]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/page-writeback.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
90eec103 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
f361bf4a 39#include <linux/sched/signal.h>
6e543d57 40#include <linux/mm_inline.h>
028c2dd1 41#include <trace/events/writeback.h>
1da177e4 42
6e543d57
LD
43#include "internal.h"
44
ffd1f609
WF
45/*
46 * Sleep at most 200ms at a time in balance_dirty_pages().
47 */
48#define MAX_PAUSE max(HZ/5, 1)
49
5b9b3574
WF
50/*
51 * Try to keep balance_dirty_pages() call intervals higher than this many pages
52 * by raising pause time to max_pause when falls below it.
53 */
54#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
55
e98be2d5
WF
56/*
57 * Estimate write bandwidth at 200ms intervals.
58 */
59#define BANDWIDTH_INTERVAL max(HZ/5, 1)
60
6c14ae1e
WF
61#define RATELIMIT_CALC_SHIFT 10
62
1da177e4
LT
63/*
64 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
65 * will look to see if it needs to force writeback or throttling.
66 */
67static long ratelimit_pages = 32;
68
1da177e4
LT
69/* The following parameters are exported via /proc/sys/vm */
70
71/*
5b0830cb 72 * Start background writeback (via writeback threads) at this percentage
1da177e4 73 */
1b5e62b4 74int dirty_background_ratio = 10;
1da177e4 75
2da02997
DR
76/*
77 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
78 * dirty_background_ratio * the amount of dirtyable memory
79 */
80unsigned long dirty_background_bytes;
81
195cf453
BG
82/*
83 * free highmem will not be subtracted from the total free memory
84 * for calculating free ratios if vm_highmem_is_dirtyable is true
85 */
86int vm_highmem_is_dirtyable;
87
1da177e4
LT
88/*
89 * The generator of dirty data starts writeback at this percentage
90 */
1b5e62b4 91int vm_dirty_ratio = 20;
1da177e4 92
2da02997
DR
93/*
94 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
95 * vm_dirty_ratio * the amount of dirtyable memory
96 */
97unsigned long vm_dirty_bytes;
98
1da177e4 99/*
704503d8 100 * The interval between `kupdate'-style writebacks
1da177e4 101 */
22ef37ee 102unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 103
91913a29
AB
104EXPORT_SYMBOL_GPL(dirty_writeback_interval);
105
1da177e4 106/*
704503d8 107 * The longest time for which data is allowed to remain dirty
1da177e4 108 */
22ef37ee 109unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
110
111/*
112 * Flag that makes the machine dump writes/reads and block dirtyings.
113 */
114int block_dump;
115
116/*
ed5b43f1
BS
117 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
118 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
119 */
120int laptop_mode;
121
122EXPORT_SYMBOL(laptop_mode);
123
124/* End of sysctl-exported parameters */
125
dcc25ae7 126struct wb_domain global_wb_domain;
1da177e4 127
2bc00aef
TH
128/* consolidated parameters for balance_dirty_pages() and its subroutines */
129struct dirty_throttle_control {
e9f07dfd
TH
130#ifdef CONFIG_CGROUP_WRITEBACK
131 struct wb_domain *dom;
9fc3a43e 132 struct dirty_throttle_control *gdtc; /* only set in memcg dtc's */
e9f07dfd 133#endif
2bc00aef 134 struct bdi_writeback *wb;
e9770b34 135 struct fprop_local_percpu *wb_completions;
eb608e3a 136
9fc3a43e 137 unsigned long avail; /* dirtyable */
2bc00aef
TH
138 unsigned long dirty; /* file_dirty + write + nfs */
139 unsigned long thresh; /* dirty threshold */
140 unsigned long bg_thresh; /* dirty background threshold */
141
142 unsigned long wb_dirty; /* per-wb counterparts */
143 unsigned long wb_thresh;
970fb01a 144 unsigned long wb_bg_thresh;
daddfa3c
TH
145
146 unsigned long pos_ratio;
2bc00aef
TH
147};
148
eb608e3a
JK
149/*
150 * Length of period for aging writeout fractions of bdis. This is an
151 * arbitrarily chosen number. The longer the period, the slower fractions will
152 * reflect changes in current writeout rate.
153 */
154#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 155
693108a8
TH
156#ifdef CONFIG_CGROUP_WRITEBACK
157
d60d1bdd
TH
158#define GDTC_INIT(__wb) .wb = (__wb), \
159 .dom = &global_wb_domain, \
160 .wb_completions = &(__wb)->completions
161
9fc3a43e 162#define GDTC_INIT_NO_WB .dom = &global_wb_domain
d60d1bdd
TH
163
164#define MDTC_INIT(__wb, __gdtc) .wb = (__wb), \
165 .dom = mem_cgroup_wb_domain(__wb), \
166 .wb_completions = &(__wb)->memcg_completions, \
167 .gdtc = __gdtc
c2aa723a
TH
168
169static bool mdtc_valid(struct dirty_throttle_control *dtc)
170{
171 return dtc->dom;
172}
e9f07dfd
TH
173
174static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
175{
176 return dtc->dom;
177}
178
9fc3a43e
TH
179static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
180{
181 return mdtc->gdtc;
182}
183
841710aa
TH
184static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
185{
186 return &wb->memcg_completions;
187}
188
693108a8
TH
189static void wb_min_max_ratio(struct bdi_writeback *wb,
190 unsigned long *minp, unsigned long *maxp)
191{
192 unsigned long this_bw = wb->avg_write_bandwidth;
193 unsigned long tot_bw = atomic_long_read(&wb->bdi->tot_write_bandwidth);
194 unsigned long long min = wb->bdi->min_ratio;
195 unsigned long long max = wb->bdi->max_ratio;
196
197 /*
198 * @wb may already be clean by the time control reaches here and
199 * the total may not include its bw.
200 */
201 if (this_bw < tot_bw) {
202 if (min) {
203 min *= this_bw;
29cb5df8 204 min = div64_ul(min, tot_bw);
693108a8
TH
205 }
206 if (max < 100) {
207 max *= this_bw;
29cb5df8 208 max = div64_ul(max, tot_bw);
693108a8
TH
209 }
210 }
211
212 *minp = min;
213 *maxp = max;
214}
215
216#else /* CONFIG_CGROUP_WRITEBACK */
217
d60d1bdd
TH
218#define GDTC_INIT(__wb) .wb = (__wb), \
219 .wb_completions = &(__wb)->completions
9fc3a43e 220#define GDTC_INIT_NO_WB
c2aa723a
TH
221#define MDTC_INIT(__wb, __gdtc)
222
223static bool mdtc_valid(struct dirty_throttle_control *dtc)
224{
225 return false;
226}
e9f07dfd
TH
227
228static struct wb_domain *dtc_dom(struct dirty_throttle_control *dtc)
229{
230 return &global_wb_domain;
231}
232
9fc3a43e
TH
233static struct dirty_throttle_control *mdtc_gdtc(struct dirty_throttle_control *mdtc)
234{
235 return NULL;
236}
237
841710aa
TH
238static struct fprop_local_percpu *wb_memcg_completions(struct bdi_writeback *wb)
239{
240 return NULL;
241}
242
693108a8
TH
243static void wb_min_max_ratio(struct bdi_writeback *wb,
244 unsigned long *minp, unsigned long *maxp)
245{
246 *minp = wb->bdi->min_ratio;
247 *maxp = wb->bdi->max_ratio;
248}
249
250#endif /* CONFIG_CGROUP_WRITEBACK */
251
a756cf59
JW
252/*
253 * In a memory zone, there is a certain amount of pages we consider
254 * available for the page cache, which is essentially the number of
255 * free and reclaimable pages, minus some zone reserves to protect
256 * lowmem and the ability to uphold the zone's watermarks without
257 * requiring writeback.
258 *
259 * This number of dirtyable pages is the base value of which the
260 * user-configurable dirty ratio is the effictive number of pages that
261 * are allowed to be actually dirtied. Per individual zone, or
262 * globally by using the sum of dirtyable pages over all zones.
263 *
264 * Because the user is allowed to specify the dirty limit globally as
265 * absolute number of bytes, calculating the per-zone dirty limit can
266 * require translating the configured limit into a percentage of
267 * global dirtyable memory first.
268 */
269
a804552b 270/**
281e3726
MG
271 * node_dirtyable_memory - number of dirtyable pages in a node
272 * @pgdat: the node
a804552b 273 *
281e3726
MG
274 * Returns the node's number of pages potentially available for dirty
275 * page cache. This is the base value for the per-node dirty limits.
a804552b 276 */
281e3726 277static unsigned long node_dirtyable_memory(struct pglist_data *pgdat)
a804552b 278{
281e3726
MG
279 unsigned long nr_pages = 0;
280 int z;
281
282 for (z = 0; z < MAX_NR_ZONES; z++) {
283 struct zone *zone = pgdat->node_zones + z;
284
285 if (!populated_zone(zone))
286 continue;
287
288 nr_pages += zone_page_state(zone, NR_FREE_PAGES);
289 }
a804552b 290
a8d01437
JW
291 /*
292 * Pages reserved for the kernel should not be considered
293 * dirtyable, to prevent a situation where reclaim has to
294 * clean pages in order to balance the zones.
295 */
281e3726 296 nr_pages -= min(nr_pages, pgdat->totalreserve_pages);
a804552b 297
281e3726
MG
298 nr_pages += node_page_state(pgdat, NR_INACTIVE_FILE);
299 nr_pages += node_page_state(pgdat, NR_ACTIVE_FILE);
a804552b
JW
300
301 return nr_pages;
302}
303
1edf2234
JW
304static unsigned long highmem_dirtyable_memory(unsigned long total)
305{
306#ifdef CONFIG_HIGHMEM
307 int node;
bb4cc2be 308 unsigned long x = 0;
09b4ab3c 309 int i;
1edf2234
JW
310
311 for_each_node_state(node, N_HIGH_MEMORY) {
281e3726
MG
312 for (i = ZONE_NORMAL + 1; i < MAX_NR_ZONES; i++) {
313 struct zone *z;
9cb937e2 314 unsigned long nr_pages;
281e3726
MG
315
316 if (!is_highmem_idx(i))
317 continue;
318
319 z = &NODE_DATA(node)->node_zones[i];
9cb937e2
MK
320 if (!populated_zone(z))
321 continue;
1edf2234 322
9cb937e2 323 nr_pages = zone_page_state(z, NR_FREE_PAGES);
281e3726 324 /* watch for underflows */
9cb937e2 325 nr_pages -= min(nr_pages, high_wmark_pages(z));
bb4cc2be
MG
326 nr_pages += zone_page_state(z, NR_ZONE_INACTIVE_FILE);
327 nr_pages += zone_page_state(z, NR_ZONE_ACTIVE_FILE);
328 x += nr_pages;
09b4ab3c 329 }
1edf2234 330 }
281e3726 331
c8b74c2f
SR
332 /*
333 * Unreclaimable memory (kernel memory or anonymous memory
334 * without swap) can bring down the dirtyable pages below
335 * the zone's dirty balance reserve and the above calculation
336 * will underflow. However we still want to add in nodes
337 * which are below threshold (negative values) to get a more
338 * accurate calculation but make sure that the total never
339 * underflows.
340 */
341 if ((long)x < 0)
342 x = 0;
343
1edf2234
JW
344 /*
345 * Make sure that the number of highmem pages is never larger
346 * than the number of the total dirtyable memory. This can only
347 * occur in very strange VM situations but we want to make sure
348 * that this does not occur.
349 */
350 return min(x, total);
351#else
352 return 0;
353#endif
354}
355
356/**
ccafa287 357 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 358 *
ccafa287
JW
359 * Returns the global number of pages potentially available for dirty
360 * page cache. This is the base value for the global dirty limits.
1edf2234 361 */
18cf8cf8 362static unsigned long global_dirtyable_memory(void)
1edf2234
JW
363{
364 unsigned long x;
365
c41f012a 366 x = global_zone_page_state(NR_FREE_PAGES);
a8d01437
JW
367 /*
368 * Pages reserved for the kernel should not be considered
369 * dirtyable, to prevent a situation where reclaim has to
370 * clean pages in order to balance the zones.
371 */
372 x -= min(x, totalreserve_pages);
1edf2234 373
599d0c95
MG
374 x += global_node_page_state(NR_INACTIVE_FILE);
375 x += global_node_page_state(NR_ACTIVE_FILE);
a804552b 376
1edf2234
JW
377 if (!vm_highmem_is_dirtyable)
378 x -= highmem_dirtyable_memory(x);
379
380 return x + 1; /* Ensure that we never return 0 */
381}
382
9fc3a43e
TH
383/**
384 * domain_dirty_limits - calculate thresh and bg_thresh for a wb_domain
385 * @dtc: dirty_throttle_control of interest
ccafa287 386 *
9fc3a43e
TH
387 * Calculate @dtc->thresh and ->bg_thresh considering
388 * vm_dirty_{bytes|ratio} and dirty_background_{bytes|ratio}. The caller
389 * must ensure that @dtc->avail is set before calling this function. The
390 * dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
ccafa287
JW
391 * real-time tasks.
