]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/compaction.c
x86/msr-index: Cleanup bit defines
[mirror_ubuntu-bionic-kernel.git] / mm / compaction.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
748446bb
MG
2/*
3 * linux/mm/compaction.c
4 *
5 * Memory compaction for the reduction of external fragmentation. Note that
6 * this heavily depends upon page migration to do all the real heavy
7 * lifting
8 *
9 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
10 */
698b1b30 11#include <linux/cpu.h>
748446bb
MG
12#include <linux/swap.h>
13#include <linux/migrate.h>
14#include <linux/compaction.h>
15#include <linux/mm_inline.h>
174cd4b1 16#include <linux/sched/signal.h>
748446bb 17#include <linux/backing-dev.h>
76ab0f53 18#include <linux/sysctl.h>
ed4a6d7f 19#include <linux/sysfs.h>
194159fb 20#include <linux/page-isolation.h>
b8c73fc2 21#include <linux/kasan.h>
698b1b30
VB
22#include <linux/kthread.h>
23#include <linux/freezer.h>
83358ece 24#include <linux/page_owner.h>
748446bb
MG
25#include "internal.h"
26
010fc29a
MK
27#ifdef CONFIG_COMPACTION
28static inline void count_compact_event(enum vm_event_item item)
29{
30 count_vm_event(item);
31}
32
33static inline void count_compact_events(enum vm_event_item item, long delta)
34{
35 count_vm_events(item, delta);
36}
37#else
38#define count_compact_event(item) do { } while (0)
39#define count_compact_events(item, delta) do { } while (0)
40#endif
41
ff9543fd
MN
42#if defined CONFIG_COMPACTION || defined CONFIG_CMA
43
b7aba698
MG
44#define CREATE_TRACE_POINTS
45#include <trace/events/compaction.h>
46
06b6640a
VB
47#define block_start_pfn(pfn, order) round_down(pfn, 1UL << (order))
48#define block_end_pfn(pfn, order) ALIGN((pfn) + 1, 1UL << (order))
49#define pageblock_start_pfn(pfn) block_start_pfn(pfn, pageblock_order)
50#define pageblock_end_pfn(pfn) block_end_pfn(pfn, pageblock_order)
51
748446bb
MG
52static unsigned long release_freepages(struct list_head *freelist)
53{
54 struct page *page, *next;
6bace090 55 unsigned long high_pfn = 0;
748446bb
MG
56
57 list_for_each_entry_safe(page, next, freelist, lru) {
6bace090 58 unsigned long pfn = page_to_pfn(page);
748446bb
MG
59 list_del(&page->lru);
60 __free_page(page);
6bace090
VB
61 if (pfn > high_pfn)
62 high_pfn = pfn;
748446bb
MG
63 }
64
6bace090 65 return high_pfn;
748446bb
MG
66}
67
ff9543fd
MN
68static void map_pages(struct list_head *list)
69{
66c64223
JK
70 unsigned int i, order, nr_pages;
71 struct page *page, *next;
72 LIST_HEAD(tmp_list);
73
74 list_for_each_entry_safe(page, next, list, lru) {
75 list_del(&page->lru);
76
77 order = page_private(page);
78 nr_pages = 1 << order;
66c64223 79
46f24fd8 80 post_alloc_hook(page, order, __GFP_MOVABLE);
66c64223
JK
81 if (order)
82 split_page(page, order);
ff9543fd 83
66c64223
JK
84 for (i = 0; i < nr_pages; i++) {
85 list_add(&page->lru, &tmp_list);
86 page++;
87 }
ff9543fd 88 }
66c64223
JK
89
90 list_splice(&tmp_list, list);
ff9543fd
MN
91}
92
bb13ffeb 93#ifdef CONFIG_COMPACTION
24e2716f 94
bda807d4
MK
95int PageMovable(struct page *page)
96{
97 struct address_space *mapping;
98
99 VM_BUG_ON_PAGE(!PageLocked(page), page);
100 if (!__PageMovable(page))
101 return 0;
102
103 mapping = page_mapping(page);
104 if (mapping && mapping->a_ops && mapping->a_ops->isolate_page)
105 return 1;
106
107 return 0;
108}
109EXPORT_SYMBOL(PageMovable);
110
111void __SetPageMovable(struct page *page, struct address_space *mapping)
112{
113 VM_BUG_ON_PAGE(!PageLocked(page), page);
114 VM_BUG_ON_PAGE((unsigned long)mapping & PAGE_MAPPING_MOVABLE, page);
115 page->mapping = (void *)((unsigned long)mapping | PAGE_MAPPING_MOVABLE);
116}
117EXPORT_SYMBOL(__SetPageMovable);
118
119void __ClearPageMovable(struct page *page)
120{
121 VM_BUG_ON_PAGE(!PageLocked(page), page);
122 VM_BUG_ON_PAGE(!PageMovable(page), page);
123 /*
124 * Clear registered address_space val with keeping PAGE_MAPPING_MOVABLE
125 * flag so that VM can catch up released page by driver after isolation.
126 * With it, VM migration doesn't try to put it back.
127 */
128 page->mapping = (void *)((unsigned long)page->mapping &
129 PAGE_MAPPING_MOVABLE);
130}
131EXPORT_SYMBOL(__ClearPageMovable);
132
24e2716f
JK
133/* Do not skip compaction more than 64 times */
134#define COMPACT_MAX_DEFER_SHIFT 6
135
136/*
137 * Compaction is deferred when compaction fails to result in a page
138 * allocation success. 1 << compact_defer_limit compactions are skipped up
139 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
140 */
141void defer_compaction(struct zone *zone, int order)
142{
143 zone->compact_considered = 0;
144 zone->compact_defer_shift++;
145
146 if (order < zone->compact_order_failed)
147 zone->compact_order_failed = order;
148
149 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
150 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
151
152 trace_mm_compaction_defer_compaction(zone, order);
153}
154
155/* Returns true if compaction should be skipped this time */
156bool compaction_deferred(struct zone *zone, int order)
157{
158 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
159
160 if (order < zone->compact_order_failed)
161 return false;
162
163 /* Avoid possible overflow */
164 if (++zone->compact_considered > defer_limit)
165 zone->compact_considered = defer_limit;
166
167 if (zone->compact_considered >= defer_limit)
168 return false;
169
170 trace_mm_compaction_deferred(zone, order);
171
172 return true;
173}
174
175/*
176 * Update defer tracking counters after successful compaction of given order,
177 * which means an allocation either succeeded (alloc_success == true) or is
178 * expected to succeed.
179 */
180void compaction_defer_reset(struct zone *zone, int order,
181 bool alloc_success)
182{
183 if (alloc_success) {
184 zone->compact_considered = 0;
185 zone->compact_defer_shift = 0;
186 }
187 if (order >= zone->compact_order_failed)
188 zone->compact_order_failed = order + 1;
189
190 trace_mm_compaction_defer_reset(zone, order);
191}
192
193/* Returns true if restarting compaction after many failures */
194bool compaction_restarting(struct zone *zone, int order)
195{
196 if (order < zone->compact_order_failed)
197 return false;
198
199 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
200 zone->compact_considered >= 1UL << zone->compact_defer_shift;
201}
202
bb13ffeb
MG
203/* Returns true if the pageblock should be scanned for pages to isolate. */
204static inline bool isolation_suitable(struct compact_control *cc,
205 struct page *page)
206{
207 if (cc->ignore_skip_hint)
208 return true;
209
210 return !get_pageblock_skip(page);
211}
212
02333641
VB
213static void reset_cached_positions(struct zone *zone)
214{
215 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
216 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
623446e4 217 zone->compact_cached_free_pfn =
06b6640a 218 pageblock_start_pfn(zone_end_pfn(zone) - 1);
02333641
VB
219}
220
21dc7e02 221/*
b527cfe5
VB
222 * Compound pages of >= pageblock_order should consistenly be skipped until
223 * released. It is always pointless to compact pages of such order (if they are
224 * migratable), and the pageblocks they occupy cannot contain any free pages.
21dc7e02 225 */
b527cfe5 226static bool pageblock_skip_persistent(struct page *page)
21dc7e02 227{
b527cfe5 228 if (!PageCompound(page))
21dc7e02 229 return false;
b527cfe5
VB
230
231 page = compound_head(page);
232
233 if (compound_order(page) >= pageblock_order)
234 return true;
235
236 return false;
21dc7e02
DR
237}
238
bb13ffeb
MG
239/*
240 * This function is called to clear all cached information on pageblocks that
241 * should be skipped for page isolation when the migrate and free page scanner
242 * meet.
243 */
62997027 244static void __reset_isolation_suitable(struct zone *zone)
bb13ffeb
MG
245{
246 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 247 unsigned long end_pfn = zone_end_pfn(zone);
bb13ffeb
MG
248 unsigned long pfn;
249
62997027 250 zone->compact_blockskip_flush = false;
bb13ffeb
MG
251
252 /* Walk the zone and mark every pageblock as suitable for isolation */
253 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
254 struct page *page;
255
256 cond_resched();
257
ccbe1e4d
MH
258 page = pfn_to_online_page(pfn);
259 if (!page)
bb13ffeb 260 continue;
bb13ffeb
MG
261 if (zone != page_zone(page))
262 continue;
b527cfe5 263 if (pageblock_skip_persistent(page))
21dc7e02 264 continue;
bb13ffeb
MG
265
266 clear_pageblock_skip(page);
267 }
02333641
VB
268
269 reset_cached_positions(zone);
bb13ffeb
MG
270}
271
62997027
MG
272void reset_isolation_suitable(pg_data_t *pgdat)
273{
274 int zoneid;
275
276 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
277 struct zone *zone = &pgdat->node_zones[zoneid];
278 if (!populated_zone(zone))
279 continue;
280
281 /* Only flush if a full compaction finished recently */
282 if (zone->compact_blockskip_flush)
283 __reset_isolation_suitable(zone);
284 }
285}
286
bb13ffeb
MG
287/*
288 * If no pages were isolated then mark this pageblock to be skipped in the
62997027 289 * future. The information is later cleared by __reset_isolation_suitable().
bb13ffeb 290 */
c89511ab
MG
291static void update_pageblock_skip(struct compact_control *cc,
292 struct page *page, unsigned long nr_isolated,
edc2ca61 293 bool migrate_scanner)
bb13ffeb 294{
c89511ab 295 struct zone *zone = cc->zone;
35979ef3 296 unsigned long pfn;
6815bf3f 297
2583d671 298 if (cc->no_set_skip_hint)
6815bf3f
JK
299 return;
300
bb13ffeb
MG
301 if (!page)
302 return;
303
35979ef3
DR
304 if (nr_isolated)
305 return;
306
edc2ca61 307 set_pageblock_skip(page);
c89511ab 308
35979ef3
DR
309 pfn = page_to_pfn(page);
310
311 /* Update where async and sync compaction should restart */
312 if (migrate_scanner) {
35979ef3
DR
313 if (pfn > zone->compact_cached_migrate_pfn[0])
314 zone->compact_cached_migrate_pfn[0] = pfn;
e0b9daeb
DR
315 if (cc->mode != MIGRATE_ASYNC &&
316 pfn > zone->compact_cached_migrate_pfn[1])
35979ef3
DR
317 zone->compact_cached_migrate_pfn[1] = pfn;
318 } else {
35979ef3
DR
319 if (pfn < zone->compact_cached_free_pfn)
320 zone->compact_cached_free_pfn = pfn;
c89511ab 321 }
bb13ffeb
MG
322}
323#else
324static inline bool isolation_suitable(struct compact_control *cc,
325 struct page *page)
326{
327 return true;
328}
329
b527cfe5 330static inline bool pageblock_skip_persistent(struct page *page)
21dc7e02
DR
331{
332 return false;
333}
334
335static inline void update_pageblock_skip(struct compact_control *cc,
c89511ab 336 struct page *page, unsigned long nr_isolated,
edc2ca61 337 bool migrate_scanner)
bb13ffeb
MG
338{
339}
340#endif /* CONFIG_COMPACTION */
341
8b44d279
VB
342/*
343 * Compaction requires the taking of some coarse locks that are potentially
344 * very heavily contended. For async compaction, back out if the lock cannot
345 * be taken immediately. For sync compaction, spin on the lock if needed.
