]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/kmemleak.c
ceph: quota: add counter for snaprealms with quota
[mirror_ubuntu-bionic-kernel.git] / mm / kmemleak.c
CommitLineData
3c7b4e6b
CM
1/*
2 * mm/kmemleak.c
3 *
4 * Copyright (C) 2008 ARM Limited
5 * Written by Catalin Marinas <catalin.marinas@arm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
10 *
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
15 *
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software
18 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
19 *
20 *
21 * For more information on the algorithm and kmemleak usage, please see
22901c6c 22 * Documentation/dev-tools/kmemleak.rst.
3c7b4e6b
CM
23 *
24 * Notes on locking
25 * ----------------
26 *
27 * The following locks and mutexes are used by kmemleak:
28 *
29 * - kmemleak_lock (rwlock): protects the object_list modifications and
30 * accesses to the object_tree_root. The object_list is the main list
31 * holding the metadata (struct kmemleak_object) for the allocated memory
85d3a316 32 * blocks. The object_tree_root is a red black tree used to look-up
3c7b4e6b
CM
33 * metadata based on a pointer to the corresponding memory block. The
34 * kmemleak_object structures are added to the object_list and
35 * object_tree_root in the create_object() function called from the
36 * kmemleak_alloc() callback and removed in delete_object() called from the
37 * kmemleak_free() callback
38 * - kmemleak_object.lock (spinlock): protects a kmemleak_object. Accesses to
39 * the metadata (e.g. count) are protected by this lock. Note that some
40 * members of this structure may be protected by other means (atomic or
41 * kmemleak_lock). This lock is also held when scanning the corresponding
42 * memory block to avoid the kernel freeing it via the kmemleak_free()
43 * callback. This is less heavyweight than holding a global lock like
44 * kmemleak_lock during scanning
45 * - scan_mutex (mutex): ensures that only one thread may scan the memory for
46 * unreferenced objects at a time. The gray_list contains the objects which
47 * are already referenced or marked as false positives and need to be
48 * scanned. This list is only modified during a scanning episode when the
49 * scan_mutex is held. At the end of a scan, the gray_list is always empty.
50 * Note that the kmemleak_object.use_count is incremented when an object is
4698c1f2
CM
51 * added to the gray_list and therefore cannot be freed. This mutex also
52 * prevents multiple users of the "kmemleak" debugfs file together with
53 * modifications to the memory scanning parameters including the scan_thread
54 * pointer
3c7b4e6b 55 *
93ada579 56 * Locks and mutexes are acquired/nested in the following order:
9d5a4c73 57 *
93ada579
CM
58 * scan_mutex [-> object->lock] -> kmemleak_lock -> other_object->lock (SINGLE_DEPTH_NESTING)
59 *
60 * No kmemleak_lock and object->lock nesting is allowed outside scan_mutex
61 * regions.
9d5a4c73 62 *
3c7b4e6b
CM
63 * The kmemleak_object structures have a use_count incremented or decremented
64 * using the get_object()/put_object() functions. When the use_count becomes
65 * 0, this count can no longer be incremented and put_object() schedules the
66 * kmemleak_object freeing via an RCU callback. All calls to the get_object()
67 * function must be protected by rcu_read_lock() to avoid accessing a freed
68 * structure.
69 */
70
ae281064
JP
71#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
72
3c7b4e6b
CM
73#include <linux/init.h>
74#include <linux/kernel.h>
75#include <linux/list.h>
3f07c014 76#include <linux/sched/signal.h>
29930025 77#include <linux/sched/task.h>
68db0cf1 78#include <linux/sched/task_stack.h>
3c7b4e6b
CM
79#include <linux/jiffies.h>
80#include <linux/delay.h>
b95f1b31 81#include <linux/export.h>
3c7b4e6b 82#include <linux/kthread.h>
85d3a316 83#include <linux/rbtree.h>
3c7b4e6b
CM
84#include <linux/fs.h>
85#include <linux/debugfs.h>
86#include <linux/seq_file.h>
87#include <linux/cpumask.h>
88#include <linux/spinlock.h>
89#include <linux/mutex.h>
90#include <linux/rcupdate.h>
91#include <linux/stacktrace.h>
92#include <linux/cache.h>
93#include <linux/percpu.h>
94#include <linux/hardirq.h>
9099daed
CM
95#include <linux/bootmem.h>
96#include <linux/pfn.h>
3c7b4e6b
CM
97#include <linux/mmzone.h>
98#include <linux/slab.h>
99#include <linux/thread_info.h>
100#include <linux/err.h>
101#include <linux/uaccess.h>
102#include <linux/string.h>
103#include <linux/nodemask.h>
104#include <linux/mm.h>
179a8100 105#include <linux/workqueue.h>
04609ccc 106#include <linux/crc32.h>
3c7b4e6b
CM
107
108#include <asm/sections.h>
109#include <asm/processor.h>
60063497 110#include <linux/atomic.h>
3c7b4e6b 111
e79ed2f1 112#include <linux/kasan.h>
3c7b4e6b 113#include <linux/kmemleak.h>
029aeff5 114#include <linux/memory_hotplug.h>
3c7b4e6b
CM
115
116/*
117 * Kmemleak configuration and common defines.
118 */
119#define MAX_TRACE 16 /* stack trace length */
3c7b4e6b 120#define MSECS_MIN_AGE 5000 /* minimum object age for reporting */
3c7b4e6b
CM
121#define SECS_FIRST_SCAN 60 /* delay before the first scan */
122#define SECS_SCAN_WAIT 600 /* subsequent auto scanning delay */
af98603d 123#define MAX_SCAN_SIZE 4096 /* maximum size of a scanned block */
3c7b4e6b
CM
124
125#define BYTES_PER_POINTER sizeof(void *)
126
216c04b0 127/* GFP bitmask for kmemleak internal allocations */
20b5c303 128#define gfp_kmemleak_mask(gfp) (((gfp) & (GFP_KERNEL | GFP_ATOMIC)) | \
6ae4bd1f 129 __GFP_NORETRY | __GFP_NOMEMALLOC | \
d9570ee3 130 __GFP_NOWARN | __GFP_NOFAIL)
216c04b0 131
3c7b4e6b
CM
132/* scanning area inside a memory block */
133struct kmemleak_scan_area {
134 struct hlist_node node;
c017b4be
CM
135 unsigned long start;
136 size_t size;
3c7b4e6b
CM
137};
138
a1084c87
LR
139#define KMEMLEAK_GREY 0
140#define KMEMLEAK_BLACK -1
141
3c7b4e6b
CM
142/*
143 * Structure holding the metadata for each allocated memory block.
144 * Modifications to such objects should be made while holding the
145 * object->lock. Insertions or deletions from object_list, gray_list or
85d3a316 146 * rb_node are already protected by the corresponding locks or mutex (see
3c7b4e6b
CM
147 * the notes on locking above). These objects are reference-counted
148 * (use_count) and freed using the RCU mechanism.
149 */
150struct kmemleak_object {
151 spinlock_t lock;
f66abf09 152 unsigned int flags; /* object status flags */
3c7b4e6b
CM
153 struct list_head object_list;
154 struct list_head gray_list;
85d3a316 155 struct rb_node rb_node;
3c7b4e6b
CM
156 struct rcu_head rcu; /* object_list lockless traversal */
157 /* object usage count; object freed when use_count == 0 */
158 atomic_t use_count;
159 unsigned long pointer;
160 size_t size;
94f4a161
CM
161 /* pass surplus references to this pointer */
162 unsigned long excess_ref;
3c7b4e6b
CM
163 /* minimum number of a pointers found before it is considered leak */
164 int min_count;
165 /* the total number of pointers found pointing to this object */
166 int count;
04609ccc
CM
167 /* checksum for detecting modified objects */
168 u32 checksum;
3c7b4e6b
CM
169 /* memory ranges to be scanned inside an object (empty for all) */
170 struct hlist_head area_list;
171 unsigned long trace[MAX_TRACE];
172 unsigned int trace_len;
173 unsigned long jiffies; /* creation timestamp */
174 pid_t pid; /* pid of the current task */
175 char comm[TASK_COMM_LEN]; /* executable name */
176};
177
178/* flag representing the memory block allocation status */
179#define OBJECT_ALLOCATED (1 << 0)
180/* flag set after the first reporting of an unreference object */
181#define OBJECT_REPORTED (1 << 1)
182/* flag set to not scan the object */
183#define OBJECT_NO_SCAN (1 << 2)
184
0494e082
SS
185/* number of bytes to print per line; must be 16 or 32 */
186#define HEX_ROW_SIZE 16
187/* number of bytes to print at a time (1, 2, 4, 8) */
188#define HEX_GROUP_SIZE 1
189/* include ASCII after the hex output */
190#define HEX_ASCII 1
191/* max number of lines to be printed */
192#define HEX_MAX_LINES 2
193
3c7b4e6b
CM
194/* the list of all allocated objects */
195static LIST_HEAD(object_list);
196/* the list of gray-colored objects (see color_gray comment below) */
197static LIST_HEAD(gray_list);
85d3a316
ML
198/* search tree for object boundaries */
199static struct rb_root object_tree_root = RB_ROOT;
200/* rw_lock protecting the access to object_list and object_tree_root */
3c7b4e6b
CM
201static DEFINE_RWLOCK(kmemleak_lock);
202
203/* allocation caches for kmemleak internal data */
204static struct kmem_cache *object_cache;
205static struct kmem_cache *scan_area_cache;
206
207/* set if tracing memory operations is enabled */
8910ae89 208static int kmemleak_enabled;
c5f3b1a5
CM
209/* same as above but only for the kmemleak_free() callback */
210static int kmemleak_free_enabled;
3c7b4e6b 211/* set in the late_initcall if there were no errors */
8910ae89 212static int kmemleak_initialized;
3c7b4e6b 213/* enables or disables early logging of the memory operations */
8910ae89 214static int kmemleak_early_log = 1;
5f79020c 215/* set if a kmemleak warning was issued */
8910ae89 216static int kmemleak_warning;
5f79020c 217/* set if a fatal kmemleak error has occurred */
8910ae89 218static int kmemleak_error;
3c7b4e6b
CM
219
220/* minimum and maximum address that may be valid pointers */
221static unsigned long min_addr = ULONG_MAX;
222static unsigned long max_addr;
223
3c7b4e6b 224static struct task_struct *scan_thread;
acf4968e 225/* used to avoid reporting of recently allocated objects */
3c7b4e6b 226static unsigned long jiffies_min_age;
acf4968e 227static unsigned long jiffies_last_scan;
3c7b4e6b
CM
228/* delay between automatic memory scannings */
229static signed long jiffies_scan_wait;
230/* enables or disables the task stacks scanning */
e0a2a160 231static int kmemleak_stack_scan = 1;
4698c1f2 232/* protects the memory scanning, parameters and debug/kmemleak file access */
3c7b4e6b 233static DEFINE_MUTEX(scan_mutex);
ab0155a2
JB
234/* setting kmemleak=on, will set this var, skipping the disable */
235static int kmemleak_skip_disable;
dc9b3f42
LZ
236/* If there are leaks that can be reported */
237static bool kmemleak_found_leaks;
3c7b4e6b 238
3c7b4e6b 239/*
2030117d 240 * Early object allocation/freeing logging. Kmemleak is initialized after the
3c7b4e6b 241 * kernel allocator. However, both the kernel allocator and kmemleak may
2030117d 242 * allocate memory blocks which need to be tracked. Kmemleak defines an
3c7b4e6b
CM
243 * arbitrary buffer to hold the allocation/freeing information before it is
244 * fully initialized.
