]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - lib/swiotlb.c
mm/uaccess: Use 'unsigned long' to placate UBSAN warnings on older GCC versions
[mirror_ubuntu-bionic-kernel.git] / lib / swiotlb.c
CommitLineData
1da177e4
LT
1/*
2 * Dynamic DMA mapping support.
3 *
563aaf06 4 * This implementation is a fallback for platforms that do not support
1da177e4
LT
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
569c8bf5
JL
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
fb05a379 17 * 08/12/11 beckyb Add highmem support
1da177e4
LT
18 */
19
e2dd7434
KC
20#define pr_fmt(fmt) "software IO TLB: " fmt
21
1da177e4 22#include <linux/cache.h>
17e5ad6c 23#include <linux/dma-mapping.h>
1da177e4 24#include <linux/mm.h>
8bc3bcc9 25#include <linux/export.h>
1da177e4
LT
26#include <linux/spinlock.h>
27#include <linux/string.h>
0016fdee 28#include <linux/swiotlb.h>
fb05a379 29#include <linux/pfn.h>
1da177e4
LT
30#include <linux/types.h>
31#include <linux/ctype.h>
ef9b1893 32#include <linux/highmem.h>
5a0e3ad6 33#include <linux/gfp.h>
84be456f 34#include <linux/scatterlist.h>
c7753208 35#include <linux/mem_encrypt.h>
1da177e4
LT
36
37#include <asm/io.h>
1da177e4
LT
38#include <asm/dma.h>
39
40#include <linux/init.h>
41#include <linux/bootmem.h>
a8522509 42#include <linux/iommu-helper.h>
1da177e4 43
ce5be5a1 44#define CREATE_TRACE_POINTS
2b2b614d
ZK
45#include <trace/events/swiotlb.h>
46
1da177e4
LT
47#define OFFSET(val,align) ((unsigned long) \
48 ( (val) & ( (align) - 1)))
49
0b9afede
AW
50#define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
51
52/*
53 * Minimum IO TLB size to bother booting with. Systems with mainly
54 * 64bit capable cards will only lightly use the swiotlb. If we can't
55 * allocate a contiguous 1MB, we're probably in trouble anyway.
56 */
57#define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
58
ae7871be 59enum swiotlb_force swiotlb_force;
1da177e4
LT
60
61/*
bfc5501f
KRW
62 * Used to do a quick range check in swiotlb_tbl_unmap_single and
63 * swiotlb_tbl_sync_single_*, to see if the memory was in fact allocated by this
1da177e4
LT
64 * API.
65 */
ff7204a7 66static phys_addr_t io_tlb_start, io_tlb_end;
1da177e4
LT
67
68/*
b595076a 69 * The number of IO TLB blocks (in groups of 64) between io_tlb_start and
1da177e4
LT
70 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
71 */
72static unsigned long io_tlb_nslabs;
73
74/*
75 * When the IOMMU overflows we return a fallback buffer. This sets the size.
76 */
77static unsigned long io_tlb_overflow = 32*1024;
78
ee3f6ba8 79static phys_addr_t io_tlb_overflow_buffer;
1da177e4
LT
80
81/*
82 * This is a free list describing the number of free entries available from
83 * each index
84 */
85static unsigned int *io_tlb_list;
86static unsigned int io_tlb_index;
87
7453c549
KRW
88/*
89 * Max segment that we can provide which (if pages are contingous) will
90 * not be bounced (unless SWIOTLB_FORCE is set).
91 */
92unsigned int max_segment;
93
1da177e4
LT
94/*
95 * We need to save away the original address corresponding to a mapped entry
96 * for the sync operations.
97 */
8e0629c1 98#define INVALID_PHYS_ADDR (~(phys_addr_t)0)
bc40ac66 99static phys_addr_t *io_tlb_orig_addr;
1da177e4
LT
100
101/*
102 * Protect the above data structures in the map and unmap calls
103 */
104static DEFINE_SPINLOCK(io_tlb_lock);
105
5740afdb
FT
106static int late_alloc;
107
1da177e4
LT
108static int __init
109setup_io_tlb_npages(char *str)
110{
111 if (isdigit(*str)) {
e8579e72 112 io_tlb_nslabs = simple_strtoul(str, &str, 0);
1da177e4
LT
113 /* avoid tail segment of size < IO_TLB_SEGSIZE */
114 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
115 }
116 if (*str == ',')
117 ++str;
fff5d992 118 if (!strcmp(str, "force")) {
ae7871be 119 swiotlb_force = SWIOTLB_FORCE;
fff5d992
GU
120 } else if (!strcmp(str, "noforce")) {
121 swiotlb_force = SWIOTLB_NO_FORCE;
122 io_tlb_nslabs = 1;
123 }
b18485e7 124
c729de8f 125 return 0;
1da177e4 126}
c729de8f 127early_param("swiotlb", setup_io_tlb_npages);
1da177e4
LT
128/* make io_tlb_overflow tunable too? */
129
f21ffe9f 130unsigned long swiotlb_nr_tbl(void)
5f98ecdb
FT
131{
132 return io_tlb_nslabs;
133}
f21ffe9f 134EXPORT_SYMBOL_GPL(swiotlb_nr_tbl);
c729de8f 135
7453c549
KRW
136unsigned int swiotlb_max_segment(void)
137{
138 return max_segment;
139}
140EXPORT_SYMBOL_GPL(swiotlb_max_segment);
141
142void swiotlb_set_max_segment(unsigned int val)
143{
144 if (swiotlb_force == SWIOTLB_FORCE)
145 max_segment = 1;
146 else
147 max_segment = rounddown(val, PAGE_SIZE);
148}
149
c729de8f
YL
150/* default to 64MB */
151#define IO_TLB_DEFAULT_SIZE (64UL<<20)
152unsigned long swiotlb_size_or_default(void)
153{
154 unsigned long size;
155
156 size = io_tlb_nslabs << IO_TLB_SHIFT;
157