346 *
347 * Returns true if the lock is held
348 * Returns false if the lock is not held and compaction should abort
349 */
350static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
351 struct compact_control *cc)
2a1402aa 352{
8b44d279
VB
353 if (cc->mode == MIGRATE_ASYNC) {
354 if (!spin_trylock_irqsave(lock, *flags)) {
c3486f53 355 cc->contended = true;
8b44d279
VB
356 return false;
357 }
358 } else {
359 spin_lock_irqsave(lock, *flags);
360 }
1f9efdef 361
8b44d279 362 return true;
2a1402aa
MG
363}
364
c67fe375
MG
365/*
366 * Compaction requires the taking of some coarse locks that are potentially
8b44d279
VB
367 * very heavily contended. The lock should be periodically unlocked to avoid
368 * having disabled IRQs for a long time, even when there is nobody waiting on
369 * the lock. It might also be that allowing the IRQs will result in
370 * need_resched() becoming true. If scheduling is needed, async compaction
371 * aborts. Sync compaction schedules.
372 * Either compaction type will also abort if a fatal signal is pending.
373 * In either case if the lock was locked, it is dropped and not regained.
c67fe375 374 *
8b44d279
VB
375 * Returns true if compaction should abort due to fatal signal pending, or
376 * async compaction due to need_resched()
377 * Returns false when compaction can continue (sync compaction might have
378 * scheduled)
c67fe375 379 */
8b44d279
VB
380static bool compact_unlock_should_abort(spinlock_t *lock,
381 unsigned long flags, bool *locked, struct compact_control *cc)
c67fe375 382{
8b44d279
VB
383 if (*locked) {
384 spin_unlock_irqrestore(lock, flags);
385 *locked = false;
386 }
1f9efdef 387
8b44d279 388 if (fatal_signal_pending(current)) {
c3486f53 389 cc->contended = true;
8b44d279
VB
390 return true;
391 }
c67fe375 392
8b44d279 393 if (need_resched()) {
e0b9daeb 394 if (cc->mode == MIGRATE_ASYNC) {
c3486f53 395 cc->contended = true;
8b44d279 396 return true;
c67fe375 397 }
c67fe375 398 cond_resched();
c67fe375
MG
399 }
400
8b44d279 401 return false;
c67fe375
MG
402}
403
be976572
VB
404/*
405 * Aside from avoiding lock contention, compaction also periodically checks
406 * need_resched() and either schedules in sync compaction or aborts async
8b44d279 407 * compaction. This is similar to what compact_unlock_should_abort() does, but
be976572
VB
408 * is used where no lock is concerned.
409 *
410 * Returns false when no scheduling was needed, or sync compaction scheduled.
411 * Returns true when async compaction should abort.
412 */
413static inline bool compact_should_abort(struct compact_control *cc)
414{
415 /* async compaction aborts if contended */
416 if (need_resched()) {
417 if (cc->mode == MIGRATE_ASYNC) {
c3486f53 418 cc->contended = true;
be976572
VB
419 return true;
420 }
421
422 cond_resched();
423 }
424
425 return false;
426}
427
85aa125f 428/*
9e4be470
JM
429 * Isolate free pages onto a private freelist. If @strict is true, will abort
430 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
431 * (even though it may still end up isolating some pages).
85aa125f 432 */
f40d1e42 433static unsigned long isolate_freepages_block(struct compact_control *cc,
e14c720e 434 unsigned long *start_pfn,
85aa125f
MN
435 unsigned long end_pfn,
436 struct list_head *freelist,
437 bool strict)
748446bb 438{
b7aba698 439 int nr_scanned = 0, total_isolated = 0;
bb13ffeb 440 struct page *cursor, *valid_page = NULL;
b8b2d825 441 unsigned long flags = 0;
f40d1e42 442 bool locked = false;
e14c720e 443 unsigned long blockpfn = *start_pfn;
66c64223 444 unsigned int order;
748446bb 445
748446bb
MG
446 cursor = pfn_to_page(blockpfn);
447
f40d1e42 448 /* Isolate free pages. */
748446bb 449 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
66c64223 450 int isolated;
748446bb
MG
451 struct page *page = cursor;
452
8b44d279
VB
453 /*
454 * Periodically drop the lock (if held) regardless of its
455 * contention, to give chance to IRQs. Abort if fatal signal
456 * pending or async compaction detects need_resched()
457 */
458 if (!(blockpfn % SWAP_CLUSTER_MAX)
459 && compact_unlock_should_abort(&cc->zone->lock, flags,
460 &locked, cc))
461 break;
462
b7aba698 463 nr_scanned++;
f40d1e42 464 if (!pfn_valid_within(blockpfn))
2af120bc
LA
465 goto isolate_fail;
466
bb13ffeb
MG
467 if (!valid_page)
468 valid_page = page;
9fcd6d2e
VB
469
470 /*
471 * For compound pages such as THP and hugetlbfs, we can save
472 * potentially a lot of iterations if we skip them at once.
473 * The check is racy, but we can consider only valid values
474 * and the only danger is skipping too much.
475 */
476 if (PageCompound(page)) {
21dc7e02
DR
477 const unsigned int order = compound_order(page);
478
d3c85bad 479 if (likely(order < MAX_ORDER)) {
21dc7e02
DR
480 blockpfn += (1UL << order) - 1;
481 cursor += (1UL << order) - 1;
9fcd6d2e 482 }
9fcd6d2e
VB
483 goto isolate_fail;
484 }
485
f40d1e42 486 if (!PageBuddy(page))
2af120bc 487 goto isolate_fail;
f40d1e42
MG
488
489 /*
69b7189f
VB
490 * If we already hold the lock, we can skip some rechecking.
491 * Note that if we hold the lock now, checked_pageblock was
492 * already set in some previous iteration (or strict is true),
493 * so it is correct to skip the suitable migration target
494 * recheck as well.
f40d1e42 495 */
69b7189f
VB
496 if (!locked) {
497 /*
498 * The zone lock must be held to isolate freepages.
499 * Unfortunately this is a very coarse lock and can be
500 * heavily contended if there are parallel allocations
501 * or parallel compactions. For async compaction do not
502 * spin on the lock and we acquire the lock as late as
503 * possible.
504 */
8b44d279
VB
505 locked = compact_trylock_irqsave(&cc->zone->lock,
506 &flags, cc);
69b7189f
VB
507 if (!locked)
508 break;
f40d1e42 509
69b7189f
VB
510 /* Recheck this is a buddy page under lock */
511 if (!PageBuddy(page))
512 goto isolate_fail;
513 }
748446bb 514
66c64223
JK
515 /* Found a free page, will break it into order-0 pages */
516 order = page_order(page);
517 isolated = __isolate_free_page(page, order);
a4f04f2c
DR
518 if (!isolated)
519 break;
66c64223 520 set_page_private(page, order);
a4f04f2c 521
748446bb 522 total_isolated += isolated;
a4f04f2c 523 cc->nr_freepages += isolated;
66c64223
JK
524 list_add_tail(&page->lru, freelist);
525
a4f04f2c
DR
526 if (!strict && cc->nr_migratepages <= cc->nr_freepages) {
527 blockpfn += isolated;
528 break;
748446bb 529 }
a4f04f2c
DR
530 /* Advance to the end of split page */
531 blockpfn += isolated - 1;
532 cursor += isolated - 1;
533 continue;
2af120bc
LA
534
535isolate_fail:
536 if (strict)
537 break;
538 else
539 continue;
540
748446bb
MG
541 }
542
a4f04f2c
DR
543 if (locked)
544 spin_unlock_irqrestore(&cc->zone->lock, flags);
545
9fcd6d2e
VB
546 /*
547 * There is a tiny chance that we have read bogus compound_order(),
548 * so be careful to not go outside of the pageblock.
549 */
550 if (unlikely(blockpfn > end_pfn))
551 blockpfn = end_pfn;
552
e34d85f0
JK
553 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
554 nr_scanned, total_isolated);
555
e14c720e
VB
556 /* Record how far we have got within the block */
557 *start_pfn = blockpfn;
558
f40d1e42
MG
559 /*
560 * If strict isolation is requested by CMA then check that all the
561 * pages requested were isolated. If there were any failures, 0 is
562 * returned and CMA will fail.
563 */
2af120bc 564 if (strict && blockpfn < end_pfn)
f40d1e42
MG
565 total_isolated = 0;
566
bb13ffeb
MG
567 /* Update the pageblock-skip if the whole pageblock was scanned */
568 if (blockpfn == end_pfn)
edc2ca61 569 update_pageblock_skip(cc, valid_page, total_isolated, false);
bb13ffeb 570
7f354a54 571 cc->total_free_scanned += nr_scanned;
397487db 572 if (total_isolated)
010fc29a 573 count_compact_events(COMPACTISOLATED, total_isolated);
748446bb
MG
574 return total_isolated;
575}
576
85aa125f
MN
577/**
578 * isolate_freepages_range() - isolate free pages.
579 * @start_pfn: The first PFN to start isolating.
580 * @end_pfn: The one-past-last PFN.
581 *
582 * Non-free pages, invalid PFNs, or zone boundaries within the
583 * [start_pfn, end_pfn) range are considered errors, cause function to
584 * undo its actions and return zero.
