]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/rmap.c
atyfb: kill dead code
[mirror_ubuntu-bionic-kernel.git] / mm / rmap.c
CommitLineData
1da177e4
LT
1/*
2 * mm/rmap.c - physical to virtual reverse mappings
3 *
4 * Copyright 2001, Rik van Riel <riel@conectiva.com.br>
5 * Released under the General Public License (GPL).
6 *
7 * Simple, low overhead reverse mapping scheme.
8 * Please try to keep this thing as modular as possible.
9 *
10 * Provides methods for unmapping each kind of mapped page:
11 * the anon methods track anonymous pages, and
12 * the file methods track pages belonging to an inode.
13 *
14 * Original design by Rik van Riel <riel@conectiva.com.br> 2001
15 * File methods by Dave McCracken <dmccr@us.ibm.com> 2003, 2004
16 * Anonymous methods by Andrea Arcangeli <andrea@suse.de> 2004
17 * Contributions by Hugh Dickins <hugh@veritas.com> 2003, 2004
18 */
19
20/*
21 * Lock ordering in mm:
22 *
1b1dcc1b 23 * inode->i_mutex (while writing or truncating, not reading or faulting)
82591e6e
NP
24 * inode->i_alloc_sem (vmtruncate_range)
25 * mm->mmap_sem
26 * page->flags PG_locked (lock_page)
27 * mapping->i_mmap_lock
28 * anon_vma->lock
29 * mm->page_table_lock or pte_lock
30 * zone->lru_lock (in mark_page_accessed, isolate_lru_page)
31 * swap_lock (in swap_duplicate, swap_info_get)
32 * mmlist_lock (in mmput, drain_mmlist and others)
33 * mapping->private_lock (in __set_page_dirty_buffers)
34 * inode_lock (in set_page_dirty's __mark_inode_dirty)
35 * sb_lock (within inode_lock in fs/fs-writeback.c)
36 * mapping->tree_lock (widely used, in set_page_dirty,
37 * in arch-dependent flush_dcache_mmap_lock,
38 * within inode_lock in __sync_single_inode)
1da177e4
LT
39 */
40
41#include <linux/mm.h>
42#include <linux/pagemap.h>
43#include <linux/swap.h>
44#include <linux/swapops.h>
45#include <linux/slab.h>
46#include <linux/init.h>
47#include <linux/rmap.h>
48#include <linux/rcupdate.h>
a48d07af 49#include <linux/module.h>
7de6b805 50#include <linux/kallsyms.h>
1da177e4
LT
51
52#include <asm/tlbflush.h>
53
fcc234f8 54struct kmem_cache *anon_vma_cachep;
1da177e4
LT
55
56static inline void validate_anon_vma(struct vm_area_struct *find_vma)
57{
b7ab795b 58#ifdef CONFIG_DEBUG_VM
1da177e4
LT
59 struct anon_vma *anon_vma = find_vma->anon_vma;
60 struct vm_area_struct *vma;
61 unsigned int mapcount = 0;
62 int found = 0;
63
64 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
65 mapcount++;
66 BUG_ON(mapcount > 100000);
67 if (vma == find_vma)
68 found = 1;
69 }
70 BUG_ON(!found);
71#endif
72}
73
74/* This must be called under the mmap_sem. */
75int anon_vma_prepare(struct vm_area_struct *vma)
76{
77 struct anon_vma *anon_vma = vma->anon_vma;
78
79 might_sleep();
80 if (unlikely(!anon_vma)) {
81 struct mm_struct *mm = vma->vm_mm;
82 struct anon_vma *allocated, *locked;
83
84 anon_vma = find_mergeable_anon_vma(vma);
85 if (anon_vma) {
86 allocated = NULL;
87 locked = anon_vma;
88 spin_lock(&locked->lock);
89 } else {
90 anon_vma = anon_vma_alloc();
91 if (unlikely(!anon_vma))
92 return -ENOMEM;
93 allocated = anon_vma;
94 locked = NULL;
95 }
96
97 /* page_table_lock to protect against threads */
98 spin_lock(&mm->page_table_lock);
99 if (likely(!vma->anon_vma)) {
100 vma->anon_vma = anon_vma;
0697212a 101 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
102 allocated = NULL;
103 }
104 spin_unlock(&mm->page_table_lock);
105
106 if (locked)
107 spin_unlock(&locked->lock);
108 if (unlikely(allocated))
109 anon_vma_free(allocated);
110 }
111 return 0;
112}
113
114void __anon_vma_merge(struct vm_area_struct *vma, struct vm_area_struct *next)
115{
116 BUG_ON(vma->anon_vma != next->anon_vma);
