]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/swapfile.c
x86/mm: Drop usage of __flush_tlb_all() in kernel_physical_mapping_init()
[mirror_ubuntu-bionic-kernel.git] / mm / swapfile.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/swapfile.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 * Swap reorganised 29.12.95, Stephen Tweedie
6 */
7
1da177e4 8#include <linux/mm.h>
6e84f315 9#include <linux/sched/mm.h>
29930025 10#include <linux/sched/task.h>
1da177e4
LT
11#include <linux/hugetlb.h>
12#include <linux/mman.h>
13#include <linux/slab.h>
14#include <linux/kernel_stat.h>
15#include <linux/swap.h>
16#include <linux/vmalloc.h>
17#include <linux/pagemap.h>
18#include <linux/namei.h>
072441e2 19#include <linux/shmem_fs.h>
1da177e4 20#include <linux/blkdev.h>
20137a49 21#include <linux/random.h>
1da177e4
LT
22#include <linux/writeback.h>
23#include <linux/proc_fs.h>
24#include <linux/seq_file.h>
25#include <linux/init.h>
5ad64688 26#include <linux/ksm.h>
1da177e4
LT
27#include <linux/rmap.h>
28#include <linux/security.h>
29#include <linux/backing-dev.h>
fc0abb14 30#include <linux/mutex.h>
c59ede7b 31#include <linux/capability.h>
1da177e4 32#include <linux/syscalls.h>
8a9f3ccd 33#include <linux/memcontrol.h>
66d7dd51 34#include <linux/poll.h>
72788c38 35#include <linux/oom.h>
38b5faf4
DM
36#include <linux/frontswap.h>
37#include <linux/swapfile.h>
f981c595 38#include <linux/export.h>
67afa38e 39#include <linux/swap_slots.h>
155b5f88 40#include <linux/sort.h>
1da177e4
LT
41
42#include <asm/pgtable.h>
43#include <asm/tlbflush.h>
44#include <linux/swapops.h>
5d1ea48b 45#include <linux/swap_cgroup.h>
1da177e4 46
570a335b
HD
47static bool swap_count_continued(struct swap_info_struct *, pgoff_t,
48 unsigned char);
49static void free_swap_count_continuations(struct swap_info_struct *);
d4906e1a 50static sector_t map_swap_entry(swp_entry_t, struct block_device**);
570a335b 51
38b5faf4 52DEFINE_SPINLOCK(swap_lock);
7c363b8c 53static unsigned int nr_swapfiles;
ec8acf20 54atomic_long_t nr_swap_pages;
fb0fec50
CW
55/*
56 * Some modules use swappable objects and may try to swap them out under
57 * memory pressure (via the shrinker). Before doing so, they may wish to
58 * check to see if any swap space is available.
59 */
60EXPORT_SYMBOL_GPL(nr_swap_pages);
ec8acf20 61/* protected with swap_lock. reading in vm_swap_full() doesn't need lock */
1da177e4 62long total_swap_pages;
a2468cc9 63static int least_priority = -1;
1da177e4 64
1da177e4
LT
65static const char Bad_file[] = "Bad swap file entry ";
66static const char Unused_file[] = "Unused swap file entry ";
67static const char Bad_offset[] = "Bad swap offset entry ";
68static const char Unused_offset[] = "Unused swap offset entry ";
69
adfab836
DS
70/*
71 * all active swap_info_structs
72 * protected with swap_lock, and ordered by priority.
73 */
18ab4d4c
DS
74PLIST_HEAD(swap_active_head);
75
76/*
77 * all available (active, not full) swap_info_structs
78 * protected with swap_avail_lock, ordered by priority.
79 * This is used by get_swap_page() instead of swap_active_head
80 * because swap_active_head includes all swap_info_structs,
81 * but get_swap_page() doesn't need to look at full ones.
82 * This uses its own lock instead of swap_lock because when a
83 * swap_info_struct changes between not-full/full, it needs to
84 * add/remove itself to/from this list, but the swap_info_struct->lock
85 * is held and the locking order requires swap_lock to be taken
86 * before any swap_info_struct->lock.
87 */
a2468cc9 88struct plist_head *swap_avail_heads;
18ab4d4c 89static DEFINE_SPINLOCK(swap_avail_lock);
1da177e4 90
38b5faf4 91struct swap_info_struct *swap_info[MAX_SWAPFILES];
1da177e4 92
fc0abb14 93static DEFINE_MUTEX(swapon_mutex);
1da177e4 94
66d7dd51
KS
95static DECLARE_WAIT_QUEUE_HEAD(proc_poll_wait);
96/* Activity counter to indicate that a swapon or swapoff has occurred */
97static atomic_t proc_poll_event = ATOMIC_INIT(0);
98
81a0298b
HY
99atomic_t nr_rotate_swap = ATOMIC_INIT(0);
100
8d69aaee 101static inline unsigned char swap_count(unsigned char ent)
355cfa73 102{
570a335b 103 return ent & ~SWAP_HAS_CACHE; /* may include SWAP_HAS_CONT flag */
355cfa73
KH
104}
105
efa90a98 106/* returns 1 if swap entry is freed */
c9e44410
KH
107static int
108__try_to_reclaim_swap(struct swap_info_struct *si, unsigned long offset)
109{
efa90a98 110 swp_entry_t entry = swp_entry(si->type, offset);
c9e44410
KH
111 struct page *page;
112 int ret = 0;
113
f6ab1f7f 114 page = find_get_page(swap_address_space(entry), swp_offset(entry));
c9e44410
KH
115 if (!page)
116 return 0;
117 /*
118 * This function is called from scan_swap_map() and it's called
119 * by vmscan.c at reclaiming pages. So, we hold a lock on a page, here.
120 * We have to use trylock for avoiding deadlock. This is a special
121 * case and you should use try_to_free_swap() with explicit lock_page()
122 * in usual operations.
123 */
124 if (trylock_page(page)) {
125 ret = try_to_free_swap(page);
126 unlock_page(page);
127 }
09cbfeaf 128 put_page(page);
c9e44410
KH
129 return ret;
130}
355cfa73 131
6a6ba831
HD
132/*
133 * swapon tell device that all the old swap contents can be discarded,
134 * to allow the swap device to optimize its wear-levelling.
135 */
136static int discard_swap(struct swap_info_struct *si)
137{
138 struct swap_extent *se;
9625a5f2
HD
139 sector_t start_block;
140 sector_t nr_blocks;
6a6ba831
HD
141 int err = 0;
142
9625a5f2
HD
143 /* Do not discard the swap header page! */
144 se = &si->first_swap_extent;
145 start_block = (se->start_block + 1) << (PAGE_SHIFT - 9);
146 nr_blocks = ((sector_t)se->nr_pages - 1) << (PAGE_SHIFT - 9);
147 if (nr_blocks) {
148 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 149 nr_blocks, GFP_KERNEL, 0);
9625a5f2
HD
150 if (err)
151 return err;
152 cond_resched();
153 }
6a6ba831 154
9625a5f2
HD
155 list_for_each_entry(se, &si->first_swap_extent.list, list) {
156 start_block = se->start_block << (PAGE_SHIFT - 9);
157 nr_blocks = (sector_t)se->nr_pages << (PAGE_SHIFT - 9);
6a6ba831
HD
158
159 err = blkdev_issue_discard(si->bdev, start_block,
dd3932ed 160 nr_blocks, GFP_KERNEL, 0);
6a6ba831
HD
161 if (err)
162 break;
163
164 cond_resched();
165 }
166 return err; /* That will often be -EOPNOTSUPP */
167}
168
7992fde7
HD
169/*
170 * swap allocation tell device that a cluster of swap can now be discarded,
171 * to allow the swap device to optimize its wear-levelling.
172 */
173static void discard_swap_cluster(struct swap_info_struct *si,
174 pgoff_t start_page, pgoff_t nr_pages)
175{
176 struct swap_extent *se = si->curr_swap_extent;
177 int found_extent = 0;
178
179 while (nr_pages) {
7992fde7
HD
180 if (se->start_page <= start_page &&
181 start_page < se->start_page + se->nr_pages) {
182 pgoff_t offset = start_page - se->start_page;
183 sector_t start_block = se->start_block + offset;
858a2990 184 sector_t nr_blocks = se->nr_pages - offset;
7992fde7
HD
185
186 if (nr_blocks > nr_pages)
187 nr_blocks = nr_pages;
188 start_page += nr_blocks;
189 nr_pages -= nr_blocks;
190
191 if (!found_extent++)
192 si->curr_swap_extent = se;
193
194 start_block <<= PAGE_SHIFT - 9;
195 nr_blocks <<= PAGE_SHIFT - 9;
196 if (blkdev_issue_discard(si->bdev, start_block,
dd3932ed 197 nr_blocks, GFP_NOIO, 0))
7992fde7
HD
198 break;
199 }
200
a8ae4991 201 se = list_next_entry(se, list);
7992fde7
HD
202 }
203}
204
38d8b4e6
HY
205#ifdef CONFIG_THP_SWAP
206#define SWAPFILE_CLUSTER HPAGE_PMD_NR
207#else
048c27fd 208#define SWAPFILE_CLUSTER 256
38d8b4e6 209#endif
048c27fd
HD
210#define LATENCY_LIMIT 256
211
2a8f9449
SL
212static inline void cluster_set_flag(struct swap_cluster_info *info,
213 unsigned int flag)
214{
215 info->flags = flag;
216}
217
218static inline unsigned int cluster_count(struct swap_cluster_info *info)
219{
220 return info->data;
221}
222
223static inline void cluster_set_count(struct swap_cluster_info *info,
224 unsigned int c)
225{
226 info->data = c;
227}
228
229static inline void cluster_set_count_flag(struct swap_cluster_info *info,
230 unsigned int c, unsigned int f)
231{
232 info->flags = f;
233 info->data = c;
234}
235
236static inline unsigned int cluster_next(struct swap_cluster_info *info)
237{
238 return info->data;
239}
240
241static inline void cluster_set_next(struct swap_cluster_info *info,
242 unsigned int n)
243{
244 info->data = n;
245}
246
247static inline void cluster_set_next_flag(struct swap_cluster_info *info,
248 unsigned int n, unsigned int f)
249{
250 info->flags = f;
251 info->data = n;
252}
253
254static inline bool cluster_is_free(struct swap_cluster_info *info)
255{
256 return info->flags & CLUSTER_FLAG_FREE;
257}
258
259static inline bool cluster_is_null(struct swap_cluster_info *info)
260{
261 return info->flags & CLUSTER_FLAG_NEXT_NULL;
262}
263
264static inline void cluster_set_null(struct swap_cluster_info *info)
265{
266 info->flags = CLUSTER_FLAG_NEXT_NULL;
267 info->data = 0;
268}
269
e0709829
HY
270static inline bool cluster_is_huge(struct swap_cluster_info *info)
271{
272 return info->flags & CLUSTER_FLAG_HUGE;
273}
274
275static inline void cluster_clear_huge(struct swap_cluster_info *info)
276{
277 info->flags &= ~CLUSTER_FLAG_HUGE;
278}
279
235b6217
HY
280static inline struct swap_cluster_info *lock_cluster(struct swap_info_struct *si,
281 unsigned long offset)
282{
283 struct swap_cluster_info *ci;
284
285 ci = si->cluster_info;
286 if (ci) {
287 ci += offset / SWAPFILE_CLUSTER;
288 spin_lock(&ci->lock);
289 }
290 return ci;
291}
292
293static inline void unlock_cluster(struct swap_cluster_info *ci)
294{
295 if (ci)
296 spin_unlock(&ci->lock);
297}
298
299static inline struct swap_cluster_info *lock_cluster_or_swap_info(
300 struct swap_info_struct *si,
301 unsigned long offset)
302{
303 struct swap_cluster_info *ci;
304
305 ci = lock_cluster(si, offset);
306 if (!ci)
307 spin_lock(&si->lock);
308
309 return ci;
310}
311
312static inline void unlock_cluster_or_swap_info(struct swap_info_struct *si,
313 struct swap_cluster_info *ci)
314{
315 if (ci)
316 unlock_cluster(ci);
317 else
318 spin_unlock(&si->lock);
319}
320
6b534915
HY
321static inline bool cluster_list_empty(struct swap_cluster_list *list)
322{
323 return cluster_is_null(&list->head);
324}
325
326static inline unsigned int cluster_list_first(struct swap_cluster_list *list)
327{
328 return cluster_next(&list->head);
329}
330
331static void cluster_list_init(struct swap_cluster_list *list)
332{
333 cluster_set_null(&list->head);
334 cluster_set_null(&list->tail);
335}
336
337static void cluster_list_add_tail(struct swap_cluster_list *list,
338 struct swap_cluster_info *ci,
339 unsigned int idx)
340{
341 if (cluster_list_empty(list)) {
342 cluster_set_next_flag(&list->head, idx, 0);
343 cluster_set_next_flag(&list->tail, idx, 0);
344 } else {
235b6217 345 struct swap_cluster_info *ci_tail;
6b534915
HY
346 unsigned int tail = cluster_next(&list->tail);
347
235b6217
HY
348 /*
349 * Nested cluster lock, but both cluster locks are
350 * only acquired when we held swap_info_struct->lock
351 */
352 ci_tail = ci + tail;
353 spin_lock_nested(&ci_tail->lock, SINGLE_DEPTH_NESTING);
354 cluster_set_next(ci_tail, idx);
0ef017d1 355 spin_unlock(&ci_tail->lock);
6b534915
HY
356 cluster_set_next_flag(&list->tail, idx, 0);
357 }
358}
359
360static unsigned int cluster_list_del_first(struct swap_cluster_list *list,
361 struct swap_cluster_info *ci)
362{
363 unsigned int idx;
364
365 idx = cluster_next(&list->head);
366 if (cluster_next(&list->tail) == idx) {
367 cluster_set_null(&list->head);
368 cluster_set_null(&list->tail);
369 } else
370 cluster_set_next_flag(&list->head,
371 cluster_next(&ci[idx]), 0);
372
373 return idx;
374}
375
815c2c54
SL
376/* Add a cluster to discard list and schedule it to do discard */
377static void swap_cluster_schedule_discard(struct swap_info_struct *si,
378 unsigned int idx)
379{
380 /*
381 * If scan_swap_map() can't find a free cluster, it will check
382 * si->swap_map directly. To make sure the discarding cluster isn't
383 * taken by scan_swap_map(), mark the swap entries bad (occupied). It
384 * will be cleared after discard
385 */
386 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
387 SWAP_MAP_BAD, SWAPFILE_CLUSTER);
388
6b534915 389 cluster_list_add_tail(&si->discard_clusters, si->cluster_info, idx);
815c2c54
SL
390
391 schedule_work(&si->discard_work);
392}
393
38d8b4e6
HY
394static void __free_cluster(struct swap_info_struct *si, unsigned long idx)
395{
396 struct swap_cluster_info *ci = si->cluster_info;
397
398 cluster_set_flag(ci + idx, CLUSTER_FLAG_FREE);
399 cluster_list_add_tail(&si->free_clusters, ci, idx);
400}
401
815c2c54
SL
402/*
403 * Doing discard actually. After a cluster discard is finished, the cluster
404 * will be added to free cluster list. caller should hold si->lock.
405*/
406static void swap_do_scheduled_discard(struct swap_info_struct *si)
407{
235b6217 408 struct swap_cluster_info *info, *ci;
815c2c54
SL
409 unsigned int idx;
410
411 info = si->cluster_info;
412
6b534915
HY
413 while (!cluster_list_empty(&si->discard_clusters)) {
414 idx = cluster_list_del_first(&si->discard_clusters, info);
815c2c54
SL
415 spin_unlock(&si->lock);
416
417 discard_swap_cluster(si, idx * SWAPFILE_CLUSTER,
418 SWAPFILE_CLUSTER);
419
420 spin_lock(&si->lock);
235b6217 421 ci = lock_cluster(si, idx * SWAPFILE_CLUSTER);
38d8b4e6 422 __free_cluster(si, idx);
815c2c54
SL
423 memset(si->swap_map + idx * SWAPFILE_CLUSTER,
424 0, SWAPFILE_CLUSTER);
235b6217 425 unlock_cluster(ci);
815c2c54
SL
426 }
427}
428
429static void swap_discard_work(struct work_struct *work)
430{
431 struct swap_info_struct *si;
432
433 si = container_of(work, struct swap_info_struct, discard_work);
434
435 spin_lock(&si->lock);
436 swap_do_scheduled_discard(si);
437 spin_unlock(&si->lock);
438}
439
38d8b4e6
HY
440static void alloc_cluster(struct swap_info_struct *si, unsigned long idx)
441{
442 struct swap_cluster_info *ci = si->cluster_info;
443
444 VM_BUG_ON(cluster_list_first(&si->free_clusters) != idx);
445 cluster_list_del_first(&si->free_clusters, ci);
446 cluster_set_count_flag(ci + idx, 0, 0);
447}
448
449static void free_cluster(struct swap_info_struct *si, unsigned long idx)
450{
451 struct swap_cluster_info *ci = si->cluster_info + idx;
452
453 VM_BUG_ON(cluster_count(ci) != 0);
454 /*
455 * If the swap is discardable, prepare discard the cluster
456 * instead of free it immediately. The cluster will be freed
457 * after discard.
458 */
459 if ((si->flags & (SWP_WRITEOK | SWP_PAGE_DISCARD)) ==
460 (SWP_WRITEOK | SWP_PAGE_DISCARD)) {
461 swap_cluster_schedule_discard(si, idx);
462 return;
463 }
464
465 __free_cluster(si, idx);
466}
467
2a8f9449
SL
468/*
469 * The cluster corresponding to page_nr will be used. The cluster will be
470 * removed from free cluster list and its usage counter will be increased.
471 */
472static void inc_cluster_info_page(struct swap_info_struct *p,
473 struct swap_cluster_info *cluster_info, unsigned long page_nr)
474{
475 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
476
477 if (!cluster_info)
478 return;
38d8b4e6
HY
479 if (cluster_is_free(&cluster_info[idx]))
480 alloc_cluster(p, idx);
2a8f9449
SL
481
482 VM_BUG_ON(cluster_count(&cluster_info[idx]) >= SWAPFILE_CLUSTER);
483 cluster_set_count(&cluster_info[idx],
484 cluster_count(&cluster_info[idx]) + 1);
485}
486
487/*
488 * The cluster corresponding to page_nr decreases one usage. If the usage
489 * counter becomes 0, which means no page in the cluster is in using, we can
490 * optionally discard the cluster and add it to free cluster list.
491 */
492static void dec_cluster_info_page(struct swap_info_struct *p,
493 struct swap_cluster_info *cluster_info, unsigned long page_nr)
494{
495 unsigned long idx = page_nr / SWAPFILE_CLUSTER;
496
497 if (!cluster_info)
498 return;
499
500 VM_BUG_ON(cluster_count(&cluster_info[idx]) == 0);
501 cluster_set_count(&cluster_info[idx],
502 cluster_count(&cluster_info[idx]) - 1);
503
38d8b4e6
HY
504 if (cluster_count(&cluster_info[idx]) == 0)
505 free_cluster(p, idx);
2a8f9449
SL
506}
507
508/*
509 * It's possible scan_swap_map() uses a free cluster in the middle of free
510 * cluster list. Avoiding such abuse to avoid list corruption.
