]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/hugetlb.c
mm/memblock.c: use PFN_PHYS()
[mirror_ubuntu-bionic-kernel.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
7#include <linux/module.h>
8#include <linux/mm.h>
e1759c21 9#include <linux/seq_file.h>
1da177e4
LT
10#include <linux/sysctl.h>
11#include <linux/highmem.h>
cddb8a5c 12#include <linux/mmu_notifier.h>
1da177e4 13#include <linux/nodemask.h>
63551ae0 14#include <linux/pagemap.h>
5da7ca86 15#include <linux/mempolicy.h>
3b32123d 16#include <linux/compiler.h>
aea47ff3 17#include <linux/cpuset.h>
3935baa9 18#include <linux/mutex.h>
aa888a74 19#include <linux/bootmem.h>
a3437870 20#include <linux/sysfs.h>
5a0e3ad6 21#include <linux/slab.h>
0fe6e20b 22#include <linux/rmap.h>
fd6a03ed
NH
23#include <linux/swap.h>
24#include <linux/swapops.h>
c8721bbb 25#include <linux/page-isolation.h>
8382d914 26#include <linux/jhash.h>
d6606683 27
63551ae0
DG
28#include <asm/page.h>
29#include <asm/pgtable.h>
24669e58 30#include <asm/tlb.h>
63551ae0 31
24669e58 32#include <linux/io.h>
63551ae0 33#include <linux/hugetlb.h>
9dd540e2 34#include <linux/hugetlb_cgroup.h>
9a305230 35#include <linux/node.h>
7835e98b 36#include "internal.h"
1da177e4
LT
37
38const unsigned long hugetlb_zero = 0, hugetlb_infinity = ~0UL;
396faf03 39unsigned long hugepages_treat_as_movable;
a5516438 40
c3f38a38 41int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
42unsigned int default_hstate_idx;
43struct hstate hstates[HUGE_MAX_HSTATE];
44
53ba51d2
JT
45__initdata LIST_HEAD(huge_boot_pages);
46
e5ff2159
AK
47/* for command line parsing */
48static struct hstate * __initdata parsed_hstate;
49static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 50static unsigned long __initdata default_hstate_size;
e5ff2159 51
3935baa9 52/*
31caf665
NH
53 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
54 * free_huge_pages, and surplus_huge_pages.
3935baa9 55 */
c3f38a38 56DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 57
8382d914
DB
58/*
59 * Serializes faults on the same logical page. This is used to
60 * prevent spurious OOMs when the hugepage pool is fully utilized.
61 */
62static int num_fault_mutexes;
63static struct mutex *htlb_fault_mutex_table ____cacheline_aligned_in_smp;
64
90481622
DG
65static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
66{
67 bool free = (spool->count == 0) && (spool->used_hpages == 0);
68
69 spin_unlock(&spool->lock);
70
71 /* If no pages are used, and no other handles to the subpool
72 * remain, free the subpool the subpool remain */
73 if (free)
74 kfree(spool);
75}
76
77struct hugepage_subpool *hugepage_new_subpool(long nr_blocks)
78{
79 struct hugepage_subpool *spool;
80
81 spool = kmalloc(sizeof(*spool), GFP_KERNEL);
82 if (!spool)
83 return NULL;
84
85 spin_lock_init(&spool->lock);
86 spool->count = 1;
87 spool->max_hpages = nr_blocks;
88 spool->used_hpages = 0;
89
90 return spool;
91}
92
93void hugepage_put_subpool(struct hugepage_subpool *spool)
94{
95 spin_lock(&spool->lock);
96 BUG_ON(!spool->count);
97 spool->count--;
98 unlock_or_release_subpool(spool);
99}
100
101static int hugepage_subpool_get_pages(struct hugepage_subpool *spool,
102 long delta)
103{
104 int ret = 0;
105
106 if (!spool)
107 return 0;
108
109 spin_lock(&spool->lock);
110 if ((spool->used_hpages + delta) <= spool->max_hpages) {
111 spool->used_hpages += delta;
112 } else {
113 ret = -ENOMEM;
114 }
115 spin_unlock(&spool->lock);
116
117 return ret;
118}
119
120static void hugepage_subpool_put_pages(struct hugepage_subpool *spool,
121 long delta)
122{
123 if (!spool)
124 return;
125
126 spin_lock(&spool->lock);
127 spool->used_hpages -= delta;
128 /* If hugetlbfs_put_super couldn't free spool due to
129 * an outstanding quota reference, free it now. */
130 unlock_or_release_subpool(spool);
131}
132
133static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
134{
135 return HUGETLBFS_SB(inode->i_sb)->spool;
136}
137
138static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
139{
496ad9aa 140 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
141}
142
96822904
AW
143/*
144 * Region tracking -- allows tracking of reservations and instantiated pages
145 * across the pages in a mapping.
84afd99b 146 *
7b24d861
DB
147 * The region data structures are embedded into a resv_map and
148 * protected by a resv_map's lock
96822904
AW
149 */
150struct file_region {
151 struct list_head link;
152 long from;
153 long to;
154};
155
1406ec9b 156static long region_add(struct resv_map *resv, long f, long t)
96822904 157{
1406ec9b 158 struct list_head *head = &resv->regions;
96822904
AW
159 struct file_region *rg, *nrg, *trg;
160
7b24d861 161 spin_lock(&resv->lock);
96822904
AW
162 /* Locate the region we are either in or before. */
163 list_for_each_entry(rg, head, link)
164 if (f <= rg->to)
165 break;
166
167 /* Round our left edge to the current segment if it encloses us. */
168 if (f > rg->from)
169 f = rg->from;
170
171 /* Check for and consume any regions we now overlap with. */
172 nrg = rg;
173 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
174 if (&rg->link == head)
175 break;
176 if (rg->from > t)
177 break;
178
179 /* If this area reaches higher then extend our area to
180 * include it completely. If this is not the first area
181 * which we intend to reuse, free it. */
182 if (rg->to > t)
183 t = rg->to;
184 if (rg != nrg) {
185 list_del(&rg->link);
186 kfree(rg);
187 }
188 }
189 nrg->from = f;
190 nrg->to = t;
7b24d861 191 spin_unlock(&resv->lock);
96822904
AW
192 return 0;
193}
194
1406ec9b 195static long region_chg(struct resv_map *resv, long f, long t)
96822904 196{
1406ec9b 197 struct list_head *head = &resv->regions;
7b24d861 198 struct file_region *rg, *nrg = NULL;
96822904
AW
199 long chg = 0;
200
7b24d861
DB
201retry:
202 spin_lock(&resv->lock);
96822904
AW
203 /* Locate the region we are before or in. */
204 list_for_each_entry(rg, head, link)
205 if (f <= rg->to)
206 break;
207
208 /* If we are below the current region then a new region is required.
209 * Subtle, allocate a new region at the position but make it zero
210 * size such that we can guarantee to record the reservation. */
211 if (&rg->link == head || t < rg->from) {
7b24d861
DB
212 if (!nrg) {
213 spin_unlock(&resv->lock);
214 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
215 if (!nrg)
216 return -ENOMEM;
217
218 nrg->from = f;
219 nrg->to = f;
220 INIT_LIST_HEAD(&nrg->link);
221 goto retry;
222 }
96822904 223
7b24d861
DB
224 list_add(&nrg->link, rg->link.prev);
225 chg = t - f;
226 goto out_nrg;
96822904
AW
227 }
228
229 /* Round our left edge to the current segment if it encloses us. */
230 if (f > rg->from)
231 f = rg->from;
232 chg = t - f;
233
234 /* Check for and consume any regions we now overlap with. */
235 list_for_each_entry(rg, rg->link.prev, link) {
236 if (&rg->link == head)
237 break;
238 if (rg->from > t)
7b24d861 239 goto out;
96822904 240
25985edc 241 /* We overlap with this area, if it extends further than
96822904
AW
242 * us then we must extend ourselves. Account for its
243 * existing reservation. */
244 if (rg->to > t) {
245 chg += rg->to - t;
246 t = rg->to;
247 }
248 chg -= rg->to - rg->from;
249 }
7b24d861
DB
250
251out:
252 spin_unlock(&resv->lock);
253 /* We already know we raced and no longer need the new region */
254 kfree(nrg);
255 return chg;
256out_nrg:
257 spin_unlock(&resv->lock);
96822904
AW
258 return chg;
259}
260
1406ec9b 261static long region_truncate(struct resv_map *resv, long end)
96822904 262{
1406ec9b 263 struct list_head *head = &resv->regions;
96822904
AW
264 struct file_region *rg, *trg;
265 long chg = 0;
266
7b24d861 267 spin_lock(&resv->lock);
96822904
AW
268 /* Locate the region we are either in or before. */
269 list_for_each_entry(rg, head, link)
270 if (end <= rg->to)
271 break;
272 if (&rg->link == head)
7b24d861 273 goto out;
96822904
AW
274
275 /* If we are in the middle of a region then adjust it. */
276 if (end > rg->from) {
277 chg = rg->to - end;
278 rg->to = end;
279 rg = list_entry(rg->link.next, typeof(*rg), link);
280 }
281
282 /* Drop any remaining regions. */
283 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
284 if (&rg->link == head)
285 break;
286 chg += rg->to - rg->from;
287 list_del(&rg->link);
288 kfree(rg);
289 }
7b24d861
DB
290
291out:
292 spin_unlock(&resv->lock);
96822904
AW
293 return chg;
294}
295
1406ec9b 296static long region_count(struct resv_map *resv, long f, long t)
84afd99b 297{
1406ec9b 298 struct list_head *head = &resv->regions;
84afd99b
AW
299 struct file_region *rg;
300 long chg = 0;
301
7b24d861 302 spin_lock(&resv->lock);
84afd99b
AW
303 /* Locate each segment we overlap with, and count that overlap. */
304 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
305 long seg_from;
306 long seg_to;
84afd99b
AW
307
308 if (rg->to <= f)
309 continue;
310 if (rg->from >= t)
311 break;
312
313 seg_from = max(rg->from, f);
314 seg_to = min(rg->to, t);
315
316 chg += seg_to - seg_from;
317 }
7b24d861 318 spin_unlock(&resv->lock);
84afd99b
AW
319
320 return chg;
321}
322
e7c4b0bf
AW
323/*
324 * Convert the address within this vma to the page offset within
325 * the mapping, in pagecache page units; huge pages here.
326 */
a5516438
AK
327static pgoff_t vma_hugecache_offset(struct hstate *h,
328 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 329{
a5516438
AK
330 return ((address - vma->vm_start) >> huge_page_shift(h)) +
331 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
332}
333
0fe6e20b
NH
334pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
335 unsigned long address)
336{
337 return vma_hugecache_offset(hstate_vma(vma), vma, address);
338}
339
08fba699
MG
340/*
341 * Return the size of the pages allocated when backing a VMA. In the majority
342 * cases this will be same size as used by the page table entries.
343 */
344unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
345{
346 struct hstate *hstate;
347
348 if (!is_vm_hugetlb_page(vma))
349 return PAGE_SIZE;
350
351 hstate = hstate_vma(vma);
352
2415cf12 353 return 1UL << huge_page_shift(hstate);
08fba699 354}
f340ca0f 355EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 356
3340289d
MG
357/*
358 * Return the page size being used by the MMU to back a VMA. In the majority
359 * of cases, the page size used by the kernel matches the MMU size. On
360 * architectures where it differs, an architecture-specific version of this
361 * function is required.
362 */
363#ifndef vma_mmu_pagesize
364unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
365{
366 return vma_kernel_pagesize(vma);
367}
368#endif
369
84afd99b
AW
370/*
371 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
372 * bits of the reservation map pointer, which are always clear due to
373 * alignment.
374 */
375#define HPAGE_RESV_OWNER (1UL << 0)
376#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 377#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 378
a1e78772
MG
379/*
380 * These helpers are used to track how many pages are reserved for
381 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
382 * is guaranteed to have their future faults succeed.
383 *
384 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
385 * the reserve counters are updated with the hugetlb_lock held. It is safe
386 * to reset the VMA at fork() time as it is not in use yet and there is no
387 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
388 *
389 * The private mapping reservation is represented in a subtly different
390 * manner to a shared mapping. A shared mapping has a region map associated
391 * with the underlying file, this region map represents the backing file
392 * pages which have ever had a reservation assigned which this persists even
393 * after the page is instantiated. A private mapping has a region map
394 * associated with the original mmap which is attached to all VMAs which
395 * reference it, this region map represents those offsets which have consumed
396 * reservation ie. where pages have been instantiated.
a1e78772 397 */
e7c4b0bf
AW
398static unsigned long get_vma_private_data(struct vm_area_struct *vma)
399{
400 return (unsigned long)vma->vm_private_data;
401}
402
403static void set_vma_private_data(struct vm_area_struct *vma,
404 unsigned long value)
405{
406 vma->vm_private_data = (void *)value;
407}
408
9119a41e 409struct resv_map *resv_map_alloc(void)
84afd99b
AW
410{
411 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
412 if (!resv_map)
413 return NULL;
414
415 kref_init(&resv_map->refs);
7b24d861 416 spin_lock_init(&resv_map->lock);
84afd99b
AW
417 INIT_LIST_HEAD(&resv_map->regions);
418
419 return resv_map;
420}
421
9119a41e 422void resv_map_release(struct kref *ref)
84afd99b
AW
423{
424 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
425
426 /* Clear out any active regions before we release the map. */
1406ec9b 427 region_truncate(resv_map, 0);
84afd99b
AW
428 kfree(resv_map);
429}
430
4e35f483
JK
431static inline struct resv_map *inode_resv_map(struct inode *inode)
432{
433 return inode->i_mapping->private_data;
434}
435
84afd99b 436static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772
MG
437{
438 VM_BUG_ON(!is_vm_hugetlb_page(vma));
4e35f483
JK
439 if (vma->vm_flags & VM_MAYSHARE) {
440 struct address_space *mapping = vma->vm_file->f_mapping;
441 struct inode *inode = mapping->host;
442
443 return inode_resv_map(inode);
444
445 } else {
84afd99b
AW
446 return (struct resv_map *)(get_vma_private_data(vma) &
447 ~HPAGE_RESV_MASK);
4e35f483 448 }
a1e78772
MG
449}
450
84afd99b 451static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772
MG
452{
453 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 454 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
a1e78772 455
84afd99b
AW
456 set_vma_private_data(vma, (get_vma_private_data(vma) &
457 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
458}
459
460static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
461{
04f2cbe3 462 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 463 VM_BUG_ON(vma->vm_flags & VM_MAYSHARE);
e7c4b0bf
AW
464
465 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
466}
467
468static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
469{
470 VM_BUG_ON(!is_vm_hugetlb_page(vma));
e7c4b0bf
AW
471
472 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
473}
474
04f2cbe3 475/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
476void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
477{
478 VM_BUG_ON(!is_vm_hugetlb_page(vma));
f83a275d 479 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
480 vma->vm_private_data = (void *)0;
481}
482
483/* Returns true if the VMA has associated reserve pages */
af0ed73e 484static int vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 485{
af0ed73e
JK
486 if (vma->vm_flags & VM_NORESERVE) {
487 /*
488 * This address is already reserved by other process(chg == 0),
489 * so, we should decrement reserved count. Without decrementing,
490 * reserve count remains after releasing inode, because this
491 * allocated page will go into page cache and is regarded as
492 * coming from reserved pool in releasing step. Currently, we
493 * don't have any other solution to deal with this situation
494 * properly, so add work-around here.
495 */
496 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
497 return 1;
498 else
499 return 0;
500 }
a63884e9
JK
501
502 /* Shared mappings always use reserves */
f83a275d 503 if (vma->vm_flags & VM_MAYSHARE)
7f09ca51 504 return 1;
a63884e9
JK
505
506 /*
507 * Only the process that called mmap() has reserves for
508 * private mappings.