117 list_del(&next->anon_vma_node);
118}
119
120void __anon_vma_link(struct vm_area_struct *vma)
121{
122 struct anon_vma *anon_vma = vma->anon_vma;
123
124 if (anon_vma) {
0697212a 125 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
126 validate_anon_vma(vma);
127 }
128}
129
130void anon_vma_link(struct vm_area_struct *vma)
131{
132 struct anon_vma *anon_vma = vma->anon_vma;
133
134 if (anon_vma) {
135 spin_lock(&anon_vma->lock);
0697212a 136 list_add_tail(&vma->anon_vma_node, &anon_vma->head);
1da177e4
LT
137 validate_anon_vma(vma);
138 spin_unlock(&anon_vma->lock);
139 }
140}
141
142void anon_vma_unlink(struct vm_area_struct *vma)
143{
144 struct anon_vma *anon_vma = vma->anon_vma;
145 int empty;
146
147 if (!anon_vma)
148 return;
149
150 spin_lock(&anon_vma->lock);
151 validate_anon_vma(vma);
152 list_del(&vma->anon_vma_node);
153
154 /* We must garbage collect the anon_vma if it's empty */
155 empty = list_empty(&anon_vma->head);
156 spin_unlock(&anon_vma->lock);
157
158 if (empty)
159 anon_vma_free(anon_vma);
160}
161
fcc234f8
PE
162static void anon_vma_ctor(void *data, struct kmem_cache *cachep,
163 unsigned long flags)
1da177e4 164{
50953fe9 165 if (flags & SLAB_CTOR_CONSTRUCTOR) {
1da177e4
LT
166 struct anon_vma *anon_vma = data;
167
168 spin_lock_init(&anon_vma->lock);
169 INIT_LIST_HEAD(&anon_vma->head);
170 }
171}
172
173void __init anon_vma_init(void)
174{
175 anon_vma_cachep = kmem_cache_create("anon_vma", sizeof(struct anon_vma),
176 0, SLAB_DESTROY_BY_RCU|SLAB_PANIC, anon_vma_ctor, NULL);
177}
178
179/*
180 * Getting a lock on a stable anon_vma from a page off the LRU is
181 * tricky: page_lock_anon_vma rely on RCU to guard against the races.
182 */
183static struct anon_vma *page_lock_anon_vma(struct page *page)
184{
34bbd704 185 struct anon_vma *anon_vma;
1da177e4
LT
186 unsigned long anon_mapping;
187
188 rcu_read_lock();
189 anon_mapping = (unsigned long) page->mapping;
190 if (!(anon_mapping & PAGE_MAPPING_ANON))
191 goto out;
192 if (!page_mapped(page))
193 goto out;
194
195 anon_vma = (struct anon_vma *) (anon_mapping - PAGE_MAPPING_ANON);
196 spin_lock(&anon_vma->lock);
34bbd704 197 return anon_vma;
1da177e4
LT
198out:
199 rcu_read_unlock();
34bbd704
ON
200 return NULL;
201}
202
203static void page_unlock_anon_vma(struct anon_vma *anon_vma)
204{
205 spin_unlock(&anon_vma->lock);
206 rcu_read_unlock();
1da177e4
LT
207}
208
209/*
210 * At what user virtual address is page expected in vma?
211 */
212static inline unsigned long
213vma_address(struct page *page, struct vm_area_struct *vma)
214{
215 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
216 unsigned long address;
217
218 address = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
219 if (unlikely(address < vma->vm_start || address >= vma->vm_end)) {
220 /* page should be within any vma from prio_tree_next */
221 BUG_ON(!PageAnon(page));
222 return -EFAULT;
223 }
224 return address;
225}
226
227/*
228 * At what user virtual address is page expected in vma? checking that the
ee498ed7 229 * page matches the vma: currently only used on anon pages, by unuse_vma;
1da177e4
LT
230 */
231unsigned long page_address_in_vma(struct page *page, struct vm_area_struct *vma)
232{
233 if (PageAnon(page)) {
234 if ((void *)vma->anon_vma !=
235 (void *)page->mapping - PAGE_MAPPING_ANON)
236 return -EFAULT;
237 } else if (page->mapping && !(vma->vm_flags & VM_NONLINEAR)) {
ee498ed7
HD
238 if (!vma->vm_file ||
239 vma->vm_file->f_mapping != page->mapping)
1da177e4
LT
240 return -EFAULT;
241 } else
242 return -EFAULT;
243 return vma_address(page, vma);
244}
245
81b4082d
ND
246/*
247 * Check that @page is mapped at @address into @mm.
