]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/vmscan.c
KVM: X86: Allow userspace to define the microcode version
[mirror_ubuntu-bionic-kernel.git] / mm / vmscan.c
CommitLineData
b2441318 1// SPDX-License-Identifier: GPL-2.0
1da177e4
LT
2/*
3 * linux/mm/vmscan.c
4 *
5 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 *
7 * Swap reorganised 29.12.95, Stephen Tweedie.
8 * kswapd added: 7.1.96 sct
9 * Removed kswapd_ctl limits, and swap out as many pages as needed
10 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
11 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
12 * Multiqueue VM started 5.8.00, Rik van Riel.
13 */
14
b1de0d13
MH
15#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
16
1da177e4 17#include <linux/mm.h>
5b3cc15a 18#include <linux/sched/mm.h>
1da177e4 19#include <linux/module.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/kernel_stat.h>
22#include <linux/swap.h>
23#include <linux/pagemap.h>
24#include <linux/init.h>
25#include <linux/highmem.h>
70ddf637 26#include <linux/vmpressure.h>
e129b5c2 27#include <linux/vmstat.h>
1da177e4
LT
28#include <linux/file.h>
29#include <linux/writeback.h>
30#include <linux/blkdev.h>
31#include <linux/buffer_head.h> /* for try_to_release_page(),
32 buffer_heads_over_limit */
33#include <linux/mm_inline.h>
1da177e4
LT
34#include <linux/backing-dev.h>
35#include <linux/rmap.h>
36#include <linux/topology.h>
37#include <linux/cpu.h>
38#include <linux/cpuset.h>
3e7d3449 39#include <linux/compaction.h>
1da177e4
LT
40#include <linux/notifier.h>
41#include <linux/rwsem.h>
248a0301 42#include <linux/delay.h>
3218ae14 43#include <linux/kthread.h>
7dfb7103 44#include <linux/freezer.h>
66e1707b 45#include <linux/memcontrol.h>
873b4771 46#include <linux/delayacct.h>
af936a16 47#include <linux/sysctl.h>
929bea7c 48#include <linux/oom.h>
268bb0ce 49#include <linux/prefetch.h>
b1de0d13 50#include <linux/printk.h>
f9fe48be 51#include <linux/dax.h>
1da177e4
LT
52
53#include <asm/tlbflush.h>
54#include <asm/div64.h>
55
56#include <linux/swapops.h>
117aad1e 57#include <linux/balloon_compaction.h>
1da177e4 58
0f8053a5
NP
59#include "internal.h"
60
33906bc5
MG
61#define CREATE_TRACE_POINTS
62#include <trace/events/vmscan.h>
63
1da177e4 64struct scan_control {
22fba335
KM
65 /* How many pages shrink_list() should reclaim */
66 unsigned long nr_to_reclaim;
67
1da177e4 68 /* This context's GFP mask */
6daa0e28 69 gfp_t gfp_mask;
1da177e4 70
ee814fe2 71 /* Allocation order */
5ad333eb 72 int order;
66e1707b 73
ee814fe2
JW
74 /*
75 * Nodemask of nodes allowed by the caller. If NULL, all nodes
76 * are scanned.
77 */
78 nodemask_t *nodemask;
9e3b2f8c 79
f16015fb
JW
80 /*
81 * The memory cgroup that hit its limit and as a result is the
82 * primary target of this reclaim invocation.
83 */
84 struct mem_cgroup *target_mem_cgroup;
66e1707b 85
ee814fe2
JW
86 /* Scan (total_size >> priority) pages at once */
87 int priority;
88
b2e18757
MG
89 /* The highest zone to isolate pages for reclaim from */
90 enum zone_type reclaim_idx;
91
1276ad68 92 /* Writepage batching in laptop mode; RECLAIM_WRITE */
ee814fe2
JW
93 unsigned int may_writepage:1;
94
95 /* Can mapped pages be reclaimed? */
96 unsigned int may_unmap:1;
97
98 /* Can pages be swapped as part of reclaim? */
99 unsigned int may_swap:1;
100
d6622f63
YX
101 /*
102 * Cgroups are not reclaimed below their configured memory.low,
103 * unless we threaten to OOM. If any cgroups are skipped due to
104 * memory.low and nothing was reclaimed, go back for memory.low.
105 */
106 unsigned int memcg_low_reclaim:1;
107 unsigned int memcg_low_skipped:1;
241994ed 108
ee814fe2
JW
109 unsigned int hibernation_mode:1;
110
111 /* One of the zones is ready for compaction */
112 unsigned int compaction_ready:1;
113
114 /* Incremented by the number of inactive pages that were scanned */
115 unsigned long nr_scanned;
116
117 /* Number of pages freed so far during a call to shrink_zones() */
118 unsigned long nr_reclaimed;
1da177e4
LT
119};
120
1da177e4
LT
121#ifdef ARCH_HAS_PREFETCH
122#define prefetch_prev_lru_page(_page, _base, _field) \
123 do { \
124 if ((_page)->lru.prev != _base) { \
125 struct page *prev; \
126 \
127 prev = lru_to_page(&(_page->lru)); \
128 prefetch(&prev->_field); \
129 } \
130 } while (0)
131#else
132#define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
133#endif
134
135#ifdef ARCH_HAS_PREFETCHW
136#define prefetchw_prev_lru_page(_page, _base, _field) \
137 do { \
138 if ((_page)->lru.prev != _base) { \
139 struct page *prev; \
140 \
141 prev = lru_to_page(&(_page->lru)); \
142 prefetchw(&prev->_field); \
143 } \
144 } while (0)
145#else
146#define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
147#endif
148
149/*
150 * From 0 .. 100. Higher means more swappy.
151 */
152int vm_swappiness = 60;
d0480be4
WSH
153/*
154 * The total number of pages which are beyond the high watermark within all
155 * zones.
156 */
157unsigned long vm_total_pages;
1da177e4
LT
158
159static LIST_HEAD(shrinker_list);
160static DECLARE_RWSEM(shrinker_rwsem);
161
c255a458 162#ifdef CONFIG_MEMCG
89b5fae5
JW
163static bool global_reclaim(struct scan_control *sc)
164{
f16015fb 165 return !sc->target_mem_cgroup;
89b5fae5 166}
97c9341f
TH
167
168/**
169 * sane_reclaim - is the usual dirty throttling mechanism operational?
170 * @sc: scan_control in question
171 *
172 * The normal page dirty throttling mechanism in balance_dirty_pages() is
173 * completely broken with the legacy memcg and direct stalling in
174 * shrink_page_list() is used for throttling instead, which lacks all the
175 * niceties such as fairness, adaptive pausing, bandwidth proportional
176 * allocation and configurability.
177 *
178 * This function tests whether the vmscan currently in progress can assume
179 * that the normal dirty throttling mechanism is operational.
180 */
181static bool sane_reclaim(struct scan_control *sc)
182{
183 struct mem_cgroup *memcg = sc->target_mem_cgroup;
184
185 if (!memcg)
186 return true;
187#ifdef CONFIG_CGROUP_WRITEBACK
69234ace 188 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
97c9341f
TH
189 return true;
190#endif
191 return false;
192}
91a45470 193#else
89b5fae5
JW
194static bool global_reclaim(struct scan_control *sc)
195{
196 return true;
197}
97c9341f
TH
198
199static bool sane_reclaim(struct scan_control *sc)
200{
201 return true;
202}
91a45470
KH
203#endif
204
5a1c84b4
MG
205/*
206 * This misses isolated pages which are not accounted for to save counters.
207 * As the data only determines if reclaim or compaction continues, it is
208 * not expected that isolated pages will be a dominating factor.
209 */
210unsigned long zone_reclaimable_pages(struct zone *zone)
211{
212 unsigned long nr;
213
214 nr = zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_FILE) +
215 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_FILE);
216 if (get_nr_swap_pages() > 0)
217 nr += zone_page_state_snapshot(zone, NR_ZONE_INACTIVE_ANON) +
218 zone_page_state_snapshot(zone, NR_ZONE_ACTIVE_ANON);
219
220 return nr;
221}
222
599d0c95
MG
223unsigned long pgdat_reclaimable_pages(struct pglist_data *pgdat)
224{
225 unsigned long nr;
226
227 nr = node_page_state_snapshot(pgdat, NR_ACTIVE_FILE) +
228 node_page_state_snapshot(pgdat, NR_INACTIVE_FILE) +
229 node_page_state_snapshot(pgdat, NR_ISOLATED_FILE);
6e543d57
LD
230
231 if (get_nr_swap_pages() > 0)
599d0c95
MG
232 nr += node_page_state_snapshot(pgdat, NR_ACTIVE_ANON) +
233 node_page_state_snapshot(pgdat, NR_INACTIVE_ANON) +
234 node_page_state_snapshot(pgdat, NR_ISOLATED_ANON);
6e543d57
LD
235
236 return nr;
237}
238
fd538803
MH
239/**
240 * lruvec_lru_size - Returns the number of pages on the given LRU list.
241 * @lruvec: lru vector
242 * @lru: lru to use
243 * @zone_idx: zones to consider (use MAX_NR_ZONES for the whole LRU list)
244 */
245unsigned long lruvec_lru_size(struct lruvec *lruvec, enum lru_list lru, int zone_idx)
c9f299d9 246{
fd538803
MH
247 unsigned long lru_size;
248 int zid;
249
c3c787e8 250 if (!mem_cgroup_disabled())
fd538803
MH
251 lru_size = mem_cgroup_get_lru_size(lruvec, lru);
252 else
253 lru_size = node_page_state(lruvec_pgdat(lruvec), NR_LRU_BASE + lru);
a3d8e054 254
fd538803
MH
255 for (zid = zone_idx + 1; zid < MAX_NR_ZONES; zid++) {
256 struct zone *zone = &lruvec_pgdat(lruvec)->node_zones[zid];
257 unsigned long size;
c9f299d9 258
fd538803
MH
259 if (!managed_zone(zone))
260 continue;
261
262 if (!mem_cgroup_disabled())
263 size = mem_cgroup_get_zone_lru_size(lruvec, lru, zid);
264 else
265 size = zone_page_state(&lruvec_pgdat(lruvec)->node_zones[zid],
266 NR_ZONE_LRU_BASE + lru);
267 lru_size -= min(size, lru_size);
268 }
269
270 return lru_size;
b4536f0c 271
b4536f0c
MH
272}
273
1da177e4 274/*
1d3d4437 275 * Add a shrinker callback to be called from the vm.
1da177e4 276 */
7632554f 277int prealloc_shrinker(struct shrinker *shrinker)
1da177e4 278{
1d3d4437
GC
279 size_t size = sizeof(*shrinker->nr_deferred);
280
1d3d4437
GC
281 if (shrinker->flags & SHRINKER_NUMA_AWARE)
282 size *= nr_node_ids;
283
284 shrinker->nr_deferred = kzalloc(size, GFP_KERNEL);
285 if (!shrinker->nr_deferred)
286 return -ENOMEM;
7632554f
TH
287 return 0;
288}
289
290void free_prealloced_shrinker(struct shrinker *shrinker)
291{
292 kfree(shrinker->nr_deferred);
293 shrinker->nr_deferred = NULL;
294}
1d3d4437 295
7632554f
TH
296void register_shrinker_prepared(struct shrinker *shrinker)
297{
8e1f936b
RR
298 down_write(&shrinker_rwsem);
299 list_add_tail(&shrinker->list, &shrinker_list);
300 up_write(&shrinker_rwsem);
7632554f
TH
301}
302
303int register_shrinker(struct shrinker *shrinker)
304{
305 int err = prealloc_shrinker(shrinker);
306
307 if (err)
308 return err;
309 register_shrinker_prepared(shrinker);
1d3d4437 310 return 0;
1da177e4 311}
8e1f936b 312EXPORT_SYMBOL(register_shrinker);
1da177e4
LT
313
314/*
315 * Remove one
316 */
8e1f936b 317void unregister_shrinker(struct shrinker *shrinker)
1da177e4 318{
bb422a73
TH
319 if (!shrinker->nr_deferred)
320 return;
1da177e4
LT
321 down_write(&shrinker_rwsem);
322 list_del(&shrinker->list);
323 up_write(&shrinker_rwsem);
ae393321 324 kfree(shrinker->nr_deferred);
bb422a73 325 shrinker->nr_deferred = NULL;
1da177e4 326}
8e1f936b 327EXPORT_SYMBOL(unregister_shrinker);
1da177e4
LT
328
329#define SHRINK_BATCH 128
1d3d4437 330
cb731d6c
VD
331static unsigned long do_shrink_slab(struct shrink_control *shrinkctl,
332 struct shrinker *shrinker,
333 unsigned long nr_scanned,
334 unsigned long nr_eligible)
1d3d4437
GC
335{
336 unsigned long freed = 0;
337 unsigned long long delta;
338 long total_scan;
d5bc5fd3 339 long freeable;
1d3d4437
GC
340 long nr;
341 long new_nr;
342 int nid = shrinkctl->nid;
343 long batch_size = shrinker->batch ? shrinker->batch
344 : SHRINK_BATCH;
5f33a080 345 long scanned = 0, next_deferred;
1d3d4437 346
d5bc5fd3
VD
347 freeable = shrinker->count_objects(shrinker, shrinkctl);
348 if (freeable == 0)
1d3d4437
GC
349 return 0;
350
351 /*
352 * copy the current shrinker scan count into a local variable
353 * and zero it so that other concurrent shrinker invocations
354 * don't also do this scanning work.
