]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/memory-failure.c
memory-failure: change type of action_result's param 3 to enum
[mirror_ubuntu-bionic-kernel.git] / mm / memory-failure.c
CommitLineData
6a46079c
AK
1/*
2 * Copyright (C) 2008, 2009 Intel Corporation
3 * Authors: Andi Kleen, Fengguang Wu
4 *
5 * This software may be redistributed and/or modified under the terms of
6 * the GNU General Public License ("GPL") version 2 only as published by the
7 * Free Software Foundation.
8 *
9 * High level machine check handler. Handles pages reported by the
1c80b990 10 * hardware as being corrupted usually due to a multi-bit ECC memory or cache
6a46079c 11 * failure.
1c80b990
AK
12 *
13 * In addition there is a "soft offline" entry point that allows stop using
14 * not-yet-corrupted-by-suspicious pages without killing anything.
6a46079c
AK
15 *
16 * Handles page cache pages in various states. The tricky part
1c80b990
AK
17 * here is that we can access any page asynchronously in respect to
18 * other VM users, because memory failures could happen anytime and
19 * anywhere. This could violate some of their assumptions. This is why
20 * this code has to be extremely careful. Generally it tries to use
21 * normal locking rules, as in get the standard locks, even if that means
22 * the error handling takes potentially a long time.
e0de78df
AK
23 *
24 * It can be very tempting to add handling for obscure cases here.
25 * In general any code for handling new cases should only be added iff:
26 * - You know how to test it.
27 * - You have a test that can be added to mce-test
28 * https://git.kernel.org/cgit/utils/cpu/mce/mce-test.git/
29 * - The case actually shows up as a frequent (top 10) page state in
30 * tools/vm/page-types when running a real workload.
1c80b990
AK
31 *
32 * There are several operations here with exponential complexity because
33 * of unsuitable VM data structures. For example the operation to map back
34 * from RMAP chains to processes has to walk the complete process list and
35 * has non linear complexity with the number. But since memory corruptions
36 * are rare we hope to get away with this. This avoids impacting the core
37 * VM.
6a46079c 38 */
6a46079c
AK
39#include <linux/kernel.h>
40#include <linux/mm.h>
41#include <linux/page-flags.h>
478c5ffc 42#include <linux/kernel-page-flags.h>
6a46079c 43#include <linux/sched.h>
01e00f88 44#include <linux/ksm.h>
6a46079c 45#include <linux/rmap.h>
b9e15baf 46#include <linux/export.h>
6a46079c
AK
47#include <linux/pagemap.h>
48#include <linux/swap.h>
49#include <linux/backing-dev.h>
facb6011
AK
50#include <linux/migrate.h>
51#include <linux/page-isolation.h>
52#include <linux/suspend.h>
5a0e3ad6 53#include <linux/slab.h>
bf998156 54#include <linux/swapops.h>
7af446a8 55#include <linux/hugetlb.h>
20d6c96b 56#include <linux/memory_hotplug.h>
5db8a73a 57#include <linux/mm_inline.h>
ea8f5fb8 58#include <linux/kfifo.h>
6a46079c
AK
59#include "internal.h"
60
61int sysctl_memory_failure_early_kill __read_mostly = 0;
62
63int sysctl_memory_failure_recovery __read_mostly = 1;
64
293c07e3 65atomic_long_t num_poisoned_pages __read_mostly = ATOMIC_LONG_INIT(0);
6a46079c 66
27df5068
AK
67#if defined(CONFIG_HWPOISON_INJECT) || defined(CONFIG_HWPOISON_INJECT_MODULE)
68
1bfe5feb 69u32 hwpoison_filter_enable = 0;
7c116f2b
WF
70u32 hwpoison_filter_dev_major = ~0U;
71u32 hwpoison_filter_dev_minor = ~0U;
478c5ffc
WF
72u64 hwpoison_filter_flags_mask;
73u64 hwpoison_filter_flags_value;
1bfe5feb 74EXPORT_SYMBOL_GPL(hwpoison_filter_enable);
7c116f2b
WF
75EXPORT_SYMBOL_GPL(hwpoison_filter_dev_major);
76EXPORT_SYMBOL_GPL(hwpoison_filter_dev_minor);
478c5ffc
WF
77EXPORT_SYMBOL_GPL(hwpoison_filter_flags_mask);
78EXPORT_SYMBOL_GPL(hwpoison_filter_flags_value);
7c116f2b
WF
79
80static int hwpoison_filter_dev(struct page *p)
81{
82 struct address_space *mapping;
83 dev_t dev;
84
85 if (hwpoison_filter_dev_major == ~0U &&
86 hwpoison_filter_dev_minor == ~0U)
87 return 0;
88
89 /*
1c80b990 90 * page_mapping() does not accept slab pages.
7c116f2b
WF
91 */
92 if (PageSlab(p))
93 return -EINVAL;
94
95 mapping = page_mapping(p);
96 if (mapping == NULL || mapping->host == NULL)
97 return -EINVAL;
98
99 dev = mapping->host->i_sb->s_dev;
100 if (hwpoison_filter_dev_major != ~0U &&
101 hwpoison_filter_dev_major != MAJOR(dev))
102 return -EINVAL;
103 if (hwpoison_filter_dev_minor != ~0U &&
104 hwpoison_filter_dev_minor != MINOR(dev))
105 return -EINVAL;
106
107 return 0;
108}
109
478c5ffc
WF
110static int hwpoison_filter_flags(struct page *p)
111{
112 if (!hwpoison_filter_flags_mask)
113 return 0;
114
115 if ((stable_page_flags(p) & hwpoison_filter_flags_mask) ==
116 hwpoison_filter_flags_value)
117 return 0;
118 else
119 return -EINVAL;
120}
121
4fd466eb
AK
122/*
123 * This allows stress tests to limit test scope to a collection of tasks
124 * by putting them under some memcg. This prevents killing unrelated/important
125 * processes such as /sbin/init. Note that the target task may share clean
126 * pages with init (eg. libc text), which is harmless. If the target task
127 * share _dirty_ pages with another task B, the test scheme must make sure B
128 * is also included in the memcg. At last, due to race conditions this filter
129 * can only guarantee that the page either belongs to the memcg tasks, or is
130 * a freed page.
131 */
c255a458 132#ifdef CONFIG_MEMCG_SWAP
4fd466eb
AK
133u64 hwpoison_filter_memcg;
134EXPORT_SYMBOL_GPL(hwpoison_filter_memcg);
135static int hwpoison_filter_task(struct page *p)
136{
137 struct mem_cgroup *mem;
138 struct cgroup_subsys_state *css;
139 unsigned long ino;
140
141 if (!hwpoison_filter_memcg)
142 return 0;
143
144 mem = try_get_mem_cgroup_from_page(p);
145 if (!mem)
146 return -EINVAL;
147
148 css = mem_cgroup_css(mem);
b1664924 149 ino = cgroup_ino(css->cgroup);
4fd466eb
AK
150 css_put(css);
151
f29374b1 152 if (ino != hwpoison_filter_memcg)
4fd466eb
AK
153 return -EINVAL;
154
155 return 0;
156}
157#else
158static int hwpoison_filter_task(struct page *p) { return 0; }
159#endif
160
7c116f2b
WF
161int hwpoison_filter(struct page *p)
162{
1bfe5feb
HL
163 if (!hwpoison_filter_enable)
164 return 0;
165
7c116f2b
WF
166 if (hwpoison_filter_dev(p))
167 return -EINVAL;
168
478c5ffc
WF
169 if (hwpoison_filter_flags(p))
170 return -EINVAL;
171
4fd466eb
AK
172 if (hwpoison_filter_task(p))
173 return -EINVAL;
174
7c116f2b
WF
175 return 0;
176}
27df5068
AK
177#else
178int hwpoison_filter(struct page *p)
179{
180 return 0;
181}
182#endif
183
7c116f2b
WF
184EXPORT_SYMBOL_GPL(hwpoison_filter);
185
6a46079c 186/*
7329bbeb
TL
187 * Send all the processes who have the page mapped a signal.
188 * ``action optional'' if they are not immediately affected by the error
189 * ``action required'' if error happened in current execution context
6a46079c 190 */
7329bbeb
TL
191static int kill_proc(struct task_struct *t, unsigned long addr, int trapno,
192 unsigned long pfn, struct page *page, int flags)
6a46079c
AK
193{
194 struct siginfo si;
195 int ret;
196
197 printk(KERN_ERR
7329bbeb 198 "MCE %#lx: Killing %s:%d due to hardware memory corruption\n",
6a46079c
AK
199 pfn, t->comm, t->pid);
200 si.si_signo = SIGBUS;
201 si.si_errno = 0;
6a46079c
AK
202 si.si_addr = (void *)addr;
203#ifdef __ARCH_SI_TRAPNO
204 si.si_trapno = trapno;
205#endif
f9121153 206 si.si_addr_lsb = compound_order(compound_head(page)) + PAGE_SHIFT;
7329bbeb 207
a70ffcac 208 if ((flags & MF_ACTION_REQUIRED) && t->mm == current->mm) {
7329bbeb 209 si.si_code = BUS_MCEERR_AR;
a70ffcac 210 ret = force_sig_info(SIGBUS, &si, current);
7329bbeb
TL
211 } else {
212 /*
213 * Don't use force here, it's convenient if the signal
214 * can be temporarily blocked.
