]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memcontrol.c
UBUNTU: [Debian] make rebuild use skippable error codes when skipping.
[mirror_ubuntu-bionic-kernel.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
6e84f315 38#include <linux/sched/mm.h>
3a4f8a0b 39#include <linux/shmem_fs.h>
4ffef5fe 40#include <linux/hugetlb.h>
d13d1443 41#include <linux/pagemap.h>
d52aa412 42#include <linux/smp.h>
8a9f3ccd 43#include <linux/page-flags.h>
66e1707b 44#include <linux/backing-dev.h>
8a9f3ccd
BS
45#include <linux/bit_spinlock.h>
46#include <linux/rcupdate.h>
e222432b 47#include <linux/limits.h>
b9e15baf 48#include <linux/export.h>
8c7c6e34 49#include <linux/mutex.h>
bb4cc1a8 50#include <linux/rbtree.h>
b6ac57d5 51#include <linux/slab.h>
66e1707b 52#include <linux/swap.h>
02491447 53#include <linux/swapops.h>
66e1707b 54#include <linux/spinlock.h>
2e72b634 55#include <linux/eventfd.h>
79bd9814 56#include <linux/poll.h>
2e72b634 57#include <linux/sort.h>
66e1707b 58#include <linux/fs.h>
d2ceb9b7 59#include <linux/seq_file.h>
70ddf637 60#include <linux/vmpressure.h>
b69408e8 61#include <linux/mm_inline.h>
5d1ea48b 62#include <linux/swap_cgroup.h>
cdec2e42 63#include <linux/cpu.h>
158e0a2d 64#include <linux/oom.h>
0056f4e6 65#include <linux/lockdep.h>
79bd9814 66#include <linux/file.h>
b23afb93 67#include <linux/tracehook.h>
08e552c6 68#include "internal.h"
d1a4c0b3 69#include <net/sock.h>
4bd2c1ee 70#include <net/ip.h>
f35c3a8e 71#include "slab.h"
8cdea7c0 72
7c0f6ba6 73#include <linux/uaccess.h>
8697d331 74
cc8e970c
KM
75#include <trace/events/vmscan.h>
76
073219e9
TH
77struct cgroup_subsys memory_cgrp_subsys __read_mostly;
78EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 79
7d828602
JW
80struct mem_cgroup *root_mem_cgroup __read_mostly;
81
a181b0e8 82#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 83
f7e1cb6e
JW
84/* Socket memory accounting disabled? */
85static bool cgroup_memory_nosocket;
86
04823c83
VD
87/* Kernel memory accounting disabled? */
88static bool cgroup_memory_nokmem;
89
21afa38e 90/* Whether the swap controller is active */
c255a458 91#ifdef CONFIG_MEMCG_SWAP
c077719b 92int do_swap_account __read_mostly;
c077719b 93#else
a0db00fc 94#define do_swap_account 0
c077719b
KH
95#endif
96
7941d214
JW
97/* Whether legacy memory+swap accounting is active */
98static bool do_memsw_account(void)
99{
100 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
101}
102
71cd3113 103static const char *const mem_cgroup_lru_names[] = {
58cf188e
SZ
104 "inactive_anon",
105 "active_anon",
106 "inactive_file",
107 "active_file",
108 "unevictable",
109};
110
a0db00fc
KS
111#define THRESHOLDS_EVENTS_TARGET 128
112#define SOFTLIMIT_EVENTS_TARGET 1024
113#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 114
bb4cc1a8
AM
115/*
116 * Cgroups above their limits are maintained in a RB-Tree, independent of
117 * their hierarchy representation
118 */
119
ef8f2327 120struct mem_cgroup_tree_per_node {
bb4cc1a8 121 struct rb_root rb_root;
fa90b2fd 122 struct rb_node *rb_rightmost;
bb4cc1a8
AM
123 spinlock_t lock;
124};
125
bb4cc1a8
AM
126struct mem_cgroup_tree {
127 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
128};
129
130static struct mem_cgroup_tree soft_limit_tree __read_mostly;
131
9490ff27
KH
132/* for OOM */
133struct mem_cgroup_eventfd_list {
134 struct list_head list;
135 struct eventfd_ctx *eventfd;
136};
2e72b634 137
79bd9814
TH
138/*
139 * cgroup_event represents events which userspace want to receive.
140 */
3bc942f3 141struct mem_cgroup_event {
79bd9814 142 /*
59b6f873 143 * memcg which the event belongs to.
79bd9814 144 */
59b6f873 145 struct mem_cgroup *memcg;
79bd9814
TH
146 /*
147 * eventfd to signal userspace about the event.
148 */
149 struct eventfd_ctx *eventfd;
150 /*
151 * Each of these stored in a list by the cgroup.
152 */
153 struct list_head list;
fba94807
TH
154 /*
155 * register_event() callback will be used to add new userspace
156 * waiter for changes related to this event. Use eventfd_signal()
157 * on eventfd to send notification to userspace.
158 */
59b6f873 159 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 160 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
161 /*
162 * unregister_event() callback will be called when userspace closes
163 * the eventfd or on cgroup removing. This callback must be set,
164 * if you want provide notification functionality.
165 */
59b6f873 166 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 167 struct eventfd_ctx *eventfd);
79bd9814
TH
168 /*
169 * All fields below needed to unregister event when
170 * userspace closes eventfd.
171 */
172 poll_table pt;
173 wait_queue_head_t *wqh;
ac6424b9 174 wait_queue_entry_t wait;
79bd9814
TH
175 struct work_struct remove;
176};
177
c0ff4b85
R
178static void mem_cgroup_threshold(struct mem_cgroup *memcg);
179static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 180
7dc74be0
DN
181/* Stuffs for move charges at task migration. */
182/*
1dfab5ab 183 * Types of charges to be moved.
7dc74be0 184 */
1dfab5ab
JW
185#define MOVE_ANON 0x1U
186#define MOVE_FILE 0x2U
187#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 188
4ffef5fe
DN
189/* "mc" and its members are protected by cgroup_mutex */
190static struct move_charge_struct {
b1dd693e 191 spinlock_t lock; /* for from, to */
264a0ae1 192 struct mm_struct *mm;
4ffef5fe
DN
193 struct mem_cgroup *from;
194 struct mem_cgroup *to;
1dfab5ab 195 unsigned long flags;
4ffef5fe 196 unsigned long precharge;
854ffa8d 197 unsigned long moved_charge;
483c30b5 198 unsigned long moved_swap;
8033b97c
DN
199 struct task_struct *moving_task; /* a task moving charges */
200 wait_queue_head_t waitq; /* a waitq for other context */
201} mc = {
2bd9bb20 202 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
203 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
204};
4ffef5fe 205
4e416953
BS
206/*
207 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
208 * limit reclaim to prevent infinite loops, if they ever occur.
209 */
a0db00fc 210#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 211#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 212
217bc319
KH
213enum charge_type {
214 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 215 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 216 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 217 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
218 NR_CHARGE_TYPE,
219};
220
8c7c6e34 221/* for encoding cft->private value on file */
86ae53e1
GC
222enum res_type {
223 _MEM,
224 _MEMSWAP,
225 _OOM_TYPE,
510fc4e1 226 _KMEM,
d55f90bf 227 _TCP,
86ae53e1
GC
228};
229
a0db00fc
KS
230#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
231#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 232#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
233/* Used for OOM nofiier */
234#define OOM_CONTROL (0)
8c7c6e34 235
70ddf637
AV
236/* Some nice accessors for the vmpressure. */
237struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
238{
239 if (!memcg)
240 memcg = root_mem_cgroup;
241 return &memcg->vmpressure;
242}
243
244struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
245{
246 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
247}
248
7ffc0edc
MH
249static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
250{
251 return (memcg == root_mem_cgroup);
252}
253
127424c8 254#ifndef CONFIG_SLOB
55007d84 255/*
f7ce3190 256 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
257 * The main reason for not using cgroup id for this:
258 * this works better in sparse environments, where we have a lot of memcgs,
259 * but only a few kmem-limited. Or also, if we have, for instance, 200
260 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
261 * 200 entry array for that.
55007d84 262 *
dbcf73e2
VD
263 * The current size of the caches array is stored in memcg_nr_cache_ids. It
264 * will double each time we have to increase it.
55007d84 265 */
dbcf73e2
VD
266static DEFINE_IDA(memcg_cache_ida);
267int memcg_nr_cache_ids;
749c5415 268
05257a1a
VD
269/* Protects memcg_nr_cache_ids */
270static DECLARE_RWSEM(memcg_cache_ids_sem);
271
272void memcg_get_cache_ids(void)
273{
274 down_read(&memcg_cache_ids_sem);
275}
276
277void memcg_put_cache_ids(void)
278{
279 up_read(&memcg_cache_ids_sem);
280}
281
55007d84
GC
282/*
283 * MIN_SIZE is different than 1, because we would like to avoid going through
284 * the alloc/free process all the time. In a small machine, 4 kmem-limited
285 * cgroups is a reasonable guess. In the future, it could be a parameter or
286 * tunable, but that is strictly not necessary.
287 *
b8627835 288 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
289 * this constant directly from cgroup, but it is understandable that this is
290 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 291 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
292 * increase ours as well if it increases.
293 */
294#define MEMCG_CACHES_MIN_SIZE 4
b8627835 295#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 296
d7f25f8a
GC
297/*
298 * A lot of the calls to the cache allocation functions are expected to be
299 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
300 * conditional to this static branch, we'll have to allow modules that does
301 * kmem_cache_alloc and the such to see this symbol as well
302 */
ef12947c 303DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 304EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 305
17cc4dfe
TH
306struct workqueue_struct *memcg_kmem_cache_wq;
307
127424c8 308#endif /* !CONFIG_SLOB */
a8964b9b 309
ad7fa852
TH
310/**
311 * mem_cgroup_css_from_page - css of the memcg associated with a page
312 * @page: page of interest
313 *
314 * If memcg is bound to the default hierarchy, css of the memcg associated
315 * with @page is returned. The returned css remains associated with @page
316 * until it is released.
317 *
318 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
319 * is returned.
ad7fa852
TH
320 */
321struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
322{
323 struct mem_cgroup *memcg;
324
ad7fa852
TH
325 memcg = page->mem_cgroup;
326
9e10a130 327 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
328 memcg = root_mem_cgroup;
329
ad7fa852
TH
330 return &memcg->css;
331}
332
2fc04524
VD
333/**
334 * page_cgroup_ino - return inode number of the memcg a page is charged to
335 * @page: the page
336 *
337 * Look up the closest online ancestor of the memory cgroup @page is charged to
338 * and return its inode number or 0 if @page is not charged to any cgroup. It
339 * is safe to call this function without holding a reference to @page.
340 *
341 * Note, this function is inherently racy, because there is nothing to prevent
342 * the cgroup inode from getting torn down and potentially reallocated a moment
343 * after page_cgroup_ino() returns, so it only should be used by callers that
344 * do not care (such as procfs interfaces).
345 */
346ino_t page_cgroup_ino(struct page *page)
347{
348 struct mem_cgroup *memcg;
349 unsigned long ino = 0;
350
351 rcu_read_lock();
352 memcg = READ_ONCE(page->mem_cgroup);
353 while (memcg && !(memcg->css.flags & CSS_ONLINE))
354 memcg = parent_mem_cgroup(memcg);
355 if (memcg)
356 ino = cgroup_ino(memcg->css.cgroup);
357 rcu_read_unlock();
358 return ino;
359}
360
ef8f2327
MG
361static struct mem_cgroup_per_node *
362mem_cgroup_page_nodeinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 363{
97a6c37b 364 int nid = page_to_nid(page);
f64c3f54 365
ef8f2327 366 return memcg->nodeinfo[nid];
f64c3f54
BS
367}
368
ef8f2327
MG
369static struct mem_cgroup_tree_per_node *
370soft_limit_tree_node(int nid)
bb4cc1a8 371{
ef8f2327 372 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
373}
374
ef8f2327 375static struct mem_cgroup_tree_per_node *
bb4cc1a8
AM
376soft_limit_tree_from_page(struct page *page)
377{
378 int nid = page_to_nid(page);
bb4cc1a8 379
ef8f2327 380 return soft_limit_tree.rb_tree_per_node[nid];
bb4cc1a8
AM
381}
382
ef8f2327
MG
383static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_node *mz,
384 struct mem_cgroup_tree_per_node *mctz,
3e32cb2e 385 unsigned long new_usage_in_excess)
bb4cc1a8
AM
386{
387 struct rb_node **p = &mctz->rb_root.rb_node;
388 struct rb_node *parent = NULL;
ef8f2327 389 struct mem_cgroup_per_node *mz_node;
fa90b2fd 390 bool rightmost = true;
bb4cc1a8
AM
391
392 if (mz->on_tree)
393 return;
394
395 mz->usage_in_excess = new_usage_in_excess;
396 if (!mz->usage_in_excess)
397 return;
398 while (*p) {
399 parent = *p;
ef8f2327 400 mz_node = rb_entry(parent, struct mem_cgroup_per_node,
bb4cc1a8 401 tree_node);
fa90b2fd 402 if (mz->usage_in_excess < mz_node->usage_in_excess) {
bb4cc1a8 403 p = &(*p)->rb_left;
fa90b2fd
DB
404 rightmost = false;
405 }
406
bb4cc1a8
AM
407 /*
408 * We can't avoid mem cgroups that are over their soft
409 * limit by the same amount
410 */
411 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
412 p = &(*p)->rb_right;
413 }
fa90b2fd
DB
414
415 if (rightmost)
416 mctz->rb_rightmost = &mz->tree_node;
417
bb4cc1a8
AM
418 rb_link_node(&mz->tree_node, parent, p);
419 rb_insert_color(&mz->tree_node, &mctz->rb_root);
420 mz->on_tree = true;
421}
422
ef8f2327
MG
423static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
424 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8
AM
425{
426 if (!mz->on_tree)
427 return;
fa90b2fd
DB
428
429 if (&mz->tree_node == mctz->rb_rightmost)
430 mctz->rb_rightmost = rb_prev(&mz->tree_node);
431
bb4cc1a8
AM
432 rb_erase(&mz->tree_node, &mctz->rb_root);
433 mz->on_tree = false;
434}
435
ef8f2327
MG
436static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_node *mz,
437 struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 438{
0a31bc97
JW
439 unsigned long flags;
440
441 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 442 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 443 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
444}
445
3e32cb2e
JW
446static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
447{
448 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 449 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
450 unsigned long excess = 0;
451
452 if (nr_pages > soft_limit)
453 excess = nr_pages - soft_limit;
454
455 return excess;
456}
bb4cc1a8
AM
457
458static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
459{
3e32cb2e 460 unsigned long excess;
ef8f2327
MG
461 struct mem_cgroup_per_node *mz;
462 struct mem_cgroup_tree_per_node *mctz;
bb4cc1a8 463
e231875b 464 mctz = soft_limit_tree_from_page(page);
bfc7228b
LD
465 if (!mctz)
466 return;
bb4cc1a8
AM
467 /*
468 * Necessary to update all ancestors when hierarchy is used.
469 * because their event counter is not touched.
470 */
471 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
ef8f2327 472 mz = mem_cgroup_page_nodeinfo(memcg, page);
3e32cb2e 473 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
474 /*
475 * We have to update the tree if mz is on RB-tree or
476 * mem is over its softlimit.
477 */
478 if (excess || mz->on_tree) {
0a31bc97
JW
479 unsigned long flags;
480
481 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
482 /* if on-tree, remove it */
483 if (mz->on_tree)
cf2c8127 484 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
485 /*
486 * Insert again. mz->usage_in_excess will be updated.
487 * If excess is 0, no tree ops.
488 */
cf2c8127 489 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 490 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
491 }
492 }
493}
494
495static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
496{
ef8f2327
MG
497 struct mem_cgroup_tree_per_node *mctz;
498 struct mem_cgroup_per_node *mz;
499 int nid;
bb4cc1a8 500
e231875b 501 for_each_node(nid) {
ef8f2327
MG
502 mz = mem_cgroup_nodeinfo(memcg, nid);
503 mctz = soft_limit_tree_node(nid);
bfc7228b
LD
504 if (mctz)
505 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
506 }
507}
508
ef8f2327
MG
509static struct mem_cgroup_per_node *
510__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 511{
ef8f2327 512 struct mem_cgroup_per_node *mz;
bb4cc1a8
AM
513
514retry:
515 mz = NULL;
fa90b2fd 516 if (!mctz->rb_rightmost)
bb4cc1a8
AM
517 goto done; /* Nothing to reclaim from */
518
fa90b2fd
DB
519 mz = rb_entry(mctz->rb_rightmost,
520 struct mem_cgroup_per_node, tree_node);
bb4cc1a8
AM
521 /*
522 * Remove the node now but someone else can add it back,
523 * we will to add it back at the end of reclaim to its correct
524 * position in the tree.
525 */
cf2c8127 526 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 527 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 528 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
529 goto retry;
530done:
531 return mz;
532}
533
ef8f2327
MG
534static struct mem_cgroup_per_node *
535mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_node *mctz)
bb4cc1a8 536{
ef8f2327 537 struct mem_cgroup_per_node *mz;
bb4cc1a8 538
0a31bc97 539 spin_lock_irq(&mctz->lock);
bb4cc1a8 540 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 541 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
542 return mz;
543}
544
711d3d2c 545/*
484ebb3b
GT
546 * Return page count for single (non recursive) @memcg.
547 *
711d3d2c
KH
548 * Implementation Note: reading percpu statistics for memcg.
549 *
550 * Both of vmstat[] and percpu_counter has threshold and do periodic
551 * synchronization to implement "quick" read. There are trade-off between
552 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 553 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
554 *
555 * But this _read() function is used for user interface now. The user accounts
556 * memory usage by memory cgroup and he _always_ requires exact value because
557 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
558 * have to visit all online cpus and make sum. So, for now, unnecessary
559 * synchronization is not implemented. (just implemented for cpu hotplug)
560 *
561 * If there are kernel internal actions which can make use of some not-exact
562 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 563 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c 564 * implemented.
04fecbf5
MK
565 *
566 * The parameter idx can be of type enum memcg_event_item or vm_event_item.
711d3d2c 567 */
c62b1a3b 568
ccda7f43 569static unsigned long memcg_sum_events(struct mem_cgroup *memcg,
04fecbf5 570 int event)
e9f8974f
JW
571{
572 unsigned long val = 0;
573 int cpu;
574
733a572e 575 for_each_possible_cpu(cpu)
df0e53d0 576 val += per_cpu(memcg->stat->events[event], cpu);
e9f8974f
JW
577 return val;
578}
579
c0ff4b85 580static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 581 struct page *page,
f627c2f5 582 bool compound, int nr_pages)
d52aa412 583{
b2402857
KH
584 /*
585 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
586 * counted as CACHE even if it's on ANON LRU.
587 */
0a31bc97 588 if (PageAnon(page))
71cd3113 589 __this_cpu_add(memcg->stat->count[MEMCG_RSS], nr_pages);
9a4caf1e 590 else {
71cd3113 591 __this_cpu_add(memcg->stat->count[MEMCG_CACHE], nr_pages);
9a4caf1e 592 if (PageSwapBacked(page))
71cd3113 593 __this_cpu_add(memcg->stat->count[NR_SHMEM], nr_pages);
9a4caf1e 594 }
55e462b0 595
f627c2f5
KS
596 if (compound) {
597 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
71cd3113 598 __this_cpu_add(memcg->stat->count[MEMCG_RSS_HUGE], nr_pages);
f627c2f5 599 }
b070e65c 600
e401f176
KH
601 /* pagein of a big page is an event. So, ignore page size */
602 if (nr_pages > 0)
df0e53d0 603 __this_cpu_inc(memcg->stat->events[PGPGIN]);
3751d604 604 else {
df0e53d0 605 __this_cpu_inc(memcg->stat->events[PGPGOUT]);
3751d604
KH
606 nr_pages = -nr_pages; /* for event */
607 }
e401f176 608
13114716 609 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
610}
611
0a6b76dd
VD
612unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
613 int nid, unsigned int lru_mask)
bb2a0de9 614{
b4536f0c 615 struct lruvec *lruvec = mem_cgroup_lruvec(NODE_DATA(nid), memcg);
e231875b 616 unsigned long nr = 0;
ef8f2327 617 enum lru_list lru;
889976db 618
e231875b 619 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 620
ef8f2327
MG
621 for_each_lru(lru) {
622 if (!(BIT(lru) & lru_mask))
623 continue;
b4536f0c 624 nr += mem_cgroup_get_lru_size(lruvec, lru);
e231875b
JZ
625 }
626 return nr;
889976db 627}
bb2a0de9 628
c0ff4b85 629static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 630 unsigned int lru_mask)
6d12e2d8 631{
e231875b 632 unsigned long nr = 0;
889976db 633 int nid;
6d12e2d8 634
31aaea4a 635 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
636 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
637 return nr;
d52aa412
KH
638}
639
f53d7ce3
JW
640static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
641 enum mem_cgroup_events_target target)
7a159cc9
JW
642{
643 unsigned long val, next;
644
13114716 645 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 646 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 647 /* from time_after() in jiffies.h */
6a1a8b80 648 if ((long)(next - val) < 0) {
f53d7ce3
JW
649 switch (target) {
650 case MEM_CGROUP_TARGET_THRESH:
651 next = val + THRESHOLDS_EVENTS_TARGET;
652 break;
bb4cc1a8
AM
653 case MEM_CGROUP_TARGET_SOFTLIMIT:
654 next = val + SOFTLIMIT_EVENTS_TARGET;
655 break;
f53d7ce3
JW
656 case MEM_CGROUP_TARGET_NUMAINFO:
657 next = val + NUMAINFO_EVENTS_TARGET;
658 break;
659 default:
660 break;
661 }
662 __this_cpu_write(memcg->stat->targets[target], next);
663 return true;
7a159cc9 664 }
f53d7ce3 665 return false;
d2265e6f
KH
666}
667
668/*
669 * Check events in order.
670 *
671 */
c0ff4b85 672static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
673{
674 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
675 if (unlikely(mem_cgroup_event_ratelimit(memcg,
676 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 677 bool do_softlimit;
82b3f2a7 678 bool do_numainfo __maybe_unused;
f53d7ce3 679
bb4cc1a8
AM
680 do_softlimit = mem_cgroup_event_ratelimit(memcg,
681 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
682#if MAX_NUMNODES > 1
683 do_numainfo = mem_cgroup_event_ratelimit(memcg,
684 MEM_CGROUP_TARGET_NUMAINFO);
685#endif
c0ff4b85 686 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
687 if (unlikely(do_softlimit))
688 mem_cgroup_update_tree(memcg, page);
453a9bf3 689#if MAX_NUMNODES > 1
f53d7ce3 690 if (unlikely(do_numainfo))
c0ff4b85 691 atomic_inc(&memcg->numainfo_events);
453a9bf3 692#endif
0a31bc97 693 }
d2265e6f
KH
694}
695
cf475ad2 696struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 697{
31a78f23
BS
698 /*
699 * mm_update_next_owner() may clear mm->owner to NULL
700 * if it races with swapoff, page migration, etc.
701 * So this can be called with p == NULL.
702 */
703 if (unlikely(!p))
704 return NULL;
705
073219e9 706 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 707}
33398cf2 708EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 709
df381975 710static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 711{
c0ff4b85 712 struct mem_cgroup *memcg = NULL;
0b7f569e 713
54595fe2
KH
714 rcu_read_lock();
715 do {
6f6acb00
MH
716 /*
717 * Page cache insertions can happen withou an
718 * actual mm context, e.g. during disk probing
719 * on boot, loopback IO, acct() writes etc.
720 */
721 if (unlikely(!mm))
df381975 722 memcg = root_mem_cgroup;
6f6acb00
MH
723 else {
724 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
725 if (unlikely(!memcg))
726 memcg = root_mem_cgroup;
727 }
ec903c0c 728 } while (!css_tryget_online(&memcg->css));
54595fe2 729 rcu_read_unlock();
c0ff4b85 730 return memcg;
54595fe2
KH
731}
732
5660048c
JW
733/**
734 * mem_cgroup_iter - iterate over memory cgroup hierarchy
735 * @root: hierarchy root
736 * @prev: previously returned memcg, NULL on first invocation
737 * @reclaim: cookie for shared reclaim walks, NULL for full walks
738 *
739 * Returns references to children of the hierarchy below @root, or
740 * @root itself, or %NULL after a full round-trip.
741 *
742 * Caller must pass the return value in @prev on subsequent
743 * invocations for reference counting, or use mem_cgroup_iter_break()
744 * to cancel a hierarchy walk before the round-trip is complete.
745 *
746 * Reclaimers can specify a zone and a priority level in @reclaim to
747 * divide up the memcgs in the hierarchy among all concurrent
748 * reclaimers operating on the same zone and priority.
749 */
694fbc0f 750struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 751 struct mem_cgroup *prev,
694fbc0f 752 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 753{
33398cf2 754 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 755 struct cgroup_subsys_state *css = NULL;
9f3a0d09 756 struct mem_cgroup *memcg = NULL;
5ac8fb31 757 struct mem_cgroup *pos = NULL;
711d3d2c 758
694fbc0f
AM
759 if (mem_cgroup_disabled())
760 return NULL;
5660048c 761
9f3a0d09
JW
762 if (!root)
763 root = root_mem_cgroup;
7d74b06f 764
9f3a0d09 765 if (prev && !reclaim)
5ac8fb31 766 pos = prev;
14067bb3 767
9f3a0d09
JW
768 if (!root->use_hierarchy && root != root_mem_cgroup) {
769 if (prev)
5ac8fb31 770 goto out;
694fbc0f 771 return root;
9f3a0d09 772 }
14067bb3 773
542f85f9 774 rcu_read_lock();
5f578161 775
5ac8fb31 776 if (reclaim) {
ef8f2327 777 struct mem_cgroup_per_node *mz;
5ac8fb31 778
ef8f2327 779 mz = mem_cgroup_nodeinfo(root, reclaim->pgdat->node_id);
5ac8fb31
JW
780 iter = &mz->iter[reclaim->priority];
781
782 if (prev && reclaim->generation != iter->generation)
783 goto out_unlock;
784
6df38689 785 while (1) {
4db0c3c2 786 pos = READ_ONCE(iter->position);
6df38689
VD
787 if (!pos || css_tryget(&pos->css))
788 break;
5ac8fb31 789 /*
6df38689
VD
790 * css reference reached zero, so iter->position will
791 * be cleared by ->css_released. However, we should not
792 * rely on this happening soon, because ->css_released
793 * is called from a work queue, and by busy-waiting we
794 * might block it. So we clear iter->position right
795 * away.
5ac8fb31 796 */
6df38689
VD
797 (void)cmpxchg(&iter->position, pos, NULL);
798 }
5ac8fb31
JW
799 }
800
801 if (pos)
802 css = &pos->css;
803
804 for (;;) {
805 css = css_next_descendant_pre(css, &root->css);
806 if (!css) {
807 /*
808 * Reclaimers share the hierarchy walk, and a
809 * new one might jump in right at the end of
810 * the hierarchy - make sure they see at least
811 * one group and restart from the beginning.