248 *
b8072f09 249 * On success returns with pte mapped and locked.
81b4082d 250 */
ceffc078 251pte_t *page_check_address(struct page *page, struct mm_struct *mm,
c0718806 252 unsigned long address, spinlock_t **ptlp)
81b4082d
ND
253{
254 pgd_t *pgd;
255 pud_t *pud;
256 pmd_t *pmd;
257 pte_t *pte;
c0718806 258 spinlock_t *ptl;
81b4082d 259
81b4082d 260 pgd = pgd_offset(mm, address);
c0718806
HD
261 if (!pgd_present(*pgd))
262 return NULL;
263
264 pud = pud_offset(pgd, address);
265 if (!pud_present(*pud))
266 return NULL;
267
268 pmd = pmd_offset(pud, address);
269 if (!pmd_present(*pmd))
270 return NULL;
271
272 pte = pte_offset_map(pmd, address);
273 /* Make a quick check before getting the lock */
274 if (!pte_present(*pte)) {
275 pte_unmap(pte);
276 return NULL;
277 }
278
4c21e2f2 279 ptl = pte_lockptr(mm, pmd);
c0718806
HD
280 spin_lock(ptl);
281 if (pte_present(*pte) && page_to_pfn(page) == pte_pfn(*pte)) {
282 *ptlp = ptl;
283 return pte;
81b4082d 284 }
c0718806
HD
285 pte_unmap_unlock(pte, ptl);
286 return NULL;
81b4082d
ND
287}
288
1da177e4
LT
289/*
290 * Subfunctions of page_referenced: page_referenced_one called
291 * repeatedly from either page_referenced_anon or page_referenced_file.
292 */
293static int page_referenced_one(struct page *page,
f7b7fd8f 294 struct vm_area_struct *vma, unsigned int *mapcount)
1da177e4
LT
295{
296 struct mm_struct *mm = vma->vm_mm;
297 unsigned long address;
1da177e4 298 pte_t *pte;
c0718806 299 spinlock_t *ptl;
1da177e4
LT
300 int referenced = 0;
301
1da177e4
LT
302 address = vma_address(page, vma);
303 if (address == -EFAULT)
304 goto out;
305
c0718806
HD
306 pte = page_check_address(page, mm, address, &ptl);
307 if (!pte)
308 goto out;
1da177e4 309
c0718806
HD
310 if (ptep_clear_flush_young(vma, address, pte))
311 referenced++;
1da177e4 312
c0718806
HD
313 /* Pretend the page is referenced if the task has the
314 swap token and is in the middle of a page fault. */
f7b7fd8f 315 if (mm != current->mm && has_swap_token(mm) &&
c0718806
HD
316 rwsem_is_locked(&mm->mmap_sem))
317 referenced++;
318
319 (*mapcount)--;
320 pte_unmap_unlock(pte, ptl);
1da177e4
LT
321out:
322 return referenced;
323}
324
f7b7fd8f 325static int page_referenced_anon(struct page *page)
1da177e4
LT
326{
327 unsigned int mapcount;
328 struct anon_vma *anon_vma;
329 struct vm_area_struct *vma;
330 int referenced = 0;
331
332 anon_vma = page_lock_anon_vma(page);
333 if (!anon_vma)
334 return referenced;
335
336 mapcount = page_mapcount(page);
337 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
f7b7fd8f 338 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
339 if (!mapcount)
340 break;
341 }
34bbd704
ON
342
343 page_unlock_anon_vma(anon_vma);
1da177e4
LT
344 return referenced;
345}
346
347/**
348 * page_referenced_file - referenced check for object-based rmap
349 * @page: the page we're checking references on.
350 *
351 * For an object-based mapped page, find all the places it is mapped and
352 * check/clear the referenced flag. This is done by following the page->mapping
353 * pointer, then walking the chain of vmas it holds. It returns the number
354 * of references it found.
355 *
356 * This function is only called from page_referenced for object-based pages.
357 */
f7b7fd8f 358static int page_referenced_file(struct page *page)
1da177e4
LT
359{
360 unsigned int mapcount;
361 struct address_space *mapping = page->mapping;
362 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
363 struct vm_area_struct *vma;
364 struct prio_tree_iter iter;
365 int referenced = 0;
366
367 /*
368 * The caller's checks on page->mapping and !PageAnon have made
369 * sure that this is a file page: the check for page->mapping
370 * excludes the case just before it gets set on an anon page.