245 */
246
247/* kmemleak operation type for early logging */
248enum {
249 KMEMLEAK_ALLOC,
f528f0b8 250 KMEMLEAK_ALLOC_PERCPU,
3c7b4e6b 251 KMEMLEAK_FREE,
53238a60 252 KMEMLEAK_FREE_PART,
f528f0b8 253 KMEMLEAK_FREE_PERCPU,
3c7b4e6b
CM
254 KMEMLEAK_NOT_LEAK,
255 KMEMLEAK_IGNORE,
256 KMEMLEAK_SCAN_AREA,
94f4a161
CM
257 KMEMLEAK_NO_SCAN,
258 KMEMLEAK_SET_EXCESS_REF
3c7b4e6b
CM
259};
260
261/*
262 * Structure holding the information passed to kmemleak callbacks during the
263 * early logging.
264 */
265struct early_log {
266 int op_type; /* kmemleak operation type */
f66abf09 267 int min_count; /* minimum reference count */
3c7b4e6b 268 const void *ptr; /* allocated/freed memory block */
94f4a161
CM
269 union {
270 size_t size; /* memory block size */
271 unsigned long excess_ref; /* surplus reference passing */
272 };
fd678967
CM
273 unsigned long trace[MAX_TRACE]; /* stack trace */
274 unsigned int trace_len; /* stack trace length */
3c7b4e6b
CM
275};
276
277/* early logging buffer and current position */
a6186d89
CM
278static struct early_log
279 early_log[CONFIG_DEBUG_KMEMLEAK_EARLY_LOG_SIZE] __initdata;
280static int crt_early_log __initdata;
3c7b4e6b
CM
281
282static void kmemleak_disable(void);
283
284/*
285 * Print a warning and dump the stack trace.
286 */
5f79020c 287#define kmemleak_warn(x...) do { \
598d8091 288 pr_warn(x); \
5f79020c 289 dump_stack(); \
8910ae89 290 kmemleak_warning = 1; \
3c7b4e6b
CM
291} while (0)
292
293/*
25985edc 294 * Macro invoked when a serious kmemleak condition occurred and cannot be
2030117d 295 * recovered from. Kmemleak will be disabled and further allocation/freeing
3c7b4e6b
CM
296 * tracing no longer available.
297 */
000814f4 298#define kmemleak_stop(x...) do { \
3c7b4e6b
CM
299 kmemleak_warn(x); \
300 kmemleak_disable(); \
301} while (0)
302
0494e082
SS
303/*
304 * Printing of the objects hex dump to the seq file. The number of lines to be
305 * printed is limited to HEX_MAX_LINES to prevent seq file spamming. The
306 * actual number of printed bytes depends on HEX_ROW_SIZE. It must be called
307 * with the object->lock held.
308 */
309static void hex_dump_object(struct seq_file *seq,
310 struct kmemleak_object *object)
311{
312 const u8 *ptr = (const u8 *)object->pointer;
6fc37c49 313 size_t len;
0494e082
SS
314
315 /* limit the number of lines to HEX_MAX_LINES */
6fc37c49 316 len = min_t(size_t, object->size, HEX_MAX_LINES * HEX_ROW_SIZE);
0494e082 317
6fc37c49 318 seq_printf(seq, " hex dump (first %zu bytes):\n", len);
5c335fe0 319 kasan_disable_current();
6fc37c49
AS
320 seq_hex_dump(seq, " ", DUMP_PREFIX_NONE, HEX_ROW_SIZE,
321 HEX_GROUP_SIZE, ptr, len, HEX_ASCII);
5c335fe0 322 kasan_enable_current();
0494e082
SS
323}
324
3c7b4e6b
CM
325/*
326 * Object colors, encoded with count and min_count:
327 * - white - orphan object, not enough references to it (count < min_count)
328 * - gray - not orphan, not marked as false positive (min_count == 0) or
329 * sufficient references to it (count >= min_count)
330 * - black - ignore, it doesn't contain references (e.g. text section)
331 * (min_count == -1). No function defined for this color.
332 * Newly created objects don't have any color assigned (object->count == -1)
333 * before the next memory scan when they become white.
334 */
4a558dd6 335static bool color_white(const struct kmemleak_object *object)
3c7b4e6b 336{
a1084c87
LR
337 return object->count != KMEMLEAK_BLACK &&
338 object->count < object->min_count;
3c7b4e6b
CM
339}
340
4a558dd6 341static bool color_gray(const struct kmemleak_object *object)
3c7b4e6b 342{
a1084c87
LR
343 return object->min_count != KMEMLEAK_BLACK &&
344 object->count >= object->min_count;
3c7b4e6b
CM
345}
346
3c7b4e6b
CM
347/*
348 * Objects are considered unreferenced only if their color is white, they have
349 * not be deleted and have a minimum age to avoid false positives caused by
350 * pointers temporarily stored in CPU registers.
351 */
4a558dd6 352static bool unreferenced_object(struct kmemleak_object *object)
3c7b4e6b 353{
04609ccc 354 return (color_white(object) && object->flags & OBJECT_ALLOCATED) &&
acf4968e
CM
355 time_before_eq(object->jiffies + jiffies_min_age,
356 jiffies_last_scan);
3c7b4e6b
CM
357}
358
359/*
bab4a34a
CM
360 * Printing of the unreferenced objects information to the seq file. The
361 * print_unreferenced function must be called with the object->lock held.
3c7b4e6b 362 */
3c7b4e6b
CM
363static void print_unreferenced(struct seq_file *seq,
364 struct kmemleak_object *object)
365{
366 int i;
fefdd336 367 unsigned int msecs_age = jiffies_to_msecs(jiffies - object->jiffies);
3c7b4e6b 368
bab4a34a
CM
369 seq_printf(seq, "unreferenced object 0x%08lx (size %zu):\n",
370 object->pointer, object->size);
fefdd336
CM
371 seq_printf(seq, " comm \"%s\", pid %d, jiffies %lu (age %d.%03ds)\n",
372 object->comm, object->pid, object->jiffies,
373 msecs_age / 1000, msecs_age % 1000);
0494e082 374 hex_dump_object(seq, object);
bab4a34a 375 seq_printf(seq, " backtrace:\n");
3c7b4e6b
CM
376
377 for (i = 0; i < object->trace_len; i++) {
378 void *ptr = (void *)object->trace[i];
bab4a34a 379 seq_printf(seq, " [<%p>] %pS\n", ptr, ptr);
3c7b4e6b
CM
380 }
381}
382
383/*
384 * Print the kmemleak_object information. This function is used mainly for
385 * debugging special cases when kmemleak operations. It must be called with
386 * the object->lock held.
387 */
388static void dump_object_info(struct kmemleak_object *object)
389{
390 struct stack_trace trace;
391
392 trace.nr_entries = object->trace_len;
393 trace.entries = object->trace;
394
ae281064 395 pr_notice("Object 0x%08lx (size %zu):\n",
85d3a316 396 object->pointer, object->size);
3c7b4e6b
CM
397 pr_notice(" comm \"%s\", pid %d, jiffies %lu\n",
398 object->comm, object->pid, object->jiffies);
399 pr_notice(" min_count = %d\n", object->min_count);
400 pr_notice(" count = %d\n", object->count);
f66abf09 401 pr_notice(" flags = 0x%x\n", object->flags);
aae0ad7a 402 pr_notice(" checksum = %u\n", object->checksum);
3c7b4e6b
CM
403 pr_notice(" backtrace:\n");
404 print_stack_trace(&trace, 4);
405}
406
407/*
85d3a316 408 * Look-up a memory block metadata (kmemleak_object) in the object search
3c7b4e6b
CM
409 * tree based on a pointer value. If alias is 0, only values pointing to the
410 * beginning of the memory block are allowed. The kmemleak_lock must be held
411 * when calling this function.
412 */
413static struct kmemleak_object *lookup_object(unsigned long ptr, int alias)
414{
85d3a316
ML
415 struct rb_node *rb = object_tree_root.rb_node;
416
417 while (rb) {
418 struct kmemleak_object *object =
419 rb_entry(rb, struct kmemleak_object, rb_node);
420 if (ptr < object->pointer)
421 rb = object->rb_node.rb_left;
422 else if (object->pointer + object->size <= ptr)
423 rb = object->rb_node.rb_right;
424 else if (object->pointer == ptr || alias)
425 return object;
426 else {
5f79020c
CM
427 kmemleak_warn("Found object by alias at 0x%08lx\n",
428 ptr);
a7686a45 429 dump_object_info(object);
85d3a316 430 break;
3c7b4e6b 431 }
85d3a316
ML
432 }
433 return NULL;
3c7b4e6b
CM
434}
435
436/*
437 * Increment the object use_count. Return 1 if successful or 0 otherwise. Note
438 * that once an object's use_count reached 0, the RCU freeing was already
439 * registered and the object should no longer be used. This function must be
440 * called under the protection of rcu_read_lock().
441 */
442static int get_object(struct kmemleak_object *object)
443{
444 return atomic_inc_not_zero(&object->use_count);
445}
446
447/*
448 * RCU callback to free a kmemleak_object.
449 */
450static void free_object_rcu(struct rcu_head *rcu)
451{
b67bfe0d 452 struct hlist_node *tmp;
3c7b4e6b
CM
453 struct kmemleak_scan_area *area;
454 struct kmemleak_object *object =
455 container_of(rcu, struct kmemleak_object, rcu);
456
457 /*
458 * Once use_count is 0 (guaranteed by put_object), there is no other
459 * code accessing this object, hence no need for locking.
460 */
b67bfe0d
SL
461 hlist_for_each_entry_safe(area, tmp, &object->area_list, node) {
462 hlist_del(&area->node);
3c7b4e6b
CM
463 kmem_cache_free(scan_area_cache, area);
464 }
465 kmem_cache_free(object_cache, object);
466}
467
468/*
469 * Decrement the object use_count. Once the count is 0, free the object using
470 * an RCU callback. Since put_object() may be called via the kmemleak_free() ->
471 * delete_object() path, the delayed RCU freeing ensures that there is no
472 * recursive call to the kernel allocator. Lock-less RCU object_list traversal
473 * is also possible.