509 */
7f09ca51
MG
510 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
511 return 1;
a63884e9 512
7f09ca51 513 return 0;
a1e78772
MG
514}
515
a5516438 516static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
517{
518 int nid = page_to_nid(page);
0edaecfa 519 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
520 h->free_huge_pages++;
521 h->free_huge_pages_node[nid]++;
1da177e4
LT
522}
523
bf50bab2
NH
524static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
525{
526 struct page *page;
527
c8721bbb
NH
528 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
529 if (!is_migrate_isolate_page(page))
530 break;
531 /*
532 * if 'non-isolated free hugepage' not found on the list,
533 * the allocation fails.
534 */
535 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 536 return NULL;
0edaecfa 537 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 538 set_page_refcounted(page);
bf50bab2
NH
539 h->free_huge_pages--;
540 h->free_huge_pages_node[nid]--;
541 return page;
542}
543
86cdb465
NH
544/* Movability of hugepages depends on migration support. */
545static inline gfp_t htlb_alloc_mask(struct hstate *h)
546{
547 if (hugepages_treat_as_movable || hugepage_migration_support(h))
548 return GFP_HIGHUSER_MOVABLE;
549 else
550 return GFP_HIGHUSER;
551}
552
a5516438
AK
553static struct page *dequeue_huge_page_vma(struct hstate *h,
554 struct vm_area_struct *vma,
af0ed73e
JK
555 unsigned long address, int avoid_reserve,
556 long chg)
1da177e4 557{
b1c12cbc 558 struct page *page = NULL;
480eccf9 559 struct mempolicy *mpol;
19770b32 560 nodemask_t *nodemask;
c0ff7453 561 struct zonelist *zonelist;
dd1a239f
MG
562 struct zone *zone;
563 struct zoneref *z;
cc9a6c87 564 unsigned int cpuset_mems_cookie;
1da177e4 565
a1e78772
MG
566 /*
567 * A child process with MAP_PRIVATE mappings created by their parent
568 * have no page reserves. This check ensures that reservations are
569 * not "stolen". The child may still get SIGKILLed
570 */
af0ed73e 571 if (!vma_has_reserves(vma, chg) &&
a5516438 572 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 573 goto err;
a1e78772 574
04f2cbe3 575 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 576 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 577 goto err;
04f2cbe3 578
9966c4bb 579retry_cpuset:
d26914d1 580 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 581 zonelist = huge_zonelist(vma, address,
86cdb465 582 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 583
19770b32
MG
584 for_each_zone_zonelist_nodemask(zone, z, zonelist,
585 MAX_NR_ZONES - 1, nodemask) {
86cdb465 586 if (cpuset_zone_allowed_softwall(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
587 page = dequeue_huge_page_node(h, zone_to_nid(zone));
588 if (page) {
af0ed73e
JK
589 if (avoid_reserve)
590 break;
591 if (!vma_has_reserves(vma, chg))
592 break;
593
07443a85 594 SetPagePrivate(page);
af0ed73e 595 h->resv_huge_pages--;
bf50bab2
NH
596 break;
597 }
3abf7afd 598 }
1da177e4 599 }
cc9a6c87 600
52cd3b07 601 mpol_cond_put(mpol);
d26914d1 602 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 603 goto retry_cpuset;
1da177e4 604 return page;
cc9a6c87
MG
605
606err:
cc9a6c87 607 return NULL;
1da177e4
LT
608}
609
a5516438 610static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
611{
612 int i;
a5516438 613
18229df5
AW
614 VM_BUG_ON(h->order >= MAX_ORDER);
615
a5516438
AK
616 h->nr_huge_pages--;
617 h->nr_huge_pages_node[page_to_nid(page)]--;
618 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
619 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
620 1 << PG_referenced | 1 << PG_dirty |
621 1 << PG_active | 1 << PG_reserved |
622 1 << PG_private | 1 << PG_writeback);
6af2acb6 623 }
309381fe 624 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
6af2acb6
AL
625 set_compound_page_dtor(page, NULL);
626 set_page_refcounted(page);
7f2e9525 627 arch_release_hugepage(page);
a5516438 628 __free_pages(page, huge_page_order(h));
6af2acb6
AL
629}
630
e5ff2159
AK
631struct hstate *size_to_hstate(unsigned long size)
632{
633 struct hstate *h;
634
635 for_each_hstate(h) {
636 if (huge_page_size(h) == size)
637 return h;
638 }
639 return NULL;
640}
641
27a85ef1
DG
642static void free_huge_page(struct page *page)
643{
a5516438
AK
644 /*
645 * Can't pass hstate in here because it is called from the
646 * compound page destructor.
647 */
e5ff2159 648 struct hstate *h = page_hstate(page);
7893d1d5 649 int nid = page_to_nid(page);
90481622
DG
650 struct hugepage_subpool *spool =
651 (struct hugepage_subpool *)page_private(page);
07443a85 652 bool restore_reserve;
27a85ef1 653
e5df70ab 654 set_page_private(page, 0);
23be7468 655 page->mapping = NULL;
7893d1d5 656 BUG_ON(page_count(page));
0fe6e20b 657 BUG_ON(page_mapcount(page));
07443a85 658 restore_reserve = PagePrivate(page);
16c794b4 659 ClearPagePrivate(page);
27a85ef1
DG
660
661 spin_lock(&hugetlb_lock);
6d76dcf4
AK
662 hugetlb_cgroup_uncharge_page(hstate_index(h),
663 pages_per_huge_page(h), page);
07443a85
JK
664 if (restore_reserve)
665 h->resv_huge_pages++;
666
aa888a74 667 if (h->surplus_huge_pages_node[nid] && huge_page_order(h) < MAX_ORDER) {
0edaecfa
AK
668 /* remove the page from active list */
669 list_del(&page->lru);
a5516438
AK
670 update_and_free_page(h, page);
671 h->surplus_huge_pages--;
672 h->surplus_huge_pages_node[nid]--;
7893d1d5 673 } else {
5d3a551c 674 arch_clear_hugepage_flags(page);
a5516438 675 enqueue_huge_page(h, page);
7893d1d5 676 }
27a85ef1 677 spin_unlock(&hugetlb_lock);
90481622 678 hugepage_subpool_put_pages(spool, 1);
27a85ef1
DG
679}
680
a5516438 681static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 682{
0edaecfa 683 INIT_LIST_HEAD(&page->lru);
b7ba30c6
AK
684 set_compound_page_dtor(page, free_huge_page);
685 spin_lock(&hugetlb_lock);
9dd540e2 686 set_hugetlb_cgroup(page, NULL);
a5516438
AK
687 h->nr_huge_pages++;
688 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
689 spin_unlock(&hugetlb_lock);
690 put_page(page); /* free it into the hugepage allocator */
691}
692
f412c97a
DR
693static void __init prep_compound_gigantic_page(struct page *page,
694 unsigned long order)
20a0307c
WF
695{
696 int i;
697 int nr_pages = 1 << order;
698 struct page *p = page + 1;
699
700 /* we rely on prep_new_huge_page to set the destructor */
701 set_compound_order(page, order);
702 __SetPageHead(page);
ef5a22be 703 __ClearPageReserved(page);
20a0307c
WF
704 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
705 __SetPageTail(p);
ef5a22be
AA
706 /*
707 * For gigantic hugepages allocated through bootmem at
708 * boot, it's safer to be consistent with the not-gigantic
709 * hugepages and clear the PG_reserved bit from all tail pages
710 * too. Otherwse drivers using get_user_pages() to access tail
711 * pages may get the reference counting wrong if they see
712 * PG_reserved set on a tail page (despite the head page not
713 * having PG_reserved set). Enforcing this consistency between
714 * head and tail pages allows drivers to optimize away a check
715 * on the head page when they need know if put_page() is needed
716 * after get_user_pages().
717 */
718 __ClearPageReserved(p);
58a84aa9 719 set_page_count(p, 0);
20a0307c
WF
720 p->first_page = page;
721 }
722}
723
7795912c
AM
724/*
725 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
726 * transparent huge pages. See the PageTransHuge() documentation for more
727 * details.
728 */
20a0307c
WF
729int PageHuge(struct page *page)
730{
20a0307c
WF
731 if (!PageCompound(page))
732 return 0;
733
734 page = compound_head(page);
758f66a2 735 return get_compound_page_dtor(page) == free_huge_page;
20a0307c 736}
43131e14
NH
737EXPORT_SYMBOL_GPL(PageHuge);
738
27c73ae7
AA
739/*
740 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
741 * normal or transparent huge pages.
742 */
743int PageHeadHuge(struct page *page_head)
744{
27c73ae7
AA
745 if (!PageHead(page_head))
746 return 0;
747
758f66a2 748 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 749}
27c73ae7 750
13d60f4b
ZY
751pgoff_t __basepage_index(struct page *page)
752{
753 struct page *page_head = compound_head(page);
754 pgoff_t index = page_index(page_head);
755 unsigned long compound_idx;
756
757 if (!PageHuge(page_head))
758 return page_index(page);
759
760 if (compound_order(page_head) >= MAX_ORDER)
761 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
762 else
763 compound_idx = page - page_head;
764
765 return (index << compound_order(page_head)) + compound_idx;
766}
767
a5516438 768static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 769{
1da177e4 770 struct page *page;
f96efd58 771
aa888a74
AK
772 if (h->order >= MAX_ORDER)
773 return NULL;
774
6484eb3e 775 page = alloc_pages_exact_node(nid,
86cdb465 776 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 777 __GFP_REPEAT|__GFP_NOWARN,
a5516438 778 huge_page_order(h));
1da177e4 779 if (page) {
7f2e9525 780 if (arch_prepare_hugepage(page)) {
caff3a2c 781 __free_pages(page, huge_page_order(h));
7b8ee84d 782 return NULL;
7f2e9525 783 }
a5516438 784 prep_new_huge_page(h, page, nid);
1da177e4 785 }
63b4613c
NA
786
787 return page;
788}
789
9a76db09 790/*
6ae11b27
LS
791 * common helper functions for hstate_next_node_to_{alloc|free}.
792 * We may have allocated or freed a huge page based on a different
793 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
794 * be outside of *nodes_allowed. Ensure that we use an allowed
795 * node for alloc or free.
9a76db09 796 */
6ae11b27 797static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
9a76db09 798{
6ae11b27 799 nid = next_node(nid, *nodes_allowed);
9a76db09 800 if (nid == MAX_NUMNODES)
6ae11b27 801 nid = first_node(*nodes_allowed);
9a76db09
LS
802 VM_BUG_ON(nid >= MAX_NUMNODES);
803
804 return nid;
805}
806
6ae11b27
LS
807static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
808{
809 if (!node_isset(nid, *nodes_allowed))
810 nid = next_node_allowed(nid, nodes_allowed);
811 return nid;
812}
813
5ced66c9 814/*
6ae11b27
LS
815 * returns the previously saved node ["this node"] from which to
816 * allocate a persistent huge page for the pool and advance the
817 * next node from which to allocate, handling wrap at end of node
818 * mask.
5ced66c9 819 */
6ae11b27
LS
820static int hstate_next_node_to_alloc(struct hstate *h,
821 nodemask_t *nodes_allowed)
5ced66c9 822{
6ae11b27
LS
823 int nid;
824
825 VM_BUG_ON(!nodes_allowed);
826
827 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
828 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
9a76db09 829
9a76db09 830 return nid;
5ced66c9
AK
831}
832
e8c5c824 833/*
6ae11b27
LS
834 * helper for free_pool_huge_page() - return the previously saved
835 * node ["this node"] from which to free a huge page. Advance the
836 * next node id whether or not we find a free huge page to free so
837 * that the next attempt to free addresses the next node.
e8c5c824 838 */
6ae11b27 839static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
e8c5c824 840{
6ae11b27
LS
841 int nid;
842
843 VM_BUG_ON(!nodes_allowed);
844
845 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
846 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
9a76db09 847
9a76db09 848 return nid;
e8c5c824
LS
849}
850
b2261026
JK
851#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
852 for (nr_nodes = nodes_weight(*mask); \
853 nr_nodes > 0 && \
854 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
855 nr_nodes--)
856
857#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
858 for (nr_nodes = nodes_weight(*mask); \
859 nr_nodes > 0 && \
860 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
861 nr_nodes--)
862
863static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
864{
865 struct page *page;
866 int nr_nodes, node;
867 int ret = 0;
868
869 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
870 page = alloc_fresh_huge_page_node(h, node);
871 if (page) {
872 ret = 1;
873 break;
874 }
875 }
876
877 if (ret)
878 count_vm_event(HTLB_BUDDY_PGALLOC);
879 else
880 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
881
882 return ret;
883}
884
e8c5c824
LS
885/*
886 * Free huge page from pool from next node to free.
887 * Attempt to keep persistent huge pages more or less
888 * balanced over allowed nodes.
889 * Called with hugetlb_lock locked.
890 */
6ae11b27
LS
891static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
892 bool acct_surplus)
e8c5c824 893{
b2261026 894 int nr_nodes, node;
e8c5c824
LS
895 int ret = 0;
896
b2261026 897 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
898 /*
899 * If we're returning unused surplus pages, only examine
900 * nodes with surplus pages.
901 */
b2261026
JK
902 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
903 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 904 struct page *page =
b2261026 905 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
906 struct page, lru);
907 list_del(&page->lru);
908 h->free_huge_pages--;
b2261026 909 h->free_huge_pages_node[node]--;
685f3457
LS
910 if (acct_surplus) {
911 h->surplus_huge_pages--;
b2261026 912 h->surplus_huge_pages_node[node]--;
685f3457 913 }
e8c5c824
LS
914 update_and_free_page(h, page);
915 ret = 1;
9a76db09 916 break;
e8c5c824 917 }
b2261026 918 }
e8c5c824
LS
919
920 return ret;
921}
922
c8721bbb
NH
923/*
924 * Dissolve a given free hugepage into free buddy pages. This function does
925 * nothing for in-use (including surplus) hugepages.
926 */
927static void dissolve_free_huge_page(struct page *page)
928{
929 spin_lock(&hugetlb_lock);
930 if (PageHuge(page) && !page_count(page)) {
931 struct hstate *h = page_hstate(page);
932 int nid = page_to_nid(page);
933 list_del(&page->lru);
934 h->free_huge_pages--;
935 h->free_huge_pages_node[nid]--;
936 update_and_free_page(h, page);
937 }
938 spin_unlock(&hugetlb_lock);
939}
940
941/*
942 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
943 * make specified memory blocks removable from the system.
944 * Note that start_pfn should aligned with (minimum) hugepage size.
945 */
946void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
947{
948 unsigned int order = 8 * sizeof(void *);
949 unsigned long pfn;
950 struct hstate *h;
951
952 /* Set scan step to minimum hugepage size */
953 for_each_hstate(h)
954 if (order > huge_page_order(h))
955 order = huge_page_order(h);
956 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << order));
957 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << order)
958 dissolve_free_huge_page(pfn_to_page(pfn));
959}
960
bf50bab2 961static struct page *alloc_buddy_huge_page(struct hstate *h, int nid)
7893d1d5
AL
962{
963 struct page *page;
bf50bab2 964 unsigned int r_nid;
7893d1d5 965
aa888a74
AK
966 if (h->order >= MAX_ORDER)
967 return NULL;
968
d1c3fb1f
NA
969 /*
970 * Assume we will successfully allocate the surplus page to
971 * prevent racing processes from causing the surplus to exceed
972 * overcommit
973 *
974 * This however introduces a different race, where a process B
975 * tries to grow the static hugepage pool while alloc_pages() is
976 * called by process A. B will only examine the per-node
977 * counters in determining if surplus huge pages can be
978 * converted to normal huge pages in adjust_pool_surplus(). A
979 * won't be able to increment the per-node counter, until the
980 * lock is dropped by B, but B doesn't drop hugetlb_lock until
981 * no more huge pages can be converted from surplus to normal
982 * state (and doesn't try to convert again). Thus, we have a
983 * case where a surplus huge page exists, the pool is grown, and
984 * the surplus huge page still exists after, even though it
985 * should just have been converted to a normal huge page. This
986 * does not leak memory, though, as the hugepage will be freed
987 * once it is out of use. It also does not allow the counters to
988 * go out of whack in adjust_pool_surplus() as we don't modify
989 * the node values until we've gotten the hugepage and only the
990 * per-node value is checked there.