812 */
813 if (!prev)
814 continue;
815 break;
527a5ec9 816 }
7d74b06f 817
5ac8fb31
JW
818 /*
819 * Verify the css and acquire a reference. The root
820 * is provided by the caller, so we know it's alive
821 * and kicking, and don't take an extra reference.
822 */
823 memcg = mem_cgroup_from_css(css);
14067bb3 824
5ac8fb31
JW
825 if (css == &root->css)
826 break;
14067bb3 827
0b8f73e1
JW
828 if (css_tryget(css))
829 break;
9f3a0d09 830
5ac8fb31 831 memcg = NULL;
9f3a0d09 832 }
5ac8fb31
JW
833
834 if (reclaim) {
5ac8fb31 835 /*
6df38689
VD
836 * The position could have already been updated by a competing
837 * thread, so check that the value hasn't changed since we read
838 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 839 */
6df38689
VD
840 (void)cmpxchg(&iter->position, pos, memcg);
841
5ac8fb31
JW
842 if (pos)
843 css_put(&pos->css);
844
845 if (!memcg)
846 iter->generation++;
847 else if (!prev)
848 reclaim->generation = iter->generation;
9f3a0d09 849 }
5ac8fb31 850
542f85f9
MH
851out_unlock:
852 rcu_read_unlock();
5ac8fb31 853out:
c40046f3
MH
854 if (prev && prev != root)
855 css_put(&prev->css);
856
9f3a0d09 857 return memcg;
14067bb3 858}
7d74b06f 859
5660048c
JW
860/**
861 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
862 * @root: hierarchy root
863 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
864 */
865void mem_cgroup_iter_break(struct mem_cgroup *root,
866 struct mem_cgroup *prev)
9f3a0d09
JW
867{
868 if (!root)
869 root = root_mem_cgroup;
870 if (prev && prev != root)
871 css_put(&prev->css);
872}
7d74b06f 873
6df38689
VD
874static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
875{
876 struct mem_cgroup *memcg = dead_memcg;
877 struct mem_cgroup_reclaim_iter *iter;
ef8f2327
MG
878 struct mem_cgroup_per_node *mz;
879 int nid;
6df38689
VD
880 int i;
881
62ec8032 882 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
6df38689 883 for_each_node(nid) {
ef8f2327
MG
884 mz = mem_cgroup_nodeinfo(memcg, nid);
885 for (i = 0; i <= DEF_PRIORITY; i++) {
886 iter = &mz->iter[i];
887 cmpxchg(&iter->position,
888 dead_memcg, NULL);
6df38689
VD
889 }
890 }
891 }
892}
893
9f3a0d09
JW
894/*
895 * Iteration constructs for visiting all cgroups (under a tree). If
896 * loops are exited prematurely (break), mem_cgroup_iter_break() must
897 * be used for reference counting.
898 */
899#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 900 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 901 iter != NULL; \
527a5ec9 902 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 903
9f3a0d09 904#define for_each_mem_cgroup(iter) \
527a5ec9 905 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 906 iter != NULL; \
527a5ec9 907 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 908
7c5f64f8
VD
909/**
910 * mem_cgroup_scan_tasks - iterate over tasks of a memory cgroup hierarchy
911 * @memcg: hierarchy root
912 * @fn: function to call for each task
913 * @arg: argument passed to @fn
914 *
915 * This function iterates over tasks attached to @memcg or to any of its
916 * descendants and calls @fn for each task. If @fn returns a non-zero
917 * value, the function breaks the iteration loop and returns the value.
918 * Otherwise, it will iterate over all tasks and return 0.
919 *
920 * This function must not be called for the root memory cgroup.
921 */
922int mem_cgroup_scan_tasks(struct mem_cgroup *memcg,
923 int (*fn)(struct task_struct *, void *), void *arg)
924{
925 struct mem_cgroup *iter;
926 int ret = 0;
927
928 BUG_ON(memcg == root_mem_cgroup);
929
930 for_each_mem_cgroup_tree(iter, memcg) {
931 struct css_task_iter it;
932 struct task_struct *task;
933
bc2fb7ed 934 css_task_iter_start(&iter->css, 0, &it);
7c5f64f8
VD
935 while (!ret && (task = css_task_iter_next(&it)))
936 ret = fn(task, arg);
937 css_task_iter_end(&it);
938 if (ret) {
939 mem_cgroup_iter_break(memcg, iter);
940 break;
941 }
942 }
943 return ret;
944}
945
925b7673 946/**
dfe0e773 947 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 948 * @page: the page
fa9add64 949 * @zone: zone of the page
dfe0e773
JW
950 *
951 * This function is only safe when following the LRU page isolation
952 * and putback protocol: the LRU lock must be held, and the page must
953 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 954 */
599d0c95 955struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct pglist_data *pgdat)
08e552c6 956{
ef8f2327 957 struct mem_cgroup_per_node *mz;
925b7673 958 struct mem_cgroup *memcg;
bea8c150 959 struct lruvec *lruvec;
6d12e2d8 960
bea8c150 961 if (mem_cgroup_disabled()) {
599d0c95 962 lruvec = &pgdat->lruvec;
bea8c150
HD
963 goto out;
964 }
925b7673 965
1306a85a 966 memcg = page->mem_cgroup;
7512102c 967 /*
dfe0e773 968 * Swapcache readahead pages are added to the LRU - and
29833315 969 * possibly migrated - before they are charged.
7512102c 970 */
29833315
JW
971 if (!memcg)
972 memcg = root_mem_cgroup;
7512102c 973
ef8f2327 974 mz = mem_cgroup_page_nodeinfo(memcg, page);
bea8c150
HD
975 lruvec = &mz->lruvec;
976out:
977 /*
978 * Since a node can be onlined after the mem_cgroup was created,
979 * we have to be prepared to initialize lruvec->zone here;
980 * and if offlined then reonlined, we need to reinitialize it.
981 */
599d0c95
MG
982 if (unlikely(lruvec->pgdat != pgdat))
983 lruvec->pgdat = pgdat;
bea8c150 984 return lruvec;
08e552c6 985}
b69408e8 986
925b7673 987/**
fa9add64
HD
988 * mem_cgroup_update_lru_size - account for adding or removing an lru page
989 * @lruvec: mem_cgroup per zone lru vector
990 * @lru: index of lru list the page is sitting on
b4536f0c 991 * @zid: zone id of the accounted pages
fa9add64 992 * @nr_pages: positive when adding or negative when removing
925b7673 993 *
ca707239
HD
994 * This function must be called under lru_lock, just before a page is added
995 * to or just after a page is removed from an lru list (that ordering being
996 * so as to allow it to check that lru_size 0 is consistent with list_empty).
3f58a829 997 */
fa9add64 998void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
b4536f0c 999 int zid, int nr_pages)
3f58a829 1000{
ef8f2327 1001 struct mem_cgroup_per_node *mz;
fa9add64 1002 unsigned long *lru_size;
ca707239 1003 long size;
3f58a829
MK
1004
1005 if (mem_cgroup_disabled())
1006 return;
1007
ef8f2327 1008 mz = container_of(lruvec, struct mem_cgroup_per_node, lruvec);
b4536f0c 1009 lru_size = &mz->lru_zone_size[zid][lru];
ca707239
HD
1010
1011 if (nr_pages < 0)
1012 *lru_size += nr_pages;
1013
1014 size = *lru_size;
b4536f0c
MH
1015 if (WARN_ONCE(size < 0,
1016 "%s(%p, %d, %d): lru_size %ld\n",
1017 __func__, lruvec, lru, nr_pages, size)) {
ca707239
HD
1018 VM_BUG_ON(1);
1019 *lru_size = 0;
1020 }
1021
1022 if (nr_pages > 0)
1023 *lru_size += nr_pages;
08e552c6 1024}
544122e5 1025
2314b42d 1026bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1027{
2314b42d 1028 struct mem_cgroup *task_memcg;
158e0a2d 1029 struct task_struct *p;
ffbdccf5 1030 bool ret;
4c4a2214 1031
158e0a2d 1032 p = find_lock_task_mm(task);
de077d22 1033 if (p) {
2314b42d 1034 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1035 task_unlock(p);
1036 } else {
1037 /*
1038 * All threads may have already detached their mm's, but the oom
1039 * killer still needs to detect if they have already been oom
1040 * killed to prevent needlessly killing additional tasks.
1041 */
ffbdccf5 1042 rcu_read_lock();
2314b42d
JW
1043 task_memcg = mem_cgroup_from_task(task);
1044 css_get(&task_memcg->css);
ffbdccf5 1045 rcu_read_unlock();
de077d22 1046 }
2314b42d
JW
1047 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1048 css_put(&task_memcg->css);
4c4a2214
DR
1049 return ret;
1050}
1051
19942822 1052/**
9d11ea9f 1053 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1054 * @memcg: the memory cgroup
19942822 1055 *
9d11ea9f 1056 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1057 * pages.
19942822 1058 */
c0ff4b85 1059static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1060{
3e32cb2e
JW
1061 unsigned long margin = 0;
1062 unsigned long count;
1063 unsigned long limit;
9d11ea9f 1064
3e32cb2e 1065 count = page_counter_read(&memcg->memory);
4db0c3c2 1066 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1067 if (count < limit)
1068 margin = limit - count;
1069
7941d214 1070 if (do_memsw_account()) {
3e32cb2e 1071 count = page_counter_read(&memcg->memsw);
4db0c3c2 1072 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1073 if (count <= limit)
1074 margin = min(margin, limit - count);
cbedbac3
LR
1075 else
1076 margin = 0;
3e32cb2e
JW
1077 }
1078
1079 return margin;
19942822
JW
1080}
1081
32047e2a 1082/*
bdcbb659 1083 * A routine for checking "mem" is under move_account() or not.
32047e2a 1084 *
bdcbb659
QH
1085 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1086 * moving cgroups. This is for waiting at high-memory pressure
1087 * caused by "move".
32047e2a 1088 */
c0ff4b85 1089static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1090{
2bd9bb20
KH
1091 struct mem_cgroup *from;
1092 struct mem_cgroup *to;
4b534334 1093 bool ret = false;
2bd9bb20
KH
1094 /*
1095 * Unlike task_move routines, we access mc.to, mc.from not under
1096 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1097 */
1098 spin_lock(&mc.lock);
1099 from = mc.from;
1100 to = mc.to;
1101 if (!from)
1102 goto unlock;
3e92041d 1103
2314b42d
JW
1104 ret = mem_cgroup_is_descendant(from, memcg) ||
1105 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1106unlock:
1107 spin_unlock(&mc.lock);
4b534334
KH
1108 return ret;
1109}
1110
c0ff4b85 1111static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1112{
1113 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1114 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1115 DEFINE_WAIT(wait);
1116 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1117 /* moving charge context might have finished. */
1118 if (mc.moving_task)
1119 schedule();
1120 finish_wait(&mc.waitq, &wait);
1121 return true;
1122 }
1123 }
1124 return false;
1125}
1126
71cd3113
JW
1127unsigned int memcg1_stats[] = {
1128 MEMCG_CACHE,
1129 MEMCG_RSS,
1130 MEMCG_RSS_HUGE,
1131 NR_SHMEM,
1132 NR_FILE_MAPPED,
1133 NR_FILE_DIRTY,
1134 NR_WRITEBACK,
1135 MEMCG_SWAP,
1136};
1137
1138static const char *const memcg1_stat_names[] = {
1139 "cache",
1140 "rss",
1141 "rss_huge",
1142 "shmem",
1143 "mapped_file",
1144 "dirty",
1145 "writeback",
1146 "swap",
1147};
1148
58cf188e 1149#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1150/**
58cf188e 1151 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1152 * @memcg: The memory cgroup that went over limit
1153 * @p: Task that is going to be killed
1154 *
1155 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1156 * enabled
1157 */
1158void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1159{
58cf188e
SZ
1160 struct mem_cgroup *iter;
1161 unsigned int i;
e222432b 1162
e222432b
BS
1163 rcu_read_lock();
1164
2415b9f5
BV
1165 if (p) {
1166 pr_info("Task in ");
1167 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1168 pr_cont(" killed as a result of limit of ");
1169 } else {
1170 pr_info("Memory limit reached of cgroup ");
1171 }
1172
e61734c5 1173 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1174 pr_cont("\n");
e222432b 1175
e222432b
BS
1176 rcu_read_unlock();
1177
3e32cb2e
JW
1178 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1179 K((u64)page_counter_read(&memcg->memory)),
1180 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1181 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1182 K((u64)page_counter_read(&memcg->memsw)),
1183 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1184 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1185 K((u64)page_counter_read(&memcg->kmem)),
1186 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1187
1188 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1189 pr_info("Memory cgroup stats for ");
1190 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1191 pr_cont(":");
1192
71cd3113
JW
1193 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
1194 if (memcg1_stats[i] == MEMCG_SWAP && !do_swap_account)
58cf188e 1195 continue;
71cd3113 1196 pr_cont(" %s:%luKB", memcg1_stat_names[i],
ccda7f43 1197 K(memcg_page_state(iter, memcg1_stats[i])));
58cf188e
SZ
1198 }
1199
1200 for (i = 0; i < NR_LRU_LISTS; i++)
1201 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1202 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1203
1204 pr_cont("\n");
1205 }
e222432b
BS
1206}
1207
81d39c20
KH
1208/*
1209 * This function returns the number of memcg under hierarchy tree. Returns
1210 * 1(self count) if no children.
1211 */
c0ff4b85 1212static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1213{
1214 int num = 0;
7d74b06f
KH
1215 struct mem_cgroup *iter;
1216
c0ff4b85 1217 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1218 num++;
81d39c20
KH
1219 return num;
1220}
1221
a63d83f4
DR
1222/*
1223 * Return the memory (and swap, if configured) limit for a memcg.
1224 */
7c5f64f8 1225unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1226{
3e32cb2e 1227 unsigned long limit;
f3e8eb70 1228
3e32cb2e 1229 limit = memcg->memory.limit;
9a5a8f19 1230 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1231 unsigned long memsw_limit;
37e84351 1232 unsigned long swap_limit;
9a5a8f19 1233
3e32cb2e 1234 memsw_limit = memcg->memsw.limit;
37e84351
VD
1235 swap_limit = memcg->swap.limit;
1236 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1237 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1238 }
9a5a8f19 1239 return limit;
a63d83f4
DR
1240}
1241
b6e6edcf 1242static bool mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
19965460 1243 int order)
9cbb78bb 1244{
6e0fc46d
DR
1245 struct oom_control oc = {
1246 .zonelist = NULL,
1247 .nodemask = NULL,
2a966b77 1248 .memcg = memcg,
6e0fc46d
DR
1249 .gfp_mask = gfp_mask,
1250 .order = order,
6e0fc46d 1251 };
7c5f64f8 1252 bool ret;
9cbb78bb 1253
dc56401f 1254 mutex_lock(&oom_lock);
7c5f64f8 1255 ret = out_of_memory(&oc);
dc56401f 1256 mutex_unlock(&oom_lock);
7c5f64f8 1257 return ret;
9cbb78bb
DR
1258}
1259
ae6e71d3
MC
1260#if MAX_NUMNODES > 1
1261
4d0c066d
KH
1262/**
1263 * test_mem_cgroup_node_reclaimable
dad7557e 1264 * @memcg: the target memcg
4d0c066d
KH
1265 * @nid: the node ID to be checked.
1266 * @noswap : specify true here if the user wants flle only information.
1267 *
1268 * This function returns whether the specified memcg contains any
1269 * reclaimable pages on a node. Returns true if there are any reclaimable
1270 * pages in the node.
1271 */
c0ff4b85 1272static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1273 int nid, bool noswap)
1274{
c0ff4b85 1275 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1276 return true;
1277 if (noswap || !total_swap_pages)
1278 return false;
c0ff4b85 1279 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1280 return true;
1281 return false;
1282
1283}
889976db
YH
1284
1285/*
1286 * Always updating the nodemask is not very good - even if we have an empty
1287 * list or the wrong list here, we can start from some node and traverse all
1288 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1289 *
1290 */
c0ff4b85 1291static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1292{
1293 int nid;
453a9bf3
KH
1294 /*
1295 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1296 * pagein/pageout changes since the last update.
1297 */
c0ff4b85 1298 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1299 return;
c0ff4b85 1300 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1301 return;
1302
889976db 1303 /* make a nodemask where this memcg uses memory from */
31aaea4a 1304 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1305
31aaea4a 1306 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1307
c0ff4b85
R
1308 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1309 node_clear(nid, memcg->scan_nodes);
889976db 1310 }
453a9bf3 1311
c0ff4b85
R
1312 atomic_set(&memcg->numainfo_events, 0);
1313 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1314}
1315
1316/*
1317 * Selecting a node where we start reclaim from. Because what we need is just
1318 * reducing usage counter, start from anywhere is O,K. Considering
1319 * memory reclaim from current node, there are pros. and cons.
1320 *
1321 * Freeing memory from current node means freeing memory from a node which
1322 * we'll use or we've used. So, it may make LRU bad. And if several threads
1323 * hit limits, it will see a contention on a node. But freeing from remote
1324 * node means more costs for memory reclaim because of memory latency.
1325 *
1326 * Now, we use round-robin. Better algorithm is welcomed.
1327 */
c0ff4b85 1328int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1329{
1330 int node;
1331
c0ff4b85
R
1332 mem_cgroup_may_update_nodemask(memcg);
1333 node = memcg->last_scanned_node;
889976db 1334
0edaf86c 1335 node = next_node_in(node, memcg->scan_nodes);
889976db 1336 /*
fda3d69b
MH
1337 * mem_cgroup_may_update_nodemask might have seen no reclaimmable pages
1338 * last time it really checked all the LRUs due to rate limiting.
1339 * Fallback to the current node in that case for simplicity.
889976db
YH
1340 */
1341 if (unlikely(node == MAX_NUMNODES))
1342 node = numa_node_id();
1343
c0ff4b85 1344 memcg->last_scanned_node = node;
889976db
YH
1345 return node;
1346}
889976db 1347#else
c0ff4b85 1348int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1349{
1350 return 0;
1351}
1352#endif
1353
0608f43d 1354static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
ef8f2327 1355 pg_data_t *pgdat,
0608f43d
AM
1356 gfp_t gfp_mask,
1357 unsigned long *total_scanned)
1358{
1359 struct mem_cgroup *victim = NULL;
1360 int total = 0;
1361 int loop = 0;
1362 unsigned long excess;
1363 unsigned long nr_scanned;
1364 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 1365 .pgdat = pgdat,
0608f43d
AM
1366 .priority = 0,
1367 };
1368
3e32cb2e 1369 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1370
1371 while (1) {
1372 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1373 if (!victim) {
1374 loop++;
1375 if (loop >= 2) {
1376 /*
1377 * If we have not been able to reclaim
1378 * anything, it might because there are
1379 * no reclaimable pages under this hierarchy
1380 */
1381 if (!total)
1382 break;
1383 /*
1384 * We want to do more targeted reclaim.
1385 * excess >> 2 is not to excessive so as to
1386 * reclaim too much, nor too less that we keep
1387 * coming back to reclaim from this cgroup
1388 */
1389 if (total >= (excess >> 2) ||
1390 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1391 break;
1392 }
1393 continue;
1394 }
a9dd0a83 1395 total += mem_cgroup_shrink_node(victim, gfp_mask, false,
ef8f2327 1396 pgdat, &nr_scanned);
0608f43d 1397 *total_scanned += nr_scanned;
3e32cb2e 1398 if (!soft_limit_excess(root_memcg))
0608f43d 1399 break;
6d61ef40 1400 }
0608f43d
AM
1401 mem_cgroup_iter_break(root_memcg, victim);
1402 return total;
6d61ef40
BS
1403}
1404
0056f4e6
JW
1405#ifdef CONFIG_LOCKDEP
1406static struct lockdep_map memcg_oom_lock_dep_map = {
1407 .name = "memcg_oom_lock",
1408};
1409#endif
1410
fb2a6fc5
JW
1411static DEFINE_SPINLOCK(memcg_oom_lock);
1412
867578cb
KH
1413/*
1414 * Check OOM-Killer is already running under our hierarchy.
1415 * If someone is running, return false.
1416 */
fb2a6fc5 1417static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1418{
79dfdacc 1419 struct mem_cgroup *iter, *failed = NULL;
a636b327 1420
fb2a6fc5
JW
1421 spin_lock(&memcg_oom_lock);
1422
9f3a0d09 1423 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1424 if (iter->oom_lock) {
79dfdacc
MH
1425 /*
1426 * this subtree of our hierarchy is already locked
1427 * so we cannot give a lock.
1428 */
79dfdacc 1429 failed = iter;
9f3a0d09
JW
1430 mem_cgroup_iter_break(memcg, iter);
1431 break;
23751be0
JW
1432 } else
1433 iter->oom_lock = true;
7d74b06f 1434 }
867578cb 1435
fb2a6fc5
JW
1436 if (failed) {
1437 /*
1438 * OK, we failed to lock the whole subtree so we have
1439 * to clean up what we set up to the failing subtree
1440 */
1441 for_each_mem_cgroup_tree(iter, memcg) {
1442 if (iter == failed) {
1443 mem_cgroup_iter_break(memcg, iter);
1444 break;
1445 }
1446 iter->oom_lock = false;
79dfdacc 1447 }
0056f4e6
JW
1448 } else
1449 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1450
1451 spin_unlock(&memcg_oom_lock);
1452
1453 return !failed;
a636b327 1454}
0b7f569e 1455
fb2a6fc5 1456static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1457{
7d74b06f
KH
1458 struct mem_cgroup *iter;
1459
fb2a6fc5 1460 spin_lock(&memcg_oom_lock);
0056f4e6 1461 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1462 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1463 iter->oom_lock = false;
fb2a6fc5 1464 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1465}
1466
c0ff4b85 1467static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1468{
1469 struct mem_cgroup *iter;
1470
c2b42d3c 1471 spin_lock(&memcg_oom_lock);
c0ff4b85 1472 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1473 iter->under_oom++;
1474 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1475}
1476
c0ff4b85 1477static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1478{
1479 struct mem_cgroup *iter;
1480
867578cb
KH
1481 /*
1482 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1483 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1484 */
c2b42d3c 1485 spin_lock(&memcg_oom_lock);
c0ff4b85 1486 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1487 if (iter->under_oom > 0)
1488 iter->under_oom--;
1489 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1490}
1491
867578cb
KH
1492static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1493
dc98df5a 1494struct oom_wait_info {
d79154bb 1495 struct mem_cgroup *memcg;
ac6424b9 1496 wait_queue_entry_t wait;
dc98df5a
KH
1497};
1498
ac6424b9 1499static int memcg_oom_wake_function(wait_queue_entry_t *wait,
dc98df5a
KH
1500 unsigned mode, int sync, void *arg)
1501{
d79154bb
HD
1502 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1503 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1504 struct oom_wait_info *oom_wait_info;
1505
1506 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1507 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1508
2314b42d
JW
1509 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1510 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1511 return 0;
dc98df5a
KH
1512 return autoremove_wake_function(wait, mode, sync, arg);
1513}
1514
c0ff4b85 1515static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1516{
c2b42d3c
TH
1517 /*
1518 * For the following lockless ->under_oom test, the only required
1519 * guarantee is that it must see the state asserted by an OOM when
1520 * this function is called as a result of userland actions
1521 * triggered by the notification of the OOM. This is trivially
1522 * achieved by invoking mem_cgroup_mark_under_oom() before
1523 * triggering notification.
1524 */
1525 if (memcg && memcg->under_oom)
f4b90b70 1526 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1527}
1528
3812c8c8 1529static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1530{
d0db7afa 1531 if (!current->memcg_may_oom)
3812c8c8 1532 return;
867578cb 1533 /*
49426420
JW
1534 * We are in the middle of the charge context here, so we
1535 * don't want to block when potentially sitting on a callstack
1536 * that holds all kinds of filesystem and mm locks.
1537 *
1538 * Also, the caller may handle a failed allocation gracefully
1539 * (like optional page cache readahead) and so an OOM killer
1540 * invocation might not even be necessary.
1541 *
1542 * That's why we don't do anything here except remember the
1543 * OOM context and then deal with it at the end of the page
1544 * fault when the stack is unwound, the locks are released,
1545 * and when we know whether the fault was overall successful.
867578cb 1546 */
49426420 1547 css_get(&memcg->css);
626ebc41
TH
1548 current->memcg_in_oom = memcg;
1549 current->memcg_oom_gfp_mask = mask;
1550 current->memcg_oom_order = order;
3812c8c8
JW
1551}
1552
1553/**
1554 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1555 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1556 *
49426420
JW
1557 * This has to be called at the end of a page fault if the memcg OOM
1558 * handler was enabled.
3812c8c8 1559 *
49426420 1560 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1561 * sleep on a waitqueue until the userspace task resolves the
1562 * situation. Sleeping directly in the charge context with all kinds
1563 * of locks held is not a good idea, instead we remember an OOM state
1564 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1565 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1566 *
1567 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1568 * completed, %false otherwise.
3812c8c8 1569 */
49426420 1570bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1571{
626ebc41 1572 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1573 struct oom_wait_info owait;
49426420 1574 bool locked;
3812c8c8
JW
1575
1576 /* OOM is global, do not handle */
3812c8c8 1577 if (!memcg)
49426420 1578 return false;
3812c8c8 1579
7c5f64f8 1580 if (!handle)
49426420 1581 goto cleanup;
3812c8c8
JW
1582
1583 owait.memcg = memcg;
1584 owait.wait.flags = 0;
1585 owait.wait.func = memcg_oom_wake_function;
1586 owait.wait.private = current;
2055da97 1587 INIT_LIST_HEAD(&owait.wait.entry);
867578cb 1588
3812c8c8 1589 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1590 mem_cgroup_mark_under_oom(memcg);
1591
1592 locked = mem_cgroup_oom_trylock(memcg);
1593
1594 if (locked)
1595 mem_cgroup_oom_notify(memcg);
1596
1597 if (locked && !memcg->oom_kill_disable) {
1598 mem_cgroup_unmark_under_oom(memcg);
1599 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1600 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1601 current->memcg_oom_order);
49426420 1602 } else {
3812c8c8 1603 schedule();
49426420
JW
1604 mem_cgroup_unmark_under_oom(memcg);
1605 finish_wait(&memcg_oom_waitq, &owait.wait);
1606 }
1607
1608 if (locked) {
fb2a6fc5
JW
1609 mem_cgroup_oom_unlock(memcg);
1610 /*
1611 * There is no guarantee that an OOM-lock contender
1612 * sees the wakeups triggered by the OOM kill
1613 * uncharges. Wake any sleepers explicitely.
1614 */
1615 memcg_oom_recover(memcg);
1616 }
49426420 1617cleanup:
626ebc41 1618 current->memcg_in_oom = NULL;
3812c8c8 1619 css_put(&memcg->css);
867578cb 1620 return true;
0b7f569e
KH
1621}
1622
d7365e78 1623/**
81f8c3a4
JW
1624 * lock_page_memcg - lock a page->mem_cgroup binding
1625 * @page: the page
32047e2a 1626 *
81f8c3a4 1627 * This function protects unlocked LRU pages from being moved to
739f79fc
JW
1628 * another cgroup.