511 */
ebc2a1a6
SL
512static bool
513scan_swap_map_ssd_cluster_conflict(struct swap_info_struct *si,
2a8f9449
SL
514 unsigned long offset)
515{
ebc2a1a6
SL
516 struct percpu_cluster *percpu_cluster;
517 bool conflict;
518
2a8f9449 519 offset /= SWAPFILE_CLUSTER;
6b534915
HY
520 conflict = !cluster_list_empty(&si->free_clusters) &&
521 offset != cluster_list_first(&si->free_clusters) &&
2a8f9449 522 cluster_is_free(&si->cluster_info[offset]);
ebc2a1a6
SL
523
524 if (!conflict)
525 return false;
526
527 percpu_cluster = this_cpu_ptr(si->percpu_cluster);
528 cluster_set_null(&percpu_cluster->index);
529 return true;
530}
531
532/*
533 * Try to get a swap entry from current cpu's swap entry pool (a cluster). This
534 * might involve allocating a new cluster for current CPU too.
535 */
36005bae 536static bool scan_swap_map_try_ssd_cluster(struct swap_info_struct *si,
ebc2a1a6
SL
537 unsigned long *offset, unsigned long *scan_base)
538{
539 struct percpu_cluster *cluster;
235b6217 540 struct swap_cluster_info *ci;
ebc2a1a6 541 bool found_free;
235b6217 542 unsigned long tmp, max;
ebc2a1a6
SL
543
544new_cluster:
545 cluster = this_cpu_ptr(si->percpu_cluster);
546 if (cluster_is_null(&cluster->index)) {
6b534915
HY
547 if (!cluster_list_empty(&si->free_clusters)) {
548 cluster->index = si->free_clusters.head;
ebc2a1a6
SL
549 cluster->next = cluster_next(&cluster->index) *
550 SWAPFILE_CLUSTER;
6b534915 551 } else if (!cluster_list_empty(&si->discard_clusters)) {
ebc2a1a6
SL
552 /*
553 * we don't have free cluster but have some clusters in
554 * discarding, do discard now and reclaim them
555 */
556 swap_do_scheduled_discard(si);
557 *scan_base = *offset = si->cluster_next;
558 goto new_cluster;
559 } else
36005bae 560 return false;
ebc2a1a6
SL
561 }
562
563 found_free = false;
564
565 /*
566 * Other CPUs can use our cluster if they can't find a free cluster,
567 * check if there is still free entry in the cluster
568 */
569 tmp = cluster->next;
235b6217
HY
570 max = min_t(unsigned long, si->max,
571 (cluster_next(&cluster->index) + 1) * SWAPFILE_CLUSTER);
572 if (tmp >= max) {
573 cluster_set_null(&cluster->index);
574 goto new_cluster;
575 }
576 ci = lock_cluster(si, tmp);
577 while (tmp < max) {
ebc2a1a6
SL
578 if (!si->swap_map[tmp]) {
579 found_free = true;
580 break;
581 }
582 tmp++;
583 }
235b6217 584 unlock_cluster(ci);
ebc2a1a6
SL
585 if (!found_free) {
586 cluster_set_null(&cluster->index);
587 goto new_cluster;
588 }
589 cluster->next = tmp + 1;
590 *offset = tmp;
591 *scan_base = tmp;
36005bae 592 return found_free;
2a8f9449
SL
593}
594
a2468cc9
AL
595static void __del_from_avail_list(struct swap_info_struct *p)
596{
597 int nid;
598
599 for_each_node(nid)
600 plist_del(&p->avail_lists[nid], &swap_avail_heads[nid]);
601}
602
603static void del_from_avail_list(struct swap_info_struct *p)
604{
605 spin_lock(&swap_avail_lock);
606 __del_from_avail_list(p);
607 spin_unlock(&swap_avail_lock);
608}
609
38d8b4e6
HY
610static void swap_range_alloc(struct swap_info_struct *si, unsigned long offset,
611 unsigned int nr_entries)
612{
613 unsigned int end = offset + nr_entries - 1;
614
615 if (offset == si->lowest_bit)
616 si->lowest_bit += nr_entries;
617 if (end == si->highest_bit)
618 si->highest_bit -= nr_entries;
619 si->inuse_pages += nr_entries;
620 if (si->inuse_pages == si->pages) {
621 si->lowest_bit = si->max;
622 si->highest_bit = 0;
a2468cc9 623 del_from_avail_list(si);
38d8b4e6
HY
624 }
625}
626
a2468cc9
AL
627static void add_to_avail_list(struct swap_info_struct *p)
628{
629 int nid;
630
631 spin_lock(&swap_avail_lock);
632 for_each_node(nid) {
633 WARN_ON(!plist_node_empty(&p->avail_lists[nid]));
634 plist_add(&p->avail_lists[nid], &swap_avail_heads[nid]);
635 }
636 spin_unlock(&swap_avail_lock);
637}
638
38d8b4e6
HY
639static void swap_range_free(struct swap_info_struct *si, unsigned long offset,
640 unsigned int nr_entries)
641{
642 unsigned long end = offset + nr_entries - 1;
643 void (*swap_slot_free_notify)(struct block_device *, unsigned long);
644
645 if (offset < si->lowest_bit)
646 si->lowest_bit = offset;
647 if (end > si->highest_bit) {
648 bool was_full = !si->highest_bit;
649
650 si->highest_bit = end;
a2468cc9
AL
651 if (was_full && (si->flags & SWP_WRITEOK))
652 add_to_avail_list(si);
38d8b4e6
HY
653 }
654 atomic_long_add(nr_entries, &nr_swap_pages);
655 si->inuse_pages -= nr_entries;
656 if (si->flags & SWP_BLKDEV)
657 swap_slot_free_notify =
658 si->bdev->bd_disk->fops->swap_slot_free_notify;
659 else
660 swap_slot_free_notify = NULL;
661 while (offset <= end) {
662 frontswap_invalidate_page(si->type, offset);
663 if (swap_slot_free_notify)
664 swap_slot_free_notify(si->bdev, offset);
665 offset++;
666 }
667}
668
36005bae
TC
669static int scan_swap_map_slots(struct swap_info_struct *si,
670 unsigned char usage, int nr,
671 swp_entry_t slots[])
1da177e4 672{
235b6217 673 struct swap_cluster_info *ci;
ebebbbe9 674 unsigned long offset;
c60aa176 675 unsigned long scan_base;
7992fde7 676 unsigned long last_in_cluster = 0;
048c27fd 677 int latency_ration = LATENCY_LIMIT;
36005bae
TC
678 int n_ret = 0;
679
680 if (nr > SWAP_BATCH)
681 nr = SWAP_BATCH;
7dfad418 682
886bb7e9 683 /*
7dfad418
HD
684 * We try to cluster swap pages by allocating them sequentially
685 * in swap. Once we've allocated SWAPFILE_CLUSTER pages this
686 * way, however, we resort to first-free allocation, starting
687 * a new cluster. This prevents us from scattering swap pages
688 * all over the entire swap partition, so that we reduce
689 * overall disk seek times between swap pages. -- sct
690 * But we do now try to find an empty cluster. -Andrea
c60aa176 691 * And we let swap pages go all over an SSD partition. Hugh
7dfad418
HD
692 */
693
52b7efdb 694 si->flags += SWP_SCANNING;
c60aa176 695 scan_base = offset = si->cluster_next;
ebebbbe9 696
ebc2a1a6
SL
697 /* SSD algorithm */
698 if (si->cluster_info) {
36005bae
TC
699 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
700 goto checks;
701 else
702 goto scan;
ebc2a1a6
SL
703 }
704
ebebbbe9
HD
705 if (unlikely(!si->cluster_nr--)) {
706 if (si->pages - si->inuse_pages < SWAPFILE_CLUSTER) {
707 si->cluster_nr = SWAPFILE_CLUSTER - 1;
708 goto checks;
709 }
2a8f9449 710
ec8acf20 711 spin_unlock(&si->lock);
7dfad418 712
c60aa176
HD
713 /*
714 * If seek is expensive, start searching for new cluster from
715 * start of partition, to minimize the span of allocated swap.
50088c44
CY
716 * If seek is cheap, that is the SWP_SOLIDSTATE si->cluster_info
717 * case, just handled by scan_swap_map_try_ssd_cluster() above.
c60aa176 718 */
50088c44 719 scan_base = offset = si->lowest_bit;
7dfad418
HD
720 last_in_cluster = offset + SWAPFILE_CLUSTER - 1;
721
722 /* Locate the first empty (unaligned) cluster */
723 for (; last_in_cluster <= si->highest_bit; offset++) {
1da177e4 724 if (si->swap_map[offset])
7dfad418
HD
725 last_in_cluster = offset + SWAPFILE_CLUSTER;
726 else if (offset == last_in_cluster) {
ec8acf20 727 spin_lock(&si->lock);
ebebbbe9
HD
728 offset -= SWAPFILE_CLUSTER - 1;
729 si->cluster_next = offset;
730 si->cluster_nr = SWAPFILE_CLUSTER - 1;
c60aa176
HD
731 goto checks;
732 }
733 if (unlikely(--latency_ration < 0)) {
734 cond_resched();
735 latency_ration = LATENCY_LIMIT;
736 }
737 }
738
739 offset = scan_base;
ec8acf20 740 spin_lock(&si->lock);
ebebbbe9 741 si->cluster_nr = SWAPFILE_CLUSTER - 1;
1da177e4 742 }
7dfad418 743
ebebbbe9 744checks:
ebc2a1a6 745 if (si->cluster_info) {
36005bae
TC
746 while (scan_swap_map_ssd_cluster_conflict(si, offset)) {
747 /* take a break if we already got some slots */
748 if (n_ret)
749 goto done;
750 if (!scan_swap_map_try_ssd_cluster(si, &offset,
751 &scan_base))
752 goto scan;
753 }
ebc2a1a6 754 }
ebebbbe9 755 if (!(si->flags & SWP_WRITEOK))
52b7efdb 756 goto no_page;
7dfad418
HD
757 if (!si->highest_bit)
758 goto no_page;
ebebbbe9 759 if (offset > si->highest_bit)
c60aa176 760 scan_base = offset = si->lowest_bit;
c9e44410 761
235b6217 762 ci = lock_cluster(si, offset);
b73d7fce
HD
763 /* reuse swap entry of cache-only swap if not busy. */
764 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
c9e44410 765 int swap_was_freed;
235b6217 766 unlock_cluster(ci);
ec8acf20 767 spin_unlock(&si->lock);
c9e44410 768 swap_was_freed = __try_to_reclaim_swap(si, offset);
ec8acf20 769 spin_lock(&si->lock);
c9e44410
KH
770 /* entry was freed successfully, try to use this again */
771 if (swap_was_freed)
772 goto checks;
773 goto scan; /* check next one */
774 }
775
235b6217
HY
776 if (si->swap_map[offset]) {
777 unlock_cluster(ci);
36005bae
TC
778 if (!n_ret)
779 goto scan;
780 else
781 goto done;
235b6217 782 }
2872bb2d
HY
783 si->swap_map[offset] = usage;
784 inc_cluster_info_page(si, si->cluster_info, offset);
785 unlock_cluster(ci);
ebebbbe9 786
38d8b4e6 787 swap_range_alloc(si, offset, 1);
ebebbbe9 788 si->cluster_next = offset + 1;
36005bae
TC
789 slots[n_ret++] = swp_entry(si->type, offset);
790
791 /* got enough slots or reach max slots? */
792 if ((n_ret == nr) || (offset >= si->highest_bit))
793 goto done;
794
795 /* search for next available slot */
796
797 /* time to take a break? */
798 if (unlikely(--latency_ration < 0)) {
799 if (n_ret)
800 goto done;
801 spin_unlock(&si->lock);
802 cond_resched();
803 spin_lock(&si->lock);
804 latency_ration = LATENCY_LIMIT;
805 }
806
807 /* try to get more slots in cluster */
808 if (si->cluster_info) {
809 if (scan_swap_map_try_ssd_cluster(si, &offset, &scan_base))
810 goto checks;
811 else
812 goto done;
813 }
814 /* non-ssd case */
815 ++offset;
816
817 /* non-ssd case, still more slots in cluster? */
818 if (si->cluster_nr && !si->swap_map[offset]) {
819 --si->cluster_nr;
820 goto checks;
821 }
7992fde7 822
36005bae
TC
823done:
824 si->flags -= SWP_SCANNING;
825 return n_ret;
7dfad418 826
ebebbbe9 827scan:
ec8acf20 828 spin_unlock(&si->lock);
7dfad418 829 while (++offset <= si->highest_bit) {
52b7efdb 830 if (!si->swap_map[offset]) {
ec8acf20 831 spin_lock(&si->lock);
52b7efdb
HD
832 goto checks;
833 }
c9e44410 834 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 835 spin_lock(&si->lock);
c9e44410
KH
836 goto checks;
837 }
048c27fd
HD
838 if (unlikely(--latency_ration < 0)) {
839 cond_resched();
840 latency_ration = LATENCY_LIMIT;
841 }
7dfad418 842 }
c60aa176 843 offset = si->lowest_bit;
a5998061 844 while (offset < scan_base) {
c60aa176 845 if (!si->swap_map[offset]) {
ec8acf20 846 spin_lock(&si->lock);
c60aa176
HD
847 goto checks;
848 }
c9e44410 849 if (vm_swap_full() && si->swap_map[offset] == SWAP_HAS_CACHE) {
ec8acf20 850 spin_lock(&si->lock);
c9e44410
KH
851 goto checks;
852 }
c60aa176
HD
853 if (unlikely(--latency_ration < 0)) {
854 cond_resched();
855 latency_ration = LATENCY_LIMIT;
856 }
a5998061 857 offset++;
c60aa176 858 }
ec8acf20 859 spin_lock(&si->lock);
7dfad418
HD
860
861no_page:
52b7efdb 862 si->flags -= SWP_SCANNING;
36005bae 863 return n_ret;
1da177e4
LT
864}
865
38d8b4e6
HY
866#ifdef CONFIG_THP_SWAP
867static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
868{
869 unsigned long idx;
870 struct swap_cluster_info *ci;
871 unsigned long offset, i;
872 unsigned char *map;
873
874 if (cluster_list_empty(&si->free_clusters))
875 return 0;
876
877 idx = cluster_list_first(&si->free_clusters);
878 offset = idx * SWAPFILE_CLUSTER;
879 ci = lock_cluster(si, offset);
880 alloc_cluster(si, idx);
e0709829 881 cluster_set_count_flag(ci, SWAPFILE_CLUSTER, CLUSTER_FLAG_HUGE);
38d8b4e6
HY
882
883 map = si->swap_map + offset;
884 for (i = 0; i < SWAPFILE_CLUSTER; i++)
885 map[i] = SWAP_HAS_CACHE;
886 unlock_cluster(ci);
887 swap_range_alloc(si, offset, SWAPFILE_CLUSTER);
888 *slot = swp_entry(si->type, offset);
889
890 return 1;
891}
892
893static void swap_free_cluster(struct swap_info_struct *si, unsigned long idx)
894{
895 unsigned long offset = idx * SWAPFILE_CLUSTER;
896 struct swap_cluster_info *ci;
897
898 ci = lock_cluster(si, offset);
899 cluster_set_count_flag(ci, 0, 0);
900 free_cluster(si, idx);
901 unlock_cluster(ci);
902 swap_range_free(si, offset, SWAPFILE_CLUSTER);
903}
904#else
905static int swap_alloc_cluster(struct swap_info_struct *si, swp_entry_t *slot)
906{
907 VM_WARN_ON_ONCE(1);
908 return 0;
909}
910#endif /* CONFIG_THP_SWAP */
911
36005bae
TC
912static unsigned long scan_swap_map(struct swap_info_struct *si,
913 unsigned char usage)
914{
915 swp_entry_t entry;
916 int n_ret;
917
918 n_ret = scan_swap_map_slots(si, usage, 1, &entry);
919
920 if (n_ret)
921 return swp_offset(entry);
922 else
923 return 0;
924
925}
926
38d8b4e6 927int get_swap_pages(int n_goal, bool cluster, swp_entry_t swp_entries[])
1da177e4 928{
38d8b4e6 929 unsigned long nr_pages = cluster ? SWAPFILE_CLUSTER : 1;
adfab836 930 struct swap_info_struct *si, *next;
36005bae
TC
931 long avail_pgs;
932 int n_ret = 0;
a2468cc9 933 int node;
1da177e4 934
38d8b4e6
HY
935 /* Only single cluster request supported */
936 WARN_ON_ONCE(n_goal > 1 && cluster);
937
938 avail_pgs = atomic_long_read(&nr_swap_pages) / nr_pages;
36005bae 939 if (avail_pgs <= 0)
fb4f88dc 940 goto noswap;
36005bae
TC
941
942 if (n_goal > SWAP_BATCH)
943 n_goal = SWAP_BATCH;
944
945 if (n_goal > avail_pgs)
946 n_goal = avail_pgs;
947
38d8b4e6 948 atomic_long_sub(n_goal * nr_pages, &nr_swap_pages);
fb4f88dc 949
18ab4d4c
DS
950 spin_lock(&swap_avail_lock);
951
952start_over:
a2468cc9
AL
953 node = numa_node_id();
954 plist_for_each_entry_safe(si, next, &swap_avail_heads[node], avail_lists[node]) {
18ab4d4c 955 /* requeue si to after same-priority siblings */
a2468cc9 956 plist_requeue(&si->avail_lists[node], &swap_avail_heads[node]);
18ab4d4c 957 spin_unlock(&swap_avail_lock);
ec8acf20 958 spin_lock(&si->lock);
adfab836 959 if (!si->highest_bit || !(si->flags & SWP_WRITEOK)) {
18ab4d4c 960 spin_lock(&swap_avail_lock);
a2468cc9 961 if (plist_node_empty(&si->avail_lists[node])) {
18ab4d4c
DS
962 spin_unlock(&si->lock);
963 goto nextsi;
964 }
965 WARN(!si->highest_bit,
966 "swap_info %d in list but !highest_bit\n",
967 si->type);
968 WARN(!(si->flags & SWP_WRITEOK),
969 "swap_info %d in list but !SWP_WRITEOK\n",
970 si->type);
a2468cc9 971 __del_from_avail_list(si);
ec8acf20 972 spin_unlock(&si->lock);
18ab4d4c 973 goto nextsi;
ec8acf20 974 }
f0eea189
HY
975 if (cluster) {
976 if (!(si->flags & SWP_FILE))
977 n_ret = swap_alloc_cluster(si, swp_entries);
978 } else
38d8b4e6
HY
979 n_ret = scan_swap_map_slots(si, SWAP_HAS_CACHE,
980 n_goal, swp_entries);
ec8acf20 981 spin_unlock(&si->lock);
38d8b4e6 982 if (n_ret || cluster)
36005bae 983 goto check_out;
18ab4d4c 984 pr_debug("scan_swap_map of si %d failed to find offset\n",
36005bae
TC
985 si->type);
986
18ab4d4c
DS
987 spin_lock(&swap_avail_lock);
988nextsi:
adfab836
DS
989 /*
990 * if we got here, it's likely that si was almost full before,
991 * and since scan_swap_map() can drop the si->lock, multiple
992 * callers probably all tried to get a page from the same si
18ab4d4c
DS
993 * and it filled up before we could get one; or, the si filled
994 * up between us dropping swap_avail_lock and taking si->lock.