991 */
992 spin_lock(&hugetlb_lock);
a5516438 993 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
994 spin_unlock(&hugetlb_lock);
995 return NULL;
996 } else {
a5516438
AK
997 h->nr_huge_pages++;
998 h->surplus_huge_pages++;
d1c3fb1f
NA
999 }
1000 spin_unlock(&hugetlb_lock);
1001
bf50bab2 1002 if (nid == NUMA_NO_NODE)
86cdb465 1003 page = alloc_pages(htlb_alloc_mask(h)|__GFP_COMP|
bf50bab2
NH
1004 __GFP_REPEAT|__GFP_NOWARN,
1005 huge_page_order(h));
1006 else
1007 page = alloc_pages_exact_node(nid,
86cdb465 1008 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
bf50bab2 1009 __GFP_REPEAT|__GFP_NOWARN, huge_page_order(h));
d1c3fb1f 1010
caff3a2c
GS
1011 if (page && arch_prepare_hugepage(page)) {
1012 __free_pages(page, huge_page_order(h));
ea5768c7 1013 page = NULL;
caff3a2c
GS
1014 }
1015
d1c3fb1f 1016 spin_lock(&hugetlb_lock);
7893d1d5 1017 if (page) {
0edaecfa 1018 INIT_LIST_HEAD(&page->lru);
bf50bab2 1019 r_nid = page_to_nid(page);
7893d1d5 1020 set_compound_page_dtor(page, free_huge_page);
9dd540e2 1021 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1022 /*
1023 * We incremented the global counters already
1024 */
bf50bab2
NH
1025 h->nr_huge_pages_node[r_nid]++;
1026 h->surplus_huge_pages_node[r_nid]++;
3b116300 1027 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1028 } else {
a5516438
AK
1029 h->nr_huge_pages--;
1030 h->surplus_huge_pages--;
3b116300 1031 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1032 }
d1c3fb1f 1033 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1034
1035 return page;
1036}
1037
bf50bab2
NH
1038/*
1039 * This allocation function is useful in the context where vma is irrelevant.
1040 * E.g. soft-offlining uses this function because it only cares physical
1041 * address of error page.
1042 */
1043struct page *alloc_huge_page_node(struct hstate *h, int nid)
1044{
4ef91848 1045 struct page *page = NULL;
bf50bab2
NH
1046
1047 spin_lock(&hugetlb_lock);
4ef91848
JK
1048 if (h->free_huge_pages - h->resv_huge_pages > 0)
1049 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1050 spin_unlock(&hugetlb_lock);
1051
94ae8ba7 1052 if (!page)
bf50bab2
NH
1053 page = alloc_buddy_huge_page(h, nid);
1054
1055 return page;
1056}
1057
e4e574b7 1058/*
25985edc 1059 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1060 * of size 'delta'.
1061 */
a5516438 1062static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1063{
1064 struct list_head surplus_list;
1065 struct page *page, *tmp;
1066 int ret, i;
1067 int needed, allocated;
28073b02 1068 bool alloc_ok = true;
e4e574b7 1069
a5516438 1070 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1071 if (needed <= 0) {
a5516438 1072 h->resv_huge_pages += delta;
e4e574b7 1073 return 0;
ac09b3a1 1074 }
e4e574b7
AL
1075
1076 allocated = 0;
1077 INIT_LIST_HEAD(&surplus_list);
1078
1079 ret = -ENOMEM;
1080retry:
1081 spin_unlock(&hugetlb_lock);
1082 for (i = 0; i < needed; i++) {
bf50bab2 1083 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
28073b02
HD
1084 if (!page) {
1085 alloc_ok = false;
1086 break;
1087 }
e4e574b7
AL
1088 list_add(&page->lru, &surplus_list);
1089 }
28073b02 1090 allocated += i;
e4e574b7
AL
1091
1092 /*
1093 * After retaking hugetlb_lock, we need to recalculate 'needed'
1094 * because either resv_huge_pages or free_huge_pages may have changed.
1095 */
1096 spin_lock(&hugetlb_lock);
a5516438
AK
1097 needed = (h->resv_huge_pages + delta) -
1098 (h->free_huge_pages + allocated);
28073b02
HD
1099 if (needed > 0) {
1100 if (alloc_ok)
1101 goto retry;
1102 /*
1103 * We were not able to allocate enough pages to
1104 * satisfy the entire reservation so we free what
1105 * we've allocated so far.
1106 */
1107 goto free;
1108 }
e4e574b7
AL
1109 /*
1110 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1111 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1112 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1113 * allocator. Commit the entire reservation here to prevent another
1114 * process from stealing the pages as they are added to the pool but
1115 * before they are reserved.
e4e574b7
AL
1116 */
1117 needed += allocated;
a5516438 1118 h->resv_huge_pages += delta;
e4e574b7 1119 ret = 0;
a9869b83 1120
19fc3f0a 1121 /* Free the needed pages to the hugetlb pool */
e4e574b7 1122 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1123 if ((--needed) < 0)
1124 break;
a9869b83
NH
1125 /*
1126 * This page is now managed by the hugetlb allocator and has
1127 * no users -- drop the buddy allocator's reference.
1128 */
1129 put_page_testzero(page);
309381fe 1130 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1131 enqueue_huge_page(h, page);
19fc3f0a 1132 }
28073b02 1133free:
b0365c8d 1134 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1135
1136 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1137 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1138 put_page(page);
a9869b83 1139 spin_lock(&hugetlb_lock);
e4e574b7
AL
1140
1141 return ret;
1142}
1143
1144/*
1145 * When releasing a hugetlb pool reservation, any surplus pages that were
1146 * allocated to satisfy the reservation must be explicitly freed if they were
1147 * never used.
685f3457 1148 * Called with hugetlb_lock held.
e4e574b7 1149 */
a5516438
AK
1150static void return_unused_surplus_pages(struct hstate *h,
1151 unsigned long unused_resv_pages)
e4e574b7 1152{
e4e574b7
AL
1153 unsigned long nr_pages;
1154
ac09b3a1 1155 /* Uncommit the reservation */
a5516438 1156 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1157
aa888a74
AK
1158 /* Cannot return gigantic pages currently */
1159 if (h->order >= MAX_ORDER)
1160 return;
1161
a5516438 1162 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1163
685f3457
LS
1164 /*
1165 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1166 * evenly across all nodes with memory. Iterate across these nodes
1167 * until we can no longer free unreserved surplus pages. This occurs
1168 * when the nodes with surplus pages have no free pages.
1169 * free_pool_huge_page() will balance the the freed pages across the
1170 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1171 */
1172 while (nr_pages--) {
8cebfcd0 1173 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1174 break;
e4e574b7
AL
1175 }
1176}
1177
c37f9fb1
AW
1178/*
1179 * Determine if the huge page at addr within the vma has an associated
1180 * reservation. Where it does not we will need to logically increase
90481622
DG
1181 * reservation and actually increase subpool usage before an allocation
1182 * can occur. Where any new reservation would be required the
1183 * reservation change is prepared, but not committed. Once the page
1184 * has been allocated from the subpool and instantiated the change should
1185 * be committed via vma_commit_reservation. No action is required on
1186 * failure.
c37f9fb1 1187 */
e2f17d94 1188static long vma_needs_reservation(struct hstate *h,
a5516438 1189 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1190{
4e35f483
JK
1191 struct resv_map *resv;
1192 pgoff_t idx;
1193 long chg;
c37f9fb1 1194
4e35f483
JK
1195 resv = vma_resv_map(vma);
1196 if (!resv)
84afd99b 1197 return 1;
c37f9fb1 1198
4e35f483
JK
1199 idx = vma_hugecache_offset(h, vma, addr);
1200 chg = region_chg(resv, idx, idx + 1);
84afd99b 1201
4e35f483
JK
1202 if (vma->vm_flags & VM_MAYSHARE)
1203 return chg;
1204 else
1205 return chg < 0 ? chg : 0;
c37f9fb1 1206}
a5516438
AK
1207static void vma_commit_reservation(struct hstate *h,
1208 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1209{
4e35f483
JK
1210 struct resv_map *resv;
1211 pgoff_t idx;
84afd99b 1212
4e35f483
JK
1213 resv = vma_resv_map(vma);
1214 if (!resv)
1215 return;
84afd99b 1216
4e35f483
JK
1217 idx = vma_hugecache_offset(h, vma, addr);
1218 region_add(resv, idx, idx + 1);
c37f9fb1
AW
1219}
1220
a1e78772 1221static struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1222 unsigned long addr, int avoid_reserve)
1da177e4 1223{
90481622 1224 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1225 struct hstate *h = hstate_vma(vma);
348ea204 1226 struct page *page;
e2f17d94 1227 long chg;
6d76dcf4
AK
1228 int ret, idx;
1229 struct hugetlb_cgroup *h_cg;
a1e78772 1230
6d76dcf4 1231 idx = hstate_index(h);
a1e78772 1232 /*
90481622
DG
1233 * Processes that did not create the mapping will have no
1234 * reserves and will not have accounted against subpool
1235 * limit. Check that the subpool limit can be made before
1236 * satisfying the allocation MAP_NORESERVE mappings may also
1237 * need pages and subpool limit allocated allocated if no reserve
1238 * mapping overlaps.
a1e78772 1239 */
a5516438 1240 chg = vma_needs_reservation(h, vma, addr);
c37f9fb1 1241 if (chg < 0)
76dcee75 1242 return ERR_PTR(-ENOMEM);
8bb3f12e
JK
1243 if (chg || avoid_reserve)
1244 if (hugepage_subpool_get_pages(spool, 1))
76dcee75 1245 return ERR_PTR(-ENOSPC);
1da177e4 1246
6d76dcf4
AK
1247 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
1248 if (ret) {
8bb3f12e
JK
1249 if (chg || avoid_reserve)
1250 hugepage_subpool_put_pages(spool, 1);
6d76dcf4
AK
1251 return ERR_PTR(-ENOSPC);
1252 }
1da177e4 1253 spin_lock(&hugetlb_lock);
af0ed73e 1254 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, chg);
81a6fcae 1255 if (!page) {
94ae8ba7 1256 spin_unlock(&hugetlb_lock);
bf50bab2 1257 page = alloc_buddy_huge_page(h, NUMA_NO_NODE);
68842c9b 1258 if (!page) {
6d76dcf4
AK
1259 hugetlb_cgroup_uncharge_cgroup(idx,
1260 pages_per_huge_page(h),
1261 h_cg);
8bb3f12e
JK
1262 if (chg || avoid_reserve)
1263 hugepage_subpool_put_pages(spool, 1);
76dcee75 1264 return ERR_PTR(-ENOSPC);
68842c9b 1265 }
79dbb236
AK
1266 spin_lock(&hugetlb_lock);
1267 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1268 /* Fall through */
68842c9b 1269 }
81a6fcae
JK
1270 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1271 spin_unlock(&hugetlb_lock);
348ea204 1272
90481622 1273 set_page_private(page, (unsigned long)spool);
90d8b7e6 1274
a5516438 1275 vma_commit_reservation(h, vma, addr);
90d8b7e6 1276 return page;
b45b5bd6
DG
1277}
1278
74060e4d
NH
1279/*
1280 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1281 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1282 * where no ERR_VALUE is expected to be returned.
1283 */
1284struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1285 unsigned long addr, int avoid_reserve)
1286{
1287 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1288 if (IS_ERR(page))
1289 page = NULL;
1290 return page;
1291}
1292
91f47662 1293int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1294{
1295 struct huge_bootmem_page *m;
b2261026 1296 int nr_nodes, node;
aa888a74 1297
b2261026 1298 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1299 void *addr;
1300
8b89a116
GS
1301 addr = memblock_virt_alloc_try_nid_nopanic(
1302 huge_page_size(h), huge_page_size(h),
1303 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1304 if (addr) {
1305 /*
1306 * Use the beginning of the huge page to store the
1307 * huge_bootmem_page struct (until gather_bootmem
1308 * puts them into the mem_map).
1309 */
1310 m = addr;
91f47662 1311 goto found;
aa888a74 1312 }
aa888a74
AK
1313 }
1314 return 0;
1315
1316found:
1317 BUG_ON((unsigned long)virt_to_phys(m) & (huge_page_size(h) - 1));
1318 /* Put them into a private list first because mem_map is not up yet */
1319 list_add(&m->list, &huge_boot_pages);
1320 m->hstate = h;
1321 return 1;
1322}
1323
f412c97a 1324static void __init prep_compound_huge_page(struct page *page, int order)
18229df5
AW
1325{
1326 if (unlikely(order > (MAX_ORDER - 1)))
1327 prep_compound_gigantic_page(page, order);
1328 else
1329 prep_compound_page(page, order);
1330}
1331
aa888a74
AK
1332/* Put bootmem huge pages into the standard lists after mem_map is up */
1333static void __init gather_bootmem_prealloc(void)
1334{
1335 struct huge_bootmem_page *m;
1336
1337 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1338 struct hstate *h = m->hstate;
ee8f248d
BB
1339 struct page *page;
1340
1341#ifdef CONFIG_HIGHMEM
1342 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
1343 memblock_free_late(__pa(m),
1344 sizeof(struct huge_bootmem_page));
ee8f248d
BB
1345#else
1346 page = virt_to_page(m);
1347#endif
aa888a74 1348 WARN_ON(page_count(page) != 1);
18229df5 1349 prep_compound_huge_page(page, h->order);
ef5a22be 1350 WARN_ON(PageReserved(page));
aa888a74 1351 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
1352 /*
1353 * If we had gigantic hugepages allocated at boot time, we need
1354 * to restore the 'stolen' pages to totalram_pages in order to
1355 * fix confusing memory reports from free(1) and another
1356 * side-effects, like CommitLimit going negative.