585 *
586 * Otherwise, function returns one-past-the-last PFN of isolated page
587 * (which may be greater then end_pfn if end fell in a middle of
588 * a free page).
589 */
ff9543fd 590unsigned long
bb13ffeb
MG
591isolate_freepages_range(struct compact_control *cc,
592 unsigned long start_pfn, unsigned long end_pfn)
85aa125f 593{
e1409c32 594 unsigned long isolated, pfn, block_start_pfn, block_end_pfn;
85aa125f
MN
595 LIST_HEAD(freelist);
596
7d49d886 597 pfn = start_pfn;
06b6640a 598 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
599 if (block_start_pfn < cc->zone->zone_start_pfn)
600 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 601 block_end_pfn = pageblock_end_pfn(pfn);
7d49d886
VB
602
603 for (; pfn < end_pfn; pfn += isolated,
e1409c32 604 block_start_pfn = block_end_pfn,
7d49d886 605 block_end_pfn += pageblock_nr_pages) {
e14c720e
VB
606 /* Protect pfn from changing by isolate_freepages_block */
607 unsigned long isolate_start_pfn = pfn;
85aa125f 608
85aa125f
MN
609 block_end_pfn = min(block_end_pfn, end_pfn);
610
58420016
JK
611 /*
612 * pfn could pass the block_end_pfn if isolated freepage
613 * is more than pageblock order. In this case, we adjust
614 * scanning range to right one.
615 */
616 if (pfn >= block_end_pfn) {
06b6640a
VB
617 block_start_pfn = pageblock_start_pfn(pfn);
618 block_end_pfn = pageblock_end_pfn(pfn);
58420016
JK
619 block_end_pfn = min(block_end_pfn, end_pfn);
620 }
621
e1409c32
JK
622 if (!pageblock_pfn_to_page(block_start_pfn,
623 block_end_pfn, cc->zone))
7d49d886
VB
624 break;
625
e14c720e
VB
626 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
627 block_end_pfn, &freelist, true);
85aa125f
MN
628
629 /*
630 * In strict mode, isolate_freepages_block() returns 0 if
631 * there are any holes in the block (ie. invalid PFNs or
632 * non-free pages).
633 */
634 if (!isolated)
635 break;
636
637 /*
638 * If we managed to isolate pages, it is always (1 << n) *
639 * pageblock_nr_pages for some non-negative n. (Max order
640 * page may span two pageblocks).
641 */
642 }
643
66c64223 644 /* __isolate_free_page() does not map the pages */
85aa125f
MN
645 map_pages(&freelist);
646
647 if (pfn < end_pfn) {
648 /* Loop terminated early, cleanup. */
649 release_freepages(&freelist);
650 return 0;
651 }
652
653 /* We don't use freelists for anything. */
654 return pfn;
655}
656
748446bb
MG
657/* Similar to reclaim, but different enough that they don't share logic */
658static bool too_many_isolated(struct zone *zone)
659{
bc693045 660 unsigned long active, inactive, isolated;
748446bb 661
599d0c95
MG
662 inactive = node_page_state(zone->zone_pgdat, NR_INACTIVE_FILE) +
663 node_page_state(zone->zone_pgdat, NR_INACTIVE_ANON);
664 active = node_page_state(zone->zone_pgdat, NR_ACTIVE_FILE) +
665 node_page_state(zone->zone_pgdat, NR_ACTIVE_ANON);
666 isolated = node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE) +
667 node_page_state(zone->zone_pgdat, NR_ISOLATED_ANON);
748446bb 668
bc693045 669 return isolated > (inactive + active) / 2;
748446bb
MG
670}
671
2fe86e00 672/**
edc2ca61
VB
673 * isolate_migratepages_block() - isolate all migrate-able pages within
674 * a single pageblock
2fe86e00 675 * @cc: Compaction control structure.
edc2ca61
VB
676 * @low_pfn: The first PFN to isolate
677 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
678 * @isolate_mode: Isolation mode to be used.
2fe86e00
MN
679 *
680 * Isolate all pages that can be migrated from the range specified by
edc2ca61
VB
681 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
682 * Returns zero if there is a fatal signal pending, otherwise PFN of the
683 * first page that was not scanned (which may be both less, equal to or more
684 * than end_pfn).
2fe86e00 685 *
edc2ca61
VB
686 * The pages are isolated on cc->migratepages list (not required to be empty),
687 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
688 * is neither read nor updated.
748446bb 689 */
edc2ca61
VB
690static unsigned long
691isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
692 unsigned long end_pfn, isolate_mode_t isolate_mode)
748446bb 693{
edc2ca61 694 struct zone *zone = cc->zone;
b7aba698 695 unsigned long nr_scanned = 0, nr_isolated = 0;
fa9add64 696 struct lruvec *lruvec;
b8b2d825 697 unsigned long flags = 0;
2a1402aa 698 bool locked = false;
bb13ffeb 699 struct page *page = NULL, *valid_page = NULL;
e34d85f0 700 unsigned long start_pfn = low_pfn;
fdd048e1
VB
701 bool skip_on_failure = false;
702 unsigned long next_skip_pfn = 0;
748446bb 703
748446bb
MG
704 /*
705 * Ensure that there are not too many pages isolated from the LRU
706 * list by either parallel reclaimers or compaction. If there are,
707 * delay for some time until fewer pages are isolated
708 */
709 while (unlikely(too_many_isolated(zone))) {
f9e35b3b 710 /* async migration should just abort */
e0b9daeb 711 if (cc->mode == MIGRATE_ASYNC)
2fe86e00 712 return 0;
f9e35b3b 713
748446bb
MG
714 congestion_wait(BLK_RW_ASYNC, HZ/10);
715
716 if (fatal_signal_pending(current))
2fe86e00 717 return 0;
748446bb
MG
718 }
719
be976572
VB
720 if (compact_should_abort(cc))
721 return 0;
aeef4b83 722
fdd048e1
VB
723 if (cc->direct_compaction && (cc->mode == MIGRATE_ASYNC)) {
724 skip_on_failure = true;
725 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
726 }
727
748446bb 728 /* Time to isolate some pages for migration */
748446bb 729 for (; low_pfn < end_pfn; low_pfn++) {
29c0dde8 730
fdd048e1
VB
731 if (skip_on_failure && low_pfn >= next_skip_pfn) {
732 /*
733 * We have isolated all migration candidates in the
734 * previous order-aligned block, and did not skip it due
735 * to failure. We should migrate the pages now and
736 * hopefully succeed compaction.
737 */
738 if (nr_isolated)
739 break;
740
741 /*
742 * We failed to isolate in the previous order-aligned
743 * block. Set the new boundary to the end of the
744 * current block. Note we can't simply increase
745 * next_skip_pfn by 1 << order, as low_pfn might have
746 * been incremented by a higher number due to skipping
747 * a compound or a high-order buddy page in the
748 * previous loop iteration.
749 */
750 next_skip_pfn = block_end_pfn(low_pfn, cc->order);
751 }
752
8b44d279
VB
753 /*
754 * Periodically drop the lock (if held) regardless of its
755 * contention, to give chance to IRQs. Abort async compaction
756 * if contended.
757 */
758 if (!(low_pfn % SWAP_CLUSTER_MAX)
a52633d8 759 && compact_unlock_should_abort(zone_lru_lock(zone), flags,
8b44d279
VB
760 &locked, cc))
761 break;
c67fe375 762
748446bb 763 if (!pfn_valid_within(low_pfn))
fdd048e1 764 goto isolate_fail;
b7aba698 765 nr_scanned++;
748446bb 766
748446bb 767 page = pfn_to_page(low_pfn);
dc908600 768
bb13ffeb
MG
769 if (!valid_page)
770 valid_page = page;
771
6c14466c 772 /*
99c0fd5e
VB
773 * Skip if free. We read page order here without zone lock
774 * which is generally unsafe, but the race window is small and
775 * the worst thing that can happen is that we skip some
776 * potential isolation targets.
6c14466c 777 */
99c0fd5e
VB
778 if (PageBuddy(page)) {
779 unsigned long freepage_order = page_order_unsafe(page);
780
781 /*
782 * Without lock, we cannot be sure that what we got is
783 * a valid page order. Consider only values in the
784 * valid order range to prevent low_pfn overflow.
785 */
786 if (freepage_order > 0 && freepage_order < MAX_ORDER)
787 low_pfn += (1UL << freepage_order) - 1;
748446bb 788 continue;
99c0fd5e 789 }
748446bb 790
bc835011 791 /*
29c0dde8
VB
792 * Regardless of being on LRU, compound pages such as THP and
793 * hugetlbfs are not to be compacted. We can potentially save
794 * a lot of iterations if we skip them at once. The check is
795 * racy, but we can consider only valid values and the only
796 * danger is skipping too much.
bc835011 797 */
29c0dde8 798 if (PageCompound(page)) {
21dc7e02 799 const unsigned int order = compound_order(page);
edc2ca61 800
d3c85bad 801 if (likely(order < MAX_ORDER))
21dc7e02 802 low_pfn += (1UL << order) - 1;
fdd048e1 803 goto isolate_fail;
2a1402aa
MG
804 }
805
bda807d4
MK
806 /*
807 * Check may be lockless but that's ok as we recheck later.
808 * It's possible to migrate LRU and non-lru movable pages.
809 * Skip any other type of page
810 */
811 if (!PageLRU(page)) {
bda807d4
MK
812 /*
813 * __PageMovable can return false positive so we need
814 * to verify it under page_lock.
815 */
816 if (unlikely(__PageMovable(page)) &&
817 !PageIsolated(page)) {
818 if (locked) {
a52633d8 819 spin_unlock_irqrestore(zone_lru_lock(zone),
bda807d4
MK
820 flags);
821 locked = false;
822 }
823
9e5bcd61 824 if (!isolate_movable_page(page, isolate_mode))
bda807d4
MK
825 goto isolate_success;
826 }
827
fdd048e1 828 goto isolate_fail;
bda807d4 829 }
29c0dde8 830
119d6d59
DR
831 /*
832 * Migration will fail if an anonymous page is pinned in memory,
833 * so avoid taking lru_lock and isolating it unnecessarily in an
834 * admittedly racy check.
835 */
836 if (!page_mapping(page) &&
837 page_count(page) > page_mapcount(page))
fdd048e1 838 goto isolate_fail;
119d6d59 839
73e64c51
MH
840 /*
841 * Only allow to migrate anonymous pages in GFP_NOFS context
842 * because those do not depend on fs locks.