371 */
372 BUG_ON(PageAnon(page));
373
374 /*
375 * The page lock not only makes sure that page->mapping cannot
376 * suddenly be NULLified by truncation, it makes sure that the
377 * structure at mapping cannot be freed and reused yet,
378 * so we can safely take mapping->i_mmap_lock.
379 */
380 BUG_ON(!PageLocked(page));
381
382 spin_lock(&mapping->i_mmap_lock);
383
384 /*
385 * i_mmap_lock does not stabilize mapcount at all, but mapcount
386 * is more likely to be accurate if we note it after spinning.
387 */
388 mapcount = page_mapcount(page);
389
390 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
391 if ((vma->vm_flags & (VM_LOCKED|VM_MAYSHARE))
392 == (VM_LOCKED|VM_MAYSHARE)) {
393 referenced++;
394 break;
395 }
f7b7fd8f 396 referenced += page_referenced_one(page, vma, &mapcount);
1da177e4
LT
397 if (!mapcount)
398 break;
399 }
400
401 spin_unlock(&mapping->i_mmap_lock);
402 return referenced;
403}
404
405/**
406 * page_referenced - test if the page was referenced
407 * @page: the page to test
408 * @is_locked: caller holds lock on the page
409 *
410 * Quick test_and_clear_referenced for all mappings to a page,
411 * returns the number of ptes which referenced the page.
412 */
f7b7fd8f 413int page_referenced(struct page *page, int is_locked)
1da177e4
LT
414{
415 int referenced = 0;
416
1da177e4
LT
417 if (page_test_and_clear_young(page))
418 referenced++;
419
420 if (TestClearPageReferenced(page))
421 referenced++;
422
423 if (page_mapped(page) && page->mapping) {
424 if (PageAnon(page))
f7b7fd8f 425 referenced += page_referenced_anon(page);
1da177e4 426 else if (is_locked)
f7b7fd8f 427 referenced += page_referenced_file(page);
1da177e4
LT
428 else if (TestSetPageLocked(page))
429 referenced++;
430 else {
431 if (page->mapping)
f7b7fd8f 432 referenced += page_referenced_file(page);
1da177e4
LT
433 unlock_page(page);
434 }
435 }
436 return referenced;
437}
438
d08b3851
PZ
439static int page_mkclean_one(struct page *page, struct vm_area_struct *vma)
440{
441 struct mm_struct *mm = vma->vm_mm;
442 unsigned long address;
c2fda5fe 443 pte_t *pte;
d08b3851
PZ
444 spinlock_t *ptl;
445 int ret = 0;
446
447 address = vma_address(page, vma);
448 if (address == -EFAULT)
449 goto out;
450
451 pte = page_check_address(page, mm, address, &ptl);
452 if (!pte)
453 goto out;
454
c2fda5fe
PZ
455 if (pte_dirty(*pte) || pte_write(*pte)) {
456 pte_t entry;
d08b3851 457
c2fda5fe
PZ
458 flush_cache_page(vma, address, pte_pfn(*pte));
459 entry = ptep_clear_flush(vma, address, pte);
460 entry = pte_wrprotect(entry);
461 entry = pte_mkclean(entry);
d6e88e67 462 set_pte_at(mm, address, pte, entry);
c2fda5fe
PZ
463 lazy_mmu_prot_update(entry);
464 ret = 1;
465 }
d08b3851 466
d08b3851
PZ
467 pte_unmap_unlock(pte, ptl);
468out:
469 return ret;
470}
471
472static int page_mkclean_file(struct address_space *mapping, struct page *page)
473{
474 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
475 struct vm_area_struct *vma;
476 struct prio_tree_iter iter;
477 int ret = 0;
478
479 BUG_ON(PageAnon(page));
480
481 spin_lock(&mapping->i_mmap_lock);
482 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
483 if (vma->vm_flags & VM_SHARED)
484 ret += page_mkclean_one(page, vma);
485 }
486 spin_unlock(&mapping->i_mmap_lock);
487 return ret;
488}
489
490int page_mkclean(struct page *page)
491{
492 int ret = 0;
493
494 BUG_ON(!PageLocked(page));
495
496 if (page_mapped(page)) {
497 struct address_space *mapping = page_mapping(page);
498 if (mapping)
499 ret = page_mkclean_file(mapping, page);
6c210482
MS
500 if (page_test_dirty(page)) {
501 page_clear_dirty(page);
6e1beb3c 502 ret = 1;
6c210482 503 }
d08b3851
PZ
504 }
505
506 return ret;
507}
508
9617d95e
NP
509/**
510 * page_set_anon_rmap - setup new anonymous rmap
511 * @page: the page to add the mapping to
512 * @vma: the vm area in which the mapping is added
513 * @address: the user virtual address mapped
514 */
515static void __page_set_anon_rmap(struct page *page,
516 struct vm_area_struct *vma, unsigned long address)
517{
518 struct anon_vma *anon_vma = vma->anon_vma;
519
520 BUG_ON(!anon_vma);
521 anon_vma = (void *) anon_vma + PAGE_MAPPING_ANON;
522 page->mapping = (struct address_space *) anon_vma;
523
524 page->index = linear_page_index(vma, address);
525
a74609fa
NP
526 /*
527 * nr_mapped state can be updated without turning off
528 * interrupts because it is not modified via interrupt.