215 * This could cause a loop when the user sets SIGBUS
216 * to SIG_IGN, but hopefully no one will do that?
217 */
218 si.si_code = BUS_MCEERR_AO;
219 ret = send_sig_info(SIGBUS, &si, t); /* synchronous? */
220 }
6a46079c
AK
221 if (ret < 0)
222 printk(KERN_INFO "MCE: Error sending signal to %s:%d: %d\n",
223 t->comm, t->pid, ret);
224 return ret;
225}
226
588f9ce6
AK
227/*
228 * When a unknown page type is encountered drain as many buffers as possible
229 * in the hope to turn the page into a LRU or free page, which we can handle.
230 */
facb6011 231void shake_page(struct page *p, int access)
588f9ce6
AK
232{
233 if (!PageSlab(p)) {
234 lru_add_drain_all();
235 if (PageLRU(p))
236 return;
c0554329 237 drain_all_pages(page_zone(p));
588f9ce6
AK
238 if (PageLRU(p) || is_free_buddy_page(p))
239 return;
240 }
facb6011 241
588f9ce6 242 /*
6b4f7799
JW
243 * Only call shrink_node_slabs here (which would also shrink
244 * other caches) if access is not potentially fatal.
588f9ce6 245 */
cb731d6c
VD
246 if (access)
247 drop_slab_node(page_to_nid(p));
588f9ce6
AK
248}
249EXPORT_SYMBOL_GPL(shake_page);
250
6a46079c
AK
251/*
252 * Kill all processes that have a poisoned page mapped and then isolate
253 * the page.
254 *
255 * General strategy:
256 * Find all processes having the page mapped and kill them.
257 * But we keep a page reference around so that the page is not
258 * actually freed yet.
259 * Then stash the page away
260 *
261 * There's no convenient way to get back to mapped processes
262 * from the VMAs. So do a brute-force search over all
263 * running processes.
264 *
265 * Remember that machine checks are not common (or rather
266 * if they are common you have other problems), so this shouldn't
267 * be a performance issue.
268 *
269 * Also there are some races possible while we get from the
270 * error detection to actually handle it.
271 */
272
273struct to_kill {
274 struct list_head nd;
275 struct task_struct *tsk;
276 unsigned long addr;
9033ae16 277 char addr_valid;
6a46079c
AK
278};
279
280/*
281 * Failure handling: if we can't find or can't kill a process there's
282 * not much we can do. We just print a message and ignore otherwise.
283 */
284
285/*
286 * Schedule a process for later kill.
287 * Uses GFP_ATOMIC allocations to avoid potential recursions in the VM.
288 * TBD would GFP_NOIO be enough?
289 */
290static void add_to_kill(struct task_struct *tsk, struct page *p,
291 struct vm_area_struct *vma,
292 struct list_head *to_kill,
293 struct to_kill **tkc)
294{
295 struct to_kill *tk;
296
297 if (*tkc) {
298 tk = *tkc;
299 *tkc = NULL;
300 } else {
301 tk = kmalloc(sizeof(struct to_kill), GFP_ATOMIC);
302 if (!tk) {
303 printk(KERN_ERR
304 "MCE: Out of memory while machine check handling\n");
305 return;
306 }
307 }
308 tk->addr = page_address_in_vma(p, vma);
309 tk->addr_valid = 1;
310
311 /*
312 * In theory we don't have to kill when the page was
313 * munmaped. But it could be also a mremap. Since that's
314 * likely very rare kill anyways just out of paranoia, but use
315 * a SIGKILL because the error is not contained anymore.
316 */
317 if (tk->addr == -EFAULT) {
fb46e735 318 pr_info("MCE: Unable to find user space address %lx in %s\n",
6a46079c
AK
319 page_to_pfn(p), tsk->comm);
320 tk->addr_valid = 0;
321 }
322 get_task_struct(tsk);
323 tk->tsk = tsk;
324 list_add_tail(&tk->nd, to_kill);
325}
326
327/*
328 * Kill the processes that have been collected earlier.
329 *
330 * Only do anything when DOIT is set, otherwise just free the list
331 * (this is used for clean pages which do not need killing)
332 * Also when FAIL is set do a force kill because something went
333 * wrong earlier.
334 */
6751ed65 335static void kill_procs(struct list_head *to_kill, int forcekill, int trapno,
7329bbeb
TL
336 int fail, struct page *page, unsigned long pfn,
337 int flags)
6a46079c
AK
338{
339 struct to_kill *tk, *next;
340
341 list_for_each_entry_safe (tk, next, to_kill, nd) {
6751ed65 342 if (forcekill) {
6a46079c 343 /*
af901ca1 344 * In case something went wrong with munmapping
6a46079c
AK
345 * make sure the process doesn't catch the
346 * signal and then access the memory. Just kill it.
6a46079c
AK
347 */
348 if (fail || tk->addr_valid == 0) {
349 printk(KERN_ERR
350 "MCE %#lx: forcibly killing %s:%d because of failure to unmap corrupted page\n",
351 pfn, tk->tsk->comm, tk->tsk->pid);
352 force_sig(SIGKILL, tk->tsk);
353 }
354
355 /*
356 * In theory the process could have mapped
357 * something else on the address in-between. We could
358 * check for that, but we need to tell the
359 * process anyways.
360 */
7329bbeb
TL
361 else if (kill_proc(tk->tsk, tk->addr, trapno,
362 pfn, page, flags) < 0)
6a46079c
AK
363 printk(KERN_ERR
364 "MCE %#lx: Cannot send advisory machine check signal to %s:%d\n",
365 pfn, tk->tsk->comm, tk->tsk->pid);
366 }
367 put_task_struct(tk->tsk);
368 kfree(tk);
369 }
370}
371
3ba08129
NH
372/*
373 * Find a dedicated thread which is supposed to handle SIGBUS(BUS_MCEERR_AO)
374 * on behalf of the thread group. Return task_struct of the (first found)
375 * dedicated thread if found, and return NULL otherwise.
376 *
377 * We already hold read_lock(&tasklist_lock) in the caller, so we don't
378 * have to call rcu_read_lock/unlock() in this function.
379 */
380static struct task_struct *find_early_kill_thread(struct task_struct *tsk)
6a46079c 381{
3ba08129
NH
382 struct task_struct *t;
383
384 for_each_thread(tsk, t)
385 if ((t->flags & PF_MCE_PROCESS) && (t->flags & PF_MCE_EARLY))
386 return t;
387 return NULL;
388}
389
390/*
391 * Determine whether a given process is "early kill" process which expects
392 * to be signaled when some page under the process is hwpoisoned.
393 * Return task_struct of the dedicated thread (main thread unless explicitly
394 * specified) if the process is "early kill," and otherwise returns NULL.
395 */
396static struct task_struct *task_early_kill(struct task_struct *tsk,
397 int force_early)
398{
399 struct task_struct *t;
6a46079c 400 if (!tsk->mm)
3ba08129 401 return NULL;
74614de1 402 if (force_early)
3ba08129
NH
403 return tsk;
404 t = find_early_kill_thread(tsk);
405 if (t)
406 return t;
407 if (sysctl_memory_failure_early_kill)
408 return tsk;
409 return NULL;
6a46079c
AK
410}
411
412/*
413 * Collect processes when the error hit an anonymous page.
414 */
415static void collect_procs_anon(struct page *page, struct list_head *to_kill,
74614de1 416 struct to_kill **tkc, int force_early)
6a46079c
AK
417{
418 struct vm_area_struct *vma;
419 struct task_struct *tsk;
420 struct anon_vma *av;
bf181b9f 421 pgoff_t pgoff;
6a46079c 422
4fc3f1d6 423 av = page_lock_anon_vma_read(page);
6a46079c 424 if (av == NULL) /* Not actually mapped anymore */
9b679320
PZ
425 return;
426
a0f7a756 427 pgoff = page_to_pgoff(page);
9b679320 428 read_lock(&tasklist_lock);
6a46079c 429 for_each_process (tsk) {
5beb4930 430 struct anon_vma_chain *vmac;
3ba08129 431 struct task_struct *t = task_early_kill(tsk, force_early);
5beb4930 432
3ba08129 433 if (!t)
6a46079c 434 continue;
bf181b9f
ML
435 anon_vma_interval_tree_foreach(vmac, &av->rb_root,
436 pgoff, pgoff) {
5beb4930 437 vma = vmac->vma;
6a46079c
AK
438 if (!page_mapped_in_vma(page, vma))
439 continue;
3ba08129
NH
440 if (vma->vm_mm == t->mm)
441 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
442 }
443 }
6a46079c 444 read_unlock(&tasklist_lock);
4fc3f1d6 445 page_unlock_anon_vma_read(av);
6a46079c
AK
446}
447
448/*
449 * Collect processes when the error hit a file mapped page.