392 */
9fc3a43e 393static void domain_dirty_limits(struct dirty_throttle_control *dtc)
ccafa287 394{
9fc3a43e
TH
395 const unsigned long available_memory = dtc->avail;
396 struct dirty_throttle_control *gdtc = mdtc_gdtc(dtc);
397 unsigned long bytes = vm_dirty_bytes;
398 unsigned long bg_bytes = dirty_background_bytes;
62a584fe
TH
399 /* convert ratios to per-PAGE_SIZE for higher precision */
400 unsigned long ratio = (vm_dirty_ratio * PAGE_SIZE) / 100;
401 unsigned long bg_ratio = (dirty_background_ratio * PAGE_SIZE) / 100;
9fc3a43e
TH
402 unsigned long thresh;
403 unsigned long bg_thresh;
ccafa287
JW
404 struct task_struct *tsk;
405
9fc3a43e
TH
406 /* gdtc is !NULL iff @dtc is for memcg domain */
407 if (gdtc) {
408 unsigned long global_avail = gdtc->avail;
409
410 /*
411 * The byte settings can't be applied directly to memcg
412 * domains. Convert them to ratios by scaling against
62a584fe
TH
413 * globally available memory. As the ratios are in
414 * per-PAGE_SIZE, they can be obtained by dividing bytes by
415 * number of pages.
9fc3a43e
TH
416 */
417 if (bytes)
62a584fe
TH
418 ratio = min(DIV_ROUND_UP(bytes, global_avail),
419 PAGE_SIZE);
9fc3a43e 420 if (bg_bytes)
62a584fe
TH
421 bg_ratio = min(DIV_ROUND_UP(bg_bytes, global_avail),
422 PAGE_SIZE);
9fc3a43e
TH
423 bytes = bg_bytes = 0;
424 }
425
426 if (bytes)
427 thresh = DIV_ROUND_UP(bytes, PAGE_SIZE);
ccafa287 428 else
62a584fe 429 thresh = (ratio * available_memory) / PAGE_SIZE;
ccafa287 430
9fc3a43e
TH
431 if (bg_bytes)
432 bg_thresh = DIV_ROUND_UP(bg_bytes, PAGE_SIZE);
ccafa287 433 else
62a584fe 434 bg_thresh = (bg_ratio * available_memory) / PAGE_SIZE;
ccafa287 435
90daf306 436 if (bg_thresh >= thresh)
9fc3a43e 437 bg_thresh = thresh / 2;
ccafa287
JW
438 tsk = current;
439 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
a53eaff8
N
440 bg_thresh += bg_thresh / 4 + global_wb_domain.dirty_limit / 32;
441 thresh += thresh / 4 + global_wb_domain.dirty_limit / 32;
ccafa287 442 }
9fc3a43e
TH
443 dtc->thresh = thresh;
444 dtc->bg_thresh = bg_thresh;
445
446 /* we should eventually report the domain in the TP */
447 if (!gdtc)
448 trace_global_dirty_state(bg_thresh, thresh);
449}
450
451/**
452 * global_dirty_limits - background-writeback and dirty-throttling thresholds
453 * @pbackground: out parameter for bg_thresh
454 * @pdirty: out parameter for thresh
455 *
456 * Calculate bg_thresh and thresh for global_wb_domain. See
457 * domain_dirty_limits() for details.
458 */
459void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
460{
461 struct dirty_throttle_control gdtc = { GDTC_INIT_NO_WB };
462
463 gdtc.avail = global_dirtyable_memory();
464 domain_dirty_limits(&gdtc);
465
466 *pbackground = gdtc.bg_thresh;
467 *pdirty = gdtc.thresh;
ccafa287
JW
468}
469
a756cf59 470/**
281e3726
MG
471 * node_dirty_limit - maximum number of dirty pages allowed in a node
472 * @pgdat: the node
a756cf59 473 *
281e3726
MG
474 * Returns the maximum number of dirty pages allowed in a node, based
475 * on the node's dirtyable memory.
a756cf59 476 */
281e3726 477static unsigned long node_dirty_limit(struct pglist_data *pgdat)
a756cf59 478{
281e3726 479 unsigned long node_memory = node_dirtyable_memory(pgdat);
a756cf59
JW
480 struct task_struct *tsk = current;
481 unsigned long dirty;
482
483 if (vm_dirty_bytes)
484 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
281e3726 485 node_memory / global_dirtyable_memory();
a756cf59 486 else
281e3726 487 dirty = vm_dirty_ratio * node_memory / 100;
a756cf59
JW
488
489 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
490 dirty += dirty / 4;
491
492 return dirty;
493}
494
495/**
281e3726
MG
496 * node_dirty_ok - tells whether a node is within its dirty limits
497 * @pgdat: the node to check
a756cf59 498 *
281e3726 499 * Returns %true when the dirty pages in @pgdat are within the node's
a756cf59
JW
500 * dirty limit, %false if the limit is exceeded.
501 */
281e3726 502bool node_dirty_ok(struct pglist_data *pgdat)
a756cf59 503{
281e3726
MG
504 unsigned long limit = node_dirty_limit(pgdat);
505 unsigned long nr_pages = 0;
506
11fb9989
MG
507 nr_pages += node_page_state(pgdat, NR_FILE_DIRTY);
508 nr_pages += node_page_state(pgdat, NR_UNSTABLE_NFS);
509 nr_pages += node_page_state(pgdat, NR_WRITEBACK);
a756cf59 510
281e3726 511 return nr_pages <= limit;
a756cf59
JW
512}
513
2da02997 514int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 515 void __user *buffer, size_t *lenp,
2da02997
DR
516 loff_t *ppos)
517{
518 int ret;
519
8d65af78 520 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
521 if (ret == 0 && write)
522 dirty_background_bytes = 0;
523 return ret;
524}
525
526int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 527 void __user *buffer, size_t *lenp,
2da02997
DR
528 loff_t *ppos)
529{
530 int ret;
531
8d65af78 532 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
533 if (ret == 0 && write)
534 dirty_background_ratio = 0;
535 return ret;
536}
537
04fbfdc1 538int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 539 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
540 loff_t *ppos)
541{
542 int old_ratio = vm_dirty_ratio;
2da02997
DR
543 int ret;
544
8d65af78 545 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 546 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 547 writeback_set_ratelimit();
2da02997
DR
548 vm_dirty_bytes = 0;
549 }
550 return ret;
551}
552
2da02997 553int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 554 void __user *buffer, size_t *lenp,
2da02997
DR
555 loff_t *ppos)
556{
fc3501d4 557 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
558 int ret;
559
8d65af78 560 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 561 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 562 writeback_set_ratelimit();
2da02997 563 vm_dirty_ratio = 0;
04fbfdc1
PZ
564 }
565 return ret;
566}
567
eb608e3a
JK
568static unsigned long wp_next_time(unsigned long cur_time)
569{
570 cur_time += VM_COMPLETIONS_PERIOD_LEN;
571 /* 0 has a special meaning... */
572 if (!cur_time)
573 return 1;
574 return cur_time;
575}
576
c7981433
TH
577static void wb_domain_writeout_inc(struct wb_domain *dom,
578 struct fprop_local_percpu *completions,
579 unsigned int max_prop_frac)
04fbfdc1 580{
c7981433
TH
581 __fprop_inc_percpu_max(&dom->completions, completions,
582 max_prop_frac);
eb608e3a 583 /* First event after period switching was turned off? */
517663ed 584 if (unlikely(!dom->period_time)) {
eb608e3a
JK
585 /*
586 * We can race with other __bdi_writeout_inc calls here but
587 * it does not cause any harm since the resulting time when
588 * timer will fire and what is in writeout_period_time will be
589 * roughly the same.
590 */
380c27ca
TH
591 dom->period_time = wp_next_time(jiffies);
592 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a 593 }
04fbfdc1
PZ
594}
595
c7981433
TH
596/*
597 * Increment @wb's writeout completion count and the global writeout
598 * completion count. Called from test_clear_page_writeback().
599 */
600static inline void __wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5 601{
841710aa 602 struct wb_domain *cgdom;
dd5656e5 603
3e8f399d 604 inc_wb_stat(wb, WB_WRITTEN);
c7981433
TH
605 wb_domain_writeout_inc(&global_wb_domain, &wb->completions,
606 wb->bdi->max_prop_frac);
841710aa
TH
607
608 cgdom = mem_cgroup_wb_domain(wb);
609 if (cgdom)
610 wb_domain_writeout_inc(cgdom, wb_memcg_completions(wb),
611 wb->bdi->max_prop_frac);
dd5656e5 612}
dd5656e5 613
93f78d88 614void wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 615{
dd5656e5
MS
616 unsigned long flags;
617
618 local_irq_save(flags);
93f78d88 619 __wb_writeout_inc(wb);
dd5656e5 620 local_irq_restore(flags);
04fbfdc1 621}
93f78d88 622EXPORT_SYMBOL_GPL(wb_writeout_inc);
04fbfdc1 623
eb608e3a
JK
624/*
625 * On idle system, we can be called long after we scheduled because we use
626 * deferred timers so count with missed periods.
627 */
9823e51b 628static void writeout_period(struct timer_list *t)
eb608e3a 629{
9823e51b 630 struct wb_domain *dom = from_timer(dom, t, period_timer);
380c27ca 631 int miss_periods = (jiffies - dom->period_time) /
eb608e3a
JK
632 VM_COMPLETIONS_PERIOD_LEN;
633
380c27ca
TH
634 if (fprop_new_period(&dom->completions, miss_periods + 1)) {
635 dom->period_time = wp_next_time(dom->period_time +
eb608e3a 636 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
380c27ca 637 mod_timer(&dom->period_timer, dom->period_time);
eb608e3a
JK
638 } else {
639 /*
640 * Aging has zeroed all fractions. Stop wasting CPU on period
641 * updates.
642 */
380c27ca 643 dom->period_time = 0;
eb608e3a
JK
644 }
645}
646
380c27ca
TH
647int wb_domain_init(struct wb_domain *dom, gfp_t gfp)
648{
649 memset(dom, 0, sizeof(*dom));
dcc25ae7
TH
650
651 spin_lock_init(&dom->lock);
652
9823e51b 653 timer_setup(&dom->period_timer, writeout_period, TIMER_DEFERRABLE);
dcc25ae7
TH
654
655 dom->dirty_limit_tstamp = jiffies;
656
380c27ca
TH
657 return fprop_global_init(&dom->completions, gfp);
658}
659
841710aa
TH
660#ifdef CONFIG_CGROUP_WRITEBACK
661void wb_domain_exit(struct wb_domain *dom)
662{
663 del_timer_sync(&dom->period_timer);
664 fprop_global_destroy(&dom->completions);
665}
666#endif
667
189d3c4a 668/*
d08c429b
JW
669 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
670 * registered backing devices, which, for obvious reasons, can not
671 * exceed 100%.
189d3c4a 672 */
189d3c4a
PZ
673static unsigned int bdi_min_ratio;
674
675int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
676{
677 int ret = 0;
189d3c4a 678
cfc4ba53 679 spin_lock_bh(&bdi_lock);
a42dde04 680 if (min_ratio > bdi->max_ratio) {
189d3c4a 681 ret = -EINVAL;
a42dde04
PZ
682 } else {
683 min_ratio -= bdi->min_ratio;
684 if (bdi_min_ratio + min_ratio < 100) {
685 bdi_min_ratio += min_ratio;
686 bdi->min_ratio += min_ratio;
687 } else {
688 ret = -EINVAL;
689 }
690 }
cfc4ba53 691 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
692
693 return ret;
694}
695
696int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
697{
a42dde04
PZ
698 int ret = 0;
699
700 if (max_ratio > 100)
701 return -EINVAL;
702
cfc4ba53 703 spin_lock_bh(&bdi_lock);
a42dde04
PZ
704 if (bdi->min_ratio > max_ratio) {
705 ret = -EINVAL;
706 } else {
707 bdi->max_ratio = max_ratio;
eb608e3a 708 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 709 }
cfc4ba53 710 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
711
712 return ret;
713}
a42dde04 714EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 715
6c14ae1e
WF
716static unsigned long dirty_freerun_ceiling(unsigned long thresh,
717 unsigned long bg_thresh)
718{
719 return (thresh + bg_thresh) / 2;
720}
721
c7981433
TH
722static unsigned long hard_dirty_limit(struct wb_domain *dom,
723 unsigned long thresh)
ffd1f609 724{
dcc25ae7 725 return max(thresh, dom->dirty_limit);
ffd1f609
WF
726}
727
c5edf9cd
TH
728/*
729 * Memory which can be further allocated to a memcg domain is capped by
730 * system-wide clean memory excluding the amount being used in the domain.
731 */
732static void mdtc_calc_avail(struct dirty_throttle_control *mdtc,
733 unsigned long filepages, unsigned long headroom)
c2aa723a
TH
734{
735 struct dirty_throttle_control *gdtc = mdtc_gdtc(mdtc);
c5edf9cd
TH
736 unsigned long clean = filepages - min(filepages, mdtc->dirty);
737 unsigned long global_clean = gdtc->avail - min(gdtc->avail, gdtc->dirty);
738 unsigned long other_clean = global_clean - min(global_clean, clean);
c2aa723a 739
c5edf9cd 740 mdtc->avail = filepages + min(headroom, other_clean);
ffd1f609
WF
741}
742
6f718656 743/**
b1cbc6d4
TH
744 * __wb_calc_thresh - @wb's share of dirty throttling threshold
745 * @dtc: dirty_throttle_context of interest
1babe183 746 *
a88a341a 747 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 748 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
749 *
750 * Note that balance_dirty_pages() will only seriously take it as a hard limit
751 * when sleeping max_pause per page is not enough to keep the dirty pages under
752 * control. For example, when the device is completely stalled due to some error
753 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
754 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 755 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 756 *
6f718656 757 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
758 * - starving fast devices
759 * - piling up dirty pages (that will take long time to sync) on slow devices
760 *
a88a341a 761 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
762 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
763 */
b1cbc6d4 764static unsigned long __wb_calc_thresh(struct dirty_throttle_control *dtc)
16c4042f 765{
e9f07dfd 766 struct wb_domain *dom = dtc_dom(dtc);
b1cbc6d4 767 unsigned long thresh = dtc->thresh;
0d960a38 768 u64 wb_thresh;
16c4042f 769 long numerator, denominator;
693108a8 770 unsigned long wb_min_ratio, wb_max_ratio;
04fbfdc1 771
16c4042f 772 /*
0d960a38 773 * Calculate this BDI's share of the thresh ratio.