1629 *
1630 * It ensures lifetime of the returned memcg. Caller is responsible
1631 * for the lifetime of the page; __unlock_page_memcg() is available
1632 * when @page might get freed inside the locked section.
d69b042f 1633 */
739f79fc 1634struct mem_cgroup *lock_page_memcg(struct page *page)
89c06bd5
KH
1635{
1636 struct mem_cgroup *memcg;
6de22619 1637 unsigned long flags;
89c06bd5 1638
6de22619
JW
1639 /*
1640 * The RCU lock is held throughout the transaction. The fast
1641 * path can get away without acquiring the memcg->move_lock
1642 * because page moving starts with an RCU grace period.
739f79fc
JW
1643 *
1644 * The RCU lock also protects the memcg from being freed when
1645 * the page state that is going to change is the only thing
1646 * preventing the page itself from being freed. E.g. writeback
1647 * doesn't hold a page reference and relies on PG_writeback to
1648 * keep off truncation, migration and so forth.
1649 */
d7365e78
JW
1650 rcu_read_lock();
1651
1652 if (mem_cgroup_disabled())
739f79fc 1653 return NULL;
89c06bd5 1654again:
1306a85a 1655 memcg = page->mem_cgroup;
29833315 1656 if (unlikely(!memcg))
739f79fc 1657 return NULL;
d7365e78 1658
bdcbb659 1659 if (atomic_read(&memcg->moving_account) <= 0)
739f79fc 1660 return memcg;
89c06bd5 1661
6de22619 1662 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1663 if (memcg != page->mem_cgroup) {
6de22619 1664 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1665 goto again;
1666 }
6de22619
JW
1667
1668 /*
1669 * When charge migration first begins, we can have locked and
1670 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1671 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1672 */
1673 memcg->move_lock_task = current;
1674 memcg->move_lock_flags = flags;
d7365e78 1675
739f79fc 1676 return memcg;
89c06bd5 1677}
81f8c3a4 1678EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1679
d7365e78 1680/**
739f79fc
JW
1681 * __unlock_page_memcg - unlock and unpin a memcg
1682 * @memcg: the memcg
1683 *
1684 * Unlock and unpin a memcg returned by lock_page_memcg().
d7365e78 1685 */
739f79fc 1686void __unlock_page_memcg(struct mem_cgroup *memcg)
89c06bd5 1687{
6de22619
JW
1688 if (memcg && memcg->move_lock_task == current) {
1689 unsigned long flags = memcg->move_lock_flags;
1690
1691 memcg->move_lock_task = NULL;
1692 memcg->move_lock_flags = 0;
1693
1694 spin_unlock_irqrestore(&memcg->move_lock, flags);
1695 }
89c06bd5 1696
d7365e78 1697 rcu_read_unlock();
89c06bd5 1698}
739f79fc
JW
1699
1700/**
1701 * unlock_page_memcg - unlock a page->mem_cgroup binding
1702 * @page: the page
1703 */
1704void unlock_page_memcg(struct page *page)
1705{
1706 __unlock_page_memcg(page->mem_cgroup);
1707}
81f8c3a4 1708EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1709
cdec2e42
KH
1710/*
1711 * size of first charge trial. "32" comes from vmscan.c's magic value.
1712 * TODO: maybe necessary to use big numbers in big irons.
1713 */
7ec99d62 1714#define CHARGE_BATCH 32U
cdec2e42
KH
1715struct memcg_stock_pcp {
1716 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1717 unsigned int nr_pages;
cdec2e42 1718 struct work_struct work;
26fe6168 1719 unsigned long flags;
a0db00fc 1720#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1721};
1722static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1723static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1724
a0956d54
SS
1725/**
1726 * consume_stock: Try to consume stocked charge on this cpu.
1727 * @memcg: memcg to consume from.
1728 * @nr_pages: how many pages to charge.
1729 *
1730 * The charges will only happen if @memcg matches the current cpu's memcg
1731 * stock, and at least @nr_pages are available in that stock. Failure to
1732 * service an allocation will refill the stock.
1733 *
1734 * returns true if successful, false otherwise.
cdec2e42 1735 */
a0956d54 1736static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1737{
1738 struct memcg_stock_pcp *stock;
db2ba40c 1739 unsigned long flags;
3e32cb2e 1740 bool ret = false;
cdec2e42 1741
a0956d54 1742 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1743 return ret;
a0956d54 1744
db2ba40c
JW
1745 local_irq_save(flags);
1746
1747 stock = this_cpu_ptr(&memcg_stock);
3e32cb2e 1748 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1749 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1750 ret = true;
1751 }
db2ba40c
JW
1752
1753 local_irq_restore(flags);
1754
cdec2e42
KH
1755 return ret;
1756}
1757
1758/*
3e32cb2e 1759 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1760 */
1761static void drain_stock(struct memcg_stock_pcp *stock)
1762{
1763 struct mem_cgroup *old = stock->cached;
1764
11c9ea4e 1765 if (stock->nr_pages) {
3e32cb2e 1766 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1767 if (do_memsw_account())
3e32cb2e 1768 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1769 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1770 stock->nr_pages = 0;
cdec2e42
KH
1771 }
1772 stock->cached = NULL;
cdec2e42
KH
1773}
1774
cdec2e42
KH
1775static void drain_local_stock(struct work_struct *dummy)
1776{
db2ba40c
JW
1777 struct memcg_stock_pcp *stock;
1778 unsigned long flags;
1779
72f0184c
MH
1780 /*
1781 * The only protection from memory hotplug vs. drain_stock races is
1782 * that we always operate on local CPU stock here with IRQ disabled
1783 */
db2ba40c
JW
1784 local_irq_save(flags);
1785
1786 stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1787 drain_stock(stock);
26fe6168 1788 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
db2ba40c
JW
1789
1790 local_irq_restore(flags);
cdec2e42
KH
1791}
1792
1793/*
3e32cb2e 1794 * Cache charges(val) to local per_cpu area.
320cc51d 1795 * This will be consumed by consume_stock() function, later.
cdec2e42 1796 */
c0ff4b85 1797static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42 1798{
db2ba40c
JW
1799 struct memcg_stock_pcp *stock;
1800 unsigned long flags;
1801
1802 local_irq_save(flags);
cdec2e42 1803
db2ba40c 1804 stock = this_cpu_ptr(&memcg_stock);
c0ff4b85 1805 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1806 drain_stock(stock);
c0ff4b85 1807 stock->cached = memcg;
cdec2e42 1808 }
11c9ea4e 1809 stock->nr_pages += nr_pages;
db2ba40c 1810
475d0487
RG
1811 if (stock->nr_pages > CHARGE_BATCH)
1812 drain_stock(stock);
1813
db2ba40c 1814 local_irq_restore(flags);
cdec2e42
KH
1815}
1816
1817/*
c0ff4b85 1818 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1819 * of the hierarchy under it.
cdec2e42 1820 */
6d3d6aa2 1821static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1822{
26fe6168 1823 int cpu, curcpu;
d38144b7 1824
6d3d6aa2
JW
1825 /* If someone's already draining, avoid adding running more workers. */
1826 if (!mutex_trylock(&percpu_charge_mutex))
1827 return;
72f0184c
MH
1828 /*
1829 * Notify other cpus that system-wide "drain" is running
1830 * We do not care about races with the cpu hotplug because cpu down
1831 * as well as workers from this path always operate on the local
1832 * per-cpu data. CPU up doesn't touch memcg_stock at all.
1833 */
5af12d0e 1834 curcpu = get_cpu();
cdec2e42
KH
1835 for_each_online_cpu(cpu) {
1836 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1837 struct mem_cgroup *memcg;
26fe6168 1838
c0ff4b85 1839 memcg = stock->cached;
72f0184c 1840 if (!memcg || !stock->nr_pages || !css_tryget(&memcg->css))
26fe6168 1841 continue;
72f0184c
MH
1842 if (!mem_cgroup_is_descendant(memcg, root_memcg)) {
1843 css_put(&memcg->css);
3e92041d 1844 continue;
72f0184c 1845 }
d1a05b69
MH
1846 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1847 if (cpu == curcpu)
1848 drain_local_stock(&stock->work);
1849 else
1850 schedule_work_on(cpu, &stock->work);
1851 }
72f0184c 1852 css_put(&memcg->css);
cdec2e42 1853 }
5af12d0e 1854 put_cpu();
9f50fad6 1855 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1856}
1857
308167fc 1858static int memcg_hotplug_cpu_dead(unsigned int cpu)
cdec2e42 1859{
cdec2e42
KH
1860 struct memcg_stock_pcp *stock;
1861
cdec2e42
KH
1862 stock = &per_cpu(memcg_stock, cpu);
1863 drain_stock(stock);
308167fc 1864 return 0;
cdec2e42
KH
1865}
1866
f7e1cb6e
JW
1867static void reclaim_high(struct mem_cgroup *memcg,
1868 unsigned int nr_pages,
1869 gfp_t gfp_mask)
1870{
1871 do {
1872 if (page_counter_read(&memcg->memory) <= memcg->high)
1873 continue;
31176c78 1874 mem_cgroup_event(memcg, MEMCG_HIGH);
f7e1cb6e
JW
1875 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1876 } while ((memcg = parent_mem_cgroup(memcg)));
1877}
1878
1879static void high_work_func(struct work_struct *work)
1880{
1881 struct mem_cgroup *memcg;
1882
1883 memcg = container_of(work, struct mem_cgroup, high_work);
1884 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1885}
1886
b23afb93
TH
1887/*
1888 * Scheduled by try_charge() to be executed from the userland return path
1889 * and reclaims memory over the high limit.
1890 */
1891void mem_cgroup_handle_over_high(void)
1892{
1893 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1894 struct mem_cgroup *memcg;
b23afb93
TH
1895
1896 if (likely(!nr_pages))
1897 return;
1898
f7e1cb6e
JW
1899 memcg = get_mem_cgroup_from_mm(current->mm);
1900 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1901 css_put(&memcg->css);
1902 current->memcg_nr_pages_over_high = 0;
1903}
1904
00501b53
JW
1905static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1906 unsigned int nr_pages)
8a9f3ccd 1907{
7ec99d62 1908 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1909 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1910 struct mem_cgroup *mem_over_limit;
3e32cb2e 1911 struct page_counter *counter;
6539cc05 1912 unsigned long nr_reclaimed;
b70a2a21
JW
1913 bool may_swap = true;
1914 bool drained = false;
a636b327 1915
ce00a967 1916 if (mem_cgroup_is_root(memcg))
10d53c74 1917 return 0;
6539cc05 1918retry:
b6b6cc72 1919 if (consume_stock(memcg, nr_pages))
10d53c74 1920 return 0;
8a9f3ccd 1921
7941d214 1922 if (!do_memsw_account() ||
6071ca52
JW
1923 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1924 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1925 goto done_restock;
7941d214 1926 if (do_memsw_account())
3e32cb2e
JW
1927 page_counter_uncharge(&memcg->memsw, batch);
1928 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1929 } else {
3e32cb2e 1930 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1931 may_swap = false;
3fbe7244 1932 }
7a81b88c 1933
6539cc05
JW
1934 if (batch > nr_pages) {
1935 batch = nr_pages;
1936 goto retry;
1937 }
6d61ef40 1938
06b078fc
JW
1939 /*
1940 * Unlike in global OOM situations, memcg is not in a physical
1941 * memory shortage. Allow dying and OOM-killed tasks to
1942 * bypass the last charges so that they can exit quickly and
1943 * free their memory.
1944 */
da99ecf1 1945 if (unlikely(tsk_is_oom_victim(current) ||
06b078fc
JW
1946 fatal_signal_pending(current) ||
1947 current->flags & PF_EXITING))
10d53c74 1948 goto force;
06b078fc 1949
89a28483
JW
1950 /*
1951 * Prevent unbounded recursion when reclaim operations need to
1952 * allocate memory. This might exceed the limits temporarily,
1953 * but we prefer facilitating memory reclaim and getting back
1954 * under the limit over triggering OOM kills in these cases.
1955 */
1956 if (unlikely(current->flags & PF_MEMALLOC))
1957 goto force;
1958
06b078fc
JW
1959 if (unlikely(task_in_memcg_oom(current)))
1960 goto nomem;
1961
d0164adc 1962 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1963 goto nomem;
4b534334 1964
31176c78 1965 mem_cgroup_event(mem_over_limit, MEMCG_MAX);
241994ed 1966
b70a2a21
JW
1967 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1968 gfp_mask, may_swap);
6539cc05 1969
61e02c74 1970 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1971 goto retry;
28c34c29 1972
b70a2a21 1973 if (!drained) {
6d3d6aa2 1974 drain_all_stock(mem_over_limit);
b70a2a21
JW
1975 drained = true;
1976 goto retry;
1977 }
1978
28c34c29
JW
1979 if (gfp_mask & __GFP_NORETRY)
1980 goto nomem;
6539cc05
JW
1981 /*
1982 * Even though the limit is exceeded at this point, reclaim
1983 * may have been able to free some pages. Retry the charge
1984 * before killing the task.
1985 *
1986 * Only for regular pages, though: huge pages are rather
1987 * unlikely to succeed so close to the limit, and we fall back
1988 * to regular pages anyway in case of failure.
1989 */
61e02c74 1990 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
1991 goto retry;
1992 /*
1993 * At task move, charge accounts can be doubly counted. So, it's
1994 * better to wait until the end of task_move if something is going on.
1995 */
1996 if (mem_cgroup_wait_acct_move(mem_over_limit))
1997 goto retry;
1998
9b130619
JW
1999 if (nr_retries--)
2000 goto retry;
2001
06b078fc 2002 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2003 goto force;
06b078fc 2004
6539cc05 2005 if (fatal_signal_pending(current))
10d53c74 2006 goto force;
6539cc05 2007
31176c78 2008 mem_cgroup_event(mem_over_limit, MEMCG_OOM);
241994ed 2009
3608de07
JM
2010 mem_cgroup_oom(mem_over_limit, gfp_mask,
2011 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2012nomem:
6d1fdc48 2013 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2014 return -ENOMEM;
10d53c74
TH
2015force:
2016 /*
2017 * The allocation either can't fail or will lead to more memory
2018 * being freed very soon. Allow memory usage go over the limit
2019 * temporarily by force charging it.
2020 */
2021 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2022 if (do_memsw_account())
10d53c74
TH
2023 page_counter_charge(&memcg->memsw, nr_pages);
2024 css_get_many(&memcg->css, nr_pages);
2025
2026 return 0;
6539cc05
JW
2027
2028done_restock:
e8ea14cc 2029 css_get_many(&memcg->css, batch);
6539cc05
JW
2030 if (batch > nr_pages)
2031 refill_stock(memcg, batch - nr_pages);
b23afb93 2032
241994ed 2033 /*
b23afb93
TH
2034 * If the hierarchy is above the normal consumption range, schedule
2035 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2036 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2037 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2038 * not recorded as it most likely matches current's and won't
2039 * change in the meantime. As high limit is checked again before
2040 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2041 */
2042 do {
b23afb93 2043 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2044 /* Don't bother a random interrupted task */
2045 if (in_interrupt()) {
2046 schedule_work(&memcg->high_work);
2047 break;
2048 }
9516a18a 2049 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2050 set_notify_resume(current);
2051 break;
2052 }
241994ed 2053 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2054
2055 return 0;
7a81b88c 2056}
8a9f3ccd 2057
00501b53 2058static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2059{
ce00a967
JW
2060 if (mem_cgroup_is_root(memcg))
2061 return;
2062
3e32cb2e 2063 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2064 if (do_memsw_account())
3e32cb2e 2065 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2066
e8ea14cc 2067 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2068}
2069
0a31bc97
JW
2070static void lock_page_lru(struct page *page, int *isolated)
2071{
2072 struct zone *zone = page_zone(page);
2073
a52633d8 2074 spin_lock_irq(zone_lru_lock(zone));
0a31bc97
JW
2075 if (PageLRU(page)) {
2076 struct lruvec *lruvec;
2077
599d0c95 2078 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2079 ClearPageLRU(page);
2080 del_page_from_lru_list(page, lruvec, page_lru(page));
2081 *isolated = 1;
2082 } else
2083 *isolated = 0;
2084}
2085
2086static void unlock_page_lru(struct page *page, int isolated)
2087{
2088 struct zone *zone = page_zone(page);
2089
2090 if (isolated) {
2091 struct lruvec *lruvec;
2092
599d0c95 2093 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0a31bc97
JW
2094 VM_BUG_ON_PAGE(PageLRU(page), page);
2095 SetPageLRU(page);
2096 add_page_to_lru_list(page, lruvec, page_lru(page));
2097 }
a52633d8 2098 spin_unlock_irq(zone_lru_lock(zone));
0a31bc97
JW
2099}
2100
00501b53 2101static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2102 bool lrucare)
7a81b88c 2103{
0a31bc97 2104 int isolated;
9ce70c02 2105
1306a85a 2106 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2107
2108 /*
2109 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2110 * may already be on some other mem_cgroup's LRU. Take care of it.
2111 */
0a31bc97
JW
2112 if (lrucare)
2113 lock_page_lru(page, &isolated);
9ce70c02 2114
0a31bc97
JW
2115 /*
2116 * Nobody should be changing or seriously looking at
1306a85a 2117 * page->mem_cgroup at this point:
0a31bc97
JW
2118 *
2119 * - the page is uncharged
2120 *
2121 * - the page is off-LRU
2122 *
2123 * - an anonymous fault has exclusive page access, except for
2124 * a locked page table
2125 *
2126 * - a page cache insertion, a swapin fault, or a migration
2127 * have the page locked
2128 */
1306a85a 2129 page->mem_cgroup = memcg;
9ce70c02 2130
0a31bc97
JW
2131 if (lrucare)
2132 unlock_page_lru(page, isolated);
7a81b88c 2133}
66e1707b 2134
127424c8 2135#ifndef CONFIG_SLOB
f3bb3043 2136static int memcg_alloc_cache_id(void)
55007d84 2137{
f3bb3043
VD
2138 int id, size;
2139 int err;
2140
dbcf73e2 2141 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2142 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2143 if (id < 0)
2144 return id;
55007d84 2145
dbcf73e2 2146 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2147 return id;
2148
2149 /*
2150 * There's no space for the new id in memcg_caches arrays,
2151 * so we have to grow them.
2152 */
05257a1a 2153 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2154
2155 size = 2 * (id + 1);
55007d84
GC
2156 if (size < MEMCG_CACHES_MIN_SIZE)
2157 size = MEMCG_CACHES_MIN_SIZE;
2158 else if (size > MEMCG_CACHES_MAX_SIZE)
2159 size = MEMCG_CACHES_MAX_SIZE;
2160
f3bb3043 2161 err = memcg_update_all_caches(size);
60d3fd32
VD
2162 if (!err)
2163 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2164 if (!err)
2165 memcg_nr_cache_ids = size;
2166
2167 up_write(&memcg_cache_ids_sem);
2168
f3bb3043 2169 if (err) {
dbcf73e2 2170 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2171 return err;
2172 }
2173 return id;
2174}
2175
2176static void memcg_free_cache_id(int id)
2177{
dbcf73e2 2178 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2179}
2180
d5b3cf71 2181struct memcg_kmem_cache_create_work {
5722d094
VD
2182 struct mem_cgroup *memcg;
2183 struct kmem_cache *cachep;
2184 struct work_struct work;
2185};
2186
d5b3cf71 2187static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2188{
d5b3cf71
VD
2189 struct memcg_kmem_cache_create_work *cw =
2190 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2191 struct mem_cgroup *memcg = cw->memcg;
2192 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2193
d5b3cf71 2194 memcg_create_kmem_cache(memcg, cachep);
bd673145 2195
5722d094 2196 css_put(&memcg->css);
d7f25f8a
GC
2197 kfree(cw);
2198}
2199
2200/*
2201 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2202 */
d5b3cf71
VD
2203static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2204 struct kmem_cache *cachep)
d7f25f8a 2205{
d5b3cf71 2206 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2207
8954327d 2208 cw = kmalloc(sizeof(*cw), GFP_NOWAIT | __GFP_NOWARN);
8135be5a 2209 if (!cw)
d7f25f8a 2210 return;
8135be5a
VD
2211
2212 css_get(&memcg->css);
d7f25f8a
GC
2213
2214 cw->memcg = memcg;
2215 cw->cachep = cachep;
d5b3cf71 2216 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2217
17cc4dfe 2218 queue_work(memcg_kmem_cache_wq, &cw->work);
d7f25f8a
GC
2219}
2220
d5b3cf71
VD
2221static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2222 struct kmem_cache *cachep)
0e9d92f2
GC
2223{
2224 /*
2225 * We need to stop accounting when we kmalloc, because if the
2226 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2227 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2228 *
2229 * However, it is better to enclose the whole function. Depending on
2230 * the debugging options enabled, INIT_WORK(), for instance, can
2231 * trigger an allocation. This too, will make us recurse. Because at
2232 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2233 * the safest choice is to do it like this, wrapping the whole function.
2234 */
6f185c29 2235 current->memcg_kmem_skip_account = 1;
d5b3cf71 2236 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2237 current->memcg_kmem_skip_account = 0;
0e9d92f2 2238}
c67a8a68 2239
45264778
VD
2240static inline bool memcg_kmem_bypass(void)
2241{
2242 if (in_interrupt() || !current->mm || (current->flags & PF_KTHREAD))
2243 return true;
2244 return false;
2245}
2246
2247/**
2248 * memcg_kmem_get_cache: select the correct per-memcg cache for allocation
2249 * @cachep: the original global kmem cache
2250 *
d7f25f8a
GC
2251 * Return the kmem_cache we're supposed to use for a slab allocation.
2252 * We try to use the current memcg's version of the cache.
2253 *
45264778
VD
2254 * If the cache does not exist yet, if we are the first user of it, we
2255 * create it asynchronously in a workqueue and let the current allocation
2256 * go through with the original cache.
d7f25f8a 2257 *
45264778
VD
2258 * This function takes a reference to the cache it returns to assure it
2259 * won't get destroyed while we are working with it. Once the caller is
2260 * done with it, memcg_kmem_put_cache() must be called to release the
2261 * reference.
d7f25f8a 2262 */
45264778 2263struct kmem_cache *memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2264{
2265 struct mem_cgroup *memcg;
959c8963 2266 struct kmem_cache *memcg_cachep;
2a4db7eb 2267 int kmemcg_id;
d7f25f8a 2268
f7ce3190 2269 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2270
45264778 2271 if (memcg_kmem_bypass())
230e9fc2
VD
2272 return cachep;
2273
9d100c5e 2274 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2275 return cachep;
2276
8135be5a 2277 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2278 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2279 if (kmemcg_id < 0)
ca0dde97 2280 goto out;
d7f25f8a 2281
2a4db7eb 2282 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2283 if (likely(memcg_cachep))
2284 return memcg_cachep;
ca0dde97
LZ
2285
2286 /*
2287 * If we are in a safe context (can wait, and not in interrupt
2288 * context), we could be be predictable and return right away.
2289 * This would guarantee that the allocation being performed
2290 * already belongs in the new cache.
2291 *
2292 * However, there are some clashes that can arrive from locking.
2293 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2294 * memcg_create_kmem_cache, this means no further allocation
2295 * could happen with the slab_mutex held. So it's better to
2296 * defer everything.
ca0dde97 2297 */
d5b3cf71 2298 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2299out:
8135be5a 2300 css_put(&memcg->css);
ca0dde97 2301 return cachep;
d7f25f8a 2302}
d7f25f8a 2303
45264778
VD
2304/**
2305 * memcg_kmem_put_cache: drop reference taken by memcg_kmem_get_cache
2306 * @cachep: the cache returned by memcg_kmem_get_cache
2307 */
2308void memcg_kmem_put_cache(struct kmem_cache *cachep)
8135be5a
VD
2309{
2310 if (!is_root_cache(cachep))
f7ce3190 2311 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2312}
2313
45264778
VD
2314/**
2315 * memcg_kmem_charge: charge a kmem page
2316 * @page: page to charge
2317 * @gfp: reclaim mode
2318 * @order: allocation order
2319 * @memcg: memory cgroup to charge
2320 *
2321 * Returns 0 on success, an error code on failure.
2322 */
2323int memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2324 struct mem_cgroup *memcg)
7ae1e1d0 2325{
f3ccb2c4
VD
2326 unsigned int nr_pages = 1 << order;
2327 struct page_counter *counter;
7ae1e1d0
GC
2328 int ret;
2329
f3ccb2c4 2330 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2331 if (ret)
f3ccb2c4 2332 return ret;
52c29b04
JW
2333
2334 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2335 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2336 cancel_charge(memcg, nr_pages);
2337 return -ENOMEM;
7ae1e1d0
GC
2338 }
2339
f3ccb2c4 2340 page->mem_cgroup = memcg;
7ae1e1d0 2341
f3ccb2c4 2342 return 0;
7ae1e1d0
GC
2343}
2344
45264778
VD
2345/**
2346 * memcg_kmem_charge: charge a kmem page to the current memory cgroup
2347 * @page: page to charge
2348 * @gfp: reclaim mode
2349 * @order: allocation order
2350 *
2351 * Returns 0 on success, an error code on failure.
2352 */
2353int memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2354{
f3ccb2c4 2355 struct mem_cgroup *memcg;
fcff7d7e 2356 int ret = 0;
7ae1e1d0 2357
45264778
VD
2358 if (memcg_kmem_bypass())
2359 return 0;
2360
f3ccb2c4 2361 memcg = get_mem_cgroup_from_mm(current->mm);
c4159a75 2362 if (!mem_cgroup_is_root(memcg)) {
45264778 2363 ret = memcg_kmem_charge_memcg(page, gfp, order, memcg);
c4159a75
VD
2364 if (!ret)
2365 __SetPageKmemcg(page);
2366 }
7ae1e1d0 2367 css_put(&memcg->css);
d05e83a6 2368 return ret;
7ae1e1d0 2369}
45264778
VD
2370/**
2371 * memcg_kmem_uncharge: uncharge a kmem page
2372 * @page: page to uncharge
2373 * @order: allocation order
2374 */
2375void memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2376{
1306a85a 2377 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2378 unsigned int nr_pages = 1 << order;
7ae1e1d0 2379
7ae1e1d0
GC
2380 if (!memcg)
2381 return;
2382
309381fe 2383 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2384
52c29b04
JW
2385 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2386 page_counter_uncharge(&memcg->kmem, nr_pages);
2387
f3ccb2c4 2388 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2389 if (do_memsw_account())
f3ccb2c4 2390 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2391
1306a85a 2392 page->mem_cgroup = NULL;
c4159a75
VD
2393
2394 /* slab pages do not have PageKmemcg flag set */
2395 if (PageKmemcg(page))
2396 __ClearPageKmemcg(page);
2397
f3ccb2c4 2398 css_put_many(&memcg->css, nr_pages);
60d3fd32 2399}
127424c8 2400#endif /* !CONFIG_SLOB */
7ae1e1d0 2401
ca3e0214
KH
2402#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2403
ca3e0214
KH
2404/*
2405 * Because tail pages are not marked as "used", set it. We're under
a52633d8 2406 * zone_lru_lock and migration entries setup in all page mappings.
ca3e0214 2407 */
e94c8a9c 2408void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2409{
e94c8a9c 2410 int i;
ca3e0214 2411
3d37c4a9
KH
2412 if (mem_cgroup_disabled())
2413 return;
b070e65c 2414
29833315 2415 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2416 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2417
71cd3113 2418 __this_cpu_sub(head->mem_cgroup->stat->count[MEMCG_RSS_HUGE],
b070e65c 2419 HPAGE_PMD_NR);
ca3e0214 2420}
12d27107 2421#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2422
c255a458 2423#ifdef CONFIG_MEMCG_SWAP
0a31bc97 2424static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
38d8b4e6 2425 int nr_entries)
d13d1443 2426{
38d8b4e6 2427 this_cpu_add(memcg->stat->count[MEMCG_SWAP], nr_entries);
d13d1443 2428}
02491447
DN
2429
2430/**
2431 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2432 * @entry: swap entry to be moved
2433 * @from: mem_cgroup which the entry is moved from
2434 * @to: mem_cgroup which the entry is moved to
2435 *
2436 * It succeeds only when the swap_cgroup's record for this entry is the same
2437 * as the mem_cgroup's id of @from.