450 */
451static void collect_procs_file(struct page *page, struct list_head *to_kill,
74614de1 452 struct to_kill **tkc, int force_early)
6a46079c
AK
453{
454 struct vm_area_struct *vma;
455 struct task_struct *tsk;
6a46079c
AK
456 struct address_space *mapping = page->mapping;
457
d28eb9c8 458 i_mmap_lock_read(mapping);
9b679320 459 read_lock(&tasklist_lock);
6a46079c 460 for_each_process(tsk) {
a0f7a756 461 pgoff_t pgoff = page_to_pgoff(page);
3ba08129 462 struct task_struct *t = task_early_kill(tsk, force_early);
6a46079c 463
3ba08129 464 if (!t)
6a46079c 465 continue;
6b2dbba8 466 vma_interval_tree_foreach(vma, &mapping->i_mmap, pgoff,
6a46079c
AK
467 pgoff) {
468 /*
469 * Send early kill signal to tasks where a vma covers
470 * the page but the corrupted page is not necessarily
471 * mapped it in its pte.
472 * Assume applications who requested early kill want
473 * to be informed of all such data corruptions.
474 */
3ba08129
NH
475 if (vma->vm_mm == t->mm)
476 add_to_kill(t, page, vma, to_kill, tkc);
6a46079c
AK
477 }
478 }
6a46079c 479 read_unlock(&tasklist_lock);
d28eb9c8 480 i_mmap_unlock_read(mapping);
6a46079c
AK
481}
482
483/*
484 * Collect the processes who have the corrupted page mapped to kill.
485 * This is done in two steps for locking reasons.
486 * First preallocate one tokill structure outside the spin locks,
487 * so that we can kill at least one process reasonably reliable.
488 */
74614de1
TL
489static void collect_procs(struct page *page, struct list_head *tokill,
490 int force_early)
6a46079c
AK
491{
492 struct to_kill *tk;
493
494 if (!page->mapping)
495 return;
496
497 tk = kmalloc(sizeof(struct to_kill), GFP_NOIO);
498 if (!tk)
499 return;
500 if (PageAnon(page))
74614de1 501 collect_procs_anon(page, tokill, &tk, force_early);
6a46079c 502 else
74614de1 503 collect_procs_file(page, tokill, &tk, force_early);
6a46079c
AK
504 kfree(tk);
505}
506
6a46079c 507static const char *action_name[] = {
cc637b17
XX
508 [MF_IGNORED] = "Ignored",
509 [MF_FAILED] = "Failed",
510 [MF_DELAYED] = "Delayed",
511 [MF_RECOVERED] = "Recovered",
64d37a2b
NH
512};
513
514static const char * const action_page_types[] = {
cc637b17
XX
515 [MF_MSG_KERNEL] = "reserved kernel page",
516 [MF_MSG_KERNEL_HIGH_ORDER] = "high-order kernel page",
517 [MF_MSG_SLAB] = "kernel slab page",
518 [MF_MSG_DIFFERENT_COMPOUND] = "different compound page after locking",
519 [MF_MSG_POISONED_HUGE] = "huge page already hardware poisoned",
520 [MF_MSG_HUGE] = "huge page",
521 [MF_MSG_FREE_HUGE] = "free huge page",
522 [MF_MSG_UNMAP_FAILED] = "unmapping failed page",
523 [MF_MSG_DIRTY_SWAPCACHE] = "dirty swapcache page",
524 [MF_MSG_CLEAN_SWAPCACHE] = "clean swapcache page",
525 [MF_MSG_DIRTY_MLOCKED_LRU] = "dirty mlocked LRU page",
526 [MF_MSG_CLEAN_MLOCKED_LRU] = "clean mlocked LRU page",
527 [MF_MSG_DIRTY_UNEVICTABLE_LRU] = "dirty unevictable LRU page",
528 [MF_MSG_CLEAN_UNEVICTABLE_LRU] = "clean unevictable LRU page",
529 [MF_MSG_DIRTY_LRU] = "dirty LRU page",
530 [MF_MSG_CLEAN_LRU] = "clean LRU page",
531 [MF_MSG_TRUNCATED_LRU] = "already truncated LRU page",
532 [MF_MSG_BUDDY] = "free buddy page",
533 [MF_MSG_BUDDY_2ND] = "free buddy page (2nd try)",
534 [MF_MSG_UNKNOWN] = "unknown page",
64d37a2b
NH
535};
536
dc2a1cbf
WF
537/*
538 * XXX: It is possible that a page is isolated from LRU cache,
539 * and then kept in swap cache or failed to remove from page cache.
540 * The page count will stop it from being freed by unpoison.
541 * Stress tests should be aware of this memory leak problem.
542 */
543static int delete_from_lru_cache(struct page *p)
544{
545 if (!isolate_lru_page(p)) {
546 /*
547 * Clear sensible page flags, so that the buddy system won't
548 * complain when the page is unpoison-and-freed.
549 */
550 ClearPageActive(p);
551 ClearPageUnevictable(p);
552 /*
553 * drop the page count elevated by isolate_lru_page()
554 */
555 page_cache_release(p);
556 return 0;
557 }
558 return -EIO;
559}
560
6a46079c
AK
561/*
562 * Error hit kernel page.
563 * Do nothing, try to be lucky and not touch this instead. For a few cases we
564 * could be more sophisticated.
565 */
566static int me_kernel(struct page *p, unsigned long pfn)
6a46079c 567{
cc637b17 568 return MF_IGNORED;
6a46079c
AK
569}
570
571/*
572 * Page in unknown state. Do nothing.
573 */
574static int me_unknown(struct page *p, unsigned long pfn)
575{
576 printk(KERN_ERR "MCE %#lx: Unknown page state\n", pfn);
cc637b17 577 return MF_FAILED;
6a46079c
AK
578}
579
6a46079c
AK
580/*
581 * Clean (or cleaned) page cache page.
582 */
583static int me_pagecache_clean(struct page *p, unsigned long pfn)
584{
585 int err;
cc637b17 586 int ret = MF_FAILED;
6a46079c
AK
587 struct address_space *mapping;
588
dc2a1cbf
WF
589 delete_from_lru_cache(p);
590
6a46079c
AK
591 /*
592 * For anonymous pages we're done the only reference left
593 * should be the one m_f() holds.
594 */
595 if (PageAnon(p))
cc637b17 596 return MF_RECOVERED;
6a46079c
AK
597
598 /*
599 * Now truncate the page in the page cache. This is really
600 * more like a "temporary hole punch"
601 * Don't do this for block devices when someone else
602 * has a reference, because it could be file system metadata
603 * and that's not safe to truncate.
604 */
605 mapping = page_mapping(p);
606 if (!mapping) {
607 /*
608 * Page has been teared down in the meanwhile
609 */
cc637b17 610 return MF_FAILED;
6a46079c
AK
611 }
612
613 /*
614 * Truncation is a bit tricky. Enable it per file system for now.
615 *
616 * Open: to take i_mutex or not for this? Right now we don't.
617 */
618 if (mapping->a_ops->error_remove_page) {
619 err = mapping->a_ops->error_remove_page(mapping, p);
620 if (err != 0) {
621 printk(KERN_INFO "MCE %#lx: Failed to punch page: %d\n",
622 pfn, err);
623 } else if (page_has_private(p) &&
624 !try_to_release_page(p, GFP_NOIO)) {
fb46e735 625 pr_info("MCE %#lx: failed to release buffers\n", pfn);
6a46079c 626 } else {
cc637b17 627 ret = MF_RECOVERED;
6a46079c
AK
628 }
629 } else {
630 /*
631 * If the file system doesn't support it just invalidate
632 * This fails on dirty or anything with private pages
633 */
634 if (invalidate_inode_page(p))
cc637b17 635 ret = MF_RECOVERED;
6a46079c
AK
636 else
637 printk(KERN_INFO "MCE %#lx: Failed to invalidate\n",
638 pfn);
639 }
640 return ret;
641}
642
643/*
549543df 644 * Dirty pagecache page
6a46079c
AK
645 * Issues: when the error hit a hole page the error is not properly
646 * propagated.
647 */
648static int me_pagecache_dirty(struct page *p, unsigned long pfn)
649{
650 struct address_space *mapping = page_mapping(p);
651
652 SetPageError(p);
653 /* TBD: print more information about the file. */
654 if (mapping) {
655 /*
656 * IO error will be reported by write(), fsync(), etc.
657 * who check the mapping.
658 * This way the application knows that something went
659 * wrong with its dirty file data.
660 *
661 * There's one open issue:
662 *
663 * The EIO will be only reported on the next IO
664 * operation and then cleared through the IO map.
665 * Normally Linux has two mechanisms to pass IO error
666 * first through the AS_EIO flag in the address space
667 * and then through the PageError flag in the page.
668 * Since we drop pages on memory failure handling the
669 * only mechanism open to use is through AS_AIO.
670 *
671 * This has the disadvantage that it gets cleared on
672 * the first operation that returns an error, while
673 * the PageError bit is more sticky and only cleared
674 * when the page is reread or dropped. If an
675 * application assumes it will always get error on
676 * fsync, but does other operations on the fd before
25985edc 677 * and the page is dropped between then the error
6a46079c
AK
678 * will not be properly reported.