16c4042f 774 */
e9770b34 775 fprop_fraction_percpu(&dom->completions, dtc->wb_completions,
380c27ca 776 &numerator, &denominator);
04fbfdc1 777
0d960a38
TH
778 wb_thresh = (thresh * (100 - bdi_min_ratio)) / 100;
779 wb_thresh *= numerator;
780 do_div(wb_thresh, denominator);
04fbfdc1 781
b1cbc6d4 782 wb_min_max_ratio(dtc->wb, &wb_min_ratio, &wb_max_ratio);
04fbfdc1 783
0d960a38
TH
784 wb_thresh += (thresh * wb_min_ratio) / 100;
785 if (wb_thresh > (thresh * wb_max_ratio) / 100)
786 wb_thresh = thresh * wb_max_ratio / 100;
16c4042f 787
0d960a38 788 return wb_thresh;
1da177e4
LT
789}
790
b1cbc6d4
TH
791unsigned long wb_calc_thresh(struct bdi_writeback *wb, unsigned long thresh)
792{
793 struct dirty_throttle_control gdtc = { GDTC_INIT(wb),
794 .thresh = thresh };
795 return __wb_calc_thresh(&gdtc);
1da177e4
LT
796}
797
5a537485
MP
798/*
799 * setpoint - dirty 3
800 * f(dirty) := 1.0 + (----------------)
801 * limit - setpoint
802 *
803 * it's a 3rd order polynomial that subjects to
804 *
805 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
806 * (2) f(setpoint) = 1.0 => the balance point
807 * (3) f(limit) = 0 => the hard limit
808 * (4) df/dx <= 0 => negative feedback control
809 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
810 * => fast response on large errors; small oscillation near setpoint
811 */
d5c9fde3 812static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
813 unsigned long dirty,
814 unsigned long limit)
815{
816 long long pos_ratio;
817 long x;
818
d5c9fde3 819 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
464d1387 820 (limit - setpoint) | 1);
5a537485
MP
821 pos_ratio = x;
822 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
823 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
824 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
825
826 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
827}
828
6c14ae1e
WF
829/*
830 * Dirty position control.
831 *
832 * (o) global/bdi setpoints
833 *
de1fff37 834 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
835 * When the number of dirty pages is higher/lower than the setpoint, the
836 * dirty position control ratio (and hence task dirty ratelimit) will be
837 * decreased/increased to bring the dirty pages back to the setpoint.
838 *
839 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
840 *
841 * if (dirty < setpoint) scale up pos_ratio
842 * if (dirty > setpoint) scale down pos_ratio
843 *
de1fff37
TH
844 * if (wb_dirty < wb_setpoint) scale up pos_ratio
845 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
846 *
847 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
848 *
849 * (o) global control line
850 *
851 * ^ pos_ratio
852 * |
853 * | |<===== global dirty control scope ======>|
854 * 2.0 .............*
855 * | .*
856 * | . *
857 * | . *
858 * | . *
859 * | . *
860 * | . *
861 * 1.0 ................................*
862 * | . . *
863 * | . . *
864 * | . . *
865 * | . . *
866 * | . . *
867 * 0 +------------.------------------.----------------------*------------->
868 * freerun^ setpoint^ limit^ dirty pages
869 *
de1fff37 870 * (o) wb control line
6c14ae1e
WF
871 *
872 * ^ pos_ratio
873 * |
874 * | *
875 * | *
876 * | *
877 * | *
878 * | * |<=========== span ============>|
879 * 1.0 .......................*
880 * | . *
881 * | . *
882 * | . *
883 * | . *
884 * | . *
885 * | . *
886 * | . *
887 * | . *
888 * | . *
889 * | . *
890 * | . *
891 * 1/4 ...............................................* * * * * * * * * * * *
892 * | . .
893 * | . .
894 * | . .
895 * 0 +----------------------.-------------------------------.------------->
de1fff37 896 * wb_setpoint^ x_intercept^
6c14ae1e 897 *
de1fff37 898 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
899 * be smoothly throttled down to normal if it starts high in situations like
900 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
901 * card's wb_dirty may rush to many times higher than wb_setpoint.
902 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 903 */
daddfa3c 904static void wb_position_ratio(struct dirty_throttle_control *dtc)
6c14ae1e 905{
2bc00aef 906 struct bdi_writeback *wb = dtc->wb;
a88a341a 907 unsigned long write_bw = wb->avg_write_bandwidth;
2bc00aef 908 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 909 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
2bc00aef 910 unsigned long wb_thresh = dtc->wb_thresh;
6c14ae1e
WF
911 unsigned long x_intercept;
912 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 913 unsigned long wb_setpoint;
6c14ae1e
WF
914 unsigned long span;
915 long long pos_ratio; /* for scaling up/down the rate limit */
916 long x;
917
daddfa3c
TH
918 dtc->pos_ratio = 0;
919
2bc00aef 920 if (unlikely(dtc->dirty >= limit))
daddfa3c 921 return;
6c14ae1e
WF
922
923 /*
924 * global setpoint
925 *
5a537485
MP
926 * See comment for pos_ratio_polynom().
927 */
928 setpoint = (freerun + limit) / 2;
2bc00aef 929 pos_ratio = pos_ratio_polynom(setpoint, dtc->dirty, limit);
5a537485
MP
930
931 /*
932 * The strictlimit feature is a tool preventing mistrusted filesystems
933 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
934 * such filesystems balance_dirty_pages always checks wb counters
935 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
936 * This is especially important for fuse which sets bdi->max_ratio to
937 * 1% by default. Without strictlimit feature, fuse writeback may
938 * consume arbitrary amount of RAM because it is accounted in
939 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 940 *
a88a341a 941 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 942 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
943 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
944 * limits are set by default to 10% and 20% (background and throttle).
de1fff37 945 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
0d960a38 946 * wb_calc_thresh(wb, bg_thresh) is about ~4K pages. wb_setpoint is
de1fff37 947 * about ~6K pages (as the average of background and throttle wb
5a537485 948 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 949 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 950 *
5a537485 951 * Note, that we cannot use global counters in these calculations
de1fff37 952 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
953 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
954 * in the example above).
6c14ae1e 955 */
a88a341a 956 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37 957 long long wb_pos_ratio;
5a537485 958
daddfa3c
TH
959 if (dtc->wb_dirty < 8) {
960 dtc->pos_ratio = min_t(long long, pos_ratio * 2,
961 2 << RATELIMIT_CALC_SHIFT);
962 return;
963 }
5a537485 964
2bc00aef 965 if (dtc->wb_dirty >= wb_thresh)
daddfa3c 966 return;
5a537485 967
970fb01a
TH
968 wb_setpoint = dirty_freerun_ceiling(wb_thresh,
969 dtc->wb_bg_thresh);
5a537485 970
de1fff37 971 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
daddfa3c 972 return;
5a537485 973
2bc00aef 974 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, dtc->wb_dirty,
de1fff37 975 wb_thresh);
5a537485
MP
976
977 /*
de1fff37
TH
978 * Typically, for strictlimit case, wb_setpoint << setpoint
979 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 980 * state ("dirty") is not limiting factor and we have to
de1fff37 981 * make decision based on wb counters. But there is an
5a537485
MP
982 * important case when global pos_ratio should get precedence:
983 * global limits are exceeded (e.g. due to activities on other
de1fff37 984 * wb's) while given strictlimit wb is below limit.
5a537485 985 *
de1fff37 986 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 987 * but it would look too non-natural for the case of all
de1fff37 988 * activity in the system coming from a single strictlimit wb
5a537485
MP
989 * with bdi->max_ratio == 100%.
990 *
991 * Note that min() below somewhat changes the dynamics of the
992 * control system. Normally, pos_ratio value can be well over 3
de1fff37 993 * (when globally we are at freerun and wb is well below wb
5a537485
MP
994 * setpoint). Now the maximum pos_ratio in the same situation
995 * is 2. We might want to tweak this if we observe the control
996 * system is too slow to adapt.
997 */
daddfa3c
TH
998 dtc->pos_ratio = min(pos_ratio, wb_pos_ratio);
999 return;
5a537485 1000 }
6c14ae1e
WF
1001
1002 /*
1003 * We have computed basic pos_ratio above based on global situation. If
de1fff37 1004 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
1005 * pos_ratio further down/up. That is done by the following mechanism.
1006 */
1007
1008 /*
de1fff37 1009 * wb setpoint
6c14ae1e 1010 *
de1fff37 1011 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 1012 *
de1fff37 1013 * x_intercept - wb_dirty
6c14ae1e 1014 * := --------------------------
de1fff37 1015 * x_intercept - wb_setpoint
6c14ae1e 1016 *
de1fff37 1017 * The main wb control line is a linear function that subjects to
6c14ae1e 1018 *
de1fff37
TH
1019 * (1) f(wb_setpoint) = 1.0
1020 * (2) k = - 1 / (8 * write_bw) (in single wb case)
1021 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 1022 *
de1fff37 1023 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 1024 * regularly within range
de1fff37 1025 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
1026 * for various filesystems, where (2) can yield in a reasonable 12.5%
1027 * fluctuation range for pos_ratio.
1028 *
de1fff37 1029 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 1030 * own size, so move the slope over accordingly and choose a slope that
de1fff37 1031 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 1032 */
2bc00aef
TH
1033 if (unlikely(wb_thresh > dtc->thresh))
1034 wb_thresh = dtc->thresh;
aed21ad2 1035 /*
de1fff37 1036 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
1037 * device is slow, but that it has remained inactive for long time.
1038 * Honour such devices a reasonable good (hopefully IO efficient)
1039 * threshold, so that the occasional writes won't be blocked and active
1040 * writes can rampup the threshold quickly.
1041 */
2bc00aef 1042 wb_thresh = max(wb_thresh, (limit - dtc->dirty) / 8);
6c14ae1e 1043 /*
de1fff37
TH
1044 * scale global setpoint to wb's:
1045 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 1046 */
e4bc13ad 1047 x = div_u64((u64)wb_thresh << 16, dtc->thresh | 1);
de1fff37 1048 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 1049 /*
de1fff37
TH
1050 * Use span=(8*write_bw) in single wb case as indicated by
1051 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 1052 *
de1fff37
TH
1053 * wb_thresh thresh - wb_thresh
1054 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
1055 * thresh thresh
6c14ae1e 1056 */
2bc00aef 1057 span = (dtc->thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
de1fff37 1058 x_intercept = wb_setpoint + span;
6c14ae1e 1059
2bc00aef
TH
1060 if (dtc->wb_dirty < x_intercept - span / 4) {
1061 pos_ratio = div64_u64(pos_ratio * (x_intercept - dtc->wb_dirty),
e4bc13ad 1062 (x_intercept - wb_setpoint) | 1);
6c14ae1e
WF
1063 } else
1064 pos_ratio /= 4;
1065
8927f66c 1066 /*
de1fff37 1067 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
1068 * It may push the desired control point of global dirty pages higher
1069 * than setpoint.
1070 */
de1fff37 1071 x_intercept = wb_thresh / 2;
2bc00aef
TH
1072 if (dtc->wb_dirty < x_intercept) {
1073 if (dtc->wb_dirty > x_intercept / 8)
1074 pos_ratio = div_u64(pos_ratio * x_intercept,
1075 dtc->wb_dirty);
50657fc4 1076 else
8927f66c
WF
1077 pos_ratio *= 8;
1078 }
1079
daddfa3c 1080 dtc->pos_ratio = pos_ratio;
6c14ae1e
WF
1081}
1082
a88a341a
TH
1083static void wb_update_write_bandwidth(struct bdi_writeback *wb,
1084 unsigned long elapsed,
1085 unsigned long written)
e98be2d5
WF
1086{
1087 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
1088 unsigned long avg = wb->avg_write_bandwidth;
1089 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
1090 u64 bw;
1091
1092 /*
1093 * bw = written * HZ / elapsed
1094 *
1095 * bw * elapsed + write_bandwidth * (period - elapsed)
1096 * write_bandwidth = ---------------------------------------------------
1097 * period
c72efb65
TH
1098 *
1099 * @written may have decreased due to account_page_redirty().
1100 * Avoid underflowing @bw calculation.
e98be2d5 1101 */
a88a341a 1102 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
1103 bw *= HZ;
1104 if (unlikely(elapsed > period)) {
1105 do_div(bw, elapsed);
1106 avg = bw;
1107 goto out;
1108 }
a88a341a 1109 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
1110 bw >>= ilog2(period);
1111
1112 /*
1113 * one more level of smoothing, for filtering out sudden spikes
1114 */
1115 if (avg > old && old >= (unsigned long)bw)
1116 avg -= (avg - old) >> 3;
1117
1118 if (avg < old && old <= (unsigned long)bw)
1119 avg += (old - avg) >> 3;
1120
1121out:
95a46c65
TH
1122 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
1123 avg = max(avg, 1LU);
1124 if (wb_has_dirty_io(wb)) {
1125 long delta = avg - wb->avg_write_bandwidth;
1126 WARN_ON_ONCE(atomic_long_add_return(delta,
1127 &wb->bdi->tot_write_bandwidth) <= 0);
1128 }
a88a341a
TH
1129 wb->write_bandwidth = bw;
1130 wb->avg_write_bandwidth = avg;
e98be2d5
WF
1131}
1132
2bc00aef 1133static void update_dirty_limit(struct dirty_throttle_control *dtc)
c42843f2 1134{
e9f07dfd 1135 struct wb_domain *dom = dtc_dom(dtc);
2bc00aef 1136 unsigned long thresh = dtc->thresh;
dcc25ae7 1137 unsigned long limit = dom->dirty_limit;
c42843f2
WF
1138
1139 /*
1140 * Follow up in one step.