995 * Since we dropped the swap_avail_lock, the swap_avail_head
996 * list may have been modified; so if next is still in the
36005bae
TC
997 * swap_avail_head list then try it, otherwise start over
998 * if we have not gotten any slots.
adfab836 999 */
a2468cc9 1000 if (plist_node_empty(&next->avail_lists[node]))
18ab4d4c 1001 goto start_over;
1da177e4 1002 }
fb4f88dc 1003
18ab4d4c
DS
1004 spin_unlock(&swap_avail_lock);
1005
36005bae
TC
1006check_out:
1007 if (n_ret < n_goal)
38d8b4e6
HY
1008 atomic_long_add((long)(n_goal - n_ret) * nr_pages,
1009 &nr_swap_pages);
fb4f88dc 1010noswap:
36005bae
TC
1011 return n_ret;
1012}
1013
2de1a7e4 1014/* The only caller of this function is now suspend routine */
910321ea
HD
1015swp_entry_t get_swap_page_of_type(int type)
1016{
1017 struct swap_info_struct *si;
1018 pgoff_t offset;
1019
910321ea 1020 si = swap_info[type];
ec8acf20 1021 spin_lock(&si->lock);
910321ea 1022 if (si && (si->flags & SWP_WRITEOK)) {
ec8acf20 1023 atomic_long_dec(&nr_swap_pages);
910321ea
HD
1024 /* This is called for allocating swap entry, not cache */
1025 offset = scan_swap_map(si, 1);
1026 if (offset) {
ec8acf20 1027 spin_unlock(&si->lock);
910321ea
HD
1028 return swp_entry(type, offset);
1029 }
ec8acf20 1030 atomic_long_inc(&nr_swap_pages);
910321ea 1031 }
ec8acf20 1032 spin_unlock(&si->lock);
910321ea
HD
1033 return (swp_entry_t) {0};
1034}
1035
e8c26ab6 1036static struct swap_info_struct *__swap_info_get(swp_entry_t entry)
1da177e4 1037{
73c34b6a 1038 struct swap_info_struct *p;
1da177e4
LT
1039 unsigned long offset, type;
1040
1041 if (!entry.val)
1042 goto out;
1043 type = swp_type(entry);
1044 if (type >= nr_swapfiles)
1045 goto bad_nofile;
efa90a98 1046 p = swap_info[type];
1da177e4
LT
1047 if (!(p->flags & SWP_USED))
1048 goto bad_device;
1049 offset = swp_offset(entry);
1050 if (offset >= p->max)
1051 goto bad_offset;
1da177e4
LT
1052 return p;
1053
1da177e4 1054bad_offset:
6a991fc7 1055 pr_err("swap_info_get: %s%08lx\n", Bad_offset, entry.val);
1da177e4
LT
1056 goto out;
1057bad_device:
6a991fc7 1058 pr_err("swap_info_get: %s%08lx\n", Unused_file, entry.val);
1da177e4
LT
1059 goto out;
1060bad_nofile:
6a991fc7 1061 pr_err("swap_info_get: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
1062out:
1063 return NULL;
886bb7e9 1064}
1da177e4 1065
e8c26ab6
TC
1066static struct swap_info_struct *_swap_info_get(swp_entry_t entry)
1067{
1068 struct swap_info_struct *p;
1069
1070 p = __swap_info_get(entry);
1071 if (!p)
1072 goto out;
1073 if (!p->swap_map[swp_offset(entry)])
1074 goto bad_free;
1075 return p;
1076
1077bad_free:
1078 pr_err("swap_info_get: %s%08lx\n", Unused_offset, entry.val);
1079 goto out;
1080out:
1081 return NULL;
1082}
1083
235b6217
HY
1084static struct swap_info_struct *swap_info_get(swp_entry_t entry)
1085{
1086 struct swap_info_struct *p;
1087
1088 p = _swap_info_get(entry);
1089 if (p)
1090 spin_lock(&p->lock);
1091 return p;
1092}
1093
7c00bafe
TC
1094static struct swap_info_struct *swap_info_get_cont(swp_entry_t entry,
1095 struct swap_info_struct *q)
1096{
1097 struct swap_info_struct *p;
1098
1099 p = _swap_info_get(entry);
1100
1101 if (p != q) {
1102 if (q != NULL)
1103 spin_unlock(&q->lock);
1104 if (p != NULL)
1105 spin_lock(&p->lock);
1106 }
1107 return p;
1108}
1109
1110static unsigned char __swap_entry_free(struct swap_info_struct *p,
1111 swp_entry_t entry, unsigned char usage)
1da177e4 1112{
235b6217 1113 struct swap_cluster_info *ci;
253d553b 1114 unsigned long offset = swp_offset(entry);
8d69aaee
HD
1115 unsigned char count;
1116 unsigned char has_cache;
235b6217 1117
7c00bafe 1118 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 1119
253d553b 1120 count = p->swap_map[offset];
235b6217 1121
253d553b
HD
1122 has_cache = count & SWAP_HAS_CACHE;
1123 count &= ~SWAP_HAS_CACHE;
355cfa73 1124
253d553b 1125 if (usage == SWAP_HAS_CACHE) {
355cfa73 1126 VM_BUG_ON(!has_cache);
253d553b 1127 has_cache = 0;
aaa46865
HD
1128 } else if (count == SWAP_MAP_SHMEM) {
1129 /*
1130 * Or we could insist on shmem.c using a special
1131 * swap_shmem_free() and free_shmem_swap_and_cache()...
1132 */
1133 count = 0;
570a335b
HD
1134 } else if ((count & ~COUNT_CONTINUED) <= SWAP_MAP_MAX) {
1135 if (count == COUNT_CONTINUED) {
1136 if (swap_count_continued(p, offset, count))
1137 count = SWAP_MAP_MAX | COUNT_CONTINUED;
1138 else
1139 count = SWAP_MAP_MAX;
1140 } else
1141 count--;
1142 }
253d553b 1143
253d553b 1144 usage = count | has_cache;
7c00bafe
TC
1145 p->swap_map[offset] = usage ? : SWAP_HAS_CACHE;
1146
1147 unlock_cluster_or_swap_info(p, ci);
1148
1149 return usage;
1150}
355cfa73 1151
7c00bafe
TC
1152static void swap_entry_free(struct swap_info_struct *p, swp_entry_t entry)
1153{
1154 struct swap_cluster_info *ci;
1155 unsigned long offset = swp_offset(entry);
1156 unsigned char count;
1157
1158 ci = lock_cluster(p, offset);
1159 count = p->swap_map[offset];
1160 VM_BUG_ON(count != SWAP_HAS_CACHE);
1161 p->swap_map[offset] = 0;
1162 dec_cluster_info_page(p, p->cluster_info, offset);
235b6217
HY
1163 unlock_cluster(ci);
1164
38d8b4e6
HY
1165 mem_cgroup_uncharge_swap(entry, 1);
1166 swap_range_free(p, offset, 1);
1da177e4
LT
1167}
1168
1169/*
2de1a7e4 1170 * Caller has made sure that the swap device corresponding to entry
1da177e4
LT
1171 * is still around or has not been recycled.
1172 */
1173void swap_free(swp_entry_t entry)
1174{
73c34b6a 1175 struct swap_info_struct *p;
1da177e4 1176
235b6217 1177 p = _swap_info_get(entry);
7c00bafe
TC
1178 if (p) {
1179 if (!__swap_entry_free(p, entry, 1))
67afa38e 1180 free_swap_slot(entry);
7c00bafe 1181 }
1da177e4
LT
1182}
1183
cb4b86ba
KH
1184/*
1185 * Called after dropping swapcache to decrease refcnt to swap entries.
1186 */
75f6d6d2 1187static void swapcache_free(swp_entry_t entry)
cb4b86ba 1188{
355cfa73
KH
1189 struct swap_info_struct *p;
1190
235b6217 1191 p = _swap_info_get(entry);
7c00bafe
TC
1192 if (p) {
1193 if (!__swap_entry_free(p, entry, SWAP_HAS_CACHE))
67afa38e 1194 free_swap_slot(entry);
7c00bafe
TC
1195 }
1196}
1197
38d8b4e6 1198#ifdef CONFIG_THP_SWAP
75f6d6d2 1199static void swapcache_free_cluster(swp_entry_t entry)
38d8b4e6
HY
1200{
1201 unsigned long offset = swp_offset(entry);
1202 unsigned long idx = offset / SWAPFILE_CLUSTER;
1203 struct swap_cluster_info *ci;
1204 struct swap_info_struct *si;
1205 unsigned char *map;
a3aea839
HY
1206 unsigned int i, free_entries = 0;
1207 unsigned char val;
38d8b4e6 1208
a3aea839 1209 si = _swap_info_get(entry);
38d8b4e6
HY
1210 if (!si)
1211 return;
1212
1213 ci = lock_cluster(si, offset);
e0709829 1214 VM_BUG_ON(!cluster_is_huge(ci));
38d8b4e6
HY
1215 map = si->swap_map + offset;
1216 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
a3aea839
HY
1217 val = map[i];
1218 VM_BUG_ON(!(val & SWAP_HAS_CACHE));
1219 if (val == SWAP_HAS_CACHE)
1220 free_entries++;
1221 }
1222 if (!free_entries) {
1223 for (i = 0; i < SWAPFILE_CLUSTER; i++)
1224 map[i] &= ~SWAP_HAS_CACHE;
38d8b4e6 1225 }
e0709829 1226 cluster_clear_huge(ci);
38d8b4e6 1227 unlock_cluster(ci);
a3aea839
HY
1228 if (free_entries == SWAPFILE_CLUSTER) {
1229 spin_lock(&si->lock);
1230 ci = lock_cluster(si, offset);
1231 memset(map, 0, SWAPFILE_CLUSTER);
1232 unlock_cluster(ci);
1233 mem_cgroup_uncharge_swap(entry, SWAPFILE_CLUSTER);
1234 swap_free_cluster(si, idx);
1235 spin_unlock(&si->lock);
1236 } else if (free_entries) {
1237 for (i = 0; i < SWAPFILE_CLUSTER; i++, entry.val++) {
1238 if (!__swap_entry_free(si, entry, SWAP_HAS_CACHE))
1239 free_swap_slot(entry);
1240 }
1241 }
38d8b4e6 1242}
59807685
HY
1243
1244int split_swap_cluster(swp_entry_t entry)
1245{
1246 struct swap_info_struct *si;
1247 struct swap_cluster_info *ci;
1248 unsigned long offset = swp_offset(entry);
1249
1250 si = _swap_info_get(entry);
1251 if (!si)
1252 return -EBUSY;
1253 ci = lock_cluster(si, offset);
1254 cluster_clear_huge(ci);
1255 unlock_cluster(ci);
1256 return 0;
1257}
75f6d6d2
MK
1258#else
1259static inline void swapcache_free_cluster(swp_entry_t entry)
1260{
1261}
38d8b4e6
HY
1262#endif /* CONFIG_THP_SWAP */
1263
75f6d6d2
MK
1264void put_swap_page(struct page *page, swp_entry_t entry)
1265{
1266 if (!PageTransHuge(page))
1267 swapcache_free(entry);
1268 else
1269 swapcache_free_cluster(entry);
1270}
1271
155b5f88
HY
1272static int swp_entry_cmp(const void *ent1, const void *ent2)
1273{
1274 const swp_entry_t *e1 = ent1, *e2 = ent2;
1275
1276 return (int)swp_type(*e1) - (int)swp_type(*e2);
1277}
1278
7c00bafe
TC
1279void swapcache_free_entries(swp_entry_t *entries, int n)
1280{
1281 struct swap_info_struct *p, *prev;
1282 int i;
1283
1284 if (n <= 0)
1285 return;
1286
1287 prev = NULL;
1288 p = NULL;
155b5f88
HY
1289
1290 /*
1291 * Sort swap entries by swap device, so each lock is only taken once.
1292 * nr_swapfiles isn't absolutely correct, but the overhead of sort() is
1293 * so low that it isn't necessary to optimize further.
1294 */
1295 if (nr_swapfiles > 1)
1296 sort(entries, n, sizeof(entries[0]), swp_entry_cmp, NULL);
7c00bafe
TC
1297 for (i = 0; i < n; ++i) {
1298 p = swap_info_get_cont(entries[i], prev);
1299 if (p)
1300 swap_entry_free(p, entries[i]);
7c00bafe
TC
1301 prev = p;
1302 }
235b6217 1303 if (p)
7c00bafe 1304 spin_unlock(&p->lock);
cb4b86ba
KH
1305}
1306
1da177e4 1307/*
c475a8ab 1308 * How many references to page are currently swapped out?
570a335b
HD
1309 * This does not give an exact answer when swap count is continued,
1310 * but does include the high COUNT_CONTINUED flag to allow for that.
1da177e4 1311 */
bde05d1c 1312int page_swapcount(struct page *page)
1da177e4 1313{
c475a8ab
HD
1314 int count = 0;
1315 struct swap_info_struct *p;
235b6217 1316 struct swap_cluster_info *ci;
1da177e4 1317 swp_entry_t entry;
235b6217 1318 unsigned long offset;
1da177e4 1319
4c21e2f2 1320 entry.val = page_private(page);
235b6217 1321 p = _swap_info_get(entry);
1da177e4 1322 if (p) {
235b6217
HY
1323 offset = swp_offset(entry);
1324 ci = lock_cluster_or_swap_info(p, offset);
1325 count = swap_count(p->swap_map[offset]);
1326 unlock_cluster_or_swap_info(p, ci);
1da177e4 1327 }
c475a8ab 1328 return count;
1da177e4
LT
1329}
1330
aa8d22a1
MK
1331int __swap_count(struct swap_info_struct *si, swp_entry_t entry)
1332{
1333 pgoff_t offset = swp_offset(entry);
1334
1335 return swap_count(si->swap_map[offset]);
1336}
1337
322b8afe
HY
1338static int swap_swapcount(struct swap_info_struct *si, swp_entry_t entry)
1339{
1340 int count = 0;
1341 pgoff_t offset = swp_offset(entry);
1342 struct swap_cluster_info *ci;
1343
1344 ci = lock_cluster_or_swap_info(si, offset);
1345 count = swap_count(si->swap_map[offset]);
1346 unlock_cluster_or_swap_info(si, ci);
1347 return count;
1348}
1349
e8c26ab6
TC
1350/*
1351 * How many references to @entry are currently swapped out?
1352 * This does not give an exact answer when swap count is continued,
1353 * but does include the high COUNT_CONTINUED flag to allow for that.
1354 */
1355int __swp_swapcount(swp_entry_t entry)
1356{
1357 int count = 0;
e8c26ab6 1358 struct swap_info_struct *si;
e8c26ab6
TC
1359
1360 si = __swap_info_get(entry);
322b8afe
HY
1361 if (si)
1362 count = swap_swapcount(si, entry);
e8c26ab6
TC
1363 return count;
1364}
1365
8334b962
MK
1366/*
1367 * How many references to @entry are currently swapped out?
1368 * This considers COUNT_CONTINUED so it returns exact answer.
1369 */
1370int swp_swapcount(swp_entry_t entry)
1371{
1372 int count, tmp_count, n;
1373 struct swap_info_struct *p;
235b6217 1374 struct swap_cluster_info *ci;
8334b962
MK
1375 struct page *page;
1376 pgoff_t offset;
1377 unsigned char *map;
1378
235b6217 1379 p = _swap_info_get(entry);
8334b962
MK
1380 if (!p)
1381 return 0;
1382
235b6217
HY
1383 offset = swp_offset(entry);
1384
1385 ci = lock_cluster_or_swap_info(p, offset);
1386
1387 count = swap_count(p->swap_map[offset]);
8334b962
MK
1388 if (!(count & COUNT_CONTINUED))
1389 goto out;
1390
1391 count &= ~COUNT_CONTINUED;
1392 n = SWAP_MAP_MAX + 1;
1393
8334b962
MK
1394 page = vmalloc_to_page(p->swap_map + offset);
1395 offset &= ~PAGE_MASK;
1396 VM_BUG_ON(page_private(page) != SWP_CONTINUED);
1397
1398 do {
a8ae4991 1399 page = list_next_entry(page, lru);
8334b962
MK
1400 map = kmap_atomic(page);
1401 tmp_count = map[offset];
1402 kunmap_atomic(map);
1403
1404 count += (tmp_count & ~COUNT_CONTINUED) * n;
1405 n *= (SWAP_CONT_MAX + 1);
1406 } while (tmp_count & COUNT_CONTINUED);
1407out:
235b6217 1408 unlock_cluster_or_swap_info(p, ci);
8334b962
MK
1409 return count;
1410}
1411
e0709829
HY
1412#ifdef CONFIG_THP_SWAP
1413static bool swap_page_trans_huge_swapped(struct swap_info_struct *si,
1414 swp_entry_t entry)
1415{
1416 struct swap_cluster_info *ci;
1417 unsigned char *map = si->swap_map;
1418 unsigned long roffset = swp_offset(entry);
1419 unsigned long offset = round_down(roffset, SWAPFILE_CLUSTER);
1420 int i;
1421 bool ret = false;
1422
1423 ci = lock_cluster_or_swap_info(si, offset);
1424 if (!ci || !cluster_is_huge(ci)) {
1425 if (map[roffset] != SWAP_HAS_CACHE)
1426 ret = true;
1427 goto unlock_out;
1428 }
1429 for (i = 0; i < SWAPFILE_CLUSTER; i++) {
1430 if (map[offset + i] != SWAP_HAS_CACHE) {
1431 ret = true;
1432 break;
1433 }
1434 }
1435unlock_out:
1436 unlock_cluster_or_swap_info(si, ci);
1437 return ret;
1438}
1439
1440static bool page_swapped(struct page *page)
1441{
1442 swp_entry_t entry;
1443 struct swap_info_struct *si;
1444
1445 if (likely(!PageTransCompound(page)))
1446 return page_swapcount(page) != 0;
1447
1448 page = compound_head(page);
1449 entry.val = page_private(page);
1450 si = _swap_info_get(entry);
1451 if (si)
1452 return swap_page_trans_huge_swapped(si, entry);
1453 return false;
1454}
ba3c4ce6
HY
1455
1456static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1457 int *total_swapcount)
1458{
1459 int i, map_swapcount, _total_mapcount, _total_swapcount;
1460 unsigned long offset = 0;
1461 struct swap_info_struct *si;
1462 struct swap_cluster_info *ci = NULL;
1463 unsigned char *map = NULL;
1464 int mapcount, swapcount = 0;
1465
1466 /* hugetlbfs shouldn't call it */
1467 VM_BUG_ON_PAGE(PageHuge(page), page);
1468
1469 if (likely(!PageTransCompound(page))) {
1470 mapcount = atomic_read(&page->_mapcount) + 1;
1471 if (total_mapcount)
1472 *total_mapcount = mapcount;
1473 if (PageSwapCache(page))
1474 swapcount = page_swapcount(page);
1475 if (total_swapcount)
1476 *total_swapcount = swapcount;
1477 return mapcount + swapcount;
1478 }
1479
1480 page = compound_head(page);
1481
1482 _total_mapcount = _total_swapcount = map_swapcount = 0;
1483 if (PageSwapCache(page)) {
1484 swp_entry_t entry;
1485
1486 entry.val = page_private(page);
1487 si = _swap_info_get(entry);
1488 if (si) {
1489 map = si->swap_map;
1490 offset = swp_offset(entry);
1491 }
1492 }
1493 if (map)
1494 ci = lock_cluster(si, offset);
1495 for (i = 0; i < HPAGE_PMD_NR; i++) {
1496 mapcount = atomic_read(&page[i]._mapcount) + 1;
1497 _total_mapcount += mapcount;
1498 if (map) {
1499 swapcount = swap_count(map[offset + i]);
1500 _total_swapcount += swapcount;
1501 }
1502 map_swapcount = max(map_swapcount, mapcount + swapcount);
1503 }
1504 unlock_cluster(ci);
1505 if (PageDoubleMap(page)) {
1506 map_swapcount -= 1;
1507 _total_mapcount -= HPAGE_PMD_NR;
1508 }
1509 mapcount = compound_mapcount(page);
1510 map_swapcount += mapcount;
1511 _total_mapcount += mapcount;
1512 if (total_mapcount)
1513 *total_mapcount = _total_mapcount;
1514 if (total_swapcount)
1515 *total_swapcount = _total_swapcount;
1516
1517 return map_swapcount;
1518}
e0709829
HY
1519#else
1520#define swap_page_trans_huge_swapped(si, entry) swap_swapcount(si, entry)
1521#define page_swapped(page) (page_swapcount(page) != 0)
ba3c4ce6
HY
1522
1523static int page_trans_huge_map_swapcount(struct page *page, int *total_mapcount,
1524 int *total_swapcount)
1525{
1526 int mapcount, swapcount = 0;
1527
1528 /* hugetlbfs shouldn't call it */
1529 VM_BUG_ON_PAGE(PageHuge(page), page);
1530
1531 mapcount = page_trans_huge_mapcount(page, total_mapcount);
1532 if (PageSwapCache(page))
1533 swapcount = page_swapcount(page);
1534 if (total_swapcount)
1535 *total_swapcount = swapcount;
1536 return mapcount + swapcount;
1537}
e0709829
HY
1538#endif
1539
1da177e4 1540/*
7b1fe597
HD
1541 * We can write to an anon page without COW if there are no other references
1542 * to it. And as a side-effect, free up its swap: because the old content
1543 * on disk will never be read, and seeking back there to write new content
1544 * later would only waste time away from clustering.