679 *
680 * This can already happen even without hwpoisoned
681 * pages: first on metadata IO errors (which only
682 * report through AS_EIO) or when the page is dropped
683 * at the wrong time.
684 *
685 * So right now we assume that the application DTRT on
686 * the first EIO, but we're not worse than other parts
687 * of the kernel.
688 */
689 mapping_set_error(mapping, EIO);
690 }
691
692 return me_pagecache_clean(p, pfn);
693}
694
695/*
696 * Clean and dirty swap cache.
697 *
698 * Dirty swap cache page is tricky to handle. The page could live both in page
699 * cache and swap cache(ie. page is freshly swapped in). So it could be
700 * referenced concurrently by 2 types of PTEs:
701 * normal PTEs and swap PTEs. We try to handle them consistently by calling
702 * try_to_unmap(TTU_IGNORE_HWPOISON) to convert the normal PTEs to swap PTEs,
703 * and then
704 * - clear dirty bit to prevent IO
705 * - remove from LRU
706 * - but keep in the swap cache, so that when we return to it on
707 * a later page fault, we know the application is accessing
708 * corrupted data and shall be killed (we installed simple
709 * interception code in do_swap_page to catch it).
710 *
711 * Clean swap cache pages can be directly isolated. A later page fault will
712 * bring in the known good data from disk.
713 */
714static int me_swapcache_dirty(struct page *p, unsigned long pfn)
715{
6a46079c
AK
716 ClearPageDirty(p);
717 /* Trigger EIO in shmem: */
718 ClearPageUptodate(p);
719
dc2a1cbf 720 if (!delete_from_lru_cache(p))
cc637b17 721 return MF_DELAYED;
dc2a1cbf 722 else
cc637b17 723 return MF_FAILED;
6a46079c
AK
724}
725
726static int me_swapcache_clean(struct page *p, unsigned long pfn)
727{
6a46079c 728 delete_from_swap_cache(p);
e43c3afb 729
dc2a1cbf 730 if (!delete_from_lru_cache(p))
cc637b17 731 return MF_RECOVERED;
dc2a1cbf 732 else
cc637b17 733 return MF_FAILED;
6a46079c
AK
734}
735
736/*
737 * Huge pages. Needs work.
738 * Issues:
93f70f90
NH
739 * - Error on hugepage is contained in hugepage unit (not in raw page unit.)
740 * To narrow down kill region to one page, we need to break up pmd.
6a46079c
AK
741 */
742static int me_huge_page(struct page *p, unsigned long pfn)
743{
6de2b1aa 744 int res = 0;
93f70f90 745 struct page *hpage = compound_head(p);
2491ffee
NH
746
747 if (!PageHuge(hpage))
748 return MF_DELAYED;
749
93f70f90
NH
750 /*
751 * We can safely recover from error on free or reserved (i.e.
752 * not in-use) hugepage by dequeuing it from freelist.
753 * To check whether a hugepage is in-use or not, we can't use
754 * page->lru because it can be used in other hugepage operations,
755 * such as __unmap_hugepage_range() and gather_surplus_pages().
756 * So instead we use page_mapping() and PageAnon().
757 * We assume that this function is called with page lock held,
758 * so there is no race between isolation and mapping/unmapping.
759 */
760 if (!(page_mapping(hpage) || PageAnon(hpage))) {
6de2b1aa
NH
761 res = dequeue_hwpoisoned_huge_page(hpage);
762 if (!res)
cc637b17 763 return MF_RECOVERED;
93f70f90 764 }
cc637b17 765 return MF_DELAYED;
6a46079c
AK
766}
767
768/*
769 * Various page states we can handle.
770 *
771 * A page state is defined by its current page->flags bits.
772 * The table matches them in order and calls the right handler.
773 *
774 * This is quite tricky because we can access page at any time
25985edc 775 * in its live cycle, so all accesses have to be extremely careful.
6a46079c
AK
776 *
777 * This is not complete. More states could be added.
778 * For any missing state don't attempt recovery.
779 */
780
781#define dirty (1UL << PG_dirty)
782#define sc (1UL << PG_swapcache)
783#define unevict (1UL << PG_unevictable)
784#define mlock (1UL << PG_mlocked)
785#define writeback (1UL << PG_writeback)
786#define lru (1UL << PG_lru)
787#define swapbacked (1UL << PG_swapbacked)
788#define head (1UL << PG_head)
789#define tail (1UL << PG_tail)
790#define compound (1UL << PG_compound)
791#define slab (1UL << PG_slab)
6a46079c
AK
792#define reserved (1UL << PG_reserved)
793
794static struct page_state {
795 unsigned long mask;
796 unsigned long res;
cc637b17 797 enum mf_action_page_type type;
6a46079c
AK
798 int (*action)(struct page *p, unsigned long pfn);
799} error_states[] = {
cc637b17 800 { reserved, reserved, MF_MSG_KERNEL, me_kernel },
95d01fc6
WF
801 /*
802 * free pages are specially detected outside this table:
803 * PG_buddy pages only make a small fraction of all free pages.
804 */
6a46079c
AK
805
806 /*
807 * Could in theory check if slab page is free or if we can drop
808 * currently unused objects without touching them. But just
809 * treat it as standard kernel for now.
810 */
cc637b17 811 { slab, slab, MF_MSG_SLAB, me_kernel },
6a46079c
AK
812
813#ifdef CONFIG_PAGEFLAGS_EXTENDED
cc637b17
XX
814 { head, head, MF_MSG_HUGE, me_huge_page },
815 { tail, tail, MF_MSG_HUGE, me_huge_page },
6a46079c 816#else
cc637b17 817 { compound, compound, MF_MSG_HUGE, me_huge_page },
6a46079c
AK
818#endif
819
cc637b17
XX
820 { sc|dirty, sc|dirty, MF_MSG_DIRTY_SWAPCACHE, me_swapcache_dirty },
821 { sc|dirty, sc, MF_MSG_CLEAN_SWAPCACHE, me_swapcache_clean },
6a46079c 822
cc637b17
XX
823 { mlock|dirty, mlock|dirty, MF_MSG_DIRTY_MLOCKED_LRU, me_pagecache_dirty },
824 { mlock|dirty, mlock, MF_MSG_CLEAN_MLOCKED_LRU, me_pagecache_clean },
6a46079c 825
cc637b17
XX
826 { unevict|dirty, unevict|dirty, MF_MSG_DIRTY_UNEVICTABLE_LRU, me_pagecache_dirty },
827 { unevict|dirty, unevict, MF_MSG_CLEAN_UNEVICTABLE_LRU, me_pagecache_clean },
5f4b9fc5 828
cc637b17
XX
829 { lru|dirty, lru|dirty, MF_MSG_DIRTY_LRU, me_pagecache_dirty },
830 { lru|dirty, lru, MF_MSG_CLEAN_LRU, me_pagecache_clean },
6a46079c
AK
831
832 /*
833 * Catchall entry: must be at end.
834 */
cc637b17 835 { 0, 0, MF_MSG_UNKNOWN, me_unknown },
6a46079c
AK
836};
837
2326c467
AK
838#undef dirty
839#undef sc
840#undef unevict
841#undef mlock
842#undef writeback
843#undef lru
844#undef swapbacked
845#undef head
846#undef tail
847#undef compound
848#undef slab
849#undef reserved
850
ff604cf6
NH
851/*
852 * "Dirty/Clean" indication is not 100% accurate due to the possibility of
853 * setting PG_dirty outside page lock. See also comment above set_page_dirty().
854 */
cc3e2af4
XX
855static void action_result(unsigned long pfn, enum mf_action_page_type type,
856 enum mf_result result)
6a46079c 857{
64d37a2b
NH
858 pr_err("MCE %#lx: recovery action for %s: %s\n",
859 pfn, action_page_types[type], action_name[result]);
6a46079c
AK
860}
861
862static int page_action(struct page_state *ps, struct page *p,
bd1ce5f9 863 unsigned long pfn)
6a46079c
AK
864{
865 int result;
7456b040 866 int count;
6a46079c
AK
867
868 result = ps->action(p, pfn);
7456b040 869
bd1ce5f9 870 count = page_count(p) - 1;
cc637b17 871 if (ps->action == me_swapcache_dirty && result == MF_DELAYED)
138ce286
WF
872 count--;
873 if (count != 0) {
6a46079c 874 printk(KERN_ERR
64d37a2b
NH
875 "MCE %#lx: %s still referenced by %d users\n",
876 pfn, action_page_types[ps->type], count);
cc637b17 877 result = MF_FAILED;
138ce286 878 }
64d37a2b 879 action_result(pfn, ps->type, result);
6a46079c
AK
880
881 /* Could do more checks here if page looks ok */
882 /*
883 * Could adjust zone counters here to correct for the missing page.
884 */
885
cc637b17 886 return (result == MF_RECOVERED || result == MF_DELAYED) ? 0 : -EBUSY;
6a46079c
AK
887}
888
ead07f6a
NH
889/**
890 * get_hwpoison_page() - Get refcount for memory error handling:
891 * @page: raw error page (hit by memory error)
892 *
893 * Return: return 0 if failed to grab the refcount, otherwise true (some
894 * non-zero value.)