2438 *
2439 * Returns 0 on success, -EINVAL on failure.
2440 *
3e32cb2e 2441 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2442 * both res and memsw, and called css_get().
2443 */
2444static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2445 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2446{
2447 unsigned short old_id, new_id;
2448
34c00c31
LZ
2449 old_id = mem_cgroup_id(from);
2450 new_id = mem_cgroup_id(to);
02491447
DN
2451
2452 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
38d8b4e6
HY
2453 mem_cgroup_swap_statistics(from, -1);
2454 mem_cgroup_swap_statistics(to, 1);
02491447
DN
2455 return 0;
2456 }
2457 return -EINVAL;
2458}
2459#else
2460static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2461 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2462{
2463 return -EINVAL;
2464}
8c7c6e34 2465#endif
d13d1443 2466
3e32cb2e 2467static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2468
d38d2a75 2469static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2470 unsigned long limit)
628f4235 2471{
3e32cb2e
JW
2472 unsigned long curusage;
2473 unsigned long oldusage;
2474 bool enlarge = false;
81d39c20 2475 int retry_count;
3e32cb2e 2476 int ret;
81d39c20
KH
2477
2478 /*
2479 * For keeping hierarchical_reclaim simple, how long we should retry
2480 * is depends on callers. We set our retry-count to be function
2481 * of # of children which we should visit in this loop.
2482 */
3e32cb2e
JW
2483 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2484 mem_cgroup_count_children(memcg);
81d39c20 2485
3e32cb2e 2486 oldusage = page_counter_read(&memcg->memory);
628f4235 2487
3e32cb2e 2488 do {
628f4235
KH
2489 if (signal_pending(current)) {
2490 ret = -EINTR;
2491 break;
2492 }
3e32cb2e
JW
2493
2494 mutex_lock(&memcg_limit_mutex);
2495 if (limit > memcg->memsw.limit) {
2496 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2497 ret = -EINVAL;
628f4235
KH
2498 break;
2499 }
3e32cb2e
JW
2500 if (limit > memcg->memory.limit)
2501 enlarge = true;
2502 ret = page_counter_limit(&memcg->memory, limit);
2503 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2504
2505 if (!ret)
2506 break;
2507
b70a2a21
JW
2508 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2509
3e32cb2e 2510 curusage = page_counter_read(&memcg->memory);
81d39c20 2511 /* Usage is reduced ? */
f894ffa8 2512 if (curusage >= oldusage)
81d39c20
KH
2513 retry_count--;
2514 else
2515 oldusage = curusage;
3e32cb2e
JW
2516 } while (retry_count);
2517
3c11ecf4
KH
2518 if (!ret && enlarge)
2519 memcg_oom_recover(memcg);
14797e23 2520
8c7c6e34
KH
2521 return ret;
2522}
2523
338c8431 2524static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2525 unsigned long limit)
8c7c6e34 2526{
3e32cb2e
JW
2527 unsigned long curusage;
2528 unsigned long oldusage;
2529 bool enlarge = false;
81d39c20 2530 int retry_count;
3e32cb2e 2531 int ret;
8c7c6e34 2532
81d39c20 2533 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2534 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2535 mem_cgroup_count_children(memcg);
2536
2537 oldusage = page_counter_read(&memcg->memsw);
2538
2539 do {
8c7c6e34
KH
2540 if (signal_pending(current)) {
2541 ret = -EINTR;
2542 break;
2543 }
3e32cb2e
JW
2544
2545 mutex_lock(&memcg_limit_mutex);
2546 if (limit < memcg->memory.limit) {
2547 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2548 ret = -EINVAL;
8c7c6e34
KH
2549 break;
2550 }
3e32cb2e
JW
2551 if (limit > memcg->memsw.limit)
2552 enlarge = true;
2553 ret = page_counter_limit(&memcg->memsw, limit);
2554 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2555
2556 if (!ret)
2557 break;
2558
b70a2a21
JW
2559 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2560
3e32cb2e 2561 curusage = page_counter_read(&memcg->memsw);
81d39c20 2562 /* Usage is reduced ? */
8c7c6e34 2563 if (curusage >= oldusage)
628f4235 2564 retry_count--;
81d39c20
KH
2565 else
2566 oldusage = curusage;
3e32cb2e
JW
2567 } while (retry_count);
2568
3c11ecf4
KH
2569 if (!ret && enlarge)
2570 memcg_oom_recover(memcg);
3e32cb2e 2571
628f4235
KH
2572 return ret;
2573}
2574
ef8f2327 2575unsigned long mem_cgroup_soft_limit_reclaim(pg_data_t *pgdat, int order,
0608f43d
AM
2576 gfp_t gfp_mask,
2577 unsigned long *total_scanned)
2578{
2579 unsigned long nr_reclaimed = 0;
ef8f2327 2580 struct mem_cgroup_per_node *mz, *next_mz = NULL;
0608f43d
AM
2581 unsigned long reclaimed;
2582 int loop = 0;
ef8f2327 2583 struct mem_cgroup_tree_per_node *mctz;
3e32cb2e 2584 unsigned long excess;
0608f43d
AM
2585 unsigned long nr_scanned;
2586
2587 if (order > 0)
2588 return 0;
2589
ef8f2327 2590 mctz = soft_limit_tree_node(pgdat->node_id);
d6507ff5
MH
2591
2592 /*
2593 * Do not even bother to check the largest node if the root
2594 * is empty. Do it lockless to prevent lock bouncing. Races
2595 * are acceptable as soft limit is best effort anyway.
2596 */
bfc7228b 2597 if (!mctz || RB_EMPTY_ROOT(&mctz->rb_root))
d6507ff5
MH
2598 return 0;
2599
0608f43d
AM
2600 /*
2601 * This loop can run a while, specially if mem_cgroup's continuously
2602 * keep exceeding their soft limit and putting the system under
2603 * pressure
2604 */
2605 do {
2606 if (next_mz)
2607 mz = next_mz;
2608 else
2609 mz = mem_cgroup_largest_soft_limit_node(mctz);
2610 if (!mz)
2611 break;
2612
2613 nr_scanned = 0;
ef8f2327 2614 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, pgdat,
0608f43d
AM
2615 gfp_mask, &nr_scanned);
2616 nr_reclaimed += reclaimed;
2617 *total_scanned += nr_scanned;
0a31bc97 2618 spin_lock_irq(&mctz->lock);
bc2f2e7f 2619 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2620
2621 /*
2622 * If we failed to reclaim anything from this memory cgroup
2623 * it is time to move on to the next cgroup
2624 */
2625 next_mz = NULL;
bc2f2e7f
VD
2626 if (!reclaimed)
2627 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2628
3e32cb2e 2629 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2630 /*
2631 * One school of thought says that we should not add
2632 * back the node to the tree if reclaim returns 0.
2633 * But our reclaim could return 0, simply because due
2634 * to priority we are exposing a smaller subset of
2635 * memory to reclaim from. Consider this as a longer
2636 * term TODO.
2637 */
2638 /* If excess == 0, no tree ops */
cf2c8127 2639 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2640 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2641 css_put(&mz->memcg->css);
2642 loop++;
2643 /*
2644 * Could not reclaim anything and there are no more
2645 * mem cgroups to try or we seem to be looping without
2646 * reclaiming anything.
2647 */
2648 if (!nr_reclaimed &&
2649 (next_mz == NULL ||
2650 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2651 break;
2652 } while (!nr_reclaimed);
2653 if (next_mz)
2654 css_put(&next_mz->memcg->css);
2655 return nr_reclaimed;
2656}
2657
ea280e7b
TH
2658/*
2659 * Test whether @memcg has children, dead or alive. Note that this
2660 * function doesn't care whether @memcg has use_hierarchy enabled and
2661 * returns %true if there are child csses according to the cgroup
2662 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2663 */
b5f99b53
GC
2664static inline bool memcg_has_children(struct mem_cgroup *memcg)
2665{
ea280e7b
TH
2666 bool ret;
2667
ea280e7b
TH
2668 rcu_read_lock();
2669 ret = css_next_child(NULL, &memcg->css);
2670 rcu_read_unlock();
2671 return ret;
b5f99b53
GC
2672}
2673
c26251f9 2674/*
51038171 2675 * Reclaims as many pages from the given memcg as possible.
c26251f9
MH
2676 *
2677 * Caller is responsible for holding css reference for memcg.
2678 */
2679static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2680{
2681 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2682
c1e862c1
KH
2683 /* we call try-to-free pages for make this cgroup empty */
2684 lru_add_drain_all();
f817ed48 2685 /* try to free all pages in this cgroup */
3e32cb2e 2686 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2687 int progress;
c1e862c1 2688
c26251f9
MH
2689 if (signal_pending(current))
2690 return -EINTR;
2691
b70a2a21
JW
2692 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2693 GFP_KERNEL, true);
c1e862c1 2694 if (!progress) {
f817ed48 2695 nr_retries--;
c1e862c1 2696 /* maybe some writeback is necessary */
8aa7e847 2697 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2698 }
f817ed48
KH
2699
2700 }
ab5196c2
MH
2701
2702 return 0;
cc847582
KH
2703}
2704
6770c64e
TH
2705static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2706 char *buf, size_t nbytes,
2707 loff_t off)
c1e862c1 2708{
6770c64e 2709 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2710
d8423011
MH
2711 if (mem_cgroup_is_root(memcg))
2712 return -EINVAL;
6770c64e 2713 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2714}
2715
182446d0
TH
2716static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2717 struct cftype *cft)
18f59ea7 2718{
182446d0 2719 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2720}
2721
182446d0
TH
2722static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2723 struct cftype *cft, u64 val)
18f59ea7
BS
2724{
2725 int retval = 0;
182446d0 2726 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2727 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2728
567fb435 2729 if (memcg->use_hierarchy == val)
0b8f73e1 2730 return 0;
567fb435 2731
18f59ea7 2732 /*
af901ca1 2733 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2734 * in the child subtrees. If it is unset, then the change can
2735 * occur, provided the current cgroup has no children.
2736 *
2737 * For the root cgroup, parent_mem is NULL, we allow value to be
2738 * set if there are no children.
2739 */
c0ff4b85 2740 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2741 (val == 1 || val == 0)) {
ea280e7b 2742 if (!memcg_has_children(memcg))
c0ff4b85 2743 memcg->use_hierarchy = val;
18f59ea7
BS
2744 else
2745 retval = -EBUSY;
2746 } else
2747 retval = -EINVAL;
567fb435 2748
18f59ea7
BS
2749 return retval;
2750}
2751
72b54e73 2752static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2753{
2754 struct mem_cgroup *iter;
72b54e73 2755 int i;
ce00a967 2756
72b54e73 2757 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2758
72b54e73
VD
2759 for_each_mem_cgroup_tree(iter, memcg) {
2760 for (i = 0; i < MEMCG_NR_STAT; i++)
ccda7f43 2761 stat[i] += memcg_page_state(iter, i);
72b54e73 2762 }
ce00a967
JW
2763}
2764
72b54e73 2765static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2766{
2767 struct mem_cgroup *iter;
72b54e73 2768 int i;
587d9f72 2769
72b54e73 2770 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2771
72b54e73
VD
2772 for_each_mem_cgroup_tree(iter, memcg) {
2773 for (i = 0; i < MEMCG_NR_EVENTS; i++)
ccda7f43 2774 events[i] += memcg_sum_events(iter, i);
72b54e73 2775 }
587d9f72
JW
2776}
2777
6f646156 2778static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2779{
72b54e73 2780 unsigned long val = 0;
ce00a967 2781
3e32cb2e 2782 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2783 struct mem_cgroup *iter;
2784
2785 for_each_mem_cgroup_tree(iter, memcg) {
ccda7f43
JW
2786 val += memcg_page_state(iter, MEMCG_CACHE);
2787 val += memcg_page_state(iter, MEMCG_RSS);
72b54e73 2788 if (swap)
ccda7f43 2789 val += memcg_page_state(iter, MEMCG_SWAP);
72b54e73 2790 }
3e32cb2e 2791 } else {
ce00a967 2792 if (!swap)
3e32cb2e 2793 val = page_counter_read(&memcg->memory);
ce00a967 2794 else
3e32cb2e 2795 val = page_counter_read(&memcg->memsw);
ce00a967 2796 }
c12176d3 2797 return val;
ce00a967
JW
2798}
2799
3e32cb2e
JW
2800enum {
2801 RES_USAGE,
2802 RES_LIMIT,
2803 RES_MAX_USAGE,
2804 RES_FAILCNT,
2805 RES_SOFT_LIMIT,
2806};
ce00a967 2807
791badbd 2808static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2809 struct cftype *cft)
8cdea7c0 2810{
182446d0 2811 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2812 struct page_counter *counter;
af36f906 2813
3e32cb2e 2814 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2815 case _MEM:
3e32cb2e
JW
2816 counter = &memcg->memory;
2817 break;
8c7c6e34 2818 case _MEMSWAP:
3e32cb2e
JW
2819 counter = &memcg->memsw;
2820 break;
510fc4e1 2821 case _KMEM:
3e32cb2e 2822 counter = &memcg->kmem;
510fc4e1 2823 break;
d55f90bf 2824 case _TCP:
0db15298 2825 counter = &memcg->tcpmem;
d55f90bf 2826 break;
8c7c6e34
KH
2827 default:
2828 BUG();
8c7c6e34 2829 }
3e32cb2e
JW
2830
2831 switch (MEMFILE_ATTR(cft->private)) {
2832 case RES_USAGE:
2833 if (counter == &memcg->memory)
c12176d3 2834 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2835 if (counter == &memcg->memsw)
c12176d3 2836 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2837 return (u64)page_counter_read(counter) * PAGE_SIZE;
2838 case RES_LIMIT:
2839 return (u64)counter->limit * PAGE_SIZE;
2840 case RES_MAX_USAGE:
2841 return (u64)counter->watermark * PAGE_SIZE;
2842 case RES_FAILCNT:
2843 return counter->failcnt;
2844 case RES_SOFT_LIMIT:
2845 return (u64)memcg->soft_limit * PAGE_SIZE;
2846 default:
2847 BUG();
2848 }
8cdea7c0 2849}
510fc4e1 2850
127424c8 2851#ifndef CONFIG_SLOB
567e9ab2 2852static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2853{
d6441637
VD
2854 int memcg_id;
2855
b313aeee
VD
2856 if (cgroup_memory_nokmem)
2857 return 0;
2858
2a4db7eb 2859 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2860 BUG_ON(memcg->kmem_state);
d6441637 2861
f3bb3043 2862 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2863 if (memcg_id < 0)
2864 return memcg_id;
d6441637 2865
ef12947c 2866 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2867 /*
567e9ab2 2868 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2869 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2870 * guarantee no one starts accounting before all call sites are
2871 * patched.
2872 */
900a38f0 2873 memcg->kmemcg_id = memcg_id;
567e9ab2 2874 memcg->kmem_state = KMEM_ONLINE;
bc2791f8 2875 INIT_LIST_HEAD(&memcg->kmem_caches);
0b8f73e1
JW
2876
2877 return 0;
d6441637
VD
2878}
2879
8e0a8912
JW
2880static void memcg_offline_kmem(struct mem_cgroup *memcg)
2881{
2882 struct cgroup_subsys_state *css;
2883 struct mem_cgroup *parent, *child;
2884 int kmemcg_id;
2885
2886 if (memcg->kmem_state != KMEM_ONLINE)
2887 return;
2888 /*
2889 * Clear the online state before clearing memcg_caches array
2890 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2891 * guarantees that no cache will be created for this cgroup
2892 * after we are done (see memcg_create_kmem_cache()).
2893 */
2894 memcg->kmem_state = KMEM_ALLOCATED;
2895
2896 memcg_deactivate_kmem_caches(memcg);
2897
2898 kmemcg_id = memcg->kmemcg_id;
2899 BUG_ON(kmemcg_id < 0);
2900
2901 parent = parent_mem_cgroup(memcg);
2902 if (!parent)
2903 parent = root_mem_cgroup;
2904
2905 /*
2906 * Change kmemcg_id of this cgroup and all its descendants to the
2907 * parent's id, and then move all entries from this cgroup's list_lrus
2908 * to ones of the parent. After we have finished, all list_lrus
2909 * corresponding to this cgroup are guaranteed to remain empty. The
2910 * ordering is imposed by list_lru_node->lock taken by
2911 * memcg_drain_all_list_lrus().
2912 */
3a06bb78 2913 rcu_read_lock(); /* can be called from css_free w/o cgroup_mutex */
8e0a8912
JW
2914 css_for_each_descendant_pre(css, &memcg->css) {
2915 child = mem_cgroup_from_css(css);
2916 BUG_ON(child->kmemcg_id != kmemcg_id);
2917 child->kmemcg_id = parent->kmemcg_id;
2918 if (!memcg->use_hierarchy)
2919 break;
2920 }
3a06bb78
TH
2921 rcu_read_unlock();
2922
8e0a8912
JW
2923 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2924
2925 memcg_free_cache_id(kmemcg_id);
2926}
2927
2928static void memcg_free_kmem(struct mem_cgroup *memcg)
2929{
0b8f73e1
JW
2930 /* css_alloc() failed, offlining didn't happen */
2931 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2932 memcg_offline_kmem(memcg);
2933
8e0a8912
JW
2934 if (memcg->kmem_state == KMEM_ALLOCATED) {
2935 memcg_destroy_kmem_caches(memcg);
2936 static_branch_dec(&memcg_kmem_enabled_key);
2937 WARN_ON(page_counter_read(&memcg->kmem));
2938 }
8e0a8912 2939}
d6441637 2940#else
0b8f73e1 2941static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2942{
2943 return 0;
2944}
2945static void memcg_offline_kmem(struct mem_cgroup *memcg)
2946{
2947}
2948static void memcg_free_kmem(struct mem_cgroup *memcg)
2949{
2950}
2951#endif /* !CONFIG_SLOB */
2952
d6441637 2953static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2954 unsigned long limit)
d6441637 2955{
b313aeee 2956 int ret;
127424c8
JW
2957
2958 mutex_lock(&memcg_limit_mutex);
127424c8 2959 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2960 mutex_unlock(&memcg_limit_mutex);
2961 return ret;
d6441637 2962}
510fc4e1 2963
d55f90bf
VD
2964static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2965{
2966 int ret;
2967
2968 mutex_lock(&memcg_limit_mutex);
2969
0db15298 2970 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2971 if (ret)
2972 goto out;
2973
0db15298 2974 if (!memcg->tcpmem_active) {
d55f90bf
VD
2975 /*
2976 * The active flag needs to be written after the static_key
2977 * update. This is what guarantees that the socket activation
2d758073
JW
2978 * function is the last one to run. See mem_cgroup_sk_alloc()
2979 * for details, and note that we don't mark any socket as
2980 * belonging to this memcg until that flag is up.
d55f90bf
VD
2981 *
2982 * We need to do this, because static_keys will span multiple
2983 * sites, but we can't control their order. If we mark a socket
2984 * as accounted, but the accounting functions are not patched in
2985 * yet, we'll lose accounting.
2986 *
2d758073 2987 * We never race with the readers in mem_cgroup_sk_alloc(),
d55f90bf
VD
2988 * because when this value change, the code to process it is not
2989 * patched in yet.
2990 */
2991 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2992 memcg->tcpmem_active = true;
d55f90bf
VD
2993 }
2994out:
2995 mutex_unlock(&memcg_limit_mutex);
2996 return ret;
2997}
d55f90bf 2998
628f4235
KH
2999/*
3000 * The user of this function is...
3001 * RES_LIMIT.
3002 */
451af504
TH
3003static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3004 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3005{
451af504 3006 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3007 unsigned long nr_pages;
628f4235
KH
3008 int ret;
3009
451af504 3010 buf = strstrip(buf);
650c5e56 3011 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3012 if (ret)
3013 return ret;
af36f906 3014
3e32cb2e 3015 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3016 case RES_LIMIT:
4b3bde4c
BS
3017 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3018 ret = -EINVAL;
3019 break;
3020 }
3e32cb2e
JW
3021 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3022 case _MEM:
3023 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3024 break;
3e32cb2e
JW
3025 case _MEMSWAP:
3026 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3027 break;
3e32cb2e
JW
3028 case _KMEM:
3029 ret = memcg_update_kmem_limit(memcg, nr_pages);
3030 break;
d55f90bf
VD
3031 case _TCP:
3032 ret = memcg_update_tcp_limit(memcg, nr_pages);
3033 break;
3e32cb2e 3034 }
296c81d8 3035 break;
3e32cb2e
JW
3036 case RES_SOFT_LIMIT:
3037 memcg->soft_limit = nr_pages;
3038 ret = 0;
628f4235
KH
3039 break;
3040 }
451af504 3041 return ret ?: nbytes;
8cdea7c0
BS
3042}
3043
6770c64e
TH
3044static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3045 size_t nbytes, loff_t off)
c84872e1 3046{
6770c64e 3047 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3048 struct page_counter *counter;
c84872e1 3049
3e32cb2e
JW
3050 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3051 case _MEM:
3052 counter = &memcg->memory;
3053 break;
3054 case _MEMSWAP:
3055 counter = &memcg->memsw;
3056 break;
3057 case _KMEM:
3058 counter = &memcg->kmem;
3059 break;
d55f90bf 3060 case _TCP:
0db15298 3061 counter = &memcg->tcpmem;
d55f90bf 3062 break;
3e32cb2e
JW
3063 default:
3064 BUG();
3065 }
af36f906 3066
3e32cb2e 3067 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3068 case RES_MAX_USAGE:
3e32cb2e 3069 page_counter_reset_watermark(counter);
29f2a4da
PE
3070 break;
3071 case RES_FAILCNT:
3e32cb2e 3072 counter->failcnt = 0;
29f2a4da 3073 break;
3e32cb2e
JW
3074 default:
3075 BUG();
29f2a4da 3076 }
f64c3f54 3077
6770c64e 3078 return nbytes;
c84872e1
PE
3079}
3080
182446d0 3081static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3082 struct cftype *cft)
3083{
182446d0 3084 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3085}
3086
02491447 3087#ifdef CONFIG_MMU
182446d0 3088static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3089 struct cftype *cft, u64 val)
3090{
182446d0 3091 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3092
1dfab5ab 3093 if (val & ~MOVE_MASK)
7dc74be0 3094 return -EINVAL;
ee5e8472 3095
7dc74be0 3096 /*
ee5e8472
GC
3097 * No kind of locking is needed in here, because ->can_attach() will
3098 * check this value once in the beginning of the process, and then carry
3099 * on with stale data. This means that changes to this value will only
3100 * affect task migrations starting after the change.