843 */
844 if (!(cc->gfp_mask & __GFP_FS) && page_mapping(page))
845 goto isolate_fail;
846
69b7189f
VB
847 /* If we already hold the lock, we can skip some rechecking */
848 if (!locked) {
a52633d8 849 locked = compact_trylock_irqsave(zone_lru_lock(zone),
8b44d279 850 &flags, cc);
69b7189f
VB
851 if (!locked)
852 break;
2a1402aa 853
29c0dde8 854 /* Recheck PageLRU and PageCompound under lock */
69b7189f 855 if (!PageLRU(page))
fdd048e1 856 goto isolate_fail;
29c0dde8
VB
857
858 /*
859 * Page become compound since the non-locked check,
860 * and it's on LRU. It can only be a THP so the order
861 * is safe to read and it's 0 for tail pages.
862 */
863 if (unlikely(PageCompound(page))) {
d3c85bad 864 low_pfn += (1UL << compound_order(page)) - 1;
fdd048e1 865 goto isolate_fail;
69b7189f 866 }
bc835011
AA
867 }
868
599d0c95 869 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
fa9add64 870
748446bb 871 /* Try isolate the page */
edc2ca61 872 if (__isolate_lru_page(page, isolate_mode) != 0)
fdd048e1 873 goto isolate_fail;
748446bb 874
29c0dde8 875 VM_BUG_ON_PAGE(PageCompound(page), page);
bc835011 876
748446bb 877 /* Successfully isolated */
fa9add64 878 del_page_from_lru_list(page, lruvec, page_lru(page));
6afcf8ef
ML
879 inc_node_page_state(page,
880 NR_ISOLATED_ANON + page_is_file_cache(page));
b6c75016
JK
881
882isolate_success:
fdd048e1 883 list_add(&page->lru, &cc->migratepages);
748446bb 884 cc->nr_migratepages++;
b7aba698 885 nr_isolated++;
748446bb 886
a34753d2
VB
887 /*
888 * Record where we could have freed pages by migration and not
889 * yet flushed them to buddy allocator.
890 * - this is the lowest page that was isolated and likely be
891 * then freed by migration.
892 */
893 if (!cc->last_migrated_pfn)
894 cc->last_migrated_pfn = low_pfn;
895
748446bb 896 /* Avoid isolating too much */
31b8384a
HD
897 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
898 ++low_pfn;
748446bb 899 break;
31b8384a 900 }
fdd048e1
VB
901
902 continue;
903isolate_fail:
904 if (!skip_on_failure)
905 continue;
906
907 /*
908 * We have isolated some pages, but then failed. Release them
909 * instead of migrating, as we cannot form the cc->order buddy
910 * page anyway.
911 */
912 if (nr_isolated) {
913 if (locked) {
a52633d8 914 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
fdd048e1
VB
915 locked = false;
916 }
fdd048e1
VB
917 putback_movable_pages(&cc->migratepages);
918 cc->nr_migratepages = 0;
919 cc->last_migrated_pfn = 0;
920 nr_isolated = 0;
921 }
922
923 if (low_pfn < next_skip_pfn) {
924 low_pfn = next_skip_pfn - 1;
925 /*
926 * The check near the loop beginning would have updated
927 * next_skip_pfn too, but this is a bit simpler.
928 */
929 next_skip_pfn += 1UL << cc->order;
930 }
748446bb
MG
931 }
932
99c0fd5e
VB
933 /*
934 * The PageBuddy() check could have potentially brought us outside
935 * the range to be scanned.
936 */
937 if (unlikely(low_pfn > end_pfn))
938 low_pfn = end_pfn;
939
c67fe375 940 if (locked)
a52633d8 941 spin_unlock_irqrestore(zone_lru_lock(zone), flags);
748446bb 942
50b5b094
VB
943 /*
944 * Update the pageblock-skip information and cached scanner pfn,
945 * if the whole pageblock was scanned without isolating any page.
50b5b094 946 */
35979ef3 947 if (low_pfn == end_pfn)
edc2ca61 948 update_pageblock_skip(cc, valid_page, nr_isolated, true);
bb13ffeb 949
e34d85f0
JK
950 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
951 nr_scanned, nr_isolated);
b7aba698 952
7f354a54 953 cc->total_migrate_scanned += nr_scanned;
397487db 954 if (nr_isolated)
010fc29a 955 count_compact_events(COMPACTISOLATED, nr_isolated);
397487db 956
2fe86e00
MN
957 return low_pfn;
958}
959
edc2ca61
VB
960/**
961 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
962 * @cc: Compaction control structure.
963 * @start_pfn: The first PFN to start isolating.
964 * @end_pfn: The one-past-last PFN.
965 *
966 * Returns zero if isolation fails fatally due to e.g. pending signal.
967 * Otherwise, function returns one-past-the-last PFN of isolated page
968 * (which may be greater than end_pfn if end fell in a middle of a THP page).
969 */
970unsigned long
971isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
972 unsigned long end_pfn)
973{
e1409c32 974 unsigned long pfn, block_start_pfn, block_end_pfn;
edc2ca61
VB
975
976 /* Scan block by block. First and last block may be incomplete */
977 pfn = start_pfn;
06b6640a 978 block_start_pfn = pageblock_start_pfn(pfn);
e1409c32
JK
979 if (block_start_pfn < cc->zone->zone_start_pfn)
980 block_start_pfn = cc->zone->zone_start_pfn;
06b6640a 981 block_end_pfn = pageblock_end_pfn(pfn);
edc2ca61
VB
982
983 for (; pfn < end_pfn; pfn = block_end_pfn,
e1409c32 984 block_start_pfn = block_end_pfn,
edc2ca61
VB
985 block_end_pfn += pageblock_nr_pages) {
986
987 block_end_pfn = min(block_end_pfn, end_pfn);
988
e1409c32
JK
989 if (!pageblock_pfn_to_page(block_start_pfn,
990 block_end_pfn, cc->zone))
edc2ca61
VB
991 continue;
992
993 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
994 ISOLATE_UNEVICTABLE);
995
14af4a5e 996 if (!pfn)
edc2ca61 997 break;
6ea41c0c
JK
998
999 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
1000 break;
edc2ca61 1001 }
edc2ca61
VB
1002
1003 return pfn;
1004}
1005
ff9543fd
MN
1006#endif /* CONFIG_COMPACTION || CONFIG_CMA */
1007#ifdef CONFIG_COMPACTION
018e9a49 1008
b682debd
VB
1009static bool suitable_migration_source(struct compact_control *cc,
1010 struct page *page)
1011{
282722b0
VB
1012 int block_mt;
1013
1014 if ((cc->mode != MIGRATE_ASYNC) || !cc->direct_compaction)
b682debd
VB
1015 return true;
1016
282722b0
VB
1017 block_mt = get_pageblock_migratetype(page);
1018
1019 if (cc->migratetype == MIGRATE_MOVABLE)
1020 return is_migrate_movable(block_mt);
1021 else
1022 return block_mt == cc->migratetype;
b682debd
VB
1023}
1024
018e9a49 1025/* Returns true if the page is within a block suitable for migration to */
9f7e3387
VB
1026static bool suitable_migration_target(struct compact_control *cc,
1027 struct page *page)
018e9a49
AM
1028{
1029 /* If the page is a large free page, then disallow migration */
1030 if (PageBuddy(page)) {
1031 /*
1032 * We are checking page_order without zone->lock taken. But
1033 * the only small danger is that we skip a potentially suitable
1034 * pageblock, so it's not worth to check order for valid range.
1035 */
1036 if (page_order_unsafe(page) >= pageblock_order)
1037 return false;
1038 }
1039
1ef36db2
YX
1040 if (cc->ignore_block_suitable)
1041 return true;
1042
018e9a49 1043 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
b682debd 1044 if (is_migrate_movable(get_pageblock_migratetype(page)))
018e9a49
AM
1045 return true;
1046
1047 /* Otherwise skip the block */
1048 return false;
1049}
1050
f2849aa0
VB
1051/*
1052 * Test whether the free scanner has reached the same or lower pageblock than
1053 * the migration scanner, and compaction should thus terminate.
1054 */
1055static inline bool compact_scanners_met(struct compact_control *cc)
1056{
1057 return (cc->free_pfn >> pageblock_order)
1058 <= (cc->migrate_pfn >> pageblock_order);
1059}
1060
2fe86e00 1061/*
ff9543fd
MN
1062 * Based on information in the current compact_control, find blocks
1063 * suitable for isolating free pages from and then isolate them.
2fe86e00 1064 */
edc2ca61 1065static void isolate_freepages(struct compact_control *cc)
2fe86e00 1066{
edc2ca61 1067 struct zone *zone = cc->zone;
ff9543fd 1068 struct page *page;
c96b9e50 1069 unsigned long block_start_pfn; /* start of current pageblock */
e14c720e 1070 unsigned long isolate_start_pfn; /* exact pfn we start at */
c96b9e50
VB
1071 unsigned long block_end_pfn; /* end of current pageblock */
1072 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
ff9543fd 1073 struct list_head *freelist = &cc->freepages;
2fe86e00 1074
ff9543fd
MN
1075 /*
1076 * Initialise the free scanner. The starting point is where we last
49e068f0 1077 * successfully isolated from, zone-cached value, or the end of the
e14c720e
VB
1078 * zone when isolating for the first time. For looping we also need
1079 * this pfn aligned down to the pageblock boundary, because we do
c96b9e50
VB
1080 * block_start_pfn -= pageblock_nr_pages in the for loop.
1081 * For ending point, take care when isolating in last pageblock of a
1082 * a zone which ends in the middle of a pageblock.
49e068f0
VB
1083 * The low boundary is the end of the pageblock the migration scanner
1084 * is using.
ff9543fd 1085 */
e14c720e 1086 isolate_start_pfn = cc->free_pfn;
06b6640a 1087 block_start_pfn = pageblock_start_pfn(cc->free_pfn);
c96b9e50
VB
1088 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
1089 zone_end_pfn(zone));
06b6640a 1090 low_pfn = pageblock_end_pfn(cc->migrate_pfn);
2fe86e00 1091
ff9543fd
MN
1092 /*
1093 * Isolate free pages until enough are available to migrate the
1094 * pages on cc->migratepages. We stop searching if the migrate
1095 * and free page scanners meet or enough free pages are isolated.