1141 */
1142 if (limit < thresh) {
1143 limit = thresh;
1144 goto update;
1145 }
1146
1147 /*
1148 * Follow down slowly. Use the higher one as the target, because thresh
1149 * may drop below dirty. This is exactly the reason to introduce
dcc25ae7 1150 * dom->dirty_limit which is guaranteed to lie above the dirty pages.
c42843f2 1151 */
2bc00aef 1152 thresh = max(thresh, dtc->dirty);
c42843f2
WF
1153 if (limit > thresh) {
1154 limit -= (limit - thresh) >> 5;
1155 goto update;
1156 }
1157 return;
1158update:
dcc25ae7 1159 dom->dirty_limit = limit;
c42843f2
WF
1160}
1161
e9f07dfd 1162static void domain_update_bandwidth(struct dirty_throttle_control *dtc,
c42843f2
WF
1163 unsigned long now)
1164{
e9f07dfd 1165 struct wb_domain *dom = dtc_dom(dtc);
c42843f2
WF
1166
1167 /*
1168 * check locklessly first to optimize away locking for the most time
1169 */
dcc25ae7 1170 if (time_before(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL))
c42843f2
WF
1171 return;
1172
dcc25ae7
TH
1173 spin_lock(&dom->lock);
1174 if (time_after_eq(now, dom->dirty_limit_tstamp + BANDWIDTH_INTERVAL)) {
2bc00aef 1175 update_dirty_limit(dtc);
dcc25ae7 1176 dom->dirty_limit_tstamp = now;
c42843f2 1177 }
dcc25ae7 1178 spin_unlock(&dom->lock);
c42843f2
WF
1179}
1180
be3ffa27 1181/*
de1fff37 1182 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 1183 *
de1fff37 1184 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
1185 * Obviously it should be around (write_bw / N) when there are N dd tasks.
1186 */
2bc00aef 1187static void wb_update_dirty_ratelimit(struct dirty_throttle_control *dtc,
a88a341a
TH
1188 unsigned long dirtied,
1189 unsigned long elapsed)
be3ffa27 1190{
2bc00aef
TH
1191 struct bdi_writeback *wb = dtc->wb;
1192 unsigned long dirty = dtc->dirty;
1193 unsigned long freerun = dirty_freerun_ceiling(dtc->thresh, dtc->bg_thresh);
c7981433 1194 unsigned long limit = hard_dirty_limit(dtc_dom(dtc), dtc->thresh);
7381131c 1195 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
1196 unsigned long write_bw = wb->avg_write_bandwidth;
1197 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
1198 unsigned long dirty_rate;
1199 unsigned long task_ratelimit;
1200 unsigned long balanced_dirty_ratelimit;
7381131c
WF
1201 unsigned long step;
1202 unsigned long x;
d59b1087 1203 unsigned long shift;
be3ffa27
WF
1204
1205 /*
1206 * The dirty rate will match the writeout rate in long term, except
1207 * when dirty pages are truncated by userspace or re-dirtied by FS.
1208 */
a88a341a 1209 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 1210
be3ffa27
WF
1211 /*
1212 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
1213 */
1214 task_ratelimit = (u64)dirty_ratelimit *
daddfa3c 1215 dtc->pos_ratio >> RATELIMIT_CALC_SHIFT;
be3ffa27
WF
1216 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
1217
1218 /*
1219 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 1220 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
1221 * dirty_rate will be measured to be (N * task_ratelimit). So the below
1222 * formula will yield the balanced rate limit (write_bw / N).
1223 *
1224 * Note that the expanded form is not a pure rate feedback:
1225 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1226 * but also takes pos_ratio into account:
1227 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1228 *
1229 * (1) is not realistic because pos_ratio also takes part in balancing
1230 * the dirty rate. Consider the state
1231 * pos_ratio = 0.5 (3)
1232 * rate = 2 * (write_bw / N) (4)
1233 * If (1) is used, it will stuck in that state! Because each dd will
1234 * be throttled at
1235 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1236 * yielding
1237 * dirty_rate = N * task_ratelimit = write_bw (6)
1238 * put (6) into (1) we get
1239 * rate_(i+1) = rate_(i) (7)
1240 *
1241 * So we end up using (2) to always keep
1242 * rate_(i+1) ~= (write_bw / N) (8)
1243 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1244 * pos_ratio is able to drive itself to 1.0, which is not only where
1245 * the dirty count meet the setpoint, but also where the slope of
1246 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1247 */
1248 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1249 dirty_rate | 1);
bdaac490
WF
1250 /*
1251 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1252 */
1253 if (unlikely(balanced_dirty_ratelimit > write_bw))
1254 balanced_dirty_ratelimit = write_bw;
be3ffa27 1255
7381131c
WF
1256 /*
1257 * We could safely do this and return immediately:
1258 *
de1fff37 1259 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1260 *
1261 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1262 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1263 * limit the step size.
1264 *
1265 * The below code essentially only uses the relative value of
1266 *
1267 * task_ratelimit - dirty_ratelimit
1268 * = (pos_ratio - 1) * dirty_ratelimit
1269 *
1270 * which reflects the direction and size of dirty position error.
1271 */
1272
1273 /*
1274 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1275 * task_ratelimit is on the same side of dirty_ratelimit, too.
1276 * For example, when
1277 * - dirty_ratelimit > balanced_dirty_ratelimit
1278 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1279 * lowering dirty_ratelimit will help meet both the position and rate
1280 * control targets. Otherwise, don't update dirty_ratelimit if it will
1281 * only help meet the rate target. After all, what the users ultimately
1282 * feel and care are stable dirty rate and small position error.
1283 *
1284 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1285 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1286 * keeps jumping around randomly and can even leap far away at times
1287 * due to the small 200ms estimation period of dirty_rate (we want to
1288 * keep that period small to reduce time lags).
1289 */
1290 step = 0;
5a537485
MP
1291
1292 /*
de1fff37 1293 * For strictlimit case, calculations above were based on wb counters
a88a341a 1294 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1295 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1296 * Hence, to calculate "step" properly, we have to use wb_dirty as
1297 * "dirty" and wb_setpoint as "setpoint".
5a537485 1298 *
de1fff37
TH
1299 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1300 * it's possible that wb_thresh is close to zero due to inactivity
970fb01a 1301 * of backing device.
5a537485 1302 */
a88a341a 1303 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
2bc00aef
TH
1304 dirty = dtc->wb_dirty;
1305 if (dtc->wb_dirty < 8)
1306 setpoint = dtc->wb_dirty + 1;
5a537485 1307 else
970fb01a 1308 setpoint = (dtc->wb_thresh + dtc->wb_bg_thresh) / 2;
5a537485
MP
1309 }
1310
7381131c 1311 if (dirty < setpoint) {
a88a341a 1312 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1313 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1314 if (dirty_ratelimit < x)
1315 step = x - dirty_ratelimit;
1316 } else {
a88a341a 1317 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1318 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1319 if (dirty_ratelimit > x)
1320 step = dirty_ratelimit - x;
1321 }
1322
1323 /*
1324 * Don't pursue 100% rate matching. It's impossible since the balanced
1325 * rate itself is constantly fluctuating. So decrease the track speed
1326 * when it gets close to the target. Helps eliminate pointless tremors.
1327 */
d59b1087
AR
1328 shift = dirty_ratelimit / (2 * step + 1);
1329 if (shift < BITS_PER_LONG)
1330 step = DIV_ROUND_UP(step >> shift, 8);
1331 else
1332 step = 0;
7381131c
WF
1333
1334 if (dirty_ratelimit < balanced_dirty_ratelimit)
1335 dirty_ratelimit += step;
1336 else
1337 dirty_ratelimit -= step;
1338
a88a341a
TH
1339 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1340 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1341
5634cc2a 1342 trace_bdi_dirty_ratelimit(wb, dirty_rate, task_ratelimit);
be3ffa27
WF
1343}
1344
c2aa723a
TH
1345static void __wb_update_bandwidth(struct dirty_throttle_control *gdtc,
1346 struct dirty_throttle_control *mdtc,
8a731799
TH
1347 unsigned long start_time,
1348 bool update_ratelimit)
e98be2d5 1349{
c2aa723a 1350 struct bdi_writeback *wb = gdtc->wb;
e98be2d5 1351 unsigned long now = jiffies;
a88a341a 1352 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1353 unsigned long dirtied;
e98be2d5
WF
1354 unsigned long written;
1355
8a731799
TH
1356 lockdep_assert_held(&wb->list_lock);
1357
e98be2d5
WF
1358 /*
1359 * rate-limit, only update once every 200ms.
1360 */
1361 if (elapsed < BANDWIDTH_INTERVAL)
1362 return;
1363
a88a341a
TH
1364 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1365 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1366
1367 /*
1368 * Skip quiet periods when disk bandwidth is under-utilized.
1369 * (at least 1s idle time between two flusher runs)
1370 */
a88a341a 1371 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1372 goto snapshot;
1373
8a731799 1374 if (update_ratelimit) {
c2aa723a
TH
1375 domain_update_bandwidth(gdtc, now);
1376 wb_update_dirty_ratelimit(gdtc, dirtied, elapsed);
1377
1378 /*
1379 * @mdtc is always NULL if !CGROUP_WRITEBACK but the
1380 * compiler has no way to figure that out. Help it.
1381 */
1382 if (IS_ENABLED(CONFIG_CGROUP_WRITEBACK) && mdtc) {
1383 domain_update_bandwidth(mdtc, now);
1384 wb_update_dirty_ratelimit(mdtc, dirtied, elapsed);
1385 }
be3ffa27 1386 }
a88a341a 1387 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1388
1389snapshot:
a88a341a
TH
1390 wb->dirtied_stamp = dirtied;
1391 wb->written_stamp = written;
1392 wb->bw_time_stamp = now;
e98be2d5
WF
1393}
1394
8a731799 1395void wb_update_bandwidth(struct bdi_writeback *wb, unsigned long start_time)
e98be2d5 1396{
2bc00aef
TH
1397 struct dirty_throttle_control gdtc = { GDTC_INIT(wb) };
1398
c2aa723a 1399 __wb_update_bandwidth(&gdtc, NULL, start_time, false);
e98be2d5
WF
1400}
1401
9d823e8f 1402/*
d0e1d66b 1403 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1404 * will look to see if it needs to start dirty throttling.
1405 *
1406 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
c41f012a 1407 * global_zone_page_state() too often. So scale it near-sqrt to the safety margin
9d823e8f
WF
1408 * (the number of pages we may dirty without exceeding the dirty limits).
1409 */
1410static unsigned long dirty_poll_interval(unsigned long dirty,
1411 unsigned long thresh)
1412{
1413 if (thresh > dirty)
1414 return 1UL << (ilog2(thresh - dirty) >> 1);
1415
1416 return 1;
1417}
1418
a88a341a 1419static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1420 unsigned long wb_dirty)
c8462cc9 1421{
a88a341a 1422 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1423 unsigned long t;
c8462cc9 1424
7ccb9ad5
WF
1425 /*
1426 * Limit pause time for small memory systems. If sleeping for too long
1427 * time, a small pool of dirty/writeback pages may go empty and disk go
1428 * idle.
1429 *
1430 * 8 serves as the safety ratio.
1431 */
de1fff37 1432 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1433 t++;
1434
e3b6c655 1435 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1436}
1437
a88a341a
TH
1438static long wb_min_pause(struct bdi_writeback *wb,
1439 long max_pause,
1440 unsigned long task_ratelimit,
1441 unsigned long dirty_ratelimit,
1442 int *nr_dirtied_pause)
c8462cc9 1443{
a88a341a
TH
1444 long hi = ilog2(wb->avg_write_bandwidth);
1445 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1446 long t; /* target pause */
1447 long pause; /* estimated next pause */
1448 int pages; /* target nr_dirtied_pause */
c8462cc9 1449
7ccb9ad5
WF
1450 /* target for 10ms pause on 1-dd case */
1451 t = max(1, HZ / 100);
c8462cc9
WF
1452
1453 /*
1454 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1455 * overheads.