895 */
896int get_hwpoison_page(struct page *page)
897{
898 struct page *head = compound_head(page);
899
900 if (PageHuge(head))
901 return get_page_unless_zero(head);
902
903 /*
904 * Thp tail page has special refcounting rule (refcount of tail pages
905 * is stored in ->_mapcount,) so we can't call get_page_unless_zero()
906 * directly for tail pages.
907 */
908 if (PageTransHuge(head)) {
909 if (get_page_unless_zero(head)) {
910 if (PageTail(page))
911 get_page(page);
912 return 1;
913 } else {
914 return 0;
915 }
916 }
917
918 return get_page_unless_zero(page);
919}
920EXPORT_SYMBOL_GPL(get_hwpoison_page);
921
6a46079c
AK
922/*
923 * Do all that is necessary to remove user space mappings. Unmap
924 * the pages and send SIGBUS to the processes if the data was dirty.
925 */
1668bfd5 926static int hwpoison_user_mappings(struct page *p, unsigned long pfn,
54b9dd14 927 int trapno, int flags, struct page **hpagep)
6a46079c
AK
928{
929 enum ttu_flags ttu = TTU_UNMAP | TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS;
930 struct address_space *mapping;
931 LIST_HEAD(tokill);
932 int ret;
6751ed65 933 int kill = 1, forcekill;
54b9dd14 934 struct page *hpage = *hpagep;
6a46079c 935
93a9eb39
NH
936 /*
937 * Here we are interested only in user-mapped pages, so skip any
938 * other types of pages.
939 */
940 if (PageReserved(p) || PageSlab(p))
941 return SWAP_SUCCESS;
942 if (!(PageLRU(hpage) || PageHuge(p)))
1668bfd5 943 return SWAP_SUCCESS;
6a46079c 944
6a46079c
AK
945 /*
946 * This check implies we don't kill processes if their pages
947 * are in the swap cache early. Those are always late kills.
948 */
7af446a8 949 if (!page_mapped(hpage))
1668bfd5
WF
950 return SWAP_SUCCESS;
951
52089b14
NH
952 if (PageKsm(p)) {
953 pr_err("MCE %#lx: can't handle KSM pages.\n", pfn);
1668bfd5 954 return SWAP_FAIL;
52089b14 955 }
6a46079c
AK
956
957 if (PageSwapCache(p)) {
958 printk(KERN_ERR
959 "MCE %#lx: keeping poisoned page in swap cache\n", pfn);
960 ttu |= TTU_IGNORE_HWPOISON;
961 }
962
963 /*
964 * Propagate the dirty bit from PTEs to struct page first, because we
965 * need this to decide if we should kill or just drop the page.
db0480b3
WF
966 * XXX: the dirty test could be racy: set_page_dirty() may not always
967 * be called inside page lock (it's recommended but not enforced).
6a46079c 968 */
7af446a8 969 mapping = page_mapping(hpage);
6751ed65 970 if (!(flags & MF_MUST_KILL) && !PageDirty(hpage) && mapping &&
7af446a8
NH
971 mapping_cap_writeback_dirty(mapping)) {
972 if (page_mkclean(hpage)) {
973 SetPageDirty(hpage);
6a46079c
AK
974 } else {
975 kill = 0;
976 ttu |= TTU_IGNORE_HWPOISON;
977 printk(KERN_INFO
978 "MCE %#lx: corrupted page was clean: dropped without side effects\n",
979 pfn);
980 }
981 }
982
983 /*
984 * First collect all the processes that have the page
985 * mapped in dirty form. This has to be done before try_to_unmap,
986 * because ttu takes the rmap data structures down.
987 *
988 * Error handling: We ignore errors here because
989 * there's nothing that can be done.
990 */
991 if (kill)
415c64c1 992 collect_procs(hpage, &tokill, flags & MF_ACTION_REQUIRED);
6a46079c 993
415c64c1 994 ret = try_to_unmap(hpage, ttu);
6a46079c
AK
995 if (ret != SWAP_SUCCESS)
996 printk(KERN_ERR "MCE %#lx: failed to unmap page (mapcount=%d)\n",
415c64c1 997 pfn, page_mapcount(hpage));
a6d30ddd 998
6a46079c
AK
999 /*
1000 * Now that the dirty bit has been propagated to the
1001 * struct page and all unmaps done we can decide if
1002 * killing is needed or not. Only kill when the page
6751ed65
TL
1003 * was dirty or the process is not restartable,
1004 * otherwise the tokill list is merely
6a46079c
AK
1005 * freed. When there was a problem unmapping earlier
1006 * use a more force-full uncatchable kill to prevent
1007 * any accesses to the poisoned memory.
1008 */
415c64c1 1009 forcekill = PageDirty(hpage) || (flags & MF_MUST_KILL);
6751ed65 1010 kill_procs(&tokill, forcekill, trapno,
7329bbeb 1011 ret != SWAP_SUCCESS, p, pfn, flags);
1668bfd5
WF
1012
1013 return ret;
6a46079c
AK
1014}
1015
7013febc
NH
1016static void set_page_hwpoison_huge_page(struct page *hpage)
1017{
1018 int i;
f9121153 1019 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1020 for (i = 0; i < nr_pages; i++)
1021 SetPageHWPoison(hpage + i);
1022}
1023
1024static void clear_page_hwpoison_huge_page(struct page *hpage)
1025{
1026 int i;
f9121153 1027 int nr_pages = 1 << compound_order(hpage);
7013febc
NH
1028 for (i = 0; i < nr_pages; i++)
1029 ClearPageHWPoison(hpage + i);
1030}
1031
cd42f4a3
TL
1032/**
1033 * memory_failure - Handle memory failure of a page.
1034 * @pfn: Page Number of the corrupted page
1035 * @trapno: Trap number reported in the signal to user space.
1036 * @flags: fine tune action taken
1037 *
1038 * This function is called by the low level machine check code
1039 * of an architecture when it detects hardware memory corruption
1040 * of a page. It tries its best to recover, which includes
1041 * dropping pages, killing processes etc.
1042 *
1043 * The function is primarily of use for corruptions that
1044 * happen outside the current execution context (e.g. when
1045 * detected by a background scrubber)
1046 *
1047 * Must run in process context (e.g. a work queue) with interrupts
1048 * enabled and no spinlocks hold.
1049 */
1050int memory_failure(unsigned long pfn, int trapno, int flags)
6a46079c
AK
1051{
1052 struct page_state *ps;
1053 struct page *p;
7af446a8 1054 struct page *hpage;
415c64c1 1055 struct page *orig_head;
6a46079c 1056 int res;
c9fbdd5f 1057 unsigned int nr_pages;
524fca1e 1058 unsigned long page_flags;
6a46079c
AK
1059
1060 if (!sysctl_memory_failure_recovery)
1061 panic("Memory failure from trap %d on page %lx", trapno, pfn);
1062
1063 if (!pfn_valid(pfn)) {
a7560fc8
WF
1064 printk(KERN_ERR
1065 "MCE %#lx: memory outside kernel control\n",
1066 pfn);
1067 return -ENXIO;
6a46079c
AK
1068 }
1069
1070 p = pfn_to_page(pfn);
415c64c1 1071 orig_head = hpage = compound_head(p);
6a46079c 1072 if (TestSetPageHWPoison(p)) {
d95ea51e 1073 printk(KERN_ERR "MCE %#lx: already hardware poisoned\n", pfn);
6a46079c
AK
1074 return 0;
1075 }
1076
4db0e950
NH
1077 /*
1078 * Currently errors on hugetlbfs pages are measured in hugepage units,
1079 * so nr_pages should be 1 << compound_order. OTOH when errors are on
1080 * transparent hugepages, they are supposed to be split and error
1081 * measurement is done in normal page units. So nr_pages should be one
1082 * in this case.
1083 */
1084 if (PageHuge(p))
1085 nr_pages = 1 << compound_order(hpage);
1086 else /* normal page or thp */
1087 nr_pages = 1;
293c07e3 1088 atomic_long_add(nr_pages, &num_poisoned_pages);
6a46079c
AK
1089
1090 /*
1091 * We need/can do nothing about count=0 pages.
1092 * 1) it's a free page, and therefore in safe hand:
1093 * prep_new_page() will be the gate keeper.
8c6c2ecb
NH
1094 * 2) it's a free hugepage, which is also safe:
1095 * an affected hugepage will be dequeued from hugepage freelist,
1096 * so there's no concern about reusing it ever after.
1097 * 3) it's part of a non-compound high order page.
6a46079c
AK
1098 * Implies some kernel user: cannot stop them from
1099 * R/W the page; let's pray that the page has been
1100 * used and will be freed some time later.
1101 * In fact it's dangerous to directly bump up page count from 0,
1102 * that may make page_freeze_refs()/page_unfreeze_refs() mismatch.
1103 */
ead07f6a 1104 if (!(flags & MF_COUNT_INCREASED) && !get_hwpoison_page(p)) {
8d22ba1b 1105 if (is_free_buddy_page(p)) {
cc637b17 1106 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
8d22ba1b 1107 return 0;
8c6c2ecb
NH
1108 } else if (PageHuge(hpage)) {
1109 /*
b985194c 1110 * Check "filter hit" and "race with other subpage."