158 return size ? size : (IO_TLB_DEFAULT_SIZE);
159}
160
c7753208
TL
161void __weak swiotlb_set_mem_attributes(void *vaddr, unsigned long size) { }
162
163/* For swiotlb, clear memory encryption mask from dma addresses */
164static dma_addr_t swiotlb_phys_to_dma(struct device *hwdev,
165 phys_addr_t address)
166{
167 return __sme_clr(phys_to_dma(hwdev, address));
168}
169
02ca646e 170/* Note that this doesn't work with highmem page */
70a7d3cc
JF
171static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
172 volatile void *address)
e08e1f7a 173{
862d196b 174 return phys_to_dma(hwdev, virt_to_phys(address));
e08e1f7a
IC
175}
176
ac2cbab2
YL
177static bool no_iotlb_memory;
178
ad32e8cb 179void swiotlb_print_info(void)
2e5b2b86 180{
ad32e8cb 181 unsigned long bytes = io_tlb_nslabs << IO_TLB_SHIFT;
2e5b2b86 182
ac2cbab2 183 if (no_iotlb_memory) {
e2dd7434 184 pr_warn("No low mem\n");
ac2cbab2
YL
185 return;
186 }
187
e2dd7434 188 pr_info("mapped [mem %#010llx-%#010llx] (%luMB)\n",
ff7204a7 189 (unsigned long long)io_tlb_start,
c40dba06 190 (unsigned long long)io_tlb_end,
e2dd7434 191 bytes >> 20);
2e5b2b86
IC
192}
193
c7753208
TL
194/*
195 * Early SWIOTLB allocation may be too early to allow an architecture to
196 * perform the desired operations. This function allows the architecture to
197 * call SWIOTLB when the operations are possible. It needs to be called
198 * before the SWIOTLB memory is used.
199 */
200void __init swiotlb_update_mem_attributes(void)
201{
202 void *vaddr;
203 unsigned long bytes;
204
205 if (no_iotlb_memory || late_alloc)
206 return;
207
208 vaddr = phys_to_virt(io_tlb_start);
209 bytes = PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT);
210 swiotlb_set_mem_attributes(vaddr, bytes);
211 memset(vaddr, 0, bytes);
212
213 vaddr = phys_to_virt(io_tlb_overflow_buffer);
214 bytes = PAGE_ALIGN(io_tlb_overflow);
215 swiotlb_set_mem_attributes(vaddr, bytes);
216 memset(vaddr, 0, bytes);
217}
218
ac2cbab2 219int __init swiotlb_init_with_tbl(char *tlb, unsigned long nslabs, int verbose)
1da177e4 220{
ee3f6ba8 221 void *v_overflow_buffer;
563aaf06 222 unsigned long i, bytes;
1da177e4 223
abbceff7 224 bytes = nslabs << IO_TLB_SHIFT;
1da177e4 225
abbceff7 226 io_tlb_nslabs = nslabs;
ff7204a7
AD
227 io_tlb_start = __pa(tlb);
228 io_tlb_end = io_tlb_start + bytes;
1da177e4 229
ee3f6ba8
AD
230 /*
231 * Get the overflow emergency buffer
232 */
ad6492b8 233 v_overflow_buffer = memblock_virt_alloc_low_nopanic(
457ff1de
SS
234 PAGE_ALIGN(io_tlb_overflow),
235 PAGE_SIZE);
ee3f6ba8 236 if (!v_overflow_buffer)
ac2cbab2 237 return -ENOMEM;
ee3f6ba8
AD
238
239 io_tlb_overflow_buffer = __pa(v_overflow_buffer);
240
1da177e4
LT
241 /*
242 * Allocate and initialize the free list array. This array is used
243 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
244 * between io_tlb_start and io_tlb_end.
245 */
457ff1de
SS
246 io_tlb_list = memblock_virt_alloc(
247 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)),
248 PAGE_SIZE);
457ff1de
SS
249 io_tlb_orig_addr = memblock_virt_alloc(
250 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)),
251 PAGE_SIZE);
8e0629c1
JB
252 for (i = 0; i < io_tlb_nslabs; i++) {
253 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
254 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
255 }
256 io_tlb_index = 0;
1da177e4 257
ad32e8cb
FT
258 if (verbose)
259 swiotlb_print_info();
ac2cbab2 260
7453c549 261 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
ac2cbab2 262 return 0;
1da177e4
LT
263}
264
abbceff7
FT
265/*
266 * Statically reserve bounce buffer space and initialize bounce buffer data
267 * structures for the software IO TLB used to implement the DMA API.
268 */
ac2cbab2
YL
269void __init
270swiotlb_init(int verbose)
abbceff7 271{
c729de8f 272 size_t default_size = IO_TLB_DEFAULT_SIZE;
ff7204a7 273 unsigned char *vstart;
abbceff7
FT
274 unsigned long bytes;
275
276 if (!io_tlb_nslabs) {
277 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
278 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
279 }
280
281 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
282
ac2cbab2 283 /* Get IO TLB memory from the low pages */
ad6492b8 284 vstart = memblock_virt_alloc_low_nopanic(PAGE_ALIGN(bytes), PAGE_SIZE);
ac2cbab2
YL
285 if (vstart && !swiotlb_init_with_tbl(vstart, io_tlb_nslabs, verbose))
286 return;
abbceff7 287
ac2cbab2 288 if (io_tlb_start)
457ff1de
SS
289 memblock_free_early(io_tlb_start,
290 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
e2dd7434 291 pr_warn("Cannot allocate buffer");
ac2cbab2 292 no_iotlb_memory = true;
1da177e4
LT
293}
294
0b9afede
AW
295/*
296 * Systems with larger DMA zones (those that don't support ISA) can
297 * initialize the swiotlb later using the slab allocator if needed.