355 */
356 nr = atomic_long_xchg(&shrinker->nr_deferred[nid], 0);
357
358 total_scan = nr;
6b4f7799 359 delta = (4 * nr_scanned) / shrinker->seeks;
d5bc5fd3 360 delta *= freeable;
6b4f7799 361 do_div(delta, nr_eligible + 1);
1d3d4437
GC
362 total_scan += delta;
363 if (total_scan < 0) {
8612c663 364 pr_err("shrink_slab: %pF negative objects to delete nr=%ld\n",
a0b02131 365 shrinker->scan_objects, total_scan);
d5bc5fd3 366 total_scan = freeable;
5f33a080
SL
367 next_deferred = nr;
368 } else
369 next_deferred = total_scan;
1d3d4437
GC
370
371 /*
372 * We need to avoid excessive windup on filesystem shrinkers
373 * due to large numbers of GFP_NOFS allocations causing the
374 * shrinkers to return -1 all the time. This results in a large
375 * nr being built up so when a shrink that can do some work
376 * comes along it empties the entire cache due to nr >>>
d5bc5fd3 377 * freeable. This is bad for sustaining a working set in
1d3d4437
GC
378 * memory.
379 *
380 * Hence only allow the shrinker to scan the entire cache when
381 * a large delta change is calculated directly.
382 */
d5bc5fd3
VD
383 if (delta < freeable / 4)
384 total_scan = min(total_scan, freeable / 2);
1d3d4437
GC
385
386 /*
387 * Avoid risking looping forever due to too large nr value:
388 * never try to free more than twice the estimate number of
389 * freeable entries.
390 */
d5bc5fd3
VD
391 if (total_scan > freeable * 2)
392 total_scan = freeable * 2;
1d3d4437
GC
393
394 trace_mm_shrink_slab_start(shrinker, shrinkctl, nr,
6b4f7799
JW
395 nr_scanned, nr_eligible,
396 freeable, delta, total_scan);
1d3d4437 397
0b1fb40a
VD
398 /*
399 * Normally, we should not scan less than batch_size objects in one
400 * pass to avoid too frequent shrinker calls, but if the slab has less
401 * than batch_size objects in total and we are really tight on memory,
402 * we will try to reclaim all available objects, otherwise we can end
403 * up failing allocations although there are plenty of reclaimable
404 * objects spread over several slabs with usage less than the
405 * batch_size.
406 *
407 * We detect the "tight on memory" situations by looking at the total
408 * number of objects we want to scan (total_scan). If it is greater
d5bc5fd3 409 * than the total number of objects on slab (freeable), we must be
0b1fb40a
VD
410 * scanning at high prio and therefore should try to reclaim as much as
411 * possible.
412 */
413 while (total_scan >= batch_size ||
d5bc5fd3 414 total_scan >= freeable) {
a0b02131 415 unsigned long ret;
0b1fb40a 416 unsigned long nr_to_scan = min(batch_size, total_scan);
1d3d4437 417
0b1fb40a 418 shrinkctl->nr_to_scan = nr_to_scan;
d460acb5 419 shrinkctl->nr_scanned = nr_to_scan;
a0b02131
DC
420 ret = shrinker->scan_objects(shrinker, shrinkctl);
421 if (ret == SHRINK_STOP)
422 break;
423 freed += ret;
1d3d4437 424
d460acb5
CW
425 count_vm_events(SLABS_SCANNED, shrinkctl->nr_scanned);
426 total_scan -= shrinkctl->nr_scanned;
427 scanned += shrinkctl->nr_scanned;
1d3d4437
GC
428
429 cond_resched();
430 }
431
5f33a080
SL
432 if (next_deferred >= scanned)
433 next_deferred -= scanned;
434 else
435 next_deferred = 0;
1d3d4437
GC
436 /*
437 * move the unused scan count back into the shrinker in a
438 * manner that handles concurrent updates. If we exhausted the
439 * scan, there is no need to do an update.
440 */
5f33a080
SL
441 if (next_deferred > 0)
442 new_nr = atomic_long_add_return(next_deferred,
1d3d4437
GC
443 &shrinker->nr_deferred[nid]);
444 else
445 new_nr = atomic_long_read(&shrinker->nr_deferred[nid]);
446
df9024a8 447 trace_mm_shrink_slab_end(shrinker, nid, freed, nr, new_nr, total_scan);
1d3d4437 448 return freed;
1495f230
YH
449}
450
6b4f7799 451/**
cb731d6c 452 * shrink_slab - shrink slab caches
6b4f7799
JW
453 * @gfp_mask: allocation context
454 * @nid: node whose slab caches to target
cb731d6c 455 * @memcg: memory cgroup whose slab caches to target
6b4f7799
JW
456 * @nr_scanned: pressure numerator
457 * @nr_eligible: pressure denominator
1da177e4 458 *
6b4f7799 459 * Call the shrink functions to age shrinkable caches.
1da177e4 460 *
6b4f7799
JW
461 * @nid is passed along to shrinkers with SHRINKER_NUMA_AWARE set,
462 * unaware shrinkers will receive a node id of 0 instead.
1da177e4 463 *
cb731d6c
VD
464 * @memcg specifies the memory cgroup to target. If it is not NULL,
465 * only shrinkers with SHRINKER_MEMCG_AWARE set will be called to scan
0fc9f58a
VD
466 * objects from the memory cgroup specified. Otherwise, only unaware
467 * shrinkers are called.
cb731d6c 468 *
6b4f7799
JW
469 * @nr_scanned and @nr_eligible form a ratio that indicate how much of
470 * the available objects should be scanned. Page reclaim for example
471 * passes the number of pages scanned and the number of pages on the
472 * LRU lists that it considered on @nid, plus a bias in @nr_scanned
473 * when it encountered mapped pages. The ratio is further biased by
474 * the ->seeks setting of the shrink function, which indicates the
475 * cost to recreate an object relative to that of an LRU page.
b15e0905 476 *
6b4f7799 477 * Returns the number of reclaimed slab objects.
1da177e4 478 */
cb731d6c
VD
479static unsigned long shrink_slab(gfp_t gfp_mask, int nid,
480 struct mem_cgroup *memcg,
481 unsigned long nr_scanned,
482 unsigned long nr_eligible)
1da177e4
LT
483{
484 struct shrinker *shrinker;
24f7c6b9 485 unsigned long freed = 0;
1da177e4 486
0fc9f58a 487 if (memcg && (!memcg_kmem_enabled() || !mem_cgroup_online(memcg)))
cb731d6c
VD
488 return 0;
489
6b4f7799
JW
490 if (nr_scanned == 0)
491 nr_scanned = SWAP_CLUSTER_MAX;
1da177e4 492
f06590bd 493 if (!down_read_trylock(&shrinker_rwsem)) {
24f7c6b9
DC
494 /*
495 * If we would return 0, our callers would understand that we
496 * have nothing else to shrink and give up trying. By returning
497 * 1 we keep it going and assume we'll be able to shrink next
498 * time.
499 */
500 freed = 1;
f06590bd
MK
501 goto out;
502 }
1da177e4
LT
503
504 list_for_each_entry(shrinker, &shrinker_list, list) {
6b4f7799
JW
505 struct shrink_control sc = {
506 .gfp_mask = gfp_mask,
507 .nid = nid,
cb731d6c 508 .memcg = memcg,
6b4f7799 509 };
ec97097b 510
0fc9f58a
VD
511 /*
512 * If kernel memory accounting is disabled, we ignore
513 * SHRINKER_MEMCG_AWARE flag and call all shrinkers
514 * passing NULL for memcg.
515 */
516 if (memcg_kmem_enabled() &&
517 !!memcg != !!(shrinker->flags & SHRINKER_MEMCG_AWARE))
cb731d6c
VD
518 continue;
519
6b4f7799
JW
520 if (!(shrinker->flags & SHRINKER_NUMA_AWARE))
521 sc.nid = 0;
1da177e4 522
cb731d6c 523 freed += do_shrink_slab(&sc, shrinker, nr_scanned, nr_eligible);
8daa5773
MK
524 /*
525 * Bail out if someone want to register a new shrinker to
526 * prevent the regsitration from being stalled for long periods
527 * by parallel ongoing shrinking.
528 */
529 if (rwsem_is_contended(&shrinker_rwsem)) {
530 freed = freed ? : 1;
531 break;
532 }
1da177e4 533 }
6b4f7799 534
1da177e4 535 up_read(&shrinker_rwsem);
f06590bd
MK
536out:
537 cond_resched();
24f7c6b9 538 return freed;
1da177e4
LT
539}
540
cb731d6c
VD
541void drop_slab_node(int nid)
542{
543 unsigned long freed;
544
545 do {
546 struct mem_cgroup *memcg = NULL;
547
548 freed = 0;
549 do {
550 freed += shrink_slab(GFP_KERNEL, nid, memcg,
551 1000, 1000);
552 } while ((memcg = mem_cgroup_iter(NULL, memcg, NULL)) != NULL);
553 } while (freed > 10);
554}
555
556void drop_slab(void)
557{
558 int nid;
559
560 for_each_online_node(nid)
561 drop_slab_node(nid);
562}
563
1da177e4
LT
564static inline int is_page_cache_freeable(struct page *page)
565{
ceddc3a5
JW
566 /*
567 * A freeable page cache page is referenced only by the caller
568 * that isolated the page, the page cache radix tree and
569 * optional buffer heads at page->private.
570 */
bd4c82c2
HY
571 int radix_pins = PageTransHuge(page) && PageSwapCache(page) ?
572 HPAGE_PMD_NR : 1;
573 return page_count(page) - page_has_private(page) == 1 + radix_pins;
1da177e4
LT
574}
575
703c2708 576static int may_write_to_inode(struct inode *inode, struct scan_control *sc)
1da177e4 577{
930d9152 578 if (current->flags & PF_SWAPWRITE)
1da177e4 579 return 1;
703c2708 580 if (!inode_write_congested(inode))
1da177e4 581 return 1;
703c2708 582 if (inode_to_bdi(inode) == current->backing_dev_info)
1da177e4
LT
583 return 1;
584 return 0;
585}
586
587/*
588 * We detected a synchronous write error writing a page out. Probably
589 * -ENOSPC. We need to propagate that into the address_space for a subsequent
590 * fsync(), msync() or close().
591 *
592 * The tricky part is that after writepage we cannot touch the mapping: nothing
593 * prevents it from being freed up. But we have a ref on the page and once
594 * that page is locked, the mapping is pinned.
595 *
596 * We're allowed to run sleeping lock_page() here because we know the caller has
597 * __GFP_FS.
598 */
599static void handle_write_error(struct address_space *mapping,
600 struct page *page, int error)
601{
7eaceacc 602 lock_page(page);
3e9f45bd
GC
603 if (page_mapping(page) == mapping)
604 mapping_set_error(mapping, error);
1da177e4
LT
605 unlock_page(page);
606}
607
04e62a29
CL
608/* possible outcome of pageout() */
609typedef enum {
610 /* failed to write page out, page is locked */
611 PAGE_KEEP,
612 /* move page to the active list, page is locked */
613 PAGE_ACTIVATE,
614 /* page has been sent to the disk successfully, page is unlocked */
615 PAGE_SUCCESS,
616 /* page is clean and locked */
617 PAGE_CLEAN,
618} pageout_t;
619
1da177e4 620/*
1742f19f
AM
621 * pageout is called by shrink_page_list() for each dirty page.
622 * Calls ->writepage().
1da177e4 623 */
c661b078 624static pageout_t pageout(struct page *page, struct address_space *mapping,
7d3579e8 625 struct scan_control *sc)
1da177e4
LT
626{
627 /*
628 * If the page is dirty, only perform writeback if that write
629 * will be non-blocking. To prevent this allocation from being
630 * stalled by pagecache activity. But note that there may be
631 * stalls if we need to run get_block(). We could test
632 * PagePrivate for that.
633 *
8174202b 634 * If this process is currently in __generic_file_write_iter() against
1da177e4
LT
635 * this page's queue, we can perform writeback even if that
636 * will block.
637 *
638 * If the page is swapcache, write it back even if that would
639 * block, for some throttling. This happens by accident, because
640 * swap_backing_dev_info is bust: it doesn't reflect the
641 * congestion state of the swapdevs. Easy to fix, if needed.
1da177e4
LT
642 */
643 if (!is_page_cache_freeable(page))
644 return PAGE_KEEP;
645 if (!mapping) {
646 /*
647 * Some data journaling orphaned pages can have
648 * page->mapping == NULL while being dirty with clean buffers.