529 */
f3dbd344 530 __inc_zone_page_state(page, NR_ANON_PAGES);
9617d95e
NP
531}
532
1da177e4
LT
533/**
534 * page_add_anon_rmap - add pte mapping to an anonymous page
535 * @page: the page to add the mapping to
536 * @vma: the vm area in which the mapping is added
537 * @address: the user virtual address mapped
538 *
b8072f09 539 * The caller needs to hold the pte lock.
1da177e4
LT
540 */
541void page_add_anon_rmap(struct page *page,
542 struct vm_area_struct *vma, unsigned long address)
543{
9617d95e
NP
544 if (atomic_inc_and_test(&page->_mapcount))
545 __page_set_anon_rmap(page, vma, address);
1da177e4
LT
546 /* else checking page index and mapping is racy */
547}
548
9617d95e
NP
549/*
550 * page_add_new_anon_rmap - add pte mapping to a new anonymous page
551 * @page: the page to add the mapping to
552 * @vma: the vm area in which the mapping is added
553 * @address: the user virtual address mapped
554 *
555 * Same as page_add_anon_rmap but must only be called on *new* pages.
556 * This means the inc-and-test can be bypassed.
557 */
558void page_add_new_anon_rmap(struct page *page,
559 struct vm_area_struct *vma, unsigned long address)
560{
561 atomic_set(&page->_mapcount, 0); /* elevate count by 1 (starts at -1) */
562 __page_set_anon_rmap(page, vma, address);
563}
564
1da177e4
LT
565/**
566 * page_add_file_rmap - add pte mapping to a file page
567 * @page: the page to add the mapping to
568 *
b8072f09 569 * The caller needs to hold the pte lock.
1da177e4
LT
570 */
571void page_add_file_rmap(struct page *page)
572{
1da177e4 573 if (atomic_inc_and_test(&page->_mapcount))
65ba55f5 574 __inc_zone_page_state(page, NR_FILE_MAPPED);
1da177e4
LT
575}
576
577/**
578 * page_remove_rmap - take down pte mapping from a page
579 * @page: page to remove mapping from
580 *
b8072f09 581 * The caller needs to hold the pte lock.
1da177e4 582 */
7de6b805 583void page_remove_rmap(struct page *page, struct vm_area_struct *vma)
1da177e4 584{
1da177e4 585 if (atomic_add_negative(-1, &page->_mapcount)) {
b7ab795b 586 if (unlikely(page_mapcount(page) < 0)) {
ef2bf0dc 587 printk (KERN_EMERG "Eeek! page_mapcount(page) went negative! (%d)\n", page_mapcount(page));
7de6b805 588 printk (KERN_EMERG " page pfn = %lx\n", page_to_pfn(page));
ef2bf0dc
DJ
589 printk (KERN_EMERG " page->flags = %lx\n", page->flags);
590 printk (KERN_EMERG " page->count = %x\n", page_count(page));
591 printk (KERN_EMERG " page->mapping = %p\n", page->mapping);
7de6b805
NP
592 print_symbol (KERN_EMERG " vma->vm_ops = %s\n", (unsigned long)vma->vm_ops);
593 if (vma->vm_ops)
594 print_symbol (KERN_EMERG " vma->vm_ops->nopage = %s\n", (unsigned long)vma->vm_ops->nopage);
595 if (vma->vm_file && vma->vm_file->f_op)
596 print_symbol (KERN_EMERG " vma->vm_file->f_op->mmap = %s\n", (unsigned long)vma->vm_file->f_op->mmap);
b16bc64d 597 BUG();
ef2bf0dc 598 }
b16bc64d 599
1da177e4
LT
600 /*
601 * It would be tidy to reset the PageAnon mapping here,
602 * but that might overwrite a racing page_add_anon_rmap
603 * which increments mapcount after us but sets mapping
604 * before us: so leave the reset to free_hot_cold_page,
605 * and remember that it's only reliable while mapped.