1357 */
1358 if (h->order > (MAX_ORDER - 1))
3dcc0571 1359 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
1360 }
1361}
1362
8faa8b07 1363static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
1364{
1365 unsigned long i;
a5516438 1366
e5ff2159 1367 for (i = 0; i < h->max_huge_pages; ++i) {
aa888a74
AK
1368 if (h->order >= MAX_ORDER) {
1369 if (!alloc_bootmem_huge_page(h))
1370 break;
9b5e5d0f 1371 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 1372 &node_states[N_MEMORY]))
1da177e4 1373 break;
1da177e4 1374 }
8faa8b07 1375 h->max_huge_pages = i;
e5ff2159
AK
1376}
1377
1378static void __init hugetlb_init_hstates(void)
1379{
1380 struct hstate *h;
1381
1382 for_each_hstate(h) {
8faa8b07
AK
1383 /* oversize hugepages were init'ed in early boot */
1384 if (h->order < MAX_ORDER)
1385 hugetlb_hstate_alloc_pages(h);
e5ff2159
AK
1386 }
1387}
1388
4abd32db
AK
1389static char * __init memfmt(char *buf, unsigned long n)
1390{
1391 if (n >= (1UL << 30))
1392 sprintf(buf, "%lu GB", n >> 30);
1393 else if (n >= (1UL << 20))
1394 sprintf(buf, "%lu MB", n >> 20);
1395 else
1396 sprintf(buf, "%lu KB", n >> 10);
1397 return buf;
1398}
1399
e5ff2159
AK
1400static void __init report_hugepages(void)
1401{
1402 struct hstate *h;
1403
1404 for_each_hstate(h) {
4abd32db 1405 char buf[32];
ffb22af5 1406 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
1407 memfmt(buf, huge_page_size(h)),
1408 h->free_huge_pages);
e5ff2159
AK
1409 }
1410}
1411
1da177e4 1412#ifdef CONFIG_HIGHMEM
6ae11b27
LS
1413static void try_to_free_low(struct hstate *h, unsigned long count,
1414 nodemask_t *nodes_allowed)
1da177e4 1415{
4415cc8d
CL
1416 int i;
1417
aa888a74
AK
1418 if (h->order >= MAX_ORDER)
1419 return;
1420
6ae11b27 1421 for_each_node_mask(i, *nodes_allowed) {
1da177e4 1422 struct page *page, *next;
a5516438
AK
1423 struct list_head *freel = &h->hugepage_freelists[i];
1424 list_for_each_entry_safe(page, next, freel, lru) {
1425 if (count >= h->nr_huge_pages)
6b0c880d 1426 return;
1da177e4
LT
1427 if (PageHighMem(page))
1428 continue;
1429 list_del(&page->lru);
e5ff2159 1430 update_and_free_page(h, page);
a5516438
AK
1431 h->free_huge_pages--;
1432 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
1433 }
1434 }
1435}
1436#else
6ae11b27
LS
1437static inline void try_to_free_low(struct hstate *h, unsigned long count,
1438 nodemask_t *nodes_allowed)
1da177e4
LT
1439{
1440}
1441#endif
1442
20a0307c
WF
1443/*
1444 * Increment or decrement surplus_huge_pages. Keep node-specific counters
1445 * balanced by operating on them in a round-robin fashion.
1446 * Returns 1 if an adjustment was made.
1447 */
6ae11b27
LS
1448static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
1449 int delta)
20a0307c 1450{
b2261026 1451 int nr_nodes, node;
20a0307c
WF
1452
1453 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 1454
b2261026
JK
1455 if (delta < 0) {
1456 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1457 if (h->surplus_huge_pages_node[node])
1458 goto found;
e8c5c824 1459 }
b2261026
JK
1460 } else {
1461 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
1462 if (h->surplus_huge_pages_node[node] <
1463 h->nr_huge_pages_node[node])
1464 goto found;
e8c5c824 1465 }
b2261026
JK
1466 }
1467 return 0;
20a0307c 1468
b2261026
JK
1469found:
1470 h->surplus_huge_pages += delta;
1471 h->surplus_huge_pages_node[node] += delta;
1472 return 1;
20a0307c
WF
1473}
1474
a5516438 1475#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
1476static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
1477 nodemask_t *nodes_allowed)
1da177e4 1478{
7893d1d5 1479 unsigned long min_count, ret;
1da177e4 1480
aa888a74
AK
1481 if (h->order >= MAX_ORDER)
1482 return h->max_huge_pages;
1483
7893d1d5
AL
1484 /*
1485 * Increase the pool size
1486 * First take pages out of surplus state. Then make up the
1487 * remaining difference by allocating fresh huge pages.
d1c3fb1f
NA
1488 *
1489 * We might race with alloc_buddy_huge_page() here and be unable
1490 * to convert a surplus huge page to a normal huge page. That is
1491 * not critical, though, it just means the overall size of the
1492 * pool might be one hugepage larger than it needs to be, but
1493 * within all the constraints specified by the sysctls.
7893d1d5 1494 */
1da177e4 1495 spin_lock(&hugetlb_lock);
a5516438 1496 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 1497 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
1498 break;
1499 }
1500
a5516438 1501 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
1502 /*
1503 * If this allocation races such that we no longer need the
1504 * page, free_huge_page will handle it by freeing the page
1505 * and reducing the surplus.
1506 */
1507 spin_unlock(&hugetlb_lock);
6ae11b27 1508 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
1509 spin_lock(&hugetlb_lock);
1510 if (!ret)
1511 goto out;
1512
536240f2
MG
1513 /* Bail for signals. Probably ctrl-c from user */
1514 if (signal_pending(current))
1515 goto out;
7893d1d5 1516 }
7893d1d5
AL
1517
1518 /*
1519 * Decrease the pool size
1520 * First return free pages to the buddy allocator (being careful
1521 * to keep enough around to satisfy reservations). Then place
1522 * pages into surplus state as needed so the pool will shrink
1523 * to the desired size as pages become free.
d1c3fb1f
NA
1524 *
1525 * By placing pages into the surplus state independent of the
1526 * overcommit value, we are allowing the surplus pool size to
1527 * exceed overcommit. There are few sane options here. Since
1528 * alloc_buddy_huge_page() is checking the global counter,
1529 * though, we'll note that we're not allowed to exceed surplus
1530 * and won't grow the pool anywhere else. Not until one of the
1531 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 1532 */
a5516438 1533 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 1534 min_count = max(count, min_count);
6ae11b27 1535 try_to_free_low(h, min_count, nodes_allowed);
a5516438 1536 while (min_count < persistent_huge_pages(h)) {
6ae11b27 1537 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 1538 break;
1da177e4 1539 }
a5516438 1540 while (count < persistent_huge_pages(h)) {
6ae11b27 1541 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
1542 break;
1543 }
1544out:
a5516438 1545 ret = persistent_huge_pages(h);
1da177e4 1546 spin_unlock(&hugetlb_lock);
7893d1d5 1547 return ret;
1da177e4
LT
1548}
1549
a3437870
NA
1550#define HSTATE_ATTR_RO(_name) \
1551 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
1552
1553#define HSTATE_ATTR(_name) \
1554 static struct kobj_attribute _name##_attr = \
1555 __ATTR(_name, 0644, _name##_show, _name##_store)
1556
1557static struct kobject *hugepages_kobj;
1558static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1559
9a305230
LS
1560static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
1561
1562static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
1563{
1564 int i;
9a305230 1565
a3437870 1566 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
1567 if (hstate_kobjs[i] == kobj) {
1568 if (nidp)
1569 *nidp = NUMA_NO_NODE;
a3437870 1570 return &hstates[i];
9a305230
LS
1571 }
1572
1573 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
1574}
1575
06808b08 1576static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
1577 struct kobj_attribute *attr, char *buf)
1578{
9a305230
LS
1579 struct hstate *h;
1580 unsigned long nr_huge_pages;
1581 int nid;
1582
1583 h = kobj_to_hstate(kobj, &nid);
1584 if (nid == NUMA_NO_NODE)
1585 nr_huge_pages = h->nr_huge_pages;
1586 else
1587 nr_huge_pages = h->nr_huge_pages_node[nid];
1588
1589 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 1590}
adbe8726 1591
06808b08
LS
1592static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
1593 struct kobject *kobj, struct kobj_attribute *attr,
1594 const char *buf, size_t len)
a3437870
NA
1595{
1596 int err;
9a305230 1597 int nid;
06808b08 1598 unsigned long count;
9a305230 1599 struct hstate *h;
bad44b5b 1600 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 1601
3dbb95f7 1602 err = kstrtoul(buf, 10, &count);
73ae31e5 1603 if (err)
adbe8726 1604 goto out;
a3437870 1605
9a305230 1606 h = kobj_to_hstate(kobj, &nid);
adbe8726
EM
1607 if (h->order >= MAX_ORDER) {
1608 err = -EINVAL;
1609 goto out;
1610 }
1611
9a305230
LS
1612 if (nid == NUMA_NO_NODE) {
1613 /*
1614 * global hstate attribute
1615 */
1616 if (!(obey_mempolicy &&
1617 init_nodemask_of_mempolicy(nodes_allowed))) {
1618 NODEMASK_FREE(nodes_allowed);
8cebfcd0 1619 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
1620 }
1621 } else if (nodes_allowed) {
1622 /*
1623 * per node hstate attribute: adjust count to global,
1624 * but restrict alloc/free to the specified node.
1625 */
1626 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
1627 init_nodemask_of_node(nodes_allowed, nid);
1628 } else
8cebfcd0 1629 nodes_allowed = &node_states[N_MEMORY];
9a305230 1630
06808b08 1631 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 1632
8cebfcd0 1633 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
1634 NODEMASK_FREE(nodes_allowed);
1635
1636 return len;
adbe8726
EM
1637out:
1638 NODEMASK_FREE(nodes_allowed);
1639 return err;
06808b08
LS
1640}
1641
1642static ssize_t nr_hugepages_show(struct kobject *kobj,
1643 struct kobj_attribute *attr, char *buf)
1644{
1645 return nr_hugepages_show_common(kobj, attr, buf);
1646}
1647
1648static ssize_t nr_hugepages_store(struct kobject *kobj,
1649 struct kobj_attribute *attr, const char *buf, size_t len)
1650{
1651 return nr_hugepages_store_common(false, kobj, attr, buf, len);
a3437870
NA
1652}
1653HSTATE_ATTR(nr_hugepages);
1654
06808b08
LS
1655#ifdef CONFIG_NUMA
1656
1657/*
1658 * hstate attribute for optionally mempolicy-based constraint on persistent
1659 * huge page alloc/free.
1660 */
1661static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
1662 struct kobj_attribute *attr, char *buf)
1663{
1664 return nr_hugepages_show_common(kobj, attr, buf);
1665}
1666
1667static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
1668 struct kobj_attribute *attr, const char *buf, size_t len)
1669{
1670 return nr_hugepages_store_common(true, kobj, attr, buf, len);
1671}
1672HSTATE_ATTR(nr_hugepages_mempolicy);
1673#endif
1674
1675
a3437870
NA
1676static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
1677 struct kobj_attribute *attr, char *buf)
1678{
9a305230 1679 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1680 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
1681}
adbe8726 1682
a3437870
NA
1683static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
1684 struct kobj_attribute *attr, const char *buf, size_t count)
1685{
1686 int err;
1687 unsigned long input;
9a305230 1688 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 1689
adbe8726
EM
1690 if (h->order >= MAX_ORDER)
1691 return -EINVAL;
1692
3dbb95f7 1693 err = kstrtoul(buf, 10, &input);
a3437870 1694 if (err)
73ae31e5 1695 return err;
a3437870
NA
1696
1697 spin_lock(&hugetlb_lock);
1698 h->nr_overcommit_huge_pages = input;
1699 spin_unlock(&hugetlb_lock);
1700
1701 return count;
1702}
1703HSTATE_ATTR(nr_overcommit_hugepages);
1704
1705static ssize_t free_hugepages_show(struct kobject *kobj,
1706 struct kobj_attribute *attr, char *buf)
1707{
9a305230
LS
1708 struct hstate *h;
1709 unsigned long free_huge_pages;
1710 int nid;
1711
1712 h = kobj_to_hstate(kobj, &nid);
1713 if (nid == NUMA_NO_NODE)
1714 free_huge_pages = h->free_huge_pages;
1715 else
1716 free_huge_pages = h->free_huge_pages_node[nid];
1717
1718 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
1719}
1720HSTATE_ATTR_RO(free_hugepages);
1721
1722static ssize_t resv_hugepages_show(struct kobject *kobj,
1723 struct kobj_attribute *attr, char *buf)
1724{
9a305230 1725 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
1726 return sprintf(buf, "%lu\n", h->resv_huge_pages);
1727}
1728HSTATE_ATTR_RO(resv_hugepages);
1729
1730static ssize_t surplus_hugepages_show(struct kobject *kobj,
1731 struct kobj_attribute *attr, char *buf)
1732{
9a305230
LS
1733 struct hstate *h;
1734 unsigned long surplus_huge_pages;
1735 int nid;
1736
1737 h = kobj_to_hstate(kobj, &nid);
1738 if (nid == NUMA_NO_NODE)
1739 surplus_huge_pages = h->surplus_huge_pages;
1740 else
1741 surplus_huge_pages = h->surplus_huge_pages_node[nid];
1742
1743 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
1744}
1745HSTATE_ATTR_RO(surplus_hugepages);
1746
1747static struct attribute *hstate_attrs[] = {
1748 &nr_hugepages_attr.attr,
1749 &nr_overcommit_hugepages_attr.attr,
1750 &free_hugepages_attr.attr,
1751 &resv_hugepages_attr.attr,
1752 &surplus_hugepages_attr.attr,
06808b08
LS
1753#ifdef CONFIG_NUMA
1754 &nr_hugepages_mempolicy_attr.attr,
1755#endif
a3437870
NA
1756 NULL,
1757};
1758
1759static struct attribute_group hstate_attr_group = {
1760 .attrs = hstate_attrs,
1761};
1762
094e9539
JM
1763static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
1764 struct kobject **hstate_kobjs,
1765 struct attribute_group *hstate_attr_group)
a3437870
NA
1766{
1767 int retval;
972dc4de 1768 int hi = hstate_index(h);
a3437870 1769
9a305230
LS
1770 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
1771 if (!hstate_kobjs[hi])
a3437870
NA
1772 return -ENOMEM;
1773
9a305230 1774 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 1775 if (retval)
9a305230 1776 kobject_put(hstate_kobjs[hi]);
a3437870
NA
1777
1778 return retval;
1779}
1780
1781static void __init hugetlb_sysfs_init(void)
1782{
1783 struct hstate *h;
1784 int err;
1785
1786 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
1787 if (!hugepages_kobj)
1788 return;
1789
1790 for_each_hstate(h) {
9a305230
LS
1791 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
1792 hstate_kobjs, &hstate_attr_group);
a3437870 1793 if (err)
ffb22af5 1794 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
1795 }
1796}
1797
9a305230
LS
1798#ifdef CONFIG_NUMA
1799
1800/*
1801 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
1802 * with node devices in node_devices[] using a parallel array. The array
1803 * index of a node device or _hstate == node id.
1804 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
1805 * the base kernel, on the hugetlb module.
1806 */
1807struct node_hstate {
1808 struct kobject *hugepages_kobj;
1809 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
1810};
1811struct node_hstate node_hstates[MAX_NUMNODES];
1812
1813/*
10fbcf4c 1814 * A subset of global hstate attributes for node devices
9a305230
LS
1815 */
1816static struct attribute *per_node_hstate_attrs[] = {
1817 &nr_hugepages_attr.attr,
1818 &free_hugepages_attr.attr,
1819 &surplus_hugepages_attr.attr,
1820 NULL,
1821};
1822
1823static struct attribute_group per_node_hstate_attr_group = {
1824 .attrs = per_node_hstate_attrs,
1825};
1826
1827/*
10fbcf4c 1828 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
1829 * Returns node id via non-NULL nidp.
1830 */
1831static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1832{
1833 int nid;
1834
1835 for (nid = 0; nid < nr_node_ids; nid++) {
1836 struct node_hstate *nhs = &node_hstates[nid];
1837 int i;
1838 for (i = 0; i < HUGE_MAX_HSTATE; i++)
1839 if (nhs->hstate_kobjs[i] == kobj) {
1840 if (nidp)
1841 *nidp = nid;
1842 return &hstates[i];
1843 }
1844 }
1845
1846 BUG();
1847 return NULL;
1848}
1849
1850/*
10fbcf4c 1851 * Unregister hstate attributes from a single node device.
9a305230
LS
1852 * No-op if no hstate attributes attached.