7dc74be0 3101 */
c0ff4b85 3102 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3103 return 0;
3104}
02491447 3105#else
182446d0 3106static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3107 struct cftype *cft, u64 val)
3108{
3109 return -ENOSYS;
3110}
3111#endif
7dc74be0 3112
406eb0c9 3113#ifdef CONFIG_NUMA
2da8ca82 3114static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3115{
25485de6
GT
3116 struct numa_stat {
3117 const char *name;
3118 unsigned int lru_mask;
3119 };
3120
3121 static const struct numa_stat stats[] = {
3122 { "total", LRU_ALL },
3123 { "file", LRU_ALL_FILE },
3124 { "anon", LRU_ALL_ANON },
3125 { "unevictable", BIT(LRU_UNEVICTABLE) },
3126 };
3127 const struct numa_stat *stat;
406eb0c9 3128 int nid;
25485de6 3129 unsigned long nr;
2da8ca82 3130 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3131
25485de6
GT
3132 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3133 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3134 seq_printf(m, "%s=%lu", stat->name, nr);
3135 for_each_node_state(nid, N_MEMORY) {
3136 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3137 stat->lru_mask);
3138 seq_printf(m, " N%d=%lu", nid, nr);
3139 }
3140 seq_putc(m, '\n');
406eb0c9 3141 }
406eb0c9 3142
071aee13
YH
3143 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3144 struct mem_cgroup *iter;
3145
3146 nr = 0;
3147 for_each_mem_cgroup_tree(iter, memcg)
3148 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3149 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3150 for_each_node_state(nid, N_MEMORY) {
3151 nr = 0;
3152 for_each_mem_cgroup_tree(iter, memcg)
3153 nr += mem_cgroup_node_nr_lru_pages(
3154 iter, nid, stat->lru_mask);
3155 seq_printf(m, " N%d=%lu", nid, nr);
3156 }
3157 seq_putc(m, '\n');
406eb0c9 3158 }
406eb0c9 3159
406eb0c9
YH
3160 return 0;
3161}
3162#endif /* CONFIG_NUMA */
3163
df0e53d0
JW
3164/* Universal VM events cgroup1 shows, original sort order */
3165unsigned int memcg1_events[] = {
3166 PGPGIN,
3167 PGPGOUT,
3168 PGFAULT,
3169 PGMAJFAULT,
3170};
3171
3172static const char *const memcg1_event_names[] = {
3173 "pgpgin",
3174 "pgpgout",
3175 "pgfault",
3176 "pgmajfault",
3177};
3178
2da8ca82 3179static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3180{
2da8ca82 3181 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3182 unsigned long memory, memsw;
af7c4b0e
JW
3183 struct mem_cgroup *mi;
3184 unsigned int i;
406eb0c9 3185
71cd3113 3186 BUILD_BUG_ON(ARRAY_SIZE(memcg1_stat_names) != ARRAY_SIZE(memcg1_stats));
70bc068c
RS
3187 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3188
71cd3113
JW
3189 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
3190 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3191 continue;
71cd3113 3192 seq_printf(m, "%s %lu\n", memcg1_stat_names[i],
ccda7f43 3193 memcg_page_state(memcg, memcg1_stats[i]) *
71cd3113 3194 PAGE_SIZE);
1dd3a273 3195 }
7b854121 3196
df0e53d0
JW
3197 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++)
3198 seq_printf(m, "%s %lu\n", memcg1_event_names[i],
ccda7f43 3199 memcg_sum_events(memcg, memcg1_events[i]));
af7c4b0e
JW
3200
3201 for (i = 0; i < NR_LRU_LISTS; i++)
3202 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3203 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3204
14067bb3 3205 /* Hierarchical information */
3e32cb2e
JW
3206 memory = memsw = PAGE_COUNTER_MAX;
3207 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3208 memory = min(memory, mi->memory.limit);
3209 memsw = min(memsw, mi->memsw.limit);
fee7b548 3210 }
3e32cb2e
JW
3211 seq_printf(m, "hierarchical_memory_limit %llu\n",
3212 (u64)memory * PAGE_SIZE);
7941d214 3213 if (do_memsw_account())
3e32cb2e
JW
3214 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3215 (u64)memsw * PAGE_SIZE);
7f016ee8 3216
71cd3113 3217 for (i = 0; i < ARRAY_SIZE(memcg1_stats); i++) {
484ebb3b 3218 unsigned long long val = 0;
af7c4b0e 3219
71cd3113 3220 if (memcg1_stats[i] == MEMCG_SWAP && !do_memsw_account())
1dd3a273 3221 continue;
af7c4b0e 3222 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3223 val += memcg_page_state(mi, memcg1_stats[i]) *
71cd3113
JW
3224 PAGE_SIZE;
3225 seq_printf(m, "total_%s %llu\n", memcg1_stat_names[i], val);
af7c4b0e
JW
3226 }
3227
df0e53d0 3228 for (i = 0; i < ARRAY_SIZE(memcg1_events); i++) {
af7c4b0e
JW
3229 unsigned long long val = 0;
3230
3231 for_each_mem_cgroup_tree(mi, memcg)
ccda7f43 3232 val += memcg_sum_events(mi, memcg1_events[i]);
df0e53d0 3233 seq_printf(m, "total_%s %llu\n", memcg1_event_names[i], val);
af7c4b0e
JW
3234 }
3235
3236 for (i = 0; i < NR_LRU_LISTS; i++) {
3237 unsigned long long val = 0;
3238
3239 for_each_mem_cgroup_tree(mi, memcg)
3240 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3241 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3242 }
14067bb3 3243
7f016ee8 3244#ifdef CONFIG_DEBUG_VM
7f016ee8 3245 {
ef8f2327
MG
3246 pg_data_t *pgdat;
3247 struct mem_cgroup_per_node *mz;
89abfab1 3248 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3249 unsigned long recent_rotated[2] = {0, 0};
3250 unsigned long recent_scanned[2] = {0, 0};
3251
ef8f2327
MG
3252 for_each_online_pgdat(pgdat) {
3253 mz = mem_cgroup_nodeinfo(memcg, pgdat->node_id);
3254 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3255
ef8f2327
MG
3256 recent_rotated[0] += rstat->recent_rotated[0];
3257 recent_rotated[1] += rstat->recent_rotated[1];
3258 recent_scanned[0] += rstat->recent_scanned[0];
3259 recent_scanned[1] += rstat->recent_scanned[1];
3260 }
78ccf5b5
JW
3261 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3262 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3263 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3264 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3265 }
3266#endif
3267
d2ceb9b7
KH
3268 return 0;
3269}
3270
182446d0
TH
3271static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3272 struct cftype *cft)
a7885eb8 3273{
182446d0 3274 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3275
1f4c025b 3276 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3277}
3278
182446d0
TH
3279static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3280 struct cftype *cft, u64 val)
a7885eb8 3281{
182446d0 3282 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3283
3dae7fec 3284 if (val > 100)
a7885eb8
KM
3285 return -EINVAL;
3286
14208b0e 3287 if (css->parent)
3dae7fec
JW
3288 memcg->swappiness = val;
3289 else
3290 vm_swappiness = val;
068b38c1 3291
a7885eb8
KM
3292 return 0;
3293}
3294
2e72b634
KS
3295static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3296{
3297 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3298 unsigned long usage;
2e72b634
KS
3299 int i;
3300
3301 rcu_read_lock();
3302 if (!swap)
2c488db2 3303 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3304 else
2c488db2 3305 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3306
3307 if (!t)
3308 goto unlock;
3309
ce00a967 3310 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3311
3312 /*
748dad36 3313 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3314 * If it's not true, a threshold was crossed after last
3315 * call of __mem_cgroup_threshold().
3316 */
5407a562 3317 i = t->current_threshold;
2e72b634
KS
3318
3319 /*
3320 * Iterate backward over array of thresholds starting from
3321 * current_threshold and check if a threshold is crossed.
3322 * If none of thresholds below usage is crossed, we read
3323 * only one element of the array here.
3324 */
3325 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3326 eventfd_signal(t->entries[i].eventfd, 1);
3327
3328 /* i = current_threshold + 1 */
3329 i++;
3330
3331 /*
3332 * Iterate forward over array of thresholds starting from
3333 * current_threshold+1 and check if a threshold is crossed.
3334 * If none of thresholds above usage is crossed, we read
3335 * only one element of the array here.
3336 */
3337 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3338 eventfd_signal(t->entries[i].eventfd, 1);
3339
3340 /* Update current_threshold */
5407a562 3341 t->current_threshold = i - 1;
2e72b634
KS
3342unlock:
3343 rcu_read_unlock();
3344}
3345
3346static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3347{
ad4ca5f4
KS
3348 while (memcg) {
3349 __mem_cgroup_threshold(memcg, false);
7941d214 3350 if (do_memsw_account())
ad4ca5f4
KS
3351 __mem_cgroup_threshold(memcg, true);
3352
3353 memcg = parent_mem_cgroup(memcg);
3354 }
2e72b634
KS
3355}
3356
3357static int compare_thresholds(const void *a, const void *b)
3358{
3359 const struct mem_cgroup_threshold *_a = a;
3360 const struct mem_cgroup_threshold *_b = b;
3361
2bff24a3
GT
3362 if (_a->threshold > _b->threshold)
3363 return 1;
3364
3365 if (_a->threshold < _b->threshold)
3366 return -1;
3367
3368 return 0;
2e72b634
KS
3369}
3370
c0ff4b85 3371static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3372{
3373 struct mem_cgroup_eventfd_list *ev;
3374
2bcf2e92
MH
3375 spin_lock(&memcg_oom_lock);
3376
c0ff4b85 3377 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3378 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3379
3380 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3381 return 0;
3382}
3383
c0ff4b85 3384static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3385{
7d74b06f
KH
3386 struct mem_cgroup *iter;
3387
c0ff4b85 3388 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3389 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3390}
3391
59b6f873 3392static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3393 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3394{
2c488db2
KS
3395 struct mem_cgroup_thresholds *thresholds;
3396 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3397 unsigned long threshold;
3398 unsigned long usage;
2c488db2 3399 int i, size, ret;
2e72b634 3400
650c5e56 3401 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3402 if (ret)
3403 return ret;
3404
3405 mutex_lock(&memcg->thresholds_lock);
2c488db2 3406
05b84301 3407 if (type == _MEM) {
2c488db2 3408 thresholds = &memcg->thresholds;
ce00a967 3409 usage = mem_cgroup_usage(memcg, false);
05b84301 3410 } else if (type == _MEMSWAP) {
2c488db2 3411 thresholds = &memcg->memsw_thresholds;
ce00a967 3412 usage = mem_cgroup_usage(memcg, true);
05b84301 3413 } else
2e72b634
KS
3414 BUG();
3415
2e72b634 3416 /* Check if a threshold crossed before adding a new one */
2c488db2 3417 if (thresholds->primary)
2e72b634
KS
3418 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3419
2c488db2 3420 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3421
3422 /* Allocate memory for new array of thresholds */
2c488db2 3423 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3424 GFP_KERNEL);
2c488db2 3425 if (!new) {
2e72b634
KS
3426 ret = -ENOMEM;
3427 goto unlock;
3428 }
2c488db2 3429 new->size = size;
2e72b634
KS
3430
3431 /* Copy thresholds (if any) to new array */
2c488db2
KS
3432 if (thresholds->primary) {
3433 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3434 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3435 }
3436
2e72b634 3437 /* Add new threshold */
2c488db2
KS
3438 new->entries[size - 1].eventfd = eventfd;
3439 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3440
3441 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3442 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3443 compare_thresholds, NULL);
3444
3445 /* Find current threshold */
2c488db2 3446 new->current_threshold = -1;
2e72b634 3447 for (i = 0; i < size; i++) {
748dad36 3448 if (new->entries[i].threshold <= usage) {
2e72b634 3449 /*
2c488db2
KS
3450 * new->current_threshold will not be used until
3451 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3452 * it here.
3453 */
2c488db2 3454 ++new->current_threshold;
748dad36
SZ
3455 } else
3456 break;
2e72b634
KS
3457 }
3458
2c488db2
KS
3459 /* Free old spare buffer and save old primary buffer as spare */
3460 kfree(thresholds->spare);
3461 thresholds->spare = thresholds->primary;
3462
3463 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3464
907860ed 3465 /* To be sure that nobody uses thresholds */
2e72b634
KS
3466 synchronize_rcu();
3467
2e72b634
KS
3468unlock:
3469 mutex_unlock(&memcg->thresholds_lock);
3470
3471 return ret;
3472}
3473
59b6f873 3474static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3475 struct eventfd_ctx *eventfd, const char *args)
3476{
59b6f873 3477 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3478}
3479
59b6f873 3480static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3481 struct eventfd_ctx *eventfd, const char *args)
3482{
59b6f873 3483 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3484}
3485
59b6f873 3486static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3487 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3488{
2c488db2
KS
3489 struct mem_cgroup_thresholds *thresholds;
3490 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3491 unsigned long usage;
2c488db2 3492 int i, j, size;
2e72b634
KS
3493
3494 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3495
3496 if (type == _MEM) {
2c488db2 3497 thresholds = &memcg->thresholds;
ce00a967 3498 usage = mem_cgroup_usage(memcg, false);
05b84301 3499 } else if (type == _MEMSWAP) {
2c488db2 3500 thresholds = &memcg->memsw_thresholds;
ce00a967 3501 usage = mem_cgroup_usage(memcg, true);
05b84301 3502 } else
2e72b634
KS
3503 BUG();
3504
371528ca
AV
3505 if (!thresholds->primary)
3506 goto unlock;
3507
2e72b634
KS
3508 /* Check if a threshold crossed before removing */
3509 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3510
3511 /* Calculate new number of threshold */
2c488db2
KS
3512 size = 0;
3513 for (i = 0; i < thresholds->primary->size; i++) {
3514 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3515 size++;
3516 }
3517
2c488db2 3518 new = thresholds->spare;
907860ed 3519
2e72b634
KS
3520 /* Set thresholds array to NULL if we don't have thresholds */
3521 if (!size) {
2c488db2
KS
3522 kfree(new);
3523 new = NULL;
907860ed 3524 goto swap_buffers;
2e72b634
KS
3525 }
3526
2c488db2 3527 new->size = size;
2e72b634
KS
3528
3529 /* Copy thresholds and find current threshold */
2c488db2
KS
3530 new->current_threshold = -1;
3531 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3532 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3533 continue;
3534
2c488db2 3535 new->entries[j] = thresholds->primary->entries[i];
748dad36 3536 if (new->entries[j].threshold <= usage) {
2e72b634 3537 /*
2c488db2 3538 * new->current_threshold will not be used
2e72b634
KS
3539 * until rcu_assign_pointer(), so it's safe to increment
3540 * it here.
3541 */
2c488db2 3542 ++new->current_threshold;
2e72b634
KS
3543 }
3544 j++;
3545 }
3546
907860ed 3547swap_buffers:
2c488db2
KS
3548 /* Swap primary and spare array */
3549 thresholds->spare = thresholds->primary;
8c757763 3550
2c488db2 3551 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3552
907860ed 3553 /* To be sure that nobody uses thresholds */
2e72b634 3554 synchronize_rcu();
6611d8d7
MC
3555
3556 /* If all events are unregistered, free the spare array */
3557 if (!new) {
3558 kfree(thresholds->spare);
3559 thresholds->spare = NULL;
3560 }
371528ca 3561unlock:
2e72b634 3562 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3563}
c1e862c1 3564
59b6f873 3565static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3566 struct eventfd_ctx *eventfd)
3567{
59b6f873 3568 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3569}
3570
59b6f873 3571static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3572 struct eventfd_ctx *eventfd)
3573{
59b6f873 3574 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3575}
3576
59b6f873 3577static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3578 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3579{
9490ff27 3580 struct mem_cgroup_eventfd_list *event;
9490ff27 3581
9490ff27
KH
3582 event = kmalloc(sizeof(*event), GFP_KERNEL);
3583 if (!event)
3584 return -ENOMEM;
3585
1af8efe9 3586 spin_lock(&memcg_oom_lock);
9490ff27
KH
3587
3588 event->eventfd = eventfd;
3589 list_add(&event->list, &memcg->oom_notify);
3590
3591 /* already in OOM ? */
c2b42d3c 3592 if (memcg->under_oom)
9490ff27 3593 eventfd_signal(eventfd, 1);
1af8efe9 3594 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3595
3596 return 0;
3597}
3598
59b6f873 3599static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3600 struct eventfd_ctx *eventfd)
9490ff27 3601{
9490ff27 3602 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3603
1af8efe9 3604 spin_lock(&memcg_oom_lock);
9490ff27 3605
c0ff4b85 3606 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3607 if (ev->eventfd == eventfd) {
3608 list_del(&ev->list);
3609 kfree(ev);
3610 }
3611 }
3612
1af8efe9 3613 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3614}
3615
2da8ca82 3616static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3617{
2da8ca82 3618 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3619
791badbd 3620 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3621 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
8e675f7a 3622 seq_printf(sf, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
3c11ecf4
KH
3623 return 0;
3624}
3625
182446d0 3626static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3627 struct cftype *cft, u64 val)
3628{
182446d0 3629 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3630
3631 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3632 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3633 return -EINVAL;
3634
c0ff4b85 3635 memcg->oom_kill_disable = val;
4d845ebf 3636 if (!val)
c0ff4b85 3637 memcg_oom_recover(memcg);
3dae7fec 3638
3c11ecf4
KH
3639 return 0;
3640}
3641
52ebea74
TH
3642#ifdef CONFIG_CGROUP_WRITEBACK
3643
3644struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3645{
3646 return &memcg->cgwb_list;
3647}
3648
841710aa
TH
3649static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3650{
3651 return wb_domain_init(&memcg->cgwb_domain, gfp);
3652}
3653
3654static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3655{
3656 wb_domain_exit(&memcg->cgwb_domain);
3657}
3658
2529bb3a
TH
3659static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3660{
3661 wb_domain_size_changed(&memcg->cgwb_domain);
3662}
3663
841710aa
TH
3664struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3665{
3666 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3667
3668 if (!memcg->css.parent)
3669 return NULL;
3670
3671 return &memcg->cgwb_domain;
3672}
3673
c2aa723a
TH
3674/**
3675 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3676 * @wb: bdi_writeback in question
c5edf9cd
TH
3677 * @pfilepages: out parameter for number of file pages
3678 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3679 * @pdirty: out parameter for number of dirty pages
3680 * @pwriteback: out parameter for number of pages under writeback
3681 *
c5edf9cd
TH
3682 * Determine the numbers of file, headroom, dirty, and writeback pages in
3683 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3684 * is a bit more involved.
c2aa723a 3685 *
c5edf9cd
TH
3686 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3687 * headroom is calculated as the lowest headroom of itself and the
3688 * ancestors. Note that this doesn't consider the actual amount of
3689 * available memory in the system. The caller should further cap
3690 * *@pheadroom accordingly.
c2aa723a 3691 */
c5edf9cd
TH
3692void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3693 unsigned long *pheadroom, unsigned long *pdirty,
3694 unsigned long *pwriteback)
c2aa723a
TH
3695{
3696 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3697 struct mem_cgroup *parent;
c2aa723a 3698
ccda7f43 3699 *pdirty = memcg_page_state(memcg, NR_FILE_DIRTY);
c2aa723a
TH
3700
3701 /* this should eventually include NR_UNSTABLE_NFS */
ccda7f43 3702 *pwriteback = memcg_page_state(memcg, NR_WRITEBACK);
c5edf9cd
TH
3703 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3704 (1 << LRU_ACTIVE_FILE));
3705 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3706
c2aa723a
TH
3707 while ((parent = parent_mem_cgroup(memcg))) {
3708 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3709 unsigned long used = page_counter_read(&memcg->memory);
3710
c5edf9cd 3711 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3712 memcg = parent;
3713 }
c2aa723a
TH
3714}
3715
841710aa
TH
3716#else /* CONFIG_CGROUP_WRITEBACK */
3717
3718static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3719{
3720 return 0;
3721}
3722
3723static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3724{
3725}
3726
2529bb3a
TH
3727static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3728{
3729}
3730
52ebea74
TH
3731#endif /* CONFIG_CGROUP_WRITEBACK */
3732
3bc942f3
TH
3733/*
3734 * DO NOT USE IN NEW FILES.
3735 *
3736 * "cgroup.event_control" implementation.
3737 *
3738 * This is way over-engineered. It tries to support fully configurable
3739 * events for each user. Such level of flexibility is completely
3740 * unnecessary especially in the light of the planned unified hierarchy.
3741 *
3742 * Please deprecate this and replace with something simpler if at all
3743 * possible.
3744 */
3745
79bd9814
TH
3746/*
3747 * Unregister event and free resources.
3748 *
3749 * Gets called from workqueue.
3750 */
3bc942f3 3751static void memcg_event_remove(struct work_struct *work)
79bd9814 3752{
3bc942f3
TH
3753 struct mem_cgroup_event *event =
3754 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3755 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3756
3757 remove_wait_queue(event->wqh, &event->wait);
3758
59b6f873 3759 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3760
3761 /* Notify userspace the event is going away. */
3762 eventfd_signal(event->eventfd, 1);
3763
3764 eventfd_ctx_put(event->eventfd);
3765 kfree(event);
59b6f873 3766 css_put(&memcg->css);
79bd9814
TH
3767}
3768
3769/*
3770 * Gets called on POLLHUP on eventfd when user closes it.
3771 *
3772 * Called with wqh->lock held and interrupts disabled.
3773 */
ac6424b9 3774static int memcg_event_wake(wait_queue_entry_t *wait, unsigned mode,
3bc942f3 3775 int sync, void *key)
79bd9814 3776{
3bc942f3
TH
3777 struct mem_cgroup_event *event =
3778 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3779 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3780 unsigned long flags = (unsigned long)key;
3781
3782 if (flags & POLLHUP) {
3783 /*
3784 * If the event has been detached at cgroup removal, we
3785 * can simply return knowing the other side will cleanup
3786 * for us.
3787 *
3788 * We can't race against event freeing since the other
3789 * side will require wqh->lock via remove_wait_queue(),
3790 * which we hold.
3791 */
fba94807 3792 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3793 if (!list_empty(&event->list)) {
3794 list_del_init(&event->list);
3795 /*
3796 * We are in atomic context, but cgroup_event_remove()
3797 * may sleep, so we have to call it in workqueue.
3798 */
3799 schedule_work(&event->remove);
3800 }
fba94807 3801 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3802 }
3803
3804 return 0;
3805}
3806
3bc942f3 3807static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3808 wait_queue_head_t *wqh, poll_table *pt)
3809{
3bc942f3
TH
3810 struct mem_cgroup_event *event =
3811 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3812
3813 event->wqh = wqh;
3814 add_wait_queue(wqh, &event->wait);
3815}
3816
3817/*
3bc942f3
TH
3818 * DO NOT USE IN NEW FILES.
3819 *
79bd9814
TH
3820 * Parse input and register new cgroup event handler.
3821 *
3822 * Input must be in format '<event_fd> <control_fd> <args>'.
3823 * Interpretation of args is defined by control file implementation.
3824 */
451af504
TH
3825static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3826 char *buf, size_t nbytes, loff_t off)
79bd9814 3827{
451af504 3828 struct cgroup_subsys_state *css = of_css(of);
fba94807 3829 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3830 struct mem_cgroup_event *event;
79bd9814
TH
3831 struct cgroup_subsys_state *cfile_css;
3832 unsigned int efd, cfd;
3833 struct fd efile;
3834 struct fd cfile;
fba94807 3835 const char *name;
79bd9814
TH
3836 char *endp;
3837 int ret;
3838
451af504
TH
3839 buf = strstrip(buf);
3840
3841 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3842 if (*endp != ' ')
3843 return -EINVAL;
451af504 3844 buf = endp + 1;
79bd9814 3845
451af504 3846 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3847 if ((*endp != ' ') && (*endp != '\0'))
3848 return -EINVAL;
451af504 3849 buf = endp + 1;
79bd9814
TH
3850
3851 event = kzalloc(sizeof(*event), GFP_KERNEL);
3852 if (!event)
3853 return -ENOMEM;
3854
59b6f873 3855 event->memcg = memcg;
79bd9814 3856 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3857 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3858 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3859 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3860
3861 efile = fdget(efd);
3862 if (!efile.file) {
3863 ret = -EBADF;
3864 goto out_kfree;
3865 }
3866
3867 event->eventfd = eventfd_ctx_fileget(efile.file);
3868 if (IS_ERR(event->eventfd)) {
3869 ret = PTR_ERR(event->eventfd);
3870 goto out_put_efile;
3871 }
3872
3873 cfile = fdget(cfd);
3874 if (!cfile.file) {
3875 ret = -EBADF;
3876 goto out_put_eventfd;
3877 }
3878
3879 /* the process need read permission on control file */
3880 /* AV: shouldn't we check that it's been opened for read instead? */
3881 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3882 if (ret < 0)
3883 goto out_put_cfile;
3884
fba94807
TH
3885 /*
3886 * Determine the event callbacks and set them in @event. This used
3887 * to be done via struct cftype but cgroup core no longer knows
3888 * about these events. The following is crude but the whole thing
3889 * is for compatibility anyway.
3bc942f3
TH
3890 *
3891 * DO NOT ADD NEW FILES.
fba94807 3892 */
b583043e 3893 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3894
3895 if (!strcmp(name, "memory.usage_in_bytes")) {
3896 event->register_event = mem_cgroup_usage_register_event;
3897 event->unregister_event = mem_cgroup_usage_unregister_event;
3898 } else if (!strcmp(name, "memory.oom_control")) {
3899 event->register_event = mem_cgroup_oom_register_event;
3900 event->unregister_event = mem_cgroup_oom_unregister_event;
3901 } else if (!strcmp(name, "memory.pressure_level")) {
3902 event->register_event = vmpressure_register_event;
3903 event->unregister_event = vmpressure_unregister_event;
3904 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3905 event->register_event = memsw_cgroup_usage_register_event;
3906 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3907 } else {
3908 ret = -EINVAL;
3909 goto out_put_cfile;
3910 }
3911
79bd9814 3912 /*
b5557c4c
TH
3913 * Verify @cfile should belong to @css. Also, remaining events are
3914 * automatically removed on cgroup destruction but the removal is
3915 * asynchronous, so take an extra ref on @css.
79bd9814 3916 */
b583043e 3917 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3918 &memory_cgrp_subsys);
79bd9814 3919 ret = -EINVAL;
5a17f543 3920 if (IS_ERR(cfile_css))
79bd9814 3921 goto out_put_cfile;
5a17f543
TH
3922 if (cfile_css != css) {
3923 css_put(cfile_css);
79bd9814 3924 goto out_put_cfile;
5a17f543 3925 }
79bd9814 3926
451af504 3927 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3928 if (ret)
3929 goto out_put_css;
3930
3931 efile.file->f_op->poll(efile.file, &event->pt);
3932
fba94807
TH
3933 spin_lock(&memcg->event_list_lock);
3934 list_add(&event->list, &memcg->event_list);
3935 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3936
3937 fdput(cfile);
3938 fdput(efile);
3939
451af504 3940 return nbytes;
79bd9814
TH
3941
3942out_put_css:
b5557c4c 3943 css_put(css);
79bd9814
TH
3944out_put_cfile:
3945 fdput(cfile);
3946out_put_eventfd:
3947 eventfd_ctx_put(event->eventfd);
3948out_put_efile:
3949 fdput(efile);
3950out_kfree:
3951 kfree(event);
3952
3953 return ret;
3954}
3955
241994ed 3956static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3957 {
0eea1030 3958 .name = "usage_in_bytes",
8c7c6e34 3959 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3960 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3961 },
c84872e1
PE
3962 {
3963 .name = "max_usage_in_bytes",
8c7c6e34 3964 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3965 .write = mem_cgroup_reset,
791badbd 3966 .read_u64 = mem_cgroup_read_u64,
c84872e1 3967 },
8cdea7c0 3968 {
0eea1030 3969 .name = "limit_in_bytes",
8c7c6e34 3970 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3971 .write = mem_cgroup_write,
791badbd 3972 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3973 },
296c81d8
BS
3974 {
3975 .name = "soft_limit_in_bytes",
3976 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3977 .write = mem_cgroup_write,
791badbd 3978 .read_u64 = mem_cgroup_read_u64,
296c81d8 3979 },
8cdea7c0
BS
3980 {
3981 .name = "failcnt",
8c7c6e34 3982 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3983 .write = mem_cgroup_reset,
791badbd 3984 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3985 },
d2ceb9b7
KH
3986 {
3987 .name = "stat",
2da8ca82 3988 .seq_show = memcg_stat_show,
d2ceb9b7 3989 },
c1e862c1
KH
3990 {
3991 .name = "force_empty",
6770c64e 3992 .write = mem_cgroup_force_empty_write,
c1e862c1 3993 },
18f59ea7
BS
3994 {
3995 .name = "use_hierarchy",
3996 .write_u64 = mem_cgroup_hierarchy_write,
3997 .read_u64 = mem_cgroup_hierarchy_read,
3998 },
79bd9814 3999 {
3bc942f3 4000 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4001 .write = memcg_write_event_control,
7dbdb199 4002 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 4003 },
a7885eb8
KM
4004 {
4005 .name = "swappiness",
4006 .read_u64 = mem_cgroup_swappiness_read,
4007 .write_u64 = mem_cgroup_swappiness_write,
4008 },
7dc74be0
DN
4009 {
4010 .name = "move_charge_at_immigrate",
4011 .read_u64 = mem_cgroup_move_charge_read,
4012 .write_u64 = mem_cgroup_move_charge_write,
4013 },
9490ff27
KH
4014 {
4015 .name = "oom_control",
2da8ca82 4016 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4017 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4018 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4019 },
70ddf637
AV
4020 {
4021 .name = "pressure_level",
70ddf637 4022 },
406eb0c9
YH
4023#ifdef CONFIG_NUMA
4024 {
4025 .name = "numa_stat",
2da8ca82 4026 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4027 },
4028#endif
510fc4e1
GC
4029 {
4030 .name = "kmem.limit_in_bytes",
4031 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4032 .write = mem_cgroup_write,
791badbd 4033 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4034 },
4035 {
4036 .name = "kmem.usage_in_bytes",
4037 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4038 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4039 },
4040 {
4041 .name = "kmem.failcnt",
4042 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4043 .write = mem_cgroup_reset,
791badbd 4044 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4045 },
4046 {
4047 .name = "kmem.max_usage_in_bytes",
4048 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4049 .write = mem_cgroup_reset,
791badbd 4050 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4051 },
5b365771 4052#if defined(CONFIG_SLAB) || defined(CONFIG_SLUB_DEBUG)
749c5415
GC
4053 {
4054 .name = "kmem.slabinfo",
bc2791f8
TH
4055 .seq_start = memcg_slab_start,
4056 .seq_next = memcg_slab_next,
4057 .seq_stop = memcg_slab_stop,
b047501c 4058 .seq_show = memcg_slab_show,
749c5415
GC
4059 },
4060#endif
d55f90bf
VD
4061 {
4062 .name = "kmem.tcp.limit_in_bytes",
4063 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4064 .write = mem_cgroup_write,
4065 .read_u64 = mem_cgroup_read_u64,
4066 },
4067 {
4068 .name = "kmem.tcp.usage_in_bytes",
4069 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4070 .read_u64 = mem_cgroup_read_u64,
4071 },
4072 {
4073 .name = "kmem.tcp.failcnt",
4074 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4075 .write = mem_cgroup_reset,
4076 .read_u64 = mem_cgroup_read_u64,
4077 },
4078 {
4079 .name = "kmem.tcp.max_usage_in_bytes",
4080 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4081 .write = mem_cgroup_reset,
4082 .read_u64 = mem_cgroup_read_u64,
4083 },
6bc10349 4084 { }, /* terminate */
af36f906 4085};
8c7c6e34 4086
73f576c0
JW
4087/*
4088 * Private memory cgroup IDR
4089 *
4090 * Swap-out records and page cache shadow entries need to store memcg
4091 * references in constrained space, so we maintain an ID space that is
4092 * limited to 16 bit (MEM_CGROUP_ID_MAX), limiting the total number of
4093 * memory-controlled cgroups to 64k.
