for_each_sg(sgl, sg, nelems, i)
0443fa00
AD
1030 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
1031 attrs);
1da177e4 1032}
309df0c5
AK
1033EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
1034
1da177e4
LT
1035/*
1036 * Make physical memory consistent for a set of streaming mode DMA translations
1037 * after a transfer.
1038 *
1039 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1040 * and usage.
1041 */
be6b0267 1042static void
dbfd49fe 1043swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
d7ef1533
KRW
1044 int nelems, enum dma_data_direction dir,
1045 enum dma_sync_target target)
1da177e4 1046{
dbfd49fe 1047 struct scatterlist *sg;
1da177e4
LT
1048 int i;
1049
380d6878
BB
1050 for_each_sg(sgl, sg, nelems, i)
1051 swiotlb_sync_single(hwdev, sg->dma_address,
4d86ec7a 1052 sg_dma_len(sg), dir, target);
1da177e4
LT
1053}
1054
8270f3f1
JL
1055void
1056swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 1057 int nelems, enum dma_data_direction dir)
8270f3f1 1058{
de69e0f0 1059 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 1060}
874d6a95 1061EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 1062
1da177e4
LT
1063void
1064swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 1065 int nelems, enum dma_data_direction dir)
1da177e4 1066{
de69e0f0 1067 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 1068}
874d6a95 1069EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
1070
1071int
8d8bb39b 1072swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 1073{
c7753208 1074 return (dma_addr == swiotlb_phys_to_dma(hwdev, io_tlb_overflow_buffer));
1da177e4 1075}
874d6a95 1076EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
1077
1078/*
17e5ad6c 1079 * Return whether the given device DMA address mask can be supported
1da177e4 1080 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 1081 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
1082 * this function.
1083 */
1084int
563aaf06 1085swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 1086{
c7753208 1087 return swiotlb_phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1da177e4 1088}
1da177e4 1089EXPORT_SYMBOL(swiotlb_dma_supported);