1456 *
7ccb9ad5 1457 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1458 */
1459 if (hi > lo)
7ccb9ad5 1460 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1461
1462 /*
7ccb9ad5
WF
1463 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1464 * on the much more stable dirty_ratelimit. However the next pause time
1465 * will be computed based on task_ratelimit and the two rate limits may
1466 * depart considerably at some time. Especially if task_ratelimit goes
1467 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1468 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1469 * result task_ratelimit won't be executed faithfully, which could
1470 * eventually bring down dirty_ratelimit.
c8462cc9 1471 *
7ccb9ad5
WF
1472 * We apply two rules to fix it up:
1473 * 1) try to estimate the next pause time and if necessary, use a lower
1474 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1475 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1476 * 2) limit the target pause time to max_pause/2, so that the normal
1477 * small fluctuations of task_ratelimit won't trigger rule (1) and
1478 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1479 */
7ccb9ad5
WF
1480 t = min(t, 1 + max_pause / 2);
1481 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1482
1483 /*
5b9b3574
WF
1484 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1485 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1486 * When the 16 consecutive reads are often interrupted by some dirty
1487 * throttling pause during the async writes, cfq will go into idles
1488 * (deadline is fine). So push nr_dirtied_pause as high as possible
1489 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1490 */
5b9b3574
WF
1491 if (pages < DIRTY_POLL_THRESH) {
1492 t = max_pause;
1493 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1494 if (pages > DIRTY_POLL_THRESH) {
1495 pages = DIRTY_POLL_THRESH;
1496 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1497 }
1498 }
1499
7ccb9ad5
WF
1500 pause = HZ * pages / (task_ratelimit + 1);
1501 if (pause > max_pause) {
1502 t = max_pause;
1503 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1504 }
c8462cc9 1505
7ccb9ad5 1506 *nr_dirtied_pause = pages;
c8462cc9 1507 /*
7ccb9ad5 1508 * The minimal pause time will normally be half the target pause time.
c8462cc9 1509 */
5b9b3574 1510 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1511}
1512
970fb01a 1513static inline void wb_dirty_limits(struct dirty_throttle_control *dtc)
5a537485 1514{
2bc00aef 1515 struct bdi_writeback *wb = dtc->wb;
93f78d88 1516 unsigned long wb_reclaimable;
5a537485
MP
1517
1518 /*
de1fff37 1519 * wb_thresh is not treated as some limiting factor as
5a537485 1520 * dirty_thresh, due to reasons
de1fff37 1521 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1522 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1523 * go into state (wb_dirty >> wb_thresh) either because
1524 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1525 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1526 * dirtiers for 100 seconds until wb_dirty drops under
1527 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1528 * wb_position_ratio() will let the dirtier task progress
de1fff37 1529 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1530 */
b1cbc6d4 1531 dtc->wb_thresh = __wb_calc_thresh(dtc);
970fb01a
TH
1532 dtc->wb_bg_thresh = dtc->thresh ?
1533 div_u64((u64)dtc->wb_thresh * dtc->bg_thresh, dtc->thresh) : 0;
5a537485
MP
1534
1535 /*
1536 * In order to avoid the stacked BDI deadlock we need
1537 * to ensure we accurately count the 'dirty' pages when
1538 * the threshold is low.
1539 *
1540 * Otherwise it would be possible to get thresh+n pages
1541 * reported dirty, even though there are thresh-m pages
1542 * actually dirty; with m+n sitting in the percpu
1543 * deltas.
1544 */
2bce774e 1545 if (dtc->wb_thresh < 2 * wb_stat_error()) {
93f78d88 1546 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
2bc00aef 1547 dtc->wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1548 } else {
93f78d88 1549 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
2bc00aef 1550 dtc->wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1551 }
1552}
1553
1da177e4
LT
1554/*
1555 * balance_dirty_pages() must be called by processes which are generating dirty
1556 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1557 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1558 * If we're over `background_thresh' then the writeback threads are woken to
1559 * perform some writeout.
1da177e4 1560 */
4c578dce 1561static void balance_dirty_pages(struct bdi_writeback *wb,
143dfe86 1562 unsigned long pages_dirtied)
1da177e4 1563{
2bc00aef 1564 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1565 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
2bc00aef 1566 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1567 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1568 &mdtc_stor : NULL;
1569 struct dirty_throttle_control *sdtc;
143dfe86 1570 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
83712358 1571 long period;
7ccb9ad5
WF
1572 long pause;
1573 long max_pause;
1574 long min_pause;
1575 int nr_dirtied_pause;
e50e3720 1576 bool dirty_exceeded = false;
143dfe86 1577 unsigned long task_ratelimit;
7ccb9ad5 1578 unsigned long dirty_ratelimit;
dfb8ae56 1579 struct backing_dev_info *bdi = wb->bdi;
5a537485 1580 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1581 unsigned long start_time = jiffies;
1da177e4
LT
1582
1583 for (;;) {
83712358 1584 unsigned long now = jiffies;
2bc00aef 1585 unsigned long dirty, thresh, bg_thresh;
50e55bf6
YS
1586 unsigned long m_dirty = 0; /* stop bogus uninit warnings */
1587 unsigned long m_thresh = 0;
1588 unsigned long m_bg_thresh = 0;
83712358 1589
143dfe86
WF
1590 /*
1591 * Unstable writes are a feature of certain networked
1592 * filesystems (i.e. NFS) in which data may have been
1593 * written to the server's write cache, but has not yet
1594 * been flushed to permanent storage.
1595 */
11fb9989
MG
1596 nr_reclaimable = global_node_page_state(NR_FILE_DIRTY) +
1597 global_node_page_state(NR_UNSTABLE_NFS);
9fc3a43e 1598 gdtc->avail = global_dirtyable_memory();
11fb9989 1599 gdtc->dirty = nr_reclaimable + global_node_page_state(NR_WRITEBACK);
5fce25a9 1600
9fc3a43e 1601 domain_dirty_limits(gdtc);
16c4042f 1602
5a537485 1603 if (unlikely(strictlimit)) {
970fb01a 1604 wb_dirty_limits(gdtc);
5a537485 1605
2bc00aef
TH
1606 dirty = gdtc->wb_dirty;
1607 thresh = gdtc->wb_thresh;
970fb01a 1608 bg_thresh = gdtc->wb_bg_thresh;
5a537485 1609 } else {
2bc00aef
TH
1610 dirty = gdtc->dirty;
1611 thresh = gdtc->thresh;
1612 bg_thresh = gdtc->bg_thresh;
5a537485
MP
1613 }
1614
c2aa723a 1615 if (mdtc) {
c5edf9cd 1616 unsigned long filepages, headroom, writeback;
c2aa723a
TH
1617
1618 /*
1619 * If @wb belongs to !root memcg, repeat the same
1620 * basic calculations for the memcg domain.
1621 */
c5edf9cd
TH
1622 mem_cgroup_wb_stats(wb, &filepages, &headroom,
1623 &mdtc->dirty, &writeback);
c2aa723a 1624 mdtc->dirty += writeback;
c5edf9cd 1625 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1626
1627 domain_dirty_limits(mdtc);
1628
1629 if (unlikely(strictlimit)) {
1630 wb_dirty_limits(mdtc);
1631 m_dirty = mdtc->wb_dirty;
1632 m_thresh = mdtc->wb_thresh;
1633 m_bg_thresh = mdtc->wb_bg_thresh;
1634 } else {
1635 m_dirty = mdtc->dirty;
1636 m_thresh = mdtc->thresh;
1637 m_bg_thresh = mdtc->bg_thresh;
1638 }
5a537485
MP
1639 }
1640
16c4042f
WF
1641 /*
1642 * Throttle it only when the background writeback cannot
1643 * catch-up. This avoids (excessively) small writeouts
de1fff37 1644 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1645 *
de1fff37
TH
1646 * In strictlimit case make decision based on the wb counters
1647 * and limits. Small writeouts when the wb limits are ramping
5a537485 1648 * up are the price we consciously pay for strictlimit-ing.
c2aa723a
TH
1649 *
1650 * If memcg domain is in effect, @dirty should be under
1651 * both global and memcg freerun ceilings.
16c4042f 1652 */
c2aa723a
TH
1653 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh) &&
1654 (!mdtc ||
1655 m_dirty <= dirty_freerun_ceiling(m_thresh, m_bg_thresh))) {
1656 unsigned long intv = dirty_poll_interval(dirty, thresh);
1657 unsigned long m_intv = ULONG_MAX;
1658
83712358
WF
1659 current->dirty_paused_when = now;
1660 current->nr_dirtied = 0;
c2aa723a
TH
1661 if (mdtc)
1662 m_intv = dirty_poll_interval(m_dirty, m_thresh);
1663 current->nr_dirtied_pause = min(intv, m_intv);
16c4042f 1664 break;
83712358 1665 }
16c4042f 1666
bc05873d 1667 if (unlikely(!writeback_in_progress(wb)))
9ecf4866 1668 wb_start_background_writeback(wb);
143dfe86 1669
c2aa723a
TH
1670 /*
1671 * Calculate global domain's pos_ratio and select the
1672 * global dtc by default.
1673 */
5a537485 1674 if (!strictlimit)
970fb01a 1675 wb_dirty_limits(gdtc);
5fce25a9 1676
2bc00aef
TH
1677 dirty_exceeded = (gdtc->wb_dirty > gdtc->wb_thresh) &&
1678 ((gdtc->dirty > gdtc->thresh) || strictlimit);
daddfa3c
TH
1679
1680 wb_position_ratio(gdtc);
c2aa723a
TH
1681 sdtc = gdtc;
1682
1683 if (mdtc) {
1684 /*
1685 * If memcg domain is in effect, calculate its
1686 * pos_ratio. @wb should satisfy constraints from
1687 * both global and memcg domains. Choose the one
1688 * w/ lower pos_ratio.
1689 */
1690 if (!strictlimit)
1691 wb_dirty_limits(mdtc);
1692
1693 dirty_exceeded |= (mdtc->wb_dirty > mdtc->wb_thresh) &&
1694 ((mdtc->dirty > mdtc->thresh) || strictlimit);
1695
1696 wb_position_ratio(mdtc);
1697 if (mdtc->pos_ratio < gdtc->pos_ratio)
1698 sdtc = mdtc;
1699 }
daddfa3c 1700
a88a341a
TH
1701 if (dirty_exceeded && !wb->dirty_exceeded)
1702 wb->dirty_exceeded = 1;
1da177e4 1703
8a731799
TH
1704 if (time_is_before_jiffies(wb->bw_time_stamp +
1705 BANDWIDTH_INTERVAL)) {
1706 spin_lock(&wb->list_lock);
c2aa723a 1707 __wb_update_bandwidth(gdtc, mdtc, start_time, true);
8a731799
TH
1708 spin_unlock(&wb->list_lock);
1709 }
e98be2d5 1710
c2aa723a 1711 /* throttle according to the chosen dtc */
a88a341a 1712 dirty_ratelimit = wb->dirty_ratelimit;
c2aa723a 1713 task_ratelimit = ((u64)dirty_ratelimit * sdtc->pos_ratio) >>
3a73dbbc 1714 RATELIMIT_CALC_SHIFT;
c2aa723a 1715 max_pause = wb_max_pause(wb, sdtc->wb_dirty);
a88a341a
TH
1716 min_pause = wb_min_pause(wb, max_pause,
1717 task_ratelimit, dirty_ratelimit,
1718 &nr_dirtied_pause);
7ccb9ad5 1719
3a73dbbc 1720 if (unlikely(task_ratelimit == 0)) {
83712358 1721 period = max_pause;
c8462cc9 1722 pause = max_pause;
143dfe86 1723 goto pause;
04fbfdc1 1724 }
83712358
WF
1725 period = HZ * pages_dirtied / task_ratelimit;
1726 pause = period;
1727 if (current->dirty_paused_when)
1728 pause -= now - current->dirty_paused_when;
1729 /*
1730 * For less than 1s think time (ext3/4 may block the dirtier
1731 * for up to 800ms from time to time on 1-HDD; so does xfs,
1732 * however at much less frequency), try to compensate it in
1733 * future periods by updating the virtual time; otherwise just
1734 * do a reset, as it may be a light dirtier.
1735 */
7ccb9ad5 1736 if (pause < min_pause) {
5634cc2a 1737 trace_balance_dirty_pages(wb,
c2aa723a
TH
1738 sdtc->thresh,
1739 sdtc->bg_thresh,
1740 sdtc->dirty,
1741 sdtc->wb_thresh,
1742 sdtc->wb_dirty,
ece13ac3
WF
1743 dirty_ratelimit,
1744 task_ratelimit,
1745 pages_dirtied,
83712358 1746 period,
7ccb9ad5 1747 min(pause, 0L),
ece13ac3 1748 start_time);
83712358
WF
1749 if (pause < -HZ) {
1750 current->dirty_paused_when = now;
1751 current->nr_dirtied = 0;
1752 } else if (period) {
1753 current->dirty_paused_when += period;
1754 current->nr_dirtied = 0;
7ccb9ad5
WF
1755 } else if (current->nr_dirtied_pause <= pages_dirtied)
1756 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1757 break;
04fbfdc1 1758 }
7ccb9ad5
WF
1759 if (unlikely(pause > max_pause)) {
1760 /* for occasional dropped task_ratelimit */
1761 now += min(pause - max_pause, max_pause);
1762 pause = max_pause;
1763 }
143dfe86
WF
1764
1765pause:
5634cc2a 1766 trace_balance_dirty_pages(wb,
c2aa723a
TH
1767 sdtc->thresh,
1768 sdtc->bg_thresh,
1769 sdtc->dirty,
1770 sdtc->wb_thresh,
1771 sdtc->wb_dirty,
ece13ac3
WF
1772 dirty_ratelimit,
1773 task_ratelimit,
1774 pages_dirtied,
83712358 1775 period,
ece13ac3
WF
1776 pause,
1777 start_time);
499d05ec 1778 __set_current_state(TASK_KILLABLE);
b57d74af 1779 wb->dirty_sleep = now;
d25105e8 1780 io_schedule_timeout(pause);
87c6a9b2 1781
83712358
WF
1782 current->dirty_paused_when = now + pause;
1783 current->nr_dirtied = 0;
7ccb9ad5 1784 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1785
ffd1f609 1786 /*
2bc00aef
TH
1787 * This is typically equal to (dirty < thresh) and can also
1788 * keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1789 */
1df64719 1790 if (task_ratelimit)
ffd1f609 1791 break;
499d05ec 1792
c5c6343c
WF
1793 /*
1794 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1795 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1796 * to go through, so that tasks on them still remain responsive.