4094 *
4095 * However, there usually are many references to the oflline CSS after
4096 * the cgroup has been destroyed, such as page cache or reclaimable
4097 * slab objects, that don't need to hang on to the ID. We want to keep
4098 * those dead CSS from occupying IDs, or we might quickly exhaust the
4099 * relatively small ID space and prevent the creation of new cgroups
4100 * even when there are much fewer than 64k cgroups - possibly none.
4101 *
4102 * Maintain a private 16-bit ID space for memcg, and allow the ID to
4103 * be freed and recycled when it's no longer needed, which is usually
4104 * when the CSS is offlined.
4105 *
4106 * The only exception to that are records of swapped out tmpfs/shmem
4107 * pages that need to be attributed to live ancestors on swapin. But
4108 * those references are manageable from userspace.
4109 */
4110
4111static DEFINE_IDR(mem_cgroup_idr);
4112
615d66c3 4113static void mem_cgroup_id_get_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4114{
58fa2a55 4115 VM_BUG_ON(atomic_read(&memcg->id.ref) <= 0);
615d66c3 4116 atomic_add(n, &memcg->id.ref);
73f576c0
JW
4117}
4118
615d66c3 4119static void mem_cgroup_id_put_many(struct mem_cgroup *memcg, unsigned int n)
73f576c0 4120{
58fa2a55 4121 VM_BUG_ON(atomic_read(&memcg->id.ref) < n);
615d66c3 4122 if (atomic_sub_and_test(n, &memcg->id.ref)) {
73f576c0
JW
4123 idr_remove(&mem_cgroup_idr, memcg->id.id);
4124 memcg->id.id = 0;
4125
4126 /* Memcg ID pins CSS */
4127 css_put(&memcg->css);
4128 }
4129}
4130
615d66c3
VD
4131static inline void mem_cgroup_id_get(struct mem_cgroup *memcg)
4132{
4133 mem_cgroup_id_get_many(memcg, 1);
4134}
4135
4136static inline void mem_cgroup_id_put(struct mem_cgroup *memcg)
4137{
4138 mem_cgroup_id_put_many(memcg, 1);
4139}
4140
73f576c0
JW
4141/**
4142 * mem_cgroup_from_id - look up a memcg from a memcg id
4143 * @id: the memcg id to look up
4144 *
4145 * Caller must hold rcu_read_lock().
4146 */
4147struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
4148{
4149 WARN_ON_ONCE(!rcu_read_lock_held());
4150 return idr_find(&mem_cgroup_idr, id);
4151}
4152
ef8f2327 4153static int alloc_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4154{
4155 struct mem_cgroup_per_node *pn;
ef8f2327 4156 int tmp = node;
1ecaab2b
KH
4157 /*
4158 * This routine is called against possible nodes.
4159 * But it's BUG to call kmalloc() against offline node.
4160 *
4161 * TODO: this routine can waste much memory for nodes which will
4162 * never be onlined. It's better to use memory hotplug callback
4163 * function.
4164 */
41e3355d
KH
4165 if (!node_state(node, N_NORMAL_MEMORY))
4166 tmp = -1;
17295c88 4167 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4168 if (!pn)
4169 return 1;
1ecaab2b 4170
00f3ca2c
JW
4171 pn->lruvec_stat = alloc_percpu(struct lruvec_stat);
4172 if (!pn->lruvec_stat) {
4173 kfree(pn);
4174 return 1;
4175 }
4176
ef8f2327
MG
4177 lruvec_init(&pn->lruvec);
4178 pn->usage_in_excess = 0;
4179 pn->on_tree = false;
4180 pn->memcg = memcg;
4181
54f72fe0 4182 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4183 return 0;
4184}
4185
ef8f2327 4186static void free_mem_cgroup_per_node_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4187{
00f3ca2c
JW
4188 struct mem_cgroup_per_node *pn = memcg->nodeinfo[node];
4189
6d3d5ee1
MH
4190 if (!pn)
4191 return;
4192
00f3ca2c
JW
4193 free_percpu(pn->lruvec_stat);
4194 kfree(pn);
1ecaab2b
KH
4195}
4196
40e952f9 4197static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4198{
c8b2a36f 4199 int node;
59927fb9 4200
c8b2a36f 4201 for_each_node(node)
ef8f2327 4202 free_mem_cgroup_per_node_info(memcg, node);
c8b2a36f 4203 free_percpu(memcg->stat);
8ff69e2c 4204 kfree(memcg);
59927fb9 4205}
3afe36b1 4206
40e952f9
TE
4207static void mem_cgroup_free(struct mem_cgroup *memcg)
4208{
4209 memcg_wb_domain_exit(memcg);
4210 __mem_cgroup_free(memcg);
4211}
4212
0b8f73e1 4213static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4214{
d142e3e6 4215 struct mem_cgroup *memcg;
0b8f73e1 4216 size_t size;
6d12e2d8 4217 int node;
8cdea7c0 4218
0b8f73e1
JW
4219 size = sizeof(struct mem_cgroup);
4220 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4221
4222 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4223 if (!memcg)
0b8f73e1
JW
4224 return NULL;
4225
73f576c0
JW
4226 memcg->id.id = idr_alloc(&mem_cgroup_idr, NULL,
4227 1, MEM_CGROUP_ID_MAX,
4228 GFP_KERNEL);
4229 if (memcg->id.id < 0)
4230 goto fail;
4231
0b8f73e1
JW
4232 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4233 if (!memcg->stat)
4234 goto fail;
78fb7466 4235
3ed28fa1 4236 for_each_node(node)
ef8f2327 4237 if (alloc_mem_cgroup_per_node_info(memcg, node))
0b8f73e1 4238 goto fail;
f64c3f54 4239
0b8f73e1
JW
4240 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4241 goto fail;
28dbc4b6 4242
f7e1cb6e 4243 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4244 memcg->last_scanned_node = MAX_NUMNODES;
4245 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4246 mutex_init(&memcg->thresholds_lock);
4247 spin_lock_init(&memcg->move_lock);
70ddf637 4248 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4249 INIT_LIST_HEAD(&memcg->event_list);
4250 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4251 memcg->socket_pressure = jiffies;
127424c8 4252#ifndef CONFIG_SLOB
900a38f0 4253 memcg->kmemcg_id = -1;
900a38f0 4254#endif
52ebea74
TH
4255#ifdef CONFIG_CGROUP_WRITEBACK
4256 INIT_LIST_HEAD(&memcg->cgwb_list);
4257#endif
73f576c0 4258 idr_replace(&mem_cgroup_idr, memcg, memcg->id.id);
0b8f73e1
JW
4259 return memcg;
4260fail:
73f576c0
JW
4261 if (memcg->id.id > 0)
4262 idr_remove(&mem_cgroup_idr, memcg->id.id);
40e952f9 4263 __mem_cgroup_free(memcg);
0b8f73e1 4264 return NULL;
d142e3e6
GC
4265}
4266
0b8f73e1
JW
4267static struct cgroup_subsys_state * __ref
4268mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4269{
0b8f73e1
JW
4270 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4271 struct mem_cgroup *memcg;
4272 long error = -ENOMEM;
d142e3e6 4273
0b8f73e1
JW
4274 memcg = mem_cgroup_alloc();
4275 if (!memcg)
4276 return ERR_PTR(error);
d142e3e6 4277
0b8f73e1
JW
4278 memcg->high = PAGE_COUNTER_MAX;
4279 memcg->soft_limit = PAGE_COUNTER_MAX;
4280 if (parent) {
4281 memcg->swappiness = mem_cgroup_swappiness(parent);
4282 memcg->oom_kill_disable = parent->oom_kill_disable;
4283 }
4284 if (parent && parent->use_hierarchy) {
4285 memcg->use_hierarchy = true;
3e32cb2e 4286 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4287 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4288 page_counter_init(&memcg->memsw, &parent->memsw);
4289 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4290 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4291 } else {
3e32cb2e 4292 page_counter_init(&memcg->memory, NULL);
37e84351 4293 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4294 page_counter_init(&memcg->memsw, NULL);
4295 page_counter_init(&memcg->kmem, NULL);
0db15298 4296 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4297 /*
4298 * Deeper hierachy with use_hierarchy == false doesn't make
4299 * much sense so let cgroup subsystem know about this
4300 * unfortunate state in our controller.
4301 */
d142e3e6 4302 if (parent != root_mem_cgroup)
073219e9 4303 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4304 }
d6441637 4305
0b8f73e1
JW
4306 /* The following stuff does not apply to the root */
4307 if (!parent) {
4308 root_mem_cgroup = memcg;
4309 return &memcg->css;
4310 }
4311
b313aeee 4312 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4313 if (error)
4314 goto fail;
127424c8 4315
f7e1cb6e 4316 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4317 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4318
0b8f73e1
JW
4319 return &memcg->css;
4320fail:
4321 mem_cgroup_free(memcg);
ea3a9645 4322 return ERR_PTR(-ENOMEM);
0b8f73e1
JW
4323}
4324
73f576c0 4325static int mem_cgroup_css_online(struct cgroup_subsys_state *css)
0b8f73e1 4326{
58fa2a55
VD
4327 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4328
73f576c0 4329 /* Online state pins memcg ID, memcg ID pins CSS */
58fa2a55 4330 atomic_set(&memcg->id.ref, 1);
73f576c0 4331 css_get(css);
2f7dd7a4 4332 return 0;
8cdea7c0
BS
4333}
4334
eb95419b 4335static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4336{
eb95419b 4337 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4338 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4339
4340 /*
4341 * Unregister events and notify userspace.
4342 * Notify userspace about cgroup removing only after rmdir of cgroup
4343 * directory to avoid race between userspace and kernelspace.
4344 */
fba94807
TH
4345 spin_lock(&memcg->event_list_lock);
4346 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4347 list_del_init(&event->list);
4348 schedule_work(&event->remove);
4349 }
fba94807 4350 spin_unlock(&memcg->event_list_lock);
ec64f515 4351
63677c74
RG
4352 memcg->low = 0;
4353
567e9ab2 4354 memcg_offline_kmem(memcg);
52ebea74 4355 wb_memcg_offline(memcg);
73f576c0
JW
4356
4357 mem_cgroup_id_put(memcg);
df878fb0
KH
4358}
4359
6df38689
VD
4360static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4361{
4362 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4363
4364 invalidate_reclaim_iterators(memcg);
4365}
4366
eb95419b 4367static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4368{
eb95419b 4369 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4370
f7e1cb6e 4371 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4372 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4373
0db15298 4374 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4375 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4376
0b8f73e1
JW
4377 vmpressure_cleanup(&memcg->vmpressure);
4378 cancel_work_sync(&memcg->high_work);
4379 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4380 memcg_free_kmem(memcg);
0b8f73e1 4381 mem_cgroup_free(memcg);
8cdea7c0
BS
4382}
4383
1ced953b
TH
4384/**
4385 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4386 * @css: the target css
4387 *
4388 * Reset the states of the mem_cgroup associated with @css. This is
4389 * invoked when the userland requests disabling on the default hierarchy
4390 * but the memcg is pinned through dependency. The memcg should stop
4391 * applying policies and should revert to the vanilla state as it may be
4392 * made visible again.
4393 *
4394 * The current implementation only resets the essential configurations.
4395 * This needs to be expanded to cover all the visible parts.
4396 */
4397static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4398{
4399 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4400
d334c9bc
VD
4401 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4402 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4403 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4404 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4405 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4406 memcg->low = 0;
4407 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4408 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4409 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4410}
4411
02491447 4412#ifdef CONFIG_MMU
7dc74be0 4413/* Handlers for move charge at task migration. */
854ffa8d 4414static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4415{
05b84301 4416 int ret;
9476db97 4417
d0164adc
MG
4418 /* Try a single bulk charge without reclaim first, kswapd may wake */
4419 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4420 if (!ret) {
854ffa8d 4421 mc.precharge += count;
854ffa8d
DN
4422 return ret;
4423 }
9476db97 4424
3674534b 4425 /* Try charges one by one with reclaim, but do not retry */
854ffa8d 4426 while (count--) {
3674534b 4427 ret = try_charge(mc.to, GFP_KERNEL | __GFP_NORETRY, 1);
38c5d72f 4428 if (ret)
38c5d72f 4429 return ret;
854ffa8d 4430 mc.precharge++;
9476db97 4431 cond_resched();
854ffa8d 4432 }
9476db97 4433 return 0;
4ffef5fe
DN
4434}
4435
4ffef5fe
DN
4436union mc_target {
4437 struct page *page;
02491447 4438 swp_entry_t ent;
4ffef5fe
DN
4439};
4440
4ffef5fe 4441enum mc_target_type {
8d32ff84 4442 MC_TARGET_NONE = 0,
4ffef5fe 4443 MC_TARGET_PAGE,
02491447 4444 MC_TARGET_SWAP,
c733a828 4445 MC_TARGET_DEVICE,
4ffef5fe
DN
4446};
4447
90254a65
DN
4448static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4449 unsigned long addr, pte_t ptent)
4ffef5fe 4450{
c733a828 4451 struct page *page = _vm_normal_page(vma, addr, ptent, true);
4ffef5fe 4452
90254a65
DN
4453 if (!page || !page_mapped(page))
4454 return NULL;
4455 if (PageAnon(page)) {
1dfab5ab 4456 if (!(mc.flags & MOVE_ANON))
90254a65 4457 return NULL;
1dfab5ab
JW
4458 } else {
4459 if (!(mc.flags & MOVE_FILE))
4460 return NULL;
4461 }
90254a65
DN
4462 if (!get_page_unless_zero(page))
4463 return NULL;
4464
4465 return page;
4466}
4467
c733a828 4468#if defined(CONFIG_SWAP) || defined(CONFIG_DEVICE_PRIVATE)
90254a65 4469static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4470 pte_t ptent, swp_entry_t *entry)
90254a65 4471{
90254a65
DN
4472 struct page *page = NULL;
4473 swp_entry_t ent = pte_to_swp_entry(ptent);
4474
1dfab5ab 4475 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4476 return NULL;
c733a828
JG
4477
4478 /*
4479 * Handle MEMORY_DEVICE_PRIVATE which are ZONE_DEVICE page belonging to
4480 * a device and because they are not accessible by CPU they are store
4481 * as special swap entry in the CPU page table.
4482 */
4483 if (is_device_private_entry(ent)) {
4484 page = device_private_entry_to_page(ent);
4485 /*
4486 * MEMORY_DEVICE_PRIVATE means ZONE_DEVICE page and which have
4487 * a refcount of 1 when free (unlike normal page)
4488 */
4489 if (!page_ref_add_unless(page, 1, 1))
4490 return NULL;
4491 return page;
4492 }
4493
4b91355e
KH
4494 /*
4495 * Because lookup_swap_cache() updates some statistics counter,
4496 * we call find_get_page() with swapper_space directly.
4497 */
f6ab1f7f 4498 page = find_get_page(swap_address_space(ent), swp_offset(ent));
7941d214 4499 if (do_memsw_account())
90254a65
DN
4500 entry->val = ent.val;
4501
4502 return page;
4503}
4b91355e
KH
4504#else
4505static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
48406ef8 4506 pte_t ptent, swp_entry_t *entry)
4b91355e
KH
4507{
4508 return NULL;
4509}
4510#endif
90254a65 4511
87946a72
DN
4512static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4513 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4514{
4515 struct page *page = NULL;
87946a72
DN
4516 struct address_space *mapping;
4517 pgoff_t pgoff;
4518
4519 if (!vma->vm_file) /* anonymous vma */
4520 return NULL;
1dfab5ab 4521 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4522 return NULL;
4523
87946a72 4524 mapping = vma->vm_file->f_mapping;
0661a336 4525 pgoff = linear_page_index(vma, addr);
87946a72
DN
4526
4527 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4528#ifdef CONFIG_SWAP
4529 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4530 if (shmem_mapping(mapping)) {
4531 page = find_get_entry(mapping, pgoff);
4532 if (radix_tree_exceptional_entry(page)) {
4533 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4534 if (do_memsw_account())
139b6a6f 4535 *entry = swp;
f6ab1f7f
HY
4536 page = find_get_page(swap_address_space(swp),
4537 swp_offset(swp));
139b6a6f
JW
4538 }
4539 } else
4540 page = find_get_page(mapping, pgoff);
4541#else
4542 page = find_get_page(mapping, pgoff);
aa3b1895 4543#endif
87946a72
DN
4544 return page;
4545}
4546
b1b0deab
CG
4547/**
4548 * mem_cgroup_move_account - move account of the page
4549 * @page: the page
25843c2b 4550 * @compound: charge the page as compound or small page
b1b0deab
CG
4551 * @from: mem_cgroup which the page is moved from.
4552 * @to: mem_cgroup which the page is moved to. @from != @to.
4553 *
3ac808fd 4554 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4555 *
4556 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4557 * from old cgroup.
4558 */
4559static int mem_cgroup_move_account(struct page *page,
f627c2f5 4560 bool compound,
b1b0deab
CG
4561 struct mem_cgroup *from,
4562 struct mem_cgroup *to)
4563{
4564 unsigned long flags;
f627c2f5 4565 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4566 int ret;
c4843a75 4567 bool anon;
b1b0deab
CG
4568
4569 VM_BUG_ON(from == to);
4570 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4571 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4572
4573 /*
6a93ca8f 4574 * Prevent mem_cgroup_migrate() from looking at
45637bab 4575 * page->mem_cgroup of its source page while we change it.
b1b0deab 4576 */
f627c2f5 4577 ret = -EBUSY;
b1b0deab
CG
4578 if (!trylock_page(page))
4579 goto out;
4580
4581 ret = -EINVAL;
4582 if (page->mem_cgroup != from)
4583 goto out_unlock;
4584
c4843a75
GT
4585 anon = PageAnon(page);
4586
b1b0deab
CG
4587 spin_lock_irqsave(&from->move_lock, flags);
4588
c4843a75 4589 if (!anon && page_mapped(page)) {
71cd3113
JW
4590 __this_cpu_sub(from->stat->count[NR_FILE_MAPPED], nr_pages);
4591 __this_cpu_add(to->stat->count[NR_FILE_MAPPED], nr_pages);
b1b0deab
CG
4592 }
4593
c4843a75
GT
4594 /*
4595 * move_lock grabbed above and caller set from->moving_account, so
ccda7f43 4596 * mod_memcg_page_state will serialize updates to PageDirty.
c4843a75
GT
4597 * So mapping should be stable for dirty pages.
4598 */
4599 if (!anon && PageDirty(page)) {
4600 struct address_space *mapping = page_mapping(page);
4601
4602 if (mapping_cap_account_dirty(mapping)) {
71cd3113 4603 __this_cpu_sub(from->stat->count[NR_FILE_DIRTY],
c4843a75 4604 nr_pages);
71cd3113 4605 __this_cpu_add(to->stat->count[NR_FILE_DIRTY],
c4843a75
GT
4606 nr_pages);
4607 }
4608 }
4609
b1b0deab 4610 if (PageWriteback(page)) {
71cd3113
JW
4611 __this_cpu_sub(from->stat->count[NR_WRITEBACK], nr_pages);
4612 __this_cpu_add(to->stat->count[NR_WRITEBACK], nr_pages);
b1b0deab
CG
4613 }
4614
4615 /*
4616 * It is safe to change page->mem_cgroup here because the page
4617 * is referenced, charged, and isolated - we can't race with
4618 * uncharging, charging, migration, or LRU putback.
4619 */
4620
4621 /* caller should have done css_get */
4622 page->mem_cgroup = to;
4623 spin_unlock_irqrestore(&from->move_lock, flags);
4624
4625 ret = 0;
4626
4627 local_irq_disable();
f627c2f5 4628 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4629 memcg_check_events(to, page);
f627c2f5 4630 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4631 memcg_check_events(from, page);
4632 local_irq_enable();
4633out_unlock:
4634 unlock_page(page);
4635out:
4636 return ret;
4637}
4638
7cf7806c
LR
4639/**
4640 * get_mctgt_type - get target type of moving charge
4641 * @vma: the vma the pte to be checked belongs
4642 * @addr: the address corresponding to the pte to be checked
4643 * @ptent: the pte to be checked
4644 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4645 *
4646 * Returns
4647 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4648 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4649 * move charge. if @target is not NULL, the page is stored in target->page
4650 * with extra refcnt got(Callers should handle it).
4651 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4652 * target for charge migration. if @target is not NULL, the entry is stored
4653 * in target->ent.
df6ad698
JG
4654 * 3(MC_TARGET_DEVICE): like MC_TARGET_PAGE but page is MEMORY_DEVICE_PUBLIC
4655 * or MEMORY_DEVICE_PRIVATE (so ZONE_DEVICE page and thus not on the lru).
4656 * For now we such page is charge like a regular page would be as for all
4657 * intent and purposes it is just special memory taking the place of a
4658 * regular page.
c733a828
JG
4659 *
4660 * See Documentations/vm/hmm.txt and include/linux/hmm.h
7cf7806c
LR
4661 *
4662 * Called with pte lock held.
4663 */
4664
8d32ff84 4665static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4666 unsigned long addr, pte_t ptent, union mc_target *target)
4667{
4668 struct page *page = NULL;
8d32ff84 4669 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4670 swp_entry_t ent = { .val = 0 };
4671
4672 if (pte_present(ptent))
4673 page = mc_handle_present_pte(vma, addr, ptent);
4674 else if (is_swap_pte(ptent))
48406ef8 4675 page = mc_handle_swap_pte(vma, ptent, &ent);
0661a336 4676 else if (pte_none(ptent))
87946a72 4677 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4678
4679 if (!page && !ent.val)
8d32ff84 4680 return ret;
02491447 4681 if (page) {
02491447 4682 /*
0a31bc97 4683 * Do only loose check w/o serialization.
1306a85a 4684 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4685 * not under LRU exclusion.
02491447 4686 */
1306a85a 4687 if (page->mem_cgroup == mc.from) {
02491447 4688 ret = MC_TARGET_PAGE;
df6ad698
JG
4689 if (is_device_private_page(page) ||
4690 is_device_public_page(page))
c733a828 4691 ret = MC_TARGET_DEVICE;
02491447
DN
4692 if (target)
4693 target->page = page;
4694 }
4695 if (!ret || !target)
4696 put_page(page);
4697 }
3e14a57b
HY
4698 /*
4699 * There is a swap entry and a page doesn't exist or isn't charged.
4700 * But we cannot move a tail-page in a THP.
4701 */
4702 if (ent.val && !ret && (!page || !PageTransCompound(page)) &&
34c00c31 4703 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4704 ret = MC_TARGET_SWAP;
4705 if (target)
4706 target->ent = ent;
4ffef5fe 4707 }
4ffef5fe
DN
4708 return ret;
4709}
4710
12724850
NH
4711#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4712/*
d6810d73
HY
4713 * We don't consider PMD mapped swapping or file mapped pages because THP does
4714 * not support them for now.
12724850
NH
4715 * Caller should make sure that pmd_trans_huge(pmd) is true.
4716 */
4717static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4718 unsigned long addr, pmd_t pmd, union mc_target *target)
4719{
4720 struct page *page = NULL;
12724850
NH
4721 enum mc_target_type ret = MC_TARGET_NONE;
4722
84c3fc4e
ZY
4723 if (unlikely(is_swap_pmd(pmd))) {
4724 VM_BUG_ON(thp_migration_supported() &&
4725 !is_pmd_migration_entry(pmd));
4726 return ret;
4727 }
12724850 4728 page = pmd_page(pmd);
309381fe 4729 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4730 if (!(mc.flags & MOVE_ANON))
12724850 4731 return ret;
1306a85a 4732 if (page->mem_cgroup == mc.from) {
12724850
NH
4733 ret = MC_TARGET_PAGE;
4734 if (target) {
4735 get_page(page);
4736 target->page = page;
4737 }
4738 }
4739 return ret;
4740}
4741#else
4742static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4743 unsigned long addr, pmd_t pmd, union mc_target *target)
4744{
4745 return MC_TARGET_NONE;
4746}
4747#endif
4748
4ffef5fe
DN
4749static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4750 unsigned long addr, unsigned long end,
4751 struct mm_walk *walk)
4752{
26bcd64a 4753 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4754 pte_t *pte;
4755 spinlock_t *ptl;
4756
b6ec57f4
KS
4757 ptl = pmd_trans_huge_lock(pmd, vma);
4758 if (ptl) {
c733a828
JG
4759 /*
4760 * Note their can not be MC_TARGET_DEVICE for now as we do not
4761 * support transparent huge page with MEMORY_DEVICE_PUBLIC or
4762 * MEMORY_DEVICE_PRIVATE but this might change.