474 */
475static void put_object(struct kmemleak_object *object)
476{
477 if (!atomic_dec_and_test(&object->use_count))
478 return;
479
480 /* should only get here after delete_object was called */
481 WARN_ON(object->flags & OBJECT_ALLOCATED);
482
483 call_rcu(&object->rcu, free_object_rcu);
484}
485
486/*
85d3a316 487 * Look up an object in the object search tree and increase its use_count.
3c7b4e6b
CM
488 */
489static struct kmemleak_object *find_and_get_object(unsigned long ptr, int alias)
490{
491 unsigned long flags;
9fbed254 492 struct kmemleak_object *object;
3c7b4e6b
CM
493
494 rcu_read_lock();
495 read_lock_irqsave(&kmemleak_lock, flags);
93ada579 496 object = lookup_object(ptr, alias);
3c7b4e6b
CM
497 read_unlock_irqrestore(&kmemleak_lock, flags);
498
499 /* check whether the object is still available */
500 if (object && !get_object(object))
501 object = NULL;
502 rcu_read_unlock();
503
504 return object;
505}
506
e781a9ab
CM
507/*
508 * Look up an object in the object search tree and remove it from both
509 * object_tree_root and object_list. The returned object's use_count should be
510 * at least 1, as initially set by create_object().
511 */
512static struct kmemleak_object *find_and_remove_object(unsigned long ptr, int alias)
513{
514 unsigned long flags;
515 struct kmemleak_object *object;
516
517 write_lock_irqsave(&kmemleak_lock, flags);
518 object = lookup_object(ptr, alias);
519 if (object) {
520 rb_erase(&object->rb_node, &object_tree_root);
521 list_del_rcu(&object->object_list);
522 }
523 write_unlock_irqrestore(&kmemleak_lock, flags);
524
525 return object;
526}
527
fd678967
CM
528/*
529 * Save stack trace to the given array of MAX_TRACE size.
530 */
531static int __save_stack_trace(unsigned long *trace)
532{
533 struct stack_trace stack_trace;
534
535 stack_trace.max_entries = MAX_TRACE;
536 stack_trace.nr_entries = 0;
537 stack_trace.entries = trace;
538 stack_trace.skip = 2;
539 save_stack_trace(&stack_trace);
540
541 return stack_trace.nr_entries;
542}
543
3c7b4e6b
CM
544/*
545 * Create the metadata (struct kmemleak_object) corresponding to an allocated
546 * memory block and add it to the object_list and object_tree_root.
547 */
fd678967
CM
548static struct kmemleak_object *create_object(unsigned long ptr, size_t size,
549 int min_count, gfp_t gfp)
3c7b4e6b
CM
550{
551 unsigned long flags;
85d3a316
ML
552 struct kmemleak_object *object, *parent;
553 struct rb_node **link, *rb_parent;
3c7b4e6b 554
6ae4bd1f 555 object = kmem_cache_alloc(object_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 556 if (!object) {
598d8091 557 pr_warn("Cannot allocate a kmemleak_object structure\n");
6ae4bd1f 558 kmemleak_disable();
fd678967 559 return NULL;
3c7b4e6b
CM
560 }
561
562 INIT_LIST_HEAD(&object->object_list);
563 INIT_LIST_HEAD(&object->gray_list);
564 INIT_HLIST_HEAD(&object->area_list);
565 spin_lock_init(&object->lock);
566 atomic_set(&object->use_count, 1);
04609ccc 567 object->flags = OBJECT_ALLOCATED;
3c7b4e6b
CM
568 object->pointer = ptr;
569 object->size = size;
94f4a161 570 object->excess_ref = 0;
3c7b4e6b 571 object->min_count = min_count;
04609ccc 572 object->count = 0; /* white color initially */
3c7b4e6b 573 object->jiffies = jiffies;
04609ccc 574 object->checksum = 0;
3c7b4e6b
CM
575
576 /* task information */
577 if (in_irq()) {
578 object->pid = 0;
579 strncpy(object->comm, "hardirq", sizeof(object->comm));
580 } else if (in_softirq()) {
581 object->pid = 0;
582 strncpy(object->comm, "softirq", sizeof(object->comm));
583 } else {
584 object->pid = current->pid;
585 /*
586 * There is a small chance of a race with set_task_comm(),
587 * however using get_task_comm() here may cause locking
588 * dependency issues with current->alloc_lock. In the worst
589 * case, the command line is not correct.
590 */
591 strncpy(object->comm, current->comm, sizeof(object->comm));
592 }
593
594 /* kernel backtrace */
fd678967 595 object->trace_len = __save_stack_trace(object->trace);
3c7b4e6b 596
3c7b4e6b 597 write_lock_irqsave(&kmemleak_lock, flags);
0580a181 598
3c7b4e6b
CM
599 min_addr = min(min_addr, ptr);
600 max_addr = max(max_addr, ptr + size);
85d3a316
ML
601 link = &object_tree_root.rb_node;
602 rb_parent = NULL;
603 while (*link) {
604 rb_parent = *link;
605 parent = rb_entry(rb_parent, struct kmemleak_object, rb_node);
606 if (ptr + size <= parent->pointer)
607 link = &parent->rb_node.rb_left;
608 else if (parent->pointer + parent->size <= ptr)
609 link = &parent->rb_node.rb_right;
610 else {
756a025f 611 kmemleak_stop("Cannot insert 0x%lx into the object search tree (overlaps existing)\n",
85d3a316 612 ptr);
9d5a4c73
CM
613 /*
614 * No need for parent->lock here since "parent" cannot
615 * be freed while the kmemleak_lock is held.
616 */
617 dump_object_info(parent);
85d3a316 618 kmem_cache_free(object_cache, object);
9d5a4c73 619 object = NULL;
85d3a316
ML
620 goto out;
621 }
3c7b4e6b 622 }
85d3a316
ML
623 rb_link_node(&object->rb_node, rb_parent, link);
624 rb_insert_color(&object->rb_node, &object_tree_root);
625
3c7b4e6b
CM
626 list_add_tail_rcu(&object->object_list, &object_list);
627out:
628 write_unlock_irqrestore(&kmemleak_lock, flags);
fd678967 629 return object;
3c7b4e6b
CM
630}
631
632/*
e781a9ab 633 * Mark the object as not allocated and schedule RCU freeing via put_object().
3c7b4e6b 634 */
53238a60 635static void __delete_object(struct kmemleak_object *object)
3c7b4e6b
CM
636{
637 unsigned long flags;
3c7b4e6b 638
3c7b4e6b 639 WARN_ON(!(object->flags & OBJECT_ALLOCATED));
e781a9ab 640 WARN_ON(atomic_read(&object->use_count) < 1);
3c7b4e6b
CM
641
642 /*
643 * Locking here also ensures that the corresponding memory block
644 * cannot be freed when it is being scanned.
645 */
646 spin_lock_irqsave(&object->lock, flags);
3c7b4e6b
CM
647 object->flags &= ~OBJECT_ALLOCATED;
648 spin_unlock_irqrestore(&object->lock, flags);
649 put_object(object);
650}
651
53238a60
CM
652/*
653 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
654 * delete it.
655 */
656static void delete_object_full(unsigned long ptr)
657{
658 struct kmemleak_object *object;
659
e781a9ab 660 object = find_and_remove_object(ptr, 0);
53238a60
CM
661 if (!object) {
662#ifdef DEBUG
663 kmemleak_warn("Freeing unknown object at 0x%08lx\n",
664 ptr);
665#endif
666 return;
667 }
668 __delete_object(object);
53238a60
CM
669}
670
671/*
672 * Look up the metadata (struct kmemleak_object) corresponding to ptr and
673 * delete it. If the memory block is partially freed, the function may create
674 * additional metadata for the remaining parts of the block.
675 */
676static void delete_object_part(unsigned long ptr, size_t size)
677{
678 struct kmemleak_object *object;
679 unsigned long start, end;
680
e781a9ab 681 object = find_and_remove_object(ptr, 1);
53238a60
CM
682 if (!object) {
683#ifdef DEBUG
756a025f
JP
684 kmemleak_warn("Partially freeing unknown object at 0x%08lx (size %zu)\n",
685 ptr, size);
53238a60
CM
686#endif
687 return;
688 }
53238a60
CM
689
690 /*
691 * Create one or two objects that may result from the memory block
692 * split. Note that partial freeing is only done by free_bootmem() and
693 * this happens before kmemleak_init() is called. The path below is
694 * only executed during early log recording in kmemleak_init(), so
695 * GFP_KERNEL is enough.
696 */
697 start = object->pointer;
698 end = object->pointer + object->size;
699 if (ptr > start)
700 create_object(start, ptr - start, object->min_count,
701 GFP_KERNEL);
702 if (ptr + size < end)
703 create_object(ptr + size, end - ptr - size, object->min_count,
704 GFP_KERNEL);
705
e781a9ab 706 __delete_object(object);
53238a60 707}
a1084c87
LR
708
709static void __paint_it(struct kmemleak_object *object, int color)
710{
711 object->min_count = color;
712 if (color == KMEMLEAK_BLACK)
713 object->flags |= OBJECT_NO_SCAN;
714}
715
716static void paint_it(struct kmemleak_object *object, int color)
3c7b4e6b
CM
717{
718 unsigned long flags;
a1084c87
LR
719
720 spin_lock_irqsave(&object->lock, flags);
721 __paint_it(object, color);
722 spin_unlock_irqrestore(&object->lock, flags);
723}
724
725static void paint_ptr(unsigned long ptr, int color)
726{
3c7b4e6b
CM
727 struct kmemleak_object *object;
728
729 object = find_and_get_object(ptr, 0);
730 if (!object) {
756a025f
JP
731 kmemleak_warn("Trying to color unknown object at 0x%08lx as %s\n",
732 ptr,
a1084c87
LR
733 (color == KMEMLEAK_GREY) ? "Grey" :
734 (color == KMEMLEAK_BLACK) ? "Black" : "Unknown");
3c7b4e6b
CM
735 return;
736 }
a1084c87 737 paint_it(object, color);
3c7b4e6b
CM
738 put_object(object);
739}
740
a1084c87 741/*
145b64b9 742 * Mark an object permanently as gray-colored so that it can no longer be
a1084c87
LR
743 * reported as a leak. This is used in general to mark a false positive.
744 */
745static void make_gray_object(unsigned long ptr)
746{
747 paint_ptr(ptr, KMEMLEAK_GREY);
748}
749
3c7b4e6b
CM
750/*
751 * Mark the object as black-colored so that it is ignored from scans and
752 * reporting.
753 */
754static void make_black_object(unsigned long ptr)
755{
a1084c87 756 paint_ptr(ptr, KMEMLEAK_BLACK);
3c7b4e6b
CM
757}
758
759/*
760 * Add a scanning area to the object. If at least one such area is added,
761 * kmemleak will only scan these ranges rather than the whole memory block.