298 * This should be just like above, but with some error catching.
299 */
300int
563aaf06 301swiotlb_late_init_with_default_size(size_t default_size)
0b9afede 302{
74838b75 303 unsigned long bytes, req_nslabs = io_tlb_nslabs;
ff7204a7 304 unsigned char *vstart = NULL;
0b9afede 305 unsigned int order;
74838b75 306 int rc = 0;
0b9afede
AW
307
308 if (!io_tlb_nslabs) {
309 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
310 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
311 }
312
313 /*
314 * Get IO TLB memory from the low pages
315 */
563aaf06 316 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
0b9afede 317 io_tlb_nslabs = SLABS_PER_PAGE << order;
563aaf06 318 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
0b9afede
AW
319
320 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
ff7204a7
AD
321 vstart = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
322 order);
323 if (vstart)
0b9afede
AW
324 break;
325 order--;
326 }
327
ff7204a7 328 if (!vstart) {
74838b75
KRW
329 io_tlb_nslabs = req_nslabs;
330 return -ENOMEM;
331 }
563aaf06 332 if (order != get_order(bytes)) {
e2dd7434
KC
333 pr_warn("only able to allocate %ld MB\n",
334 (PAGE_SIZE << order) >> 20);
0b9afede
AW
335 io_tlb_nslabs = SLABS_PER_PAGE << order;
336 }
ff7204a7 337 rc = swiotlb_late_init_with_tbl(vstart, io_tlb_nslabs);
74838b75 338 if (rc)
ff7204a7 339 free_pages((unsigned long)vstart, order);
7453c549 340
74838b75
KRW
341 return rc;
342}
343
344int
345swiotlb_late_init_with_tbl(char *tlb, unsigned long nslabs)
346{
347 unsigned long i, bytes;
ee3f6ba8 348 unsigned char *v_overflow_buffer;
74838b75
KRW
349
350 bytes = nslabs << IO_TLB_SHIFT;
351
352 io_tlb_nslabs = nslabs;
ff7204a7
AD
353 io_tlb_start = virt_to_phys(tlb);
354 io_tlb_end = io_tlb_start + bytes;
74838b75 355
c7753208 356 swiotlb_set_mem_attributes(tlb, bytes);
ff7204a7 357 memset(tlb, 0, bytes);
0b9afede 358
ee3f6ba8
AD
359 /*
360 * Get the overflow emergency buffer
361 */
362 v_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
363 get_order(io_tlb_overflow));
364 if (!v_overflow_buffer)
365 goto cleanup2;
366
c7753208
TL
367 swiotlb_set_mem_attributes(v_overflow_buffer, io_tlb_overflow);
368 memset(v_overflow_buffer, 0, io_tlb_overflow);
ee3f6ba8
AD
369 io_tlb_overflow_buffer = virt_to_phys(v_overflow_buffer);
370
0b9afede
AW
371 /*
372 * Allocate and initialize the free list array. This array is used
373 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
374 * between io_tlb_start and io_tlb_end.
375 */
376 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
377 get_order(io_tlb_nslabs * sizeof(int)));
378 if (!io_tlb_list)
ee3f6ba8 379 goto cleanup3;
0b9afede 380
bc40ac66
BB
381 io_tlb_orig_addr = (phys_addr_t *)
382 __get_free_pages(GFP_KERNEL,
383 get_order(io_tlb_nslabs *
384 sizeof(phys_addr_t)));
0b9afede 385 if (!io_tlb_orig_addr)
ee3f6ba8 386 goto cleanup4;
0b9afede 387
8e0629c1
JB
388 for (i = 0; i < io_tlb_nslabs; i++) {
389 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
390 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
391 }
392 io_tlb_index = 0;
0b9afede 393
ad32e8cb 394 swiotlb_print_info();
0b9afede 395
5740afdb
FT
396 late_alloc = 1;
397
7453c549
KRW
398 swiotlb_set_max_segment(io_tlb_nslabs << IO_TLB_SHIFT);
399
0b9afede
AW
400 return 0;
401
402cleanup4:
25667d67
TL
403 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
404 sizeof(int)));
0b9afede 405 io_tlb_list = NULL;
ee3f6ba8
AD
406cleanup3:
407 free_pages((unsigned long)v_overflow_buffer,
408 get_order(io_tlb_overflow));
409 io_tlb_overflow_buffer = 0;
0b9afede 410cleanup2:
c40dba06 411 io_tlb_end = 0;
ff7204a7 412 io_tlb_start = 0;
74838b75 413 io_tlb_nslabs = 0;
7453c549 414 max_segment = 0;
0b9afede
AW
415 return -ENOMEM;
416}
417
5740afdb
FT
418void __init swiotlb_free(void)
419{
ee3f6ba8 420 if (!io_tlb_orig_addr)
5740afdb
FT
421 return;
422
423 if (late_alloc) {
ee3f6ba8 424 free_pages((unsigned long)phys_to_virt(io_tlb_overflow_buffer),
5740afdb
FT
425 get_order(io_tlb_overflow));
426 free_pages((unsigned long)io_tlb_orig_addr,
427 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
428 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
429 sizeof(int)));
ff7204a7 430 free_pages((unsigned long)phys_to_virt(io_tlb_start),
5740afdb
FT
431 get_order(io_tlb_nslabs << IO_TLB_SHIFT));
432 } else {
457ff1de
SS
433 memblock_free_late(io_tlb_overflow_buffer,
434 PAGE_ALIGN(io_tlb_overflow));
435 memblock_free_late(__pa(io_tlb_orig_addr),
436 PAGE_ALIGN(io_tlb_nslabs * sizeof(phys_addr_t)));