1797 *
3f8b6fb7 1798 * In theory 1 page is enough to keep the consumer-producer
c5c6343c 1799 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1800 * more page. However wb_dirty has accounting errors. So use
93f78d88 1801 * the larger and more IO friendly wb_stat_error.
c5c6343c 1802 */
2bce774e 1803 if (sdtc->wb_dirty <= wb_stat_error())
c5c6343c
WF
1804 break;
1805
499d05ec
JK
1806 if (fatal_signal_pending(current))
1807 break;
1da177e4
LT
1808 }
1809
a88a341a
TH
1810 if (!dirty_exceeded && wb->dirty_exceeded)
1811 wb->dirty_exceeded = 0;
1da177e4 1812
bc05873d 1813 if (writeback_in_progress(wb))
5b0830cb 1814 return;
1da177e4
LT
1815
1816 /*
1817 * In laptop mode, we wait until hitting the higher threshold before
1818 * starting background writeout, and then write out all the way down
1819 * to the lower threshold. So slow writers cause minimal disk activity.
1820 *
1821 * In normal mode, we start background writeout at the lower
1822 * background_thresh, to keep the amount of dirty memory low.
1823 */
143dfe86
WF
1824 if (laptop_mode)
1825 return;
1826
2bc00aef 1827 if (nr_reclaimable > gdtc->bg_thresh)
9ecf4866 1828 wb_start_background_writeback(wb);
1da177e4
LT
1829}
1830
9d823e8f 1831static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1832
54848d73
WF
1833/*
1834 * Normal tasks are throttled by
1835 * loop {
1836 * dirty tsk->nr_dirtied_pause pages;
1837 * take a snap in balance_dirty_pages();
1838 * }
1839 * However there is a worst case. If every task exit immediately when dirtied
1840 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1841 * called to throttle the page dirties. The solution is to save the not yet
1842 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1843 * randomly into the running tasks. This works well for the above worst case,
1844 * as the new task will pick up and accumulate the old task's leaked dirty
1845 * count and eventually get throttled.
1846 */
1847DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1848
1da177e4 1849/**
d0e1d66b 1850 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1851 * @mapping: address_space which was dirtied
1da177e4
LT
1852 *
1853 * Processes which are dirtying memory should call in here once for each page
1854 * which was newly dirtied. The function will periodically check the system's
1855 * dirty state and will initiate writeback if needed.
1856 *
1857 * On really big machines, get_writeback_state is expensive, so try to avoid
1858 * calling it too often (ratelimiting). But once we're over the dirty memory
1859 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1860 * from overshooting the limit by (ratelimit_pages) each.
1861 */
d0e1d66b 1862void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1863{
dfb8ae56
TH
1864 struct inode *inode = mapping->host;
1865 struct backing_dev_info *bdi = inode_to_bdi(inode);
1866 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1867 int ratelimit;
1868 int *p;
1da177e4 1869
36715cef
WF
1870 if (!bdi_cap_account_dirty(bdi))
1871 return;
1872
dfb8ae56
TH
1873 if (inode_cgwb_enabled(inode))
1874 wb = wb_get_create_current(bdi, GFP_KERNEL);
1875 if (!wb)
1876 wb = &bdi->wb;
1877
9d823e8f 1878 ratelimit = current->nr_dirtied_pause;
a88a341a 1879 if (wb->dirty_exceeded)
9d823e8f
WF
1880 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1881
9d823e8f 1882 preempt_disable();
1da177e4 1883 /*
9d823e8f
WF
1884 * This prevents one CPU to accumulate too many dirtied pages without
1885 * calling into balance_dirty_pages(), which can happen when there are
1886 * 1000+ tasks, all of them start dirtying pages at exactly the same
1887 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1888 */
7c8e0181 1889 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1890 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1891 *p = 0;
d3bc1fef
WF
1892 else if (unlikely(*p >= ratelimit_pages)) {
1893 *p = 0;
1894 ratelimit = 0;
1da177e4 1895 }
54848d73
WF
1896 /*
1897 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1898 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1899 * the dirty throttling and livelock other long-run dirtiers.
1900 */
7c8e0181 1901 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1902 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1903 unsigned long nr_pages_dirtied;
54848d73
WF
1904 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1905 *p -= nr_pages_dirtied;
1906 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1907 }
fa5a734e 1908 preempt_enable();
9d823e8f
WF
1909
1910 if (unlikely(current->nr_dirtied >= ratelimit))
4c578dce 1911 balance_dirty_pages(wb, current->nr_dirtied);
dfb8ae56
TH
1912
1913 wb_put(wb);
1da177e4 1914}
d0e1d66b 1915EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1916
aa661bbe
TH
1917/**
1918 * wb_over_bg_thresh - does @wb need to be written back?
1919 * @wb: bdi_writeback of interest
1920 *
1921 * Determines whether background writeback should keep writing @wb or it's
1922 * clean enough. Returns %true if writeback should continue.
1923 */
1924bool wb_over_bg_thresh(struct bdi_writeback *wb)
1925{
947e9762 1926 struct dirty_throttle_control gdtc_stor = { GDTC_INIT(wb) };
c2aa723a 1927 struct dirty_throttle_control mdtc_stor = { MDTC_INIT(wb, &gdtc_stor) };
947e9762 1928 struct dirty_throttle_control * const gdtc = &gdtc_stor;
c2aa723a
TH
1929 struct dirty_throttle_control * const mdtc = mdtc_valid(&mdtc_stor) ?
1930 &mdtc_stor : NULL;
aa661bbe 1931
947e9762
TH
1932 /*
1933 * Similar to balance_dirty_pages() but ignores pages being written
1934 * as we're trying to decide whether to put more under writeback.
1935 */
1936 gdtc->avail = global_dirtyable_memory();
11fb9989
MG
1937 gdtc->dirty = global_node_page_state(NR_FILE_DIRTY) +
1938 global_node_page_state(NR_UNSTABLE_NFS);
947e9762 1939 domain_dirty_limits(gdtc);
aa661bbe 1940
947e9762 1941 if (gdtc->dirty > gdtc->bg_thresh)
aa661bbe
TH
1942 return true;
1943
74d36944
HC
1944 if (wb_stat(wb, WB_RECLAIMABLE) >
1945 wb_calc_thresh(gdtc->wb, gdtc->bg_thresh))
aa661bbe
TH
1946 return true;
1947
c2aa723a 1948 if (mdtc) {
c5edf9cd 1949 unsigned long filepages, headroom, writeback;
c2aa723a 1950
c5edf9cd
TH
1951 mem_cgroup_wb_stats(wb, &filepages, &headroom, &mdtc->dirty,
1952 &writeback);
1953 mdtc_calc_avail(mdtc, filepages, headroom);
c2aa723a
TH
1954 domain_dirty_limits(mdtc); /* ditto, ignore writeback */
1955
1956 if (mdtc->dirty > mdtc->bg_thresh)
1957 return true;
1958
74d36944
HC
1959 if (wb_stat(wb, WB_RECLAIMABLE) >
1960 wb_calc_thresh(mdtc->wb, mdtc->bg_thresh))
c2aa723a
TH
1961 return true;
1962 }
1963
aa661bbe
TH
1964 return false;
1965}
1966
1da177e4
LT
1967/*
1968 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1969 */
cccad5b9 1970int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1971 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1972{
94af5846
YS
1973 unsigned int old_interval = dirty_writeback_interval;
1974 int ret;
1975
1976 ret = proc_dointvec(table, write, buffer, length, ppos);
515c24c1
YS
1977
1978 /*
1979 * Writing 0 to dirty_writeback_interval will disable periodic writeback
1980 * and a different non-zero value will wakeup the writeback threads.
1981 * wb_wakeup_delayed() would be more appropriate, but it's a pain to
1982 * iterate over all bdis and wbs.
1983 * The reason we do this is to make the change take effect immediately.
1984 */
1985 if (!ret && write && dirty_writeback_interval &&
1986 dirty_writeback_interval != old_interval)
94af5846
YS
1987 wakeup_flusher_threads(WB_REASON_PERIODIC);
1988
1989 return ret;
1da177e4
LT
1990}
1991
c2c4986e 1992#ifdef CONFIG_BLOCK
bca237a5 1993void laptop_mode_timer_fn(struct timer_list *t)
1da177e4 1994{
bca237a5
KC
1995 struct backing_dev_info *backing_dev_info =
1996 from_timer(backing_dev_info, t, laptop_mode_wb_timer);
1da177e4 1997
bca237a5 1998 wakeup_flusher_threads_bdi(backing_dev_info, WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1999}
2000
2001/*
2002 * We've spun up the disk and we're in laptop mode: schedule writeback
2003 * of all dirty data a few seconds from now. If the flush is already scheduled
2004 * then push it back - the user is still using the disk.
2005 */
31373d09 2006void laptop_io_completion(struct backing_dev_info *info)
1da177e4 2007{
31373d09 2008 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
2009}
2010
2011/*
2012 * We're in laptop mode and we've just synced. The sync's writes will have
2013 * caused another writeback to be scheduled by laptop_io_completion.
2014 * Nothing needs to be written back anymore, so we unschedule the writeback.
2015 */
2016void laptop_sync_completion(void)
2017{
31373d09
MG
2018 struct backing_dev_info *bdi;
2019
2020 rcu_read_lock();
2021
2022 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
2023 del_timer(&bdi->laptop_mode_wb_timer);
2024
2025 rcu_read_unlock();
1da177e4 2026}
c2c4986e 2027#endif
1da177e4
LT
2028
2029/*
2030 * If ratelimit_pages is too high then we can get into dirty-data overload
2031 * if a large number of processes all perform writes at the same time.
2032 * If it is too low then SMP machines will call the (expensive)
2033 * get_writeback_state too often.
2034 *
2035 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
2036 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 2037 * thresholds.
1da177e4
LT
2038 */
2039
2d1d43f6 2040void writeback_set_ratelimit(void)
1da177e4 2041{
dcc25ae7 2042 struct wb_domain *dom = &global_wb_domain;
9d823e8f
WF
2043 unsigned long background_thresh;
2044 unsigned long dirty_thresh;
dcc25ae7 2045
9d823e8f 2046 global_dirty_limits(&background_thresh, &dirty_thresh);
dcc25ae7 2047 dom->dirty_limit = dirty_thresh;
9d823e8f 2048 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
2049 if (ratelimit_pages < 16)
2050 ratelimit_pages = 16;
1da177e4
LT
2051}
2052
1d7ac6ae 2053static int page_writeback_cpu_online(unsigned int cpu)
1da177e4 2054{
1d7ac6ae
SAS
2055 writeback_set_ratelimit();
2056 return 0;
1da177e4
LT
2057}
2058
1da177e4 2059/*
dc6e29da
LT
2060 * Called early on to tune the page writeback dirty limits.
2061 *
2062 * We used to scale dirty pages according to how total memory
2063 * related to pages that could be allocated for buffers (by
2064 * comparing nr_free_buffer_pages() to vm_total_pages.
2065 *
2066 * However, that was when we used "dirty_ratio" to scale with
2067 * all memory, and we don't do that any more. "dirty_ratio"
2068 * is now applied to total non-HIGHPAGE memory (by subtracting
2069 * totalhigh_pages from vm_total_pages), and as such we can't
2070 * get into the old insane situation any more where we had
2071 * large amounts of dirty pages compared to a small amount of
2072 * non-HIGHMEM memory.
2073 *
2074 * But we might still want to scale the dirty_ratio by how
2075 * much memory the box has..
1da177e4
LT
2076 */
2077void __init page_writeback_init(void)
2078{
a50fcb51
RV
2079 BUG_ON(wb_domain_init(&global_wb_domain, GFP_KERNEL));
2080
1d7ac6ae
SAS
2081 cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "mm/writeback:online",
2082 page_writeback_cpu_online, NULL);
2083 cpuhp_setup_state(CPUHP_MM_WRITEBACK_DEAD, "mm/writeback:dead", NULL,
2084 page_writeback_cpu_online);
1da177e4
LT
2085}
2086
f446daae
JK
2087/**
2088 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
2089 * @mapping: address space structure to write
2090 * @start: starting page index
2091 * @end: ending page index (inclusive)
2092 *
2093 * This function scans the page range from @start to @end (inclusive) and tags
2094 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
2095 * that write_cache_pages (or whoever calls this function) will then use
2096 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
2097 * used to avoid livelocking of writeback by a process steadily creating new
2098 * dirty pages in the file (thus it is important for this function to be quick
2099 * so that it can tag pages faster than a dirtying process can create them).
2100 */
2101/*
2102 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
2103 */
f446daae
JK
2104void tag_pages_for_writeback(struct address_space *mapping,
2105 pgoff_t start, pgoff_t end)
2106{
3c111a07 2107#define WRITEBACK_TAG_BATCH 4096
268f42de
MW
2108 unsigned long tagged = 0;
2109 struct radix_tree_iter iter;
2110 void **slot;
2111
2112 spin_lock_irq(&mapping->tree_lock);
2113 radix_tree_for_each_tagged(slot, &mapping->page_tree, &iter, start,
2114 PAGECACHE_TAG_DIRTY) {
2115 if (iter.index > end)
2116 break;
2117 radix_tree_iter_tag_set(&mapping->page_tree, &iter,
2118 PAGECACHE_TAG_TOWRITE);
2119 tagged++;
2120 if ((tagged % WRITEBACK_TAG_BATCH) != 0)
2121 continue;
2122 slot = radix_tree_iter_resume(slot, &iter);
f446daae 2123 spin_unlock_irq(&mapping->tree_lock);
f446daae 2124 cond_resched();
268f42de
MW
2125 spin_lock_irq(&mapping->tree_lock);
2126 }
2127 spin_unlock_irq(&mapping->tree_lock);
f446daae
JK
2128}
2129EXPORT_SYMBOL(tag_pages_for_writeback);
2130
811d736f 2131/**
0ea97180 2132 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
2133 * @mapping: address space structure to write
2134 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
2135 * @writepage: function called for each page
2136 * @data: data passed to writepage function
811d736f 2137 *
0ea97180 2138 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
2139 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
2140 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
2141 * and msync() need to guarantee that all the data which was dirty at the time
2142 * the call was made get new I/O started against them. If wbc->sync_mode is
2143 * WB_SYNC_ALL then we were called for data integrity and we must wait for
2144 * existing IO to complete.
f446daae
JK
2145 *
2146 * To avoid livelocks (when other process dirties new pages), we first tag
2147 * pages which should be written back with TOWRITE tag and only then start
2148 * writing them. For data-integrity sync we have to be careful so that we do
2149 * not miss some pages (e.g., because some other process has cleared TOWRITE
2150 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
2151 * by the process clearing the DIRTY tag (and submitting the page for IO).