606 * Leaving it set also helps swapoff to reinstate ptes
607 * faster for those pages still in swapcache.
608 */
6c210482
MS
609 if (page_test_dirty(page)) {
610 page_clear_dirty(page);
1da177e4 611 set_page_dirty(page);
6c210482 612 }
f3dbd344
CL
613 __dec_zone_page_state(page,
614 PageAnon(page) ? NR_ANON_PAGES : NR_FILE_MAPPED);
1da177e4
LT
615 }
616}
617
618/*
619 * Subfunctions of try_to_unmap: try_to_unmap_one called
620 * repeatedly from either try_to_unmap_anon or try_to_unmap_file.
621 */
a48d07af 622static int try_to_unmap_one(struct page *page, struct vm_area_struct *vma,
7352349a 623 int migration)
1da177e4
LT
624{
625 struct mm_struct *mm = vma->vm_mm;
626 unsigned long address;
1da177e4
LT
627 pte_t *pte;
628 pte_t pteval;
c0718806 629 spinlock_t *ptl;
1da177e4
LT
630 int ret = SWAP_AGAIN;
631
1da177e4
LT
632 address = vma_address(page, vma);
633 if (address == -EFAULT)
634 goto out;
635
c0718806
HD
636 pte = page_check_address(page, mm, address, &ptl);
637 if (!pte)
81b4082d 638 goto out;
1da177e4
LT
639
640 /*
641 * If the page is mlock()d, we cannot swap it out.
642 * If it's recently referenced (perhaps page_referenced
643 * skipped over this mm) then we should reactivate it.
644 */
e6a1530d
CL
645 if (!migration && ((vma->vm_flags & VM_LOCKED) ||
646 (ptep_clear_flush_young(vma, address, pte)))) {
1da177e4
LT
647 ret = SWAP_FAIL;
648 goto out_unmap;
649 }
650
1da177e4
LT
651 /* Nuke the page table entry. */
652 flush_cache_page(vma, address, page_to_pfn(page));
653 pteval = ptep_clear_flush(vma, address, pte);
654
655 /* Move the dirty bit to the physical page now the pte is gone. */
656 if (pte_dirty(pteval))
657 set_page_dirty(page);
658
365e9c87
HD
659 /* Update high watermark before we lower rss */
660 update_hiwater_rss(mm);
661
1da177e4 662 if (PageAnon(page)) {
4c21e2f2 663 swp_entry_t entry = { .val = page_private(page) };
0697212a
CL
664
665 if (PageSwapCache(page)) {
666 /*
667 * Store the swap location in the pte.
668 * See handle_pte_fault() ...
669 */
670 swap_duplicate(entry);
671 if (list_empty(&mm->mmlist)) {
672 spin_lock(&mmlist_lock);
673 if (list_empty(&mm->mmlist))
674 list_add(&mm->mmlist, &init_mm.mmlist);
675 spin_unlock(&mmlist_lock);
676 }
442c9137 677 dec_mm_counter(mm, anon_rss);
04e62a29 678#ifdef CONFIG_MIGRATION
0697212a
CL
679 } else {
680 /*
681 * Store the pfn of the page in a special migration
682 * pte. do_swap_page() will wait until the migration
683 * pte is removed and then restart fault handling.
684 */
685 BUG_ON(!migration);
686 entry = make_migration_entry(page, pte_write(pteval));
04e62a29 687#endif
1da177e4
LT
688 }
689 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
690 BUG_ON(pte_file(*pte));
4294621f 691 } else
04e62a29
CL
692#ifdef CONFIG_MIGRATION
693 if (migration) {
694 /* Establish migration entry for a file page */
695 swp_entry_t entry;
696 entry = make_migration_entry(page, pte_write(pteval));
697 set_pte_at(mm, address, pte, swp_entry_to_pte(entry));
698 } else
699#endif
4294621f 700 dec_mm_counter(mm, file_rss);
1da177e4 701
04e62a29 702
7de6b805 703 page_remove_rmap(page, vma);
1da177e4
LT
704 page_cache_release(page);
705
706out_unmap:
c0718806 707 pte_unmap_unlock(pte, ptl);
1da177e4
LT
708out:
709 return ret;
710}
711
712/*
713 * objrmap doesn't work for nonlinear VMAs because the assumption that
714 * offset-into-file correlates with offset-into-virtual-addresses does not hold.
715 * Consequently, given a particular page and its ->index, we cannot locate the
716 * ptes which are mapping that page without an exhaustive linear search.