6d0a07ed 1545 *
ba3c4ce6 1546 * NOTE: total_map_swapcount should not be relied upon by the caller if
6d0a07ed
AA
1547 * reuse_swap_page() returns false, but it may be always overwritten
1548 * (see the other implementation for CONFIG_SWAP=n).
1da177e4 1549 */
ba3c4ce6 1550bool reuse_swap_page(struct page *page, int *total_map_swapcount)
1da177e4 1551{
ba3c4ce6 1552 int count, total_mapcount, total_swapcount;
c475a8ab 1553
309381fe 1554 VM_BUG_ON_PAGE(!PageLocked(page), page);
5ad64688 1555 if (unlikely(PageKsm(page)))
6d0a07ed 1556 return false;
ba3c4ce6
HY
1557 count = page_trans_huge_map_swapcount(page, &total_mapcount,
1558 &total_swapcount);
1559 if (total_map_swapcount)
1560 *total_map_swapcount = total_mapcount + total_swapcount;
1561 if (count == 1 && PageSwapCache(page) &&
1562 (likely(!PageTransCompound(page)) ||
1563 /* The remaining swap count will be freed soon */
1564 total_swapcount == page_swapcount(page))) {
f0571429 1565 if (!PageWriteback(page)) {
ba3c4ce6 1566 page = compound_head(page);
7b1fe597
HD
1567 delete_from_swap_cache(page);
1568 SetPageDirty(page);
f0571429
MK
1569 } else {
1570 swp_entry_t entry;
1571 struct swap_info_struct *p;
1572
1573 entry.val = page_private(page);
1574 p = swap_info_get(entry);
1575 if (p->flags & SWP_STABLE_WRITES) {
1576 spin_unlock(&p->lock);
1577 return false;
1578 }
1579 spin_unlock(&p->lock);
7b1fe597
HD
1580 }
1581 }
ba3c4ce6 1582
5ad64688 1583 return count <= 1;
1da177e4
LT
1584}
1585
1586/*
a2c43eed
HD
1587 * If swap is getting full, or if there are no more mappings of this page,
1588 * then try_to_free_swap is called to free its swap space.
1da177e4 1589 */
a2c43eed 1590int try_to_free_swap(struct page *page)
1da177e4 1591{
309381fe 1592 VM_BUG_ON_PAGE(!PageLocked(page), page);
1da177e4
LT
1593
1594 if (!PageSwapCache(page))
1595 return 0;
1596 if (PageWriteback(page))
1597 return 0;
e0709829 1598 if (page_swapped(page))
1da177e4
LT
1599 return 0;
1600
b73d7fce
HD
1601 /*
1602 * Once hibernation has begun to create its image of memory,
1603 * there's a danger that one of the calls to try_to_free_swap()
1604 * - most probably a call from __try_to_reclaim_swap() while
1605 * hibernation is allocating its own swap pages for the image,
1606 * but conceivably even a call from memory reclaim - will free
1607 * the swap from a page which has already been recorded in the
1608 * image as a clean swapcache page, and then reuse its swap for
1609 * another page of the image. On waking from hibernation, the
1610 * original page might be freed under memory pressure, then
1611 * later read back in from swap, now with the wrong data.
1612 *
2de1a7e4 1613 * Hibernation suspends storage while it is writing the image
f90ac398 1614 * to disk so check that here.
b73d7fce 1615 */
f90ac398 1616 if (pm_suspended_storage())
b73d7fce
HD
1617 return 0;
1618
e0709829 1619 page = compound_head(page);
a2c43eed
HD
1620 delete_from_swap_cache(page);
1621 SetPageDirty(page);
1622 return 1;
68a22394
RR
1623}
1624
1da177e4
LT
1625/*
1626 * Free the swap entry like above, but also try to
1627 * free the page cache entry if it is the last user.
1628 */
2509ef26 1629int free_swap_and_cache(swp_entry_t entry)
1da177e4 1630{
2509ef26 1631 struct swap_info_struct *p;
1da177e4 1632 struct page *page = NULL;
7c00bafe 1633 unsigned char count;
1da177e4 1634
a7420aa5 1635 if (non_swap_entry(entry))
2509ef26 1636 return 1;
0697212a 1637
7c00bafe 1638 p = _swap_info_get(entry);
1da177e4 1639 if (p) {
7c00bafe 1640 count = __swap_entry_free(p, entry, 1);
e0709829
HY
1641 if (count == SWAP_HAS_CACHE &&
1642 !swap_page_trans_huge_swapped(p, entry)) {
33806f06 1643 page = find_get_page(swap_address_space(entry),
f6ab1f7f 1644 swp_offset(entry));
8413ac9d 1645 if (page && !trylock_page(page)) {
09cbfeaf 1646 put_page(page);
93fac704
NP
1647 page = NULL;
1648 }
7c00bafe 1649 } else if (!count)
67afa38e 1650 free_swap_slot(entry);
1da177e4
LT
1651 }
1652 if (page) {
a2c43eed
HD
1653 /*
1654 * Not mapped elsewhere, or swap space full? Free it!
1655 * Also recheck PageSwapCache now page is locked (above).
1656 */
93fac704 1657 if (PageSwapCache(page) && !PageWriteback(page) &&
322b8afe 1658 (!page_mapped(page) || mem_cgroup_swap_full(page)) &&
e0709829
HY
1659 !swap_page_trans_huge_swapped(p, entry)) {
1660 page = compound_head(page);
1da177e4
LT
1661 delete_from_swap_cache(page);
1662 SetPageDirty(page);
1663 }
1664 unlock_page(page);
09cbfeaf 1665 put_page(page);
1da177e4 1666 }
2509ef26 1667 return p != NULL;
1da177e4
LT
1668}
1669
b0cb1a19 1670#ifdef CONFIG_HIBERNATION
f577eb30 1671/*
915bae9e 1672 * Find the swap type that corresponds to given device (if any).
f577eb30 1673 *
915bae9e
RW
1674 * @offset - number of the PAGE_SIZE-sized block of the device, starting
1675 * from 0, in which the swap header is expected to be located.
1676 *
1677 * This is needed for the suspend to disk (aka swsusp).
f577eb30 1678 */
7bf23687 1679int swap_type_of(dev_t device, sector_t offset, struct block_device **bdev_p)
f577eb30 1680{
915bae9e 1681 struct block_device *bdev = NULL;
efa90a98 1682 int type;
f577eb30 1683
915bae9e
RW
1684 if (device)
1685 bdev = bdget(device);
1686
f577eb30 1687 spin_lock(&swap_lock);
efa90a98
HD
1688 for (type = 0; type < nr_swapfiles; type++) {
1689 struct swap_info_struct *sis = swap_info[type];
f577eb30 1690
915bae9e 1691 if (!(sis->flags & SWP_WRITEOK))
f577eb30 1692 continue;
b6b5bce3 1693
915bae9e 1694 if (!bdev) {
7bf23687 1695 if (bdev_p)
dddac6a7 1696 *bdev_p = bdgrab(sis->bdev);
7bf23687 1697
6e1819d6 1698 spin_unlock(&swap_lock);
efa90a98 1699 return type;
6e1819d6 1700 }
915bae9e 1701 if (bdev == sis->bdev) {
9625a5f2 1702 struct swap_extent *se = &sis->first_swap_extent;
915bae9e 1703
915bae9e 1704 if (se->start_block == offset) {
7bf23687 1705 if (bdev_p)
dddac6a7 1706 *bdev_p = bdgrab(sis->bdev);
7bf23687 1707
915bae9e
RW
1708 spin_unlock(&swap_lock);
1709 bdput(bdev);
efa90a98 1710 return type;
915bae9e 1711 }
f577eb30
RW
1712 }
1713 }
1714 spin_unlock(&swap_lock);
915bae9e
RW
1715 if (bdev)
1716 bdput(bdev);
1717
f577eb30
RW
1718 return -ENODEV;
1719}
1720
73c34b6a
HD
1721/*
1722 * Get the (PAGE_SIZE) block corresponding to given offset on the swapdev
1723 * corresponding to given index in swap_info (swap type).
1724 */
1725sector_t swapdev_block(int type, pgoff_t offset)
1726{
1727 struct block_device *bdev;
1728
1729 if ((unsigned int)type >= nr_swapfiles)
1730 return 0;
1731 if (!(swap_info[type]->flags & SWP_WRITEOK))
1732 return 0;
d4906e1a 1733 return map_swap_entry(swp_entry(type, offset), &bdev);
73c34b6a
HD
1734}
1735
f577eb30
RW
1736/*
1737 * Return either the total number of swap pages of given type, or the number
1738 * of free pages of that type (depending on @free)
1739 *
1740 * This is needed for software suspend
1741 */
1742unsigned int count_swap_pages(int type, int free)
1743{
1744 unsigned int n = 0;
1745
efa90a98
HD
1746 spin_lock(&swap_lock);
1747 if ((unsigned int)type < nr_swapfiles) {
1748 struct swap_info_struct *sis = swap_info[type];
1749
ec8acf20 1750 spin_lock(&sis->lock);
efa90a98
HD
1751 if (sis->flags & SWP_WRITEOK) {
1752 n = sis->pages;
f577eb30 1753 if (free)
efa90a98 1754 n -= sis->inuse_pages;
f577eb30 1755 }
ec8acf20 1756 spin_unlock(&sis->lock);
f577eb30 1757 }
efa90a98 1758 spin_unlock(&swap_lock);
f577eb30
RW
1759 return n;
1760}
73c34b6a 1761#endif /* CONFIG_HIBERNATION */
f577eb30 1762
9f8bdb3f 1763static inline int pte_same_as_swp(pte_t pte, pte_t swp_pte)
179ef71c 1764{
9f8bdb3f 1765 return pte_same(pte_swp_clear_soft_dirty(pte), swp_pte);
179ef71c
CG
1766}
1767
1da177e4 1768/*
72866f6f
HD
1769 * No need to decide whether this PTE shares the swap entry with others,
1770 * just let do_wp_page work it out if a write is requested later - to
1771 * force COW, vm_page_prot omits write permission from any private vma.
1da177e4 1772 */
044d66c1 1773static int unuse_pte(struct vm_area_struct *vma, pmd_t *pmd,
1da177e4
LT
1774 unsigned long addr, swp_entry_t entry, struct page *page)
1775{
9e16b7fb 1776 struct page *swapcache;
72835c86 1777 struct mem_cgroup *memcg;
044d66c1
HD
1778 spinlock_t *ptl;
1779 pte_t *pte;
1780 int ret = 1;
1781
9e16b7fb
HD
1782 swapcache = page;
1783 page = ksm_might_need_to_copy(page, vma, addr);
1784 if (unlikely(!page))
1785 return -ENOMEM;
1786
f627c2f5
KS
1787 if (mem_cgroup_try_charge(page, vma->vm_mm, GFP_KERNEL,
1788 &memcg, false)) {
044d66c1 1789 ret = -ENOMEM;
85d9fc89
KH
1790 goto out_nolock;
1791 }
044d66c1
HD
1792
1793 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
9f8bdb3f 1794 if (unlikely(!pte_same_as_swp(*pte, swp_entry_to_pte(entry)))) {
f627c2f5 1795 mem_cgroup_cancel_charge(page, memcg, false);
044d66c1
HD
1796 ret = 0;
1797 goto out;
1798 }
8a9f3ccd 1799
b084d435 1800 dec_mm_counter(vma->vm_mm, MM_SWAPENTS);
d559db08 1801 inc_mm_counter(vma->vm_mm, MM_ANONPAGES);
1da177e4
LT
1802 get_page(page);
1803 set_pte_at(vma->vm_mm, addr, pte,
1804 pte_mkold(mk_pte(page, vma->vm_page_prot)));
00501b53 1805 if (page == swapcache) {
d281ee61 1806 page_add_anon_rmap(page, vma, addr, false);
f627c2f5 1807 mem_cgroup_commit_charge(page, memcg, true, false);
00501b53 1808 } else { /* ksm created a completely new copy */
d281ee61 1809 page_add_new_anon_rmap(page, vma, addr, false);
f627c2f5 1810 mem_cgroup_commit_charge(page, memcg, false, false);
00501b53
JW
1811 lru_cache_add_active_or_unevictable(page, vma);
1812 }
1da177e4
LT
1813 swap_free(entry);
1814 /*
1815 * Move the page to the active list so it is not
1816 * immediately swapped out again after swapon.
1817 */
1818 activate_page(page);
044d66c1
HD
1819out:
1820 pte_unmap_unlock(pte, ptl);
85d9fc89 1821out_nolock:
9e16b7fb
HD
1822 if (page != swapcache) {
1823 unlock_page(page);
1824 put_page(page);
1825 }
044d66c1 1826 return ret;
1da177e4
LT
1827}
1828
1829static int unuse_pte_range(struct vm_area_struct *vma, pmd_t *pmd,
1830 unsigned long addr, unsigned long end,
1831 swp_entry_t entry, struct page *page)
1832{
1da177e4 1833 pte_t swp_pte = swp_entry_to_pte(entry);
705e87c0 1834 pte_t *pte;
8a9f3ccd 1835 int ret = 0;
1da177e4 1836
044d66c1
HD
1837 /*
1838 * We don't actually need pte lock while scanning for swp_pte: since
1839 * we hold page lock and mmap_sem, swp_pte cannot be inserted into the
1840 * page table while we're scanning; though it could get zapped, and on
1841 * some architectures (e.g. x86_32 with PAE) we might catch a glimpse
1842 * of unmatched parts which look like swp_pte, so unuse_pte must
1843 * recheck under pte lock. Scanning without pte lock lets it be
2de1a7e4 1844 * preemptable whenever CONFIG_PREEMPT but not CONFIG_HIGHPTE.
044d66c1
HD
1845 */
1846 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1847 do {
1848 /*
1849 * swapoff spends a _lot_ of time in this loop!
1850 * Test inline before going to call unuse_pte.
1851 */
9f8bdb3f 1852 if (unlikely(pte_same_as_swp(*pte, swp_pte))) {
044d66c1
HD
1853 pte_unmap(pte);
1854 ret = unuse_pte(vma, pmd, addr, entry, page);
1855 if (ret)
1856 goto out;
1857 pte = pte_offset_map(pmd, addr);
1da177e4
LT
1858 }
1859 } while (pte++, addr += PAGE_SIZE, addr != end);
044d66c1
HD
1860 pte_unmap(pte - 1);
1861out:
8a9f3ccd 1862 return ret;
1da177e4
LT
1863}
1864
1865static inline int unuse_pmd_range(struct vm_area_struct *vma, pud_t *pud,
1866 unsigned long addr, unsigned long end,
1867 swp_entry_t entry, struct page *page)
1868{
1869 pmd_t *pmd;
1870 unsigned long next;
8a9f3ccd 1871 int ret;
1da177e4
LT
1872
1873 pmd = pmd_offset(pud, addr);
1874 do {
dc644a07 1875 cond_resched();
1da177e4 1876 next = pmd_addr_end(addr, end);
1a5a9906 1877 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1da177e4 1878 continue;
8a9f3ccd
BS
1879 ret = unuse_pte_range(vma, pmd, addr, next, entry, page);
1880 if (ret)
1881 return ret;
1da177e4
LT
1882 } while (pmd++, addr = next, addr != end);
1883 return 0;
1884}
1885
c2febafc 1886static inline int unuse_pud_range(struct vm_area_struct *vma, p4d_t *p4d,
1da177e4
LT
1887 unsigned long addr, unsigned long end,
1888 swp_entry_t entry, struct page *page)
1889{
1890 pud_t *pud;
1891 unsigned long next;
8a9f3ccd 1892 int ret;
1da177e4 1893
c2febafc 1894 pud = pud_offset(p4d, addr);
1da177e4
LT
1895 do {
1896 next = pud_addr_end(addr, end);
1897 if (pud_none_or_clear_bad(pud))
1898 continue;
8a9f3ccd
BS
1899 ret = unuse_pmd_range(vma, pud, addr, next, entry, page);
1900 if (ret)
1901 return ret;
1da177e4
LT
1902 } while (pud++, addr = next, addr != end);
1903 return 0;
1904}
1905
c2febafc
KS
1906static inline int unuse_p4d_range(struct vm_area_struct *vma, pgd_t *pgd,
1907 unsigned long addr, unsigned long end,
1908 swp_entry_t entry, struct page *page)
1909{
1910 p4d_t *p4d;
1911 unsigned long next;
1912 int ret;
1913
1914 p4d = p4d_offset(pgd, addr);
1915 do {
1916 next = p4d_addr_end(addr, end);
1917 if (p4d_none_or_clear_bad(p4d))
1918 continue;
1919 ret = unuse_pud_range(vma, p4d, addr, next, entry, page);
1920 if (ret)
1921 return ret;
1922 } while (p4d++, addr = next, addr != end);
1923 return 0;
1924}
1925
1da177e4
LT
1926static int unuse_vma(struct vm_area_struct *vma,
1927 swp_entry_t entry, struct page *page)
1928{
1929 pgd_t *pgd;
1930 unsigned long addr, end, next;
8a9f3ccd 1931 int ret;
1da177e4 1932
3ca7b3c5 1933 if (page_anon_vma(page)) {
1da177e4
LT
1934 addr = page_address_in_vma(page, vma);
1935 if (addr == -EFAULT)
1936 return 0;
1937 else
1938 end = addr + PAGE_SIZE;
1939 } else {
1940 addr = vma->vm_start;
1941 end = vma->vm_end;
1942 }
1943
1944 pgd = pgd_offset(vma->vm_mm, addr);
1945 do {
1946 next = pgd_addr_end(addr, end);
1947 if (pgd_none_or_clear_bad(pgd))
1948 continue;
c2febafc 1949 ret = unuse_p4d_range(vma, pgd, addr, next, entry, page);
8a9f3ccd
BS
1950 if (ret)
1951 return ret;
1da177e4
LT
1952 } while (pgd++, addr = next, addr != end);
1953 return 0;
1954}
1955
1956static int unuse_mm(struct mm_struct *mm,
1957 swp_entry_t entry, struct page *page)
1958{
1959 struct vm_area_struct *vma;
8a9f3ccd 1960 int ret = 0;
1da177e4
LT
1961
1962 if (!down_read_trylock(&mm->mmap_sem)) {
1963 /*
7d03431c
FLVC
1964 * Activate page so shrink_inactive_list is unlikely to unmap
1965 * its ptes while lock is dropped, so swapoff can make progress.