2add8745
DC
2152 *
2153 * To avoid deadlocks between range_cyclic writeback and callers that hold
2154 * pages in PageWriteback to aggregate IO until write_cache_pages() returns,
2155 * we do not loop back to the start of the file. Doing so causes a page
2156 * lock/page writeback access order inversion - we should only ever lock
2157 * multiple pages in ascending page->index order, and looping back to the start
2158 * of the file violates that rule and causes deadlocks.
811d736f 2159 */
0ea97180
MS
2160int write_cache_pages(struct address_space *mapping,
2161 struct writeback_control *wbc, writepage_t writepage,
2162 void *data)
811d736f 2163{
811d736f
DH
2164 int ret = 0;
2165 int done = 0;
e9f82a7a 2166 int error;
811d736f
DH
2167 struct pagevec pvec;
2168 int nr_pages;
31a12666 2169 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
2170 pgoff_t index;
2171 pgoff_t end; /* Inclusive */
bd19e012 2172 pgoff_t done_index;
811d736f 2173 int range_whole = 0;
f446daae 2174 int tag;
811d736f 2175
86679820 2176 pagevec_init(&pvec);
811d736f 2177 if (wbc->range_cyclic) {
31a12666
NP
2178 writeback_index = mapping->writeback_index; /* prev offset */
2179 index = writeback_index;
811d736f
DH
2180 end = -1;
2181 } else {
09cbfeaf
KS
2182 index = wbc->range_start >> PAGE_SHIFT;
2183 end = wbc->range_end >> PAGE_SHIFT;
811d736f
DH
2184 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
2185 range_whole = 1;
811d736f 2186 }
6e6938b6 2187 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
2188 tag = PAGECACHE_TAG_TOWRITE;
2189 else
2190 tag = PAGECACHE_TAG_DIRTY;
6e6938b6 2191 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 2192 tag_pages_for_writeback(mapping, index, end);
bd19e012 2193 done_index = index;
5a3d5c98
NP
2194 while (!done && (index <= end)) {
2195 int i;
2196
2b9775ae 2197 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index, end,
67fd707f 2198 tag);
5a3d5c98
NP
2199 if (nr_pages == 0)
2200 break;
811d736f 2201
811d736f
DH
2202 for (i = 0; i < nr_pages; i++) {
2203 struct page *page = pvec.pages[i];
2204
cf15b07c 2205 done_index = page->index;
d5482cdf 2206
811d736f
DH
2207 lock_page(page);
2208
5a3d5c98
NP
2209 /*
2210 * Page truncated or invalidated. We can freely skip it
2211 * then, even for data integrity operations: the page
2212 * has disappeared concurrently, so there could be no
2213 * real expectation of this data interity operation
2214 * even if there is now a new, dirty page at the same
2215 * pagecache address.
2216 */
811d736f 2217 if (unlikely(page->mapping != mapping)) {
5a3d5c98 2218continue_unlock:
811d736f
DH
2219 unlock_page(page);
2220 continue;
2221 }
2222
515f4a03
NP
2223 if (!PageDirty(page)) {
2224 /* someone wrote it for us */
2225 goto continue_unlock;
2226 }
2227
2228 if (PageWriteback(page)) {
2229 if (wbc->sync_mode != WB_SYNC_NONE)
2230 wait_on_page_writeback(page);
2231 else
2232 goto continue_unlock;
2233 }
811d736f 2234
515f4a03
NP
2235 BUG_ON(PageWriteback(page));
2236 if (!clear_page_dirty_for_io(page))
5a3d5c98 2237 goto continue_unlock;
811d736f 2238
de1414a6 2239 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
e9f82a7a
BF
2240 error = (*writepage)(page, wbc, data);
2241 if (unlikely(error)) {
2242 /*
2243 * Handle errors according to the type of
2244 * writeback. There's no need to continue for
2245 * background writeback. Just push done_index
2246 * past this page so media errors won't choke
2247 * writeout for the entire file. For integrity
2248 * writeback, we must process the entire dirty
2249 * set regardless of errors because the fs may
2250 * still have state to clear for each page. In
2251 * that case we continue processing and return
2252 * the first error.
2253 */
2254 if (error == AOP_WRITEPAGE_ACTIVATE) {
00266770 2255 unlock_page(page);
e9f82a7a
BF
2256 error = 0;
2257 } else if (wbc->sync_mode != WB_SYNC_ALL) {
2258 ret = error;
cf15b07c 2259 done_index = page->index + 1;
00266770
NP
2260 done = 1;
2261 break;
2262 }
e9f82a7a
BF
2263 if (!ret)
2264 ret = error;
0b564927 2265 }
00266770 2266
546a1924
DC
2267 /*
2268 * We stop writing back only if we are not doing
2269 * integrity sync. In case of integrity sync we have to
2270 * keep going until we have written all the pages
2271 * we tagged for writeback prior to entering this loop.
2272 */
2273 if (--wbc->nr_to_write <= 0 &&
2274 wbc->sync_mode == WB_SYNC_NONE) {
2275 done = 1;
2276 break;
05fe478d 2277 }
811d736f
DH
2278 }
2279 pagevec_release(&pvec);
2280 cond_resched();
2281 }
2add8745
DC
2282
2283 /*
2284 * If we hit the last page and there is more work to be done: wrap
2285 * back the index back to the start of the file for the next
2286 * time we are called.
2287 */
2288 if (wbc->range_cyclic && !done)
2289 done_index = 0;
0b564927
DC
2290 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
2291 mapping->writeback_index = done_index;
06d6cf69 2292
811d736f
DH
2293 return ret;
2294}
0ea97180
MS
2295EXPORT_SYMBOL(write_cache_pages);
2296
2297/*
2298 * Function used by generic_writepages to call the real writepage
2299 * function and set the mapping flags on error
2300 */
2301static int __writepage(struct page *page, struct writeback_control *wbc,
2302 void *data)
2303{
2304 struct address_space *mapping = data;
2305 int ret = mapping->a_ops->writepage(page, wbc);
2306 mapping_set_error(mapping, ret);
2307 return ret;
2308}
2309
2310/**
2311 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2312 * @mapping: address space structure to write
2313 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2314 *
2315 * This is a library function, which implements the writepages()
2316 * address_space_operation.
2317 */
2318int generic_writepages(struct address_space *mapping,
2319 struct writeback_control *wbc)
2320{
9b6096a6
SL
2321 struct blk_plug plug;
2322 int ret;
2323
0ea97180
MS
2324 /* deal with chardevs and other special file */
2325 if (!mapping->a_ops->writepage)
2326 return 0;
2327
9b6096a6
SL
2328 blk_start_plug(&plug);
2329 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2330 blk_finish_plug(&plug);
2331 return ret;
0ea97180 2332}
811d736f
DH
2333
2334EXPORT_SYMBOL(generic_writepages);
2335
1da177e4
LT
2336int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2337{
22905f77
AM
2338 int ret;
2339
1da177e4
LT
2340 if (wbc->nr_to_write <= 0)
2341 return 0;
80a2ea9f
TT
2342 while (1) {
2343 if (mapping->a_ops->writepages)
2344 ret = mapping->a_ops->writepages(mapping, wbc);
2345 else
2346 ret = generic_writepages(mapping, wbc);
2347 if ((ret != -ENOMEM) || (wbc->sync_mode != WB_SYNC_ALL))
2348 break;
2349 cond_resched();
2350 congestion_wait(BLK_RW_ASYNC, HZ/50);
2351 }
22905f77 2352 return ret;
1da177e4
LT
2353}
2354
2355/**
2b69c828 2356 * write_one_page - write out a single page and wait on I/O
67be2dd1 2357 * @page: the page to write
1da177e4
LT
2358 *
2359 * The page must be locked by the caller and will be unlocked upon return.
2360 *
37e51a76
JL
2361 * Note that the mapping's AS_EIO/AS_ENOSPC flags will be cleared when this
2362 * function returns.
1da177e4 2363 */
2b69c828 2364int write_one_page(struct page *page)
1da177e4
LT
2365{
2366 struct address_space *mapping = page->mapping;
2367 int ret = 0;
2368 struct writeback_control wbc = {
2369 .sync_mode = WB_SYNC_ALL,
2370 .nr_to_write = 1,
2371 };
2372
2373 BUG_ON(!PageLocked(page));
2374
2b69c828 2375 wait_on_page_writeback(page);
1da177e4
LT
2376
2377 if (clear_page_dirty_for_io(page)) {
09cbfeaf 2378 get_page(page);
1da177e4 2379 ret = mapping->a_ops->writepage(page, &wbc);
37e51a76 2380 if (ret == 0)
1da177e4 2381 wait_on_page_writeback(page);
09cbfeaf 2382 put_page(page);
1da177e4
LT
2383 } else {
2384 unlock_page(page);
2385 }
37e51a76
JL
2386
2387 if (!ret)
2388 ret = filemap_check_errors(mapping);
1da177e4
LT
2389 return ret;
2390}
2391EXPORT_SYMBOL(write_one_page);
2392
76719325
KC
2393/*
2394 * For address_spaces which do not use buffers nor write back.
2395 */
2396int __set_page_dirty_no_writeback(struct page *page)
2397{
2398 if (!PageDirty(page))
c3f0da63 2399 return !TestSetPageDirty(page);
76719325
KC
2400 return 0;
2401}
2402
e3a7cca1
ES
2403/*
2404 * Helper function for set_page_dirty family.
c4843a75 2405 *
81f8c3a4 2406 * Caller must hold lock_page_memcg().
c4843a75 2407 *
e3a7cca1
ES
2408 * NOTE: This relies on being atomic wrt interrupts.
2409 */
62cccb8c 2410void account_page_dirtied(struct page *page, struct address_space *mapping)
e3a7cca1 2411{
52ebea74
TH
2412 struct inode *inode = mapping->host;
2413
9fb0a7da
TH
2414 trace_writeback_dirty_page(page, mapping);
2415
e3a7cca1 2416 if (mapping_cap_account_dirty(mapping)) {
52ebea74 2417 struct bdi_writeback *wb;
de1414a6 2418
52ebea74
TH
2419 inode_attach_wb(inode, page);
2420 wb = inode_to_wb(inode);
de1414a6 2421
00f3ca2c 2422 __inc_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2423 __inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
c4a25635 2424 __inc_node_page_state(page, NR_DIRTIED);
3e8f399d
NB
2425 inc_wb_stat(wb, WB_RECLAIMABLE);
2426 inc_wb_stat(wb, WB_DIRTIED);
09cbfeaf 2427 task_io_account_write(PAGE_SIZE);
d3bc1fef
WF
2428 current->nr_dirtied++;
2429 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2430 }
2431}
679ceace 2432EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2433
b9ea2515
KK
2434/*
2435 * Helper function for deaccounting dirty page without writeback.
2436 *
81f8c3a4 2437 * Caller must hold lock_page_memcg().
b9ea2515 2438 */
c4843a75 2439void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 2440 struct bdi_writeback *wb)
b9ea2515
KK
2441{
2442 if (mapping_cap_account_dirty(mapping)) {
00f3ca2c 2443 dec_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2444 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
682aa8e1 2445 dec_wb_stat(wb, WB_RECLAIMABLE);
09cbfeaf 2446 task_io_account_cancelled_write(PAGE_SIZE);
b9ea2515
KK
2447 }
2448}
b9ea2515 2449
1da177e4
LT
2450/*
2451 * For address_spaces which do not use buffers. Just tag the page as dirty in
2452 * its radix tree.
2453 *
2454 * This is also used when a single buffer is being dirtied: we want to set the
2455 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2456 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2457 *
2d6d7f98
JW
2458 * The caller must ensure this doesn't race with truncation. Most will simply
2459 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2460 * the pte lock held, which also locks out truncation.
1da177e4
LT
2461 */
2462int __set_page_dirty_nobuffers(struct page *page)
2463{
62cccb8c 2464 lock_page_memcg(page);
1da177e4
LT
2465 if (!TestSetPageDirty(page)) {
2466 struct address_space *mapping = page_mapping(page);
a85d9df1 2467 unsigned long flags;
1da177e4 2468
c4843a75 2469 if (!mapping) {
62cccb8c 2470 unlock_page_memcg(page);
8c08540f 2471 return 1;
c4843a75 2472 }
8c08540f 2473
a85d9df1 2474 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2475 BUG_ON(page_mapping(page) != mapping);
2476 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
62cccb8c 2477 account_page_dirtied(page, mapping);
2d6d7f98
JW
2478 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2479 PAGECACHE_TAG_DIRTY);
a85d9df1 2480 spin_unlock_irqrestore(&mapping->tree_lock, flags);
62cccb8c 2481 unlock_page_memcg(page);
c4843a75 2482
8c08540f
AM
2483 if (mapping->host) {
2484 /* !PageAnon && !swapper_space */
2485 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2486 }
4741c9fd 2487 return 1;
1da177e4 2488 }
62cccb8c 2489 unlock_page_memcg(page);
4741c9fd 2490 return 0;
1da177e4
LT
2491}
2492EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2493
2f800fbd
WF
2494/*
2495 * Call this whenever redirtying a page, to de-account the dirty counters
2496 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2497 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2498 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2499 * control.