1853 */
3cd8b44f 1854static void hugetlb_unregister_node(struct node *node)
9a305230
LS
1855{
1856 struct hstate *h;
10fbcf4c 1857 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1858
1859 if (!nhs->hugepages_kobj)
9b5e5d0f 1860 return; /* no hstate attributes */
9a305230 1861
972dc4de
AK
1862 for_each_hstate(h) {
1863 int idx = hstate_index(h);
1864 if (nhs->hstate_kobjs[idx]) {
1865 kobject_put(nhs->hstate_kobjs[idx]);
1866 nhs->hstate_kobjs[idx] = NULL;
9a305230 1867 }
972dc4de 1868 }
9a305230
LS
1869
1870 kobject_put(nhs->hugepages_kobj);
1871 nhs->hugepages_kobj = NULL;
1872}
1873
1874/*
10fbcf4c 1875 * hugetlb module exit: unregister hstate attributes from node devices
9a305230
LS
1876 * that have them.
1877 */
1878static void hugetlb_unregister_all_nodes(void)
1879{
1880 int nid;
1881
1882 /*
10fbcf4c 1883 * disable node device registrations.
9a305230
LS
1884 */
1885 register_hugetlbfs_with_node(NULL, NULL);
1886
1887 /*
1888 * remove hstate attributes from any nodes that have them.
1889 */
1890 for (nid = 0; nid < nr_node_ids; nid++)
8732794b 1891 hugetlb_unregister_node(node_devices[nid]);
9a305230
LS
1892}
1893
1894/*
10fbcf4c 1895 * Register hstate attributes for a single node device.
9a305230
LS
1896 * No-op if attributes already registered.
1897 */
3cd8b44f 1898static void hugetlb_register_node(struct node *node)
9a305230
LS
1899{
1900 struct hstate *h;
10fbcf4c 1901 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
1902 int err;
1903
1904 if (nhs->hugepages_kobj)
1905 return; /* already allocated */
1906
1907 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 1908 &node->dev.kobj);
9a305230
LS
1909 if (!nhs->hugepages_kobj)
1910 return;
1911
1912 for_each_hstate(h) {
1913 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
1914 nhs->hstate_kobjs,
1915 &per_node_hstate_attr_group);
1916 if (err) {
ffb22af5
AM
1917 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
1918 h->name, node->dev.id);
9a305230
LS
1919 hugetlb_unregister_node(node);
1920 break;
1921 }
1922 }
1923}
1924
1925/*
9b5e5d0f 1926 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
1927 * devices of nodes that have memory. All on-line nodes should have
1928 * registered their associated device by this time.
9a305230
LS
1929 */
1930static void hugetlb_register_all_nodes(void)
1931{
1932 int nid;
1933
8cebfcd0 1934 for_each_node_state(nid, N_MEMORY) {
8732794b 1935 struct node *node = node_devices[nid];
10fbcf4c 1936 if (node->dev.id == nid)
9a305230
LS
1937 hugetlb_register_node(node);
1938 }
1939
1940 /*
10fbcf4c 1941 * Let the node device driver know we're here so it can
9a305230
LS
1942 * [un]register hstate attributes on node hotplug.
1943 */
1944 register_hugetlbfs_with_node(hugetlb_register_node,
1945 hugetlb_unregister_node);
1946}
1947#else /* !CONFIG_NUMA */
1948
1949static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
1950{
1951 BUG();
1952 if (nidp)
1953 *nidp = -1;
1954 return NULL;
1955}
1956
1957static void hugetlb_unregister_all_nodes(void) { }
1958
1959static void hugetlb_register_all_nodes(void) { }
1960
1961#endif
1962
a3437870
NA
1963static void __exit hugetlb_exit(void)
1964{
1965 struct hstate *h;
1966
9a305230
LS
1967 hugetlb_unregister_all_nodes();
1968
a3437870 1969 for_each_hstate(h) {
972dc4de 1970 kobject_put(hstate_kobjs[hstate_index(h)]);
a3437870
NA
1971 }
1972
1973 kobject_put(hugepages_kobj);
8382d914 1974 kfree(htlb_fault_mutex_table);
a3437870
NA
1975}
1976module_exit(hugetlb_exit);
1977
1978static int __init hugetlb_init(void)
1979{
8382d914
DB
1980 int i;
1981
0ef89d25
BH
1982 /* Some platform decide whether they support huge pages at boot
1983 * time. On these, such as powerpc, HPAGE_SHIFT is set to 0 when
1984 * there is no such support
1985 */
1986 if (HPAGE_SHIFT == 0)
1987 return 0;
a3437870 1988
e11bfbfc
NP
1989 if (!size_to_hstate(default_hstate_size)) {
1990 default_hstate_size = HPAGE_SIZE;
1991 if (!size_to_hstate(default_hstate_size))
1992 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 1993 }
972dc4de 1994 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
e11bfbfc
NP
1995 if (default_hstate_max_huge_pages)
1996 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
a3437870
NA
1997
1998 hugetlb_init_hstates();
aa888a74 1999 gather_bootmem_prealloc();
a3437870
NA
2000 report_hugepages();
2001
2002 hugetlb_sysfs_init();
9a305230 2003 hugetlb_register_all_nodes();
7179e7bf 2004 hugetlb_cgroup_file_init();
9a305230 2005
8382d914
DB
2006#ifdef CONFIG_SMP
2007 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2008#else
2009 num_fault_mutexes = 1;
2010#endif
2011 htlb_fault_mutex_table =
2012 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
2013 BUG_ON(!htlb_fault_mutex_table);
2014
2015 for (i = 0; i < num_fault_mutexes; i++)
2016 mutex_init(&htlb_fault_mutex_table[i]);
a3437870
NA
2017 return 0;
2018}
2019module_init(hugetlb_init);
2020
2021/* Should be called on processing a hugepagesz=... option */
2022void __init hugetlb_add_hstate(unsigned order)
2023{
2024 struct hstate *h;
8faa8b07
AK
2025 unsigned long i;
2026
a3437870 2027 if (size_to_hstate(PAGE_SIZE << order)) {
ffb22af5 2028 pr_warning("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2029 return;
2030 }
47d38344 2031 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2032 BUG_ON(order == 0);
47d38344 2033 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2034 h->order = order;
2035 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2036 h->nr_huge_pages = 0;
2037 h->free_huge_pages = 0;
2038 for (i = 0; i < MAX_NUMNODES; ++i)
2039 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2040 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2041 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2042 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2043 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2044 huge_page_size(h)/1024);
8faa8b07 2045
a3437870
NA
2046 parsed_hstate = h;
2047}
2048
e11bfbfc 2049static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2050{
2051 unsigned long *mhp;
8faa8b07 2052 static unsigned long *last_mhp;
a3437870
NA
2053
2054 /*
47d38344 2055 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2056 * so this hugepages= parameter goes to the "default hstate".
2057 */
47d38344 2058 if (!hugetlb_max_hstate)
a3437870
NA
2059 mhp = &default_hstate_max_huge_pages;
2060 else
2061 mhp = &parsed_hstate->max_huge_pages;
2062
8faa8b07 2063 if (mhp == last_mhp) {
ffb22af5
AM
2064 pr_warning("hugepages= specified twice without "
2065 "interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2066 return 1;
2067 }
2068
a3437870
NA
2069 if (sscanf(s, "%lu", mhp) <= 0)
2070 *mhp = 0;
2071
8faa8b07
AK
2072 /*
2073 * Global state is always initialized later in hugetlb_init.
2074 * But we need to allocate >= MAX_ORDER hstates here early to still
2075 * use the bootmem allocator.
2076 */
47d38344 2077 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2078 hugetlb_hstate_alloc_pages(parsed_hstate);
2079
2080 last_mhp = mhp;
2081
a3437870
NA
2082 return 1;
2083}
e11bfbfc
NP
2084__setup("hugepages=", hugetlb_nrpages_setup);
2085
2086static int __init hugetlb_default_setup(char *s)
2087{
2088 default_hstate_size = memparse(s, &s);
2089 return 1;
2090}
2091__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2092
8a213460
NA
2093static unsigned int cpuset_mems_nr(unsigned int *array)
2094{
2095 int node;
2096 unsigned int nr = 0;
2097
2098 for_each_node_mask(node, cpuset_current_mems_allowed)
2099 nr += array[node];
2100
2101 return nr;
2102}
2103
2104#ifdef CONFIG_SYSCTL
06808b08
LS
2105static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2106 struct ctl_table *table, int write,
2107 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2108{
e5ff2159
AK
2109 struct hstate *h = &default_hstate;
2110 unsigned long tmp;
08d4a246 2111 int ret;
e5ff2159 2112
c033a93c 2113 tmp = h->max_huge_pages;
e5ff2159 2114
adbe8726
EM
2115 if (write && h->order >= MAX_ORDER)
2116 return -EINVAL;
2117
e5ff2159
AK
2118 table->data = &tmp;
2119 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2120 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2121 if (ret)
2122 goto out;
e5ff2159 2123
06808b08 2124 if (write) {
bad44b5b
DR
2125 NODEMASK_ALLOC(nodemask_t, nodes_allowed,
2126 GFP_KERNEL | __GFP_NORETRY);
06808b08
LS
2127 if (!(obey_mempolicy &&
2128 init_nodemask_of_mempolicy(nodes_allowed))) {
2129 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2130 nodes_allowed = &node_states[N_MEMORY];
06808b08
LS
2131 }
2132 h->max_huge_pages = set_max_huge_pages(h, tmp, nodes_allowed);
2133
8cebfcd0 2134 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2135 NODEMASK_FREE(nodes_allowed);
2136 }
08d4a246
MH
2137out:
2138 return ret;
1da177e4 2139}
396faf03 2140
06808b08
LS
2141int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2142 void __user *buffer, size_t *length, loff_t *ppos)
2143{
2144
2145 return hugetlb_sysctl_handler_common(false, table, write,
2146 buffer, length, ppos);
2147}
2148
2149#ifdef CONFIG_NUMA
2150int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2151 void __user *buffer, size_t *length, loff_t *ppos)
2152{
2153 return hugetlb_sysctl_handler_common(true, table, write,
2154 buffer, length, ppos);
2155}
2156#endif /* CONFIG_NUMA */
2157
a3d0c6aa 2158int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2159 void __user *buffer,
a3d0c6aa
NA
2160 size_t *length, loff_t *ppos)
2161{
a5516438 2162 struct hstate *h = &default_hstate;
e5ff2159 2163 unsigned long tmp;
08d4a246 2164 int ret;
e5ff2159 2165
c033a93c 2166 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2167
adbe8726
EM
2168 if (write && h->order >= MAX_ORDER)
2169 return -EINVAL;
2170
e5ff2159
AK
2171 table->data = &tmp;
2172 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2173 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2174 if (ret)
2175 goto out;
e5ff2159
AK
2176
2177 if (write) {
2178 spin_lock(&hugetlb_lock);
2179 h->nr_overcommit_huge_pages = tmp;
2180 spin_unlock(&hugetlb_lock);
2181 }
08d4a246
MH
2182out:
2183 return ret;
a3d0c6aa
NA
2184}
2185
1da177e4
LT
2186#endif /* CONFIG_SYSCTL */
2187
e1759c21 2188void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2189{
a5516438 2190 struct hstate *h = &default_hstate;
e1759c21 2191 seq_printf(m,
4f98a2fe
RR
2192 "HugePages_Total: %5lu\n"
2193 "HugePages_Free: %5lu\n"
2194 "HugePages_Rsvd: %5lu\n"
2195 "HugePages_Surp: %5lu\n"
2196 "Hugepagesize: %8lu kB\n",
a5516438
AK
2197 h->nr_huge_pages,
2198 h->free_huge_pages,
2199 h->resv_huge_pages,
2200 h->surplus_huge_pages,
2201 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2202}
2203
2204int hugetlb_report_node_meminfo(int nid, char *buf)
2205{
a5516438 2206 struct hstate *h = &default_hstate;
1da177e4
LT
2207 return sprintf(buf,
2208 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2209 "Node %d HugePages_Free: %5u\n"
2210 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2211 nid, h->nr_huge_pages_node[nid],
2212 nid, h->free_huge_pages_node[nid],
2213 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2214}
2215
949f7ec5
DR
2216void hugetlb_show_meminfo(void)
2217{
2218 struct hstate *h;
2219 int nid;
2220
2221 for_each_node_state(nid, N_MEMORY)
2222 for_each_hstate(h)
2223 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2224 nid,
2225 h->nr_huge_pages_node[nid],
2226 h->free_huge_pages_node[nid],
2227 h->surplus_huge_pages_node[nid],
2228 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2229}
2230
1da177e4
LT
2231/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2232unsigned long hugetlb_total_pages(void)
2233{
d0028588
WL
2234 struct hstate *h;
2235 unsigned long nr_total_pages = 0;
2236
2237 for_each_hstate(h)
2238 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2239 return nr_total_pages;
1da177e4 2240}
1da177e4 2241
a5516438 2242static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2243{
2244 int ret = -ENOMEM;
2245
2246 spin_lock(&hugetlb_lock);
2247 /*
2248 * When cpuset is configured, it breaks the strict hugetlb page
2249 * reservation as the accounting is done on a global variable. Such
2250 * reservation is completely rubbish in the presence of cpuset because
2251 * the reservation is not checked against page availability for the
2252 * current cpuset. Application can still potentially OOM'ed by kernel
2253 * with lack of free htlb page in cpuset that the task is in.
2254 * Attempt to enforce strict accounting with cpuset is almost
2255 * impossible (or too ugly) because cpuset is too fluid that
2256 * task or memory node can be dynamically moved between cpusets.
2257 *
2258 * The change of semantics for shared hugetlb mapping with cpuset is
2259 * undesirable. However, in order to preserve some of the semantics,
2260 * we fall back to check against current free page availability as
2261 * a best attempt and hopefully to minimize the impact of changing
2262 * semantics that cpuset has.
2263 */
2264 if (delta > 0) {
a5516438 2265 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2266 goto out;
2267
a5516438
AK
2268 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2269 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2270 goto out;
2271 }
2272 }
2273
2274 ret = 0;
2275 if (delta < 0)
a5516438 2276 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2277
2278out:
2279 spin_unlock(&hugetlb_lock);
2280 return ret;
2281}
2282
84afd99b
AW
2283static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2284{
f522c3ac 2285 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2286
2287 /*
2288 * This new VMA should share its siblings reservation map if present.
2289 * The VMA will only ever have a valid reservation map pointer where
2290 * it is being copied for another still existing VMA. As that VMA
25985edc 2291 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2292 * after this open call completes. It is therefore safe to take a
2293 * new reference here without additional locking.
2294 */
4e35f483 2295 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2296 kref_get(&resv->refs);
84afd99b
AW
2297}
2298
a1e78772
MG
2299static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2300{
a5516438 2301 struct hstate *h = hstate_vma(vma);
f522c3ac 2302 struct resv_map *resv = vma_resv_map(vma);
90481622 2303 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2304 unsigned long reserve, start, end;
84afd99b 2305
4e35f483
JK
2306 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2307 return;
84afd99b 2308
4e35f483
JK
2309 start = vma_hugecache_offset(h, vma, vma->vm_start);
2310 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2311
4e35f483 2312 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2313
4e35f483
JK
2314 kref_put(&resv->refs, resv_map_release);
2315
2316 if (reserve) {
2317 hugetlb_acct_memory(h, -reserve);
2318 hugepage_subpool_put_pages(spool, reserve);
84afd99b 2319 }
a1e78772
MG
2320}
2321
1da177e4
LT
2322/*
2323 * We cannot handle pagefaults against hugetlb pages at all. They cause
2324 * handle_mm_fault() to try to instantiate regular-sized pages in the
2325 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2326 * this far.