437 memblock_free_late(__pa(io_tlb_list),
438 PAGE_ALIGN(io_tlb_nslabs * sizeof(int)));
439 memblock_free_late(io_tlb_start,
440 PAGE_ALIGN(io_tlb_nslabs << IO_TLB_SHIFT));
5740afdb 441 }
f21ffe9f 442 io_tlb_nslabs = 0;
7453c549 443 max_segment = 0;
5740afdb
FT
444}
445
9c5a3621 446int is_swiotlb_buffer(phys_addr_t paddr)
640aebfe 447{
ff7204a7 448 return paddr >= io_tlb_start && paddr < io_tlb_end;
640aebfe
FT
449}
450
fb05a379
BB
451/*
452 * Bounce: copy the swiotlb buffer back to the original dma location
453 */
af51a9f1
AD
454static void swiotlb_bounce(phys_addr_t orig_addr, phys_addr_t tlb_addr,
455 size_t size, enum dma_data_direction dir)
fb05a379 456{
af51a9f1
AD
457 unsigned long pfn = PFN_DOWN(orig_addr);
458 unsigned char *vaddr = phys_to_virt(tlb_addr);
fb05a379
BB
459
460 if (PageHighMem(pfn_to_page(pfn))) {
461 /* The buffer does not have a mapping. Map it in and copy */
af51a9f1 462 unsigned int offset = orig_addr & ~PAGE_MASK;
fb05a379
BB
463 char *buffer;
464 unsigned int sz = 0;
465 unsigned long flags;
466
467 while (size) {
67131ad0 468 sz = min_t(size_t, PAGE_SIZE - offset, size);
fb05a379
BB
469
470 local_irq_save(flags);
c3eede8e 471 buffer = kmap_atomic(pfn_to_page(pfn));
fb05a379 472 if (dir == DMA_TO_DEVICE)
af51a9f1 473 memcpy(vaddr, buffer + offset, sz);
ef9b1893 474 else
af51a9f1 475 memcpy(buffer + offset, vaddr, sz);
c3eede8e 476 kunmap_atomic(buffer);
ef9b1893 477 local_irq_restore(flags);
fb05a379
BB
478
479 size -= sz;
480 pfn++;
af51a9f1 481 vaddr += sz;
fb05a379 482 offset = 0;
ef9b1893 483 }
af51a9f1
AD
484 } else if (dir == DMA_TO_DEVICE) {
485 memcpy(vaddr, phys_to_virt(orig_addr), size);
ef9b1893 486 } else {
af51a9f1 487 memcpy(phys_to_virt(orig_addr), vaddr, size);
ef9b1893 488 }
1b548f66
JF
489}
490
e05ed4d1
AD
491phys_addr_t swiotlb_tbl_map_single(struct device *hwdev,
492 dma_addr_t tbl_dma_addr,
493 phys_addr_t orig_addr, size_t size,
0443fa00
AD
494 enum dma_data_direction dir,
495 unsigned long attrs)
1da177e4
LT
496{
497 unsigned long flags;
e05ed4d1 498 phys_addr_t tlb_addr;
1da177e4
LT
499 unsigned int nslots, stride, index, wrap;
500 int i;
681cc5cd
FT
501 unsigned long mask;
502 unsigned long offset_slots;
503 unsigned long max_slots;
504
ac2cbab2
YL
505 if (no_iotlb_memory)
506 panic("Can not allocate SWIOTLB buffer earlier and can't now provide you with the DMA bounce buffer");
507
d7b417fa
TL
508 if (mem_encrypt_active())
509 pr_warn_once("%s is active and system is using DMA bounce buffers\n",
510 sme_active() ? "SME" : "SEV");
648babb7 511
681cc5cd 512 mask = dma_get_seg_boundary(hwdev);
681cc5cd 513
eb605a57
FT
514 tbl_dma_addr &= mask;
515
516 offset_slots = ALIGN(tbl_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
a5ddde4a
IC
517
518 /*
519 * Carefully handle integer overflow which can occur when mask == ~0UL.
520 */
b15a3891
JB
521 max_slots = mask + 1
522 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
523 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
1da177e4
LT
524
525 /*
602d9858
NY
526 * For mappings greater than or equal to a page, we limit the stride
527 * (and hence alignment) to a page size.
1da177e4
LT
528 */
529 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
602d9858 530 if (size >= PAGE_SIZE)
1da177e4
LT
531 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
532 else
533 stride = 1;
534
34814545 535 BUG_ON(!nslots);
1da177e4
LT
536
537 /*
538 * Find suitable number of IO TLB entries size that will fit this
539 * request and allocate a buffer from that IO TLB pool.
540 */
541 spin_lock_irqsave(&io_tlb_lock, flags);
a7133a15
AM
542 index = ALIGN(io_tlb_index, stride);
543 if (index >= io_tlb_nslabs)
544 index = 0;
545 wrap = index;
546
547 do {
a8522509
FT
548 while (iommu_is_span_boundary(index, nslots, offset_slots,
549 max_slots)) {
b15a3891
JB
550 index += stride;
551 if (index >= io_tlb_nslabs)
552 index = 0;
a7133a15
AM
553 if (index == wrap)
554 goto not_found;
555 }
556
557 /*
558 * If we find a slot that indicates we have 'nslots' number of
559 * contiguous buffers, we allocate the buffers from that slot
560 * and mark the entries as '0' indicating unavailable.
561 */
562 if (io_tlb_list[index] >= nslots) {
563 int count = 0;
564
565 for (i = index; i < (int) (index + nslots); i++)
566 io_tlb_list[i] = 0;
567 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
568 io_tlb_list[i] = ++count;
e05ed4d1 569 tlb_addr = io_tlb_start + (index << IO_TLB_SHIFT);
1da177e4 570
a7133a15
AM
571 /*
572 * Update the indices to avoid searching in the next
573 * round.