1096 */
f5f61a32 1097 for (; block_start_pfn >= low_pfn;
c96b9e50 1098 block_end_pfn = block_start_pfn,
e14c720e
VB
1099 block_start_pfn -= pageblock_nr_pages,
1100 isolate_start_pfn = block_start_pfn) {
f6ea3adb
DR
1101 /*
1102 * This can iterate a massively long zone without finding any
1103 * suitable migration targets, so periodically check if we need
be976572 1104 * to schedule, or even abort async compaction.
f6ea3adb 1105 */
be976572
VB
1106 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1107 && compact_should_abort(cc))
1108 break;
f6ea3adb 1109
7d49d886
VB
1110 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1111 zone);
1112 if (!page)
ff9543fd
MN
1113 continue;
1114
1115 /* Check the block is suitable for migration */
9f7e3387 1116 if (!suitable_migration_target(cc, page))
ff9543fd 1117 continue;
68e3e926 1118
bb13ffeb
MG
1119 /* If isolation recently failed, do not retry */
1120 if (!isolation_suitable(cc, page))
1121 continue;
1122
e14c720e 1123 /* Found a block suitable for isolating free pages from. */
a46cbf3b
DR
1124 isolate_freepages_block(cc, &isolate_start_pfn, block_end_pfn,
1125 freelist, false);
ff9543fd 1126
e14c720e 1127 /*
a46cbf3b
DR
1128 * If we isolated enough freepages, or aborted due to lock
1129 * contention, terminate.
e14c720e 1130 */
f5f61a32
VB
1131 if ((cc->nr_freepages >= cc->nr_migratepages)
1132 || cc->contended) {
a46cbf3b
DR
1133 if (isolate_start_pfn >= block_end_pfn) {
1134 /*
1135 * Restart at previous pageblock if more
1136 * freepages can be isolated next time.
1137 */
f5f61a32
VB
1138 isolate_start_pfn =
1139 block_start_pfn - pageblock_nr_pages;
a46cbf3b 1140 }
be976572 1141 break;
a46cbf3b 1142 } else if (isolate_start_pfn < block_end_pfn) {
f5f61a32 1143 /*
a46cbf3b
DR
1144 * If isolation failed early, do not continue
1145 * needlessly.
f5f61a32 1146 */
a46cbf3b 1147 break;
f5f61a32 1148 }
ff9543fd
MN
1149 }
1150
66c64223 1151 /* __isolate_free_page() does not map the pages */
ff9543fd
MN
1152 map_pages(freelist);
1153
7ed695e0 1154 /*
f5f61a32
VB
1155 * Record where the free scanner will restart next time. Either we
1156 * broke from the loop and set isolate_start_pfn based on the last
1157 * call to isolate_freepages_block(), or we met the migration scanner
1158 * and the loop terminated due to isolate_start_pfn < low_pfn
7ed695e0 1159 */
f5f61a32 1160 cc->free_pfn = isolate_start_pfn;
748446bb
MG
1161}
1162
1163/*
1164 * This is a migrate-callback that "allocates" freepages by taking pages
1165 * from the isolated freelists in the block we are migrating to.
1166 */
1167static struct page *compaction_alloc(struct page *migratepage,
1168 unsigned long data,
1169 int **result)
1170{
1171 struct compact_control *cc = (struct compact_control *)data;
1172 struct page *freepage;
1173
be976572
VB
1174 /*
1175 * Isolate free pages if necessary, and if we are not aborting due to
1176 * contention.
1177 */
748446bb 1178 if (list_empty(&cc->freepages)) {
be976572 1179 if (!cc->contended)
edc2ca61 1180 isolate_freepages(cc);
748446bb
MG
1181
1182 if (list_empty(&cc->freepages))
1183 return NULL;
1184 }
1185
1186 freepage = list_entry(cc->freepages.next, struct page, lru);
1187 list_del(&freepage->lru);
1188 cc->nr_freepages--;
1189
1190 return freepage;
1191}
1192
1193/*
d53aea3d
DR
1194 * This is a migrate-callback that "frees" freepages back to the isolated
1195 * freelist. All pages on the freelist are from the same zone, so there is no
1196 * special handling needed for NUMA.
1197 */
1198static void compaction_free(struct page *page, unsigned long data)
1199{
1200 struct compact_control *cc = (struct compact_control *)data;
1201
1202 list_add(&page->lru, &cc->freepages);
1203 cc->nr_freepages++;
1204}
1205
ff9543fd
MN
1206/* possible outcome of isolate_migratepages */
1207typedef enum {
1208 ISOLATE_ABORT, /* Abort compaction now */
1209 ISOLATE_NONE, /* No pages isolated, continue scanning */
1210 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1211} isolate_migrate_t;
1212
5bbe3547
EM
1213/*
1214 * Allow userspace to control policy on scanning the unevictable LRU for
1215 * compactable pages.
1216 */
1217int sysctl_compact_unevictable_allowed __read_mostly = 1;
1218
ff9543fd 1219/*
edc2ca61
VB
1220 * Isolate all pages that can be migrated from the first suitable block,
1221 * starting at the block pointed to by the migrate scanner pfn within
1222 * compact_control.
ff9543fd
MN
1223 */
1224static isolate_migrate_t isolate_migratepages(struct zone *zone,
1225 struct compact_control *cc)
1226{
e1409c32
JK
1227 unsigned long block_start_pfn;
1228 unsigned long block_end_pfn;
1229 unsigned long low_pfn;
edc2ca61
VB
1230 struct page *page;
1231 const isolate_mode_t isolate_mode =
5bbe3547 1232 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1d2047fe 1233 (cc->mode != MIGRATE_SYNC ? ISOLATE_ASYNC_MIGRATE : 0);
ff9543fd 1234
edc2ca61
VB
1235 /*
1236 * Start at where we last stopped, or beginning of the zone as
1237 * initialized by compact_zone()
1238 */
1239 low_pfn = cc->migrate_pfn;
06b6640a 1240 block_start_pfn = pageblock_start_pfn(low_pfn);
e1409c32
JK
1241 if (block_start_pfn < zone->zone_start_pfn)
1242 block_start_pfn = zone->zone_start_pfn;
ff9543fd
MN
1243
1244 /* Only scan within a pageblock boundary */
06b6640a 1245 block_end_pfn = pageblock_end_pfn(low_pfn);
ff9543fd 1246
edc2ca61
VB
1247 /*
1248 * Iterate over whole pageblocks until we find the first suitable.
1249 * Do not cross the free scanner.
1250 */
e1409c32
JK
1251 for (; block_end_pfn <= cc->free_pfn;
1252 low_pfn = block_end_pfn,
1253 block_start_pfn = block_end_pfn,
1254 block_end_pfn += pageblock_nr_pages) {
ff9543fd 1255
edc2ca61
VB
1256 /*
1257 * This can potentially iterate a massively long zone with
1258 * many pageblocks unsuitable, so periodically check if we
1259 * need to schedule, or even abort async compaction.
1260 */
1261 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1262 && compact_should_abort(cc))
1263 break;
ff9543fd 1264
e1409c32
JK
1265 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
1266 zone);
7d49d886 1267 if (!page)
edc2ca61
VB
1268 continue;
1269
edc2ca61
VB
1270 /* If isolation recently failed, do not retry */
1271 if (!isolation_suitable(cc, page))
1272 continue;
1273
1274 /*
1275 * For async compaction, also only scan in MOVABLE blocks.
1276 * Async compaction is optimistic to see if the minimum amount
1277 * of work satisfies the allocation.
1278 */
b682debd 1279 if (!suitable_migration_source(cc, page))
edc2ca61
VB
1280 continue;
1281
1282 /* Perform the isolation */
e1409c32
JK
1283 low_pfn = isolate_migratepages_block(cc, low_pfn,
1284 block_end_pfn, isolate_mode);
edc2ca61 1285
6afcf8ef 1286 if (!low_pfn || cc->contended)
edc2ca61
VB
1287 return ISOLATE_ABORT;
1288
1289 /*
1290 * Either we isolated something and proceed with migration. Or
1291 * we failed and compact_zone should decide if we should
1292 * continue or not.
1293 */
1294 break;
1295 }
1296
f2849aa0
VB
1297 /* Record where migration scanner will be restarted. */
1298 cc->migrate_pfn = low_pfn;
ff9543fd 1299
edc2ca61 1300 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
ff9543fd
MN
1301}
1302
21c527a3
YB
1303/*
1304 * order == -1 is expected when compacting via
1305 * /proc/sys/vm/compact_memory
1306 */
1307static inline bool is_via_compact_memory(int order)
1308{
1309 return order == -1;
1310}
1311
d39773a0
VB
1312static enum compact_result __compact_finished(struct zone *zone,
1313 struct compact_control *cc)
748446bb 1314{
8fb74b9f 1315 unsigned int order;
d39773a0 1316 const int migratetype = cc->migratetype;
56de7263 1317
be976572 1318 if (cc->contended || fatal_signal_pending(current))
2d1e1041 1319 return COMPACT_CONTENDED;
748446bb 1320
753341a4 1321 /* Compaction run completes if the migrate and free scanner meet */
f2849aa0 1322 if (compact_scanners_met(cc)) {
55b7c4c9 1323 /* Let the next compaction start anew. */
02333641 1324 reset_cached_positions(zone);
55b7c4c9 1325
62997027
MG
1326 /*
1327 * Mark that the PG_migrate_skip information should be cleared
accf6242 1328 * by kswapd when it goes to sleep. kcompactd does not set the
62997027
MG
1329 * flag itself as the decision to be clear should be directly
1330 * based on an allocation request.
1331 */
accf6242 1332 if (cc->direct_compaction)
62997027
MG
1333 zone->compact_blockskip_flush = true;
1334
c8f7de0b
MH
1335 if (cc->whole_zone)
1336 return COMPACT_COMPLETE;
1337 else
1338 return COMPACT_PARTIAL_SKIPPED;
bb13ffeb 1339 }
748446bb 1340
21c527a3 1341 if (is_via_compact_memory(cc->order))
56de7263
MG
1342 return COMPACT_CONTINUE;
1343
baf6a9a1
VB
1344 if (cc->finishing_block) {
1345 /*
1346 * We have finished the pageblock, but better check again that
1347 * we really succeeded.
1348 */
1349 if (IS_ALIGNED(cc->migrate_pfn, pageblock_nr_pages))
1350 cc->finishing_block = false;
1351 else
1352 return COMPACT_CONTINUE;
1353 }
1354
56de7263 1355 /* Direct compactor: Is a suitable page free? */
8fb74b9f
MG
1356 for (order = cc->order; order < MAX_ORDER; order++) {
1357 struct free_area *area = &zone->free_area[order];
2149cdae 1358 bool can_steal;
8fb74b9f
MG
1359
1360 /* Job done if page is free of the right migratetype */
6d7ce559 1361 if (!list_empty(&area->free_list[migratetype]))
cf378319 1362 return COMPACT_SUCCESS;
8fb74b9f 1363
2149cdae
JK
1364#ifdef CONFIG_CMA
1365 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1366 if (migratetype == MIGRATE_MOVABLE &&
1367 !list_empty(&area->free_list[MIGRATE_CMA]))
cf378319 1368 return COMPACT_SUCCESS;
2149cdae
JK
1369#endif
1370 /*
1371 * Job done if allocation would steal freepages from
1372 * other migratetype buddy lists.