2327 */
d0217ac0 2328static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2329{
2330 BUG();
d0217ac0 2331 return 0;
1da177e4
LT
2332}
2333
f0f37e2f 2334const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2335 .fault = hugetlb_vm_op_fault,
84afd99b 2336 .open = hugetlb_vm_op_open,
a1e78772 2337 .close = hugetlb_vm_op_close,
1da177e4
LT
2338};
2339
1e8f889b
DG
2340static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2341 int writable)
63551ae0
DG
2342{
2343 pte_t entry;
2344
1e8f889b 2345 if (writable) {
106c992a
GS
2346 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2347 vma->vm_page_prot)));
63551ae0 2348 } else {
106c992a
GS
2349 entry = huge_pte_wrprotect(mk_huge_pte(page,
2350 vma->vm_page_prot));
63551ae0
DG
2351 }
2352 entry = pte_mkyoung(entry);
2353 entry = pte_mkhuge(entry);
d9ed9faa 2354 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
2355
2356 return entry;
2357}
2358
1e8f889b
DG
2359static void set_huge_ptep_writable(struct vm_area_struct *vma,
2360 unsigned long address, pte_t *ptep)
2361{
2362 pte_t entry;
2363
106c992a 2364 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 2365 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 2366 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
2367}
2368
2369
63551ae0
DG
2370int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
2371 struct vm_area_struct *vma)
2372{
2373 pte_t *src_pte, *dst_pte, entry;
2374 struct page *ptepage;
1c59827d 2375 unsigned long addr;
1e8f889b 2376 int cow;
a5516438
AK
2377 struct hstate *h = hstate_vma(vma);
2378 unsigned long sz = huge_page_size(h);
e8569dd2
AS
2379 unsigned long mmun_start; /* For mmu_notifiers */
2380 unsigned long mmun_end; /* For mmu_notifiers */
2381 int ret = 0;
1e8f889b
DG
2382
2383 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 2384
e8569dd2
AS
2385 mmun_start = vma->vm_start;
2386 mmun_end = vma->vm_end;
2387 if (cow)
2388 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
2389
a5516438 2390 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 2391 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
2392 src_pte = huge_pte_offset(src, addr);
2393 if (!src_pte)
2394 continue;
a5516438 2395 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
2396 if (!dst_pte) {
2397 ret = -ENOMEM;
2398 break;
2399 }
c5c99429
LW
2400
2401 /* If the pagetables are shared don't copy or take references */
2402 if (dst_pte == src_pte)
2403 continue;
2404
cb900f41
KS
2405 dst_ptl = huge_pte_lock(h, dst, dst_pte);
2406 src_ptl = huge_pte_lockptr(h, src, src_pte);
2407 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
7f2e9525 2408 if (!huge_pte_none(huge_ptep_get(src_pte))) {
1e8f889b 2409 if (cow)
7f2e9525
GS
2410 huge_ptep_set_wrprotect(src, addr, src_pte);
2411 entry = huge_ptep_get(src_pte);
1c59827d
HD
2412 ptepage = pte_page(entry);
2413 get_page(ptepage);
0fe6e20b 2414 page_dup_rmap(ptepage);
1c59827d
HD
2415 set_huge_pte_at(dst, addr, dst_pte, entry);
2416 }
cb900f41
KS
2417 spin_unlock(src_ptl);
2418 spin_unlock(dst_ptl);
63551ae0 2419 }
63551ae0 2420
e8569dd2
AS
2421 if (cow)
2422 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
2423
2424 return ret;
63551ae0
DG
2425}
2426
290408d4
NH
2427static int is_hugetlb_entry_migration(pte_t pte)
2428{
2429 swp_entry_t swp;
2430
2431 if (huge_pte_none(pte) || pte_present(pte))
2432 return 0;
2433 swp = pte_to_swp_entry(pte);
32f84528 2434 if (non_swap_entry(swp) && is_migration_entry(swp))
290408d4 2435 return 1;
32f84528 2436 else
290408d4
NH
2437 return 0;
2438}
2439
fd6a03ed
NH
2440static int is_hugetlb_entry_hwpoisoned(pte_t pte)
2441{
2442 swp_entry_t swp;
2443
2444 if (huge_pte_none(pte) || pte_present(pte))
2445 return 0;
2446 swp = pte_to_swp_entry(pte);
32f84528 2447 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
fd6a03ed 2448 return 1;
32f84528 2449 else
fd6a03ed
NH
2450 return 0;
2451}
2452
24669e58
AK
2453void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
2454 unsigned long start, unsigned long end,
2455 struct page *ref_page)
63551ae0 2456{
24669e58 2457 int force_flush = 0;
63551ae0
DG
2458 struct mm_struct *mm = vma->vm_mm;
2459 unsigned long address;
c7546f8f 2460 pte_t *ptep;
63551ae0 2461 pte_t pte;
cb900f41 2462 spinlock_t *ptl;
63551ae0 2463 struct page *page;
a5516438
AK
2464 struct hstate *h = hstate_vma(vma);
2465 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
2466 const unsigned long mmun_start = start; /* For mmu_notifiers */
2467 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 2468
63551ae0 2469 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
2470 BUG_ON(start & ~huge_page_mask(h));
2471 BUG_ON(end & ~huge_page_mask(h));
63551ae0 2472
24669e58 2473 tlb_start_vma(tlb, vma);
2ec74c3e 2474 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
24669e58 2475again:
a5516438 2476 for (address = start; address < end; address += sz) {
c7546f8f 2477 ptep = huge_pte_offset(mm, address);
4c887265 2478 if (!ptep)
c7546f8f
DG
2479 continue;
2480
cb900f41 2481 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 2482 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 2483 goto unlock;
39dde65c 2484
6629326b
HD
2485 pte = huge_ptep_get(ptep);
2486 if (huge_pte_none(pte))
cb900f41 2487 goto unlock;
6629326b
HD
2488
2489 /*
2490 * HWPoisoned hugepage is already unmapped and dropped reference
2491 */
8c4894c6 2492 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
106c992a 2493 huge_pte_clear(mm, address, ptep);
cb900f41 2494 goto unlock;
8c4894c6 2495 }
6629326b
HD
2496
2497 page = pte_page(pte);
04f2cbe3
MG
2498 /*
2499 * If a reference page is supplied, it is because a specific
2500 * page is being unmapped, not a range. Ensure the page we
2501 * are about to unmap is the actual page of interest.
2502 */
2503 if (ref_page) {
04f2cbe3 2504 if (page != ref_page)
cb900f41 2505 goto unlock;
04f2cbe3
MG
2506
2507 /*
2508 * Mark the VMA as having unmapped its page so that
2509 * future faults in this VMA will fail rather than
2510 * looking like data was lost
2511 */
2512 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
2513 }
2514
c7546f8f 2515 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 2516 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 2517 if (huge_pte_dirty(pte))
6649a386 2518 set_page_dirty(page);
9e81130b 2519
24669e58
AK
2520 page_remove_rmap(page);
2521 force_flush = !__tlb_remove_page(tlb, page);
cb900f41
KS
2522 if (force_flush) {
2523 spin_unlock(ptl);
24669e58 2524 break;
cb900f41 2525 }
9e81130b 2526 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
2527 if (ref_page) {
2528 spin_unlock(ptl);
9e81130b 2529 break;
cb900f41
KS
2530 }
2531unlock:
2532 spin_unlock(ptl);
63551ae0 2533 }
24669e58
AK
2534 /*
2535 * mmu_gather ran out of room to batch pages, we break out of
2536 * the PTE lock to avoid doing the potential expensive TLB invalidate
2537 * and page-free while holding it.
2538 */
2539 if (force_flush) {
2540 force_flush = 0;
2541 tlb_flush_mmu(tlb);
2542 if (address < end && !ref_page)
2543 goto again;
fe1668ae 2544 }
2ec74c3e 2545 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 2546 tlb_end_vma(tlb, vma);
1da177e4 2547}
63551ae0 2548
d833352a
MG
2549void __unmap_hugepage_range_final(struct mmu_gather *tlb,
2550 struct vm_area_struct *vma, unsigned long start,
2551 unsigned long end, struct page *ref_page)
2552{
2553 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
2554
2555 /*
2556 * Clear this flag so that x86's huge_pmd_share page_table_shareable
2557 * test will fail on a vma being torn down, and not grab a page table
2558 * on its way out. We're lucky that the flag has such an appropriate
2559 * name, and can in fact be safely cleared here. We could clear it
2560 * before the __unmap_hugepage_range above, but all that's necessary
2561 * is to clear it before releasing the i_mmap_mutex. This works
2562 * because in the context this is called, the VMA is about to be
2563 * destroyed and the i_mmap_mutex is held.
2564 */
2565 vma->vm_flags &= ~VM_MAYSHARE;
2566}
2567
502717f4 2568void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 2569 unsigned long end, struct page *ref_page)
502717f4 2570{
24669e58
AK
2571 struct mm_struct *mm;
2572 struct mmu_gather tlb;
2573
2574 mm = vma->vm_mm;
2575
2b047252 2576 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
2577 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
2578 tlb_finish_mmu(&tlb, start, end);
502717f4
KC
2579}
2580
04f2cbe3
MG
2581/*
2582 * This is called when the original mapper is failing to COW a MAP_PRIVATE
2583 * mappping it owns the reserve page for. The intention is to unmap the page
2584 * from other VMAs and let the children be SIGKILLed if they are faulting the
2585 * same region.
2586 */
2a4b3ded
HH
2587static int unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
2588 struct page *page, unsigned long address)
04f2cbe3 2589{
7526674d 2590 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
2591 struct vm_area_struct *iter_vma;
2592 struct address_space *mapping;
04f2cbe3
MG
2593 pgoff_t pgoff;
2594
2595 /*
2596 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
2597 * from page cache lookup which is in HPAGE_SIZE units.
2598 */
7526674d 2599 address = address & huge_page_mask(h);
36e4f20a
MH
2600 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
2601 vma->vm_pgoff;
496ad9aa 2602 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 2603
4eb2b1dc
MG
2604 /*
2605 * Take the mapping lock for the duration of the table walk. As
2606 * this mapping should be shared between all the VMAs,
2607 * __unmap_hugepage_range() is called as the lock is already held
2608 */
3d48ae45 2609 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2610 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
2611 /* Do not unmap the current VMA */
2612 if (iter_vma == vma)
2613 continue;
2614
2615 /*
2616 * Unmap the page from other VMAs without their own reserves.
2617 * They get marked to be SIGKILLed if they fault in these
2618 * areas. This is because a future no-page fault on this VMA
2619 * could insert a zeroed page instead of the data existing
2620 * from the time of fork. This would look like data corruption
2621 */
2622 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
2623 unmap_hugepage_range(iter_vma, address,
2624 address + huge_page_size(h), page);
04f2cbe3 2625 }
3d48ae45 2626 mutex_unlock(&mapping->i_mmap_mutex);
04f2cbe3
MG
2627
2628 return 1;
2629}
2630
0fe6e20b
NH
2631/*
2632 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
2633 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
2634 * cannot race with other handlers or page migration.
2635 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 2636 */
1e8f889b 2637static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 2638 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 2639 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 2640{
a5516438 2641 struct hstate *h = hstate_vma(vma);
1e8f889b 2642 struct page *old_page, *new_page;
04f2cbe3 2643 int outside_reserve = 0;
2ec74c3e
SG
2644 unsigned long mmun_start; /* For mmu_notifiers */
2645 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
2646
2647 old_page = pte_page(pte);
2648
04f2cbe3 2649retry_avoidcopy:
1e8f889b
DG
2650 /* If no-one else is actually using this page, avoid the copy
2651 * and just make the page writable */
37a2140d
JK
2652 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
2653 page_move_anon_rmap(old_page, vma, address);
1e8f889b 2654 set_huge_ptep_writable(vma, address, ptep);
83c54070 2655 return 0;
1e8f889b
DG
2656 }
2657
04f2cbe3
MG
2658 /*
2659 * If the process that created a MAP_PRIVATE mapping is about to
2660 * perform a COW due to a shared page count, attempt to satisfy
2661 * the allocation without using the existing reserves. The pagecache
2662 * page is used to determine if the reserve at this address was
2663 * consumed or not. If reserves were used, a partial faulted mapping
2664 * at the time of fork() could consume its reserves on COW instead
2665 * of the full address range.
2666 */
5944d011 2667 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
2668 old_page != pagecache_page)
2669 outside_reserve = 1;
2670
1e8f889b 2671 page_cache_get(old_page);
b76c8cfb 2672
cb900f41
KS
2673 /* Drop page table lock as buddy allocator may be called */
2674 spin_unlock(ptl);
04f2cbe3 2675 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 2676
2fc39cec 2677 if (IS_ERR(new_page)) {
76dcee75 2678 long err = PTR_ERR(new_page);
1e8f889b 2679 page_cache_release(old_page);
04f2cbe3
MG
2680
2681 /*
2682 * If a process owning a MAP_PRIVATE mapping fails to COW,
2683 * it is due to references held by a child and an insufficient
2684 * huge page pool. To guarantee the original mappers
2685 * reliability, unmap the page from child processes. The child
2686 * may get SIGKILLed if it later faults.
2687 */
2688 if (outside_reserve) {
2689 BUG_ON(huge_pte_none(pte));
2690 if (unmap_ref_private(mm, vma, old_page, address)) {
04f2cbe3 2691 BUG_ON(huge_pte_none(pte));
cb900f41 2692 spin_lock(ptl);
a734bcc8 2693 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d
NH
2694 if (likely(ptep &&
2695 pte_same(huge_ptep_get(ptep), pte)))
a734bcc8
HD
2696 goto retry_avoidcopy;
2697 /*
cb900f41
KS
2698 * race occurs while re-acquiring page table
2699 * lock, and our job is done.
a734bcc8
HD
2700 */
2701 return 0;
04f2cbe3
MG
2702 }
2703 WARN_ON_ONCE(1);
2704 }
2705
b76c8cfb 2706 /* Caller expects lock to be held */
cb900f41 2707 spin_lock(ptl);
76dcee75
AK
2708 if (err == -ENOMEM)
2709 return VM_FAULT_OOM;
2710 else
2711 return VM_FAULT_SIGBUS;
1e8f889b
DG
2712 }
2713
0fe6e20b
NH
2714 /*
2715 * When the original hugepage is shared one, it does not have
2716 * anon_vma prepared.
2717 */
44e2aa93 2718 if (unlikely(anon_vma_prepare(vma))) {
ea4039a3
HD
2719 page_cache_release(new_page);
2720 page_cache_release(old_page);
44e2aa93 2721 /* Caller expects lock to be held */
cb900f41 2722 spin_lock(ptl);
0fe6e20b 2723 return VM_FAULT_OOM;
44e2aa93 2724 }
0fe6e20b 2725
47ad8475
AA
2726 copy_user_huge_page(new_page, old_page, address, vma,
2727 pages_per_huge_page(h));
0ed361de 2728 __SetPageUptodate(new_page);
1e8f889b 2729
2ec74c3e
SG
2730 mmun_start = address & huge_page_mask(h);
2731 mmun_end = mmun_start + huge_page_size(h);
2732 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
b76c8cfb 2733 /*
cb900f41 2734 * Retake the page table lock to check for racing updates
b76c8cfb
LW
2735 * before the page tables are altered
2736 */
cb900f41 2737 spin_lock(ptl);
a5516438 2738 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 2739 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
2740 ClearPagePrivate(new_page);
2741
1e8f889b 2742 /* Break COW */
8fe627ec 2743 huge_ptep_clear_flush(vma, address, ptep);
1e8f889b
DG
2744 set_huge_pte_at(mm, address, ptep,
2745 make_huge_pte(vma, new_page, 1));
0fe6e20b 2746 page_remove_rmap(old_page);
cd67f0d2 2747 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
2748 /* Make the old page be freed below */
2749 new_page = old_page;
2750 }
cb900f41 2751 spin_unlock(ptl);
2ec74c3e 2752 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1e8f889b
DG
2753 page_cache_release(new_page);
2754 page_cache_release(old_page);
8312034f
JK
2755
2756 /* Caller expects lock to be held */
cb900f41 2757 spin_lock(ptl);
83c54070 2758 return 0;
1e8f889b
DG
2759}
2760
04f2cbe3 2761/* Return the pagecache page at a given address within a VMA */
a5516438
AK
2762static struct page *hugetlbfs_pagecache_page(struct hstate *h,
2763 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
2764{
2765 struct address_space *mapping;
e7c4b0bf 2766 pgoff_t idx;
04f2cbe3
MG
2767
2768 mapping = vma->vm_file->f_mapping;
a5516438 2769 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
2770
2771 return find_lock_page(mapping, idx);
2772}
2773
3ae77f43
HD
2774/*
2775 * Return whether there is a pagecache page to back given address within VMA.