574 */
575 io_tlb_index = ((index + nslots) < io_tlb_nslabs
576 ? (index + nslots) : 0);
577
578 goto found;
579 }
580 index += stride;
581 if (index >= io_tlb_nslabs)
582 index = 0;
583 } while (index != wrap);
584
585not_found:
586 spin_unlock_irqrestore(&io_tlb_lock, flags);
f2ab77c0 587 if (!(attrs & DMA_ATTR_NO_WARN) && printk_ratelimit())
0cb637bf 588 dev_warn(hwdev, "swiotlb buffer is full (sz: %zd bytes)\n", size);
e05ed4d1 589 return SWIOTLB_MAP_ERROR;
a7133a15 590found:
1da177e4
LT
591 spin_unlock_irqrestore(&io_tlb_lock, flags);
592
593 /*
594 * Save away the mapping from the original address to the DMA address.
595 * This is needed when we sync the memory. Then we sync the buffer if
596 * needed.
597 */
bc40ac66 598 for (i = 0; i < nslots; i++)
e05ed4d1 599 io_tlb_orig_addr[index+i] = orig_addr + (i << IO_TLB_SHIFT);
0443fa00
AD
600 if (!(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
601 (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 602 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_TO_DEVICE);
1da177e4 603
e05ed4d1 604 return tlb_addr;
1da177e4 605}
d7ef1533 606EXPORT_SYMBOL_GPL(swiotlb_tbl_map_single);
1da177e4 607
eb605a57
FT
608/*
609 * Allocates bounce buffer and returns its kernel virtual address.
610 */
611
023600f1
AC
612static phys_addr_t
613map_single(struct device *hwdev, phys_addr_t phys, size_t size,
0443fa00 614 enum dma_data_direction dir, unsigned long attrs)
eb605a57 615{
fff5d992
GU
616 dma_addr_t start_dma_addr;
617
618 if (swiotlb_force == SWIOTLB_NO_FORCE) {
619 dev_warn_ratelimited(hwdev, "Cannot do DMA to address %pa\n",
620 &phys);
621 return SWIOTLB_MAP_ERROR;
622 }
eb605a57 623
c7753208 624 start_dma_addr = swiotlb_phys_to_dma(hwdev, io_tlb_start);
0443fa00
AD
625 return swiotlb_tbl_map_single(hwdev, start_dma_addr, phys, size,
626 dir, attrs);
eb605a57
FT
627}
628
1da177e4
LT
629/*
630 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
631 */
61ca08c3 632void swiotlb_tbl_unmap_single(struct device *hwdev, phys_addr_t tlb_addr,
0443fa00
AD
633 size_t size, enum dma_data_direction dir,
634 unsigned long attrs)
1da177e4
LT
635{
636 unsigned long flags;
637 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
61ca08c3
AD
638 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
639 phys_addr_t orig_addr = io_tlb_orig_addr[index];
1da177e4
LT
640
641 /*
642 * First, sync the memory before unmapping the entry
643 */
8e0629c1 644 if (orig_addr != INVALID_PHYS_ADDR &&
0443fa00 645 !(attrs & DMA_ATTR_SKIP_CPU_SYNC) &&
8e0629c1 646 ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
af51a9f1 647 swiotlb_bounce(orig_addr, tlb_addr, size, DMA_FROM_DEVICE);
1da177e4
LT
648
649 /*
650 * Return the buffer to the free list by setting the corresponding
af901ca1 651 * entries to indicate the number of contiguous entries available.
1da177e4
LT
652 * While returning the entries to the free list, we merge the entries
653 * with slots below and above the pool being returned.
654 */
655 spin_lock_irqsave(&io_tlb_lock, flags);
656 {
657 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
658 io_tlb_list[index + nslots] : 0);
659 /*
660 * Step 1: return the slots to the free list, merging the
661 * slots with superceeding slots
662 */
8e0629c1 663 for (i = index + nslots - 1; i >= index; i--) {
1da177e4 664 io_tlb_list[i] = ++count;
8e0629c1
JB
665 io_tlb_orig_addr[i] = INVALID_PHYS_ADDR;
666 }
1da177e4
LT
667 /*
668 * Step 2: merge the returned slots with the preceding slots,
669 * if available (non zero)
670 */
671 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
672 io_tlb_list[i] = ++count;
673 }
674 spin_unlock_irqrestore(&io_tlb_lock, flags);
675}
d7ef1533 676EXPORT_SYMBOL_GPL(swiotlb_tbl_unmap_single);
1da177e4 677
fbfda893
AD
678void swiotlb_tbl_sync_single(struct device *hwdev, phys_addr_t tlb_addr,
679 size_t size, enum dma_data_direction dir,
680 enum dma_sync_target target)
1da177e4 681{
fbfda893
AD
682 int index = (tlb_addr - io_tlb_start) >> IO_TLB_SHIFT;
683 phys_addr_t orig_addr = io_tlb_orig_addr[index];
bc40ac66 684
8e0629c1
JB
685 if (orig_addr == INVALID_PHYS_ADDR)
686 return;
fbfda893 687 orig_addr += (unsigned long)tlb_addr & ((1 << IO_TLB_SHIFT) - 1);
df336d1c 688
de69e0f0
JL
689 switch (target) {
690 case SYNC_FOR_CPU:
691 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 692 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 693 size, DMA_FROM_DEVICE);
34814545
ES
694 else
695 BUG_ON(dir != DMA_TO_DEVICE);
de69e0f0
JL
696 break;
697 case SYNC_FOR_DEVICE:
698 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
af51a9f1 699 swiotlb_bounce(orig_addr, tlb_addr,
fbfda893 700 size, DMA_TO_DEVICE);
34814545
ES
701 else
702 BUG_ON(dir != DMA_FROM_DEVICE);
de69e0f0
JL
703 break;
704 default:
1da177e4 705 BUG();
de69e0f0 706 }
1da177e4 707}
d7ef1533 708EXPORT_SYMBOL_GPL(swiotlb_tbl_sync_single);
1da177e4
LT
709
710void *
711swiotlb_alloc_coherent(struct device *hwdev, size_t size,
06a54497 712 dma_addr_t *dma_handle, gfp_t flags)
1da177e4 713{
f2ab77c0 714 bool warn = !(flags & __GFP_NOWARN);
563aaf06 715 dma_addr_t dev_addr;
1da177e4
LT
716 void *ret;
717 int order = get_order(size);
284901a9 718 u64 dma_mask = DMA_BIT_MASK(32);
1e74f300
FT
719
720 if (hwdev && hwdev->coherent_dma_mask)
721 dma_mask = hwdev->coherent_dma_mask;
1da177e4 722
25667d67 723 ret = (void *)__get_free_pages(flags, order);
e05ed4d1
AD
724 if (ret) {
725 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
726 if (dev_addr + size - 1 > dma_mask) {
727 /*
728 * The allocated memory isn't reachable by the device.