649 */
266cf658 650 if (page_has_private(page)) {
1da177e4
LT
651 if (try_to_free_buffers(page)) {
652 ClearPageDirty(page);
b1de0d13 653 pr_info("%s: orphaned page\n", __func__);
1da177e4
LT
654 return PAGE_CLEAN;
655 }
656 }
657 return PAGE_KEEP;
658 }
659 if (mapping->a_ops->writepage == NULL)
660 return PAGE_ACTIVATE;
703c2708 661 if (!may_write_to_inode(mapping->host, sc))
1da177e4
LT
662 return PAGE_KEEP;
663
664 if (clear_page_dirty_for_io(page)) {
665 int res;
666 struct writeback_control wbc = {
667 .sync_mode = WB_SYNC_NONE,
668 .nr_to_write = SWAP_CLUSTER_MAX,
111ebb6e
OH
669 .range_start = 0,
670 .range_end = LLONG_MAX,
1da177e4
LT
671 .for_reclaim = 1,
672 };
673
674 SetPageReclaim(page);
675 res = mapping->a_ops->writepage(page, &wbc);
676 if (res < 0)
677 handle_write_error(mapping, page, res);
994fc28c 678 if (res == AOP_WRITEPAGE_ACTIVATE) {
1da177e4
LT
679 ClearPageReclaim(page);
680 return PAGE_ACTIVATE;
681 }
c661b078 682
1da177e4
LT
683 if (!PageWriteback(page)) {
684 /* synchronous write or broken a_ops? */
685 ClearPageReclaim(page);
686 }
3aa23851 687 trace_mm_vmscan_writepage(page);
c4a25635 688 inc_node_page_state(page, NR_VMSCAN_WRITE);
1da177e4
LT
689 return PAGE_SUCCESS;
690 }
691
692 return PAGE_CLEAN;
693}
694
a649fd92 695/*
e286781d
NP
696 * Same as remove_mapping, but if the page is removed from the mapping, it
697 * gets returned with a refcount of 0.
a649fd92 698 */
a528910e
JW
699static int __remove_mapping(struct address_space *mapping, struct page *page,
700 bool reclaimed)
49d2e9cc 701{
c4843a75 702 unsigned long flags;
bd4c82c2 703 int refcount;
c4843a75 704
28e4d965
NP
705 BUG_ON(!PageLocked(page));
706 BUG_ON(mapping != page_mapping(page));
49d2e9cc 707
c4843a75 708 spin_lock_irqsave(&mapping->tree_lock, flags);
49d2e9cc 709 /*
0fd0e6b0
NP
710 * The non racy check for a busy page.
711 *
712 * Must be careful with the order of the tests. When someone has
713 * a ref to the page, it may be possible that they dirty it then
714 * drop the reference. So if PageDirty is tested before page_count
715 * here, then the following race may occur:
716 *
717 * get_user_pages(&page);
718 * [user mapping goes away]
719 * write_to(page);
720 * !PageDirty(page) [good]
721 * SetPageDirty(page);
722 * put_page(page);
723 * !page_count(page) [good, discard it]
724 *
725 * [oops, our write_to data is lost]
726 *
727 * Reversing the order of the tests ensures such a situation cannot
728 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
0139aa7b 729 * load is not satisfied before that of page->_refcount.
0fd0e6b0
NP
730 *
731 * Note that if SetPageDirty is always performed via set_page_dirty,
732 * and thus under tree_lock, then this ordering is not required.
49d2e9cc 733 */
bd4c82c2
HY
734 if (unlikely(PageTransHuge(page)) && PageSwapCache(page))
735 refcount = 1 + HPAGE_PMD_NR;
736 else
737 refcount = 2;
738 if (!page_ref_freeze(page, refcount))
49d2e9cc 739 goto cannot_free;
e286781d
NP
740 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
741 if (unlikely(PageDirty(page))) {
bd4c82c2 742 page_ref_unfreeze(page, refcount);
49d2e9cc 743 goto cannot_free;
e286781d 744 }
49d2e9cc
CL
745
746 if (PageSwapCache(page)) {
747 swp_entry_t swap = { .val = page_private(page) };
0a31bc97 748 mem_cgroup_swapout(page, swap);
49d2e9cc 749 __delete_from_swap_cache(page);
c4843a75 750 spin_unlock_irqrestore(&mapping->tree_lock, flags);
75f6d6d2 751 put_swap_page(page, swap);
e286781d 752 } else {
6072d13c 753 void (*freepage)(struct page *);
a528910e 754 void *shadow = NULL;
6072d13c
LT
755
756 freepage = mapping->a_ops->freepage;
a528910e
JW
757 /*
758 * Remember a shadow entry for reclaimed file cache in
759 * order to detect refaults, thus thrashing, later on.
760 *
761 * But don't store shadows in an address space that is
762 * already exiting. This is not just an optizimation,
763 * inode reclaim needs to empty out the radix tree or
764 * the nodes are lost. Don't plant shadows behind its
765 * back.
f9fe48be
RZ
766 *
767 * We also don't store shadows for DAX mappings because the
768 * only page cache pages found in these are zero pages
769 * covering holes, and because we don't want to mix DAX
770 * exceptional entries and shadow exceptional entries in the
771 * same page_tree.
a528910e
JW
772 */
773 if (reclaimed && page_is_file_cache(page) &&
f9fe48be 774 !mapping_exiting(mapping) && !dax_mapping(mapping))
a528910e 775 shadow = workingset_eviction(mapping, page);
62cccb8c 776 __delete_from_page_cache(page, shadow);
c4843a75 777 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
778
779 if (freepage != NULL)
780 freepage(page);
49d2e9cc
CL
781 }
782
49d2e9cc
CL
783 return 1;
784
785cannot_free:
c4843a75 786 spin_unlock_irqrestore(&mapping->tree_lock, flags);
49d2e9cc
CL
787 return 0;
788}
789
e286781d
NP
790/*
791 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
792 * someone else has a ref on the page, abort and return 0. If it was
793 * successfully detached, return 1. Assumes the caller has a single ref on
794 * this page.
795 */
796int remove_mapping(struct address_space *mapping, struct page *page)
797{
a528910e 798 if (__remove_mapping(mapping, page, false)) {
e286781d
NP
799 /*
800 * Unfreezing the refcount with 1 rather than 2 effectively
801 * drops the pagecache ref for us without requiring another
802 * atomic operation.
803 */
fe896d18 804 page_ref_unfreeze(page, 1);
e286781d
NP
805 return 1;
806 }
807 return 0;
808}
809
894bc310
LS
810/**
811 * putback_lru_page - put previously isolated page onto appropriate LRU list
812 * @page: page to be put back to appropriate lru list
813 *
814 * Add previously isolated @page to appropriate LRU list.
815 * Page may still be unevictable for other reasons.
816 *
817 * lru_lock must not be held, interrupts must be enabled.
818 */
894bc310
LS
819void putback_lru_page(struct page *page)
820{
0ec3b74c 821 bool is_unevictable;
bbfd28ee 822 int was_unevictable = PageUnevictable(page);
894bc310 823
309381fe 824 VM_BUG_ON_PAGE(PageLRU(page), page);
894bc310
LS
825
826redo:
827 ClearPageUnevictable(page);
828
39b5f29a 829 if (page_evictable(page)) {
894bc310
LS
830 /*
831 * For evictable pages, we can use the cache.
832 * In event of a race, worst case is we end up with an
833 * unevictable page on [in]active list.
834 * We know how to handle that.
835 */
0ec3b74c 836 is_unevictable = false;
c53954a0 837 lru_cache_add(page);
894bc310
LS
838 } else {
839 /*
840 * Put unevictable pages directly on zone's unevictable
841 * list.
842 */
0ec3b74c 843 is_unevictable = true;
894bc310 844 add_page_to_unevictable_list(page);
6a7b9548 845 /*
21ee9f39
MK
846 * When racing with an mlock or AS_UNEVICTABLE clearing
847 * (page is unlocked) make sure that if the other thread
848 * does not observe our setting of PG_lru and fails
24513264 849 * isolation/check_move_unevictable_pages,
21ee9f39 850 * we see PG_mlocked/AS_UNEVICTABLE cleared below and move
6a7b9548
JW
851 * the page back to the evictable list.
852 *
21ee9f39 853 * The other side is TestClearPageMlocked() or shmem_lock().
6a7b9548
JW
854 */
855 smp_mb();
894bc310 856 }
894bc310
LS
857
858 /*
859 * page's status can change while we move it among lru. If an evictable
860 * page is on unevictable list, it never be freed. To avoid that,
861 * check after we added it to the list, again.
862 */
0ec3b74c 863 if (is_unevictable && page_evictable(page)) {
894bc310
LS
864 if (!isolate_lru_page(page)) {
865 put_page(page);
866 goto redo;
867 }
868 /* This means someone else dropped this page from LRU
869 * So, it will be freed or putback to LRU again. There is
870 * nothing to do here.
871 */
872 }
873
0ec3b74c 874 if (was_unevictable && !is_unevictable)
bbfd28ee 875 count_vm_event(UNEVICTABLE_PGRESCUED);
0ec3b74c 876 else if (!was_unevictable && is_unevictable)
bbfd28ee
LS
877 count_vm_event(UNEVICTABLE_PGCULLED);
878
894bc310
LS
879 put_page(page); /* drop ref from isolate */
880}
881
dfc8d636
JW
882enum page_references {
883 PAGEREF_RECLAIM,
884 PAGEREF_RECLAIM_CLEAN,
64574746 885 PAGEREF_KEEP,
dfc8d636
JW
886 PAGEREF_ACTIVATE,
887};
888
889static enum page_references page_check_references(struct page *page,
890 struct scan_control *sc)
891{
64574746 892 int referenced_ptes, referenced_page;
dfc8d636 893 unsigned long vm_flags;
dfc8d636 894
c3ac9a8a
JW
895 referenced_ptes = page_referenced(page, 1, sc->target_mem_cgroup,
896 &vm_flags);
64574746 897 referenced_page = TestClearPageReferenced(page);
dfc8d636 898
dfc8d636
JW
899 /*
900 * Mlock lost the isolation race with us. Let try_to_unmap()
901 * move the page to the unevictable list.
902 */
903 if (vm_flags & VM_LOCKED)
904 return PAGEREF_RECLAIM;
905
64574746 906 if (referenced_ptes) {
e4898273 907 if (PageSwapBacked(page))
64574746
JW
908 return PAGEREF_ACTIVATE;
909 /*
910 * All mapped pages start out with page table
911 * references from the instantiating fault, so we need
912 * to look twice if a mapped file page is used more
913 * than once.
914 *
915 * Mark it and spare it for another trip around the
916 * inactive list. Another page table reference will
917 * lead to its activation.
918 *
919 * Note: the mark is set for activated pages as well
920 * so that recently deactivated but used pages are
921 * quickly recovered.
922 */
923 SetPageReferenced(page);
924
34dbc67a 925 if (referenced_page || referenced_ptes > 1)
64574746
JW
926 return PAGEREF_ACTIVATE;
927
c909e993
KK
928 /*
929 * Activate file-backed executable pages after first usage.
930 */
931 if (vm_flags & VM_EXEC)
932 return PAGEREF_ACTIVATE;
933
64574746
JW
934 return PAGEREF_KEEP;
935 }
dfc8d636
JW
936
937 /* Reclaim if clean, defer dirty pages to writeback */
2e30244a 938 if (referenced_page && !PageSwapBacked(page))
64574746
JW
939 return PAGEREF_RECLAIM_CLEAN;
940
941 return PAGEREF_RECLAIM;
dfc8d636
JW
942}
943
e2be15f6
MG
944/* Check if a page is dirty or under writeback */
945static void page_check_dirty_writeback(struct page *page,
946 bool *dirty, bool *writeback)
947{
b4597226
MG
948 struct address_space *mapping;
949
e2be15f6
MG
950 /*
951 * Anonymous pages are not handled by flushers and must be written
952 * from reclaim context. Do not stall reclaim based on them
953 */
802a3a92
SL
954 if (!page_is_file_cache(page) ||
955 (PageAnon(page) && !PageSwapBacked(page))) {
e2be15f6
MG
956 *dirty = false;
957 *writeback = false;
958 return;
959 }
960
961 /* By default assume that the page flags are accurate */
962 *dirty = PageDirty(page);
963 *writeback = PageWriteback(page);
b4597226
MG
964
965 /* Verify dirty/writeback state if the filesystem supports it */
966 if (!page_has_private(page))
967 return;
968
969 mapping = page_mapping(page);
970 if (mapping && mapping->a_ops->is_dirty_writeback)
971 mapping->a_ops->is_dirty_writeback(page, dirty, writeback);
e2be15f6
MG
972}
973
3c710c1a
MH
974struct reclaim_stat {
975 unsigned nr_dirty;
976 unsigned nr_unqueued_dirty;
977 unsigned nr_congested;
978 unsigned nr_writeback;
979 unsigned nr_immediate;
5bccd166
MH
980 unsigned nr_activate;
981 unsigned nr_ref_keep;
982 unsigned nr_unmap_fail;
3c710c1a
MH
983};
984
1da177e4 985/*
1742f19f 986 * shrink_page_list() returns the number of reclaimed pages
1da177e4 987 */
1742f19f 988static unsigned long shrink_page_list(struct list_head *page_list,
599d0c95 989 struct pglist_data *pgdat,
f84f6e2b 990 struct scan_control *sc,
02c6de8d 991 enum ttu_flags ttu_flags,
3c710c1a 992 struct reclaim_stat *stat,
02c6de8d 993 bool force_reclaim)
1da177e4
LT
994{
995 LIST_HEAD(ret_pages);
abe4c3b5 996 LIST_HEAD(free_pages);
1da177e4 997 int pgactivate = 0;
3c710c1a
MH
998 unsigned nr_unqueued_dirty = 0;
999 unsigned nr_dirty = 0;
1000 unsigned nr_congested = 0;
1001 unsigned nr_reclaimed = 0;
1002 unsigned nr_writeback = 0;
1003 unsigned nr_immediate = 0;
5bccd166
MH
1004 unsigned nr_ref_keep = 0;
1005 unsigned nr_unmap_fail = 0;
1da177e4
LT
1006
1007 cond_resched();
1008
1da177e4
LT
1009 while (!list_empty(page_list)) {
1010 struct address_space *mapping;
1011 struct page *page;
1012 int may_enter_fs;
02c6de8d 1013 enum page_references references = PAGEREF_RECLAIM_CLEAN;
e2be15f6 1014 bool dirty, writeback;
1da177e4
LT
1015
1016 cond_resched();
1017
1018 page = lru_to_page(page_list);
1019 list_del(&page->lru);
1020
529ae9aa 1021 if (!trylock_page(page))
1da177e4
LT
1022 goto keep;
1023
309381fe 1024 VM_BUG_ON_PAGE(PageActive(page), page);
1da177e4
LT
1025
1026 sc->nr_scanned++;
80e43426 1027
39b5f29a 1028 if (unlikely(!page_evictable(page)))
ad6b6704 1029 goto activate_locked;
894bc310 1030
a6dc60f8 1031 if (!sc->may_unmap && page_mapped(page))
80e43426
CL
1032 goto keep_locked;
1033
1da177e4 1034 /* Double the slab pressure for mapped and swapcache pages */
802a3a92
SL
1035 if ((page_mapped(page) || PageSwapCache(page)) &&
1036 !(PageAnon(page) && !PageSwapBacked(page)))
1da177e4
LT
1037 sc->nr_scanned++;
1038
c661b078
AW
1039 may_enter_fs = (sc->gfp_mask & __GFP_FS) ||
1040 (PageSwapCache(page) && (sc->gfp_mask & __GFP_IO));
1041
e2be15f6
MG
1042 /*
1043 * The number of dirty pages determines if a zone is marked
1044 * reclaim_congested which affects wait_iff_congested. kswapd
1045 * will stall and start writing pages if the tail of the LRU
1046 * is all dirty unqueued pages.