2776 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
2777 */
2778static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
2779 struct vm_area_struct *vma, unsigned long address)
2780{
2781 struct address_space *mapping;
2782 pgoff_t idx;
2783 struct page *page;
2784
2785 mapping = vma->vm_file->f_mapping;
2786 idx = vma_hugecache_offset(h, vma, address);
2787
2788 page = find_get_page(mapping, idx);
2789 if (page)
2790 put_page(page);
2791 return page != NULL;
2792}
2793
a1ed3dda 2794static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
2795 struct address_space *mapping, pgoff_t idx,
2796 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 2797{
a5516438 2798 struct hstate *h = hstate_vma(vma);
ac9b9c66 2799 int ret = VM_FAULT_SIGBUS;
409eb8c2 2800 int anon_rmap = 0;
4c887265 2801 unsigned long size;
4c887265 2802 struct page *page;
1e8f889b 2803 pte_t new_pte;
cb900f41 2804 spinlock_t *ptl;
4c887265 2805
04f2cbe3
MG
2806 /*
2807 * Currently, we are forced to kill the process in the event the
2808 * original mapper has unmapped pages from the child due to a failed
25985edc 2809 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
2810 */
2811 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
ffb22af5
AM
2812 pr_warning("PID %d killed due to inadequate hugepage pool\n",
2813 current->pid);
04f2cbe3
MG
2814 return ret;
2815 }
2816
4c887265
AL
2817 /*
2818 * Use page lock to guard against racing truncation
2819 * before we get page_table_lock.
2820 */
6bda666a
CL
2821retry:
2822 page = find_lock_page(mapping, idx);
2823 if (!page) {
a5516438 2824 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
2825 if (idx >= size)
2826 goto out;
04f2cbe3 2827 page = alloc_huge_page(vma, address, 0);
2fc39cec 2828 if (IS_ERR(page)) {
76dcee75
AK
2829 ret = PTR_ERR(page);
2830 if (ret == -ENOMEM)
2831 ret = VM_FAULT_OOM;
2832 else
2833 ret = VM_FAULT_SIGBUS;
6bda666a
CL
2834 goto out;
2835 }
47ad8475 2836 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 2837 __SetPageUptodate(page);
ac9b9c66 2838
f83a275d 2839 if (vma->vm_flags & VM_MAYSHARE) {
6bda666a 2840 int err;
45c682a6 2841 struct inode *inode = mapping->host;
6bda666a
CL
2842
2843 err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
2844 if (err) {
2845 put_page(page);
6bda666a
CL
2846 if (err == -EEXIST)
2847 goto retry;
2848 goto out;
2849 }
07443a85 2850 ClearPagePrivate(page);
45c682a6
KC
2851
2852 spin_lock(&inode->i_lock);
a5516438 2853 inode->i_blocks += blocks_per_huge_page(h);
45c682a6 2854 spin_unlock(&inode->i_lock);
23be7468 2855 } else {
6bda666a 2856 lock_page(page);
0fe6e20b
NH
2857 if (unlikely(anon_vma_prepare(vma))) {
2858 ret = VM_FAULT_OOM;
2859 goto backout_unlocked;
2860 }
409eb8c2 2861 anon_rmap = 1;
23be7468 2862 }
0fe6e20b 2863 } else {
998b4382
NH
2864 /*
2865 * If memory error occurs between mmap() and fault, some process
2866 * don't have hwpoisoned swap entry for errored virtual address.
2867 * So we need to block hugepage fault by PG_hwpoison bit check.
2868 */
2869 if (unlikely(PageHWPoison(page))) {
32f84528 2870 ret = VM_FAULT_HWPOISON |
972dc4de 2871 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
2872 goto backout_unlocked;
2873 }
6bda666a 2874 }
1e8f889b 2875
57303d80
AW
2876 /*
2877 * If we are going to COW a private mapping later, we examine the
2878 * pending reservations for this page now. This will ensure that
2879 * any allocations necessary to record that reservation occur outside
2880 * the spinlock.
2881 */
788c7df4 2882 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED))
2b26736c
AW
2883 if (vma_needs_reservation(h, vma, address) < 0) {
2884 ret = VM_FAULT_OOM;
2885 goto backout_unlocked;
2886 }
57303d80 2887
cb900f41
KS
2888 ptl = huge_pte_lockptr(h, mm, ptep);
2889 spin_lock(ptl);
a5516438 2890 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
2891 if (idx >= size)
2892 goto backout;
2893
83c54070 2894 ret = 0;
7f2e9525 2895 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
2896 goto backout;
2897
07443a85
JK
2898 if (anon_rmap) {
2899 ClearPagePrivate(page);
409eb8c2 2900 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 2901 } else
409eb8c2 2902 page_dup_rmap(page);
1e8f889b
DG
2903 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
2904 && (vma->vm_flags & VM_SHARED)));
2905 set_huge_pte_at(mm, address, ptep, new_pte);
2906
788c7df4 2907 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 2908 /* Optimization, do the COW without a second fault */
cb900f41 2909 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
2910 }
2911
cb900f41 2912 spin_unlock(ptl);
4c887265
AL
2913 unlock_page(page);
2914out:
ac9b9c66 2915 return ret;
4c887265
AL
2916
2917backout:
cb900f41 2918 spin_unlock(ptl);
2b26736c 2919backout_unlocked:
4c887265
AL
2920 unlock_page(page);
2921 put_page(page);
2922 goto out;
ac9b9c66
HD
2923}
2924
8382d914
DB
2925#ifdef CONFIG_SMP
2926static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2927 struct vm_area_struct *vma,
2928 struct address_space *mapping,
2929 pgoff_t idx, unsigned long address)
2930{
2931 unsigned long key[2];
2932 u32 hash;
2933
2934 if (vma->vm_flags & VM_SHARED) {
2935 key[0] = (unsigned long) mapping;
2936 key[1] = idx;
2937 } else {
2938 key[0] = (unsigned long) mm;
2939 key[1] = address >> huge_page_shift(h);
2940 }
2941
2942 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
2943
2944 return hash & (num_fault_mutexes - 1);
2945}
2946#else
2947/*
2948 * For uniprocesor systems we always use a single mutex, so just
2949 * return 0 and avoid the hashing overhead.
2950 */
2951static u32 fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
2952 struct vm_area_struct *vma,
2953 struct address_space *mapping,
2954 pgoff_t idx, unsigned long address)
2955{
2956 return 0;
2957}
2958#endif
2959
86e5216f 2960int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 2961 unsigned long address, unsigned int flags)
86e5216f 2962{
8382d914 2963 pte_t *ptep, entry;
cb900f41 2964 spinlock_t *ptl;
1e8f889b 2965 int ret;
8382d914
DB
2966 u32 hash;
2967 pgoff_t idx;
0fe6e20b 2968 struct page *page = NULL;
57303d80 2969 struct page *pagecache_page = NULL;
a5516438 2970 struct hstate *h = hstate_vma(vma);
8382d914 2971 struct address_space *mapping;
86e5216f 2972
1e16a539
KH
2973 address &= huge_page_mask(h);
2974
fd6a03ed
NH
2975 ptep = huge_pte_offset(mm, address);
2976 if (ptep) {
2977 entry = huge_ptep_get(ptep);
290408d4 2978 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 2979 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
2980 return 0;
2981 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 2982 return VM_FAULT_HWPOISON_LARGE |
972dc4de 2983 VM_FAULT_SET_HINDEX(hstate_index(h));
fd6a03ed
NH
2984 }
2985
a5516438 2986 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
86e5216f
AL
2987 if (!ptep)
2988 return VM_FAULT_OOM;
2989
8382d914
DB
2990 mapping = vma->vm_file->f_mapping;
2991 idx = vma_hugecache_offset(h, vma, address);
2992
3935baa9
DG
2993 /*
2994 * Serialize hugepage allocation and instantiation, so that we don't
2995 * get spurious allocation failures if two CPUs race to instantiate
2996 * the same page in the page cache.
2997 */
8382d914
DB
2998 hash = fault_mutex_hash(h, mm, vma, mapping, idx, address);
2999 mutex_lock(&htlb_fault_mutex_table[hash]);
3000
7f2e9525
GS
3001 entry = huge_ptep_get(ptep);
3002 if (huge_pte_none(entry)) {
8382d914 3003 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3004 goto out_mutex;
3935baa9 3005 }
86e5216f 3006
83c54070 3007 ret = 0;
1e8f889b 3008
57303d80
AW
3009 /*
3010 * If we are going to COW the mapping later, we examine the pending
3011 * reservations for this page now. This will ensure that any
3012 * allocations necessary to record that reservation occur outside the
3013 * spinlock. For private mappings, we also lookup the pagecache
3014 * page now as it is used to determine if a reservation has been
3015 * consumed.
3016 */
106c992a 3017 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3018 if (vma_needs_reservation(h, vma, address) < 0) {
3019 ret = VM_FAULT_OOM;
b4d1d99f 3020 goto out_mutex;
2b26736c 3021 }
57303d80 3022
f83a275d 3023 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3024 pagecache_page = hugetlbfs_pagecache_page(h,
3025 vma, address);
3026 }
3027
56c9cfb1
NH
3028 /*
3029 * hugetlb_cow() requires page locks of pte_page(entry) and
3030 * pagecache_page, so here we need take the former one
3031 * when page != pagecache_page or !pagecache_page.
3032 * Note that locking order is always pagecache_page -> page,
3033 * so no worry about deadlock.
3034 */
3035 page = pte_page(entry);
66aebce7 3036 get_page(page);
56c9cfb1 3037 if (page != pagecache_page)
0fe6e20b 3038 lock_page(page);
0fe6e20b 3039
cb900f41
KS
3040 ptl = huge_pte_lockptr(h, mm, ptep);
3041 spin_lock(ptl);
1e8f889b 3042 /* Check for a racing update before calling hugetlb_cow */
b4d1d99f 3043 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
cb900f41 3044 goto out_ptl;
b4d1d99f
DG
3045
3046
788c7df4 3047 if (flags & FAULT_FLAG_WRITE) {
106c992a 3048 if (!huge_pte_write(entry)) {
57303d80 3049 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41
KS
3050 pagecache_page, ptl);
3051 goto out_ptl;
b4d1d99f 3052 }
106c992a 3053 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3054 }
3055 entry = pte_mkyoung(entry);
788c7df4
HD
3056 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3057 flags & FAULT_FLAG_WRITE))
4b3073e1 3058 update_mmu_cache(vma, address, ptep);
b4d1d99f 3059
cb900f41
KS
3060out_ptl:
3061 spin_unlock(ptl);
57303d80
AW
3062
3063 if (pagecache_page) {
3064 unlock_page(pagecache_page);
3065 put_page(pagecache_page);
3066 }
1f64d69c
DN
3067 if (page != pagecache_page)
3068 unlock_page(page);
66aebce7 3069 put_page(page);
57303d80 3070
b4d1d99f 3071out_mutex:
8382d914 3072 mutex_unlock(&htlb_fault_mutex_table[hash]);
1e8f889b 3073 return ret;
86e5216f
AL
3074}
3075
28a35716
ML
3076long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3077 struct page **pages, struct vm_area_struct **vmas,
3078 unsigned long *position, unsigned long *nr_pages,
3079 long i, unsigned int flags)
63551ae0 3080{
d5d4b0aa
KC
3081 unsigned long pfn_offset;
3082 unsigned long vaddr = *position;
28a35716 3083 unsigned long remainder = *nr_pages;
a5516438 3084 struct hstate *h = hstate_vma(vma);
63551ae0 3085
63551ae0 3086 while (vaddr < vma->vm_end && remainder) {
4c887265 3087 pte_t *pte;
cb900f41 3088 spinlock_t *ptl = NULL;
2a15efc9 3089 int absent;
4c887265 3090 struct page *page;
63551ae0 3091
4c887265
AL
3092 /*
3093 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3094 * each hugepage. We have to make sure we get the
4c887265 3095 * first, for the page indexing below to work.
cb900f41
KS
3096 *
3097 * Note that page table lock is not held when pte is null.
4c887265 3098 */
a5516438 3099 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3100 if (pte)
3101 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3102 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3103
3104 /*
3105 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3106 * an error where there's an empty slot with no huge pagecache
3107 * to back it. This way, we avoid allocating a hugepage, and
3108 * the sparse dumpfile avoids allocating disk blocks, but its
3109 * huge holes still show up with zeroes where they need to be.
2a15efc9 3110 */
3ae77f43
HD
3111 if (absent && (flags & FOLL_DUMP) &&
3112 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3113 if (pte)
3114 spin_unlock(ptl);
2a15efc9
HD
3115 remainder = 0;
3116 break;
3117 }
63551ae0 3118
9cc3a5bd
NH
3119 /*
3120 * We need call hugetlb_fault for both hugepages under migration
3121 * (in which case hugetlb_fault waits for the migration,) and
3122 * hwpoisoned hugepages (in which case we need to prevent the
3123 * caller from accessing to them.) In order to do this, we use
3124 * here is_swap_pte instead of is_hugetlb_entry_migration and
3125 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3126 * both cases, and because we can't follow correct pages
3127 * directly from any kind of swap entries.
3128 */
3129 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3130 ((flags & FOLL_WRITE) &&
3131 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3132 int ret;
63551ae0 3133
cb900f41
KS
3134 if (pte)
3135 spin_unlock(ptl);
2a15efc9
HD
3136 ret = hugetlb_fault(mm, vma, vaddr,
3137 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3138 if (!(ret & VM_FAULT_ERROR))
4c887265 3139 continue;
63551ae0 3140
4c887265 3141 remainder = 0;
4c887265
AL
3142 break;
3143 }
3144
a5516438 3145 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3146 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3147same_page:
d6692183 3148 if (pages) {
2a15efc9 3149 pages[i] = mem_map_offset(page, pfn_offset);
a0368d4e 3150 get_page_foll(pages[i]);
d6692183 3151 }
63551ae0
DG
3152
3153 if (vmas)
3154 vmas[i] = vma;
3155
3156 vaddr += PAGE_SIZE;
d5d4b0aa 3157 ++pfn_offset;
63551ae0
DG
3158 --remainder;
3159 ++i;
d5d4b0aa 3160 if (vaddr < vma->vm_end && remainder &&
a5516438 3161 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
KC
3162 /*
3163 * We use pfn_offset to avoid touching the pageframes
3164 * of this compound page.