762 */
c017b4be 763static void add_scan_area(unsigned long ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
764{
765 unsigned long flags;
766 struct kmemleak_object *object;
767 struct kmemleak_scan_area *area;
768
c017b4be 769 object = find_and_get_object(ptr, 1);
3c7b4e6b 770 if (!object) {
ae281064
JP
771 kmemleak_warn("Adding scan area to unknown object at 0x%08lx\n",
772 ptr);
3c7b4e6b
CM
773 return;
774 }
775
6ae4bd1f 776 area = kmem_cache_alloc(scan_area_cache, gfp_kmemleak_mask(gfp));
3c7b4e6b 777 if (!area) {
598d8091 778 pr_warn("Cannot allocate a scan area\n");
3c7b4e6b
CM
779 goto out;
780 }
781
782 spin_lock_irqsave(&object->lock, flags);
7f88f88f
CM
783 if (size == SIZE_MAX) {
784 size = object->pointer + object->size - ptr;
785 } else if (ptr + size > object->pointer + object->size) {
ae281064 786 kmemleak_warn("Scan area larger than object 0x%08lx\n", ptr);
3c7b4e6b
CM
787 dump_object_info(object);
788 kmem_cache_free(scan_area_cache, area);
789 goto out_unlock;
790 }
791
792 INIT_HLIST_NODE(&area->node);
c017b4be
CM
793 area->start = ptr;
794 area->size = size;
3c7b4e6b
CM
795
796 hlist_add_head(&area->node, &object->area_list);
797out_unlock:
798 spin_unlock_irqrestore(&object->lock, flags);
799out:
800 put_object(object);
801}
802
94f4a161
CM
803/*
804 * Any surplus references (object already gray) to 'ptr' are passed to
805 * 'excess_ref'. This is used in the vmalloc() case where a pointer to
806 * vm_struct may be used as an alternative reference to the vmalloc'ed object
807 * (see free_thread_stack()).
808 */
809static void object_set_excess_ref(unsigned long ptr, unsigned long excess_ref)
810{
811 unsigned long flags;
812 struct kmemleak_object *object;
813
814 object = find_and_get_object(ptr, 0);
815 if (!object) {
816 kmemleak_warn("Setting excess_ref on unknown object at 0x%08lx\n",
817 ptr);
818 return;
819 }
820
821 spin_lock_irqsave(&object->lock, flags);
822 object->excess_ref = excess_ref;
823 spin_unlock_irqrestore(&object->lock, flags);
824 put_object(object);
825}
826
3c7b4e6b
CM
827/*
828 * Set the OBJECT_NO_SCAN flag for the object corresponding to the give
829 * pointer. Such object will not be scanned by kmemleak but references to it
830 * are searched.
831 */
832static void object_no_scan(unsigned long ptr)
833{
834 unsigned long flags;
835 struct kmemleak_object *object;
836
837 object = find_and_get_object(ptr, 0);
838 if (!object) {
ae281064 839 kmemleak_warn("Not scanning unknown object at 0x%08lx\n", ptr);
3c7b4e6b
CM
840 return;
841 }
842
843 spin_lock_irqsave(&object->lock, flags);
844 object->flags |= OBJECT_NO_SCAN;
845 spin_unlock_irqrestore(&object->lock, flags);
846 put_object(object);
847}
848
849/*
850 * Log an early kmemleak_* call to the early_log buffer. These calls will be
851 * processed later once kmemleak is fully initialized.
852 */
a6186d89 853static void __init log_early(int op_type, const void *ptr, size_t size,
c017b4be 854 int min_count)
3c7b4e6b
CM
855{
856 unsigned long flags;
857 struct early_log *log;
858
8910ae89 859 if (kmemleak_error) {
b6693005
CM
860 /* kmemleak stopped recording, just count the requests */
861 crt_early_log++;
862 return;
863 }
864
3c7b4e6b 865 if (crt_early_log >= ARRAY_SIZE(early_log)) {
21cd3a60 866 crt_early_log++;
a9d9058a 867 kmemleak_disable();
3c7b4e6b
CM
868 return;
869 }
870
871 /*
872 * There is no need for locking since the kernel is still in UP mode
873 * at this stage. Disabling the IRQs is enough.
874 */
875 local_irq_save(flags);
876 log = &early_log[crt_early_log];
877 log->op_type = op_type;
878 log->ptr = ptr;
879 log->size = size;
880 log->min_count = min_count;
5f79020c 881 log->trace_len = __save_stack_trace(log->trace);
3c7b4e6b
CM
882 crt_early_log++;
883 local_irq_restore(flags);
884}
885
fd678967
CM
886/*
887 * Log an early allocated block and populate the stack trace.
888 */
889static void early_alloc(struct early_log *log)
890{
891 struct kmemleak_object *object;
892 unsigned long flags;
893 int i;
894
8910ae89 895 if (!kmemleak_enabled || !log->ptr || IS_ERR(log->ptr))
fd678967
CM
896 return;
897
898 /*
899 * RCU locking needed to ensure object is not freed via put_object().
900 */
901 rcu_read_lock();
902 object = create_object((unsigned long)log->ptr, log->size,
c1bcd6b3 903 log->min_count, GFP_ATOMIC);
0d5d1aad
CM
904 if (!object)
905 goto out;
fd678967
CM
906 spin_lock_irqsave(&object->lock, flags);
907 for (i = 0; i < log->trace_len; i++)
908 object->trace[i] = log->trace[i];
909 object->trace_len = log->trace_len;
910 spin_unlock_irqrestore(&object->lock, flags);
0d5d1aad 911out:
fd678967
CM
912 rcu_read_unlock();
913}
914
f528f0b8
CM
915/*
916 * Log an early allocated block and populate the stack trace.
917 */
918static void early_alloc_percpu(struct early_log *log)
919{
920 unsigned int cpu;
921 const void __percpu *ptr = log->ptr;
922
923 for_each_possible_cpu(cpu) {
924 log->ptr = per_cpu_ptr(ptr, cpu);
925 early_alloc(log);
926 }
927}
928
a2b6bf63
CM
929/**
930 * kmemleak_alloc - register a newly allocated object
931 * @ptr: pointer to beginning of the object
932 * @size: size of the object
933 * @min_count: minimum number of references to this object. If during memory
934 * scanning a number of references less than @min_count is found,
935 * the object is reported as a memory leak. If @min_count is 0,
936 * the object is never reported as a leak. If @min_count is -1,
937 * the object is ignored (not scanned and not reported as a leak)
938 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
939 *
940 * This function is called from the kernel allocators when a new object
94f4a161 941 * (memory block) is allocated (kmem_cache_alloc, kmalloc etc.).
3c7b4e6b 942 */
a6186d89
CM
943void __ref kmemleak_alloc(const void *ptr, size_t size, int min_count,
944 gfp_t gfp)
3c7b4e6b
CM
945{
946 pr_debug("%s(0x%p, %zu, %d)\n", __func__, ptr, size, min_count);
947
8910ae89 948 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 949 create_object((unsigned long)ptr, size, min_count, gfp);
8910ae89 950 else if (kmemleak_early_log)
c017b4be 951 log_early(KMEMLEAK_ALLOC, ptr, size, min_count);
3c7b4e6b
CM
952}
953EXPORT_SYMBOL_GPL(kmemleak_alloc);
954
f528f0b8
CM
955/**
956 * kmemleak_alloc_percpu - register a newly allocated __percpu object
957 * @ptr: __percpu pointer to beginning of the object
958 * @size: size of the object
8a8c35fa 959 * @gfp: flags used for kmemleak internal memory allocations
f528f0b8
CM
960 *
961 * This function is called from the kernel percpu allocator when a new object
8a8c35fa 962 * (memory block) is allocated (alloc_percpu).
f528f0b8 963 */
8a8c35fa
LF
964void __ref kmemleak_alloc_percpu(const void __percpu *ptr, size_t size,
965 gfp_t gfp)
f528f0b8
CM
966{
967 unsigned int cpu;
968
969 pr_debug("%s(0x%p, %zu)\n", __func__, ptr, size);
970
971 /*
972 * Percpu allocations are only scanned and not reported as leaks
973 * (min_count is set to 0).
974 */
8910ae89 975 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
976 for_each_possible_cpu(cpu)
977 create_object((unsigned long)per_cpu_ptr(ptr, cpu),
8a8c35fa 978 size, 0, gfp);
8910ae89 979 else if (kmemleak_early_log)
f528f0b8
CM
980 log_early(KMEMLEAK_ALLOC_PERCPU, ptr, size, 0);
981}
982EXPORT_SYMBOL_GPL(kmemleak_alloc_percpu);
983
94f4a161
CM
984/**
985 * kmemleak_vmalloc - register a newly vmalloc'ed object
986 * @area: pointer to vm_struct
987 * @size: size of the object
988 * @gfp: __vmalloc() flags used for kmemleak internal memory allocations
989 *
990 * This function is called from the vmalloc() kernel allocator when a new
991 * object (memory block) is allocated.
992 */
993void __ref kmemleak_vmalloc(const struct vm_struct *area, size_t size, gfp_t gfp)
994{
995 pr_debug("%s(0x%p, %zu)\n", __func__, area, size);
996
997 /*
998 * A min_count = 2 is needed because vm_struct contains a reference to
999 * the virtual address of the vmalloc'ed block.
1000 */
1001 if (kmemleak_enabled) {
1002 create_object((unsigned long)area->addr, size, 2, gfp);
1003 object_set_excess_ref((unsigned long)area,
1004 (unsigned long)area->addr);
1005 } else if (kmemleak_early_log) {
1006 log_early(KMEMLEAK_ALLOC, area->addr, size, 2);
1007 /* reusing early_log.size for storing area->addr */
1008 log_early(KMEMLEAK_SET_EXCESS_REF,
1009 area, (unsigned long)area->addr, 0);
1010 }
1011}
1012EXPORT_SYMBOL_GPL(kmemleak_vmalloc);
1013
a2b6bf63
CM
1014/**
1015 * kmemleak_free - unregister a previously registered object
1016 * @ptr: pointer to beginning of the object
1017 *
1018 * This function is called from the kernel allocators when an object (memory
1019 * block) is freed (kmem_cache_free, kfree, vfree etc.).
3c7b4e6b 1020 */
a6186d89 1021void __ref kmemleak_free(const void *ptr)
3c7b4e6b
CM
1022{
1023 pr_debug("%s(0x%p)\n", __func__, ptr);
1024
c5f3b1a5 1025 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
53238a60 1026 delete_object_full((unsigned long)ptr);
8910ae89 1027 else if (kmemleak_early_log)
c017b4be 1028 log_early(KMEMLEAK_FREE, ptr, 0, 0);
3c7b4e6b
CM
1029}
1030EXPORT_SYMBOL_GPL(kmemleak_free);
1031
a2b6bf63
CM
1032/**
1033 * kmemleak_free_part - partially unregister a previously registered object
1034 * @ptr: pointer to the beginning or inside the object. This also
1035 * represents the start of the range to be freed
1036 * @size: size to be unregistered
1037 *
1038 * This function is called when only a part of a memory block is freed
1039 * (usually from the bootmem allocator).