729 */
730 free_pages((unsigned long) ret, order);
731 ret = NULL;
732 }
1da177e4
LT
733 }
734 if (!ret) {
735 /*
bfc5501f
KRW
736 * We are either out of memory or the device can't DMA to
737 * GFP_DMA memory; fall back on map_single(), which
ceb5ac32 738 * will grab memory from the lowest available address range.
1da177e4 739 */
f2ab77c0
CK
740 phys_addr_t paddr = map_single(hwdev, 0, size, DMA_FROM_DEVICE,
741 warn ? 0 : DMA_ATTR_NO_WARN);
e05ed4d1 742 if (paddr == SWIOTLB_MAP_ERROR)
94cc81f9 743 goto err_warn;
1da177e4 744
e05ed4d1 745 ret = phys_to_virt(paddr);
c7753208 746 dev_addr = swiotlb_phys_to_dma(hwdev, paddr);
1da177e4 747
61ca08c3
AD
748 /* Confirm address can be DMA'd by device */
749 if (dev_addr + size - 1 > dma_mask) {
750 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
751 (unsigned long long)dma_mask,
752 (unsigned long long)dev_addr);
a2b89b59 753
0443fa00
AD
754 /*
755 * DMA_TO_DEVICE to avoid memcpy in unmap_single.
756 * The DMA_ATTR_SKIP_CPU_SYNC is optional.
757 */
61ca08c3 758 swiotlb_tbl_unmap_single(hwdev, paddr,
0443fa00
AD
759 size, DMA_TO_DEVICE,
760 DMA_ATTR_SKIP_CPU_SYNC);
94cc81f9 761 goto err_warn;
61ca08c3 762 }
1da177e4 763 }
e05ed4d1 764
1da177e4 765 *dma_handle = dev_addr;
e05ed4d1
AD
766 memset(ret, 0, size);
767
1da177e4 768 return ret;
94cc81f9
JR
769
770err_warn:
f2ab77c0 771 if (warn && printk_ratelimit()) {
e2dd7434 772 pr_warn("coherent allocation failed for device %s size=%zu\n",
f2ab77c0
CK
773 dev_name(hwdev), size);
774 dump_stack();
775 }
94cc81f9
JR
776
777 return NULL;
1da177e4 778}
874d6a95 779EXPORT_SYMBOL(swiotlb_alloc_coherent);
1da177e4
LT
780
781void
782swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
02ca646e 783 dma_addr_t dev_addr)
1da177e4 784{
862d196b 785 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
02ca646e 786
aa24886e 787 WARN_ON(irqs_disabled());
02ca646e
FT
788 if (!is_swiotlb_buffer(paddr))
789 free_pages((unsigned long)vaddr, get_order(size));
1da177e4 790 else
0443fa00
AD
791 /*
792 * DMA_TO_DEVICE to avoid memcpy in swiotlb_tbl_unmap_single.
793 * DMA_ATTR_SKIP_CPU_SYNC is optional.
794 */
795 swiotlb_tbl_unmap_single(hwdev, paddr, size, DMA_TO_DEVICE,
796 DMA_ATTR_SKIP_CPU_SYNC);
1da177e4 797}
874d6a95 798EXPORT_SYMBOL(swiotlb_free_coherent);
1da177e4
LT
799
800static void
22d48269
KRW
801swiotlb_full(struct device *dev, size_t size, enum dma_data_direction dir,
802 int do_panic)
1da177e4 803{
fff5d992
GU
804 if (swiotlb_force == SWIOTLB_NO_FORCE)
805 return;
806
1da177e4
LT
807 /*
808 * Ran out of IOMMU space for this operation. This is very bad.
809 * Unfortunately the drivers cannot handle this operation properly.
17e5ad6c 810 * unless they check for dma_mapping_error (most don't)
1da177e4
LT
811 * When the mapping is small enough return a static buffer to limit
812 * the damage, or panic when the transfer is too big.
813 */
0d2e1898
GU
814 dev_err_ratelimited(dev, "DMA: Out of SW-IOMMU space for %zu bytes\n",
815 size);
1da177e4 816
c7084b35
CD
817 if (size <= io_tlb_overflow || !do_panic)
818 return;
819
820 if (dir == DMA_BIDIRECTIONAL)
821 panic("DMA: Random memory could be DMA accessed\n");
822 if (dir == DMA_FROM_DEVICE)
823 panic("DMA: Random memory could be DMA written\n");
824 if (dir == DMA_TO_DEVICE)
825 panic("DMA: Random memory could be DMA read\n");
1da177e4
LT
826}
827
828/*
829 * Map a single buffer of the indicated size for DMA in streaming mode. The
17e5ad6c 830 * physical address to use is returned.