8c6c2ecb 1111 */
7eaceacc 1112 lock_page(hpage);
b985194c
CY
1113 if (PageHWPoison(hpage)) {
1114 if ((hwpoison_filter(p) && TestClearPageHWPoison(p))
1115 || (p != hpage && TestSetPageHWPoison(hpage))) {
1116 atomic_long_sub(nr_pages, &num_poisoned_pages);
1117 unlock_page(hpage);
1118 return 0;
1119 }
8c6c2ecb
NH
1120 }
1121 set_page_hwpoison_huge_page(hpage);
1122 res = dequeue_hwpoisoned_huge_page(hpage);
cc637b17
XX
1123 action_result(pfn, MF_MSG_FREE_HUGE,
1124 res ? MF_IGNORED : MF_DELAYED);
8c6c2ecb
NH
1125 unlock_page(hpage);
1126 return res;
8d22ba1b 1127 } else {
cc637b17 1128 action_result(pfn, MF_MSG_KERNEL_HIGH_ORDER, MF_IGNORED);
8d22ba1b
WF
1129 return -EBUSY;
1130 }
6a46079c
AK
1131 }
1132
415c64c1
NH
1133 if (!PageHuge(p) && PageTransHuge(hpage)) {
1134 if (!PageAnon(hpage)) {
1135 pr_err("MCE: %#lx: non anonymous thp\n", pfn);
ead07f6a
NH
1136 if (TestClearPageHWPoison(p))
1137 atomic_long_sub(nr_pages, &num_poisoned_pages);
415c64c1 1138 put_page(p);
ead07f6a
NH
1139 if (p != hpage)
1140 put_page(hpage);
415c64c1
NH
1141 return -EBUSY;
1142 }
1143 if (unlikely(split_huge_page(hpage))) {
1144 pr_err("MCE: %#lx: thp split failed\n", pfn);
ead07f6a
NH
1145 if (TestClearPageHWPoison(p))
1146 atomic_long_sub(nr_pages, &num_poisoned_pages);
415c64c1 1147 put_page(p);
ead07f6a
NH
1148 if (p != hpage)
1149 put_page(hpage);
415c64c1
NH
1150 return -EBUSY;
1151 }
1152 VM_BUG_ON_PAGE(!page_count(p), p);
1153 hpage = compound_head(p);
1154 }
1155
e43c3afb
WF
1156 /*
1157 * We ignore non-LRU pages for good reasons.
1158 * - PG_locked is only well defined for LRU pages and a few others
1159 * - to avoid races with __set_page_locked()
1160 * - to avoid races with __SetPageSlab*() (and more non-atomic ops)
1161 * The check (unnecessarily) ignores LRU pages being isolated and
1162 * walked by the page reclaim code, however that's not a big loss.
1163 */
09789e5d 1164 if (!PageHuge(p)) {
415c64c1
NH
1165 if (!PageLRU(p))
1166 shake_page(p, 0);
1167 if (!PageLRU(p)) {
af241a08
JD
1168 /*
1169 * shake_page could have turned it free.
1170 */
1171 if (is_free_buddy_page(p)) {
2d421acd 1172 if (flags & MF_COUNT_INCREASED)
cc637b17 1173 action_result(pfn, MF_MSG_BUDDY, MF_DELAYED);
2d421acd 1174 else
cc637b17
XX
1175 action_result(pfn, MF_MSG_BUDDY_2ND,
1176 MF_DELAYED);
af241a08
JD
1177 return 0;
1178 }
0474a60e 1179 }
e43c3afb 1180 }
e43c3afb 1181
7eaceacc 1182 lock_page(hpage);
847ce401 1183
f37d4298
AK
1184 /*
1185 * The page could have changed compound pages during the locking.
1186 * If this happens just bail out.
1187 */
415c64c1 1188 if (PageCompound(p) && compound_head(p) != orig_head) {
cc637b17 1189 action_result(pfn, MF_MSG_DIFFERENT_COMPOUND, MF_IGNORED);
f37d4298
AK
1190 res = -EBUSY;
1191 goto out;
1192 }
1193
524fca1e
NH
1194 /*
1195 * We use page flags to determine what action should be taken, but
1196 * the flags can be modified by the error containment action. One
1197 * example is an mlocked page, where PG_mlocked is cleared by
1198 * page_remove_rmap() in try_to_unmap_one(). So to determine page status
1199 * correctly, we save a copy of the page flags at this time.
1200 */
1201 page_flags = p->flags;
1202
847ce401
WF
1203 /*
1204 * unpoison always clear PG_hwpoison inside page lock
1205 */
1206 if (!PageHWPoison(p)) {
d95ea51e 1207 printk(KERN_ERR "MCE %#lx: just unpoisoned\n", pfn);
3e030ecc
NH
1208 atomic_long_sub(nr_pages, &num_poisoned_pages);
1209 put_page(hpage);
847ce401
WF
1210 res = 0;
1211 goto out;
1212 }
7c116f2b
WF
1213 if (hwpoison_filter(p)) {
1214 if (TestClearPageHWPoison(p))
293c07e3 1215 atomic_long_sub(nr_pages, &num_poisoned_pages);
7af446a8
NH
1216 unlock_page(hpage);
1217 put_page(hpage);
7c116f2b
WF
1218 return 0;
1219 }
847ce401 1220
0bc1f8b0
CY
1221 if (!PageHuge(p) && !PageTransTail(p) && !PageLRU(p))
1222 goto identify_page_state;
1223
7013febc
NH
1224 /*
1225 * For error on the tail page, we should set PG_hwpoison
1226 * on the head page to show that the hugepage is hwpoisoned
1227 */
a6d30ddd 1228 if (PageHuge(p) && PageTail(p) && TestSetPageHWPoison(hpage)) {
cc637b17 1229 action_result(pfn, MF_MSG_POISONED_HUGE, MF_IGNORED);
7013febc
NH
1230 unlock_page(hpage);
1231 put_page(hpage);
1232 return 0;
1233 }
1234 /*
1235 * Set PG_hwpoison on all pages in an error hugepage,
1236 * because containment is done in hugepage unit for now.
1237 * Since we have done TestSetPageHWPoison() for the head page with
1238 * page lock held, we can safely set PG_hwpoison bits on tail pages.
1239 */
1240 if (PageHuge(p))
1241 set_page_hwpoison_huge_page(hpage);
1242
6edd6cc6
NH
1243 /*
1244 * It's very difficult to mess with pages currently under IO
1245 * and in many cases impossible, so we just avoid it here.
1246 */
6a46079c
AK
1247 wait_on_page_writeback(p);
1248
1249 /*
1250 * Now take care of user space mappings.
e64a782f 1251 * Abort on fail: __delete_from_page_cache() assumes unmapped page.
54b9dd14
NH
1252 *
1253 * When the raw error page is thp tail page, hpage points to the raw
1254 * page after thp split.
6a46079c 1255 */
54b9dd14
NH
1256 if (hwpoison_user_mappings(p, pfn, trapno, flags, &hpage)
1257 != SWAP_SUCCESS) {
cc637b17 1258 action_result(pfn, MF_MSG_UNMAP_FAILED, MF_IGNORED);
1668bfd5
WF
1259 res = -EBUSY;
1260 goto out;
1261 }
6a46079c
AK
1262
1263 /*
1264 * Torn down by someone else?
1265 */
dc2a1cbf 1266 if (PageLRU(p) && !PageSwapCache(p) && p->mapping == NULL) {
cc637b17 1267 action_result(pfn, MF_MSG_TRUNCATED_LRU, MF_IGNORED);
d95ea51e 1268 res = -EBUSY;
6a46079c
AK
1269 goto out;
1270 }
1271
0bc1f8b0 1272identify_page_state:
6a46079c 1273 res = -EBUSY;
524fca1e
NH
1274 /*
1275 * The first check uses the current page flags which may not have any
1276 * relevant information. The second check with the saved page flagss is
1277 * carried out only if the first check can't determine the page status.
1278 */
1279 for (ps = error_states;; ps++)
1280 if ((p->flags & ps->mask) == ps->res)
6a46079c 1281 break;
841fcc58
WL
1282
1283 page_flags |= (p->flags & (1UL << PG_dirty));
1284
524fca1e
NH
1285 if (!ps->mask)
1286 for (ps = error_states;; ps++)
1287 if ((page_flags & ps->mask) == ps->res)
1288 break;
1289 res = page_action(ps, p, pfn);
6a46079c 1290out:
7af446a8 1291 unlock_page(hpage);
6a46079c
AK
1292 return res;
1293}
cd42f4a3 1294EXPORT_SYMBOL_GPL(memory_failure);
847ce401 1295
ea8f5fb8
HY
1296#define MEMORY_FAILURE_FIFO_ORDER 4
1297#define MEMORY_FAILURE_FIFO_SIZE (1 << MEMORY_FAILURE_FIFO_ORDER)
1298
1299struct memory_failure_entry {
1300 unsigned long pfn;
1301 int trapno;
1302 int flags;
1303};
1304
1305struct memory_failure_cpu {
1306 DECLARE_KFIFO(fifo, struct memory_failure_entry,
1307 MEMORY_FAILURE_FIFO_SIZE);
1308 spinlock_t lock;
1309 struct work_struct work;
1310};
1311
1312static DEFINE_PER_CPU(struct memory_failure_cpu, memory_failure_cpu);
1313
1314/**
1315 * memory_failure_queue - Schedule handling memory failure of a page.