1da177e4 1966 */
c475a8ab 1967 activate_page(page);
1da177e4
LT
1968 unlock_page(page);
1969 down_read(&mm->mmap_sem);
1970 lock_page(page);
1971 }
1da177e4 1972 for (vma = mm->mmap; vma; vma = vma->vm_next) {
8a9f3ccd 1973 if (vma->anon_vma && (ret = unuse_vma(vma, entry, page)))
1da177e4 1974 break;
dc644a07 1975 cond_resched();
1da177e4 1976 }
1da177e4 1977 up_read(&mm->mmap_sem);
8a9f3ccd 1978 return (ret < 0)? ret: 0;
1da177e4
LT
1979}
1980
1981/*
38b5faf4
DM
1982 * Scan swap_map (or frontswap_map if frontswap parameter is true)
1983 * from current position to next entry still in use.
1da177e4
LT
1984 * Recycle to start on reaching the end, returning 0 when empty.
1985 */
6eb396dc 1986static unsigned int find_next_to_unuse(struct swap_info_struct *si,
38b5faf4 1987 unsigned int prev, bool frontswap)
1da177e4 1988{
6eb396dc
HD
1989 unsigned int max = si->max;
1990 unsigned int i = prev;
8d69aaee 1991 unsigned char count;
1da177e4
LT
1992
1993 /*
5d337b91 1994 * No need for swap_lock here: we're just looking
1da177e4
LT
1995 * for whether an entry is in use, not modifying it; false
1996 * hits are okay, and sys_swapoff() has already prevented new
5d337b91 1997 * allocations from this area (while holding swap_lock).
1da177e4
LT
1998 */
1999 for (;;) {
2000 if (++i >= max) {
2001 if (!prev) {
2002 i = 0;
2003 break;
2004 }
2005 /*
2006 * No entries in use at top of swap_map,
2007 * loop back to start and recheck there.
2008 */
2009 max = prev + 1;
2010 prev = 0;
2011 i = 1;
2012 }
4db0c3c2 2013 count = READ_ONCE(si->swap_map[i]);
355cfa73 2014 if (count && swap_count(count) != SWAP_MAP_BAD)
dc644a07
HD
2015 if (!frontswap || frontswap_test(si, i))
2016 break;
2017 if ((i % LATENCY_LIMIT) == 0)
2018 cond_resched();
1da177e4
LT
2019 }
2020 return i;
2021}
2022
2023/*
2024 * We completely avoid races by reading each swap page in advance,
2025 * and then search for the process using it. All the necessary
2026 * page table adjustments can then be made atomically.
38b5faf4
DM
2027 *
2028 * if the boolean frontswap is true, only unuse pages_to_unuse pages;
2029 * pages_to_unuse==0 means all pages; ignored if frontswap is false
1da177e4 2030 */
38b5faf4
DM
2031int try_to_unuse(unsigned int type, bool frontswap,
2032 unsigned long pages_to_unuse)
1da177e4 2033{
efa90a98 2034 struct swap_info_struct *si = swap_info[type];
1da177e4 2035 struct mm_struct *start_mm;
edfe23da
SL
2036 volatile unsigned char *swap_map; /* swap_map is accessed without
2037 * locking. Mark it as volatile
2038 * to prevent compiler doing
2039 * something odd.
2040 */
8d69aaee 2041 unsigned char swcount;
1da177e4
LT
2042 struct page *page;
2043 swp_entry_t entry;
6eb396dc 2044 unsigned int i = 0;
1da177e4 2045 int retval = 0;
1da177e4
LT
2046
2047 /*
2048 * When searching mms for an entry, a good strategy is to
2049 * start at the first mm we freed the previous entry from
2050 * (though actually we don't notice whether we or coincidence
2051 * freed the entry). Initialize this start_mm with a hold.
2052 *
2053 * A simpler strategy would be to start at the last mm we
2054 * freed the previous entry from; but that would take less
2055 * advantage of mmlist ordering, which clusters forked mms
2056 * together, child after parent. If we race with dup_mmap(), we
2057 * prefer to resolve parent before child, lest we miss entries
2058 * duplicated after we scanned child: using last mm would invert
570a335b 2059 * that.
1da177e4
LT
2060 */
2061 start_mm = &init_mm;
3fce371b 2062 mmget(&init_mm);
1da177e4
LT
2063
2064 /*
2065 * Keep on scanning until all entries have gone. Usually,
2066 * one pass through swap_map is enough, but not necessarily:
2067 * there are races when an instance of an entry might be missed.
2068 */
38b5faf4 2069 while ((i = find_next_to_unuse(si, i, frontswap)) != 0) {
1da177e4
LT
2070 if (signal_pending(current)) {
2071 retval = -EINTR;
2072 break;
2073 }
2074
886bb7e9 2075 /*
1da177e4
LT
2076 * Get a page for the entry, using the existing swap
2077 * cache page if there is one. Otherwise, get a clean
886bb7e9 2078 * page and read the swap into it.
1da177e4
LT
2079 */
2080 swap_map = &si->swap_map[i];
2081 entry = swp_entry(type, i);
02098fea 2082 page = read_swap_cache_async(entry,
23955622 2083 GFP_HIGHUSER_MOVABLE, NULL, 0, false);
1da177e4
LT
2084 if (!page) {
2085 /*
2086 * Either swap_duplicate() failed because entry
2087 * has been freed independently, and will not be
2088 * reused since sys_swapoff() already disabled
2089 * allocation from here, or alloc_page() failed.
2090 */
edfe23da
SL
2091 swcount = *swap_map;
2092 /*
2093 * We don't hold lock here, so the swap entry could be
2094 * SWAP_MAP_BAD (when the cluster is discarding).
2095 * Instead of fail out, We can just skip the swap
2096 * entry because swapoff will wait for discarding
2097 * finish anyway.
2098 */
2099 if (!swcount || swcount == SWAP_MAP_BAD)
1da177e4
LT
2100 continue;
2101 retval = -ENOMEM;
2102 break;
2103 }
2104
2105 /*
2106 * Don't hold on to start_mm if it looks like exiting.
2107 */
2108 if (atomic_read(&start_mm->mm_users) == 1) {
2109 mmput(start_mm);
2110 start_mm = &init_mm;
3fce371b 2111 mmget(&init_mm);
1da177e4
LT
2112 }
2113
2114 /*
2115 * Wait for and lock page. When do_swap_page races with
2116 * try_to_unuse, do_swap_page can handle the fault much
2117 * faster than try_to_unuse can locate the entry. This
2118 * apparently redundant "wait_on_page_locked" lets try_to_unuse
2119 * defer to do_swap_page in such a case - in some tests,
2120 * do_swap_page and try_to_unuse repeatedly compete.
2121 */
2122 wait_on_page_locked(page);
2123 wait_on_page_writeback(page);
2124 lock_page(page);
2125 wait_on_page_writeback(page);
2126
2127 /*
2128 * Remove all references to entry.
1da177e4 2129 */
1da177e4 2130 swcount = *swap_map;
aaa46865
HD
2131 if (swap_count(swcount) == SWAP_MAP_SHMEM) {
2132 retval = shmem_unuse(entry, page);
2133 /* page has already been unlocked and released */
2134 if (retval < 0)
2135 break;
2136 continue;
1da177e4 2137 }
aaa46865
HD
2138 if (swap_count(swcount) && start_mm != &init_mm)
2139 retval = unuse_mm(start_mm, entry, page);
2140
355cfa73 2141 if (swap_count(*swap_map)) {
1da177e4
LT
2142 int set_start_mm = (*swap_map >= swcount);
2143 struct list_head *p = &start_mm->mmlist;
2144 struct mm_struct *new_start_mm = start_mm;
2145 struct mm_struct *prev_mm = start_mm;
2146 struct mm_struct *mm;
2147
3fce371b
VN
2148 mmget(new_start_mm);
2149 mmget(prev_mm);
1da177e4 2150 spin_lock(&mmlist_lock);
aaa46865 2151 while (swap_count(*swap_map) && !retval &&
1da177e4
LT
2152 (p = p->next) != &start_mm->mmlist) {
2153 mm = list_entry(p, struct mm_struct, mmlist);
388f7934 2154 if (!mmget_not_zero(mm))
1da177e4 2155 continue;
1da177e4
LT
2156 spin_unlock(&mmlist_lock);
2157 mmput(prev_mm);
2158 prev_mm = mm;
2159
2160 cond_resched();
2161
2162 swcount = *swap_map;
355cfa73 2163 if (!swap_count(swcount)) /* any usage ? */
1da177e4 2164 ;
aaa46865 2165 else if (mm == &init_mm)
1da177e4 2166 set_start_mm = 1;
aaa46865 2167 else
1da177e4 2168 retval = unuse_mm(mm, entry, page);
355cfa73 2169
32c5fc10 2170 if (set_start_mm && *swap_map < swcount) {
1da177e4 2171 mmput(new_start_mm);
3fce371b 2172 mmget(mm);
1da177e4
LT
2173 new_start_mm = mm;
2174 set_start_mm = 0;
2175 }
2176 spin_lock(&mmlist_lock);
2177 }
2178 spin_unlock(&mmlist_lock);
2179 mmput(prev_mm);
2180 mmput(start_mm);
2181 start_mm = new_start_mm;
2182 }
2183 if (retval) {
2184 unlock_page(page);
09cbfeaf 2185 put_page(page);
1da177e4
LT
2186 break;
2187 }
2188
1da177e4
LT
2189 /*
2190 * If a reference remains (rare), we would like to leave
2191 * the page in the swap cache; but try_to_unmap could
2192 * then re-duplicate the entry once we drop page lock,
2193 * so we might loop indefinitely; also, that page could
2194 * not be swapped out to other storage meanwhile. So:
2195 * delete from cache even if there's another reference,
2196 * after ensuring that the data has been saved to disk -
2197 * since if the reference remains (rarer), it will be
2198 * read from disk into another page. Splitting into two
2199 * pages would be incorrect if swap supported "shared
2200 * private" pages, but they are handled by tmpfs files.
5ad64688
HD
2201 *
2202 * Given how unuse_vma() targets one particular offset
2203 * in an anon_vma, once the anon_vma has been determined,
2204 * this splitting happens to be just what is needed to
2205 * handle where KSM pages have been swapped out: re-reading
2206 * is unnecessarily slow, but we can fix that later on.
1da177e4 2207 */
355cfa73
KH
2208 if (swap_count(*swap_map) &&
2209 PageDirty(page) && PageSwapCache(page)) {
1da177e4
LT
2210 struct writeback_control wbc = {
2211 .sync_mode = WB_SYNC_NONE,
2212 };
2213
e0709829 2214 swap_writepage(compound_head(page), &wbc);
1da177e4
LT
2215 lock_page(page);
2216 wait_on_page_writeback(page);
2217 }
68bdc8d6
HD
2218
2219 /*
2220 * It is conceivable that a racing task removed this page from
2221 * swap cache just before we acquired the page lock at the top,
2222 * or while we dropped it in unuse_mm(). The page might even
2223 * be back in swap cache on another swap area: that we must not
2224 * delete, since it may not have been written out to swap yet.
2225 */
2226 if (PageSwapCache(page) &&
e0709829
HY
2227 likely(page_private(page) == entry.val) &&
2228 !page_swapped(page))
2229 delete_from_swap_cache(compound_head(page));
1da177e4
LT
2230
2231 /*
2232 * So we could skip searching mms once swap count went
2233 * to 1, we did not mark any present ptes as dirty: must
2706a1b8 2234 * mark page dirty so shrink_page_list will preserve it.
1da177e4
LT
2235 */
2236 SetPageDirty(page);
2237 unlock_page(page);
09cbfeaf 2238 put_page(page);
1da177e4
LT
2239
2240 /*
2241 * Make sure that we aren't completely killing
2242 * interactive performance.
2243 */
2244 cond_resched();
38b5faf4
DM
2245 if (frontswap && pages_to_unuse > 0) {
2246 if (!--pages_to_unuse)
2247 break;
2248 }
1da177e4
LT
2249 }
2250
2251 mmput(start_mm);
1da177e4
LT
2252 return retval;
2253}
2254
2255/*
5d337b91
HD
2256 * After a successful try_to_unuse, if no swap is now in use, we know
2257 * we can empty the mmlist. swap_lock must be held on entry and exit.
2258 * Note that mmlist_lock nests inside swap_lock, and an mm must be
1da177e4
LT
2259 * added to the mmlist just after page_duplicate - before would be racy.
2260 */
2261static void drain_mmlist(void)
2262{
2263 struct list_head *p, *next;
efa90a98 2264 unsigned int type;
1da177e4 2265
efa90a98
HD
2266 for (type = 0; type < nr_swapfiles; type++)
2267 if (swap_info[type]->inuse_pages)
1da177e4
LT
2268 return;
2269 spin_lock(&mmlist_lock);
2270 list_for_each_safe(p, next, &init_mm.mmlist)
2271 list_del_init(p);
2272 spin_unlock(&mmlist_lock);
2273}
2274
2275/*
2276 * Use this swapdev's extent info to locate the (PAGE_SIZE) block which
d4906e1a
LS
2277 * corresponds to page offset for the specified swap entry.
2278 * Note that the type of this function is sector_t, but it returns page offset
2279 * into the bdev, not sector offset.
1da177e4 2280 */
d4906e1a 2281static sector_t map_swap_entry(swp_entry_t entry, struct block_device **bdev)
1da177e4 2282{
f29ad6a9
HD
2283 struct swap_info_struct *sis;
2284 struct swap_extent *start_se;
2285 struct swap_extent *se;
2286 pgoff_t offset;
2287
efa90a98 2288 sis = swap_info[swp_type(entry)];
f29ad6a9
HD
2289 *bdev = sis->bdev;
2290
2291 offset = swp_offset(entry);
2292 start_se = sis->curr_swap_extent;
2293 se = start_se;
1da177e4
LT
2294
2295 for ( ; ; ) {
1da177e4
LT
2296 if (se->start_page <= offset &&
2297 offset < (se->start_page + se->nr_pages)) {
2298 return se->start_block + (offset - se->start_page);
2299 }
a8ae4991 2300 se = list_next_entry(se, list);
1da177e4
LT
2301 sis->curr_swap_extent = se;
2302 BUG_ON(se == start_se); /* It *must* be present */
2303 }
2304}
2305
d4906e1a
LS
2306/*
2307 * Returns the page offset into bdev for the specified page's swap entry.
2308 */
2309sector_t map_swap_page(struct page *page, struct block_device **bdev)
2310{
2311 swp_entry_t entry;
2312 entry.val = page_private(page);
2313 return map_swap_entry(entry, bdev);
2314}
2315
1da177e4
LT
2316/*
2317 * Free all of a swapdev's extent information
2318 */
2319static void destroy_swap_extents(struct swap_info_struct *sis)
2320{
9625a5f2 2321 while (!list_empty(&sis->first_swap_extent.list)) {
1da177e4
LT
2322 struct swap_extent *se;
2323
a8ae4991 2324 se = list_first_entry(&sis->first_swap_extent.list,
1da177e4
LT
2325 struct swap_extent, list);
2326 list_del(&se->list);
2327 kfree(se);
2328 }
62c230bc
MG
2329
2330 if (sis->flags & SWP_FILE) {
2331 struct file *swap_file = sis->swap_file;
2332 struct address_space *mapping = swap_file->f_mapping;
2333
2334 sis->flags &= ~SWP_FILE;
2335 mapping->a_ops->swap_deactivate(swap_file);
2336 }
1da177e4
LT
2337}
2338
2339/*
2340 * Add a block range (and the corresponding page range) into this swapdev's
11d31886 2341 * extent list. The extent list is kept sorted in page order.
1da177e4 2342 *
11d31886 2343 * This function rather assumes that it is called in ascending page order.
1da177e4 2344 */
a509bc1a 2345int
1da177e4
LT
2346add_swap_extent(struct swap_info_struct *sis, unsigned long start_page,
2347 unsigned long nr_pages, sector_t start_block)
2348{
2349 struct swap_extent *se;
2350 struct swap_extent *new_se;
2351 struct list_head *lh;
2352
9625a5f2
HD
2353 if (start_page == 0) {
2354 se = &sis->first_swap_extent;
2355 sis->curr_swap_extent = se;
2356 se->start_page = 0;
2357 se->nr_pages = nr_pages;
2358 se->start_block = start_block;
2359 return 1;
2360 } else {
2361 lh = sis->first_swap_extent.list.prev; /* Highest extent */
1da177e4 2362 se = list_entry(lh, struct swap_extent, list);
11d31886
HD
2363 BUG_ON(se->start_page + se->nr_pages != start_page);
2364 if (se->start_block + se->nr_pages == start_block) {
1da177e4
LT
2365 /* Merge it */
2366 se->nr_pages += nr_pages;
2367 return 0;
2368 }
1da177e4
LT
2369 }
2370
2371 /*
2372 * No merge. Insert a new extent, preserving ordering.
2373 */
2374 new_se = kmalloc(sizeof(*se), GFP_KERNEL);
2375 if (new_se == NULL)
2376 return -ENOMEM;
2377 new_se->start_page = start_page;
2378 new_se->nr_pages = nr_pages;
2379 new_se->start_block = start_block;
2380
9625a5f2 2381 list_add_tail(&new_se->list, &sis->first_swap_extent.list);
53092a74 2382 return 1;
1da177e4
LT
2383}
2384
2385/*
2386 * A `swap extent' is a simple thing which maps a contiguous range of pages
2387 * onto a contiguous range of disk blocks. An ordered list of swap extents
2388 * is built at swapon time and is then used at swap_writepage/swap_readpage
2389 * time for locating where on disk a page belongs.
2390 *
2391 * If the swapfile is an S_ISBLK block device, a single extent is installed.
2392 * This is done so that the main operating code can treat S_ISBLK and S_ISREG
2393 * swap files identically.
2394 *
2395 * Whether the swapdev is an S_ISREG file or an S_ISBLK blockdev, the swap
2396 * extent list operates in PAGE_SIZE disk blocks. Both S_ISREG and S_ISBLK
2397 * swapfiles are handled *identically* after swapon time.
2398 *
2399 * For S_ISREG swapfiles, setup_swap_extents() will walk all the file's blocks
2400 * and will parse them into an ordered extent list, in PAGE_SIZE chunks. If
2401 * some stray blocks are found which do not fall within the PAGE_SIZE alignment
2402 * requirements, they are simply tossed out - we will never use those blocks
2403 * for swapping.
2404 *
b0d9bcd4 2405 * For S_ISREG swapfiles we set S_SWAPFILE across the life of the swapon. This
1da177e4
LT
2406 * prevents root from shooting her foot off by ftruncating an in-use swapfile,
2407 * which will scribble on the fs.
2408 *
2409 * The amount of disk space which a single swap extent represents varies.
2410 * Typically it is in the 1-4 megabyte range. So we can have hundreds of
2411 * extents in the list. To avoid much list walking, we cache the previous
2412 * search location in `curr_swap_extent', and start new searches from there.
2413 * This is extremely effective. The average number of iterations in
2414 * map_swap_page() has been measured at about 0.3 per page. - akpm.