1047 */
1048 page_check_dirty_writeback(page, &dirty, &writeback);
1049 if (dirty || writeback)
1050 nr_dirty++;
1051
1052 if (dirty && !writeback)
1053 nr_unqueued_dirty++;
1054
d04e8acd
MG
1055 /*
1056 * Treat this page as congested if the underlying BDI is or if
1057 * pages are cycling through the LRU so quickly that the
1058 * pages marked for immediate reclaim are making it to the
1059 * end of the LRU a second time.
1060 */
e2be15f6 1061 mapping = page_mapping(page);
1da58ee2 1062 if (((dirty || writeback) && mapping &&
703c2708 1063 inode_write_congested(mapping->host)) ||
d04e8acd 1064 (writeback && PageReclaim(page)))
e2be15f6
MG
1065 nr_congested++;
1066
283aba9f
MG
1067 /*
1068 * If a page at the tail of the LRU is under writeback, there
1069 * are three cases to consider.
1070 *
1071 * 1) If reclaim is encountering an excessive number of pages
1072 * under writeback and this page is both under writeback and
1073 * PageReclaim then it indicates that pages are being queued
1074 * for IO but are being recycled through the LRU before the
1075 * IO can complete. Waiting on the page itself risks an
1076 * indefinite stall if it is impossible to writeback the
1077 * page due to IO error or disconnected storage so instead
b1a6f21e
MG
1078 * note that the LRU is being scanned too quickly and the
1079 * caller can stall after page list has been processed.
283aba9f 1080 *
97c9341f 1081 * 2) Global or new memcg reclaim encounters a page that is
ecf5fc6e
MH
1082 * not marked for immediate reclaim, or the caller does not
1083 * have __GFP_FS (or __GFP_IO if it's simply going to swap,
1084 * not to fs). In this case mark the page for immediate
97c9341f 1085 * reclaim and continue scanning.
283aba9f 1086 *
ecf5fc6e
MH
1087 * Require may_enter_fs because we would wait on fs, which
1088 * may not have submitted IO yet. And the loop driver might
283aba9f
MG
1089 * enter reclaim, and deadlock if it waits on a page for
1090 * which it is needed to do the write (loop masks off
1091 * __GFP_IO|__GFP_FS for this reason); but more thought
1092 * would probably show more reasons.
1093 *
7fadc820 1094 * 3) Legacy memcg encounters a page that is already marked
283aba9f
MG
1095 * PageReclaim. memcg does not have any dirty pages
1096 * throttling so we could easily OOM just because too many
1097 * pages are in writeback and there is nothing else to
1098 * reclaim. Wait for the writeback to complete.
c55e8d03
JW
1099 *
1100 * In cases 1) and 2) we activate the pages to get them out of
1101 * the way while we continue scanning for clean pages on the
1102 * inactive list and refilling from the active list. The
1103 * observation here is that waiting for disk writes is more
1104 * expensive than potentially causing reloads down the line.
1105 * Since they're marked for immediate reclaim, they won't put
1106 * memory pressure on the cache working set any longer than it
1107 * takes to write them to disk.
283aba9f 1108 */
c661b078 1109 if (PageWriteback(page)) {
283aba9f
MG
1110 /* Case 1 above */
1111 if (current_is_kswapd() &&
1112 PageReclaim(page) &&
599d0c95 1113 test_bit(PGDAT_WRITEBACK, &pgdat->flags)) {
b1a6f21e 1114 nr_immediate++;
c55e8d03 1115 goto activate_locked;
283aba9f
MG
1116
1117 /* Case 2 above */
97c9341f 1118 } else if (sane_reclaim(sc) ||
ecf5fc6e 1119 !PageReclaim(page) || !may_enter_fs) {
c3b94f44
HD
1120 /*
1121 * This is slightly racy - end_page_writeback()
1122 * might have just cleared PageReclaim, then
1123 * setting PageReclaim here end up interpreted
1124 * as PageReadahead - but that does not matter
1125 * enough to care. What we do want is for this
1126 * page to have PageReclaim set next time memcg
1127 * reclaim reaches the tests above, so it will
1128 * then wait_on_page_writeback() to avoid OOM;
1129 * and it's also appropriate in global reclaim.
1130 */
1131 SetPageReclaim(page);
e62e384e 1132 nr_writeback++;
c55e8d03 1133 goto activate_locked;
283aba9f
MG
1134
1135 /* Case 3 above */
1136 } else {
7fadc820 1137 unlock_page(page);
283aba9f 1138 wait_on_page_writeback(page);
7fadc820
HD
1139 /* then go back and try same page again */
1140 list_add_tail(&page->lru, page_list);
1141 continue;
e62e384e 1142 }
c661b078 1143 }
1da177e4 1144
02c6de8d
MK
1145 if (!force_reclaim)
1146 references = page_check_references(page, sc);
1147
dfc8d636
JW
1148 switch (references) {
1149 case PAGEREF_ACTIVATE:
1da177e4 1150 goto activate_locked;
64574746 1151 case PAGEREF_KEEP:
5bccd166 1152 nr_ref_keep++;
64574746 1153 goto keep_locked;
dfc8d636
JW
1154 case PAGEREF_RECLAIM:
1155 case PAGEREF_RECLAIM_CLEAN:
1156 ; /* try to reclaim the page below */
1157 }
1da177e4 1158
1da177e4
LT
1159 /*
1160 * Anonymous process memory has backing store?
1161 * Try to allocate it some swap space here.
802a3a92 1162 * Lazyfree page could be freed directly
1da177e4 1163 */
bd4c82c2
HY
1164 if (PageAnon(page) && PageSwapBacked(page)) {
1165 if (!PageSwapCache(page)) {
1166 if (!(sc->gfp_mask & __GFP_IO))
1167 goto keep_locked;
1168 if (PageTransHuge(page)) {
1169 /* cannot split THP, skip it */
1170 if (!can_split_huge_page(page, NULL))
1171 goto activate_locked;
1172 /*
1173 * Split pages without a PMD map right
1174 * away. Chances are some or all of the
1175 * tail pages can be freed without IO.
1176 */
1177 if (!compound_mapcount(page) &&
1178 split_huge_page_to_list(page,
1179 page_list))
1180 goto activate_locked;
1181 }
1182 if (!add_to_swap(page)) {
1183 if (!PageTransHuge(page))
1184 goto activate_locked;
1185 /* Fallback to swap normal pages */
1186 if (split_huge_page_to_list(page,
1187 page_list))
1188 goto activate_locked;
fe490cc0
HY
1189#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1190 count_vm_event(THP_SWPOUT_FALLBACK);
1191#endif
bd4c82c2
HY
1192 if (!add_to_swap(page))
1193 goto activate_locked;
1194 }
0f074658 1195
bd4c82c2 1196 may_enter_fs = 1;
1da177e4 1197
bd4c82c2
HY
1198 /* Adding to swap updated mapping */
1199 mapping = page_mapping(page);
1200 }
7751b2da
KS
1201 } else if (unlikely(PageTransHuge(page))) {
1202 /* Split file THP */
1203 if (split_huge_page_to_list(page, page_list))
1204 goto keep_locked;
e2be15f6 1205 }
1da177e4
LT
1206
1207 /*
1208 * The page is mapped into the page tables of one or more
1209 * processes. Try to unmap it here.
1210 */
802a3a92 1211 if (page_mapped(page)) {
bd4c82c2
HY
1212 enum ttu_flags flags = ttu_flags | TTU_BATCH_FLUSH;
1213
1214 if (unlikely(PageTransHuge(page)))
1215 flags |= TTU_SPLIT_HUGE_PMD;
1216 if (!try_to_unmap(page, flags)) {
5bccd166 1217 nr_unmap_fail++;
1da177e4 1218 goto activate_locked;
1da177e4
LT
1219 }
1220 }
1221
1222 if (PageDirty(page)) {
ee72886d 1223 /*
4eda4823
JW
1224 * Only kswapd can writeback filesystem pages
1225 * to avoid risk of stack overflow. But avoid
1226 * injecting inefficient single-page IO into
1227 * flusher writeback as much as possible: only
1228 * write pages when we've encountered many
1229 * dirty pages, and when we've already scanned
1230 * the rest of the LRU for clean pages and see
1231 * the same dirty pages again (PageReclaim).
ee72886d 1232 */
f84f6e2b 1233 if (page_is_file_cache(page) &&
4eda4823
JW
1234 (!current_is_kswapd() || !PageReclaim(page) ||
1235 !test_bit(PGDAT_DIRTY, &pgdat->flags))) {
49ea7eb6
MG
1236 /*
1237 * Immediately reclaim when written back.
1238 * Similar in principal to deactivate_page()
1239 * except we already have the page isolated
1240 * and know it's dirty
1241 */
c4a25635 1242 inc_node_page_state(page, NR_VMSCAN_IMMEDIATE);
49ea7eb6
MG
1243 SetPageReclaim(page);
1244
c55e8d03 1245 goto activate_locked;
ee72886d
MG
1246 }
1247
dfc8d636 1248 if (references == PAGEREF_RECLAIM_CLEAN)
1da177e4 1249 goto keep_locked;
4dd4b920 1250 if (!may_enter_fs)
1da177e4 1251 goto keep_locked;
52a8363e 1252 if (!sc->may_writepage)
1da177e4
LT
1253 goto keep_locked;
1254
d950c947
MG
1255 /*
1256 * Page is dirty. Flush the TLB if a writable entry
1257 * potentially exists to avoid CPU writes after IO
1258 * starts and then write it out here.
1259 */
1260 try_to_unmap_flush_dirty();
7d3579e8 1261 switch (pageout(page, mapping, sc)) {
1da177e4
LT
1262 case PAGE_KEEP:
1263 goto keep_locked;
1264 case PAGE_ACTIVATE:
1265 goto activate_locked;
1266 case PAGE_SUCCESS:
7d3579e8 1267 if (PageWriteback(page))
41ac1999 1268 goto keep;
7d3579e8 1269 if (PageDirty(page))
1da177e4 1270 goto keep;
7d3579e8 1271
1da177e4
LT
1272 /*
1273 * A synchronous write - probably a ramdisk. Go
1274 * ahead and try to reclaim the page.
1275 */
529ae9aa 1276 if (!trylock_page(page))
1da177e4
LT
1277 goto keep;
1278 if (PageDirty(page) || PageWriteback(page))
1279 goto keep_locked;
1280 mapping = page_mapping(page);
1281 case PAGE_CLEAN:
1282 ; /* try to free the page below */
1283 }
1284 }
1285
1286 /*
1287 * If the page has buffers, try to free the buffer mappings
1288 * associated with this page. If we succeed we try to free
1289 * the page as well.
1290 *
1291 * We do this even if the page is PageDirty().
1292 * try_to_release_page() does not perform I/O, but it is
1293 * possible for a page to have PageDirty set, but it is actually
1294 * clean (all its buffers are clean). This happens if the
1295 * buffers were written out directly, with submit_bh(). ext3
894bc310 1296 * will do this, as well as the blockdev mapping.
1da177e4
LT
1297 * try_to_release_page() will discover that cleanness and will
1298 * drop the buffers and mark the page clean - it can be freed.