1316 * @pfn: Page Number of the corrupted page
1317 * @trapno: Trap number reported in the signal to user space.
1318 * @flags: Flags for memory failure handling
1319 *
1320 * This function is called by the low level hardware error handler
1321 * when it detects hardware memory corruption of a page. It schedules
1322 * the recovering of error page, including dropping pages, killing
1323 * processes etc.
1324 *
1325 * The function is primarily of use for corruptions that
1326 * happen outside the current execution context (e.g. when
1327 * detected by a background scrubber)
1328 *
1329 * Can run in IRQ context.
1330 */
1331void memory_failure_queue(unsigned long pfn, int trapno, int flags)
1332{
1333 struct memory_failure_cpu *mf_cpu;
1334 unsigned long proc_flags;
1335 struct memory_failure_entry entry = {
1336 .pfn = pfn,
1337 .trapno = trapno,
1338 .flags = flags,
1339 };
1340
1341 mf_cpu = &get_cpu_var(memory_failure_cpu);
1342 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
498d319b 1343 if (kfifo_put(&mf_cpu->fifo, entry))
ea8f5fb8
HY
1344 schedule_work_on(smp_processor_id(), &mf_cpu->work);
1345 else
8e33a52f 1346 pr_err("Memory failure: buffer overflow when queuing memory failure at %#lx\n",
ea8f5fb8
HY
1347 pfn);
1348 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1349 put_cpu_var(memory_failure_cpu);
1350}
1351EXPORT_SYMBOL_GPL(memory_failure_queue);
1352
1353static void memory_failure_work_func(struct work_struct *work)
1354{
1355 struct memory_failure_cpu *mf_cpu;
1356 struct memory_failure_entry entry = { 0, };
1357 unsigned long proc_flags;
1358 int gotten;
1359
7c8e0181 1360 mf_cpu = this_cpu_ptr(&memory_failure_cpu);
ea8f5fb8
HY
1361 for (;;) {
1362 spin_lock_irqsave(&mf_cpu->lock, proc_flags);
1363 gotten = kfifo_get(&mf_cpu->fifo, &entry);
1364 spin_unlock_irqrestore(&mf_cpu->lock, proc_flags);
1365 if (!gotten)
1366 break;
cf870c70
NR
1367 if (entry.flags & MF_SOFT_OFFLINE)
1368 soft_offline_page(pfn_to_page(entry.pfn), entry.flags);
1369 else
1370 memory_failure(entry.pfn, entry.trapno, entry.flags);
ea8f5fb8
HY
1371 }
1372}
1373
1374static int __init memory_failure_init(void)
1375{
1376 struct memory_failure_cpu *mf_cpu;
1377 int cpu;
1378
1379 for_each_possible_cpu(cpu) {
1380 mf_cpu = &per_cpu(memory_failure_cpu, cpu);
1381 spin_lock_init(&mf_cpu->lock);
1382 INIT_KFIFO(mf_cpu->fifo);
1383 INIT_WORK(&mf_cpu->work, memory_failure_work_func);
1384 }
1385
1386 return 0;
1387}
1388core_initcall(memory_failure_init);
1389
847ce401
WF
1390/**
1391 * unpoison_memory - Unpoison a previously poisoned page
1392 * @pfn: Page number of the to be unpoisoned page
1393 *
1394 * Software-unpoison a page that has been poisoned by
1395 * memory_failure() earlier.
1396 *
1397 * This is only done on the software-level, so it only works
1398 * for linux injected failures, not real hardware failures
1399 *
1400 * Returns 0 for success, otherwise -errno.
1401 */
1402int unpoison_memory(unsigned long pfn)
1403{
1404 struct page *page;
1405 struct page *p;
1406 int freeit = 0;
c9fbdd5f 1407 unsigned int nr_pages;
847ce401
WF
1408
1409 if (!pfn_valid(pfn))
1410 return -ENXIO;
1411
1412 p = pfn_to_page(pfn);
1413 page = compound_head(p);
1414
1415 if (!PageHWPoison(p)) {
fb46e735 1416 pr_info("MCE: Page was already unpoisoned %#lx\n", pfn);
847ce401
WF
1417 return 0;
1418 }
1419
0cea3fdc
WL
1420 /*
1421 * unpoison_memory() can encounter thp only when the thp is being
1422 * worked by memory_failure() and the page lock is not held yet.
1423 * In such case, we yield to memory_failure() and make unpoison fail.
1424 */
e76d30e2 1425 if (!PageHuge(page) && PageTransHuge(page)) {
0cea3fdc 1426 pr_info("MCE: Memory failure is now running on %#lx\n", pfn);
ead07f6a 1427 return 0;
0cea3fdc
WL
1428 }
1429
f9121153 1430 nr_pages = 1 << compound_order(page);
c9fbdd5f 1431
ead07f6a 1432 if (!get_hwpoison_page(p)) {
8c6c2ecb
NH
1433 /*
1434 * Since HWPoisoned hugepage should have non-zero refcount,
1435 * race between memory failure and unpoison seems to happen.
1436 * In such case unpoison fails and memory failure runs
1437 * to the end.
1438 */
1439 if (PageHuge(page)) {
dd73e85f 1440 pr_info("MCE: Memory failure is now running on free hugepage %#lx\n", pfn);
8c6c2ecb
NH
1441 return 0;
1442 }
847ce401 1443 if (TestClearPageHWPoison(p))
dd9538a5 1444 atomic_long_dec(&num_poisoned_pages);
fb46e735 1445 pr_info("MCE: Software-unpoisoned free page %#lx\n", pfn);
847ce401
WF
1446 return 0;
1447 }
1448
7eaceacc 1449 lock_page(page);
847ce401
WF
1450 /*
1451 * This test is racy because PG_hwpoison is set outside of page lock.
1452 * That's acceptable because that won't trigger kernel panic. Instead,
1453 * the PG_hwpoison page will be caught and isolated on the entrance to
1454 * the free buddy page pool.
1455 */
c9fbdd5f 1456 if (TestClearPageHWPoison(page)) {
fb46e735 1457 pr_info("MCE: Software-unpoisoned page %#lx\n", pfn);
293c07e3 1458 atomic_long_sub(nr_pages, &num_poisoned_pages);
847ce401 1459 freeit = 1;
6a90181c
NH
1460 if (PageHuge(page))
1461 clear_page_hwpoison_huge_page(page);
847ce401
WF
1462 }
1463 unlock_page(page);
1464
1465 put_page(page);
3ba5eebc 1466 if (freeit && !(pfn == my_zero_pfn(0) && page_count(p) == 1))
847ce401
WF
1467 put_page(page);
1468
1469 return 0;
1470}
1471EXPORT_SYMBOL(unpoison_memory);
facb6011
AK
1472
1473static struct page *new_page(struct page *p, unsigned long private, int **x)
1474{
12686d15 1475 int nid = page_to_nid(p);
d950b958
NH
1476 if (PageHuge(p))
1477 return alloc_huge_page_node(page_hstate(compound_head(p)),
1478 nid);
1479 else
1480 return alloc_pages_exact_node(nid, GFP_HIGHUSER_MOVABLE, 0);
facb6011
AK
1481}
1482
1483/*
1484 * Safely get reference count of an arbitrary page.
1485 * Returns 0 for a free page, -EIO for a zero refcount page
1486 * that is not free, and 1 for any other page type.
1487 * For 1 the page is returned with increased page count, otherwise not.
1488 */
af8fae7c 1489static int __get_any_page(struct page *p, unsigned long pfn, int flags)
facb6011
AK
1490{
1491 int ret;
1492
1493 if (flags & MF_COUNT_INCREASED)
1494 return 1;
1495
d950b958
NH
1496 /*
1497 * When the target page is a free hugepage, just remove it
1498 * from free hugepage list.
1499 */
ead07f6a 1500 if (!get_hwpoison_page(p)) {
d950b958 1501 if (PageHuge(p)) {
71dd0b8a 1502 pr_info("%s: %#lx free huge page\n", __func__, pfn);
af8fae7c 1503 ret = 0;
d950b958 1504 } else if (is_free_buddy_page(p)) {
71dd0b8a 1505 pr_info("%s: %#lx free buddy page\n", __func__, pfn);
facb6011
AK
1506 ret = 0;
1507 } else {
71dd0b8a
BP
1508 pr_info("%s: %#lx: unknown zero refcount page type %lx\n",
1509 __func__, pfn, p->flags);
facb6011
AK
1510 ret = -EIO;
1511 }
1512 } else {
1513 /* Not a free page */
1514 ret = 1;
1515 }
facb6011
AK
1516 return ret;
1517}
1518
af8fae7c
NH
1519static int get_any_page(struct page *page, unsigned long pfn, int flags)
1520{
1521 int ret = __get_any_page(page, pfn, flags);
1522
1523 if (ret == 1 && !PageHuge(page) && !PageLRU(page)) {
1524 /*
1525 * Try to free it.