2415 */
53092a74 2416static int setup_swap_extents(struct swap_info_struct *sis, sector_t *span)
1da177e4 2417{
62c230bc
MG
2418 struct file *swap_file = sis->swap_file;
2419 struct address_space *mapping = swap_file->f_mapping;
2420 struct inode *inode = mapping->host;
1da177e4
LT
2421 int ret;
2422
1da177e4
LT
2423 if (S_ISBLK(inode->i_mode)) {
2424 ret = add_swap_extent(sis, 0, sis->max, 0);
53092a74 2425 *span = sis->pages;
a509bc1a 2426 return ret;
1da177e4
LT
2427 }
2428
62c230bc 2429 if (mapping->a_ops->swap_activate) {
a509bc1a 2430 ret = mapping->a_ops->swap_activate(sis, swap_file, span);
62c230bc
MG
2431 if (!ret) {
2432 sis->flags |= SWP_FILE;
2433 ret = add_swap_extent(sis, 0, sis->max, 0);
2434 *span = sis->pages;
2435 }
a509bc1a 2436 return ret;
62c230bc
MG
2437 }
2438
a509bc1a 2439 return generic_swapfile_activate(sis, swap_file, span);
1da177e4
LT
2440}
2441
a2468cc9
AL
2442static int swap_node(struct swap_info_struct *p)
2443{
2444 struct block_device *bdev;
2445
2446 if (p->bdev)
2447 bdev = p->bdev;
2448 else
2449 bdev = p->swap_file->f_inode->i_sb->s_bdev;
2450
2451 return bdev ? bdev->bd_disk->node_id : NUMA_NO_NODE;
2452}
2453
cf0cac0a 2454static void _enable_swap_info(struct swap_info_struct *p, int prio,
2a8f9449
SL
2455 unsigned char *swap_map,
2456 struct swap_cluster_info *cluster_info)
40531542 2457{
a2468cc9
AL
2458 int i;
2459
40531542
CEB
2460 if (prio >= 0)
2461 p->prio = prio;
2462 else
2463 p->prio = --least_priority;
18ab4d4c
DS
2464 /*
2465 * the plist prio is negated because plist ordering is
2466 * low-to-high, while swap ordering is high-to-low
2467 */
2468 p->list.prio = -p->prio;
a2468cc9
AL
2469 for_each_node(i) {
2470 if (p->prio >= 0)
2471 p->avail_lists[i].prio = -p->prio;
2472 else {
2473 if (swap_node(p) == i)
2474 p->avail_lists[i].prio = 1;
2475 else
2476 p->avail_lists[i].prio = -p->prio;
2477 }
2478 }
40531542 2479 p->swap_map = swap_map;
2a8f9449 2480 p->cluster_info = cluster_info;
40531542 2481 p->flags |= SWP_WRITEOK;
ec8acf20 2482 atomic_long_add(p->pages, &nr_swap_pages);
40531542
CEB
2483 total_swap_pages += p->pages;
2484
adfab836 2485 assert_spin_locked(&swap_lock);
adfab836 2486 /*
18ab4d4c
DS
2487 * both lists are plists, and thus priority ordered.
2488 * swap_active_head needs to be priority ordered for swapoff(),
2489 * which on removal of any swap_info_struct with an auto-assigned
2490 * (i.e. negative) priority increments the auto-assigned priority
2491 * of any lower-priority swap_info_structs.
2492 * swap_avail_head needs to be priority ordered for get_swap_page(),
2493 * which allocates swap pages from the highest available priority
2494 * swap_info_struct.
adfab836 2495 */
18ab4d4c 2496 plist_add(&p->list, &swap_active_head);
a2468cc9 2497 add_to_avail_list(p);
cf0cac0a
CEB
2498}
2499
2500static void enable_swap_info(struct swap_info_struct *p, int prio,
2501 unsigned char *swap_map,
2a8f9449 2502 struct swap_cluster_info *cluster_info,
cf0cac0a
CEB
2503 unsigned long *frontswap_map)
2504{
4f89849d 2505 frontswap_init(p->type, frontswap_map);
cf0cac0a 2506 spin_lock(&swap_lock);
ec8acf20 2507 spin_lock(&p->lock);
2a8f9449 2508 _enable_swap_info(p, prio, swap_map, cluster_info);
ec8acf20 2509 spin_unlock(&p->lock);
cf0cac0a
CEB
2510 spin_unlock(&swap_lock);
2511}
2512
2513static void reinsert_swap_info(struct swap_info_struct *p)
2514{
2515 spin_lock(&swap_lock);
ec8acf20 2516 spin_lock(&p->lock);
2a8f9449 2517 _enable_swap_info(p, p->prio, p->swap_map, p->cluster_info);
ec8acf20 2518 spin_unlock(&p->lock);
40531542
CEB
2519 spin_unlock(&swap_lock);
2520}
2521
67afa38e
TC
2522bool has_usable_swap(void)
2523{
2524 bool ret = true;
2525
2526 spin_lock(&swap_lock);
2527 if (plist_head_empty(&swap_active_head))
2528 ret = false;
2529 spin_unlock(&swap_lock);
2530 return ret;
2531}
2532
c4ea37c2 2533SYSCALL_DEFINE1(swapoff, const char __user *, specialfile)
1da177e4 2534{
73c34b6a 2535 struct swap_info_struct *p = NULL;
8d69aaee 2536 unsigned char *swap_map;
2a8f9449 2537 struct swap_cluster_info *cluster_info;
4f89849d 2538 unsigned long *frontswap_map;
1da177e4
LT
2539 struct file *swap_file, *victim;
2540 struct address_space *mapping;
2541 struct inode *inode;
91a27b2a 2542 struct filename *pathname;
adfab836 2543 int err, found = 0;
5b808a23 2544 unsigned int old_block_size;
886bb7e9 2545
1da177e4
LT
2546 if (!capable(CAP_SYS_ADMIN))
2547 return -EPERM;
2548
191c5424
AV
2549 BUG_ON(!current->mm);
2550
1da177e4 2551 pathname = getname(specialfile);
1da177e4 2552 if (IS_ERR(pathname))
f58b59c1 2553 return PTR_ERR(pathname);
1da177e4 2554
669abf4e 2555 victim = file_open_name(pathname, O_RDWR|O_LARGEFILE, 0);
1da177e4
LT
2556 err = PTR_ERR(victim);
2557 if (IS_ERR(victim))
2558 goto out;
2559
2560 mapping = victim->f_mapping;
5d337b91 2561 spin_lock(&swap_lock);
18ab4d4c 2562 plist_for_each_entry(p, &swap_active_head, list) {
22c6f8fd 2563 if (p->flags & SWP_WRITEOK) {
adfab836
DS
2564 if (p->swap_file->f_mapping == mapping) {
2565 found = 1;
1da177e4 2566 break;
adfab836 2567 }
1da177e4 2568 }
1da177e4 2569 }
adfab836 2570 if (!found) {
1da177e4 2571 err = -EINVAL;
5d337b91 2572 spin_unlock(&swap_lock);
1da177e4
LT
2573 goto out_dput;
2574 }
191c5424 2575 if (!security_vm_enough_memory_mm(current->mm, p->pages))
1da177e4
LT
2576 vm_unacct_memory(p->pages);
2577 else {
2578 err = -ENOMEM;
5d337b91 2579 spin_unlock(&swap_lock);
1da177e4
LT
2580 goto out_dput;
2581 }
a2468cc9 2582 del_from_avail_list(p);
ec8acf20 2583 spin_lock(&p->lock);
78ecba08 2584 if (p->prio < 0) {
adfab836 2585 struct swap_info_struct *si = p;
a2468cc9 2586 int nid;
adfab836 2587
18ab4d4c 2588 plist_for_each_entry_continue(si, &swap_active_head, list) {
adfab836 2589 si->prio++;
18ab4d4c 2590 si->list.prio--;
a2468cc9
AL
2591 for_each_node(nid) {
2592 if (si->avail_lists[nid].prio != 1)
2593 si->avail_lists[nid].prio--;
2594 }
adfab836 2595 }
78ecba08
HD
2596 least_priority++;
2597 }
18ab4d4c 2598 plist_del(&p->list, &swap_active_head);
ec8acf20 2599 atomic_long_sub(p->pages, &nr_swap_pages);
1da177e4
LT
2600 total_swap_pages -= p->pages;
2601 p->flags &= ~SWP_WRITEOK;
ec8acf20 2602 spin_unlock(&p->lock);
5d337b91 2603 spin_unlock(&swap_lock);
fb4f88dc 2604
039939a6
TC
2605 disable_swap_slots_cache_lock();
2606
e1e12d2f 2607 set_current_oom_origin();
adfab836 2608 err = try_to_unuse(p->type, false, 0); /* force unuse all pages */
e1e12d2f 2609 clear_current_oom_origin();
1da177e4 2610
1da177e4
LT
2611 if (err) {
2612 /* re-insert swap space back into swap_list */
cf0cac0a 2613 reinsert_swap_info(p);
039939a6 2614 reenable_swap_slots_cache_unlock();
1da177e4
LT
2615 goto out_dput;
2616 }
52b7efdb 2617
039939a6
TC
2618 reenable_swap_slots_cache_unlock();
2619
815c2c54
SL
2620 flush_work(&p->discard_work);
2621
5d337b91 2622 destroy_swap_extents(p);
570a335b
HD
2623 if (p->flags & SWP_CONTINUED)
2624 free_swap_count_continuations(p);
2625
81a0298b
HY
2626 if (!p->bdev || !blk_queue_nonrot(bdev_get_queue(p->bdev)))
2627 atomic_dec(&nr_rotate_swap);
2628
fc0abb14 2629 mutex_lock(&swapon_mutex);
5d337b91 2630 spin_lock(&swap_lock);
ec8acf20 2631 spin_lock(&p->lock);
5d337b91
HD
2632 drain_mmlist();
2633
52b7efdb 2634 /* wait for anyone still in scan_swap_map */
52b7efdb
HD
2635 p->highest_bit = 0; /* cuts scans short */
2636 while (p->flags >= SWP_SCANNING) {
ec8acf20 2637 spin_unlock(&p->lock);
5d337b91 2638 spin_unlock(&swap_lock);
13e4b57f 2639 schedule_timeout_uninterruptible(1);
5d337b91 2640 spin_lock(&swap_lock);
ec8acf20 2641 spin_lock(&p->lock);
52b7efdb 2642 }
52b7efdb 2643
1da177e4 2644 swap_file = p->swap_file;
5b808a23 2645 old_block_size = p->old_block_size;
1da177e4
LT
2646 p->swap_file = NULL;
2647 p->max = 0;
2648 swap_map = p->swap_map;
2649 p->swap_map = NULL;
2a8f9449
SL
2650 cluster_info = p->cluster_info;
2651 p->cluster_info = NULL;
4f89849d 2652 frontswap_map = frontswap_map_get(p);
ec8acf20 2653 spin_unlock(&p->lock);
5d337b91 2654 spin_unlock(&swap_lock);
adfab836 2655 frontswap_invalidate_area(p->type);
58e97ba6 2656 frontswap_map_set(p, NULL);
fc0abb14 2657 mutex_unlock(&swapon_mutex);
ebc2a1a6
SL
2658 free_percpu(p->percpu_cluster);
2659 p->percpu_cluster = NULL;
1da177e4 2660 vfree(swap_map);
54f180d3
HY
2661 kvfree(cluster_info);
2662 kvfree(frontswap_map);
2de1a7e4 2663 /* Destroy swap account information */
adfab836 2664 swap_cgroup_swapoff(p->type);
4b3ef9da 2665 exit_swap_address_space(p->type);
27a7faa0 2666
1da177e4
LT
2667 inode = mapping->host;
2668 if (S_ISBLK(inode->i_mode)) {
2669 struct block_device *bdev = I_BDEV(inode);
5b808a23 2670 set_blocksize(bdev, old_block_size);
e525fd89 2671 blkdev_put(bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 2672 } else {
5955102c 2673 inode_lock(inode);
1da177e4 2674 inode->i_flags &= ~S_SWAPFILE;
5955102c 2675 inode_unlock(inode);
1da177e4
LT
2676 }
2677 filp_close(swap_file, NULL);
f893ab41
WY
2678
2679 /*
2680 * Clear the SWP_USED flag after all resources are freed so that swapon
2681 * can reuse this swap_info in alloc_swap_info() safely. It is ok to
2682 * not hold p->lock after we cleared its SWP_WRITEOK.
2683 */
2684 spin_lock(&swap_lock);
2685 p->flags = 0;
2686 spin_unlock(&swap_lock);
2687
1da177e4 2688 err = 0;
66d7dd51
KS
2689 atomic_inc(&proc_poll_event);
2690 wake_up_interruptible(&proc_poll_wait);
1da177e4
LT
2691
2692out_dput:
2693 filp_close(victim, NULL);
2694out:
f58b59c1 2695 putname(pathname);
1da177e4
LT
2696 return err;
2697}
2698
2699#ifdef CONFIG_PROC_FS
66d7dd51
KS
2700static unsigned swaps_poll(struct file *file, poll_table *wait)
2701{
f1514638 2702 struct seq_file *seq = file->private_data;
66d7dd51
KS
2703
2704 poll_wait(file, &proc_poll_wait, wait);
2705
f1514638
KS
2706 if (seq->poll_event != atomic_read(&proc_poll_event)) {
2707 seq->poll_event = atomic_read(&proc_poll_event);
66d7dd51
KS
2708 return POLLIN | POLLRDNORM | POLLERR | POLLPRI;
2709 }
2710
2711 return POLLIN | POLLRDNORM;
2712}
2713
1da177e4
LT
2714/* iterator */
2715static void *swap_start(struct seq_file *swap, loff_t *pos)
2716{
efa90a98
HD
2717 struct swap_info_struct *si;
2718 int type;
1da177e4
LT
2719 loff_t l = *pos;
2720
fc0abb14 2721 mutex_lock(&swapon_mutex);
1da177e4 2722
881e4aab
SS
2723 if (!l)
2724 return SEQ_START_TOKEN;
2725
efa90a98
HD
2726 for (type = 0; type < nr_swapfiles; type++) {
2727 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2728 si = swap_info[type];
2729 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4 2730 continue;
881e4aab 2731 if (!--l)
efa90a98 2732 return si;
1da177e4
LT
2733 }
2734
2735 return NULL;
2736}
2737
2738static void *swap_next(struct seq_file *swap, void *v, loff_t *pos)
2739{
efa90a98
HD
2740 struct swap_info_struct *si = v;
2741 int type;
1da177e4 2742
881e4aab 2743 if (v == SEQ_START_TOKEN)
efa90a98
HD
2744 type = 0;
2745 else
2746 type = si->type + 1;
881e4aab 2747
efa90a98
HD
2748 for (; type < nr_swapfiles; type++) {
2749 smp_rmb(); /* read nr_swapfiles before swap_info[type] */
2750 si = swap_info[type];
2751 if (!(si->flags & SWP_USED) || !si->swap_map)
1da177e4
LT
2752 continue;
2753 ++*pos;
efa90a98 2754 return si;
1da177e4
LT
2755 }
2756
2757 return NULL;
2758}
2759
2760static void swap_stop(struct seq_file *swap, void *v)
2761{
fc0abb14 2762 mutex_unlock(&swapon_mutex);
1da177e4
LT
2763}
2764
2765static int swap_show(struct seq_file *swap, void *v)
2766{
efa90a98 2767 struct swap_info_struct *si = v;
1da177e4
LT
2768 struct file *file;
2769 int len;
2770
efa90a98 2771 if (si == SEQ_START_TOKEN) {
881e4aab
SS
2772 seq_puts(swap,"Filename\t\t\t\tType\t\tSize\tUsed\tPriority\n");
2773 return 0;
2774 }
1da177e4 2775
efa90a98 2776 file = si->swap_file;
2726d566 2777 len = seq_file_path(swap, file, " \t\n\\");
6eb396dc 2778 seq_printf(swap, "%*s%s\t%u\t%u\t%d\n",
886bb7e9 2779 len < 40 ? 40 - len : 1, " ",
496ad9aa 2780 S_ISBLK(file_inode(file)->i_mode) ?
1da177e4 2781 "partition" : "file\t",
efa90a98
HD
2782 si->pages << (PAGE_SHIFT - 10),
2783 si->inuse_pages << (PAGE_SHIFT - 10),
2784 si->prio);
1da177e4
LT
2785 return 0;
2786}
2787
15ad7cdc 2788static const struct seq_operations swaps_op = {
1da177e4
LT
2789 .start = swap_start,
2790 .next = swap_next,
2791 .stop = swap_stop,
2792 .show = swap_show
2793};
2794
2795static int swaps_open(struct inode *inode, struct file *file)
2796{
f1514638 2797 struct seq_file *seq;
66d7dd51
KS
2798 int ret;
2799
66d7dd51 2800 ret = seq_open(file, &swaps_op);
f1514638 2801 if (ret)
66d7dd51 2802 return ret;
66d7dd51 2803
f1514638
KS
2804 seq = file->private_data;
2805 seq->poll_event = atomic_read(&proc_poll_event);
2806 return 0;
1da177e4
LT
2807}
2808
15ad7cdc 2809static const struct file_operations proc_swaps_operations = {
1da177e4
LT
2810 .open = swaps_open,
2811 .read = seq_read,
2812 .llseek = seq_lseek,
2813 .release = seq_release,
66d7dd51 2814 .poll = swaps_poll,
1da177e4
LT
2815};
2816
2817static int __init procswaps_init(void)
2818{
3d71f86f 2819 proc_create("swaps", 0, NULL, &proc_swaps_operations);
1da177e4
LT
2820 return 0;
2821}
2822__initcall(procswaps_init);
2823#endif /* CONFIG_PROC_FS */
2824
1796316a
JB
2825#ifdef MAX_SWAPFILES_CHECK
2826static int __init max_swapfiles_check(void)
2827{
2828 MAX_SWAPFILES_CHECK();
2829 return 0;
2830}
2831late_initcall(max_swapfiles_check);
2832#endif
2833
53cbb243 2834static struct swap_info_struct *alloc_swap_info(void)
1da177e4 2835{
73c34b6a 2836 struct swap_info_struct *p;
1da177e4 2837 unsigned int type;
a2468cc9 2838 int i;
efa90a98
HD
2839
2840 p = kzalloc(sizeof(*p), GFP_KERNEL);
2841 if (!p)
53cbb243 2842 return ERR_PTR(-ENOMEM);
efa90a98 2843
5d337b91 2844 spin_lock(&swap_lock);
efa90a98
HD
2845 for (type = 0; type < nr_swapfiles; type++) {
2846 if (!(swap_info[type]->flags & SWP_USED))
1da177e4 2847 break;
efa90a98 2848 }
0697212a 2849 if (type >= MAX_SWAPFILES) {
5d337b91 2850 spin_unlock(&swap_lock);
efa90a98 2851 kfree(p);
730c0581 2852 return ERR_PTR(-EPERM);
1da177e4 2853 }
efa90a98
HD
2854 if (type >= nr_swapfiles) {
2855 p->type = type;
2856 swap_info[type] = p;
2857 /*
2858 * Write swap_info[type] before nr_swapfiles, in case a
2859 * racing procfs swap_start() or swap_next() is reading them.
2860 * (We never shrink nr_swapfiles, we never free this entry.)
2861 */
2862 smp_wmb();
2863 nr_swapfiles++;
2864 } else {
2865 kfree(p);
2866 p = swap_info[type];
2867 /*
2868 * Do not memset this entry: a racing procfs swap_next()
2869 * would be relying on p->type to remain valid.