717 *
718 * So what this code does is a mini "virtual scan" of each nonlinear VMA which
719 * maps the file to which the target page belongs. The ->vm_private_data field
720 * holds the current cursor into that scan. Successive searches will circulate
721 * around the vma's virtual address space.
722 *
723 * So as more replacement pressure is applied to the pages in a nonlinear VMA,
724 * more scanning pressure is placed against them as well. Eventually pages
725 * will become fully unmapped and are eligible for eviction.
726 *
727 * For very sparsely populated VMAs this is a little inefficient - chances are
728 * there there won't be many ptes located within the scan cluster. In this case
729 * maybe we could scan further - to the end of the pte page, perhaps.
730 */
731#define CLUSTER_SIZE min(32*PAGE_SIZE, PMD_SIZE)
732#define CLUSTER_MASK (~(CLUSTER_SIZE - 1))
733
734static void try_to_unmap_cluster(unsigned long cursor,
735 unsigned int *mapcount, struct vm_area_struct *vma)
736{
737 struct mm_struct *mm = vma->vm_mm;
738 pgd_t *pgd;
739 pud_t *pud;
740 pmd_t *pmd;
c0718806 741 pte_t *pte;
1da177e4 742 pte_t pteval;
c0718806 743 spinlock_t *ptl;
1da177e4
LT
744 struct page *page;
745 unsigned long address;
746 unsigned long end;
1da177e4 747
1da177e4
LT
748 address = (vma->vm_start + cursor) & CLUSTER_MASK;
749 end = address + CLUSTER_SIZE;
750 if (address < vma->vm_start)
751 address = vma->vm_start;
752 if (end > vma->vm_end)
753 end = vma->vm_end;
754
755 pgd = pgd_offset(mm, address);
756 if (!pgd_present(*pgd))
c0718806 757 return;
1da177e4
LT
758
759 pud = pud_offset(pgd, address);
760 if (!pud_present(*pud))
c0718806 761 return;
1da177e4
LT
762
763 pmd = pmd_offset(pud, address);
764 if (!pmd_present(*pmd))
c0718806
HD
765 return;
766
767 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4 768
365e9c87
HD
769 /* Update high watermark before we lower rss */
770 update_hiwater_rss(mm);
771
c0718806 772 for (; address < end; pte++, address += PAGE_SIZE) {
1da177e4
LT
773 if (!pte_present(*pte))
774 continue;
6aab341e
LT
775 page = vm_normal_page(vma, address, *pte);
776 BUG_ON(!page || PageAnon(page));
1da177e4
LT
777
778 if (ptep_clear_flush_young(vma, address, pte))
779 continue;
780
781 /* Nuke the page table entry. */
eca35133 782 flush_cache_page(vma, address, pte_pfn(*pte));
1da177e4
LT
783 pteval = ptep_clear_flush(vma, address, pte);
784
785 /* If nonlinear, store the file page offset in the pte. */
786 if (page->index != linear_page_index(vma, address))
787 set_pte_at(mm, address, pte, pgoff_to_pte(page->index));
788
789 /* Move the dirty bit to the physical page now the pte is gone. */
790 if (pte_dirty(pteval))
791 set_page_dirty(page);
792
7de6b805 793 page_remove_rmap(page, vma);
1da177e4 794 page_cache_release(page);
4294621f 795 dec_mm_counter(mm, file_rss);
1da177e4
LT
796 (*mapcount)--;
797 }
c0718806 798 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
799}
800
7352349a 801static int try_to_unmap_anon(struct page *page, int migration)
1da177e4
LT
802{
803 struct anon_vma *anon_vma;
804 struct vm_area_struct *vma;
805 int ret = SWAP_AGAIN;
806
807 anon_vma = page_lock_anon_vma(page);
808 if (!anon_vma)
809 return ret;
810
811 list_for_each_entry(vma, &anon_vma->head, anon_vma_node) {
7352349a 812 ret = try_to_unmap_one(page, vma, migration);
1da177e4
LT
813 if (ret == SWAP_FAIL || !page_mapped(page))
814 break;
815 }
34bbd704
ON
816
817 page_unlock_anon_vma(anon_vma);
1da177e4
LT
818 return ret;
819}
820
821/**
822 * try_to_unmap_file - unmap file page using the object-based rmap method
823 * @page: the page to unmap
824 *
825 * Find all the mappings of a page using the mapping pointer and the vma chains
826 * contained in the address_space struct it points to.
827 *
828 * This function is only called from try_to_unmap for object-based pages.