1373 */
1374 if (find_suitable_fallback(area, order, migratetype,
baf6a9a1
VB
1375 true, &can_steal) != -1) {
1376
1377 /* movable pages are OK in any pageblock */
1378 if (migratetype == MIGRATE_MOVABLE)
1379 return COMPACT_SUCCESS;
1380
1381 /*
1382 * We are stealing for a non-movable allocation. Make
1383 * sure we finish compacting the current pageblock
1384 * first so it is as free as possible and we won't
1385 * have to steal another one soon. This only applies
1386 * to sync compaction, as async compaction operates
1387 * on pageblocks of the same migratetype.
1388 */
1389 if (cc->mode == MIGRATE_ASYNC ||
1390 IS_ALIGNED(cc->migrate_pfn,
1391 pageblock_nr_pages)) {
1392 return COMPACT_SUCCESS;
1393 }
1394
1395 cc->finishing_block = true;
1396 return COMPACT_CONTINUE;
1397 }
56de7263
MG
1398 }
1399
837d026d
JK
1400 return COMPACT_NO_SUITABLE_PAGE;
1401}
1402
ea7ab982 1403static enum compact_result compact_finished(struct zone *zone,
d39773a0 1404 struct compact_control *cc)
837d026d
JK
1405{
1406 int ret;
1407
d39773a0 1408 ret = __compact_finished(zone, cc);
837d026d
JK
1409 trace_mm_compaction_finished(zone, cc->order, ret);
1410 if (ret == COMPACT_NO_SUITABLE_PAGE)
1411 ret = COMPACT_CONTINUE;
1412
1413 return ret;
748446bb
MG
1414}
1415
3e7d3449
MG
1416/*
1417 * compaction_suitable: Is this suitable to run compaction on this zone now?
1418 * Returns
1419 * COMPACT_SKIPPED - If there are too few free pages for compaction
cf378319 1420 * COMPACT_SUCCESS - If the allocation would succeed without compaction
3e7d3449
MG
1421 * COMPACT_CONTINUE - If compaction should run now
1422 */
ea7ab982 1423static enum compact_result __compaction_suitable(struct zone *zone, int order,
c603844b 1424 unsigned int alloc_flags,
86a294a8
MH
1425 int classzone_idx,
1426 unsigned long wmark_target)
3e7d3449 1427{
3e7d3449
MG
1428 unsigned long watermark;
1429
21c527a3 1430 if (is_via_compact_memory(order))
3957c776
MH
1431 return COMPACT_CONTINUE;
1432
f2b8228c 1433 watermark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
ebff3980
VB
1434 /*
1435 * If watermarks for high-order allocation are already met, there
1436 * should be no need for compaction at all.
1437 */
1438 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1439 alloc_flags))
cf378319 1440 return COMPACT_SUCCESS;
ebff3980 1441
3e7d3449 1442 /*
9861a62c 1443 * Watermarks for order-0 must be met for compaction to be able to
984fdba6
VB
1444 * isolate free pages for migration targets. This means that the
1445 * watermark and alloc_flags have to match, or be more pessimistic than
1446 * the check in __isolate_free_page(). We don't use the direct
1447 * compactor's alloc_flags, as they are not relevant for freepage
1448 * isolation. We however do use the direct compactor's classzone_idx to
1449 * skip over zones where lowmem reserves would prevent allocation even
1450 * if compaction succeeds.
8348faf9
VB
1451 * For costly orders, we require low watermark instead of min for
1452 * compaction to proceed to increase its chances.
984fdba6
VB
1453 * ALLOC_CMA is used, as pages in CMA pageblocks are considered
1454 * suitable migration targets
3e7d3449 1455 */
8348faf9
VB
1456 watermark = (order > PAGE_ALLOC_COSTLY_ORDER) ?
1457 low_wmark_pages(zone) : min_wmark_pages(zone);
1458 watermark += compact_gap(order);
86a294a8 1459 if (!__zone_watermark_ok(zone, 0, watermark, classzone_idx,
984fdba6 1460 ALLOC_CMA, wmark_target))
3e7d3449
MG
1461 return COMPACT_SKIPPED;
1462
cc5c9f09
VB
1463 return COMPACT_CONTINUE;
1464}
1465
1466enum compact_result compaction_suitable(struct zone *zone, int order,
1467 unsigned int alloc_flags,
1468 int classzone_idx)
1469{
1470 enum compact_result ret;
1471 int fragindex;
1472
1473 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx,
1474 zone_page_state(zone, NR_FREE_PAGES));
3e7d3449
MG
1475 /*
1476 * fragmentation index determines if allocation failures are due to
1477 * low memory or external fragmentation
1478 *
ebff3980
VB
1479 * index of -1000 would imply allocations might succeed depending on
1480 * watermarks, but we already failed the high-order watermark check
3e7d3449
MG
1481 * index towards 0 implies failure is due to lack of memory
1482 * index towards 1000 implies failure is due to fragmentation
1483 *
20311420
VB
1484 * Only compact if a failure would be due to fragmentation. Also
1485 * ignore fragindex for non-costly orders where the alternative to
1486 * a successful reclaim/compaction is OOM. Fragindex and the
1487 * vm.extfrag_threshold sysctl is meant as a heuristic to prevent
1488 * excessive compaction for costly orders, but it should not be at the
1489 * expense of system stability.
3e7d3449 1490 */
20311420 1491 if (ret == COMPACT_CONTINUE && (order > PAGE_ALLOC_COSTLY_ORDER)) {
cc5c9f09
VB
1492 fragindex = fragmentation_index(zone, order);
1493 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1494 ret = COMPACT_NOT_SUITABLE_ZONE;
1495 }
837d026d 1496
837d026d
JK
1497 trace_mm_compaction_suitable(zone, order, ret);
1498 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1499 ret = COMPACT_SKIPPED;
1500
1501 return ret;
1502}
1503
86a294a8
MH
1504bool compaction_zonelist_suitable(struct alloc_context *ac, int order,
1505 int alloc_flags)
1506{
1507 struct zone *zone;
1508 struct zoneref *z;
1509
1510 /*
1511 * Make sure at least one zone would pass __compaction_suitable if we continue
1512 * retrying the reclaim.
1513 */
1514 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1515 ac->nodemask) {
1516 unsigned long available;
1517 enum compact_result compact_result;
1518
1519 /*
1520 * Do not consider all the reclaimable memory because we do not
1521 * want to trash just for a single high order allocation which
1522 * is even not guaranteed to appear even if __compaction_suitable
1523 * is happy about the watermark check.
1524 */
5a1c84b4 1525 available = zone_reclaimable_pages(zone) / order;
86a294a8
MH
1526 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
1527 compact_result = __compaction_suitable(zone, order, alloc_flags,
1528 ac_classzone_idx(ac), available);
cc5c9f09 1529 if (compact_result != COMPACT_SKIPPED)
86a294a8
MH
1530 return true;
1531 }
1532
1533 return false;
1534}
1535
ea7ab982 1536static enum compact_result compact_zone(struct zone *zone, struct compact_control *cc)
748446bb 1537{
ea7ab982 1538 enum compact_result ret;
c89511ab 1539 unsigned long start_pfn = zone->zone_start_pfn;
108bcc96 1540 unsigned long end_pfn = zone_end_pfn(zone);
e0b9daeb 1541 const bool sync = cc->mode != MIGRATE_ASYNC;
748446bb 1542
d39773a0 1543 cc->migratetype = gfpflags_to_migratetype(cc->gfp_mask);
ebff3980
VB
1544 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1545 cc->classzone_idx);
c46649de 1546 /* Compaction is likely to fail */
cf378319 1547 if (ret == COMPACT_SUCCESS || ret == COMPACT_SKIPPED)
3e7d3449 1548 return ret;
c46649de
MH
1549
1550 /* huh, compaction_suitable is returning something unexpected */
1551 VM_BUG_ON(ret != COMPACT_CONTINUE);
3e7d3449 1552
d3132e4b
VB
1553 /*
1554 * Clear pageblock skip if there were failures recently and compaction
accf6242 1555 * is about to be retried after being deferred.
d3132e4b 1556 */
accf6242 1557 if (compaction_restarting(zone, cc->order))
d3132e4b
VB
1558 __reset_isolation_suitable(zone);
1559
c89511ab
MG
1560 /*
1561 * Setup to move all movable pages to the end of the zone. Used cached
06ed2998
VB
1562 * information on where the scanners should start (unless we explicitly
1563 * want to compact the whole zone), but check that it is initialised
1564 * by ensuring the values are within zone boundaries.
c89511ab 1565 */
06ed2998 1566 if (cc->whole_zone) {
c89511ab 1567 cc->migrate_pfn = start_pfn;
06ed2998
VB
1568 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1569 } else {
1570 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1571 cc->free_pfn = zone->compact_cached_free_pfn;
1572 if (cc->free_pfn < start_pfn || cc->free_pfn >= end_pfn) {
1573 cc->free_pfn = pageblock_start_pfn(end_pfn - 1);
1574 zone->compact_cached_free_pfn = cc->free_pfn;
1575 }
1576 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn >= end_pfn) {
1577 cc->migrate_pfn = start_pfn;
1578 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1579 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1580 }
c8f7de0b 1581
06ed2998
VB
1582 if (cc->migrate_pfn == start_pfn)
1583 cc->whole_zone = true;
1584 }
c8f7de0b 1585
1a16718c 1586 cc->last_migrated_pfn = 0;
748446bb 1587
16c4a097
JK
1588 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1589 cc->free_pfn, end_pfn, sync);
0eb927c0 1590
748446bb
MG
1591 migrate_prep_local();
1592
d39773a0 1593 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
9d502c1c 1594 int err;
748446bb 1595
f9e35b3b
MG
1596 switch (isolate_migratepages(zone, cc)) {
1597 case ISOLATE_ABORT:
2d1e1041 1598 ret = COMPACT_CONTENDED;
5733c7d1 1599 putback_movable_pages(&cc->migratepages);
e64c5237 1600 cc->nr_migratepages = 0;
f9e35b3b
MG
1601 goto out;
1602 case ISOLATE_NONE:
fdaf7f5c
VB
1603 /*
1604 * We haven't isolated and migrated anything, but
1605 * there might still be unflushed migrations from
1606 * previous cc->order aligned block.
1607 */
1608 goto check_drain;
f9e35b3b
MG
1609 case ISOLATE_SUCCESS:
1610 ;
1611 }
748446bb 1612
d53aea3d 1613 err = migrate_pages(&cc->migratepages, compaction_alloc,
e0b9daeb 1614 compaction_free, (unsigned long)cc, cc->mode,
7b2a2d4a 1615 MR_COMPACTION);
748446bb 1616
f8c9301f
VB
1617 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1618 &cc->migratepages);
748446bb 1619
f8c9301f
VB
1620 /* All pages were either migrated or will be released */
1621 cc->nr_migratepages = 0;
9d502c1c 1622 if (err) {
5733c7d1 1623 putback_movable_pages(&cc->migratepages);
7ed695e0
VB
1624 /*
1625 * migrate_pages() may return -ENOMEM when scanners meet
1626 * and we want compact_finished() to detect it
1627 */
f2849aa0 1628 if (err == -ENOMEM && !compact_scanners_met(cc)) {
2d1e1041 1629 ret = COMPACT_CONTENDED;
4bf2bba3
DR
1630 goto out;
1631 }
fdd048e1
VB
1632 /*
1633 * We failed to migrate at least one page in the current
1634 * order-aligned block, so skip the rest of it.