2870 */
2871 }
9625a5f2 2872 INIT_LIST_HEAD(&p->first_swap_extent.list);
18ab4d4c 2873 plist_node_init(&p->list, 0);
a2468cc9
AL
2874 for_each_node(i)
2875 plist_node_init(&p->avail_lists[i], 0);
1da177e4 2876 p->flags = SWP_USED;
5d337b91 2877 spin_unlock(&swap_lock);
ec8acf20 2878 spin_lock_init(&p->lock);
2628bd6f 2879 spin_lock_init(&p->cont_lock);
efa90a98 2880
53cbb243 2881 return p;
53cbb243
CEB
2882}
2883
4d0e1e10
CEB
2884static int claim_swapfile(struct swap_info_struct *p, struct inode *inode)
2885{
2886 int error;
2887
2888 if (S_ISBLK(inode->i_mode)) {
2889 p->bdev = bdgrab(I_BDEV(inode));
2890 error = blkdev_get(p->bdev,
6f179af8 2891 FMODE_READ | FMODE_WRITE | FMODE_EXCL, p);
4d0e1e10
CEB
2892 if (error < 0) {
2893 p->bdev = NULL;
6f179af8 2894 return error;
4d0e1e10
CEB
2895 }
2896 p->old_block_size = block_size(p->bdev);
2897 error = set_blocksize(p->bdev, PAGE_SIZE);
2898 if (error < 0)
87ade72a 2899 return error;
4d0e1e10
CEB
2900 p->flags |= SWP_BLKDEV;
2901 } else if (S_ISREG(inode->i_mode)) {
2902 p->bdev = inode->i_sb->s_bdev;
5955102c 2903 inode_lock(inode);
87ade72a
CEB
2904 if (IS_SWAPFILE(inode))
2905 return -EBUSY;
2906 } else
2907 return -EINVAL;
4d0e1e10
CEB
2908
2909 return 0;
4d0e1e10
CEB
2910}
2911
a98c27e1
AK
2912
2913/*
2914 * Find out how many pages are allowed for a single swap device. There
2915 * are two limiting factors:
2916 * 1) the number of bits for the swap offset in the swp_entry_t type, and
2917 * 2) the number of bits in the swap pte, as defined by the different
2918 * architectures.
2919 *
2920 * In order to find the largest possible bit mask, a swap entry with
2921 * swap type 0 and swap offset ~0UL is created, encoded to a swap pte,
2922 * decoded to a swp_entry_t again, and finally the swap offset is
2923 * extracted.
2924 *
2925 * This will mask all the bits from the initial ~0UL mask that can't
2926 * be encoded in either the swp_entry_t or the architecture definition
2927 * of a swap pte.
2928 */
2929unsigned long generic_max_swapfile_size(void)
2930{
2931 return swp_offset(pte_to_swp_entry(
2932 swp_entry_to_pte(swp_entry(0, ~0UL)))) + 1;
2933}
2934
2935/* Can be overridden by an architecture for additional checks. */
2936__weak unsigned long max_swapfile_size(void)
2937{
2938 return generic_max_swapfile_size();
2939}
2940
ca8bd38b
CEB
2941static unsigned long read_swap_header(struct swap_info_struct *p,
2942 union swap_header *swap_header,
2943 struct inode *inode)
2944{
2945 int i;
2946 unsigned long maxpages;
2947 unsigned long swapfilepages;
d6bbbd29 2948 unsigned long last_page;
ca8bd38b
CEB
2949
2950 if (memcmp("SWAPSPACE2", swap_header->magic.magic, 10)) {
465c47fd 2951 pr_err("Unable to find swap-space signature\n");
38719025 2952 return 0;
ca8bd38b
CEB
2953 }
2954
2955 /* swap partition endianess hack... */
2956 if (swab32(swap_header->info.version) == 1) {
2957 swab32s(&swap_header->info.version);
2958 swab32s(&swap_header->info.last_page);
2959 swab32s(&swap_header->info.nr_badpages);
dd111be6
JH
2960 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
2961 return 0;
ca8bd38b
CEB
2962 for (i = 0; i < swap_header->info.nr_badpages; i++)
2963 swab32s(&swap_header->info.badpages[i]);
2964 }
2965 /* Check the swap header's sub-version */
2966 if (swap_header->info.version != 1) {
465c47fd
AM
2967 pr_warn("Unable to handle swap header version %d\n",
2968 swap_header->info.version);
38719025 2969 return 0;
ca8bd38b
CEB
2970 }
2971
2972 p->lowest_bit = 1;
2973 p->cluster_next = 1;
2974 p->cluster_nr = 0;
2975
a98c27e1 2976 maxpages = max_swapfile_size();
d6bbbd29 2977 last_page = swap_header->info.last_page;
e4efe5ef
TA
2978 if (!last_page) {
2979 pr_warn("Empty swap-file\n");
2980 return 0;
2981 }
d6bbbd29 2982 if (last_page > maxpages) {
465c47fd 2983 pr_warn("Truncating oversized swap area, only using %luk out of %luk\n",
d6bbbd29
RJ
2984 maxpages << (PAGE_SHIFT - 10),
2985 last_page << (PAGE_SHIFT - 10));
2986 }
2987 if (maxpages > last_page) {
2988 maxpages = last_page + 1;
ca8bd38b
CEB
2989 /* p->max is an unsigned int: don't overflow it */
2990 if ((unsigned int)maxpages == 0)
2991 maxpages = UINT_MAX;
2992 }
2993 p->highest_bit = maxpages - 1;
2994
2995 if (!maxpages)
38719025 2996 return 0;
ca8bd38b
CEB
2997 swapfilepages = i_size_read(inode) >> PAGE_SHIFT;
2998 if (swapfilepages && maxpages > swapfilepages) {
465c47fd 2999 pr_warn("Swap area shorter than signature indicates\n");
38719025 3000 return 0;
ca8bd38b
CEB
3001 }
3002 if (swap_header->info.nr_badpages && S_ISREG(inode->i_mode))
38719025 3003 return 0;
ca8bd38b 3004 if (swap_header->info.nr_badpages > MAX_SWAP_BADPAGES)
38719025 3005 return 0;
ca8bd38b
CEB
3006
3007 return maxpages;
ca8bd38b
CEB
3008}
3009
4b3ef9da 3010#define SWAP_CLUSTER_INFO_COLS \
235b6217 3011 DIV_ROUND_UP(L1_CACHE_BYTES, sizeof(struct swap_cluster_info))
4b3ef9da
HY
3012#define SWAP_CLUSTER_SPACE_COLS \
3013 DIV_ROUND_UP(SWAP_ADDRESS_SPACE_PAGES, SWAPFILE_CLUSTER)
3014#define SWAP_CLUSTER_COLS \
3015 max_t(unsigned int, SWAP_CLUSTER_INFO_COLS, SWAP_CLUSTER_SPACE_COLS)
235b6217 3016
915d4d7b
CEB
3017static int setup_swap_map_and_extents(struct swap_info_struct *p,
3018 union swap_header *swap_header,
3019 unsigned char *swap_map,
2a8f9449 3020 struct swap_cluster_info *cluster_info,
915d4d7b
CEB
3021 unsigned long maxpages,
3022 sector_t *span)
3023{
235b6217 3024 unsigned int j, k;
915d4d7b
CEB
3025 unsigned int nr_good_pages;
3026 int nr_extents;
2a8f9449 3027 unsigned long nr_clusters = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
235b6217
HY
3028 unsigned long col = p->cluster_next / SWAPFILE_CLUSTER % SWAP_CLUSTER_COLS;
3029 unsigned long i, idx;
915d4d7b
CEB
3030
3031 nr_good_pages = maxpages - 1; /* omit header page */
3032
6b534915
HY
3033 cluster_list_init(&p->free_clusters);
3034 cluster_list_init(&p->discard_clusters);
2a8f9449 3035
915d4d7b
CEB
3036 for (i = 0; i < swap_header->info.nr_badpages; i++) {
3037 unsigned int page_nr = swap_header->info.badpages[i];
bdb8e3f6
CEB
3038 if (page_nr == 0 || page_nr > swap_header->info.last_page)
3039 return -EINVAL;
915d4d7b
CEB
3040 if (page_nr < maxpages) {
3041 swap_map[page_nr] = SWAP_MAP_BAD;
3042 nr_good_pages--;
2a8f9449
SL
3043 /*
3044 * Haven't marked the cluster free yet, no list
3045 * operation involved
3046 */
3047 inc_cluster_info_page(p, cluster_info, page_nr);
915d4d7b
CEB
3048 }
3049 }
3050
2a8f9449
SL
3051 /* Haven't marked the cluster free yet, no list operation involved */
3052 for (i = maxpages; i < round_up(maxpages, SWAPFILE_CLUSTER); i++)
3053 inc_cluster_info_page(p, cluster_info, i);
3054
915d4d7b
CEB
3055 if (nr_good_pages) {
3056 swap_map[0] = SWAP_MAP_BAD;
2a8f9449
SL
3057 /*
3058 * Not mark the cluster free yet, no list
3059 * operation involved
3060 */
3061 inc_cluster_info_page(p, cluster_info, 0);
915d4d7b
CEB
3062 p->max = maxpages;
3063 p->pages = nr_good_pages;
3064 nr_extents = setup_swap_extents(p, span);
bdb8e3f6
CEB
3065 if (nr_extents < 0)
3066 return nr_extents;
915d4d7b
CEB
3067 nr_good_pages = p->pages;
3068 }
3069 if (!nr_good_pages) {
465c47fd 3070 pr_warn("Empty swap-file\n");
bdb8e3f6 3071 return -EINVAL;
915d4d7b
CEB
3072 }
3073
2a8f9449
SL
3074 if (!cluster_info)
3075 return nr_extents;
3076
235b6217 3077
4b3ef9da
HY
3078 /*
3079 * Reduce false cache line sharing between cluster_info and
3080 * sharing same address space.
3081 */
235b6217
HY
3082 for (k = 0; k < SWAP_CLUSTER_COLS; k++) {
3083 j = (k + col) % SWAP_CLUSTER_COLS;
3084 for (i = 0; i < DIV_ROUND_UP(nr_clusters, SWAP_CLUSTER_COLS); i++) {
3085 idx = i * SWAP_CLUSTER_COLS + j;
3086 if (idx >= nr_clusters)
3087 continue;
3088 if (cluster_count(&cluster_info[idx]))
3089 continue;
2a8f9449 3090 cluster_set_flag(&cluster_info[idx], CLUSTER_FLAG_FREE);
6b534915
HY
3091 cluster_list_add_tail(&p->free_clusters, cluster_info,
3092 idx);
2a8f9449 3093 }
2a8f9449 3094 }
915d4d7b 3095 return nr_extents;
915d4d7b
CEB
3096}
3097
dcf6b7dd
RA
3098/*
3099 * Helper to sys_swapon determining if a given swap
3100 * backing device queue supports DISCARD operations.
3101 */
3102static bool swap_discardable(struct swap_info_struct *si)
3103{
3104 struct request_queue *q = bdev_get_queue(si->bdev);
3105
3106 if (!q || !blk_queue_discard(q))
3107 return false;
3108
3109 return true;
3110}
3111
53cbb243
CEB
3112SYSCALL_DEFINE2(swapon, const char __user *, specialfile, int, swap_flags)
3113{
3114 struct swap_info_struct *p;
91a27b2a 3115 struct filename *name;
53cbb243
CEB
3116 struct file *swap_file = NULL;
3117 struct address_space *mapping;
40531542 3118 int prio;
53cbb243
CEB
3119 int error;
3120 union swap_header *swap_header;
915d4d7b 3121 int nr_extents;
53cbb243
CEB
3122 sector_t span;
3123 unsigned long maxpages;
53cbb243 3124 unsigned char *swap_map = NULL;
2a8f9449 3125 struct swap_cluster_info *cluster_info = NULL;
38b5faf4 3126 unsigned long *frontswap_map = NULL;
53cbb243
CEB
3127 struct page *page = NULL;
3128 struct inode *inode = NULL;
53cbb243 3129
d15cab97
HD
3130 if (swap_flags & ~SWAP_FLAGS_VALID)
3131 return -EINVAL;
3132
53cbb243
CEB
3133 if (!capable(CAP_SYS_ADMIN))
3134 return -EPERM;
3135
a2468cc9
AL
3136 if (!swap_avail_heads)
3137 return -ENOMEM;
3138
53cbb243 3139 p = alloc_swap_info();
2542e513
CEB
3140 if (IS_ERR(p))
3141 return PTR_ERR(p);
53cbb243 3142
815c2c54
SL
3143 INIT_WORK(&p->discard_work, swap_discard_work);
3144
1da177e4 3145 name = getname(specialfile);
1da177e4 3146 if (IS_ERR(name)) {
7de7fb6b 3147 error = PTR_ERR(name);
1da177e4 3148 name = NULL;
bd69010b 3149 goto bad_swap;
1da177e4 3150 }
669abf4e 3151 swap_file = file_open_name(name, O_RDWR|O_LARGEFILE, 0);
1da177e4 3152 if (IS_ERR(swap_file)) {
7de7fb6b 3153 error = PTR_ERR(swap_file);
1da177e4 3154 swap_file = NULL;
bd69010b 3155 goto bad_swap;
1da177e4
LT
3156 }
3157
3158 p->swap_file = swap_file;
3159 mapping = swap_file->f_mapping;
2130781e 3160 inode = mapping->host;
6f179af8 3161
5955102c 3162 /* If S_ISREG(inode->i_mode) will do inode_lock(inode); */
4d0e1e10
CEB
3163 error = claim_swapfile(p, inode);
3164 if (unlikely(error))
1da177e4 3165 goto bad_swap;
1da177e4 3166
1da177e4
LT
3167 /*
3168 * Read the swap header.
3169 */
3170 if (!mapping->a_ops->readpage) {
3171 error = -EINVAL;
3172 goto bad_swap;
3173 }
090d2b18 3174 page = read_mapping_page(mapping, 0, swap_file);
1da177e4
LT
3175 if (IS_ERR(page)) {
3176 error = PTR_ERR(page);
3177 goto bad_swap;
3178 }
81e33971 3179 swap_header = kmap(page);
1da177e4 3180
ca8bd38b
CEB
3181 maxpages = read_swap_header(p, swap_header, inode);
3182 if (unlikely(!maxpages)) {
1da177e4
LT
3183 error = -EINVAL;
3184 goto bad_swap;
3185 }
886bb7e9 3186
81e33971 3187 /* OK, set up the swap map and apply the bad block list */
803d0c83 3188 swap_map = vzalloc(maxpages);
81e33971
HD
3189 if (!swap_map) {
3190 error = -ENOMEM;
3191 goto bad_swap;
3192 }
f0571429
MK
3193
3194 if (bdi_cap_stable_pages_required(inode_to_bdi(inode)))
3195 p->flags |= SWP_STABLE_WRITES;
3196
539a6fea
MK
3197 if (bdi_cap_synchronous_io(inode_to_bdi(inode)))
3198 p->flags |= SWP_SYNCHRONOUS_IO;
3199
2a8f9449 3200 if (p->bdev && blk_queue_nonrot(bdev_get_queue(p->bdev))) {
6f179af8 3201 int cpu;
235b6217 3202 unsigned long ci, nr_cluster;
6f179af8 3203
2a8f9449
SL
3204 p->flags |= SWP_SOLIDSTATE;
3205 /*
3206 * select a random position to start with to help wear leveling
3207 * SSD
3208 */
3209 p->cluster_next = 1 + (prandom_u32() % p->highest_bit);
235b6217 3210 nr_cluster = DIV_ROUND_UP(maxpages, SWAPFILE_CLUSTER);
2a8f9449 3211
54f180d3
HY
3212 cluster_info = kvzalloc(nr_cluster * sizeof(*cluster_info),
3213 GFP_KERNEL);
2a8f9449
SL
3214 if (!cluster_info) {
3215 error = -ENOMEM;
3216 goto bad_swap;
3217 }
235b6217
HY
3218
3219 for (ci = 0; ci < nr_cluster; ci++)
3220 spin_lock_init(&((cluster_info + ci)->lock));
3221
ebc2a1a6
SL
3222 p->percpu_cluster = alloc_percpu(struct percpu_cluster);
3223 if (!p->percpu_cluster) {
3224 error = -ENOMEM;
3225 goto bad_swap;
3226 }
6f179af8 3227 for_each_possible_cpu(cpu) {
ebc2a1a6 3228 struct percpu_cluster *cluster;
6f179af8 3229 cluster = per_cpu_ptr(p->percpu_cluster, cpu);
ebc2a1a6
SL
3230 cluster_set_null(&cluster->index);
3231 }
81a0298b
HY
3232 } else
3233 atomic_inc(&nr_rotate_swap);
1da177e4 3234
1421ef3c
CEB
3235 error = swap_cgroup_swapon(p->type, maxpages);
3236 if (error)
3237 goto bad_swap;
3238
915d4d7b 3239 nr_extents = setup_swap_map_and_extents(p, swap_header, swap_map,
2a8f9449 3240 cluster_info, maxpages, &span);
915d4d7b
CEB
3241 if (unlikely(nr_extents < 0)) {
3242 error = nr_extents;
1da177e4
LT
3243 goto bad_swap;
3244 }
38b5faf4 3245 /* frontswap enabled? set up bit-per-page map for frontswap */
8ea1d2a1 3246 if (IS_ENABLED(CONFIG_FRONTSWAP))
54f180d3
HY
3247 frontswap_map = kvzalloc(BITS_TO_LONGS(maxpages) * sizeof(long),
3248 GFP_KERNEL);
1da177e4 3249
2a8f9449
SL
3250 if (p->bdev &&(swap_flags & SWAP_FLAG_DISCARD) && swap_discardable(p)) {
3251 /*
3252 * When discard is enabled for swap with no particular
3253 * policy flagged, we set all swap discard flags here in
3254 * order to sustain backward compatibility with older
3255 * swapon(8) releases.
3256 */
3257 p->flags |= (SWP_DISCARDABLE | SWP_AREA_DISCARD |
3258 SWP_PAGE_DISCARD);
dcf6b7dd 3259
2a8f9449
SL
3260 /*
3261 * By flagging sys_swapon, a sysadmin can tell us to
3262 * either do single-time area discards only, or to just
3263 * perform discards for released swap page-clusters.
3264 * Now it's time to adjust the p->flags accordingly.