53238a60 1040 */
a6186d89 1041void __ref kmemleak_free_part(const void *ptr, size_t size)
53238a60
CM
1042{
1043 pr_debug("%s(0x%p)\n", __func__, ptr);
1044
8910ae89 1045 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
53238a60 1046 delete_object_part((unsigned long)ptr, size);
8910ae89 1047 else if (kmemleak_early_log)
c017b4be 1048 log_early(KMEMLEAK_FREE_PART, ptr, size, 0);
53238a60
CM
1049}
1050EXPORT_SYMBOL_GPL(kmemleak_free_part);
1051
f528f0b8
CM
1052/**
1053 * kmemleak_free_percpu - unregister a previously registered __percpu object
1054 * @ptr: __percpu pointer to beginning of the object
1055 *
1056 * This function is called from the kernel percpu allocator when an object
1057 * (memory block) is freed (free_percpu).
1058 */
1059void __ref kmemleak_free_percpu(const void __percpu *ptr)
1060{
1061 unsigned int cpu;
1062
1063 pr_debug("%s(0x%p)\n", __func__, ptr);
1064
c5f3b1a5 1065 if (kmemleak_free_enabled && ptr && !IS_ERR(ptr))
f528f0b8
CM
1066 for_each_possible_cpu(cpu)
1067 delete_object_full((unsigned long)per_cpu_ptr(ptr,
1068 cpu));
8910ae89 1069 else if (kmemleak_early_log)
f528f0b8
CM
1070 log_early(KMEMLEAK_FREE_PERCPU, ptr, 0, 0);
1071}
1072EXPORT_SYMBOL_GPL(kmemleak_free_percpu);
1073
ffe2c748
CM
1074/**
1075 * kmemleak_update_trace - update object allocation stack trace
1076 * @ptr: pointer to beginning of the object
1077 *
1078 * Override the object allocation stack trace for cases where the actual
1079 * allocation place is not always useful.
1080 */
1081void __ref kmemleak_update_trace(const void *ptr)
1082{
1083 struct kmemleak_object *object;
1084 unsigned long flags;
1085
1086 pr_debug("%s(0x%p)\n", __func__, ptr);
1087
1088 if (!kmemleak_enabled || IS_ERR_OR_NULL(ptr))
1089 return;
1090
1091 object = find_and_get_object((unsigned long)ptr, 1);
1092 if (!object) {
1093#ifdef DEBUG
1094 kmemleak_warn("Updating stack trace for unknown object at %p\n",
1095 ptr);
1096#endif
1097 return;
1098 }
1099
1100 spin_lock_irqsave(&object->lock, flags);
1101 object->trace_len = __save_stack_trace(object->trace);
1102 spin_unlock_irqrestore(&object->lock, flags);
1103
1104 put_object(object);
1105}
1106EXPORT_SYMBOL(kmemleak_update_trace);
1107
a2b6bf63
CM
1108/**
1109 * kmemleak_not_leak - mark an allocated object as false positive
1110 * @ptr: pointer to beginning of the object
1111 *
1112 * Calling this function on an object will cause the memory block to no longer
1113 * be reported as leak and always be scanned.
3c7b4e6b 1114 */
a6186d89 1115void __ref kmemleak_not_leak(const void *ptr)
3c7b4e6b
CM
1116{
1117 pr_debug("%s(0x%p)\n", __func__, ptr);
1118
8910ae89 1119 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1120 make_gray_object((unsigned long)ptr);
8910ae89 1121 else if (kmemleak_early_log)
c017b4be 1122 log_early(KMEMLEAK_NOT_LEAK, ptr, 0, 0);
3c7b4e6b
CM
1123}
1124EXPORT_SYMBOL(kmemleak_not_leak);
1125
a2b6bf63
CM
1126/**
1127 * kmemleak_ignore - ignore an allocated object
1128 * @ptr: pointer to beginning of the object
1129 *
1130 * Calling this function on an object will cause the memory block to be
1131 * ignored (not scanned and not reported as a leak). This is usually done when
1132 * it is known that the corresponding block is not a leak and does not contain
1133 * any references to other allocated memory blocks.
3c7b4e6b 1134 */
a6186d89 1135void __ref kmemleak_ignore(const void *ptr)
3c7b4e6b
CM
1136{
1137 pr_debug("%s(0x%p)\n", __func__, ptr);
1138
8910ae89 1139 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1140 make_black_object((unsigned long)ptr);
8910ae89 1141 else if (kmemleak_early_log)
c017b4be 1142 log_early(KMEMLEAK_IGNORE, ptr, 0, 0);
3c7b4e6b
CM
1143}
1144EXPORT_SYMBOL(kmemleak_ignore);
1145
a2b6bf63
CM
1146/**
1147 * kmemleak_scan_area - limit the range to be scanned in an allocated object
1148 * @ptr: pointer to beginning or inside the object. This also
1149 * represents the start of the scan area
1150 * @size: size of the scan area
1151 * @gfp: kmalloc() flags used for kmemleak internal memory allocations
1152 *
1153 * This function is used when it is known that only certain parts of an object
1154 * contain references to other objects. Kmemleak will only scan these areas
1155 * reducing the number false negatives.
3c7b4e6b 1156 */
c017b4be 1157void __ref kmemleak_scan_area(const void *ptr, size_t size, gfp_t gfp)
3c7b4e6b
CM
1158{
1159 pr_debug("%s(0x%p)\n", __func__, ptr);
1160
8910ae89 1161 if (kmemleak_enabled && ptr && size && !IS_ERR(ptr))
c017b4be 1162 add_scan_area((unsigned long)ptr, size, gfp);
8910ae89 1163 else if (kmemleak_early_log)
c017b4be 1164 log_early(KMEMLEAK_SCAN_AREA, ptr, size, 0);
3c7b4e6b
CM
1165}
1166EXPORT_SYMBOL(kmemleak_scan_area);
1167
a2b6bf63
CM
1168/**
1169 * kmemleak_no_scan - do not scan an allocated object
1170 * @ptr: pointer to beginning of the object
1171 *
1172 * This function notifies kmemleak not to scan the given memory block. Useful
1173 * in situations where it is known that the given object does not contain any
1174 * references to other objects. Kmemleak will not scan such objects reducing
1175 * the number of false negatives.
3c7b4e6b 1176 */
a6186d89 1177void __ref kmemleak_no_scan(const void *ptr)
3c7b4e6b
CM
1178{
1179 pr_debug("%s(0x%p)\n", __func__, ptr);
1180
8910ae89 1181 if (kmemleak_enabled && ptr && !IS_ERR(ptr))
3c7b4e6b 1182 object_no_scan((unsigned long)ptr);
8910ae89 1183 else if (kmemleak_early_log)
c017b4be 1184 log_early(KMEMLEAK_NO_SCAN, ptr, 0, 0);
3c7b4e6b
CM
1185}
1186EXPORT_SYMBOL(kmemleak_no_scan);
1187
9099daed
CM
1188/**
1189 * kmemleak_alloc_phys - similar to kmemleak_alloc but taking a physical
1190 * address argument
1191 */
1192void __ref kmemleak_alloc_phys(phys_addr_t phys, size_t size, int min_count,
1193 gfp_t gfp)
1194{
1195 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1196 kmemleak_alloc(__va(phys), size, min_count, gfp);
1197}
1198EXPORT_SYMBOL(kmemleak_alloc_phys);
1199
1200/**
1201 * kmemleak_free_part_phys - similar to kmemleak_free_part but taking a
1202 * physical address argument
1203 */
1204void __ref kmemleak_free_part_phys(phys_addr_t phys, size_t size)
1205{
1206 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1207 kmemleak_free_part(__va(phys), size);
1208}
1209EXPORT_SYMBOL(kmemleak_free_part_phys);
1210
1211/**
1212 * kmemleak_not_leak_phys - similar to kmemleak_not_leak but taking a physical
1213 * address argument
1214 */
1215void __ref kmemleak_not_leak_phys(phys_addr_t phys)
1216{
1217 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1218 kmemleak_not_leak(__va(phys));
1219}
1220EXPORT_SYMBOL(kmemleak_not_leak_phys);
1221
1222/**
1223 * kmemleak_ignore_phys - similar to kmemleak_ignore but taking a physical
1224 * address argument
1225 */
1226void __ref kmemleak_ignore_phys(phys_addr_t phys)
1227{
1228 if (!IS_ENABLED(CONFIG_HIGHMEM) || PHYS_PFN(phys) < max_low_pfn)
1229 kmemleak_ignore(__va(phys));
1230}
1231EXPORT_SYMBOL(kmemleak_ignore_phys);
1232
04609ccc
CM
1233/*
1234 * Update an object's checksum and return true if it was modified.
1235 */
1236static bool update_checksum(struct kmemleak_object *object)
1237{
1238 u32 old_csum = object->checksum;
1239
e79ed2f1 1240 kasan_disable_current();
04609ccc 1241 object->checksum = crc32(0, (void *)object->pointer, object->size);
e79ed2f1
AR
1242 kasan_enable_current();
1243
04609ccc
CM
1244 return object->checksum != old_csum;
1245}
1246
04f70d13
CM
1247/*
1248 * Update an object's references. object->lock must be held by the caller.
1249 */
1250static void update_refs(struct kmemleak_object *object)
1251{
1252 if (!color_white(object)) {
1253 /* non-orphan, ignored or new */
1254 return;
1255 }
1256
1257 /*
1258 * Increase the object's reference count (number of pointers to the
1259 * memory block). If this count reaches the required minimum, the
1260 * object's color will become gray and it will be added to the
1261 * gray_list.
1262 */
1263 object->count++;
1264 if (color_gray(object)) {
1265 /* put_object() called when removing from gray_list */
1266 WARN_ON(!get_object(object));
1267 list_add_tail(&object->gray_list, &gray_list);
1268 }
1269}
1270
3c7b4e6b
CM
1271/*
1272 * Memory scanning is a long process and it needs to be interruptable. This
25985edc 1273 * function checks whether such interrupt condition occurred.
3c7b4e6b
CM
1274 */
1275static int scan_should_stop(void)
1276{
8910ae89 1277 if (!kmemleak_enabled)
3c7b4e6b
CM
1278 return 1;
1279
1280 /*
1281 * This function may be called from either process or kthread context,
1282 * hence the need to check for both stop conditions.
1283 */
1284 if (current->mm)
1285 return signal_pending(current);
1286 else
1287 return kthread_should_stop();
1288
1289 return 0;
1290}
1291
1292/*
1293 * Scan a memory block (exclusive range) for valid pointers and add those
1294 * found to the gray list.