1526 */
1527 put_page(page);
1528 shake_page(page, 1);
1529
1530 /*
1531 * Did it turn free?
1532 */
1533 ret = __get_any_page(page, pfn, 0);
1534 if (!PageLRU(page)) {
1535 pr_info("soft_offline: %#lx: unknown non LRU page type %lx\n",
1536 pfn, page->flags);
1537 return -EIO;
1538 }
1539 }
1540 return ret;
1541}
1542
d950b958
NH
1543static int soft_offline_huge_page(struct page *page, int flags)
1544{
1545 int ret;
1546 unsigned long pfn = page_to_pfn(page);
1547 struct page *hpage = compound_head(page);
b8ec1cee 1548 LIST_HEAD(pagelist);
d950b958 1549
af8fae7c
NH
1550 /*
1551 * This double-check of PageHWPoison is to avoid the race with
1552 * memory_failure(). See also comment in __soft_offline_page().
1553 */
1554 lock_page(hpage);
0ebff32c 1555 if (PageHWPoison(hpage)) {
af8fae7c
NH
1556 unlock_page(hpage);
1557 put_page(hpage);
0ebff32c 1558 pr_info("soft offline: %#lx hugepage already poisoned\n", pfn);
af8fae7c 1559 return -EBUSY;
0ebff32c 1560 }
af8fae7c 1561 unlock_page(hpage);
d950b958 1562
bcc54222
NH
1563 ret = isolate_huge_page(hpage, &pagelist);
1564 if (ret) {
1565 /*
1566 * get_any_page() and isolate_huge_page() takes a refcount each,
1567 * so need to drop one here.
1568 */
1569 put_page(hpage);
1570 } else {
1571 pr_info("soft offline: %#lx hugepage failed to isolate\n", pfn);
1572 return -EBUSY;
1573 }
1574
68711a74 1575 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
b8ec1cee 1576 MIGRATE_SYNC, MR_MEMORY_FAILURE);
d950b958 1577 if (ret) {
dd73e85f
DN
1578 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
1579 pfn, ret, page->flags);
b8ec1cee
NH
1580 /*
1581 * We know that soft_offline_huge_page() tries to migrate
1582 * only one hugepage pointed to by hpage, so we need not
1583 * run through the pagelist here.
1584 */
1585 putback_active_hugepage(hpage);
1586 if (ret > 0)
1587 ret = -EIO;
af8fae7c 1588 } else {
a49ecbcd
JW
1589 /* overcommit hugetlb page will be freed to buddy */
1590 if (PageHuge(page)) {
1591 set_page_hwpoison_huge_page(hpage);
1592 dequeue_hwpoisoned_huge_page(hpage);
1593 atomic_long_add(1 << compound_order(hpage),
1594 &num_poisoned_pages);
1595 } else {
1596 SetPageHWPoison(page);
1597 atomic_long_inc(&num_poisoned_pages);
1598 }
d950b958 1599 }
d950b958
NH
1600 return ret;
1601}
1602
af8fae7c
NH
1603static int __soft_offline_page(struct page *page, int flags)
1604{
1605 int ret;
1606 unsigned long pfn = page_to_pfn(page);
facb6011 1607
facb6011 1608 /*
af8fae7c
NH
1609 * Check PageHWPoison again inside page lock because PageHWPoison
1610 * is set by memory_failure() outside page lock. Note that
1611 * memory_failure() also double-checks PageHWPoison inside page lock,
1612 * so there's no race between soft_offline_page() and memory_failure().
facb6011 1613 */
0ebff32c
XQ
1614 lock_page(page);
1615 wait_on_page_writeback(page);
af8fae7c
NH
1616 if (PageHWPoison(page)) {
1617 unlock_page(page);
1618 put_page(page);
1619 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1620 return -EBUSY;
1621 }
facb6011
AK
1622 /*
1623 * Try to invalidate first. This should work for
1624 * non dirty unmapped page cache pages.
1625 */
1626 ret = invalidate_inode_page(page);
1627 unlock_page(page);
facb6011 1628 /*
facb6011
AK
1629 * RED-PEN would be better to keep it isolated here, but we
1630 * would need to fix isolation locking first.
1631 */
facb6011 1632 if (ret == 1) {
bd486285 1633 put_page(page);
fb46e735 1634 pr_info("soft_offline: %#lx: invalidated\n", pfn);
af8fae7c
NH
1635 SetPageHWPoison(page);
1636 atomic_long_inc(&num_poisoned_pages);
1637 return 0;
facb6011
AK
1638 }
1639
1640 /*
1641 * Simple invalidation didn't work.
1642 * Try to migrate to a new page instead. migrate.c
1643 * handles a large number of cases for us.
1644 */
1645 ret = isolate_lru_page(page);
bd486285
KK
1646 /*
1647 * Drop page reference which is came from get_any_page()
1648 * successful isolate_lru_page() already took another one.
1649 */
1650 put_page(page);
facb6011
AK
1651 if (!ret) {
1652 LIST_HEAD(pagelist);
5db8a73a 1653 inc_zone_page_state(page, NR_ISOLATED_ANON +
9c620e2b 1654 page_is_file_cache(page));
facb6011 1655 list_add(&page->lru, &pagelist);
68711a74 1656 ret = migrate_pages(&pagelist, new_page, NULL, MPOL_MF_MOVE_ALL,
9c620e2b 1657 MIGRATE_SYNC, MR_MEMORY_FAILURE);
facb6011 1658 if (ret) {
59c82b70
JK
1659 if (!list_empty(&pagelist)) {
1660 list_del(&page->lru);
1661 dec_zone_page_state(page, NR_ISOLATED_ANON +
1662 page_is_file_cache(page));
1663 putback_lru_page(page);
1664 }
1665
fb46e735 1666 pr_info("soft offline: %#lx: migration failed %d, type %lx\n",
facb6011
AK
1667 pfn, ret, page->flags);
1668 if (ret > 0)
1669 ret = -EIO;
af8fae7c
NH
1670 } else {
1671 SetPageHWPoison(page);
1672 atomic_long_inc(&num_poisoned_pages);
facb6011
AK
1673 }
1674 } else {
fb46e735 1675 pr_info("soft offline: %#lx: isolation failed: %d, page count %d, type %lx\n",
dd73e85f 1676 pfn, ret, page_count(page), page->flags);
facb6011 1677 }
facb6011
AK
1678 return ret;
1679}
86e05773
WL
1680
1681/**
1682 * soft_offline_page - Soft offline a page.
1683 * @page: page to offline
1684 * @flags: flags. Same as memory_failure().
1685 *
1686 * Returns 0 on success, otherwise negated errno.
1687 *
1688 * Soft offline a page, by migration or invalidation,
1689 * without killing anything. This is for the case when
1690 * a page is not corrupted yet (so it's still valid to access),
1691 * but has had a number of corrected errors and is better taken
1692 * out.
1693 *
1694 * The actual policy on when to do that is maintained by
1695 * user space.
1696 *
1697 * This should never impact any application or cause data loss,
1698 * however it might take some time.
1699 *
1700 * This is not a 100% solution for all memory, but tries to be
1701 * ``good enough'' for the majority of memory.
1702 */
1703int soft_offline_page(struct page *page, int flags)
1704{
1705 int ret;
1706 unsigned long pfn = page_to_pfn(page);
668f9abb 1707 struct page *hpage = compound_head(page);
86e05773
WL
1708
1709 if (PageHWPoison(page)) {
1710 pr_info("soft offline: %#lx page already poisoned\n", pfn);
1711 return -EBUSY;
1712 }
1713 if (!PageHuge(page) && PageTransHuge(hpage)) {
1714 if (PageAnon(hpage) && unlikely(split_huge_page(hpage))) {
1715 pr_info("soft offline: %#lx: failed to split THP\n",
1716 pfn);
1717 return -EBUSY;
1718 }
1719 }
1720
bfc8c901 1721 get_online_mems();
03b61ff3 1722
86e05773 1723 ret = get_any_page(page, pfn, flags);
bfc8c901 1724 put_online_mems();
03b61ff3 1725 if (ret > 0) { /* for in-use pages */
86e05773
WL
1726 if (PageHuge(page))
1727 ret = soft_offline_huge_page(page, flags);
1728 else
1729 ret = __soft_offline_page(page, flags);
03b61ff3 1730 } else if (ret == 0) { /* for free pages */
86e05773
WL
1731 if (PageHuge(page)) {
1732 set_page_hwpoison_huge_page(hpage);
602498f9
NH
1733 if (!dequeue_hwpoisoned_huge_page(hpage))
1734 atomic_long_add(1 << compound_order(hpage),
86e05773
WL
1735 &num_poisoned_pages);
1736 } else {
602498f9
NH
1737 if (!TestSetPageHWPoison(page))
1738 atomic_long_inc(&num_poisoned_pages);
86e05773
WL
1739 }
1740 }
86e05773
WL
1741 return ret;
1742}