4763 */
12724850
NH
4764 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4765 mc.precharge += HPAGE_PMD_NR;
bf929152 4766 spin_unlock(ptl);
1a5a9906 4767 return 0;
12724850 4768 }
03319327 4769
45f83cef
AA
4770 if (pmd_trans_unstable(pmd))
4771 return 0;
4ffef5fe
DN
4772 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4773 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4774 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4775 mc.precharge++; /* increment precharge temporarily */
4776 pte_unmap_unlock(pte - 1, ptl);
4777 cond_resched();
4778
7dc74be0
DN
4779 return 0;
4780}
4781
4ffef5fe
DN
4782static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4783{
4784 unsigned long precharge;
4ffef5fe 4785
26bcd64a
NH
4786 struct mm_walk mem_cgroup_count_precharge_walk = {
4787 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4788 .mm = mm,
4789 };
dfe076b0 4790 down_read(&mm->mmap_sem);
0247f3f4
JM
4791 walk_page_range(0, mm->highest_vm_end,
4792 &mem_cgroup_count_precharge_walk);
dfe076b0 4793 up_read(&mm->mmap_sem);
4ffef5fe
DN
4794
4795 precharge = mc.precharge;
4796 mc.precharge = 0;
4797
4798 return precharge;
4799}
4800
4ffef5fe
DN
4801static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4802{
dfe076b0
DN
4803 unsigned long precharge = mem_cgroup_count_precharge(mm);
4804
4805 VM_BUG_ON(mc.moving_task);
4806 mc.moving_task = current;
4807 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4808}
4809
dfe076b0
DN
4810/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4811static void __mem_cgroup_clear_mc(void)
4ffef5fe 4812{
2bd9bb20
KH
4813 struct mem_cgroup *from = mc.from;
4814 struct mem_cgroup *to = mc.to;
4815
4ffef5fe 4816 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4817 if (mc.precharge) {
00501b53 4818 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4819 mc.precharge = 0;
4820 }
4821 /*
4822 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4823 * we must uncharge here.
4824 */
4825 if (mc.moved_charge) {
00501b53 4826 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4827 mc.moved_charge = 0;
4ffef5fe 4828 }
483c30b5
DN
4829 /* we must fixup refcnts and charges */
4830 if (mc.moved_swap) {
483c30b5 4831 /* uncharge swap account from the old cgroup */
ce00a967 4832 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4833 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4834
615d66c3
VD
4835 mem_cgroup_id_put_many(mc.from, mc.moved_swap);
4836
05b84301 4837 /*
3e32cb2e
JW
4838 * we charged both to->memory and to->memsw, so we
4839 * should uncharge to->memory.
05b84301 4840 */
ce00a967 4841 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4842 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4843
615d66c3
VD
4844 mem_cgroup_id_get_many(mc.to, mc.moved_swap);
4845 css_put_many(&mc.to->css, mc.moved_swap);
3e32cb2e 4846
483c30b5
DN
4847 mc.moved_swap = 0;
4848 }
dfe076b0
DN
4849 memcg_oom_recover(from);
4850 memcg_oom_recover(to);
4851 wake_up_all(&mc.waitq);
4852}
4853
4854static void mem_cgroup_clear_mc(void)
4855{
264a0ae1
TH
4856 struct mm_struct *mm = mc.mm;
4857
dfe076b0
DN
4858 /*
4859 * we must clear moving_task before waking up waiters at the end of
4860 * task migration.
4861 */
4862 mc.moving_task = NULL;
4863 __mem_cgroup_clear_mc();
2bd9bb20 4864 spin_lock(&mc.lock);
4ffef5fe
DN
4865 mc.from = NULL;
4866 mc.to = NULL;
264a0ae1 4867 mc.mm = NULL;
2bd9bb20 4868 spin_unlock(&mc.lock);
264a0ae1
TH
4869
4870 mmput(mm);
4ffef5fe
DN
4871}
4872
1f7dd3e5 4873static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4874{
1f7dd3e5 4875 struct cgroup_subsys_state *css;
eed67d75 4876 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4877 struct mem_cgroup *from;
4530eddb 4878 struct task_struct *leader, *p;
9f2115f9 4879 struct mm_struct *mm;
1dfab5ab 4880 unsigned long move_flags;
9f2115f9 4881 int ret = 0;
7dc74be0 4882
1f7dd3e5
TH
4883 /* charge immigration isn't supported on the default hierarchy */
4884 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4885 return 0;
4886
4530eddb
TH
4887 /*
4888 * Multi-process migrations only happen on the default hierarchy
4889 * where charge immigration is not used. Perform charge
4890 * immigration if @tset contains a leader and whine if there are
4891 * multiple.
4892 */
4893 p = NULL;
1f7dd3e5 4894 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4895 WARN_ON_ONCE(p);
4896 p = leader;
1f7dd3e5 4897 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4898 }
4899 if (!p)
4900 return 0;
4901
1f7dd3e5
TH
4902 /*
4903 * We are now commited to this value whatever it is. Changes in this
4904 * tunable will only affect upcoming migrations, not the current one.
4905 * So we need to save it, and keep it going.
4906 */
4907 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4908 if (!move_flags)
4909 return 0;
4910
9f2115f9
TH
4911 from = mem_cgroup_from_task(p);
4912
4913 VM_BUG_ON(from == memcg);
4914
4915 mm = get_task_mm(p);
4916 if (!mm)
4917 return 0;
4918 /* We move charges only when we move a owner of the mm */
4919 if (mm->owner == p) {
4920 VM_BUG_ON(mc.from);
4921 VM_BUG_ON(mc.to);
4922 VM_BUG_ON(mc.precharge);
4923 VM_BUG_ON(mc.moved_charge);
4924 VM_BUG_ON(mc.moved_swap);
4925
4926 spin_lock(&mc.lock);
264a0ae1 4927 mc.mm = mm;
9f2115f9
TH
4928 mc.from = from;
4929 mc.to = memcg;
4930 mc.flags = move_flags;
4931 spin_unlock(&mc.lock);
4932 /* We set mc.moving_task later */
4933
4934 ret = mem_cgroup_precharge_mc(mm);
4935 if (ret)
4936 mem_cgroup_clear_mc();
264a0ae1
TH
4937 } else {
4938 mmput(mm);
7dc74be0
DN
4939 }
4940 return ret;
4941}
4942
1f7dd3e5 4943static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4944{
4e2f245d
JW
4945 if (mc.to)
4946 mem_cgroup_clear_mc();
7dc74be0
DN
4947}
4948
4ffef5fe
DN
4949static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4950 unsigned long addr, unsigned long end,
4951 struct mm_walk *walk)
7dc74be0 4952{
4ffef5fe 4953 int ret = 0;
26bcd64a 4954 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4955 pte_t *pte;
4956 spinlock_t *ptl;
12724850
NH
4957 enum mc_target_type target_type;
4958 union mc_target target;
4959 struct page *page;
4ffef5fe 4960
b6ec57f4
KS
4961 ptl = pmd_trans_huge_lock(pmd, vma);
4962 if (ptl) {
62ade86a 4963 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4964 spin_unlock(ptl);
12724850
NH
4965 return 0;
4966 }
4967 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4968 if (target_type == MC_TARGET_PAGE) {
4969 page = target.page;
4970 if (!isolate_lru_page(page)) {
f627c2f5 4971 if (!mem_cgroup_move_account(page, true,
1306a85a 4972 mc.from, mc.to)) {
12724850
NH
4973 mc.precharge -= HPAGE_PMD_NR;
4974 mc.moved_charge += HPAGE_PMD_NR;
4975 }
4976 putback_lru_page(page);
4977 }
4978 put_page(page);
c733a828
JG
4979 } else if (target_type == MC_TARGET_DEVICE) {
4980 page = target.page;
4981 if (!mem_cgroup_move_account(page, true,
4982 mc.from, mc.to)) {
4983 mc.precharge -= HPAGE_PMD_NR;
4984 mc.moved_charge += HPAGE_PMD_NR;
4985 }
4986 put_page(page);
12724850 4987 }
bf929152 4988 spin_unlock(ptl);
1a5a9906 4989 return 0;
12724850
NH
4990 }
4991
45f83cef
AA
4992 if (pmd_trans_unstable(pmd))
4993 return 0;
4ffef5fe
DN
4994retry:
4995 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4996 for (; addr != end; addr += PAGE_SIZE) {
4997 pte_t ptent = *(pte++);
c733a828 4998 bool device = false;
02491447 4999 swp_entry_t ent;
4ffef5fe
DN
5000
5001 if (!mc.precharge)
5002 break;
5003
8d32ff84 5004 switch (get_mctgt_type(vma, addr, ptent, &target)) {
c733a828
JG
5005 case MC_TARGET_DEVICE:
5006 device = true;
5007 /* fall through */
4ffef5fe
DN
5008 case MC_TARGET_PAGE:
5009 page = target.page;
53f9263b
KS
5010 /*
5011 * We can have a part of the split pmd here. Moving it
5012 * can be done but it would be too convoluted so simply
5013 * ignore such a partial THP and keep it in original
5014 * memcg. There should be somebody mapping the head.
5015 */
5016 if (PageTransCompound(page))
5017 goto put;
c733a828 5018 if (!device && isolate_lru_page(page))
4ffef5fe 5019 goto put;
f627c2f5
KS
5020 if (!mem_cgroup_move_account(page, false,
5021 mc.from, mc.to)) {
4ffef5fe 5022 mc.precharge--;
854ffa8d
DN
5023 /* we uncharge from mc.from later. */
5024 mc.moved_charge++;
4ffef5fe 5025 }
c733a828
JG
5026 if (!device)
5027 putback_lru_page(page);
8d32ff84 5028put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5029 put_page(page);
5030 break;
02491447
DN
5031 case MC_TARGET_SWAP:
5032 ent = target.ent;
e91cbb42 5033 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5034 mc.precharge--;
483c30b5
DN
5035 /* we fixup refcnts and charges later. */
5036 mc.moved_swap++;
5037 }
02491447 5038 break;
4ffef5fe
DN
5039 default:
5040 break;
5041 }
5042 }
5043 pte_unmap_unlock(pte - 1, ptl);
5044 cond_resched();
5045
5046 if (addr != end) {
5047 /*
5048 * We have consumed all precharges we got in can_attach().
5049 * We try charge one by one, but don't do any additional
5050 * charges to mc.to if we have failed in charge once in attach()
5051 * phase.
5052 */
854ffa8d 5053 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5054 if (!ret)
5055 goto retry;
5056 }
5057
5058 return ret;
5059}
5060
264a0ae1 5061static void mem_cgroup_move_charge(void)
4ffef5fe 5062{
26bcd64a
NH
5063 struct mm_walk mem_cgroup_move_charge_walk = {
5064 .pmd_entry = mem_cgroup_move_charge_pte_range,
264a0ae1 5065 .mm = mc.mm,
26bcd64a 5066 };
4ffef5fe
DN
5067
5068 lru_add_drain_all();
312722cb 5069 /*
81f8c3a4
JW
5070 * Signal lock_page_memcg() to take the memcg's move_lock
5071 * while we're moving its pages to another memcg. Then wait
5072 * for already started RCU-only updates to finish.
312722cb
JW
5073 */
5074 atomic_inc(&mc.from->moving_account);
5075 synchronize_rcu();
dfe076b0 5076retry:
264a0ae1 5077 if (unlikely(!down_read_trylock(&mc.mm->mmap_sem))) {
dfe076b0
DN
5078 /*
5079 * Someone who are holding the mmap_sem might be waiting in
5080 * waitq. So we cancel all extra charges, wake up all waiters,
5081 * and retry. Because we cancel precharges, we might not be able
5082 * to move enough charges, but moving charge is a best-effort
5083 * feature anyway, so it wouldn't be a big problem.
5084 */
5085 __mem_cgroup_clear_mc();
5086 cond_resched();
5087 goto retry;
5088 }
26bcd64a
NH
5089 /*
5090 * When we have consumed all precharges and failed in doing
5091 * additional charge, the page walk just aborts.
5092 */
0247f3f4
JM
5093 walk_page_range(0, mc.mm->highest_vm_end, &mem_cgroup_move_charge_walk);
5094
264a0ae1 5095 up_read(&mc.mm->mmap_sem);
312722cb 5096 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5097}
5098
264a0ae1 5099static void mem_cgroup_move_task(void)
67e465a7 5100{
264a0ae1
TH
5101 if (mc.to) {
5102 mem_cgroup_move_charge();
a433658c 5103 mem_cgroup_clear_mc();
264a0ae1 5104 }
67e465a7 5105}
5cfb80a7 5106#else /* !CONFIG_MMU */
1f7dd3e5 5107static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5108{
5109 return 0;
5110}
1f7dd3e5 5111static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
5112{
5113}
264a0ae1 5114static void mem_cgroup_move_task(void)
5cfb80a7
DN
5115{
5116}
5117#endif
67e465a7 5118
f00baae7
TH
5119/*
5120 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5121 * to verify whether we're attached to the default hierarchy on each mount
5122 * attempt.
f00baae7 5123 */
eb95419b 5124static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5125{
5126 /*
aa6ec29b 5127 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5128 * guarantees that @root doesn't have any children, so turning it
5129 * on for the root memcg is enough.
5130 */
9e10a130 5131 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
5132 root_mem_cgroup->use_hierarchy = true;
5133 else
5134 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
5135}
5136
241994ed
JW
5137static u64 memory_current_read(struct cgroup_subsys_state *css,
5138 struct cftype *cft)
5139{
f5fc3c5d
JW
5140 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5141
5142 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
5143}
5144
5145static int memory_low_show(struct seq_file *m, void *v)
5146{
5147 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5148 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
5149
5150 if (low == PAGE_COUNTER_MAX)
d2973697 5151 seq_puts(m, "max\n");
241994ed
JW
5152 else
5153 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5154
5155 return 0;
5156}
5157
5158static ssize_t memory_low_write(struct kernfs_open_file *of,
5159 char *buf, size_t nbytes, loff_t off)
5160{
5161 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5162 unsigned long low;
5163 int err;
5164
5165 buf = strstrip(buf);
d2973697 5166 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
5167 if (err)
5168 return err;
5169
5170 memcg->low = low;
5171
5172 return nbytes;
5173}
5174
5175static int memory_high_show(struct seq_file *m, void *v)
5176{
5177 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5178 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
5179
5180 if (high == PAGE_COUNTER_MAX)
d2973697 5181 seq_puts(m, "max\n");
241994ed
JW
5182 else
5183 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5184
5185 return 0;
5186}
5187
5188static ssize_t memory_high_write(struct kernfs_open_file *of,
5189 char *buf, size_t nbytes, loff_t off)
5190{
5191 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 5192 unsigned long nr_pages;
241994ed
JW
5193 unsigned long high;
5194 int err;
5195
5196 buf = strstrip(buf);
d2973697 5197 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5198 if (err)
5199 return err;
5200
5201 memcg->high = high;
5202
588083bb
JW
5203 nr_pages = page_counter_read(&memcg->memory);
5204 if (nr_pages > high)
5205 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5206 GFP_KERNEL, true);
5207
2529bb3a 5208 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5209 return nbytes;
5210}
5211
5212static int memory_max_show(struct seq_file *m, void *v)
5213{
5214 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5215 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5216
5217 if (max == PAGE_COUNTER_MAX)
d2973697 5218 seq_puts(m, "max\n");
241994ed
JW
5219 else
5220 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5221
5222 return 0;
5223}
5224
5225static ssize_t memory_max_write(struct kernfs_open_file *of,
5226 char *buf, size_t nbytes, loff_t off)
5227{
5228 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
b6e6edcf
JW
5229 unsigned int nr_reclaims = MEM_CGROUP_RECLAIM_RETRIES;
5230 bool drained = false;
241994ed
JW
5231 unsigned long max;
5232 int err;
5233
5234 buf = strstrip(buf);
d2973697 5235 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5236 if (err)
5237 return err;
5238
b6e6edcf
JW
5239 xchg(&memcg->memory.limit, max);
5240
5241 for (;;) {
5242 unsigned long nr_pages = page_counter_read(&memcg->memory);
5243
5244 if (nr_pages <= max)
5245 break;
5246
5247 if (signal_pending(current)) {
5248 err = -EINTR;
5249 break;
5250 }
5251
5252 if (!drained) {
5253 drain_all_stock(memcg);
5254 drained = true;
5255 continue;
5256 }
5257
5258 if (nr_reclaims) {
5259 if (!try_to_free_mem_cgroup_pages(memcg, nr_pages - max,
5260 GFP_KERNEL, true))
5261 nr_reclaims--;
5262 continue;
5263 }
5264
31176c78 5265 mem_cgroup_event(memcg, MEMCG_OOM);
b6e6edcf
JW
5266 if (!mem_cgroup_out_of_memory(memcg, GFP_KERNEL, 0))
5267 break;
5268 }
241994ed 5269
2529bb3a 5270 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5271 return nbytes;
5272}
5273
5274static int memory_events_show(struct seq_file *m, void *v)
5275{
5276 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5277
ccda7f43
JW
5278 seq_printf(m, "low %lu\n", memcg_sum_events(memcg, MEMCG_LOW));
5279 seq_printf(m, "high %lu\n", memcg_sum_events(memcg, MEMCG_HIGH));
5280 seq_printf(m, "max %lu\n", memcg_sum_events(memcg, MEMCG_MAX));
5281 seq_printf(m, "oom %lu\n", memcg_sum_events(memcg, MEMCG_OOM));
8e675f7a 5282 seq_printf(m, "oom_kill %lu\n", memcg_sum_events(memcg, OOM_KILL));
241994ed
JW
5283
5284 return 0;
5285}
5286
587d9f72
JW
5287static int memory_stat_show(struct seq_file *m, void *v)
5288{
5289 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5290 unsigned long stat[MEMCG_NR_STAT];
5291 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5292 int i;
5293
5294 /*
5295 * Provide statistics on the state of the memory subsystem as
5296 * well as cumulative event counters that show past behavior.
5297 *
5298 * This list is ordered following a combination of these gradients:
5299 * 1) generic big picture -> specifics and details
5300 * 2) reflecting userspace activity -> reflecting kernel heuristics
5301 *
5302 * Current memory state:
5303 */
5304
72b54e73
VD
5305 tree_stat(memcg, stat);
5306 tree_events(memcg, events);
5307
587d9f72 5308 seq_printf(m, "anon %llu\n",
71cd3113 5309 (u64)stat[MEMCG_RSS] * PAGE_SIZE);
587d9f72 5310 seq_printf(m, "file %llu\n",
71cd3113 5311 (u64)stat[MEMCG_CACHE] * PAGE_SIZE);
12580e4b 5312 seq_printf(m, "kernel_stack %llu\n",
efdc9490 5313 (u64)stat[MEMCG_KERNEL_STACK_KB] * 1024);
27ee57c9 5314 seq_printf(m, "slab %llu\n",
32049296
JW
5315 (u64)(stat[NR_SLAB_RECLAIMABLE] +
5316 stat[NR_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5317 seq_printf(m, "sock %llu\n",
72b54e73 5318 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72 5319
9a4caf1e 5320 seq_printf(m, "shmem %llu\n",
71cd3113 5321 (u64)stat[NR_SHMEM] * PAGE_SIZE);
587d9f72 5322 seq_printf(m, "file_mapped %llu\n",
71cd3113 5323 (u64)stat[NR_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5324 seq_printf(m, "file_dirty %llu\n",
71cd3113 5325 (u64)stat[NR_FILE_DIRTY] * PAGE_SIZE);
587d9f72 5326 seq_printf(m, "file_writeback %llu\n",
71cd3113 5327 (u64)stat[NR_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5328
5329 for (i = 0; i < NR_LRU_LISTS; i++) {
5330 struct mem_cgroup *mi;
5331 unsigned long val = 0;
5332
5333 for_each_mem_cgroup_tree(mi, memcg)
5334 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5335 seq_printf(m, "%s %llu\n",
5336 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5337 }
5338
27ee57c9 5339 seq_printf(m, "slab_reclaimable %llu\n",
32049296 5340 (u64)stat[NR_SLAB_RECLAIMABLE] * PAGE_SIZE);
27ee57c9 5341 seq_printf(m, "slab_unreclaimable %llu\n",
32049296 5342 (u64)stat[NR_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
27ee57c9 5343
587d9f72
JW
5344 /* Accumulated memory events */
5345
df0e53d0
JW
5346 seq_printf(m, "pgfault %lu\n", events[PGFAULT]);
5347 seq_printf(m, "pgmajfault %lu\n", events[PGMAJFAULT]);
587d9f72 5348
2262185c
RG
5349 seq_printf(m, "pgrefill %lu\n", events[PGREFILL]);
5350 seq_printf(m, "pgscan %lu\n", events[PGSCAN_KSWAPD] +
5351 events[PGSCAN_DIRECT]);
5352 seq_printf(m, "pgsteal %lu\n", events[PGSTEAL_KSWAPD] +
5353 events[PGSTEAL_DIRECT]);
5354 seq_printf(m, "pgactivate %lu\n", events[PGACTIVATE]);
5355 seq_printf(m, "pgdeactivate %lu\n", events[PGDEACTIVATE]);
5356 seq_printf(m, "pglazyfree %lu\n", events[PGLAZYFREE]);
5357 seq_printf(m, "pglazyfreed %lu\n", events[PGLAZYFREED]);
5358
2a2e4885 5359 seq_printf(m, "workingset_refault %lu\n",
71cd3113 5360 stat[WORKINGSET_REFAULT]);
2a2e4885 5361 seq_printf(m, "workingset_activate %lu\n",
71cd3113 5362 stat[WORKINGSET_ACTIVATE]);
2a2e4885 5363 seq_printf(m, "workingset_nodereclaim %lu\n",
71cd3113 5364 stat[WORKINGSET_NODERECLAIM]);
2a2e4885 5365
587d9f72
JW
5366 return 0;
5367}
5368
241994ed
JW
5369static struct cftype memory_files[] = {
5370 {
5371 .name = "current",
f5fc3c5d 5372 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5373 .read_u64 = memory_current_read,
5374 },
5375 {
5376 .name = "low",
5377 .flags = CFTYPE_NOT_ON_ROOT,
5378 .seq_show = memory_low_show,
5379 .write = memory_low_write,
5380 },
5381 {
5382 .name = "high",
5383 .flags = CFTYPE_NOT_ON_ROOT,
5384 .seq_show = memory_high_show,
5385 .write = memory_high_write,
5386 },
5387 {
5388 .name = "max",
5389 .flags = CFTYPE_NOT_ON_ROOT,
5390 .seq_show = memory_max_show,
5391 .write = memory_max_write,
5392 },
5393 {
5394 .name = "events",
5395 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5396 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5397 .seq_show = memory_events_show,
5398 },
587d9f72
JW
5399 {
5400 .name = "stat",
5401 .flags = CFTYPE_NOT_ON_ROOT,
5402 .seq_show = memory_stat_show,
5403 },
241994ed
JW
5404 { } /* terminate */
5405};
5406
073219e9 5407struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5408 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5409 .css_online = mem_cgroup_css_online,
92fb9748 5410 .css_offline = mem_cgroup_css_offline,
6df38689 5411 .css_released = mem_cgroup_css_released,
92fb9748 5412 .css_free = mem_cgroup_css_free,
1ced953b 5413 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5414 .can_attach = mem_cgroup_can_attach,
5415 .cancel_attach = mem_cgroup_cancel_attach,
264a0ae1 5416 .post_attach = mem_cgroup_move_task,
f00baae7 5417 .bind = mem_cgroup_bind,
241994ed
JW
5418 .dfl_cftypes = memory_files,
5419 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5420 .early_init = 0,
8cdea7c0 5421};
c077719b 5422
241994ed
JW
5423/**
5424 * mem_cgroup_low - check if memory consumption is below the normal range
34c81057 5425 * @root: the top ancestor of the sub-tree being checked
241994ed
JW
5426 * @memcg: the memory cgroup to check
5427 *
5428 * Returns %true if memory consumption of @memcg, and that of all
34c81057
SC
5429 * ancestors up to (but not including) @root, is below the normal range.
5430 *
5431 * @root is exclusive; it is never low when looked at directly and isn't
5432 * checked when traversing the hierarchy.
5433 *
5434 * Excluding @root enables using memory.low to prioritize memory usage
5435 * between cgroups within a subtree of the hierarchy that is limited by
5436 * memory.high or memory.max.
5437 *
5438 * For example, given cgroup A with children B and C:
5439 *
5440 * A
5441 * / \
5442 * B C
5443 *
5444 * and
5445 *
5446 * 1. A/memory.current > A/memory.high
5447 * 2. A/B/memory.current < A/B/memory.low
5448 * 3. A/C/memory.current >= A/C/memory.low
5449 *
5450 * As 'A' is high, i.e. triggers reclaim from 'A', and 'B' is low, we
5451 * should reclaim from 'C' until 'A' is no longer high or until we can
5452 * no longer reclaim from 'C'. If 'A', i.e. @root, isn't excluded by
5453 * mem_cgroup_low when reclaming from 'A', then 'B' won't be considered
5454 * low and we will reclaim indiscriminately from both 'B' and 'C'.
241994ed
JW
5455 */
5456bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5457{
5458 if (mem_cgroup_disabled())
5459 return false;
5460
34c81057
SC
5461 if (!root)
5462 root = root_mem_cgroup;
5463 if (memcg == root)
241994ed
JW
5464 return false;
5465
34c81057 5466 for (; memcg != root; memcg = parent_mem_cgroup(memcg)) {
4e54dede 5467 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5468 return false;
5469 }
34c81057 5470
241994ed
JW
5471 return true;
5472}
5473
00501b53
JW
5474/**
5475 * mem_cgroup_try_charge - try charging a page
5476 * @page: page to charge
5477 * @mm: mm context of the victim
5478 * @gfp_mask: reclaim mode
5479 * @memcgp: charged memcg return
25843c2b 5480 * @compound: charge the page as compound or small page
00501b53
JW
5481 *
5482 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5483 * pages according to @gfp_mask if necessary.
5484 *
5485 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5486 * Otherwise, an error code is returned.
5487 *
5488 * After page->mapping has been set up, the caller must finalize the
5489 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5490 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5491 */
5492int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5493 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5494 bool compound)
00501b53
JW
5495{
5496 struct mem_cgroup *memcg = NULL;
f627c2f5 5497 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5498 int ret = 0;
5499
5500 if (mem_cgroup_disabled())
5501 goto out;
5502
5503 if (PageSwapCache(page)) {
00501b53
JW
5504 /*
5505 * Every swap fault against a single page tries to charge the
5506 * page, bail as early as possible. shmem_unuse() encounters
5507 * already charged pages, too. The USED bit is protected by
5508 * the page lock, which serializes swap cache removal, which
5509 * in turn serializes uncharging.
5510 */
e993d905 5511 VM_BUG_ON_PAGE(!PageLocked(page), page);
abe2895b 5512 if (compound_head(page)->mem_cgroup)
00501b53 5513 goto out;
e993d905 5514
37e84351 5515 if (do_swap_account) {
e993d905
VD
5516 swp_entry_t ent = { .val = page_private(page), };
5517 unsigned short id = lookup_swap_cgroup_id(ent);
5518
5519 rcu_read_lock();
5520 memcg = mem_cgroup_from_id(id);
5521 if (memcg && !css_tryget_online(&memcg->css))
5522 memcg = NULL;
5523 rcu_read_unlock();
5524 }
00501b53
JW
5525 }
5526
00501b53
JW
5527 if (!memcg)
5528 memcg = get_mem_cgroup_from_mm(mm);
5529
5530 ret = try_charge(memcg, gfp_mask, nr_pages);
5531
5532 css_put(&memcg->css);
00501b53
JW
5533out:
5534 *memcgp = memcg;
5535 return ret;
5536}
5537
5538/**
5539 * mem_cgroup_commit_charge - commit a page charge
5540 * @page: page to charge
5541 * @memcg: memcg to charge the page to
5542 * @lrucare: page might be on LRU already
25843c2b 5543 * @compound: charge the page as compound or small page
00501b53
JW
5544 *
5545 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5546 * after page->mapping has been set up. This must happen atomically
5547 * as part of the page instantiation, i.e. under the page table lock
5548 * for anonymous pages, under the page lock for page and swap cache.