1299 *
1300 * Rarely, pages can have buffers and no ->mapping. These are
1301 * the pages which were not successfully invalidated in
1302 * truncate_complete_page(). We try to drop those buffers here
1303 * and if that worked, and the page is no longer mapped into
1304 * process address space (page_count == 1) it can be freed.
1305 * Otherwise, leave the page on the LRU so it is swappable.
1306 */
266cf658 1307 if (page_has_private(page)) {
1da177e4
LT
1308 if (!try_to_release_page(page, sc->gfp_mask))
1309 goto activate_locked;
e286781d
NP
1310 if (!mapping && page_count(page) == 1) {
1311 unlock_page(page);
1312 if (put_page_testzero(page))
1313 goto free_it;
1314 else {
1315 /*
1316 * rare race with speculative reference.
1317 * the speculative reference will free
1318 * this page shortly, so we may
1319 * increment nr_reclaimed here (and
1320 * leave it off the LRU).
1321 */
1322 nr_reclaimed++;
1323 continue;
1324 }
1325 }
1da177e4
LT
1326 }
1327
802a3a92
SL
1328 if (PageAnon(page) && !PageSwapBacked(page)) {
1329 /* follow __remove_mapping for reference */
1330 if (!page_ref_freeze(page, 1))
1331 goto keep_locked;
1332 if (PageDirty(page)) {
1333 page_ref_unfreeze(page, 1);
1334 goto keep_locked;
1335 }
1da177e4 1336
802a3a92 1337 count_vm_event(PGLAZYFREED);
2262185c 1338 count_memcg_page_event(page, PGLAZYFREED);
802a3a92
SL
1339 } else if (!mapping || !__remove_mapping(mapping, page, true))
1340 goto keep_locked;
a978d6f5
NP
1341 /*
1342 * At this point, we have no other references and there is
1343 * no way to pick any more up (removed from LRU, removed
1344 * from pagecache). Can use non-atomic bitops now (and
1345 * we obviously don't have to worry about waking up a process
1346 * waiting on the page lock, because there are no references.
1347 */
48c935ad 1348 __ClearPageLocked(page);
e286781d 1349free_it:
05ff5137 1350 nr_reclaimed++;
abe4c3b5
MG
1351
1352 /*
1353 * Is there need to periodically free_page_list? It would
1354 * appear not as the counts should be low
1355 */
bd4c82c2
HY
1356 if (unlikely(PageTransHuge(page))) {
1357 mem_cgroup_uncharge(page);
1358 (*get_compound_page_dtor(page))(page);
1359 } else
1360 list_add(&page->lru, &free_pages);
1da177e4
LT
1361 continue;
1362
1363activate_locked:
68a22394 1364 /* Not a candidate for swapping, so reclaim swap space. */
ad6b6704
MK
1365 if (PageSwapCache(page) && (mem_cgroup_swap_full(page) ||
1366 PageMlocked(page)))
a2c43eed 1367 try_to_free_swap(page);
309381fe 1368 VM_BUG_ON_PAGE(PageActive(page), page);
ad6b6704
MK
1369 if (!PageMlocked(page)) {
1370 SetPageActive(page);
1371 pgactivate++;
2262185c 1372 count_memcg_page_event(page, PGACTIVATE);
ad6b6704 1373 }
1da177e4
LT
1374keep_locked:
1375 unlock_page(page);
1376keep:
1377 list_add(&page->lru, &ret_pages);
309381fe 1378 VM_BUG_ON_PAGE(PageLRU(page) || PageUnevictable(page), page);
1da177e4 1379 }
abe4c3b5 1380
747db954 1381 mem_cgroup_uncharge_list(&free_pages);
72b252ae 1382 try_to_unmap_flush();
2d4894b5 1383 free_unref_page_list(&free_pages);
abe4c3b5 1384
1da177e4 1385 list_splice(&ret_pages, page_list);
f8891e5e 1386 count_vm_events(PGACTIVATE, pgactivate);
0a31bc97 1387
3c710c1a
MH
1388 if (stat) {
1389 stat->nr_dirty = nr_dirty;
1390 stat->nr_congested = nr_congested;
1391 stat->nr_unqueued_dirty = nr_unqueued_dirty;
1392 stat->nr_writeback = nr_writeback;
1393 stat->nr_immediate = nr_immediate;
5bccd166
MH
1394 stat->nr_activate = pgactivate;
1395 stat->nr_ref_keep = nr_ref_keep;
1396 stat->nr_unmap_fail = nr_unmap_fail;
3c710c1a 1397 }
05ff5137 1398 return nr_reclaimed;
1da177e4
LT
1399}
1400
02c6de8d
MK
1401unsigned long reclaim_clean_pages_from_list(struct zone *zone,
1402 struct list_head *page_list)
1403{
1404 struct scan_control sc = {
1405 .gfp_mask = GFP_KERNEL,
1406 .priority = DEF_PRIORITY,
1407 .may_unmap = 1,
1408 };
3c710c1a 1409 unsigned long ret;
02c6de8d
MK
1410 struct page *page, *next;
1411 LIST_HEAD(clean_pages);
1412
1413 list_for_each_entry_safe(page, next, page_list, lru) {
117aad1e 1414 if (page_is_file_cache(page) && !PageDirty(page) &&
b1123ea6 1415 !__PageMovable(page)) {
02c6de8d
MK
1416 ClearPageActive(page);
1417 list_move(&page->lru, &clean_pages);
1418 }
1419 }
1420
599d0c95 1421 ret = shrink_page_list(&clean_pages, zone->zone_pgdat, &sc,
a128ca71 1422 TTU_IGNORE_ACCESS, NULL, true);
02c6de8d 1423 list_splice(&clean_pages, page_list);
599d0c95 1424 mod_node_page_state(zone->zone_pgdat, NR_ISOLATED_FILE, -ret);
02c6de8d
MK
1425 return ret;
1426}
1427
5ad333eb
AW
1428/*
1429 * Attempt to remove the specified page from its LRU. Only take this page
1430 * if it is of the appropriate PageActive status. Pages which are being
1431 * freed elsewhere are also ignored.
1432 *
1433 * page: page to consider
1434 * mode: one of the LRU isolation modes defined above
1435 *
1436 * returns 0 on success, -ve errno on failure.
1437 */
f3fd4a61 1438int __isolate_lru_page(struct page *page, isolate_mode_t mode)
5ad333eb
AW
1439{
1440 int ret = -EINVAL;
1441
1442 /* Only take pages on the LRU. */
1443 if (!PageLRU(page))
1444 return ret;
1445
e46a2879
MK
1446 /* Compaction should not handle unevictable pages but CMA can do so */
1447 if (PageUnevictable(page) && !(mode & ISOLATE_UNEVICTABLE))
894bc310
LS
1448 return ret;
1449
5ad333eb 1450 ret = -EBUSY;
08e552c6 1451
c8244935
MG
1452 /*
1453 * To minimise LRU disruption, the caller can indicate that it only
1454 * wants to isolate pages it will be able to operate on without
1455 * blocking - clean pages for the most part.
1456 *
c8244935
MG
1457 * ISOLATE_ASYNC_MIGRATE is used to indicate that it only wants to pages
1458 * that it is possible to migrate without blocking
1459 */
1276ad68 1460 if (mode & ISOLATE_ASYNC_MIGRATE) {
c8244935
MG
1461 /* All the caller can do on PageWriteback is block */
1462 if (PageWriteback(page))
1463 return ret;
1464
1465 if (PageDirty(page)) {
1466 struct address_space *mapping;
de82176c 1467 bool migrate_dirty;
c8244935 1468
c8244935
MG
1469 /*
1470 * Only pages without mappings or that have a
1471 * ->migratepage callback are possible to migrate
de82176c
MG
1472 * without blocking. However, we can be racing with
1473 * truncation so it's necessary to lock the page
1474 * to stabilise the mapping as truncation holds
1475 * the page lock until after the page is removed
1476 * from the page cache.
c8244935 1477 */
de82176c
MG
1478 if (!trylock_page(page))
1479 return ret;
1480
c8244935 1481 mapping = page_mapping(page);
6018a9e3 1482 migrate_dirty = !mapping || mapping->a_ops->migratepage;
de82176c
MG
1483 unlock_page(page);
1484 if (!migrate_dirty)
c8244935
MG
1485 return ret;
1486 }
1487 }
39deaf85 1488
f80c0673
MK
1489 if ((mode & ISOLATE_UNMAPPED) && page_mapped(page))
1490 return ret;
1491
5ad333eb
AW
1492 if (likely(get_page_unless_zero(page))) {
1493 /*
1494 * Be careful not to clear PageLRU until after we're
1495 * sure the page is not being freed elsewhere -- the
1496 * page release code relies on it.
1497 */
1498 ClearPageLRU(page);
1499 ret = 0;
1500 }
1501
1502 return ret;
1503}
1504
7ee36a14
MG
1505
1506/*
1507 * Update LRU sizes after isolating pages. The LRU size updates must
1508 * be complete before mem_cgroup_update_lru_size due to a santity check.
1509 */
1510static __always_inline void update_lru_sizes(struct lruvec *lruvec,
b4536f0c 1511 enum lru_list lru, unsigned long *nr_zone_taken)
7ee36a14 1512{
7ee36a14
MG
1513 int zid;
1514
7ee36a14
MG
1515 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1516 if (!nr_zone_taken[zid])
1517 continue;
1518
1519 __update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1520#ifdef CONFIG_MEMCG
b4536f0c 1521 mem_cgroup_update_lru_size(lruvec, lru, zid, -nr_zone_taken[zid]);
7ee36a14 1522#endif
b4536f0c
MH
1523 }
1524
7ee36a14
MG
1525}
1526
1da177e4 1527/*
a52633d8 1528 * zone_lru_lock is heavily contended. Some of the functions that
1da177e4
LT
1529 * shrink the lists perform better by taking out a batch of pages
1530 * and working on them outside the LRU lock.
1531 *
1532 * For pagecache intensive workloads, this function is the hottest
1533 * spot in the kernel (apart from copy_*_user functions).
1534 *
1535 * Appropriate locks must be held before calling this function.
1536 *
791b48b6 1537 * @nr_to_scan: The number of eligible pages to look through on the list.
5dc35979 1538 * @lruvec: The LRU vector to pull pages from.
1da177e4 1539 * @dst: The temp list to put pages on to.
f626012d 1540 * @nr_scanned: The number of pages that were scanned.
fe2c2a10 1541 * @sc: The scan_control struct for this reclaim session
5ad333eb 1542 * @mode: One of the LRU isolation modes
3cb99451 1543 * @lru: LRU list id for isolating
1da177e4
LT
1544 *
1545 * returns how many pages were moved onto *@dst.
1546 */
69e05944 1547static unsigned long isolate_lru_pages(unsigned long nr_to_scan,
5dc35979 1548 struct lruvec *lruvec, struct list_head *dst,
fe2c2a10 1549 unsigned long *nr_scanned, struct scan_control *sc,
3cb99451 1550 isolate_mode_t mode, enum lru_list lru)
1da177e4 1551{
75b00af7 1552 struct list_head *src = &lruvec->lists[lru];
69e05944 1553 unsigned long nr_taken = 0;
599d0c95 1554 unsigned long nr_zone_taken[MAX_NR_ZONES] = { 0 };
7cc30fcf 1555 unsigned long nr_skipped[MAX_NR_ZONES] = { 0, };
3db65812 1556 unsigned long skipped = 0;
791b48b6 1557 unsigned long scan, total_scan, nr_pages;
b2e18757 1558 LIST_HEAD(pages_skipped);
1da177e4 1559
791b48b6
MK
1560 scan = 0;
1561 for (total_scan = 0;
1562 scan < nr_to_scan && nr_taken < nr_to_scan && !list_empty(src);
1563 total_scan++) {
5ad333eb 1564 struct page *page;
5ad333eb 1565
1da177e4
LT
1566 page = lru_to_page(src);
1567 prefetchw_prev_lru_page(page, src, flags);
1568
309381fe 1569 VM_BUG_ON_PAGE(!PageLRU(page), page);
8d438f96 1570
b2e18757
MG
1571 if (page_zonenum(page) > sc->reclaim_idx) {
1572 list_move(&page->lru, &pages_skipped);
7cc30fcf 1573 nr_skipped[page_zonenum(page)]++;
b2e18757
MG
1574 continue;
1575 }
1576
791b48b6
MK
1577 /*
1578 * Do not count skipped pages because that makes the function
1579 * return with no isolated pages if the LRU mostly contains
1580 * ineligible pages. This causes the VM to not reclaim any
1581 * pages, triggering a premature OOM.
1582 */
1583 scan++;
f3fd4a61 1584 switch (__isolate_lru_page(page, mode)) {
5ad333eb 1585 case 0:
599d0c95
MG
1586 nr_pages = hpage_nr_pages(page);
1587 nr_taken += nr_pages;
1588 nr_zone_taken[page_zonenum(page)] += nr_pages;
5ad333eb 1589 list_move(&page->lru, dst);
5ad333eb
AW
1590 break;
1591
1592 case -EBUSY:
1593 /* else it is being freed elsewhere */
1594 list_move(&page->lru, src);
1595 continue;
46453a6e 1596
5ad333eb
AW
1597 default:
1598 BUG();
1599 }
1da177e4
LT
1600 }
1601
b2e18757
MG
1602 /*
1603 * Splice any skipped pages to the start of the LRU list. Note that
1604 * this disrupts the LRU order when reclaiming for lower zones but
1605 * we cannot splice to the tail. If we did then the SWAP_CLUSTER_MAX
1606 * scanning would soon rescan the same pages to skip and put the
1607 * system at risk of premature OOM.