3165 */
3166 goto same_page;
3167 }
cb900f41 3168 spin_unlock(ptl);
63551ae0 3169 }
28a35716 3170 *nr_pages = remainder;
63551ae0
DG
3171 *position = vaddr;
3172
2a15efc9 3173 return i ? i : -EFAULT;
63551ae0 3174}
8f860591 3175
7da4d641 3176unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3177 unsigned long address, unsigned long end, pgprot_t newprot)
3178{
3179 struct mm_struct *mm = vma->vm_mm;
3180 unsigned long start = address;
3181 pte_t *ptep;
3182 pte_t pte;
a5516438 3183 struct hstate *h = hstate_vma(vma);
7da4d641 3184 unsigned long pages = 0;
8f860591
ZY
3185
3186 BUG_ON(address >= end);
3187 flush_cache_range(vma, address, end);
3188
a5338093 3189 mmu_notifier_invalidate_range_start(mm, start, end);
3d48ae45 3190 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5516438 3191 for (; address < end; address += huge_page_size(h)) {
cb900f41 3192 spinlock_t *ptl;
8f860591
ZY
3193 ptep = huge_pte_offset(mm, address);
3194 if (!ptep)
3195 continue;
cb900f41 3196 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3197 if (huge_pmd_unshare(mm, &address, ptep)) {
3198 pages++;
cb900f41 3199 spin_unlock(ptl);
39dde65c 3200 continue;
7da4d641 3201 }
7f2e9525 3202 if (!huge_pte_none(huge_ptep_get(ptep))) {
8f860591 3203 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3204 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3205 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3206 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3207 pages++;
8f860591 3208 }
cb900f41 3209 spin_unlock(ptl);
8f860591 3210 }
d833352a
MG
3211 /*
3212 * Must flush TLB before releasing i_mmap_mutex: x86's huge_pmd_unshare
3213 * may have cleared our pud entry and done put_page on the page table:
3214 * once we release i_mmap_mutex, another task can do the final put_page
3215 * and that page table be reused and filled with junk.
3216 */
8f860591 3217 flush_tlb_range(vma, start, end);
d833352a 3218 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
a5338093 3219 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3220
3221 return pages << h->order;
8f860591
ZY
3222}
3223
a1e78772
MG
3224int hugetlb_reserve_pages(struct inode *inode,
3225 long from, long to,
5a6fe125 3226 struct vm_area_struct *vma,
ca16d140 3227 vm_flags_t vm_flags)
e4e574b7 3228{
17c9d12e 3229 long ret, chg;
a5516438 3230 struct hstate *h = hstate_inode(inode);
90481622 3231 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3232 struct resv_map *resv_map;
e4e574b7 3233
17c9d12e
MG
3234 /*
3235 * Only apply hugepage reservation if asked. At fault time, an
3236 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3237 * without using reserves
17c9d12e 3238 */
ca16d140 3239 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3240 return 0;
3241
a1e78772
MG
3242 /*
3243 * Shared mappings base their reservation on the number of pages that
3244 * are already allocated on behalf of the file. Private mappings need
3245 * to reserve the full area even if read-only as mprotect() may be
3246 * called to make the mapping read-write. Assume !vma is a shm mapping
3247 */
9119a41e 3248 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3249 resv_map = inode_resv_map(inode);
9119a41e 3250
1406ec9b 3251 chg = region_chg(resv_map, from, to);
9119a41e
JK
3252
3253 } else {
3254 resv_map = resv_map_alloc();
17c9d12e
MG
3255 if (!resv_map)
3256 return -ENOMEM;
3257
a1e78772 3258 chg = to - from;
84afd99b 3259
17c9d12e
MG
3260 set_vma_resv_map(vma, resv_map);
3261 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
3262 }
3263
c50ac050
DH
3264 if (chg < 0) {
3265 ret = chg;
3266 goto out_err;
3267 }
8a630112 3268
90481622 3269 /* There must be enough pages in the subpool for the mapping */
c50ac050
DH
3270 if (hugepage_subpool_get_pages(spool, chg)) {
3271 ret = -ENOSPC;
3272 goto out_err;
3273 }
5a6fe125
MG
3274
3275 /*
17c9d12e 3276 * Check enough hugepages are available for the reservation.
90481622 3277 * Hand the pages back to the subpool if there are not
5a6fe125 3278 */
a5516438 3279 ret = hugetlb_acct_memory(h, chg);
68842c9b 3280 if (ret < 0) {
90481622 3281 hugepage_subpool_put_pages(spool, chg);
c50ac050 3282 goto out_err;
68842c9b 3283 }
17c9d12e
MG
3284
3285 /*
3286 * Account for the reservations made. Shared mappings record regions
3287 * that have reservations as they are shared by multiple VMAs.
3288 * When the last VMA disappears, the region map says how much
3289 * the reservation was and the page cache tells how much of
3290 * the reservation was consumed. Private mappings are per-VMA and
3291 * only the consumed reservations are tracked. When the VMA
3292 * disappears, the original reservation is the VMA size and the
3293 * consumed reservations are stored in the map. Hence, nothing
3294 * else has to be done for private mappings here
3295 */
f83a275d 3296 if (!vma || vma->vm_flags & VM_MAYSHARE)
1406ec9b 3297 region_add(resv_map, from, to);
a43a8c39 3298 return 0;
c50ac050 3299out_err:
f031dd27
JK
3300 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
3301 kref_put(&resv_map->refs, resv_map_release);
c50ac050 3302 return ret;
a43a8c39
KC
3303}
3304
3305void hugetlb_unreserve_pages(struct inode *inode, long offset, long freed)
3306{
a5516438 3307 struct hstate *h = hstate_inode(inode);
4e35f483 3308 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 3309 long chg = 0;
90481622 3310 struct hugepage_subpool *spool = subpool_inode(inode);
45c682a6 3311
9119a41e 3312 if (resv_map)
1406ec9b 3313 chg = region_truncate(resv_map, offset);
45c682a6 3314 spin_lock(&inode->i_lock);
e4c6f8be 3315 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
3316 spin_unlock(&inode->i_lock);
3317
90481622 3318 hugepage_subpool_put_pages(spool, (chg - freed));
a5516438 3319 hugetlb_acct_memory(h, -(chg - freed));
a43a8c39 3320}
93f70f90 3321
3212b535
SC
3322#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
3323static unsigned long page_table_shareable(struct vm_area_struct *svma,
3324 struct vm_area_struct *vma,
3325 unsigned long addr, pgoff_t idx)
3326{
3327 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
3328 svma->vm_start;
3329 unsigned long sbase = saddr & PUD_MASK;
3330 unsigned long s_end = sbase + PUD_SIZE;
3331
3332 /* Allow segments to share if only one is marked locked */
3333 unsigned long vm_flags = vma->vm_flags & ~VM_LOCKED;
3334 unsigned long svm_flags = svma->vm_flags & ~VM_LOCKED;
3335
3336 /*
3337 * match the virtual addresses, permission and the alignment of the
3338 * page table page.
3339 */
3340 if (pmd_index(addr) != pmd_index(saddr) ||
3341 vm_flags != svm_flags ||
3342 sbase < svma->vm_start || svma->vm_end < s_end)
3343 return 0;
3344
3345 return saddr;
3346}
3347
3348static int vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3349{
3350 unsigned long base = addr & PUD_MASK;
3351 unsigned long end = base + PUD_SIZE;
3352
3353 /*
3354 * check on proper vm_flags and page table alignment
3355 */
3356 if (vma->vm_flags & VM_MAYSHARE &&
3357 vma->vm_start <= base && end <= vma->vm_end)
3358 return 1;
3359 return 0;
3360}
3361
3362/*
3363 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
3364 * and returns the corresponding pte. While this is not necessary for the
3365 * !shared pmd case because we can allocate the pmd later as well, it makes the
3366 * code much cleaner. pmd allocation is essential for the shared case because
3367 * pud has to be populated inside the same i_mmap_mutex section - otherwise
3368 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
3369 * bad pmd for sharing.
3370 */
3371pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3372{
3373 struct vm_area_struct *vma = find_vma(mm, addr);
3374 struct address_space *mapping = vma->vm_file->f_mapping;
3375 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
3376 vma->vm_pgoff;
3377 struct vm_area_struct *svma;
3378 unsigned long saddr;
3379 pte_t *spte = NULL;
3380 pte_t *pte;
cb900f41 3381 spinlock_t *ptl;
3212b535
SC
3382
3383 if (!vma_shareable(vma, addr))
3384 return (pte_t *)pmd_alloc(mm, pud, addr);
3385
3386 mutex_lock(&mapping->i_mmap_mutex);
3387 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
3388 if (svma == vma)
3389 continue;
3390
3391 saddr = page_table_shareable(svma, vma, addr, idx);
3392 if (saddr) {
3393 spte = huge_pte_offset(svma->vm_mm, saddr);
3394 if (spte) {
3395 get_page(virt_to_page(spte));
3396 break;
3397 }
3398 }
3399 }
3400
3401 if (!spte)
3402 goto out;
3403
cb900f41
KS
3404 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
3405 spin_lock(ptl);
3212b535
SC
3406 if (pud_none(*pud))
3407 pud_populate(mm, pud,
3408 (pmd_t *)((unsigned long)spte & PAGE_MASK));
3409 else
3410 put_page(virt_to_page(spte));
cb900f41 3411 spin_unlock(ptl);
3212b535
SC
3412out:
3413 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3414 mutex_unlock(&mapping->i_mmap_mutex);
3415 return pte;
3416}
3417
3418/*
3419 * unmap huge page backed by shared pte.
3420 *
3421 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
3422 * indicated by page_count > 1, unmap is achieved by clearing pud and
3423 * decrementing the ref count. If count == 1, the pte page is not shared.
3424 *
cb900f41 3425 * called with page table lock held.
3212b535
SC
3426 *
3427 * returns: 1 successfully unmapped a shared pte page
3428 * 0 the underlying pte page is not shared, or it is the last user
3429 */
3430int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
3431{
3432 pgd_t *pgd = pgd_offset(mm, *addr);
3433 pud_t *pud = pud_offset(pgd, *addr);
3434
3435 BUG_ON(page_count(virt_to_page(ptep)) == 0);
3436 if (page_count(virt_to_page(ptep)) == 1)
3437 return 0;
3438
3439 pud_clear(pud);
3440 put_page(virt_to_page(ptep));
3441 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
3442 return 1;
3443}
9e5fc74c
SC
3444#define want_pmd_share() (1)
3445#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3446pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
3447{
3448 return NULL;
3449}
3450#define want_pmd_share() (0)
3212b535
SC
3451#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
3452
9e5fc74c
SC
3453#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
3454pte_t *huge_pte_alloc(struct mm_struct *mm,
3455 unsigned long addr, unsigned long sz)
3456{
3457 pgd_t *pgd;
3458 pud_t *pud;
3459 pte_t *pte = NULL;
3460
3461 pgd = pgd_offset(mm, addr);
3462 pud = pud_alloc(mm, pgd, addr);
3463 if (pud) {
3464 if (sz == PUD_SIZE) {
3465 pte = (pte_t *)pud;
3466 } else {
3467 BUG_ON(sz != PMD_SIZE);
3468 if (want_pmd_share() && pud_none(*pud))
3469 pte = huge_pmd_share(mm, addr, pud);
3470 else
3471 pte = (pte_t *)pmd_alloc(mm, pud, addr);
3472 }
3473 }
3474 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
3475
3476 return pte;
3477}
3478
3479pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
3480{
3481 pgd_t *pgd;
3482 pud_t *pud;
3483 pmd_t *pmd = NULL;
3484
3485 pgd = pgd_offset(mm, addr);
3486 if (pgd_present(*pgd)) {
3487 pud = pud_offset(pgd, addr);
3488 if (pud_present(*pud)) {
3489 if (pud_huge(*pud))
3490 return (pte_t *)pud;
3491 pmd = pmd_offset(pud, addr);
3492 }
3493 }
3494 return (pte_t *) pmd;
3495}
3496
3497struct page *
3498follow_huge_pmd(struct mm_struct *mm, unsigned long address,
3499 pmd_t *pmd, int write)
3500{
3501 struct page *page;
3502
3503 page = pte_page(*(pte_t *)pmd);
3504 if (page)
3505 page += ((address & ~PMD_MASK) >> PAGE_SHIFT);
3506 return page;
3507}
3508
3509struct page *
3510follow_huge_pud(struct mm_struct *mm, unsigned long address,
3511 pud_t *pud, int write)
3512{
3513 struct page *page;
3514
3515 page = pte_page(*(pte_t *)pud);
3516 if (page)
3517 page += ((address & ~PUD_MASK) >> PAGE_SHIFT);
3518 return page;
3519}
3520
3521#else /* !CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3522
3523/* Can be overriden by architectures */
3b32123d 3524struct page * __weak
9e5fc74c
SC
3525follow_huge_pud(struct mm_struct *mm, unsigned long address,
3526 pud_t *pud, int write)
3527{
3528 BUG();
3529 return NULL;
3530}
3531
3532#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
3533
d5bd9106
AK
3534#ifdef CONFIG_MEMORY_FAILURE
3535
6de2b1aa
NH
3536/* Should be called in hugetlb_lock */
3537static int is_hugepage_on_freelist(struct page *hpage)
3538{
3539 struct page *page;
3540 struct page *tmp;
3541 struct hstate *h = page_hstate(hpage);
3542 int nid = page_to_nid(hpage);
3543
3544 list_for_each_entry_safe(page, tmp, &h->hugepage_freelists[nid], lru)
3545 if (page == hpage)
3546 return 1;
3547 return 0;
3548}
3549
93f70f90
NH
3550/*
3551 * This function is called from memory failure code.
3552 * Assume the caller holds page lock of the head page.
3553 */
6de2b1aa 3554int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
3555{
3556 struct hstate *h = page_hstate(hpage);
3557 int nid = page_to_nid(hpage);
6de2b1aa 3558 int ret = -EBUSY;
93f70f90
NH
3559
3560 spin_lock(&hugetlb_lock);
6de2b1aa 3561 if (is_hugepage_on_freelist(hpage)) {
56f2fb14
NH
3562 /*
3563 * Hwpoisoned hugepage isn't linked to activelist or freelist,
3564 * but dangling hpage->lru can trigger list-debug warnings
3565 * (this happens when we call unpoison_memory() on it),
3566 * so let it point to itself with list_del_init().
3567 */
3568 list_del_init(&hpage->lru);
8c6c2ecb 3569 set_page_refcounted(hpage);
6de2b1aa
NH
3570 h->free_huge_pages--;
3571 h->free_huge_pages_node[nid]--;
3572 ret = 0;
3573 }
93f70f90 3574 spin_unlock(&hugetlb_lock);
6de2b1aa 3575 return ret;
93f70f90 3576}
6de2b1aa 3577#endif
31caf665
NH
3578
3579bool isolate_huge_page(struct page *page, struct list_head *list)
3580{
309381fe 3581 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3582 if (!get_page_unless_zero(page))
3583 return false;
3584 spin_lock(&hugetlb_lock);
3585 list_move_tail(&page->lru, list);
3586 spin_unlock(&hugetlb_lock);
3587 return true;
3588}
3589
3590void putback_active_hugepage(struct page *page)
3591{
309381fe 3592 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665
NH
3593 spin_lock(&hugetlb_lock);
3594 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
3595 spin_unlock(&hugetlb_lock);
3596 put_page(page);
3597}
c8721bbb
NH
3598
3599bool is_hugepage_active(struct page *page)
3600{
309381fe 3601 VM_BUG_ON_PAGE(!PageHuge(page), page);
c8721bbb
NH
3602 /*
3603 * This function can be called for a tail page because the caller,
3604 * scan_movable_pages, scans through a given pfn-range which typically
3605 * covers one memory block. In systems using gigantic hugepage (1GB
3606 * for x86_64,) a hugepage is larger than a memory block, and we don't
3607 * support migrating such large hugepages for now, so return false
3608 * when called for tail pages.
3609 */
3610 if (PageTail(page))
3611 return false;
3612 /*
3613 * Refcount of a hwpoisoned hugepages is 1, but they are not active,
3614 * so we should return false for them.
3615 */
3616 if (unlikely(PageHWPoison(page)))
3617 return false;
3618 return page_count(page) > 0;
3619}