1295 */
1296static void scan_block(void *_start, void *_end,
93ada579 1297 struct kmemleak_object *scanned)
3c7b4e6b
CM
1298{
1299 unsigned long *ptr;
1300 unsigned long *start = PTR_ALIGN(_start, BYTES_PER_POINTER);
1301 unsigned long *end = _end - (BYTES_PER_POINTER - 1);
93ada579 1302 unsigned long flags;
3c7b4e6b 1303
93ada579 1304 read_lock_irqsave(&kmemleak_lock, flags);
3c7b4e6b 1305 for (ptr = start; ptr < end; ptr++) {
3c7b4e6b 1306 struct kmemleak_object *object;
8e019366 1307 unsigned long pointer;
94f4a161 1308 unsigned long excess_ref;
3c7b4e6b
CM
1309
1310 if (scan_should_stop())
1311 break;
1312
e79ed2f1 1313 kasan_disable_current();
8e019366 1314 pointer = *ptr;
e79ed2f1 1315 kasan_enable_current();
8e019366 1316
93ada579
CM
1317 if (pointer < min_addr || pointer >= max_addr)
1318 continue;
1319
1320 /*
1321 * No need for get_object() here since we hold kmemleak_lock.
1322 * object->use_count cannot be dropped to 0 while the object
1323 * is still present in object_tree_root and object_list
1324 * (with updates protected by kmemleak_lock).
1325 */
1326 object = lookup_object(pointer, 1);
3c7b4e6b
CM
1327 if (!object)
1328 continue;
93ada579 1329 if (object == scanned)
3c7b4e6b 1330 /* self referenced, ignore */
3c7b4e6b 1331 continue;
3c7b4e6b
CM
1332
1333 /*
1334 * Avoid the lockdep recursive warning on object->lock being
1335 * previously acquired in scan_object(). These locks are
1336 * enclosed by scan_mutex.
1337 */
93ada579 1338 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
94f4a161
CM
1339 /* only pass surplus references (object already gray) */
1340 if (color_gray(object)) {
1341 excess_ref = object->excess_ref;
1342 /* no need for update_refs() if object already gray */
1343 } else {
1344 excess_ref = 0;
1345 update_refs(object);
1346 }
93ada579 1347 spin_unlock(&object->lock);
94f4a161
CM
1348
1349 if (excess_ref) {
1350 object = lookup_object(excess_ref, 0);
1351 if (!object)
1352 continue;
1353 if (object == scanned)
1354 /* circular reference, ignore */
1355 continue;
1356 spin_lock_nested(&object->lock, SINGLE_DEPTH_NESTING);
1357 update_refs(object);
1358 spin_unlock(&object->lock);
1359 }
93ada579
CM
1360 }
1361 read_unlock_irqrestore(&kmemleak_lock, flags);
1362}
0587da40 1363
93ada579
CM
1364/*
1365 * Scan a large memory block in MAX_SCAN_SIZE chunks to reduce the latency.
1366 */
1367static void scan_large_block(void *start, void *end)
1368{
1369 void *next;
1370
1371 while (start < end) {
1372 next = min(start + MAX_SCAN_SIZE, end);
1373 scan_block(start, next, NULL);
1374 start = next;
1375 cond_resched();
3c7b4e6b
CM
1376 }
1377}
1378
1379/*
1380 * Scan a memory block corresponding to a kmemleak_object. A condition is
1381 * that object->use_count >= 1.
1382 */
1383static void scan_object(struct kmemleak_object *object)
1384{
1385 struct kmemleak_scan_area *area;
3c7b4e6b
CM
1386 unsigned long flags;
1387
1388 /*
21ae2956
UKK
1389 * Once the object->lock is acquired, the corresponding memory block
1390 * cannot be freed (the same lock is acquired in delete_object).
3c7b4e6b
CM
1391 */
1392 spin_lock_irqsave(&object->lock, flags);
1393 if (object->flags & OBJECT_NO_SCAN)
1394 goto out;
1395 if (!(object->flags & OBJECT_ALLOCATED))
1396 /* already freed object */
1397 goto out;
af98603d
CM
1398 if (hlist_empty(&object->area_list)) {
1399 void *start = (void *)object->pointer;
1400 void *end = (void *)(object->pointer + object->size);
93ada579
CM
1401 void *next;
1402
1403 do {
1404 next = min(start + MAX_SCAN_SIZE, end);
1405 scan_block(start, next, object);
af98603d 1406
93ada579
CM
1407 start = next;
1408 if (start >= end)
1409 break;
af98603d
CM
1410
1411 spin_unlock_irqrestore(&object->lock, flags);
1412 cond_resched();
1413 spin_lock_irqsave(&object->lock, flags);
93ada579 1414 } while (object->flags & OBJECT_ALLOCATED);
af98603d 1415 } else
b67bfe0d 1416 hlist_for_each_entry(area, &object->area_list, node)
c017b4be
CM
1417 scan_block((void *)area->start,
1418 (void *)(area->start + area->size),
93ada579 1419 object);
3c7b4e6b
CM
1420out:
1421 spin_unlock_irqrestore(&object->lock, flags);
1422}
1423
04609ccc
CM
1424/*
1425 * Scan the objects already referenced (gray objects). More objects will be
1426 * referenced and, if there are no memory leaks, all the objects are scanned.
1427 */
1428static void scan_gray_list(void)
1429{
1430 struct kmemleak_object *object, *tmp;
1431
1432 /*
1433 * The list traversal is safe for both tail additions and removals
1434 * from inside the loop. The kmemleak objects cannot be freed from
1435 * outside the loop because their use_count was incremented.
1436 */
1437 object = list_entry(gray_list.next, typeof(*object), gray_list);
1438 while (&object->gray_list != &gray_list) {
1439 cond_resched();
1440
1441 /* may add new objects to the list */
1442 if (!scan_should_stop())
1443 scan_object(object);
1444
1445 tmp = list_entry(object->gray_list.next, typeof(*object),
1446 gray_list);
1447
1448 /* remove the object from the list and release it */
1449 list_del(&object->gray_list);
1450 put_object(object);
1451
1452 object = tmp;
1453 }
1454 WARN_ON(!list_empty(&gray_list));
1455}
1456
3c7b4e6b
CM
1457/*
1458 * Scan data sections and all the referenced memory blocks allocated via the
1459 * kernel's standard allocators. This function must be called with the
1460 * scan_mutex held.
1461 */
1462static void kmemleak_scan(void)
1463{
1464 unsigned long flags;
04609ccc 1465 struct kmemleak_object *object;
3c7b4e6b 1466 int i;
4698c1f2 1467 int new_leaks = 0;
3c7b4e6b 1468
acf4968e
CM
1469 jiffies_last_scan = jiffies;
1470
3c7b4e6b
CM
1471 /* prepare the kmemleak_object's */
1472 rcu_read_lock();
1473 list_for_each_entry_rcu(object, &object_list, object_list) {
1474 spin_lock_irqsave(&object->lock, flags);
1475#ifdef DEBUG
1476 /*
1477 * With a few exceptions there should be a maximum of
1478 * 1 reference to any object at this point.
1479 */
1480 if (atomic_read(&object->use_count) > 1) {
ae281064 1481 pr_debug("object->use_count = %d\n",
3c7b4e6b
CM
1482 atomic_read(&object->use_count));
1483 dump_object_info(object);
1484 }
1485#endif
1486 /* reset the reference count (whiten the object) */
1487 object->count = 0;
1488 if (color_gray(object) && get_object(object))
1489 list_add_tail(&object->gray_list, &gray_list);
1490
1491 spin_unlock_irqrestore(&object->lock, flags);
1492 }
1493 rcu_read_unlock();
1494
1495 /* data/bss scanning */
93ada579
CM
1496 scan_large_block(_sdata, _edata);
1497 scan_large_block(__bss_start, __bss_stop);
906f2a51 1498 scan_large_block(__start_ro_after_init, __end_ro_after_init);
3c7b4e6b
CM
1499
1500#ifdef CONFIG_SMP
1501 /* per-cpu sections scanning */
1502 for_each_possible_cpu(i)
93ada579
CM
1503 scan_large_block(__per_cpu_start + per_cpu_offset(i),
1504 __per_cpu_end + per_cpu_offset(i));
3c7b4e6b
CM
1505#endif
1506
1507 /*
029aeff5 1508 * Struct page scanning for each node.
3c7b4e6b 1509 */
bfc8c901 1510 get_online_mems();
3c7b4e6b 1511 for_each_online_node(i) {
108bcc96
CS
1512 unsigned long start_pfn = node_start_pfn(i);
1513 unsigned long end_pfn = node_end_pfn(i);
3c7b4e6b
CM
1514 unsigned long pfn;
1515
1516 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
1517 struct page *page;
1518
1519 if (!pfn_valid(pfn))
1520 continue;
1521 page = pfn_to_page(pfn);
1522 /* only scan if page is in use */
1523 if (page_count(page) == 0)
1524 continue;
93ada579 1525 scan_block(page, page + 1, NULL);
13ab183d 1526 if (!(pfn & 63))
bde5f6bc 1527 cond_resched();
3c7b4e6b
CM
1528 }
1529 }
bfc8c901 1530 put_online_mems();
3c7b4e6b
CM
1531
1532 /*
43ed5d6e 1533 * Scanning the task stacks (may introduce false negatives).
3c7b4e6b
CM
1534 */
1535 if (kmemleak_stack_scan) {
43ed5d6e
CM
1536 struct task_struct *p, *g;
1537
3c7b4e6b 1538 read_lock(&tasklist_lock);
43ed5d6e 1539 do_each_thread(g, p) {
37df49f4
CM
1540 void *stack = try_get_task_stack(p);
1541 if (stack) {
1542 scan_block(stack, stack + THREAD_SIZE, NULL);
1543 put_task_stack(p);
1544 }
43ed5d6e 1545 } while_each_thread(g, p);
3c7b4e6b
CM
1546 read_unlock(&tasklist_lock);
1547 }
1548
1549 /*
1550 * Scan the objects already referenced from the sections scanned
04609ccc 1551 * above.
3c7b4e6b 1552 */
04609ccc 1553 scan_gray_list();
2587362e
CM
1554
1555 /*
04609ccc
CM
1556 * Check for new or unreferenced objects modified since the previous
1557 * scan and color them gray until the next scan.
2587362e
CM
1558 */
1559 rcu_read_lock();
1560 list_for_each_entry_rcu(object, &object_list, object_list) {
1561 spin_lock_irqsave(&object->lock, flags);
04609ccc
CM
1562 if (color_white(object) && (object->flags & OBJECT_ALLOCATED)
1563 && update_checksum(object) && get_object(object)) {
1564 /* color it gray temporarily */
1565 object->count = object->min_count;
2587362e
CM
1566 list_add_tail(&object->gray_list, &gray_list);
1567 }
1568 spin_unlock_irqrestore(&object->lock, flags);
1569 }
1570 rcu_read_unlock();
1571
04609ccc
CM
1572 /*
1573 * Re-scan the gray list for modified unreferenced objects.
1574 */
1575 scan_gray_list();
4698c1f2 1576
17bb9e0d 1577 /*
04609ccc 1578 * If scanning was stopped do not report any new unreferenced objects.
17bb9e0d 1579 */
04609ccc 1580 if (scan_should_stop())
17bb9e0d
CM
1581 return;
1582
4698c1f2
CM
1583 /*
1584 * Scanning result reporting.