1608 */
7cc30fcf
MG
1609 if (!list_empty(&pages_skipped)) {
1610 int zid;
1611
3db65812 1612 list_splice(&pages_skipped, src);
7cc30fcf
MG
1613 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1614 if (!nr_skipped[zid])
1615 continue;
1616
1617 __count_zid_vm_events(PGSCAN_SKIP, zid, nr_skipped[zid]);
1265e3a6 1618 skipped += nr_skipped[zid];
7cc30fcf
MG
1619 }
1620 }
791b48b6 1621 *nr_scanned = total_scan;
1265e3a6 1622 trace_mm_vmscan_lru_isolate(sc->reclaim_idx, sc->order, nr_to_scan,
791b48b6 1623 total_scan, skipped, nr_taken, mode, lru);
b4536f0c 1624 update_lru_sizes(lruvec, lru, nr_zone_taken);
1da177e4
LT
1625 return nr_taken;
1626}
1627
62695a84
NP
1628/**
1629 * isolate_lru_page - tries to isolate a page from its LRU list
1630 * @page: page to isolate from its LRU list
1631 *
1632 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1633 * vmstat statistic corresponding to whatever LRU list the page was on.
1634 *
1635 * Returns 0 if the page was removed from an LRU list.
1636 * Returns -EBUSY if the page was not on an LRU list.
1637 *
1638 * The returned page will have PageLRU() cleared. If it was found on
894bc310
LS
1639 * the active list, it will have PageActive set. If it was found on
1640 * the unevictable list, it will have the PageUnevictable bit set. That flag
1641 * may need to be cleared by the caller before letting the page go.
62695a84
NP
1642 *
1643 * The vmstat statistic corresponding to the list on which the page was
1644 * found will be decremented.
1645 *
1646 * Restrictions:
1647 * (1) Must be called with an elevated refcount on the page. This is a
1648 * fundamentnal difference from isolate_lru_pages (which is called
1649 * without a stable reference).
1650 * (2) the lru_lock must not be held.
1651 * (3) interrupts must be enabled.
1652 */
1653int isolate_lru_page(struct page *page)
1654{
1655 int ret = -EBUSY;
1656
309381fe 1657 VM_BUG_ON_PAGE(!page_count(page), page);
cf2a82ee 1658 WARN_RATELIMIT(PageTail(page), "trying to isolate tail page");
0c917313 1659
62695a84
NP
1660 if (PageLRU(page)) {
1661 struct zone *zone = page_zone(page);
fa9add64 1662 struct lruvec *lruvec;
62695a84 1663
a52633d8 1664 spin_lock_irq(zone_lru_lock(zone));
599d0c95 1665 lruvec = mem_cgroup_page_lruvec(page, zone->zone_pgdat);
0c917313 1666 if (PageLRU(page)) {
894bc310 1667 int lru = page_lru(page);
0c917313 1668 get_page(page);
62695a84 1669 ClearPageLRU(page);
fa9add64
HD
1670 del_page_from_lru_list(page, lruvec, lru);
1671 ret = 0;
62695a84 1672 }
a52633d8 1673 spin_unlock_irq(zone_lru_lock(zone));
62695a84
NP
1674 }
1675 return ret;
1676}
1677
35cd7815 1678/*
d37dd5dc
FW
1679 * A direct reclaimer may isolate SWAP_CLUSTER_MAX pages from the LRU list and
1680 * then get resheduled. When there are massive number of tasks doing page
1681 * allocation, such sleeping direct reclaimers may keep piling up on each CPU,
1682 * the LRU list will go small and be scanned faster than necessary, leading to
1683 * unnecessary swapping, thrashing and OOM.
35cd7815 1684 */
599d0c95 1685static int too_many_isolated(struct pglist_data *pgdat, int file,
35cd7815
RR
1686 struct scan_control *sc)
1687{
1688 unsigned long inactive, isolated;
1689
1690 if (current_is_kswapd())
1691 return 0;
1692
97c9341f 1693 if (!sane_reclaim(sc))
35cd7815
RR
1694 return 0;
1695
1696 if (file) {
599d0c95
MG
1697 inactive = node_page_state(pgdat, NR_INACTIVE_FILE);
1698 isolated = node_page_state(pgdat, NR_ISOLATED_FILE);
35cd7815 1699 } else {
599d0c95
MG
1700 inactive = node_page_state(pgdat, NR_INACTIVE_ANON);
1701 isolated = node_page_state(pgdat, NR_ISOLATED_ANON);
35cd7815
RR
1702 }
1703
3cf23841
FW
1704 /*
1705 * GFP_NOIO/GFP_NOFS callers are allowed to isolate more pages, so they
1706 * won't get blocked by normal direct-reclaimers, forming a circular
1707 * deadlock.
1708 */
d0164adc 1709 if ((sc->gfp_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
3cf23841
FW
1710 inactive >>= 3;
1711
35cd7815
RR
1712 return isolated > inactive;
1713}
1714
66635629 1715static noinline_for_stack void
75b00af7 1716putback_inactive_pages(struct lruvec *lruvec, struct list_head *page_list)
66635629 1717{
27ac81d8 1718 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
599d0c95 1719 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3f79768f 1720 LIST_HEAD(pages_to_free);
66635629 1721
66635629
MG
1722 /*
1723 * Put back any unfreeable pages.
1724 */
66635629 1725 while (!list_empty(page_list)) {
3f79768f 1726 struct page *page = lru_to_page(page_list);
66635629 1727 int lru;
3f79768f 1728
309381fe 1729 VM_BUG_ON_PAGE(PageLRU(page), page);
66635629 1730 list_del(&page->lru);
39b5f29a 1731 if (unlikely(!page_evictable(page))) {
599d0c95 1732 spin_unlock_irq(&pgdat->lru_lock);
66635629 1733 putback_lru_page(page);
599d0c95 1734 spin_lock_irq(&pgdat->lru_lock);
66635629
MG
1735 continue;
1736 }
fa9add64 1737
599d0c95 1738 lruvec = mem_cgroup_page_lruvec(page, pgdat);
fa9add64 1739
7a608572 1740 SetPageLRU(page);
66635629 1741 lru = page_lru(page);
fa9add64
HD
1742 add_page_to_lru_list(page, lruvec, lru);
1743
66635629
MG
1744 if (is_active_lru(lru)) {
1745 int file = is_file_lru(lru);
9992af10
RR
1746 int numpages = hpage_nr_pages(page);
1747 reclaim_stat->recent_rotated[file] += numpages;
66635629 1748 }
2bcf8879
HD
1749 if (put_page_testzero(page)) {
1750 __ClearPageLRU(page);
1751 __ClearPageActive(page);
fa9add64 1752 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1753
1754 if (unlikely(PageCompound(page))) {
599d0c95 1755 spin_unlock_irq(&pgdat->lru_lock);
747db954 1756 mem_cgroup_uncharge(page);
2bcf8879 1757 (*get_compound_page_dtor(page))(page);
599d0c95 1758 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1759 } else
1760 list_add(&page->lru, &pages_to_free);
66635629
MG
1761 }
1762 }
66635629 1763
3f79768f
HD
1764 /*
1765 * To save our caller's stack, now use input list for pages to free.
1766 */
1767 list_splice(&pages_to_free, page_list);
66635629
MG
1768}
1769
399ba0b9
N
1770/*
1771 * If a kernel thread (such as nfsd for loop-back mounts) services
1772 * a backing device by writing to the page cache it sets PF_LESS_THROTTLE.
1773 * In that case we should only throttle if the backing device it is
1774 * writing to is congested. In other cases it is safe to throttle.
1775 */
1776static int current_may_throttle(void)
1777{
1778 return !(current->flags & PF_LESS_THROTTLE) ||
1779 current->backing_dev_info == NULL ||
1780 bdi_write_congested(current->backing_dev_info);
1781}
1782
1da177e4 1783/*
b2e18757 1784 * shrink_inactive_list() is a helper for shrink_node(). It returns the number
1742f19f 1785 * of reclaimed pages
1da177e4 1786 */
66635629 1787static noinline_for_stack unsigned long
1a93be0e 1788shrink_inactive_list(unsigned long nr_to_scan, struct lruvec *lruvec,
9e3b2f8c 1789 struct scan_control *sc, enum lru_list lru)
1da177e4
LT
1790{
1791 LIST_HEAD(page_list);
e247dbce 1792 unsigned long nr_scanned;
05ff5137 1793 unsigned long nr_reclaimed = 0;
e247dbce 1794 unsigned long nr_taken;
3c710c1a 1795 struct reclaim_stat stat = {};
f3fd4a61 1796 isolate_mode_t isolate_mode = 0;
3cb99451 1797 int file = is_file_lru(lru);
599d0c95 1798 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1a93be0e 1799 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
db73ee0d 1800 bool stalled = false;
78dc583d 1801
599d0c95 1802 while (unlikely(too_many_isolated(pgdat, file, sc))) {
db73ee0d
MH
1803 if (stalled)
1804 return 0;
1805
1806 /* wait a bit for the reclaimer. */
1807 msleep(100);
1808 stalled = true;
35cd7815
RR
1809
1810 /* We are about to die and free our memory. Return now. */
1811 if (fatal_signal_pending(current))
1812 return SWAP_CLUSTER_MAX;
1813 }
1814
1da177e4 1815 lru_add_drain();
f80c0673
MK
1816
1817 if (!sc->may_unmap)
61317289 1818 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 1819
599d0c95 1820 spin_lock_irq(&pgdat->lru_lock);
b35ea17b 1821
5dc35979
KK
1822 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &page_list,
1823 &nr_scanned, sc, isolate_mode, lru);
95d918fc 1824
599d0c95 1825 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
9d5e6a9f 1826 reclaim_stat->recent_scanned[file] += nr_taken;
95d918fc 1827
2262185c
RG
1828 if (current_is_kswapd()) {
1829 if (global_reclaim(sc))
599d0c95 1830 __count_vm_events(PGSCAN_KSWAPD, nr_scanned);
2262185c
RG
1831 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_KSWAPD,
1832 nr_scanned);
1833 } else {
1834 if (global_reclaim(sc))
599d0c95 1835 __count_vm_events(PGSCAN_DIRECT, nr_scanned);
2262185c
RG
1836 count_memcg_events(lruvec_memcg(lruvec), PGSCAN_DIRECT,
1837 nr_scanned);
e247dbce 1838 }
599d0c95 1839 spin_unlock_irq(&pgdat->lru_lock);
b35ea17b 1840
d563c050 1841 if (nr_taken == 0)
66635629 1842 return 0;
5ad333eb 1843
a128ca71 1844 nr_reclaimed = shrink_page_list(&page_list, pgdat, sc, 0,
3c710c1a 1845 &stat, false);
c661b078 1846
599d0c95 1847 spin_lock_irq(&pgdat->lru_lock);
3f79768f 1848
2262185c
RG
1849 if (current_is_kswapd()) {
1850 if (global_reclaim(sc))
599d0c95 1851 __count_vm_events(PGSTEAL_KSWAPD, nr_reclaimed);
2262185c
RG
1852 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_KSWAPD,
1853 nr_reclaimed);
1854 } else {
1855 if (global_reclaim(sc))
599d0c95 1856 __count_vm_events(PGSTEAL_DIRECT, nr_reclaimed);
2262185c
RG
1857 count_memcg_events(lruvec_memcg(lruvec), PGSTEAL_DIRECT,
1858 nr_reclaimed);
904249aa 1859 }
a74609fa 1860
27ac81d8 1861 putback_inactive_pages(lruvec, &page_list);
3f79768f 1862
599d0c95 1863 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
3f79768f 1864
599d0c95 1865 spin_unlock_irq(&pgdat->lru_lock);
3f79768f 1866
747db954 1867 mem_cgroup_uncharge_list(&page_list);
2d4894b5 1868 free_unref_page_list(&page_list);
e11da5b4 1869
92df3a72
MG
1870 /*
1871 * If reclaim is isolating dirty pages under writeback, it implies
1872 * that the long-lived page allocation rate is exceeding the page
1873 * laundering rate. Either the global limits are not being effective
1874 * at throttling processes due to the page distribution throughout
1875 * zones or there is heavy usage of a slow backing device. The
1876 * only option is to throttle from reclaim context which is not ideal
1877 * as there is no guarantee the dirtying process is throttled in the
1878 * same way balance_dirty_pages() manages.
1879 *
8e950282
MG
1880 * Once a zone is flagged ZONE_WRITEBACK, kswapd will count the number
1881 * of pages under pages flagged for immediate reclaim and stall if any
1882 * are encountered in the nr_immediate check below.
92df3a72 1883 */
3c710c1a 1884 if (stat.nr_writeback && stat.nr_writeback == nr_taken)
599d0c95 1885 set_bit(PGDAT_WRITEBACK, &pgdat->flags);
92df3a72 1886
a8aa42fd
AR
1887 /*
1888 * If dirty pages are scanned that are not queued for IO, it
1889 * implies that flushers are not doing their job. This can
1890 * happen when memory pressure pushes dirty pages to the end of
1891 * the LRU before the dirty limits are breached and the dirty
1892 * data has expired. It can also happen when the proportion of
1893 * dirty pages grows not through writes but through memory
1894 * pressure reclaiming all the clean cache. And in some cases,
1895 * the flushers simply cannot keep up with the allocation
1896 * rate. Nudge the flusher threads in case they are asleep.