3265 */
3266 if (swap_flags & SWAP_FLAG_DISCARD_ONCE)
3267 p->flags &= ~SWP_PAGE_DISCARD;
3268 else if (swap_flags & SWAP_FLAG_DISCARD_PAGES)
3269 p->flags &= ~SWP_AREA_DISCARD;
3270
3271 /* issue a swapon-time discard if it's still required */
3272 if (p->flags & SWP_AREA_DISCARD) {
3273 int err = discard_swap(p);
3274 if (unlikely(err))
3275 pr_err("swapon: discard_swap(%p): %d\n",
3276 p, err);
dcf6b7dd 3277 }
20137a49 3278 }
6a6ba831 3279
4b3ef9da
HY
3280 error = init_swap_address_space(p->type, maxpages);
3281 if (error)
3282 goto bad_swap;
3283
fc0abb14 3284 mutex_lock(&swapon_mutex);
40531542 3285 prio = -1;
78ecba08 3286 if (swap_flags & SWAP_FLAG_PREFER)
40531542 3287 prio =
78ecba08 3288 (swap_flags & SWAP_FLAG_PRIO_MASK) >> SWAP_FLAG_PRIO_SHIFT;
2a8f9449 3289 enable_swap_info(p, prio, swap_map, cluster_info, frontswap_map);
c69dbfb8 3290
756a025f 3291 pr_info("Adding %uk swap on %s. Priority:%d extents:%d across:%lluk %s%s%s%s%s\n",
91a27b2a 3292 p->pages<<(PAGE_SHIFT-10), name->name, p->prio,
c69dbfb8
CEB
3293 nr_extents, (unsigned long long)span<<(PAGE_SHIFT-10),
3294 (p->flags & SWP_SOLIDSTATE) ? "SS" : "",
38b5faf4 3295 (p->flags & SWP_DISCARDABLE) ? "D" : "",
dcf6b7dd
RA
3296 (p->flags & SWP_AREA_DISCARD) ? "s" : "",
3297 (p->flags & SWP_PAGE_DISCARD) ? "c" : "",
38b5faf4 3298 (frontswap_map) ? "FS" : "");
c69dbfb8 3299
fc0abb14 3300 mutex_unlock(&swapon_mutex);
66d7dd51
KS
3301 atomic_inc(&proc_poll_event);
3302 wake_up_interruptible(&proc_poll_wait);
3303
9b01c350
CEB
3304 if (S_ISREG(inode->i_mode))
3305 inode->i_flags |= S_SWAPFILE;
1da177e4
LT
3306 error = 0;
3307 goto out;
3308bad_swap:
ebc2a1a6
SL
3309 free_percpu(p->percpu_cluster);
3310 p->percpu_cluster = NULL;
bd69010b 3311 if (inode && S_ISBLK(inode->i_mode) && p->bdev) {
f2090d2d
CEB
3312 set_blocksize(p->bdev, p->old_block_size);
3313 blkdev_put(p->bdev, FMODE_READ | FMODE_WRITE | FMODE_EXCL);
1da177e4 3314 }
4cd3bb10 3315 destroy_swap_extents(p);
e8e6c2ec 3316 swap_cgroup_swapoff(p->type);
5d337b91 3317 spin_lock(&swap_lock);
1da177e4 3318 p->swap_file = NULL;
1da177e4 3319 p->flags = 0;
5d337b91 3320 spin_unlock(&swap_lock);
1da177e4 3321 vfree(swap_map);
8606a1a9 3322 kvfree(cluster_info);
b6b1fd2a 3323 kvfree(frontswap_map);
52c50567 3324 if (swap_file) {
2130781e 3325 if (inode && S_ISREG(inode->i_mode)) {
5955102c 3326 inode_unlock(inode);
2130781e
CEB
3327 inode = NULL;
3328 }
1da177e4 3329 filp_close(swap_file, NULL);
52c50567 3330 }
1da177e4
LT
3331out:
3332 if (page && !IS_ERR(page)) {
3333 kunmap(page);
09cbfeaf 3334 put_page(page);
1da177e4
LT
3335 }
3336 if (name)
3337 putname(name);
9b01c350 3338 if (inode && S_ISREG(inode->i_mode))
5955102c 3339 inode_unlock(inode);
039939a6
TC
3340 if (!error)
3341 enable_swap_slots_cache();
1da177e4
LT
3342 return error;
3343}
3344
3345void si_swapinfo(struct sysinfo *val)
3346{
efa90a98 3347 unsigned int type;
1da177e4
LT
3348 unsigned long nr_to_be_unused = 0;
3349
5d337b91 3350 spin_lock(&swap_lock);
efa90a98
HD
3351 for (type = 0; type < nr_swapfiles; type++) {
3352 struct swap_info_struct *si = swap_info[type];
3353
3354 if ((si->flags & SWP_USED) && !(si->flags & SWP_WRITEOK))
3355 nr_to_be_unused += si->inuse_pages;
1da177e4 3356 }
ec8acf20 3357 val->freeswap = atomic_long_read(&nr_swap_pages) + nr_to_be_unused;
1da177e4 3358 val->totalswap = total_swap_pages + nr_to_be_unused;
5d337b91 3359 spin_unlock(&swap_lock);
1da177e4
LT
3360}
3361
3362/*
3363 * Verify that a swap entry is valid and increment its swap map count.
3364 *
355cfa73
KH
3365 * Returns error code in following case.
3366 * - success -> 0
3367 * - swp_entry is invalid -> EINVAL
3368 * - swp_entry is migration entry -> EINVAL
3369 * - swap-cache reference is requested but there is already one. -> EEXIST
3370 * - swap-cache reference is requested but the entry is not used. -> ENOENT
570a335b 3371 * - swap-mapped reference requested but needs continued swap count. -> ENOMEM
1da177e4 3372 */
8d69aaee 3373static int __swap_duplicate(swp_entry_t entry, unsigned char usage)
1da177e4 3374{
73c34b6a 3375 struct swap_info_struct *p;
235b6217 3376 struct swap_cluster_info *ci;
1da177e4 3377 unsigned long offset, type;
8d69aaee
HD
3378 unsigned char count;
3379 unsigned char has_cache;
253d553b 3380 int err = -EINVAL;
1da177e4 3381
a7420aa5 3382 if (non_swap_entry(entry))
253d553b 3383 goto out;
0697212a 3384
1da177e4
LT
3385 type = swp_type(entry);
3386 if (type >= nr_swapfiles)
3387 goto bad_file;
efa90a98 3388 p = swap_info[type];
1da177e4 3389 offset = swp_offset(entry);
355cfa73 3390 if (unlikely(offset >= p->max))
235b6217
HY
3391 goto out;
3392
3393 ci = lock_cluster_or_swap_info(p, offset);
355cfa73 3394
253d553b 3395 count = p->swap_map[offset];
edfe23da
SL
3396
3397 /*
3398 * swapin_readahead() doesn't check if a swap entry is valid, so the
3399 * swap entry could be SWAP_MAP_BAD. Check here with lock held.
3400 */
3401 if (unlikely(swap_count(count) == SWAP_MAP_BAD)) {
3402 err = -ENOENT;
3403 goto unlock_out;
3404 }
3405
253d553b
HD
3406 has_cache = count & SWAP_HAS_CACHE;
3407 count &= ~SWAP_HAS_CACHE;
3408 err = 0;
355cfa73 3409
253d553b 3410 if (usage == SWAP_HAS_CACHE) {
355cfa73
KH
3411
3412 /* set SWAP_HAS_CACHE if there is no cache and entry is used */
253d553b
HD
3413 if (!has_cache && count)
3414 has_cache = SWAP_HAS_CACHE;
3415 else if (has_cache) /* someone else added cache */
3416 err = -EEXIST;
3417 else /* no users remaining */
3418 err = -ENOENT;
355cfa73
KH
3419
3420 } else if (count || has_cache) {
253d553b 3421
570a335b
HD
3422 if ((count & ~COUNT_CONTINUED) < SWAP_MAP_MAX)
3423 count += usage;
3424 else if ((count & ~COUNT_CONTINUED) > SWAP_MAP_MAX)
253d553b 3425 err = -EINVAL;
570a335b
HD
3426 else if (swap_count_continued(p, offset, count))
3427 count = COUNT_CONTINUED;
3428 else
3429 err = -ENOMEM;
355cfa73 3430 } else
253d553b
HD
3431 err = -ENOENT; /* unused swap entry */
3432
3433 p->swap_map[offset] = count | has_cache;
3434
355cfa73 3435unlock_out:
235b6217 3436 unlock_cluster_or_swap_info(p, ci);
1da177e4 3437out:
253d553b 3438 return err;
1da177e4
LT
3439
3440bad_file:
465c47fd 3441 pr_err("swap_dup: %s%08lx\n", Bad_file, entry.val);
1da177e4
LT
3442 goto out;
3443}
253d553b 3444
aaa46865
HD
3445/*
3446 * Help swapoff by noting that swap entry belongs to shmem/tmpfs
3447 * (in which case its reference count is never incremented).
3448 */
3449void swap_shmem_alloc(swp_entry_t entry)
3450{
3451 __swap_duplicate(entry, SWAP_MAP_SHMEM);
3452}
3453
355cfa73 3454/*
08259d58
HD
3455 * Increase reference count of swap entry by 1.
3456 * Returns 0 for success, or -ENOMEM if a swap_count_continuation is required
3457 * but could not be atomically allocated. Returns 0, just as if it succeeded,
3458 * if __swap_duplicate() fails for another reason (-EINVAL or -ENOENT), which
3459 * might occur if a page table entry has got corrupted.
355cfa73 3460 */
570a335b 3461int swap_duplicate(swp_entry_t entry)
355cfa73 3462{
570a335b
HD
3463 int err = 0;
3464
3465 while (!err && __swap_duplicate(entry, 1) == -ENOMEM)
3466 err = add_swap_count_continuation(entry, GFP_ATOMIC);
3467 return err;
355cfa73 3468}
1da177e4 3469
cb4b86ba 3470/*
355cfa73
KH
3471 * @entry: swap entry for which we allocate swap cache.
3472 *
73c34b6a 3473 * Called when allocating swap cache for existing swap entry,
355cfa73
KH
3474 * This can return error codes. Returns 0 at success.
3475 * -EBUSY means there is a swap cache.
3476 * Note: return code is different from swap_duplicate().
cb4b86ba
KH
3477 */
3478int swapcache_prepare(swp_entry_t entry)
3479{
253d553b 3480 return __swap_duplicate(entry, SWAP_HAS_CACHE);
cb4b86ba
KH
3481}
3482
0bcac06f
MK
3483struct swap_info_struct *swp_swap_info(swp_entry_t entry)
3484{
3485 return swap_info[swp_type(entry)];
3486}
3487
f981c595
MG
3488struct swap_info_struct *page_swap_info(struct page *page)
3489{
0bcac06f
MK
3490 swp_entry_t entry = { .val = page_private(page) };
3491 return swp_swap_info(entry);
f981c595
MG
3492}
3493
3494/*
3495 * out-of-line __page_file_ methods to avoid include hell.
3496 */
3497struct address_space *__page_file_mapping(struct page *page)
3498{
f981c595
MG
3499 return page_swap_info(page)->swap_file->f_mapping;
3500}
3501EXPORT_SYMBOL_GPL(__page_file_mapping);
3502
3503pgoff_t __page_file_index(struct page *page)
3504{
3505 swp_entry_t swap = { .val = page_private(page) };
f981c595
MG
3506 return swp_offset(swap);
3507}
3508EXPORT_SYMBOL_GPL(__page_file_index);
3509
570a335b
HD
3510/*
3511 * add_swap_count_continuation - called when a swap count is duplicated
3512 * beyond SWAP_MAP_MAX, it allocates a new page and links that to the entry's
3513 * page of the original vmalloc'ed swap_map, to hold the continuation count
3514 * (for that entry and for its neighbouring PAGE_SIZE swap entries). Called
3515 * again when count is duplicated beyond SWAP_MAP_MAX * SWAP_CONT_MAX, etc.
3516 *
3517 * These continuation pages are seldom referenced: the common paths all work
3518 * on the original swap_map, only referring to a continuation page when the
3519 * low "digit" of a count is incremented or decremented through SWAP_MAP_MAX.
3520 *
3521 * add_swap_count_continuation(, GFP_ATOMIC) can be called while holding
3522 * page table locks; if it fails, add_swap_count_continuation(, GFP_KERNEL)
3523 * can be called after dropping locks.
3524 */
3525int add_swap_count_continuation(swp_entry_t entry, gfp_t gfp_mask)
3526{
3527 struct swap_info_struct *si;
235b6217 3528 struct swap_cluster_info *ci;
570a335b
HD
3529 struct page *head;
3530 struct page *page;
3531 struct page *list_page;
3532 pgoff_t offset;
3533 unsigned char count;
3534
3535 /*
3536 * When debugging, it's easier to use __GFP_ZERO here; but it's better
3537 * for latency not to zero a page while GFP_ATOMIC and holding locks.
3538 */
3539 page = alloc_page(gfp_mask | __GFP_HIGHMEM);
3540
3541 si = swap_info_get(entry);
3542 if (!si) {
3543 /*
3544 * An acceptable race has occurred since the failing
3545 * __swap_duplicate(): the swap entry has been freed,
3546 * perhaps even the whole swap_map cleared for swapoff.
3547 */
3548 goto outer;
3549 }
3550
3551 offset = swp_offset(entry);
235b6217
HY
3552
3553 ci = lock_cluster(si, offset);
3554
570a335b
HD
3555 count = si->swap_map[offset] & ~SWAP_HAS_CACHE;
3556
3557 if ((count & ~COUNT_CONTINUED) != SWAP_MAP_MAX) {
3558 /*
3559 * The higher the swap count, the more likely it is that tasks
3560 * will race to add swap count continuation: we need to avoid
3561 * over-provisioning.
3562 */
3563 goto out;
3564 }
3565
3566 if (!page) {
235b6217 3567 unlock_cluster(ci);
ec8acf20 3568 spin_unlock(&si->lock);
570a335b
HD
3569 return -ENOMEM;
3570 }
3571
3572 /*
3573 * We are fortunate that although vmalloc_to_page uses pte_offset_map,
2de1a7e4
SJ
3574 * no architecture is using highmem pages for kernel page tables: so it
3575 * will not corrupt the GFP_ATOMIC caller's atomic page table kmaps.
570a335b
HD
3576 */
3577 head = vmalloc_to_page(si->swap_map + offset);
3578 offset &= ~PAGE_MASK;
3579
2628bd6f 3580 spin_lock(&si->cont_lock);
570a335b
HD
3581 /*
3582 * Page allocation does not initialize the page's lru field,
3583 * but it does always reset its private field.
3584 */
3585 if (!page_private(head)) {
3586 BUG_ON(count & COUNT_CONTINUED);
3587 INIT_LIST_HEAD(&head->lru);
3588 set_page_private(head, SWP_CONTINUED);
3589 si->flags |= SWP_CONTINUED;
3590 }
3591
3592 list_for_each_entry(list_page, &head->lru, lru) {
3593 unsigned char *map;
3594
3595 /*
3596 * If the previous map said no continuation, but we've found
3597 * a continuation page, free our allocation and use this one.
3598 */
3599 if (!(count & COUNT_CONTINUED))
2628bd6f 3600 goto out_unlock_cont;
570a335b 3601
9b04c5fe 3602 map = kmap_atomic(list_page) + offset;
570a335b 3603 count = *map;
9b04c5fe 3604 kunmap_atomic(map);
570a335b
HD
3605
3606 /*
3607 * If this continuation count now has some space in it,
3608 * free our allocation and use this one.
3609 */
3610 if ((count & ~COUNT_CONTINUED) != SWAP_CONT_MAX)
2628bd6f 3611 goto out_unlock_cont;
570a335b
HD
3612 }
3613
3614 list_add_tail(&page->lru, &head->lru);
3615 page = NULL; /* now it's attached, don't free it */
2628bd6f
HY
3616out_unlock_cont:
3617 spin_unlock(&si->cont_lock);
570a335b 3618out:
235b6217 3619 unlock_cluster(ci);
ec8acf20 3620 spin_unlock(&si->lock);
570a335b
HD
3621outer:
3622 if (page)
3623 __free_page(page);
3624 return 0;
3625}
3626
3627/*
3628 * swap_count_continued - when the original swap_map count is incremented
3629 * from SWAP_MAP_MAX, check if there is already a continuation page to carry
3630 * into, carry if so, or else fail until a new continuation page is allocated;
3631 * when the original swap_map count is decremented from 0 with continuation,
3632 * borrow from the continuation and report whether it still holds more.
235b6217
HY
3633 * Called while __swap_duplicate() or swap_entry_free() holds swap or cluster
3634 * lock.
570a335b
HD
3635 */
3636static bool swap_count_continued(struct swap_info_struct *si,
3637 pgoff_t offset, unsigned char count)
3638{
3639 struct page *head;
3640 struct page *page;
3641 unsigned char *map;
2628bd6f 3642 bool ret;
570a335b
HD
3643
3644 head = vmalloc_to_page(si->swap_map + offset);
3645 if (page_private(head) != SWP_CONTINUED) {
3646 BUG_ON(count & COUNT_CONTINUED);
3647 return false; /* need to add count continuation */
3648 }
3649
2628bd6f 3650 spin_lock(&si->cont_lock);
570a335b
HD
3651 offset &= ~PAGE_MASK;
3652 page = list_entry(head->lru.next, struct page, lru);
9b04c5fe 3653 map = kmap_atomic(page) + offset;
570a335b
HD
3654
3655 if (count == SWAP_MAP_MAX) /* initial increment from swap_map */
3656 goto init_map; /* jump over SWAP_CONT_MAX checks */
3657
3658 if (count == (SWAP_MAP_MAX | COUNT_CONTINUED)) { /* incrementing */
3659 /*
3660 * Think of how you add 1 to 999
3661 */
3662 while (*map == (SWAP_CONT_MAX | COUNT_CONTINUED)) {
9b04c5fe 3663 kunmap_atomic(map);
570a335b
HD
3664 page = list_entry(page->lru.next, struct page, lru);
3665 BUG_ON(page == head);
9b04c5fe 3666 map = kmap_atomic(page) + offset;
570a335b
HD
3667 }
3668 if (*map == SWAP_CONT_MAX) {
9b04c5fe 3669 kunmap_atomic(map);
570a335b 3670 page = list_entry(page->lru.next, struct page, lru);
2628bd6f
HY
3671 if (page == head) {
3672 ret = false; /* add count continuation */
3673 goto out;
3674 }
9b04c5fe 3675 map = kmap_atomic(page) + offset;
570a335b
HD
3676init_map: *map = 0; /* we didn't zero the page */
3677 }
3678 *map += 1;
9b04c5fe 3679 kunmap_atomic(map);
570a335b
HD
3680 page = list_entry(page->lru.prev, struct page, lru);
3681 while (page != head) {
9b04c5fe 3682 map = kmap_atomic(page) + offset;
570a335b 3683 *map = COUNT_CONTINUED;
9b04c5fe 3684 kunmap_atomic(map);
570a335b
HD
3685 page = list_entry(page->lru.prev, struct page, lru);
3686 }
2628bd6f 3687 ret = true; /* incremented */
570a335b
HD
3688
3689 } else { /* decrementing */
3690 /*
3691 * Think of how you subtract 1 from 1000
3692 */
3693 BUG_ON(count != COUNT_CONTINUED);
3694 while (*map == COUNT_CONTINUED) {
9b04c5fe 3695 kunmap_atomic(map);
570a335b
HD
3696 page = list_entry(page->lru.next, struct page, lru);
3697 BUG_ON(page == head);
9b04c5fe 3698 map = kmap_atomic(page) + offset;
570a335b
HD
3699 }
3700 BUG_ON(*map == 0);
3701 *map -= 1;
3702 if (*map == 0)
3703 count = 0;
9b04c5fe 3704 kunmap_atomic(map);
570a335b
HD
3705 page = list_entry(page->lru.prev, struct page, lru);
3706 while (page != head) {
9b04c5fe 3707 map = kmap_atomic(page) + offset;
570a335b
HD
3708 *map = SWAP_CONT_MAX | count;
3709 count = COUNT_CONTINUED;
9b04c5fe 3710 kunmap_atomic(map);
570a335b
HD
3711 page = list_entry(page->lru.prev, struct page, lru);
3712 }
2628bd6f 3713 ret = count == COUNT_CONTINUED;
570a335b 3714 }
2628bd6f
HY
3715out:
3716 spin_unlock(&si->cont_lock);
3717 return ret;
570a335b
HD
3718}
3719
3720/*
3721 * free_swap_count_continuations - swapoff free all the continuation pages
3722 * appended to the swap_map, after swap_map is quiesced, before vfree'ing it.
3723 */
3724static void free_swap_count_continuations(struct swap_info_struct *si)
3725{
3726 pgoff_t offset;
3727
3728 for (offset = 0; offset < si->max; offset += PAGE_SIZE) {
3729 struct page *head;
3730 head = vmalloc_to_page(si->swap_map + offset);
3731 if (page_private(head)) {
0d576d20
GT
3732 struct page *page, *next;
3733
3734 list_for_each_entry_safe(page, next, &head->lru, lru) {
3735 list_del(&page->lru);
570a335b
HD
3736 __free_page(page);
3737 }
3738 }
3739 }
3740}
a2468cc9
AL
3741
3742static int __init swapfile_init(void)
3743{
3744 int nid;
3745
3746 swap_avail_heads = kmalloc_array(nr_node_ids, sizeof(struct plist_head),
3747 GFP_KERNEL);
3748 if (!swap_avail_heads) {
3749 pr_emerg("Not enough memory for swap heads, swap is disabled\n");
3750 return -ENOMEM;
3751 }
3752
3753 for_each_node(nid)
3754 plist_head_init(&swap_avail_heads[nid]);
3755
3756 return 0;
3757}
3758subsys_initcall(swapfile_init);