1635 */
1636 if (cc->direct_compaction &&
1637 (cc->mode == MIGRATE_ASYNC)) {
1638 cc->migrate_pfn = block_end_pfn(
1639 cc->migrate_pfn - 1, cc->order);
1640 /* Draining pcplists is useless in this case */
1641 cc->last_migrated_pfn = 0;
1642
1643 }
748446bb 1644 }
fdaf7f5c 1645
fdaf7f5c
VB
1646check_drain:
1647 /*
1648 * Has the migration scanner moved away from the previous
1649 * cc->order aligned block where we migrated from? If yes,
1650 * flush the pages that were freed, so that they can merge and
1651 * compact_finished() can detect immediately if allocation
1652 * would succeed.
1653 */
1a16718c 1654 if (cc->order > 0 && cc->last_migrated_pfn) {
fdaf7f5c
VB
1655 int cpu;
1656 unsigned long current_block_start =
06b6640a 1657 block_start_pfn(cc->migrate_pfn, cc->order);
fdaf7f5c 1658
1a16718c 1659 if (cc->last_migrated_pfn < current_block_start) {
fdaf7f5c
VB
1660 cpu = get_cpu();
1661 lru_add_drain_cpu(cpu);
1662 drain_local_pages(zone);
1663 put_cpu();
1664 /* No more flushing until we migrate again */
1a16718c 1665 cc->last_migrated_pfn = 0;
fdaf7f5c
VB
1666 }
1667 }
1668
748446bb
MG
1669 }
1670
f9e35b3b 1671out:
6bace090
VB
1672 /*
1673 * Release free pages and update where the free scanner should restart,
1674 * so we don't leave any returned pages behind in the next attempt.
1675 */
1676 if (cc->nr_freepages > 0) {
1677 unsigned long free_pfn = release_freepages(&cc->freepages);
1678
1679 cc->nr_freepages = 0;
1680 VM_BUG_ON(free_pfn == 0);
1681 /* The cached pfn is always the first in a pageblock */
06b6640a 1682 free_pfn = pageblock_start_pfn(free_pfn);
6bace090
VB
1683 /*
1684 * Only go back, not forward. The cached pfn might have been
1685 * already reset to zone end in compact_finished()
1686 */
1687 if (free_pfn > zone->compact_cached_free_pfn)
1688 zone->compact_cached_free_pfn = free_pfn;
1689 }
748446bb 1690
7f354a54
DR
1691 count_compact_events(COMPACTMIGRATE_SCANNED, cc->total_migrate_scanned);
1692 count_compact_events(COMPACTFREE_SCANNED, cc->total_free_scanned);
1693
16c4a097
JK
1694 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1695 cc->free_pfn, end_pfn, sync, ret);
0eb927c0 1696
748446bb
MG
1697 return ret;
1698}
76ab0f53 1699
ea7ab982 1700static enum compact_result compact_zone_order(struct zone *zone, int order,
c3486f53 1701 gfp_t gfp_mask, enum compact_priority prio,
c603844b 1702 unsigned int alloc_flags, int classzone_idx)
56de7263 1703{
ea7ab982 1704 enum compact_result ret;
56de7263
MG
1705 struct compact_control cc = {
1706 .nr_freepages = 0,
1707 .nr_migratepages = 0,
7f354a54
DR
1708 .total_migrate_scanned = 0,
1709 .total_free_scanned = 0,
56de7263 1710 .order = order,
6d7ce559 1711 .gfp_mask = gfp_mask,
56de7263 1712 .zone = zone,
a5508cd8
VB
1713 .mode = (prio == COMPACT_PRIO_ASYNC) ?
1714 MIGRATE_ASYNC : MIGRATE_SYNC_LIGHT,
ebff3980
VB
1715 .alloc_flags = alloc_flags,
1716 .classzone_idx = classzone_idx,
accf6242 1717 .direct_compaction = true,
a8e025e5 1718 .whole_zone = (prio == MIN_COMPACT_PRIORITY),
9f7e3387
VB
1719 .ignore_skip_hint = (prio == MIN_COMPACT_PRIORITY),
1720 .ignore_block_suitable = (prio == MIN_COMPACT_PRIORITY)
56de7263
MG
1721 };
1722 INIT_LIST_HEAD(&cc.freepages);
1723 INIT_LIST_HEAD(&cc.migratepages);
1724
e64c5237
SL
1725 ret = compact_zone(zone, &cc);
1726
1727 VM_BUG_ON(!list_empty(&cc.freepages));
1728 VM_BUG_ON(!list_empty(&cc.migratepages));
1729
e64c5237 1730 return ret;
56de7263
MG
1731}
1732
5e771905
MG
1733int sysctl_extfrag_threshold = 500;
1734
56de7263
MG
1735/**
1736 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
56de7263 1737 * @gfp_mask: The GFP mask of the current allocation
1a6d53a1
VB
1738 * @order: The order of the current allocation
1739 * @alloc_flags: The allocation flags of the current allocation
1740 * @ac: The context of current allocation
e0b9daeb 1741 * @mode: The migration mode for async, sync light, or sync migration
56de7263
MG
1742 *
1743 * This is the main entry point for direct page compaction.
1744 */
ea7ab982 1745enum compact_result try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
c603844b 1746 unsigned int alloc_flags, const struct alloc_context *ac,
c3486f53 1747 enum compact_priority prio)
56de7263 1748{
56de7263 1749 int may_perform_io = gfp_mask & __GFP_IO;
56de7263
MG
1750 struct zoneref *z;
1751 struct zone *zone;
1d4746d3 1752 enum compact_result rc = COMPACT_SKIPPED;
56de7263 1753
73e64c51
MH
1754 /*
1755 * Check if the GFP flags allow compaction - GFP_NOIO is really
1756 * tricky context because the migration might require IO
1757 */
1758 if (!may_perform_io)
53853e2d 1759 return COMPACT_SKIPPED;
56de7263 1760
a5508cd8 1761 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, prio);
837d026d 1762
56de7263 1763 /* Compact each zone in the list */
1a6d53a1
VB
1764 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1765 ac->nodemask) {
ea7ab982 1766 enum compact_result status;
56de7263 1767
a8e025e5
VB
1768 if (prio > MIN_COMPACT_PRIORITY
1769 && compaction_deferred(zone, order)) {
1d4746d3 1770 rc = max_t(enum compact_result, COMPACT_DEFERRED, rc);
53853e2d 1771 continue;
1d4746d3 1772 }
53853e2d 1773
a5508cd8 1774 status = compact_zone_order(zone, order, gfp_mask, prio,
c3486f53 1775 alloc_flags, ac_classzone_idx(ac));
56de7263
MG
1776 rc = max(status, rc);
1777
7ceb009a
VB
1778 /* The allocation should succeed, stop compacting */
1779 if (status == COMPACT_SUCCESS) {
53853e2d
VB
1780 /*
1781 * We think the allocation will succeed in this zone,
1782 * but it is not certain, hence the false. The caller
1783 * will repeat this with true if allocation indeed
1784 * succeeds in this zone.
1785 */
1786 compaction_defer_reset(zone, order, false);
1f9efdef 1787
c3486f53 1788 break;
1f9efdef
VB
1789 }
1790
a5508cd8 1791 if (prio != COMPACT_PRIO_ASYNC && (status == COMPACT_COMPLETE ||
c3486f53 1792 status == COMPACT_PARTIAL_SKIPPED))
53853e2d
VB
1793 /*
1794 * We think that allocation won't succeed in this zone
1795 * so we defer compaction there. If it ends up
1796 * succeeding after all, it will be reset.