1897 */
1898 if (stat.nr_unqueued_dirty == nr_taken)
1899 wakeup_flusher_threads(WB_REASON_VMSCAN);
1900
d43006d5 1901 /*
97c9341f
TH
1902 * Legacy memcg will stall in page writeback so avoid forcibly
1903 * stalling here.
d43006d5 1904 */
97c9341f 1905 if (sane_reclaim(sc)) {
8e950282
MG
1906 /*
1907 * Tag a zone as congested if all the dirty pages scanned were
1908 * backed by a congested BDI and wait_iff_congested will stall.
1909 */
3c710c1a 1910 if (stat.nr_dirty && stat.nr_dirty == stat.nr_congested)
599d0c95 1911 set_bit(PGDAT_CONGESTED, &pgdat->flags);
8e950282 1912
a8aa42fd
AR
1913 /* Allow kswapd to start writing pages during reclaim. */
1914 if (stat.nr_unqueued_dirty == nr_taken)
599d0c95 1915 set_bit(PGDAT_DIRTY, &pgdat->flags);
b1a6f21e
MG
1916
1917 /*
b738d764
LT
1918 * If kswapd scans pages marked marked for immediate
1919 * reclaim and under writeback (nr_immediate), it implies
1920 * that pages are cycling through the LRU faster than
b1a6f21e
MG
1921 * they are written so also forcibly stall.
1922 */
3c710c1a 1923 if (stat.nr_immediate && current_may_throttle())
b1a6f21e 1924 congestion_wait(BLK_RW_ASYNC, HZ/10);
e2be15f6 1925 }
d43006d5 1926
8e950282
MG
1927 /*
1928 * Stall direct reclaim for IO completions if underlying BDIs or zone
1929 * is congested. Allow kswapd to continue until it starts encountering
1930 * unqueued dirty pages or cycling through the LRU too quickly.
1931 */
399ba0b9
N
1932 if (!sc->hibernation_mode && !current_is_kswapd() &&
1933 current_may_throttle())
599d0c95 1934 wait_iff_congested(pgdat, BLK_RW_ASYNC, HZ/10);
8e950282 1935
599d0c95
MG
1936 trace_mm_vmscan_lru_shrink_inactive(pgdat->node_id,
1937 nr_scanned, nr_reclaimed,
5bccd166
MH
1938 stat.nr_dirty, stat.nr_writeback,
1939 stat.nr_congested, stat.nr_immediate,
1940 stat.nr_activate, stat.nr_ref_keep,
1941 stat.nr_unmap_fail,
ba5e9579 1942 sc->priority, file);
05ff5137 1943 return nr_reclaimed;
1da177e4
LT
1944}
1945
1946/*
1947 * This moves pages from the active list to the inactive list.
1948 *
1949 * We move them the other way if the page is referenced by one or more
1950 * processes, from rmap.
1951 *
1952 * If the pages are mostly unmapped, the processing is fast and it is
a52633d8 1953 * appropriate to hold zone_lru_lock across the whole operation. But if
1da177e4 1954 * the pages are mapped, the processing is slow (page_referenced()) so we
a52633d8 1955 * should drop zone_lru_lock around each page. It's impossible to balance
1da177e4
LT
1956 * this, so instead we remove the pages from the LRU while processing them.
1957 * It is safe to rely on PG_active against the non-LRU pages in here because
1958 * nobody will play with that bit on a non-LRU page.
1959 *
0139aa7b 1960 * The downside is that we have to touch page->_refcount against each page.
1da177e4 1961 * But we had to alter page->flags anyway.
9d998b4f
MH
1962 *
1963 * Returns the number of pages moved to the given lru.
1da177e4 1964 */
1cfb419b 1965
9d998b4f 1966static unsigned move_active_pages_to_lru(struct lruvec *lruvec,
3eb4140f 1967 struct list_head *list,
2bcf8879 1968 struct list_head *pages_to_free,
3eb4140f
WF
1969 enum lru_list lru)
1970{
599d0c95 1971 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
3eb4140f 1972 struct page *page;
fa9add64 1973 int nr_pages;
9d998b4f 1974 int nr_moved = 0;
3eb4140f 1975
3eb4140f
WF
1976 while (!list_empty(list)) {
1977 page = lru_to_page(list);
599d0c95 1978 lruvec = mem_cgroup_page_lruvec(page, pgdat);
3eb4140f 1979
309381fe 1980 VM_BUG_ON_PAGE(PageLRU(page), page);
3eb4140f
WF
1981 SetPageLRU(page);
1982
fa9add64 1983 nr_pages = hpage_nr_pages(page);
599d0c95 1984 update_lru_size(lruvec, lru, page_zonenum(page), nr_pages);
925b7673 1985 list_move(&page->lru, &lruvec->lists[lru]);
3eb4140f 1986
2bcf8879
HD
1987 if (put_page_testzero(page)) {
1988 __ClearPageLRU(page);
1989 __ClearPageActive(page);
fa9add64 1990 del_page_from_lru_list(page, lruvec, lru);
2bcf8879
HD
1991
1992 if (unlikely(PageCompound(page))) {
599d0c95 1993 spin_unlock_irq(&pgdat->lru_lock);
747db954 1994 mem_cgroup_uncharge(page);
2bcf8879 1995 (*get_compound_page_dtor(page))(page);
599d0c95 1996 spin_lock_irq(&pgdat->lru_lock);
2bcf8879
HD
1997 } else
1998 list_add(&page->lru, pages_to_free);
9d998b4f
MH
1999 } else {
2000 nr_moved += nr_pages;
3eb4140f
WF
2001 }
2002 }
9d5e6a9f 2003
2262185c 2004 if (!is_active_lru(lru)) {
f0958906 2005 __count_vm_events(PGDEACTIVATE, nr_moved);
2262185c
RG
2006 count_memcg_events(lruvec_memcg(lruvec), PGDEACTIVATE,
2007 nr_moved);
2008 }
9d998b4f
MH
2009
2010 return nr_moved;
3eb4140f 2011}
1cfb419b 2012
f626012d 2013static void shrink_active_list(unsigned long nr_to_scan,
1a93be0e 2014 struct lruvec *lruvec,
f16015fb 2015 struct scan_control *sc,
9e3b2f8c 2016 enum lru_list lru)
1da177e4 2017{
44c241f1 2018 unsigned long nr_taken;
f626012d 2019 unsigned long nr_scanned;
6fe6b7e3 2020 unsigned long vm_flags;
1da177e4 2021 LIST_HEAD(l_hold); /* The pages which were snipped off */
8cab4754 2022 LIST_HEAD(l_active);
b69408e8 2023 LIST_HEAD(l_inactive);
1da177e4 2024 struct page *page;
1a93be0e 2025 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
9d998b4f
MH
2026 unsigned nr_deactivate, nr_activate;
2027 unsigned nr_rotated = 0;
f3fd4a61 2028 isolate_mode_t isolate_mode = 0;
3cb99451 2029 int file = is_file_lru(lru);
599d0c95 2030 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
1da177e4
LT
2031
2032 lru_add_drain();
f80c0673
MK
2033
2034 if (!sc->may_unmap)
61317289 2035 isolate_mode |= ISOLATE_UNMAPPED;
f80c0673 2036
599d0c95 2037 spin_lock_irq(&pgdat->lru_lock);
925b7673 2038
5dc35979
KK
2039 nr_taken = isolate_lru_pages(nr_to_scan, lruvec, &l_hold,
2040 &nr_scanned, sc, isolate_mode, lru);
89b5fae5 2041
599d0c95 2042 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, nr_taken);
b7c46d15 2043 reclaim_stat->recent_scanned[file] += nr_taken;
1cfb419b 2044
599d0c95 2045 __count_vm_events(PGREFILL, nr_scanned);
2262185c 2046 count_memcg_events(lruvec_memcg(lruvec), PGREFILL, nr_scanned);
9d5e6a9f 2047
599d0c95 2048 spin_unlock_irq(&pgdat->lru_lock);
1da177e4 2049
1da177e4
LT
2050 while (!list_empty(&l_hold)) {
2051 cond_resched();
2052 page = lru_to_page(&l_hold);
2053 list_del(&page->lru);
7e9cd484 2054
39b5f29a 2055 if (unlikely(!page_evictable(page))) {
894bc310
LS
2056 putback_lru_page(page);
2057 continue;
2058 }
2059
cc715d99
MG
2060 if (unlikely(buffer_heads_over_limit)) {
2061 if (page_has_private(page) && trylock_page(page)) {
2062 if (page_has_private(page))
2063 try_to_release_page(page, 0);
2064 unlock_page(page);
2065 }
2066 }
2067
c3ac9a8a
JW
2068 if (page_referenced(page, 0, sc->target_mem_cgroup,
2069 &vm_flags)) {
9992af10 2070 nr_rotated += hpage_nr_pages(page);
8cab4754
WF
2071 /*
2072 * Identify referenced, file-backed active pages and
2073 * give them one more trip around the active list. So
2074 * that executable code get better chances to stay in
2075 * memory under moderate memory pressure. Anon pages
2076 * are not likely to be evicted by use-once streaming
2077 * IO, plus JVM can create lots of anon VM_EXEC pages,
2078 * so we ignore them here.
2079 */
41e20983 2080 if ((vm_flags & VM_EXEC) && page_is_file_cache(page)) {
8cab4754
WF
2081 list_add(&page->lru, &l_active);
2082 continue;
2083 }
2084 }
7e9cd484 2085
5205e56e 2086 ClearPageActive(page); /* we are de-activating */
1da177e4
LT
2087 list_add(&page->lru, &l_inactive);
2088 }
2089
b555749a 2090 /*
8cab4754 2091 * Move pages back to the lru list.
b555749a 2092 */
599d0c95 2093 spin_lock_irq(&pgdat->lru_lock);
556adecb 2094 /*
8cab4754
WF
2095 * Count referenced pages from currently used mappings as rotated,
2096 * even though only some of them are actually re-activated. This
2097 * helps balance scan pressure between file and anonymous pages in
7c0db9e9 2098 * get_scan_count.
7e9cd484 2099 */
b7c46d15 2100 reclaim_stat->recent_rotated[file] += nr_rotated;
556adecb 2101
9d998b4f
MH
2102 nr_activate = move_active_pages_to_lru(lruvec, &l_active, &l_hold, lru);
2103 nr_deactivate = move_active_pages_to_lru(lruvec, &l_inactive, &l_hold, lru - LRU_ACTIVE);
599d0c95
MG
2104 __mod_node_page_state(pgdat, NR_ISOLATED_ANON + file, -nr_taken);
2105 spin_unlock_irq(&pgdat->lru_lock);
2bcf8879 2106
747db954 2107 mem_cgroup_uncharge_list(&l_hold);
2d4894b5 2108 free_unref_page_list(&l_hold);
9d998b4f
MH
2109 trace_mm_vmscan_lru_shrink_active(pgdat->node_id, nr_taken, nr_activate,
2110 nr_deactivate, nr_rotated, sc->priority, file);
1da177e4
LT
2111}
2112
59dc76b0
RR
2113/*
2114 * The inactive anon list should be small enough that the VM never has
2115 * to do too much work.
14797e23 2116 *
59dc76b0
RR
2117 * The inactive file list should be small enough to leave most memory
2118 * to the established workingset on the scan-resistant active list,
2119 * but large enough to avoid thrashing the aggregate readahead window.
56e49d21 2120 *
59dc76b0
RR
2121 * Both inactive lists should also be large enough that each inactive
2122 * page has a chance to be referenced again before it is reclaimed.
56e49d21 2123 *
2a2e4885
JW
2124 * If that fails and refaulting is observed, the inactive list grows.
2125 *
59dc76b0 2126 * The inactive_ratio is the target ratio of ACTIVE to INACTIVE pages
3a50d14d 2127 * on this LRU, maintained by the pageout code. An inactive_ratio
59dc76b0 2128 * of 3 means 3:1 or 25% of the pages are kept on the inactive list.
56e49d21 2129 *
59dc76b0
RR
2130 * total target max
2131 * memory ratio inactive
2132 * -------------------------------------
2133 * 10MB 1 5MB
2134 * 100MB 1 50MB
2135 * 1GB 3 250MB
2136 * 10GB 10 0.9GB
2137 * 100GB 31 3GB
2138 * 1TB 101 10GB
2139 * 10TB 320 32GB
56e49d21 2140 */
f8d1a311 2141static bool inactive_list_is_low(struct lruvec *lruvec, bool file,
2a2e4885
JW
2142 struct mem_cgroup *memcg,
2143 struct scan_control *sc, bool actual_reclaim)
56e49d21 2144{
fd538803 2145 enum lru_list active_lru = file * LRU_FILE + LRU_ACTIVE;
2a2e4885
JW
2146 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
2147 enum lru_list inactive_lru = file * LRU_FILE;
2148 unsigned long inactive, active;
2149 unsigned long inactive_ratio;
2150 unsigned long refaults;
59dc76b0 2151 unsigned long gb;
e3790144 2152
59dc76b0
RR
2153 /*
2154 * If we don't have swap space, anonymous page deactivation
2155 * is pointless.