5549 *
5550 * In addition, the page must not be on the LRU during the commit, to
5551 * prevent racing with task migration. If it might be, use @lrucare.
5552 *
5553 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5554 */
5555void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5556 bool lrucare, bool compound)
00501b53 5557{
f627c2f5 5558 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5559
5560 VM_BUG_ON_PAGE(!page->mapping, page);
5561 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5562
5563 if (mem_cgroup_disabled())
5564 return;
5565 /*
5566 * Swap faults will attempt to charge the same page multiple
5567 * times. But reuse_swap_page() might have removed the page
5568 * from swapcache already, so we can't check PageSwapCache().
5569 */
5570 if (!memcg)
5571 return;
5572
6abb5a86
JW
5573 commit_charge(page, memcg, lrucare);
5574
6abb5a86 5575 local_irq_disable();
f627c2f5 5576 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5577 memcg_check_events(memcg, page);
5578 local_irq_enable();
00501b53 5579
7941d214 5580 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5581 swp_entry_t entry = { .val = page_private(page) };
5582 /*
5583 * The swap entry might not get freed for a long time,
5584 * let's not wait for it. The page already received a
5585 * memory+swap charge, drop the swap entry duplicate.
5586 */
38d8b4e6 5587 mem_cgroup_uncharge_swap(entry, nr_pages);
00501b53
JW
5588 }
5589}
5590
5591/**
5592 * mem_cgroup_cancel_charge - cancel a page charge
5593 * @page: page to charge
5594 * @memcg: memcg to charge the page to
25843c2b 5595 * @compound: charge the page as compound or small page
00501b53
JW
5596 *
5597 * Cancel a charge transaction started by mem_cgroup_try_charge().
5598 */
f627c2f5
KS
5599void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5600 bool compound)
00501b53 5601{
f627c2f5 5602 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5603
5604 if (mem_cgroup_disabled())
5605 return;
5606 /*
5607 * Swap faults will attempt to charge the same page multiple
5608 * times. But reuse_swap_page() might have removed the page
5609 * from swapcache already, so we can't check PageSwapCache().
5610 */
5611 if (!memcg)
5612 return;
5613
00501b53
JW
5614 cancel_charge(memcg, nr_pages);
5615}
5616
a9d5adee
JG
5617struct uncharge_gather {
5618 struct mem_cgroup *memcg;
5619 unsigned long pgpgout;
5620 unsigned long nr_anon;
5621 unsigned long nr_file;
5622 unsigned long nr_kmem;
5623 unsigned long nr_huge;
5624 unsigned long nr_shmem;
5625 struct page *dummy_page;
5626};
5627
5628static inline void uncharge_gather_clear(struct uncharge_gather *ug)
747db954 5629{
a9d5adee
JG
5630 memset(ug, 0, sizeof(*ug));
5631}
5632
5633static void uncharge_batch(const struct uncharge_gather *ug)
5634{
5635 unsigned long nr_pages = ug->nr_anon + ug->nr_file + ug->nr_kmem;
747db954
JW
5636 unsigned long flags;
5637
a9d5adee
JG
5638 if (!mem_cgroup_is_root(ug->memcg)) {
5639 page_counter_uncharge(&ug->memcg->memory, nr_pages);
7941d214 5640 if (do_memsw_account())
a9d5adee
JG
5641 page_counter_uncharge(&ug->memcg->memsw, nr_pages);
5642 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && ug->nr_kmem)
5643 page_counter_uncharge(&ug->memcg->kmem, ug->nr_kmem);
5644 memcg_oom_recover(ug->memcg);
ce00a967 5645 }
747db954
JW
5646
5647 local_irq_save(flags);
a9d5adee
JG
5648 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS], ug->nr_anon);
5649 __this_cpu_sub(ug->memcg->stat->count[MEMCG_CACHE], ug->nr_file);
5650 __this_cpu_sub(ug->memcg->stat->count[MEMCG_RSS_HUGE], ug->nr_huge);
5651 __this_cpu_sub(ug->memcg->stat->count[NR_SHMEM], ug->nr_shmem);
5652 __this_cpu_add(ug->memcg->stat->events[PGPGOUT], ug->pgpgout);
5653 __this_cpu_add(ug->memcg->stat->nr_page_events, nr_pages);
5654 memcg_check_events(ug->memcg, ug->dummy_page);
747db954 5655 local_irq_restore(flags);
e8ea14cc 5656
a9d5adee
JG
5657 if (!mem_cgroup_is_root(ug->memcg))
5658 css_put_many(&ug->memcg->css, nr_pages);
5659}
5660
5661static void uncharge_page(struct page *page, struct uncharge_gather *ug)
5662{
5663 VM_BUG_ON_PAGE(PageLRU(page), page);
3f2eb028
JG
5664 VM_BUG_ON_PAGE(page_count(page) && !is_zone_device_page(page) &&
5665 !PageHWPoison(page) , page);
a9d5adee
JG
5666
5667 if (!page->mem_cgroup)
5668 return;
5669
5670 /*
5671 * Nobody should be changing or seriously looking at
5672 * page->mem_cgroup at this point, we have fully
5673 * exclusive access to the page.
5674 */
5675
5676 if (ug->memcg != page->mem_cgroup) {
5677 if (ug->memcg) {
5678 uncharge_batch(ug);
5679 uncharge_gather_clear(ug);
5680 }
5681 ug->memcg = page->mem_cgroup;
5682 }
5683
5684 if (!PageKmemcg(page)) {
5685 unsigned int nr_pages = 1;
5686
5687 if (PageTransHuge(page)) {
5688 nr_pages <<= compound_order(page);
5689 ug->nr_huge += nr_pages;
5690 }
5691 if (PageAnon(page))
5692 ug->nr_anon += nr_pages;
5693 else {
5694 ug->nr_file += nr_pages;
5695 if (PageSwapBacked(page))
5696 ug->nr_shmem += nr_pages;
5697 }
5698 ug->pgpgout++;
5699 } else {
5700 ug->nr_kmem += 1 << compound_order(page);
5701 __ClearPageKmemcg(page);
5702 }
5703
5704 ug->dummy_page = page;
5705 page->mem_cgroup = NULL;
747db954
JW
5706}
5707
5708static void uncharge_list(struct list_head *page_list)
5709{
a9d5adee 5710 struct uncharge_gather ug;
747db954 5711 struct list_head *next;
a9d5adee
JG
5712
5713 uncharge_gather_clear(&ug);
747db954 5714
8b592656
JW
5715 /*
5716 * Note that the list can be a single page->lru; hence the
5717 * do-while loop instead of a simple list_for_each_entry().
5718 */
747db954
JW
5719 next = page_list->next;
5720 do {
a9d5adee
JG
5721 struct page *page;
5722
747db954
JW
5723 page = list_entry(next, struct page, lru);
5724 next = page->lru.next;
5725
a9d5adee 5726 uncharge_page(page, &ug);
747db954
JW
5727 } while (next != page_list);
5728
a9d5adee
JG
5729 if (ug.memcg)
5730 uncharge_batch(&ug);
747db954
JW
5731}
5732
0a31bc97
JW
5733/**
5734 * mem_cgroup_uncharge - uncharge a page
5735 * @page: page to uncharge
5736 *
5737 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5738 * mem_cgroup_commit_charge().
5739 */
5740void mem_cgroup_uncharge(struct page *page)
5741{
a9d5adee
JG
5742 struct uncharge_gather ug;
5743
0a31bc97
JW
5744 if (mem_cgroup_disabled())
5745 return;
5746
747db954 5747 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5748 if (!page->mem_cgroup)
0a31bc97
JW
5749 return;
5750
a9d5adee
JG
5751 uncharge_gather_clear(&ug);
5752 uncharge_page(page, &ug);
5753 uncharge_batch(&ug);
747db954 5754}
0a31bc97 5755
747db954
JW
5756/**
5757 * mem_cgroup_uncharge_list - uncharge a list of page
5758 * @page_list: list of pages to uncharge
5759 *
5760 * Uncharge a list of pages previously charged with
5761 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5762 */
5763void mem_cgroup_uncharge_list(struct list_head *page_list)
5764{
5765 if (mem_cgroup_disabled())
5766 return;
0a31bc97 5767
747db954
JW
5768 if (!list_empty(page_list))
5769 uncharge_list(page_list);
0a31bc97
JW
5770}
5771
5772/**
6a93ca8f
JW
5773 * mem_cgroup_migrate - charge a page's replacement
5774 * @oldpage: currently circulating page
5775 * @newpage: replacement page
0a31bc97 5776 *
6a93ca8f
JW
5777 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5778 * be uncharged upon free.
0a31bc97
JW
5779 *
5780 * Both pages must be locked, @newpage->mapping must be set up.
5781 */
6a93ca8f 5782void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5783{
29833315 5784 struct mem_cgroup *memcg;
44b7a8d3
JW
5785 unsigned int nr_pages;
5786 bool compound;
d93c4130 5787 unsigned long flags;
0a31bc97
JW
5788
5789 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5790 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5791 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5792 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5793 newpage);
0a31bc97
JW
5794
5795 if (mem_cgroup_disabled())
5796 return;
5797
5798 /* Page cache replacement: new page already charged? */
1306a85a 5799 if (newpage->mem_cgroup)
0a31bc97
JW
5800 return;
5801
45637bab 5802 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5803 memcg = oldpage->mem_cgroup;
29833315 5804 if (!memcg)
0a31bc97
JW
5805 return;
5806
44b7a8d3
JW
5807 /* Force-charge the new page. The old one will be freed soon */
5808 compound = PageTransHuge(newpage);
5809 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5810
5811 page_counter_charge(&memcg->memory, nr_pages);
5812 if (do_memsw_account())
5813 page_counter_charge(&memcg->memsw, nr_pages);
5814 css_get_many(&memcg->css, nr_pages);
0a31bc97 5815
9cf7666a 5816 commit_charge(newpage, memcg, false);
44b7a8d3 5817
d93c4130 5818 local_irq_save(flags);
44b7a8d3
JW
5819 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5820 memcg_check_events(memcg, newpage);
d93c4130 5821 local_irq_restore(flags);
0a31bc97
JW
5822}
5823
ef12947c 5824DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5825EXPORT_SYMBOL(memcg_sockets_enabled_key);
5826
2d758073 5827void mem_cgroup_sk_alloc(struct sock *sk)
11092087
JW
5828{
5829 struct mem_cgroup *memcg;
5830
2d758073
JW
5831 if (!mem_cgroup_sockets_enabled)
5832 return;
5833
344ae441
RG
5834 /*
5835 * Socket cloning can throw us here with sk_memcg already
5836 * filled. It won't however, necessarily happen from
5837 * process context. So the test for root memcg given
5838 * the current task's memcg won't help us in this case.
5839 *
5840 * Respecting the original socket's memcg is a better
5841 * decision in this case.
5842 */
5843 if (sk->sk_memcg) {
5844 css_get(&sk->sk_memcg->css);
5845 return;
5846 }
5847
11092087
JW
5848 rcu_read_lock();
5849 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5850 if (memcg == root_mem_cgroup)
5851 goto out;
0db15298 5852 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5853 goto out;
f7e1cb6e 5854 if (css_tryget_online(&memcg->css))
11092087 5855 sk->sk_memcg = memcg;
f7e1cb6e 5856out:
11092087
JW
5857 rcu_read_unlock();
5858}
11092087 5859
2d758073 5860void mem_cgroup_sk_free(struct sock *sk)
11092087 5861{
2d758073
JW
5862 if (sk->sk_memcg)
5863 css_put(&sk->sk_memcg->css);
11092087
JW
5864}
5865
5866/**
5867 * mem_cgroup_charge_skmem - charge socket memory
5868 * @memcg: memcg to charge
5869 * @nr_pages: number of pages to charge
5870 *
5871 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5872 * @memcg's configured limit, %false if the charge had to be forced.
5873 */
5874bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5875{
f7e1cb6e 5876 gfp_t gfp_mask = GFP_KERNEL;
11092087 5877
f7e1cb6e 5878 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5879 struct page_counter *fail;
f7e1cb6e 5880
0db15298
JW
5881 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5882 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5883 return true;
5884 }
0db15298
JW
5885 page_counter_charge(&memcg->tcpmem, nr_pages);
5886 memcg->tcpmem_pressure = 1;
f7e1cb6e 5887 return false;
11092087 5888 }
d886f4e4 5889
f7e1cb6e
JW
5890 /* Don't block in the packet receive path */
5891 if (in_softirq())
5892 gfp_mask = GFP_NOWAIT;
5893
b2807f07
JW
5894 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5895
f7e1cb6e
JW
5896 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5897 return true;
5898
5899 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5900 return false;
5901}
5902
5903/**
5904 * mem_cgroup_uncharge_skmem - uncharge socket memory
5905 * @memcg - memcg to uncharge
5906 * @nr_pages - number of pages to uncharge
5907 */
5908void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5909{
f7e1cb6e 5910 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5911 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5912 return;
5913 }
d886f4e4 5914
b2807f07
JW
5915 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5916
475d0487 5917 refill_stock(memcg, nr_pages);
11092087
JW
5918}
5919
f7e1cb6e
JW
5920static int __init cgroup_memory(char *s)
5921{
5922 char *token;
5923
5924 while ((token = strsep(&s, ",")) != NULL) {
5925 if (!*token)
5926 continue;
5927 if (!strcmp(token, "nosocket"))
5928 cgroup_memory_nosocket = true;
04823c83
VD
5929 if (!strcmp(token, "nokmem"))
5930 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5931 }
5932 return 0;
5933}
5934__setup("cgroup.memory=", cgroup_memory);
11092087 5935
2d11085e 5936/*
1081312f
MH
5937 * subsys_initcall() for memory controller.
5938 *
308167fc
SAS
5939 * Some parts like memcg_hotplug_cpu_dead() have to be initialized from this
5940 * context because of lock dependencies (cgroup_lock -> cpu hotplug) but
5941 * basically everything that doesn't depend on a specific mem_cgroup structure
5942 * should be initialized from here.
2d11085e
MH
5943 */
5944static int __init mem_cgroup_init(void)
5945{
95a045f6
JW
5946 int cpu, node;
5947
13583c3d
VD
5948#ifndef CONFIG_SLOB
5949 /*
5950 * Kmem cache creation is mostly done with the slab_mutex held,
17cc4dfe
TH
5951 * so use a workqueue with limited concurrency to avoid stalling
5952 * all worker threads in case lots of cgroups are created and
5953 * destroyed simultaneously.
13583c3d 5954 */
17cc4dfe
TH
5955 memcg_kmem_cache_wq = alloc_workqueue("memcg_kmem_cache", 0, 1);
5956 BUG_ON(!memcg_kmem_cache_wq);
13583c3d
VD
5957#endif
5958
308167fc
SAS
5959 cpuhp_setup_state_nocalls(CPUHP_MM_MEMCQ_DEAD, "mm/memctrl:dead", NULL,
5960 memcg_hotplug_cpu_dead);
95a045f6
JW
5961
5962 for_each_possible_cpu(cpu)
5963 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5964 drain_local_stock);
5965
5966 for_each_node(node) {
5967 struct mem_cgroup_tree_per_node *rtpn;
95a045f6
JW
5968
5969 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5970 node_online(node) ? node : NUMA_NO_NODE);
5971
ef8f2327 5972 rtpn->rb_root = RB_ROOT;
fa90b2fd 5973 rtpn->rb_rightmost = NULL;
ef8f2327 5974 spin_lock_init(&rtpn->lock);
95a045f6
JW
5975 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5976 }
5977
2d11085e
MH
5978 return 0;
5979}
5980subsys_initcall(mem_cgroup_init);
21afa38e
JW
5981
5982#ifdef CONFIG_MEMCG_SWAP
358c07fc
AB
5983static struct mem_cgroup *mem_cgroup_id_get_online(struct mem_cgroup *memcg)
5984{
5985 while (!atomic_inc_not_zero(&memcg->id.ref)) {
5986 /*
5987 * The root cgroup cannot be destroyed, so it's refcount must
5988 * always be >= 1.
5989 */
5990 if (WARN_ON_ONCE(memcg == root_mem_cgroup)) {
5991 VM_BUG_ON(1);
5992 break;
5993 }
5994 memcg = parent_mem_cgroup(memcg);
5995 if (!memcg)
5996 memcg = root_mem_cgroup;
5997 }
5998 return memcg;
5999}
6000
21afa38e
JW
6001/**
6002 * mem_cgroup_swapout - transfer a memsw charge to swap
6003 * @page: page whose memsw charge to transfer
6004 * @entry: swap entry to move the charge to
6005 *
6006 * Transfer the memsw charge of @page to @entry.
6007 */
6008void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
6009{
1f47b61f 6010 struct mem_cgroup *memcg, *swap_memcg;
d6810d73 6011 unsigned int nr_entries;
21afa38e
JW
6012 unsigned short oldid;
6013
6014 VM_BUG_ON_PAGE(PageLRU(page), page);
6015 VM_BUG_ON_PAGE(page_count(page), page);
6016
7941d214 6017 if (!do_memsw_account())
21afa38e
JW
6018 return;
6019
6020 memcg = page->mem_cgroup;
6021
6022 /* Readahead page, never charged */
6023 if (!memcg)
6024 return;
6025
1f47b61f
VD
6026 /*
6027 * In case the memcg owning these pages has been offlined and doesn't
6028 * have an ID allocated to it anymore, charge the closest online
6029 * ancestor for the swap instead and transfer the memory+swap charge.
6030 */
6031 swap_memcg = mem_cgroup_id_get_online(memcg);
d6810d73
HY
6032 nr_entries = hpage_nr_pages(page);
6033 /* Get references for the tail pages, too */
6034 if (nr_entries > 1)
6035 mem_cgroup_id_get_many(swap_memcg, nr_entries - 1);
6036 oldid = swap_cgroup_record(entry, mem_cgroup_id(swap_memcg),
6037 nr_entries);
21afa38e 6038 VM_BUG_ON_PAGE(oldid, page);
d6810d73 6039 mem_cgroup_swap_statistics(swap_memcg, nr_entries);
21afa38e
JW
6040
6041 page->mem_cgroup = NULL;
6042
6043 if (!mem_cgroup_is_root(memcg))
d6810d73 6044 page_counter_uncharge(&memcg->memory, nr_entries);
21afa38e 6045
1f47b61f
VD
6046 if (memcg != swap_memcg) {
6047 if (!mem_cgroup_is_root(swap_memcg))
d6810d73
HY
6048 page_counter_charge(&swap_memcg->memsw, nr_entries);
6049 page_counter_uncharge(&memcg->memsw, nr_entries);
1f47b61f
VD
6050 }
6051
ce9ce665
SAS
6052 /*
6053 * Interrupts should be disabled here because the caller holds the
6054 * mapping->tree_lock lock which is taken with interrupts-off. It is
6055 * important here to have the interrupts disabled because it is the
6056 * only synchronisation we have for udpating the per-CPU variables.
6057 */
6058 VM_BUG_ON(!irqs_disabled());
d6810d73
HY
6059 mem_cgroup_charge_statistics(memcg, page, PageTransHuge(page),
6060 -nr_entries);
21afa38e 6061 memcg_check_events(memcg, page);
73f576c0
JW
6062
6063 if (!mem_cgroup_is_root(memcg))
d08afa14 6064 css_put_many(&memcg->css, nr_entries);
21afa38e
JW
6065}
6066
38d8b4e6
HY
6067/**
6068 * mem_cgroup_try_charge_swap - try charging swap space for a page
37e84351
VD
6069 * @page: page being added to swap
6070 * @entry: swap entry to charge
6071 *
38d8b4e6 6072 * Try to charge @page's memcg for the swap space at @entry.
37e84351
VD
6073 *
6074 * Returns 0 on success, -ENOMEM on failure.
6075 */
6076int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
6077{
38d8b4e6 6078 unsigned int nr_pages = hpage_nr_pages(page);
37e84351 6079 struct page_counter *counter;
38d8b4e6 6080 struct mem_cgroup *memcg;
37e84351
VD
6081 unsigned short oldid;
6082
6083 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
6084 return 0;
6085
6086 memcg = page->mem_cgroup;
6087
6088 /* Readahead page, never charged */
6089 if (!memcg)
6090 return 0;
6091
1f47b61f
VD
6092 memcg = mem_cgroup_id_get_online(memcg);
6093
37e84351 6094 if (!mem_cgroup_is_root(memcg) &&
38d8b4e6 6095 !page_counter_try_charge(&memcg->swap, nr_pages, &counter)) {
1f47b61f 6096 mem_cgroup_id_put(memcg);
37e84351 6097 return -ENOMEM;
1f47b61f 6098 }
37e84351 6099
38d8b4e6
HY
6100 /* Get references for the tail pages, too */
6101 if (nr_pages > 1)
6102 mem_cgroup_id_get_many(memcg, nr_pages - 1);
6103 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg), nr_pages);
37e84351 6104 VM_BUG_ON_PAGE(oldid, page);
38d8b4e6 6105 mem_cgroup_swap_statistics(memcg, nr_pages);
37e84351 6106
37e84351
VD
6107 return 0;
6108}
6109
21afa38e 6110/**
38d8b4e6 6111 * mem_cgroup_uncharge_swap - uncharge swap space
21afa38e 6112 * @entry: swap entry to uncharge
38d8b4e6 6113 * @nr_pages: the amount of swap space to uncharge
21afa38e 6114 */
38d8b4e6 6115void mem_cgroup_uncharge_swap(swp_entry_t entry, unsigned int nr_pages)
21afa38e
JW
6116{
6117 struct mem_cgroup *memcg;
6118 unsigned short id;
6119
37e84351 6120 if (!do_swap_account)
21afa38e
JW
6121 return;
6122
38d8b4e6 6123 id = swap_cgroup_record(entry, 0, nr_pages);
21afa38e 6124 rcu_read_lock();
adbe427b 6125 memcg = mem_cgroup_from_id(id);
21afa38e 6126 if (memcg) {
37e84351
VD
6127 if (!mem_cgroup_is_root(memcg)) {
6128 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
38d8b4e6 6129 page_counter_uncharge(&memcg->swap, nr_pages);
37e84351 6130 else
38d8b4e6 6131 page_counter_uncharge(&memcg->memsw, nr_pages);
37e84351 6132 }
38d8b4e6
HY
6133 mem_cgroup_swap_statistics(memcg, -nr_pages);
6134 mem_cgroup_id_put_many(memcg, nr_pages);
21afa38e
JW
6135 }
6136 rcu_read_unlock();
6137}
6138
d8b38438
VD
6139long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
6140{
6141 long nr_swap_pages = get_nr_swap_pages();
6142
6143 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6144 return nr_swap_pages;
6145 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6146 nr_swap_pages = min_t(long, nr_swap_pages,
6147 READ_ONCE(memcg->swap.limit) -
6148 page_counter_read(&memcg->swap));
6149 return nr_swap_pages;
6150}
6151
5ccc5aba
VD
6152bool mem_cgroup_swap_full(struct page *page)
6153{
6154 struct mem_cgroup *memcg;
6155
6156 VM_BUG_ON_PAGE(!PageLocked(page), page);
6157
6158 if (vm_swap_full())
6159 return true;
6160 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
6161 return false;
6162
6163 memcg = page->mem_cgroup;
6164 if (!memcg)
6165 return false;
6166
6167 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
6168 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
6169 return true;
6170
6171 return false;
6172}
6173
21afa38e
JW
6174/* for remember boot option*/
6175#ifdef CONFIG_MEMCG_SWAP_ENABLED
6176static int really_do_swap_account __initdata = 1;
6177#else
6178static int really_do_swap_account __initdata;
6179#endif
6180
6181static int __init enable_swap_account(char *s)
6182{
6183 if (!strcmp(s, "1"))
6184 really_do_swap_account = 1;
6185 else if (!strcmp(s, "0"))
6186 really_do_swap_account = 0;
6187 return 1;
6188}
6189__setup("swapaccount=", enable_swap_account);
6190
37e84351
VD
6191static u64 swap_current_read(struct cgroup_subsys_state *css,
6192 struct cftype *cft)
6193{
6194 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
6195
6196 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
6197}
6198
6199static int swap_max_show(struct seq_file *m, void *v)
6200{
6201 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
6202 unsigned long max = READ_ONCE(memcg->swap.limit);
6203
6204 if (max == PAGE_COUNTER_MAX)
6205 seq_puts(m, "max\n");
6206 else
6207 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
6208
6209 return 0;
6210}
6211
6212static ssize_t swap_max_write(struct kernfs_open_file *of,
6213 char *buf, size_t nbytes, loff_t off)
6214{
6215 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
6216 unsigned long max;
6217 int err;
6218
6219 buf = strstrip(buf);
6220 err = page_counter_memparse(buf, "max", &max);
6221 if (err)
6222 return err;
6223
6224 mutex_lock(&memcg_limit_mutex);
6225 err = page_counter_limit(&memcg->swap, max);
6226 mutex_unlock(&memcg_limit_mutex);
6227 if (err)
6228 return err;
6229
6230 return nbytes;
6231}
6232
6233static struct cftype swap_files[] = {
6234 {
6235 .name = "swap.current",
6236 .flags = CFTYPE_NOT_ON_ROOT,
6237 .read_u64 = swap_current_read,
6238 },
6239 {
6240 .name = "swap.max",
6241 .flags = CFTYPE_NOT_ON_ROOT,
6242 .seq_show = swap_max_show,
6243 .write = swap_max_write,
6244 },
6245 { } /* terminate */
6246};
6247
21afa38e
JW
6248static struct cftype memsw_cgroup_files[] = {
6249 {
6250 .name = "memsw.usage_in_bytes",
6251 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
6252 .read_u64 = mem_cgroup_read_u64,
6253 },
6254 {
6255 .name = "memsw.max_usage_in_bytes",
6256 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6257 .write = mem_cgroup_reset,
6258 .read_u64 = mem_cgroup_read_u64,
6259 },
6260 {
6261 .name = "memsw.limit_in_bytes",
6262 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
6263 .write = mem_cgroup_write,
6264 .read_u64 = mem_cgroup_read_u64,
6265 },
6266 {
6267 .name = "memsw.failcnt",
6268 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6269 .write = mem_cgroup_reset,
6270 .read_u64 = mem_cgroup_read_u64,
6271 },
6272 { }, /* terminate */
6273};
6274
6275static int __init mem_cgroup_swap_init(void)
6276{
6277 if (!mem_cgroup_disabled() && really_do_swap_account) {
6278 do_swap_account = 1;
37e84351
VD
6279 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
6280 swap_files));
21afa38e
JW
6281 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
6282 memsw_cgroup_files));
6283 }
6284 return 0;
6285}
6286subsys_initcall(mem_cgroup_swap_init);
6287
6288#endif /* CONFIG_MEMCG_SWAP */