1585 */
1586 rcu_read_lock();
1587 list_for_each_entry_rcu(object, &object_list, object_list) {
1588 spin_lock_irqsave(&object->lock, flags);
1589 if (unreferenced_object(object) &&
1590 !(object->flags & OBJECT_REPORTED)) {
1591 object->flags |= OBJECT_REPORTED;
1592 new_leaks++;
1593 }
1594 spin_unlock_irqrestore(&object->lock, flags);
1595 }
1596 rcu_read_unlock();
1597
dc9b3f42
LZ
1598 if (new_leaks) {
1599 kmemleak_found_leaks = true;
1600
756a025f
JP
1601 pr_info("%d new suspected memory leaks (see /sys/kernel/debug/kmemleak)\n",
1602 new_leaks);
dc9b3f42 1603 }
4698c1f2 1604
3c7b4e6b
CM
1605}
1606
1607/*
1608 * Thread function performing automatic memory scanning. Unreferenced objects
1609 * at the end of a memory scan are reported but only the first time.
1610 */
1611static int kmemleak_scan_thread(void *arg)
1612{
1613 static int first_run = 1;
1614
ae281064 1615 pr_info("Automatic memory scanning thread started\n");
bf2a76b3 1616 set_user_nice(current, 10);
3c7b4e6b
CM
1617
1618 /*
1619 * Wait before the first scan to allow the system to fully initialize.
1620 */
1621 if (first_run) {
98c42d94 1622 signed long timeout = msecs_to_jiffies(SECS_FIRST_SCAN * 1000);
3c7b4e6b 1623 first_run = 0;
98c42d94
VN
1624 while (timeout && !kthread_should_stop())
1625 timeout = schedule_timeout_interruptible(timeout);
3c7b4e6b
CM
1626 }
1627
1628 while (!kthread_should_stop()) {
3c7b4e6b
CM
1629 signed long timeout = jiffies_scan_wait;
1630
1631 mutex_lock(&scan_mutex);
3c7b4e6b 1632 kmemleak_scan();
3c7b4e6b 1633 mutex_unlock(&scan_mutex);
4698c1f2 1634
3c7b4e6b
CM
1635 /* wait before the next scan */
1636 while (timeout && !kthread_should_stop())
1637 timeout = schedule_timeout_interruptible(timeout);
1638 }
1639
ae281064 1640 pr_info("Automatic memory scanning thread ended\n");
3c7b4e6b
CM
1641
1642 return 0;
1643}
1644
1645/*
1646 * Start the automatic memory scanning thread. This function must be called
4698c1f2 1647 * with the scan_mutex held.
3c7b4e6b 1648 */
7eb0d5e5 1649static void start_scan_thread(void)
3c7b4e6b
CM
1650{
1651 if (scan_thread)
1652 return;
1653 scan_thread = kthread_run(kmemleak_scan_thread, NULL, "kmemleak");
1654 if (IS_ERR(scan_thread)) {
598d8091 1655 pr_warn("Failed to create the scan thread\n");
3c7b4e6b
CM
1656 scan_thread = NULL;
1657 }
1658}
1659
1660/*
c8886470 1661 * Stop the automatic memory scanning thread.
3c7b4e6b 1662 */
7eb0d5e5 1663static void stop_scan_thread(void)
3c7b4e6b
CM
1664{
1665 if (scan_thread) {
1666 kthread_stop(scan_thread);
1667 scan_thread = NULL;
1668 }
1669}
1670
1671/*
1672 * Iterate over the object_list and return the first valid object at or after
1673 * the required position with its use_count incremented. The function triggers
1674 * a memory scanning when the pos argument points to the first position.
1675 */
1676static void *kmemleak_seq_start(struct seq_file *seq, loff_t *pos)
1677{
1678 struct kmemleak_object *object;
1679 loff_t n = *pos;
b87324d0
CM
1680 int err;
1681
1682 err = mutex_lock_interruptible(&scan_mutex);
1683 if (err < 0)
1684 return ERR_PTR(err);
3c7b4e6b 1685
3c7b4e6b
CM
1686 rcu_read_lock();
1687 list_for_each_entry_rcu(object, &object_list, object_list) {
1688 if (n-- > 0)
1689 continue;
1690 if (get_object(object))
1691 goto out;
1692 }
1693 object = NULL;
1694out:
3c7b4e6b
CM
1695 return object;
1696}
1697
1698/*
1699 * Return the next object in the object_list. The function decrements the
1700 * use_count of the previous object and increases that of the next one.
1701 */
1702static void *kmemleak_seq_next(struct seq_file *seq, void *v, loff_t *pos)
1703{
1704 struct kmemleak_object *prev_obj = v;
1705 struct kmemleak_object *next_obj = NULL;
58fac095 1706 struct kmemleak_object *obj = prev_obj;
3c7b4e6b
CM
1707
1708 ++(*pos);
3c7b4e6b 1709
58fac095 1710 list_for_each_entry_continue_rcu(obj, &object_list, object_list) {
52c3ce4e
CM
1711 if (get_object(obj)) {
1712 next_obj = obj;
3c7b4e6b 1713 break;
52c3ce4e 1714 }
3c7b4e6b 1715 }
288c857d 1716
3c7b4e6b
CM
1717 put_object(prev_obj);
1718 return next_obj;
1719}
1720
1721/*
1722 * Decrement the use_count of the last object required, if any.
1723 */
1724static void kmemleak_seq_stop(struct seq_file *seq, void *v)
1725{
b87324d0
CM
1726 if (!IS_ERR(v)) {
1727 /*
1728 * kmemleak_seq_start may return ERR_PTR if the scan_mutex
1729 * waiting was interrupted, so only release it if !IS_ERR.
1730 */
f5886c7f 1731 rcu_read_unlock();
b87324d0
CM
1732 mutex_unlock(&scan_mutex);
1733 if (v)
1734 put_object(v);
1735 }
3c7b4e6b
CM
1736}
1737
1738/*
1739 * Print the information for an unreferenced object to the seq file.
1740 */
1741static int kmemleak_seq_show(struct seq_file *seq, void *v)
1742{
1743 struct kmemleak_object *object = v;
1744 unsigned long flags;
1745
1746 spin_lock_irqsave(&object->lock, flags);
288c857d 1747 if ((object->flags & OBJECT_REPORTED) && unreferenced_object(object))
17bb9e0d 1748 print_unreferenced(seq, object);
3c7b4e6b
CM
1749 spin_unlock_irqrestore(&object->lock, flags);
1750 return 0;
1751}
1752
1753static const struct seq_operations kmemleak_seq_ops = {
1754 .start = kmemleak_seq_start,
1755 .next = kmemleak_seq_next,
1756 .stop = kmemleak_seq_stop,
1757 .show = kmemleak_seq_show,
1758};
1759
1760static int kmemleak_open(struct inode *inode, struct file *file)
1761{
b87324d0 1762 return seq_open(file, &kmemleak_seq_ops);
3c7b4e6b
CM
1763}
1764
189d84ed
CM
1765static int dump_str_object_info(const char *str)
1766{
1767 unsigned long flags;
1768 struct kmemleak_object *object;
1769 unsigned long addr;
1770
dc053733
AP
1771 if (kstrtoul(str, 0, &addr))
1772 return -EINVAL;
189d84ed
CM
1773 object = find_and_get_object(addr, 0);
1774 if (!object) {
1775 pr_info("Unknown object at 0x%08lx\n", addr);
1776 return -EINVAL;
1777 }
1778
1779 spin_lock_irqsave(&object->lock, flags);
1780 dump_object_info(object);
1781 spin_unlock_irqrestore(&object->lock, flags);
1782
1783 put_object(object);
1784 return 0;
1785}
1786
30b37101
LR
1787/*
1788 * We use grey instead of black to ensure we can do future scans on the same
1789 * objects. If we did not do future scans these black objects could
1790 * potentially contain references to newly allocated objects in the future and
1791 * we'd end up with false positives.
1792 */
1793static void kmemleak_clear(void)
1794{
1795 struct kmemleak_object *object;
1796 unsigned long flags;
1797
1798 rcu_read_lock();
1799 list_for_each_entry_rcu(object, &object_list, object_list) {
1800 spin_lock_irqsave(&object->lock, flags);
1801 if ((object->flags & OBJECT_REPORTED) &&
1802 unreferenced_object(object))
a1084c87 1803 __paint_it(object, KMEMLEAK_GREY);
30b37101
LR
1804 spin_unlock_irqrestore(&object->lock, flags);
1805 }
1806 rcu_read_unlock();
dc9b3f42
LZ
1807
1808 kmemleak_found_leaks = false;
30b37101
LR
1809}
1810
c89da70c
LZ
1811static void __kmemleak_do_cleanup(void);
1812
3c7b4e6b
CM
1813/*
1814 * File write operation to configure kmemleak at run-time. The following
1815 * commands can be written to the /sys/kernel/debug/kmemleak file:
1816 * off - disable kmemleak (irreversible)
1817 * stack=on - enable the task stacks scanning
1818 * stack=off - disable the tasks stacks scanning
1819 * scan=on - start the automatic memory scanning thread
1820 * scan=off - stop the automatic memory scanning thread
1821 * scan=... - set the automatic memory scanning period in seconds (0 to
1822 * disable it)
4698c1f2 1823 * scan - trigger a memory scan
30b37101 1824 * clear - mark all current reported unreferenced kmemleak objects as
c89da70c
LZ
1825 * grey to ignore printing them, or free all kmemleak objects
1826 * if kmemleak has been disabled.