829 */
7352349a 830static int try_to_unmap_file(struct page *page, int migration)
1da177e4
LT
831{
832 struct address_space *mapping = page->mapping;
833 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
834 struct vm_area_struct *vma;
835 struct prio_tree_iter iter;
836 int ret = SWAP_AGAIN;
837 unsigned long cursor;
838 unsigned long max_nl_cursor = 0;
839 unsigned long max_nl_size = 0;
840 unsigned int mapcount;
841
842 spin_lock(&mapping->i_mmap_lock);
843 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, pgoff, pgoff) {
7352349a 844 ret = try_to_unmap_one(page, vma, migration);
1da177e4
LT
845 if (ret == SWAP_FAIL || !page_mapped(page))
846 goto out;
847 }
848
849 if (list_empty(&mapping->i_mmap_nonlinear))
850 goto out;
851
852 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
853 shared.vm_set.list) {
e6a1530d 854 if ((vma->vm_flags & VM_LOCKED) && !migration)
1da177e4
LT
855 continue;
856 cursor = (unsigned long) vma->vm_private_data;
857 if (cursor > max_nl_cursor)
858 max_nl_cursor = cursor;
859 cursor = vma->vm_end - vma->vm_start;
860 if (cursor > max_nl_size)
861 max_nl_size = cursor;
862 }
863
864 if (max_nl_size == 0) { /* any nonlinears locked or reserved */
865 ret = SWAP_FAIL;
866 goto out;
867 }
868
869 /*
870 * We don't try to search for this page in the nonlinear vmas,
871 * and page_referenced wouldn't have found it anyway. Instead
872 * just walk the nonlinear vmas trying to age and unmap some.
873 * The mapcount of the page we came in with is irrelevant,
874 * but even so use it as a guide to how hard we should try?
875 */
876 mapcount = page_mapcount(page);
877 if (!mapcount)
878 goto out;
879 cond_resched_lock(&mapping->i_mmap_lock);
880
881 max_nl_size = (max_nl_size + CLUSTER_SIZE - 1) & CLUSTER_MASK;
882 if (max_nl_cursor == 0)
883 max_nl_cursor = CLUSTER_SIZE;
884
885 do {
886 list_for_each_entry(vma, &mapping->i_mmap_nonlinear,
887 shared.vm_set.list) {
e6a1530d 888 if ((vma->vm_flags & VM_LOCKED) && !migration)
1da177e4
LT
889 continue;
890 cursor = (unsigned long) vma->vm_private_data;
839b9685 891 while ( cursor < max_nl_cursor &&
1da177e4
LT
892 cursor < vma->vm_end - vma->vm_start) {
893 try_to_unmap_cluster(cursor, &mapcount, vma);
894 cursor += CLUSTER_SIZE;
895 vma->vm_private_data = (void *) cursor;
896 if ((int)mapcount <= 0)
897 goto out;
898 }
899 vma->vm_private_data = (void *) max_nl_cursor;
900 }
901 cond_resched_lock(&mapping->i_mmap_lock);
902 max_nl_cursor += CLUSTER_SIZE;
903 } while (max_nl_cursor <= max_nl_size);
904
905 /*
906 * Don't loop forever (perhaps all the remaining pages are
907 * in locked vmas). Reset cursor on all unreserved nonlinear
908 * vmas, now forgetting on which ones it had fallen behind.
909 */
101d2be7
HD
910 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
911 vma->vm_private_data = NULL;
1da177e4
LT
912out:
913 spin_unlock(&mapping->i_mmap_lock);
914 return ret;
915}
916
917/**
918 * try_to_unmap - try to remove all page table mappings to a page
919 * @page: the page to get unmapped
920 *
921 * Tries to remove all the page table entries which are mapping this
922 * page, used in the pageout path. Caller must hold the page lock.
923 * Return values are:
924 *
925 * SWAP_SUCCESS - we succeeded in removing all mappings
926 * SWAP_AGAIN - we missed a mapping, try again later
927 * SWAP_FAIL - the page is unswappable
928 */
7352349a 929int try_to_unmap(struct page *page, int migration)
1da177e4
LT
930{
931 int ret;
932
1da177e4
LT
933 BUG_ON(!PageLocked(page));
934
935 if (PageAnon(page))
7352349a 936 ret = try_to_unmap_anon(page, migration);
1da177e4 937 else
7352349a 938 ret = try_to_unmap_file(page, migration);
1da177e4
LT
939
940 if (!page_mapped(page))
941 ret = SWAP_SUCCESS;
942 return ret;
943}
81b4082d 944