1797 */
1798 defer_compaction(zone, order);
1f9efdef
VB
1799
1800 /*
1801 * We might have stopped compacting due to need_resched() in
1802 * async compaction, or due to a fatal signal detected. In that
c3486f53 1803 * case do not try further zones
1f9efdef 1804 */
c3486f53
VB
1805 if ((prio == COMPACT_PRIO_ASYNC && need_resched())
1806 || fatal_signal_pending(current))
1807 break;
56de7263
MG
1808 }
1809
1810 return rc;
1811}
1812
1813
76ab0f53 1814/* Compact all zones within a node */
791cae96 1815static void compact_node(int nid)
76ab0f53 1816{
791cae96 1817 pg_data_t *pgdat = NODE_DATA(nid);
76ab0f53 1818 int zoneid;
76ab0f53 1819 struct zone *zone;
791cae96
VB
1820 struct compact_control cc = {
1821 .order = -1,
7f354a54
DR
1822 .total_migrate_scanned = 0,
1823 .total_free_scanned = 0,
791cae96
VB
1824 .mode = MIGRATE_SYNC,
1825 .ignore_skip_hint = true,
1826 .whole_zone = true,
73e64c51 1827 .gfp_mask = GFP_KERNEL,
791cae96
VB
1828 };
1829
76ab0f53 1830
76ab0f53 1831 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
76ab0f53
MG
1832
1833 zone = &pgdat->node_zones[zoneid];
1834 if (!populated_zone(zone))
1835 continue;
1836
791cae96
VB
1837 cc.nr_freepages = 0;
1838 cc.nr_migratepages = 0;
1839 cc.zone = zone;
1840 INIT_LIST_HEAD(&cc.freepages);
1841 INIT_LIST_HEAD(&cc.migratepages);
76ab0f53 1842
791cae96 1843 compact_zone(zone, &cc);
75469345 1844
791cae96
VB
1845 VM_BUG_ON(!list_empty(&cc.freepages));
1846 VM_BUG_ON(!list_empty(&cc.migratepages));
76ab0f53 1847 }
76ab0f53
MG
1848}
1849
1850/* Compact all nodes in the system */
7964c06d 1851static void compact_nodes(void)
76ab0f53
MG
1852{
1853 int nid;
1854
8575ec29
HD
1855 /* Flush pending updates to the LRU lists */
1856 lru_add_drain_all();
1857
76ab0f53
MG
1858 for_each_online_node(nid)
1859 compact_node(nid);
76ab0f53
MG
1860}
1861
1862/* The written value is actually unused, all memory is compacted */
1863int sysctl_compact_memory;
1864
fec4eb2c
YB
1865/*
1866 * This is the entry point for compacting all nodes via
1867 * /proc/sys/vm/compact_memory
1868 */
76ab0f53
MG
1869int sysctl_compaction_handler(struct ctl_table *table, int write,
1870 void __user *buffer, size_t *length, loff_t *ppos)
1871{
1872 if (write)
7964c06d 1873 compact_nodes();
76ab0f53
MG
1874
1875 return 0;
1876}
ed4a6d7f 1877
5e771905
MG
1878int sysctl_extfrag_handler(struct ctl_table *table, int write,
1879 void __user *buffer, size_t *length, loff_t *ppos)
1880{
1881 proc_dointvec_minmax(table, write, buffer, length, ppos);
1882
1883 return 0;
1884}
1885
ed4a6d7f 1886#if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
74e77fb9 1887static ssize_t sysfs_compact_node(struct device *dev,
10fbcf4c 1888 struct device_attribute *attr,
ed4a6d7f
MG
1889 const char *buf, size_t count)
1890{
8575ec29
HD
1891 int nid = dev->id;
1892
1893 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1894 /* Flush pending updates to the LRU lists */
1895 lru_add_drain_all();
1896
1897 compact_node(nid);
1898 }
ed4a6d7f
MG
1899
1900 return count;
1901}
10fbcf4c 1902static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
ed4a6d7f
MG
1903
1904int compaction_register_node(struct node *node)
1905{
10fbcf4c 1906 return device_create_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
1907}
1908
1909void compaction_unregister_node(struct node *node)
1910{
10fbcf4c 1911 return device_remove_file(&node->dev, &dev_attr_compact);
ed4a6d7f
MG
1912}
1913#endif /* CONFIG_SYSFS && CONFIG_NUMA */
ff9543fd 1914
698b1b30
VB
1915static inline bool kcompactd_work_requested(pg_data_t *pgdat)
1916{
172400c6 1917 return pgdat->kcompactd_max_order > 0 || kthread_should_stop();
698b1b30
VB
1918}
1919
1920static bool kcompactd_node_suitable(pg_data_t *pgdat)
1921{
1922 int zoneid;
1923 struct zone *zone;
1924 enum zone_type classzone_idx = pgdat->kcompactd_classzone_idx;
1925
6cd9dc3e 1926 for (zoneid = 0; zoneid <= classzone_idx; zoneid++) {
698b1b30
VB
1927 zone = &pgdat->node_zones[zoneid];
1928
1929 if (!populated_zone(zone))
1930 continue;
1931
1932 if (compaction_suitable(zone, pgdat->kcompactd_max_order, 0,
1933 classzone_idx) == COMPACT_CONTINUE)
1934 return true;
1935 }
1936
1937 return false;
1938}
1939
1940static void kcompactd_do_work(pg_data_t *pgdat)
1941{
1942 /*
1943 * With no special task, compact all zones so that a page of requested
1944 * order is allocatable.
1945 */
1946 int zoneid;
1947 struct zone *zone;
1948 struct compact_control cc = {
1949 .order = pgdat->kcompactd_max_order,
7f354a54
DR
1950 .total_migrate_scanned = 0,
1951 .total_free_scanned = 0,
698b1b30
VB
1952 .classzone_idx = pgdat->kcompactd_classzone_idx,
1953 .mode = MIGRATE_SYNC_LIGHT,
a0647dc9 1954 .ignore_skip_hint = false,
73e64c51 1955 .gfp_mask = GFP_KERNEL,
698b1b30 1956 };
698b1b30
VB
1957 trace_mm_compaction_kcompactd_wake(pgdat->node_id, cc.order,
1958 cc.classzone_idx);
7f354a54 1959 count_compact_event(KCOMPACTD_WAKE);
698b1b30 1960
6cd9dc3e 1961 for (zoneid = 0; zoneid <= cc.classzone_idx; zoneid++) {
698b1b30
VB
1962 int status;
1963
1964 zone = &pgdat->node_zones[zoneid];
1965 if (!populated_zone(zone))
1966 continue;
1967
1968 if (compaction_deferred(zone, cc.order))
1969 continue;
1970
1971 if (compaction_suitable(zone, cc.order, 0, zoneid) !=
1972 COMPACT_CONTINUE)
1973 continue;
1974
1975 cc.nr_freepages = 0;
1976 cc.nr_migratepages = 0;
7f354a54
DR
1977 cc.total_migrate_scanned = 0;
1978 cc.total_free_scanned = 0;
698b1b30
VB
1979 cc.zone = zone;
1980 INIT_LIST_HEAD(&cc.freepages);
1981 INIT_LIST_HEAD(&cc.migratepages);
1982
172400c6
VB
1983 if (kthread_should_stop())
1984 return;
698b1b30
VB
1985 status = compact_zone(zone, &cc);
1986
7ceb009a 1987 if (status == COMPACT_SUCCESS) {
698b1b30 1988 compaction_defer_reset(zone, cc.order, false);
c8f7de0b 1989 } else if (status == COMPACT_PARTIAL_SKIPPED || status == COMPACT_COMPLETE) {
698b1b30
VB
1990 /*
1991 * We use sync migration mode here, so we defer like
1992 * sync direct compaction does.
1993 */
1994 defer_compaction(zone, cc.order);
1995 }
1996
7f354a54
DR
1997 count_compact_events(KCOMPACTD_MIGRATE_SCANNED,
1998 cc.total_migrate_scanned);
1999 count_compact_events(KCOMPACTD_FREE_SCANNED,
2000 cc.total_free_scanned);
2001
698b1b30
VB
2002 VM_BUG_ON(!list_empty(&cc.freepages));
2003 VM_BUG_ON(!list_empty(&cc.migratepages));
2004 }
2005
2006 /*
2007 * Regardless of success, we are done until woken up next. But remember
2008 * the requested order/classzone_idx in case it was higher/tighter than
2009 * our current ones
2010 */
2011 if (pgdat->kcompactd_max_order <= cc.order)
2012 pgdat->kcompactd_max_order = 0;
2013 if (pgdat->kcompactd_classzone_idx >= cc.classzone_idx)
2014 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2015}
2016
2017void wakeup_kcompactd(pg_data_t *pgdat, int order, int classzone_idx)
2018{
2019 if (!order)
2020 return;
2021
2022 if (pgdat->kcompactd_max_order < order)
2023 pgdat->kcompactd_max_order = order;
2024
2025 if (pgdat->kcompactd_classzone_idx > classzone_idx)
2026 pgdat->kcompactd_classzone_idx = classzone_idx;
2027
6818600f
DB
2028 /*
2029 * Pairs with implicit barrier in wait_event_freezable()
2030 * such that wakeups are not missed.
2031 */
2032 if (!wq_has_sleeper(&pgdat->kcompactd_wait))
698b1b30
VB
2033 return;
2034
2035 if (!kcompactd_node_suitable(pgdat))
2036 return;
2037
2038 trace_mm_compaction_wakeup_kcompactd(pgdat->node_id, order,
2039 classzone_idx);
2040 wake_up_interruptible(&pgdat->kcompactd_wait);
2041}
2042
2043/*
2044 * The background compaction daemon, started as a kernel thread
2045 * from the init process.
2046 */
2047static int kcompactd(void *p)
2048{
2049 pg_data_t *pgdat = (pg_data_t*)p;
2050 struct task_struct *tsk = current;
2051
2052 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
2053
2054 if (!cpumask_empty(cpumask))
2055 set_cpus_allowed_ptr(tsk, cpumask);
2056
2057 set_freezable();
2058
2059 pgdat->kcompactd_max_order = 0;
2060 pgdat->kcompactd_classzone_idx = pgdat->nr_zones - 1;
2061
2062 while (!kthread_should_stop()) {
2063 trace_mm_compaction_kcompactd_sleep(pgdat->node_id);
2064 wait_event_freezable(pgdat->kcompactd_wait,
2065 kcompactd_work_requested(pgdat));
2066
2067 kcompactd_do_work(pgdat);
2068 }
2069
2070 return 0;
2071}
2072
2073/*
2074 * This kcompactd start function will be called by init and node-hot-add.
2075 * On node-hot-add, kcompactd will moved to proper cpus if cpus are hot-added.
2076 */
2077int kcompactd_run(int nid)
2078{
2079 pg_data_t *pgdat = NODE_DATA(nid);
2080 int ret = 0;
2081
2082 if (pgdat->kcompactd)
2083 return 0;
2084
2085 pgdat->kcompactd = kthread_run(kcompactd, pgdat, "kcompactd%d", nid);
2086 if (IS_ERR(pgdat->kcompactd)) {
2087 pr_err("Failed to start kcompactd on node %d\n", nid);
2088 ret = PTR_ERR(pgdat->kcompactd);
2089 pgdat->kcompactd = NULL;
2090 }
2091 return ret;
2092}
2093
2094/*
2095 * Called by memory hotplug when all memory in a node is offlined. Caller must
2096 * hold mem_hotplug_begin/end().
2097 */
2098void kcompactd_stop(int nid)
2099{
2100 struct task_struct *kcompactd = NODE_DATA(nid)->kcompactd;
2101
2102 if (kcompactd) {
2103 kthread_stop(kcompactd);
2104 NODE_DATA(nid)->kcompactd = NULL;
2105 }
2106}
2107
2108/*
2109 * It's optimal to keep kcompactd on the same CPUs as their memory, but
2110 * not required for correctness. So if the last cpu in a node goes
2111 * away, we get changed to run anywhere: as the first one comes back,
2112 * restore their cpu bindings.
2113 */
e46b1db2 2114static int kcompactd_cpu_online(unsigned int cpu)
698b1b30
VB
2115{
2116 int nid;
2117
e46b1db2
AMG
2118 for_each_node_state(nid, N_MEMORY) {
2119 pg_data_t *pgdat = NODE_DATA(nid);
2120 const struct cpumask *mask;
698b1b30 2121
e46b1db2 2122 mask = cpumask_of_node(pgdat->node_id);
698b1b30 2123
e46b1db2
AMG
2124 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
2125 /* One of our CPUs online: restore mask */
2126 set_cpus_allowed_ptr(pgdat->kcompactd, mask);
698b1b30 2127 }
e46b1db2 2128 return 0;
698b1b30
VB
2129}
2130
2131static int __init kcompactd_init(void)
2132{
2133 int nid;
e46b1db2
AMG
2134 int ret;
2135
2136 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
2137 "mm/compaction:online",
2138 kcompactd_cpu_online, NULL);
2139 if (ret < 0) {
2140 pr_err("kcompactd: failed to register hotplug callbacks.\n");
2141 return ret;
2142 }
698b1b30
VB
2143
2144 for_each_node_state(nid, N_MEMORY)
2145 kcompactd_run(nid);
698b1b30
VB
2146 return 0;
2147}
2148subsys_initcall(kcompactd_init)
2149
ff9543fd 2150#endif /* CONFIG_COMPACTION */