189d84ed 1827 * dump=... - dump information about the object found at the given address
3c7b4e6b
CM
1828 */
1829static ssize_t kmemleak_write(struct file *file, const char __user *user_buf,
1830 size_t size, loff_t *ppos)
1831{
1832 char buf[64];
1833 int buf_size;
b87324d0 1834 int ret;
3c7b4e6b
CM
1835
1836 buf_size = min(size, (sizeof(buf) - 1));
1837 if (strncpy_from_user(buf, user_buf, buf_size) < 0)
1838 return -EFAULT;
1839 buf[buf_size] = 0;
1840
b87324d0
CM
1841 ret = mutex_lock_interruptible(&scan_mutex);
1842 if (ret < 0)
1843 return ret;
1844
c89da70c 1845 if (strncmp(buf, "clear", 5) == 0) {
8910ae89 1846 if (kmemleak_enabled)
c89da70c
LZ
1847 kmemleak_clear();
1848 else
1849 __kmemleak_do_cleanup();
1850 goto out;
1851 }
1852
8910ae89 1853 if (!kmemleak_enabled) {
c89da70c
LZ
1854 ret = -EBUSY;
1855 goto out;
1856 }
1857
3c7b4e6b
CM
1858 if (strncmp(buf, "off", 3) == 0)
1859 kmemleak_disable();
1860 else if (strncmp(buf, "stack=on", 8) == 0)
1861 kmemleak_stack_scan = 1;
1862 else if (strncmp(buf, "stack=off", 9) == 0)
1863 kmemleak_stack_scan = 0;
1864 else if (strncmp(buf, "scan=on", 7) == 0)
1865 start_scan_thread();
1866 else if (strncmp(buf, "scan=off", 8) == 0)
1867 stop_scan_thread();
1868 else if (strncmp(buf, "scan=", 5) == 0) {
1869 unsigned long secs;
3c7b4e6b 1870
3dbb95f7 1871 ret = kstrtoul(buf + 5, 0, &secs);
b87324d0
CM
1872 if (ret < 0)
1873 goto out;
3c7b4e6b
CM
1874 stop_scan_thread();
1875 if (secs) {
1876 jiffies_scan_wait = msecs_to_jiffies(secs * 1000);
1877 start_scan_thread();
1878 }
4698c1f2
CM
1879 } else if (strncmp(buf, "scan", 4) == 0)
1880 kmemleak_scan();
189d84ed
CM
1881 else if (strncmp(buf, "dump=", 5) == 0)
1882 ret = dump_str_object_info(buf + 5);
4698c1f2 1883 else
b87324d0
CM
1884 ret = -EINVAL;
1885
1886out:
1887 mutex_unlock(&scan_mutex);
1888 if (ret < 0)
1889 return ret;
3c7b4e6b
CM
1890
1891 /* ignore the rest of the buffer, only one command at a time */
1892 *ppos += size;
1893 return size;
1894}
1895
1896static const struct file_operations kmemleak_fops = {
1897 .owner = THIS_MODULE,
1898 .open = kmemleak_open,
1899 .read = seq_read,
1900 .write = kmemleak_write,
1901 .llseek = seq_lseek,
5f3bf19a 1902 .release = seq_release,
3c7b4e6b
CM
1903};
1904
c89da70c
LZ
1905static void __kmemleak_do_cleanup(void)
1906{
1907 struct kmemleak_object *object;
1908
1909 rcu_read_lock();
1910 list_for_each_entry_rcu(object, &object_list, object_list)
1911 delete_object_full(object->pointer);
1912 rcu_read_unlock();
1913}
1914
3c7b4e6b 1915/*
74341703
CM
1916 * Stop the memory scanning thread and free the kmemleak internal objects if
1917 * no previous scan thread (otherwise, kmemleak may still have some useful
1918 * information on memory leaks).
3c7b4e6b 1919 */
179a8100 1920static void kmemleak_do_cleanup(struct work_struct *work)
3c7b4e6b 1921{
3c7b4e6b 1922 stop_scan_thread();
3c7b4e6b 1923
c8886470 1924 mutex_lock(&scan_mutex);
c5f3b1a5 1925 /*
c8886470
VM
1926 * Once it is made sure that kmemleak_scan has stopped, it is safe to no
1927 * longer track object freeing. Ordering of the scan thread stopping and
1928 * the memory accesses below is guaranteed by the kthread_stop()
1929 * function.
c5f3b1a5
CM
1930 */
1931 kmemleak_free_enabled = 0;
c8886470 1932 mutex_unlock(&scan_mutex);
c5f3b1a5 1933
c89da70c
LZ
1934 if (!kmemleak_found_leaks)
1935 __kmemleak_do_cleanup();
1936 else
756a025f 1937 pr_info("Kmemleak disabled without freeing internal data. Reclaim the memory with \"echo clear > /sys/kernel/debug/kmemleak\".\n");
3c7b4e6b
CM
1938}
1939
179a8100 1940static DECLARE_WORK(cleanup_work, kmemleak_do_cleanup);
3c7b4e6b
CM
1941
1942/*
1943 * Disable kmemleak. No memory allocation/freeing will be traced once this
1944 * function is called. Disabling kmemleak is an irreversible operation.
1945 */
1946static void kmemleak_disable(void)
1947{
1948 /* atomically check whether it was already invoked */
8910ae89 1949 if (cmpxchg(&kmemleak_error, 0, 1))
3c7b4e6b
CM
1950 return;
1951
1952 /* stop any memory operation tracing */
8910ae89 1953 kmemleak_enabled = 0;
3c7b4e6b
CM
1954
1955 /* check whether it is too early for a kernel thread */
8910ae89 1956 if (kmemleak_initialized)
179a8100 1957 schedule_work(&cleanup_work);
c5f3b1a5
CM
1958 else
1959 kmemleak_free_enabled = 0;
3c7b4e6b
CM
1960
1961 pr_info("Kernel memory leak detector disabled\n");
1962}
1963
1964/*
1965 * Allow boot-time kmemleak disabling (enabled by default).
1966 */
1967static int kmemleak_boot_config(char *str)
1968{
1969 if (!str)
1970 return -EINVAL;
1971 if (strcmp(str, "off") == 0)
1972 kmemleak_disable();
ab0155a2
JB
1973 else if (strcmp(str, "on") == 0)
1974 kmemleak_skip_disable = 1;
1975 else
3c7b4e6b
CM
1976 return -EINVAL;
1977 return 0;
1978}
1979early_param("kmemleak", kmemleak_boot_config);
1980
5f79020c
CM
1981static void __init print_log_trace(struct early_log *log)
1982{
1983 struct stack_trace trace;
1984
1985 trace.nr_entries = log->trace_len;
1986 trace.entries = log->trace;
1987
1988 pr_notice("Early log backtrace:\n");
1989 print_stack_trace(&trace, 2);
1990}
1991
3c7b4e6b 1992/*
2030117d 1993 * Kmemleak initialization.
3c7b4e6b
CM
1994 */
1995void __init kmemleak_init(void)
1996{
1997 int i;
1998 unsigned long flags;
1999
ab0155a2
JB
2000#ifdef CONFIG_DEBUG_KMEMLEAK_DEFAULT_OFF
2001 if (!kmemleak_skip_disable) {
3551a928 2002 kmemleak_early_log = 0;
ab0155a2
JB
2003 kmemleak_disable();
2004 return;
2005 }
2006#endif
2007
3c7b4e6b
CM
2008 jiffies_min_age = msecs_to_jiffies(MSECS_MIN_AGE);
2009 jiffies_scan_wait = msecs_to_jiffies(SECS_SCAN_WAIT * 1000);
2010
2011 object_cache = KMEM_CACHE(kmemleak_object, SLAB_NOLEAKTRACE);
2012 scan_area_cache = KMEM_CACHE(kmemleak_scan_area, SLAB_NOLEAKTRACE);
3c7b4e6b 2013
21cd3a60 2014 if (crt_early_log > ARRAY_SIZE(early_log))
598d8091
JP
2015 pr_warn("Early log buffer exceeded (%d), please increase DEBUG_KMEMLEAK_EARLY_LOG_SIZE\n",
2016 crt_early_log);
b6693005 2017
3c7b4e6b
CM
2018 /* the kernel is still in UP mode, so disabling the IRQs is enough */
2019 local_irq_save(flags);
3551a928 2020 kmemleak_early_log = 0;
8910ae89 2021 if (kmemleak_error) {
b6693005
CM
2022 local_irq_restore(flags);
2023 return;
c5f3b1a5 2024 } else {
8910ae89 2025 kmemleak_enabled = 1;
c5f3b1a5
CM
2026 kmemleak_free_enabled = 1;
2027 }
3c7b4e6b
CM
2028 local_irq_restore(flags);
2029
2030 /*
2031 * This is the point where tracking allocations is safe. Automatic
2032 * scanning is started during the late initcall. Add the early logged
2033 * callbacks to the kmemleak infrastructure.
2034 */
2035 for (i = 0; i < crt_early_log; i++) {
2036 struct early_log *log = &early_log[i];
2037
2038 switch (log->op_type) {
2039 case KMEMLEAK_ALLOC:
fd678967 2040 early_alloc(log);
3c7b4e6b 2041 break;
f528f0b8
CM
2042 case KMEMLEAK_ALLOC_PERCPU:
2043 early_alloc_percpu(log);
2044 break;
3c7b4e6b
CM
2045 case KMEMLEAK_FREE:
2046 kmemleak_free(log->ptr);
2047 break;
53238a60
CM
2048 case KMEMLEAK_FREE_PART:
2049 kmemleak_free_part(log->ptr, log->size);
2050 break;
f528f0b8
CM
2051 case KMEMLEAK_FREE_PERCPU:
2052 kmemleak_free_percpu(log->ptr);
2053 break;
3c7b4e6b
CM
2054 case KMEMLEAK_NOT_LEAK:
2055 kmemleak_not_leak(log->ptr);
2056 break;
2057 case KMEMLEAK_IGNORE:
2058 kmemleak_ignore(log->ptr);
2059 break;
2060 case KMEMLEAK_SCAN_AREA:
c017b4be 2061 kmemleak_scan_area(log->ptr, log->size, GFP_KERNEL);
3c7b4e6b
CM
2062 break;
2063 case KMEMLEAK_NO_SCAN:
2064 kmemleak_no_scan(log->ptr);
2065 break;
94f4a161
CM
2066 case KMEMLEAK_SET_EXCESS_REF:
2067 object_set_excess_ref((unsigned long)log->ptr,
2068 log->excess_ref);
2069 break;
3c7b4e6b 2070 default:
5f79020c
CM
2071 kmemleak_warn("Unknown early log operation: %d\n",
2072 log->op_type);
2073 }
2074
8910ae89 2075 if (kmemleak_warning) {
5f79020c 2076 print_log_trace(log);
8910ae89 2077 kmemleak_warning = 0;
3c7b4e6b
CM
2078 }
2079 }
2080}
2081
2082/*
2083 * Late initialization function.
2084 */
2085static int __init kmemleak_late_init(void)
2086{
2087 struct dentry *dentry;
2088
8910ae89 2089 kmemleak_initialized = 1;
3c7b4e6b 2090
8910ae89 2091 if (kmemleak_error) {
3c7b4e6b 2092 /*
25985edc 2093 * Some error occurred and kmemleak was disabled. There is a
3c7b4e6b
CM
2094 * small chance that kmemleak_disable() was called immediately
2095 * after setting kmemleak_initialized and we may end up with
2096 * two clean-up threads but serialized by scan_mutex.
2097 */
179a8100 2098 schedule_work(&cleanup_work);
3c7b4e6b
CM
2099 return -ENOMEM;
2100 }
2101
7d6c4dfa 2102 dentry = debugfs_create_file("kmemleak", 0644, NULL, NULL,
3c7b4e6b
CM
2103 &kmemleak_fops);
2104 if (!dentry)
598d8091 2105 pr_warn("Failed to create the debugfs kmemleak file\n");
4698c1f2 2106 mutex_lock(&scan_mutex);
3c7b4e6b 2107 start_scan_thread();
4698c1f2 2108 mutex_unlock(&scan_mutex);
3c7b4e6b
CM
2109
2110 pr_info("Kernel memory leak detector initialized\n");
2111
2112 return 0;
2113}
2114late_initcall(kmemleak_late_init);