2500 */
2501void account_page_redirty(struct page *page)
2502{
2503 struct address_space *mapping = page->mapping;
91018134 2504
2f800fbd 2505 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2506 struct inode *inode = mapping->host;
2507 struct bdi_writeback *wb;
7cb41dc8 2508 struct wb_lock_cookie cookie = {};
91018134 2509
7cb41dc8 2510 wb = unlocked_inode_to_wb_begin(inode, &cookie);
2f800fbd 2511 current->nr_dirtied--;
c4a25635 2512 dec_node_page_state(page, NR_DIRTIED);
91018134 2513 dec_wb_stat(wb, WB_DIRTIED);
7cb41dc8 2514 unlocked_inode_to_wb_end(inode, &cookie);
2f800fbd
WF
2515 }
2516}
2517EXPORT_SYMBOL(account_page_redirty);
2518
1da177e4
LT
2519/*
2520 * When a writepage implementation decides that it doesn't want to write this
2521 * page for some reason, it should redirty the locked page via
2522 * redirty_page_for_writepage() and it should then unlock the page and return 0
2523 */
2524int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2525{
8d38633c
KK
2526 int ret;
2527
1da177e4 2528 wbc->pages_skipped++;
8d38633c 2529 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2530 account_page_redirty(page);
8d38633c 2531 return ret;
1da177e4
LT
2532}
2533EXPORT_SYMBOL(redirty_page_for_writepage);
2534
2535/*
6746aff7
WF
2536 * Dirty a page.
2537 *
2538 * For pages with a mapping this should be done under the page lock
2539 * for the benefit of asynchronous memory errors who prefer a consistent
2540 * dirty state. This rule can be broken in some special cases,
2541 * but should be better not to.
2542 *
1da177e4
LT
2543 * If the mapping doesn't provide a set_page_dirty a_op, then
2544 * just fall through and assume that it wants buffer_heads.
2545 */
1cf6e7d8 2546int set_page_dirty(struct page *page)
1da177e4
LT
2547{
2548 struct address_space *mapping = page_mapping(page);
2549
800d8c63 2550 page = compound_head(page);
1da177e4
LT
2551 if (likely(mapping)) {
2552 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2553 /*
2554 * readahead/lru_deactivate_page could remain
2555 * PG_readahead/PG_reclaim due to race with end_page_writeback
2556 * About readahead, if the page is written, the flags would be
2557 * reset. So no problem.
2558 * About lru_deactivate_page, if the page is redirty, the flag
2559 * will be reset. So no problem. but if the page is used by readahead
2560 * it will confuse readahead and make it restart the size rampup
2561 * process. But it's a trivial problem.
2562 */
a4bb3ecd
NH
2563 if (PageReclaim(page))
2564 ClearPageReclaim(page);
9361401e
DH
2565#ifdef CONFIG_BLOCK
2566 if (!spd)
2567 spd = __set_page_dirty_buffers;
2568#endif
2569 return (*spd)(page);
1da177e4 2570 }
4741c9fd
AM
2571 if (!PageDirty(page)) {
2572 if (!TestSetPageDirty(page))
2573 return 1;
2574 }
1da177e4
LT
2575 return 0;
2576}
2577EXPORT_SYMBOL(set_page_dirty);
2578
2579/*
2580 * set_page_dirty() is racy if the caller has no reference against
2581 * page->mapping->host, and if the page is unlocked. This is because another
2582 * CPU could truncate the page off the mapping and then free the mapping.
2583 *
2584 * Usually, the page _is_ locked, or the caller is a user-space process which
2585 * holds a reference on the inode by having an open file.
2586 *
2587 * In other cases, the page should be locked before running set_page_dirty().
2588 */
2589int set_page_dirty_lock(struct page *page)
2590{
2591 int ret;
2592
7eaceacc 2593 lock_page(page);
1da177e4
LT
2594 ret = set_page_dirty(page);
2595 unlock_page(page);
2596 return ret;
2597}
2598EXPORT_SYMBOL(set_page_dirty_lock);
2599
11f81bec
TH
2600/*
2601 * This cancels just the dirty bit on the kernel page itself, it does NOT
2602 * actually remove dirty bits on any mmap's that may be around. It also
2603 * leaves the page tagged dirty, so any sync activity will still find it on
2604 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2605 * look at the dirty bits in the VM.
2606 *
2607 * Doing this should *normally* only ever be done when a page is truncated,
2608 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2609 * this when it notices that somebody has cleaned out all the buffers on a
2610 * page without actually doing it through the VM. Can you say "ext3 is
2611 * horribly ugly"? Thought you could.
2612 */
736304f3 2613void __cancel_dirty_page(struct page *page)
11f81bec 2614{
c4843a75
GT
2615 struct address_space *mapping = page_mapping(page);
2616
2617 if (mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2618 struct inode *inode = mapping->host;
2619 struct bdi_writeback *wb;
7cb41dc8 2620 struct wb_lock_cookie cookie = {};
c4843a75 2621
62cccb8c 2622 lock_page_memcg(page);
7cb41dc8 2623 wb = unlocked_inode_to_wb_begin(inode, &cookie);
c4843a75
GT
2624
2625 if (TestClearPageDirty(page))
62cccb8c 2626 account_page_cleaned(page, mapping, wb);
c4843a75 2627
7cb41dc8 2628 unlocked_inode_to_wb_end(inode, &cookie);
62cccb8c 2629 unlock_page_memcg(page);
c4843a75
GT
2630 } else {
2631 ClearPageDirty(page);
2632 }
11f81bec 2633}
736304f3 2634EXPORT_SYMBOL(__cancel_dirty_page);
11f81bec 2635
1da177e4
LT
2636/*
2637 * Clear a page's dirty flag, while caring for dirty memory accounting.
2638 * Returns true if the page was previously dirty.
2639 *
2640 * This is for preparing to put the page under writeout. We leave the page
2641 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2642 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2643 * implementation will run either set_page_writeback() or set_page_dirty(),
2644 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2645 * back into sync.
2646 *
2647 * This incoherency between the page's dirty flag and radix-tree tag is
2648 * unfortunate, but it only exists while the page is locked.
2649 */
2650int clear_page_dirty_for_io(struct page *page)
2651{
2652 struct address_space *mapping = page_mapping(page);
c4843a75 2653 int ret = 0;
1da177e4 2654
79352894
NP
2655 BUG_ON(!PageLocked(page));
2656
7658cc28 2657 if (mapping && mapping_cap_account_dirty(mapping)) {
682aa8e1
TH
2658 struct inode *inode = mapping->host;
2659 struct bdi_writeback *wb;
7cb41dc8 2660 struct wb_lock_cookie cookie = {};
682aa8e1 2661
7658cc28
LT
2662 /*
2663 * Yes, Virginia, this is indeed insane.
2664 *
2665 * We use this sequence to make sure that
2666 * (a) we account for dirty stats properly
2667 * (b) we tell the low-level filesystem to
2668 * mark the whole page dirty if it was
2669 * dirty in a pagetable. Only to then
2670 * (c) clean the page again and return 1 to
2671 * cause the writeback.
2672 *
2673 * This way we avoid all nasty races with the
2674 * dirty bit in multiple places and clearing
2675 * them concurrently from different threads.
2676 *
2677 * Note! Normally the "set_page_dirty(page)"
2678 * has no effect on the actual dirty bit - since
2679 * that will already usually be set. But we
2680 * need the side effects, and it can help us
2681 * avoid races.
2682 *
2683 * We basically use the page "master dirty bit"
2684 * as a serialization point for all the different
2685 * threads doing their things.
7658cc28
LT
2686 */
2687 if (page_mkclean(page))
2688 set_page_dirty(page);
79352894
NP
2689 /*
2690 * We carefully synchronise fault handlers against
2691 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2692 * at this point. We do this by having them hold the
2693 * page lock while dirtying the page, and pages are
2694 * always locked coming in here, so we get the desired
2695 * exclusion.
79352894 2696 */
7cb41dc8 2697 wb = unlocked_inode_to_wb_begin(inode, &cookie);
7658cc28 2698 if (TestClearPageDirty(page)) {
00f3ca2c 2699 dec_lruvec_page_state(page, NR_FILE_DIRTY);
5a1c84b4 2700 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
682aa8e1 2701 dec_wb_stat(wb, WB_RECLAIMABLE);
c4843a75 2702 ret = 1;
1da177e4 2703 }
7cb41dc8 2704 unlocked_inode_to_wb_end(inode, &cookie);
c4843a75 2705 return ret;
1da177e4 2706 }
7658cc28 2707 return TestClearPageDirty(page);
1da177e4 2708}
58bb01a9 2709EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2710
2711int test_clear_page_writeback(struct page *page)
2712{
2713 struct address_space *mapping = page_mapping(page);
739f79fc
JW
2714 struct mem_cgroup *memcg;
2715 struct lruvec *lruvec;
d7365e78 2716 int ret;
1da177e4 2717
739f79fc
JW
2718 memcg = lock_page_memcg(page);
2719 lruvec = mem_cgroup_page_lruvec(page, page_pgdat(page));
371a096e 2720 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2721 struct inode *inode = mapping->host;
2722 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2723 unsigned long flags;
2724
19fd6231 2725 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2726 ret = TestClearPageWriteback(page);
69cb51d1 2727 if (ret) {
1da177e4
LT
2728 radix_tree_tag_clear(&mapping->page_tree,
2729 page_index(page),
2730 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2731 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2732 struct bdi_writeback *wb = inode_to_wb(inode);
2733
3e8f399d 2734 dec_wb_stat(wb, WB_WRITEBACK);
91018134 2735 __wb_writeout_inc(wb);
04fbfdc1 2736 }
69cb51d1 2737 }
6c60d2b5
DC
2738
2739 if (mapping->host && !mapping_tagged(mapping,
2740 PAGECACHE_TAG_WRITEBACK))
2741 sb_clear_inode_writeback(mapping->host);
2742
19fd6231 2743 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2744 } else {
2745 ret = TestClearPageWriteback(page);
2746 }
739f79fc
JW
2747 /*
2748 * NOTE: Page might be free now! Writeback doesn't hold a page
2749 * reference on its own, it relies on truncation to wait for
2750 * the clearing of PG_writeback. The below can only access
2751 * page state that is static across allocation cycles.
2752 */
99b12e3d 2753 if (ret) {
739f79fc 2754 dec_lruvec_state(lruvec, NR_WRITEBACK);
5a1c84b4 2755 dec_zone_page_state(page, NR_ZONE_WRITE_PENDING);
c4a25635 2756 inc_node_page_state(page, NR_WRITTEN);
99b12e3d 2757 }
739f79fc 2758 __unlock_page_memcg(memcg);
1da177e4
LT
2759 return ret;
2760}
2761
1c8349a1 2762int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2763{
2764 struct address_space *mapping = page_mapping(page);
d7365e78 2765 int ret;
1da177e4 2766
62cccb8c 2767 lock_page_memcg(page);
371a096e 2768 if (mapping && mapping_use_writeback_tags(mapping)) {
91018134
TH
2769 struct inode *inode = mapping->host;
2770 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2771 unsigned long flags;
2772
19fd6231 2773 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2774 ret = TestSetPageWriteback(page);
69cb51d1 2775 if (!ret) {
6c60d2b5
DC
2776 bool on_wblist;
2777
2778 on_wblist = mapping_tagged(mapping,
2779 PAGECACHE_TAG_WRITEBACK);
2780
1da177e4
LT
2781 radix_tree_tag_set(&mapping->page_tree,
2782 page_index(page),
2783 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2784 if (bdi_cap_account_writeback(bdi))
3e8f399d 2785 inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
6c60d2b5
DC
2786
2787 /*
2788 * We can come through here when swapping anonymous
2789 * pages, so we don't necessarily have an inode to track
2790 * for sync.
2791 */
2792 if (mapping->host && !on_wblist)
2793 sb_mark_inode_writeback(mapping->host);
69cb51d1 2794 }
1da177e4
LT
2795 if (!PageDirty(page))
2796 radix_tree_tag_clear(&mapping->page_tree,
2797 page_index(page),
2798 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2799 if (!keep_write)
2800 radix_tree_tag_clear(&mapping->page_tree,
2801 page_index(page),
2802 PAGECACHE_TAG_TOWRITE);
19fd6231 2803 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2804 } else {
2805 ret = TestSetPageWriteback(page);
2806 }
3a3c02ec 2807 if (!ret) {
00f3ca2c 2808 inc_lruvec_page_state(page, NR_WRITEBACK);
5a1c84b4 2809 inc_zone_page_state(page, NR_ZONE_WRITE_PENDING);
3a3c02ec 2810 }
62cccb8c 2811 unlock_page_memcg(page);
1da177e4
LT
2812 return ret;
2813
2814}
1c8349a1 2815EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2816
2817/*
00128188 2818 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2819 * passed tag.
2820 */
2821int mapping_tagged(struct address_space *mapping, int tag)
2822{
72c47832 2823 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2824}
2825EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2826
2827/**
2828 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2829 * @page: The page to wait on.
2830 *
2831 * This function determines if the given page is related to a backing device
2832 * that requires page contents to be held stable during writeback. If so, then
2833 * it will wait for any pending writeback to complete.
2834 */
2835void wait_for_stable_page(struct page *page)
2836{
de1414a6
CH
2837 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2838 wait_on_page_writeback(page);
1d1d1a76
DW
2839}
2840EXPORT_SYMBOL_GPL(wait_for_stable_page);