1da177e4
LT
831 *
832 * Once the device is given the dma address, the device owns this memory until
ceb5ac32 833 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
1da177e4 834 */
f98eee8e
FT
835dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
836 unsigned long offset, size_t size,
837 enum dma_data_direction dir,
00085f1e 838 unsigned long attrs)
1da177e4 839{
e05ed4d1 840 phys_addr_t map, phys = page_to_phys(page) + offset;
862d196b 841 dma_addr_t dev_addr = phys_to_dma(dev, phys);
1da177e4 842
34814545 843 BUG_ON(dir == DMA_NONE);
1da177e4 844 /*
ceb5ac32 845 * If the address happens to be in the device's DMA window,
1da177e4
LT
846 * we can safely return the device addr and not worry about bounce
847 * buffering it.
848 */
ae7871be 849 if (dma_capable(dev, dev_addr, size) && swiotlb_force != SWIOTLB_FORCE)
1da177e4
LT
850 return dev_addr;
851
2b2b614d
ZK
852 trace_swiotlb_bounced(dev, dev_addr, size, swiotlb_force);
853
e05ed4d1 854 /* Oh well, have to allocate and map a bounce buffer. */
0443fa00 855 map = map_single(dev, phys, size, dir, attrs);
e05ed4d1 856 if (map == SWIOTLB_MAP_ERROR) {
f98eee8e 857 swiotlb_full(dev, size, dir, 1);
c7753208 858 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4
LT
859 }
860
c7753208 861 dev_addr = swiotlb_phys_to_dma(dev, map);
1da177e4 862
e05ed4d1 863 /* Ensure that the address returned is DMA'ble */
0443fa00
AD
864 if (dma_capable(dev, dev_addr, size))
865 return dev_addr;
866
d29fa0cb
AD
867 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
868 swiotlb_tbl_unmap_single(dev, map, size, dir, attrs);
1da177e4 869
c7753208 870 return swiotlb_phys_to_dma(dev, io_tlb_overflow_buffer);
1da177e4 871}
f98eee8e 872EXPORT_SYMBOL_GPL(swiotlb_map_page);
1da177e4 873
1da177e4
LT
874/*
875 * Unmap a single streaming mode DMA translation. The dma_addr and size must
ceb5ac32 876 * match what was provided for in a previous swiotlb_map_page call. All
1da177e4
LT
877 * other usages are undefined.
878 *
879 * After this call, reads by the cpu to the buffer are guaranteed to see
880 * whatever the device wrote there.
881 */
7fcebbd2 882static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
0443fa00
AD
883 size_t size, enum dma_data_direction dir,
884 unsigned long attrs)
1da177e4 885{
862d196b 886 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 887
34814545 888 BUG_ON(dir == DMA_NONE);
7fcebbd2 889
02ca646e 890 if (is_swiotlb_buffer(paddr)) {
0443fa00 891 swiotlb_tbl_unmap_single(hwdev, paddr, size, dir, attrs);
7fcebbd2
BB
892 return;
893 }
894
895 if (dir != DMA_FROM_DEVICE)
896 return;
897
02ca646e
FT
898 /*
899 * phys_to_virt doesn't work with hihgmem page but we could
900 * call dma_mark_clean() with hihgmem page here. However, we
901 * are fine since dma_mark_clean() is null on POWERPC. We can
902 * make dma_mark_clean() take a physical address if necessary.
903 */
904 dma_mark_clean(phys_to_virt(paddr), size);
7fcebbd2
BB
905}
906
907void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
908 size_t size, enum dma_data_direction dir,
00085f1e 909 unsigned long attrs)
7fcebbd2 910{
0443fa00 911 unmap_single(hwdev, dev_addr, size, dir, attrs);
1da177e4 912}
f98eee8e 913EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
874d6a95 914
1da177e4
LT
915/*
916 * Make physical memory consistent for a single streaming mode DMA translation
917 * after a transfer.
918 *
ceb5ac32 919 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
17e5ad6c
TL
920 * using the cpu, yet do not wish to teardown the dma mapping, you must
921 * call this function before doing so. At the next point you give the dma
1da177e4
LT
922 * address back to the card, you must first perform a
923 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
924 */
be6b0267 925static void
8270f3f1 926swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
d7ef1533
KRW
927 size_t size, enum dma_data_direction dir,
928 enum dma_sync_target target)
1da177e4 929{
862d196b 930 phys_addr_t paddr = dma_to_phys(hwdev, dev_addr);
1da177e4 931
34814545 932 BUG_ON(dir == DMA_NONE);
380d6878 933
02ca646e 934 if (is_swiotlb_buffer(paddr)) {
fbfda893 935 swiotlb_tbl_sync_single(hwdev, paddr, size, dir, target);
380d6878
BB
936 return;
937 }
938
939 if (dir != DMA_FROM_DEVICE)
940 return;
941
02ca646e 942 dma_mark_clean(phys_to_virt(paddr), size);
1da177e4
LT
943}
944
8270f3f1
JL
945void
946swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 947 size_t size, enum dma_data_direction dir)
8270f3f1 948{
de69e0f0 949 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
8270f3f1 950}
874d6a95 951EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
8270f3f1 952
1da177e4
LT
953void
954swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
160c1d8e 955 size_t size, enum dma_data_direction dir)
1da177e4 956{
de69e0f0 957 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
1da177e4 958}
874d6a95 959EXPORT_SYMBOL(swiotlb_sync_single_for_device);
1da177e4
LT
960
961/*
962 * Map a set of buffers described by scatterlist in streaming mode for DMA.
ceb5ac32 963 * This is the scatter-gather version of the above swiotlb_map_page
1da177e4
LT
964 * interface. Here the scatter gather list elements are each tagged with the
965 * appropriate dma address and length. They are obtained via
966 * sg_dma_{address,length}(SG).
967 *
968 * NOTE: An implementation may be able to use a smaller number of
969 * DMA address/length pairs than there are SG table elements.
970 * (for example via virtual mapping capabilities)
971 * The routine returns the number of addr/length pairs actually
972 * used, at most nents.
973 *
ceb5ac32 974 * Device ownership issues as mentioned above for swiotlb_map_page are the
1da177e4
LT
975 * same here.
976 */
977int
309df0c5 978swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
00085f1e 979 enum dma_data_direction dir, unsigned long attrs)
1da177e4 980{
dbfd49fe 981 struct scatterlist *sg;
1da177e4
LT
982 int i;
983
34814545 984 BUG_ON(dir == DMA_NONE);
1da177e4 985
dbfd49fe 986 for_each_sg(sgl, sg, nelems, i) {
961d7d0e 987 phys_addr_t paddr = sg_phys(sg);
862d196b 988 dma_addr_t dev_addr = phys_to_dma(hwdev, paddr);
bc40ac66 989
ae7871be 990 if (swiotlb_force == SWIOTLB_FORCE ||
b9394647 991 !dma_capable(hwdev, dev_addr, sg->length)) {
e05ed4d1 992 phys_addr_t map = map_single(hwdev, sg_phys(sg),
0443fa00 993 sg->length, dir, attrs);
e05ed4d1 994 if (map == SWIOTLB_MAP_ERROR) {
1da177e4
LT
995 /* Don't panic here, we expect map_sg users
996 to do proper error handling. */
997 swiotlb_full(hwdev, sg->length, dir, 0);
d29fa0cb 998 attrs |= DMA_ATTR_SKIP_CPU_SYNC;
309df0c5
AK
999 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
1000 attrs);
4d86ec7a 1001 sg_dma_len(sgl) = 0;
1da177e4
LT
1002 return 0;
1003 }
c7753208 1004 sg->dma_address = swiotlb_phys_to_dma(hwdev, map);
1da177e4
LT
1005 } else
1006 sg->dma_address = dev_addr;
4d86ec7a 1007 sg_dma_len(sg) = sg->length;
1da177e4
LT
1008 }
1009 return nelems;
1010}
309df0c5
AK
1011EXPORT_SYMBOL(swiotlb_map_sg_attrs);
1012
1da177e4
LT
1013/*
1014 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
ceb5ac32 1015 * concerning calls here are the same as for swiotlb_unmap_page() above.
1da177e4
LT
1016 */
1017void
309df0c5 1018swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
00085f1e
KK
1019 int nelems, enum dma_data_direction dir,
1020 unsigned long attrs)
1da177e4 1021{
dbfd49fe 1022 struct scatterlist *sg;
1da177e4
LT
1023 int i;
1024
34814545 1025 BUG_ON(dir == DMA_NONE);
1da177e4 1026
7fcebbd2 1027 for_each_sg(sgl, sg, nelems, i)
0443fa00
AD
1028 unmap_single(hwdev, sg->dma_address, sg_dma_len(sg), dir,
1029 attrs);
1da177e4 1030}
309df0c5
AK
1031EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
1032
1da177e4
LT
1033/*
1034 * Make physical memory consistent for a set of streaming mode DMA translations
1035 * after a transfer.
1036 *
1037 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
1038 * and usage.
1039 */
be6b0267 1040static void
dbfd49fe 1041swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
d7ef1533
KRW
1042 int nelems, enum dma_data_direction dir,
1043 enum dma_sync_target target)
1da177e4 1044{
dbfd49fe 1045 struct scatterlist *sg;
1da177e4
LT
1046 int i;
1047
380d6878
BB
1048 for_each_sg(sgl, sg, nelems, i)
1049 swiotlb_sync_single(hwdev, sg->dma_address,
4d86ec7a 1050 sg_dma_len(sg), dir, target);
1da177e4
LT
1051}
1052
8270f3f1
JL
1053void
1054swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
160c1d8e 1055 int nelems, enum dma_data_direction dir)
8270f3f1 1056{
de69e0f0 1057 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
8270f3f1 1058}
874d6a95 1059EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
8270f3f1 1060
1da177e4
LT
1061void
1062swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
160c1d8e 1063 int nelems, enum dma_data_direction dir)
1da177e4 1064{
de69e0f0 1065 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
1da177e4 1066}
874d6a95 1067EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
1da177e4
LT
1068
1069int
8d8bb39b 1070swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
1da177e4 1071{
c7753208 1072 return (dma_addr == swiotlb_phys_to_dma(hwdev, io_tlb_overflow_buffer));
1da177e4 1073}
874d6a95 1074EXPORT_SYMBOL(swiotlb_dma_mapping_error);
1da177e4
LT
1075
1076/*
17e5ad6c 1077 * Return whether the given device DMA address mask can be supported
1da177e4 1078 * properly. For example, if your device can only drive the low 24-bits
17e5ad6c 1079 * during bus mastering, then you would pass 0x00ffffff as the mask to
1da177e4
LT
1080 * this function.
1081 */
1082int
563aaf06 1083swiotlb_dma_supported(struct device *hwdev, u64 mask)
1da177e4 1084{
c7753208 1085 return swiotlb_phys_to_dma(hwdev, io_tlb_end - 1) <= mask;
1da177e4 1086}
1da177e4 1087EXPORT_SYMBOL(swiotlb_dma_supported);