2156 */
2157 if (!file && !total_swap_pages)
2158 return false;
56e49d21 2159
fd538803
MH
2160 inactive = lruvec_lru_size(lruvec, inactive_lru, sc->reclaim_idx);
2161 active = lruvec_lru_size(lruvec, active_lru, sc->reclaim_idx);
f8d1a311 2162
2a2e4885 2163 if (memcg)
ccda7f43 2164 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
b39415b2 2165 else
2a2e4885
JW
2166 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2167
2168 /*
2169 * When refaults are being observed, it means a new workingset
2170 * is being established. Disable active list protection to get
2171 * rid of the stale workingset quickly.
2172 */
2173 if (file && actual_reclaim && lruvec->refaults != refaults) {
2174 inactive_ratio = 0;
2175 } else {
2176 gb = (inactive + active) >> (30 - PAGE_SHIFT);
2177 if (gb)
2178 inactive_ratio = int_sqrt(10 * gb);
2179 else
2180 inactive_ratio = 1;
2181 }
59dc76b0 2182
2a2e4885
JW
2183 if (actual_reclaim)
2184 trace_mm_vmscan_inactive_list_is_low(pgdat->node_id, sc->reclaim_idx,
2185 lruvec_lru_size(lruvec, inactive_lru, MAX_NR_ZONES), inactive,
2186 lruvec_lru_size(lruvec, active_lru, MAX_NR_ZONES), active,
2187 inactive_ratio, file);
fd538803 2188
59dc76b0 2189 return inactive * inactive_ratio < active;
b39415b2
RR
2190}
2191
4f98a2fe 2192static unsigned long shrink_list(enum lru_list lru, unsigned long nr_to_scan,
2a2e4885
JW
2193 struct lruvec *lruvec, struct mem_cgroup *memcg,
2194 struct scan_control *sc)
b69408e8 2195{
b39415b2 2196 if (is_active_lru(lru)) {
2a2e4885
JW
2197 if (inactive_list_is_low(lruvec, is_file_lru(lru),
2198 memcg, sc, true))
1a93be0e 2199 shrink_active_list(nr_to_scan, lruvec, sc, lru);
556adecb
RR
2200 return 0;
2201 }
2202
1a93be0e 2203 return shrink_inactive_list(nr_to_scan, lruvec, sc, lru);
4f98a2fe
RR
2204}
2205
9a265114
JW
2206enum scan_balance {
2207 SCAN_EQUAL,
2208 SCAN_FRACT,
2209 SCAN_ANON,
2210 SCAN_FILE,
2211};
2212
4f98a2fe
RR
2213/*
2214 * Determine how aggressively the anon and file LRU lists should be
2215 * scanned. The relative value of each set of LRU lists is determined
2216 * by looking at the fraction of the pages scanned we did rotate back
2217 * onto the active list instead of evict.
2218 *
be7bd59d
WL
2219 * nr[0] = anon inactive pages to scan; nr[1] = anon active pages to scan
2220 * nr[2] = file inactive pages to scan; nr[3] = file active pages to scan
4f98a2fe 2221 */
33377678 2222static void get_scan_count(struct lruvec *lruvec, struct mem_cgroup *memcg,
6b4f7799
JW
2223 struct scan_control *sc, unsigned long *nr,
2224 unsigned long *lru_pages)
4f98a2fe 2225{
33377678 2226 int swappiness = mem_cgroup_swappiness(memcg);
9a265114
JW
2227 struct zone_reclaim_stat *reclaim_stat = &lruvec->reclaim_stat;
2228 u64 fraction[2];
2229 u64 denominator = 0; /* gcc */
599d0c95 2230 struct pglist_data *pgdat = lruvec_pgdat(lruvec);
4f98a2fe 2231 unsigned long anon_prio, file_prio;
9a265114 2232 enum scan_balance scan_balance;
0bf1457f 2233 unsigned long anon, file;
4f98a2fe 2234 unsigned long ap, fp;
4111304d 2235 enum lru_list lru;
76a33fc3
SL
2236
2237 /* If we have no swap space, do not bother scanning anon pages. */
d8b38438 2238 if (!sc->may_swap || mem_cgroup_get_nr_swap_pages(memcg) <= 0) {
9a265114 2239 scan_balance = SCAN_FILE;
76a33fc3
SL
2240 goto out;
2241 }
4f98a2fe 2242
10316b31
JW
2243 /*
2244 * Global reclaim will swap to prevent OOM even with no
2245 * swappiness, but memcg users want to use this knob to
2246 * disable swapping for individual groups completely when
2247 * using the memory controller's swap limit feature would be
2248 * too expensive.
2249 */
02695175 2250 if (!global_reclaim(sc) && !swappiness) {
9a265114 2251 scan_balance = SCAN_FILE;
10316b31
JW
2252 goto out;
2253 }
2254
2255 /*
2256 * Do not apply any pressure balancing cleverness when the
2257 * system is close to OOM, scan both anon and file equally
2258 * (unless the swappiness setting disagrees with swapping).
2259 */
02695175 2260 if (!sc->priority && swappiness) {
9a265114 2261 scan_balance = SCAN_EQUAL;
10316b31
JW
2262 goto out;
2263 }
2264
62376251
JW
2265 /*
2266 * Prevent the reclaimer from falling into the cache trap: as
2267 * cache pages start out inactive, every cache fault will tip
2268 * the scan balance towards the file LRU. And as the file LRU
2269 * shrinks, so does the window for rotation from references.
2270 * This means we have a runaway feedback loop where a tiny
2271 * thrashing file LRU becomes infinitely more attractive than
2272 * anon pages. Try to detect this based on file LRU size.
2273 */
2274 if (global_reclaim(sc)) {
599d0c95
MG
2275 unsigned long pgdatfile;
2276 unsigned long pgdatfree;
2277 int z;
2278 unsigned long total_high_wmark = 0;
2ab051e1 2279
599d0c95
MG
2280 pgdatfree = sum_zone_node_page_state(pgdat->node_id, NR_FREE_PAGES);
2281 pgdatfile = node_page_state(pgdat, NR_ACTIVE_FILE) +
2282 node_page_state(pgdat, NR_INACTIVE_FILE);
2283
2284 for (z = 0; z < MAX_NR_ZONES; z++) {
2285 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2286 if (!managed_zone(zone))
599d0c95
MG
2287 continue;
2288
2289 total_high_wmark += high_wmark_pages(zone);
2290 }
62376251 2291
599d0c95 2292 if (unlikely(pgdatfile + pgdatfree <= total_high_wmark)) {
06226226
DR
2293 /*
2294 * Force SCAN_ANON if there are enough inactive
2295 * anonymous pages on the LRU in eligible zones.
2296 * Otherwise, the small LRU gets thrashed.
2297 */
2298 if (!inactive_list_is_low(lruvec, false, memcg, sc, false) &&
2299 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, sc->reclaim_idx)
2300 >> sc->priority) {
2301 scan_balance = SCAN_ANON;
2302 goto out;
2303 }
62376251
JW
2304 }
2305 }
2306
7c5bd705 2307 /*
316bda0e
VD
2308 * If there is enough inactive page cache, i.e. if the size of the
2309 * inactive list is greater than that of the active list *and* the
2310 * inactive list actually has some pages to scan on this priority, we
2311 * do not reclaim anything from the anonymous working set right now.
2312 * Without the second condition we could end up never scanning an
2313 * lruvec even if it has plenty of old anonymous pages unless the
2314 * system is under heavy pressure.
7c5bd705 2315 */
2a2e4885 2316 if (!inactive_list_is_low(lruvec, true, memcg, sc, false) &&
71ab6cfe 2317 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, sc->reclaim_idx) >> sc->priority) {
9a265114 2318 scan_balance = SCAN_FILE;
7c5bd705
JW
2319 goto out;
2320 }
2321
9a265114
JW
2322 scan_balance = SCAN_FRACT;
2323
58c37f6e
KM
2324 /*
2325 * With swappiness at 100, anonymous and file have the same priority.
2326 * This scanning priority is essentially the inverse of IO cost.
2327 */
02695175 2328 anon_prio = swappiness;
75b00af7 2329 file_prio = 200 - anon_prio;
58c37f6e 2330
4f98a2fe
RR
2331 /*
2332 * OK, so we have swap space and a fair amount of page cache
2333 * pages. We use the recently rotated / recently scanned
2334 * ratios to determine how valuable each cache is.
2335 *
2336 * Because workloads change over time (and to avoid overflow)
2337 * we keep these statistics as a floating average, which ends
2338 * up weighing recent references more than old ones.
2339 *
2340 * anon in [0], file in [1]
2341 */
2ab051e1 2342
fd538803
MH
2343 anon = lruvec_lru_size(lruvec, LRU_ACTIVE_ANON, MAX_NR_ZONES) +
2344 lruvec_lru_size(lruvec, LRU_INACTIVE_ANON, MAX_NR_ZONES);
2345 file = lruvec_lru_size(lruvec, LRU_ACTIVE_FILE, MAX_NR_ZONES) +
2346 lruvec_lru_size(lruvec, LRU_INACTIVE_FILE, MAX_NR_ZONES);
2ab051e1 2347
599d0c95 2348 spin_lock_irq(&pgdat->lru_lock);
6e901571 2349 if (unlikely(reclaim_stat->recent_scanned[0] > anon / 4)) {
6e901571
KM
2350 reclaim_stat->recent_scanned[0] /= 2;
2351 reclaim_stat->recent_rotated[0] /= 2;
4f98a2fe
RR
2352 }
2353
6e901571 2354 if (unlikely(reclaim_stat->recent_scanned[1] > file / 4)) {
6e901571
KM
2355 reclaim_stat->recent_scanned[1] /= 2;
2356 reclaim_stat->recent_rotated[1] /= 2;
4f98a2fe
RR
2357 }
2358
4f98a2fe 2359 /*
00d8089c
RR
2360 * The amount of pressure on anon vs file pages is inversely
2361 * proportional to the fraction of recently scanned pages on
2362 * each list that were recently referenced and in active use.
4f98a2fe 2363 */
fe35004f 2364 ap = anon_prio * (reclaim_stat->recent_scanned[0] + 1);
6e901571 2365 ap /= reclaim_stat->recent_rotated[0] + 1;
4f98a2fe 2366
fe35004f 2367 fp = file_prio * (reclaim_stat->recent_scanned[1] + 1);
6e901571 2368 fp /= reclaim_stat->recent_rotated[1] + 1;
599d0c95 2369 spin_unlock_irq(&pgdat->lru_lock);
4f98a2fe 2370
76a33fc3
SL
2371 fraction[0] = ap;
2372 fraction[1] = fp;
2373 denominator = ap + fp + 1;
2374out:
688035f7
JW
2375 *lru_pages = 0;
2376 for_each_evictable_lru(lru) {
2377 int file = is_file_lru(lru);
2378 unsigned long size;
2379 unsigned long scan;
6b4f7799 2380
688035f7
JW
2381 size = lruvec_lru_size(lruvec, lru, sc->reclaim_idx);
2382 scan = size >> sc->priority;
2383 /*
2384 * If the cgroup's already been deleted, make sure to
2385 * scrape out the remaining cache.
2386 */
2387 if (!scan && !mem_cgroup_online(memcg))
2388 scan = min(size, SWAP_CLUSTER_MAX);
6b4f7799 2389
688035f7
JW
2390 switch (scan_balance) {
2391 case SCAN_EQUAL:
2392 /* Scan lists relative to size */
2393 break;
2394 case SCAN_FRACT:
9a265114 2395 /*
688035f7
JW
2396 * Scan types proportional to swappiness and
2397 * their relative recent reclaim efficiency.
9a265114 2398 */
688035f7
JW
2399 scan = div64_u64(scan * fraction[file],
2400 denominator);
2401 break;
2402 case SCAN_FILE:
2403 case SCAN_ANON:
2404 /* Scan one type exclusively */
2405 if ((scan_balance == SCAN_FILE) != file) {
2406 size = 0;
2407 scan = 0;
2408 }
2409 break;
2410 default:
2411 /* Look ma, no brain */
2412 BUG();
9a265114 2413 }
688035f7
JW
2414
2415 *lru_pages += size;
2416 nr[lru] = scan;
76a33fc3 2417 }
6e08a369 2418}
4f98a2fe 2419
9b4f98cd 2420/*
a9dd0a83 2421 * This is a basic per-node page freer. Used by both kswapd and direct reclaim.
9b4f98cd 2422 */
a9dd0a83 2423static void shrink_node_memcg(struct pglist_data *pgdat, struct mem_cgroup *memcg,
33377678 2424 struct scan_control *sc, unsigned long *lru_pages)
9b4f98cd 2425{
ef8f2327 2426 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
9b4f98cd 2427 unsigned long nr[NR_LRU_LISTS];
e82e0561 2428 unsigned long targets[NR_LRU_LISTS];
9b4f98cd
JW
2429 unsigned long nr_to_scan;
2430 enum lru_list lru;
2431 unsigned long nr_reclaimed = 0;
2432 unsigned long nr_to_reclaim = sc->nr_to_reclaim;
2433 struct blk_plug plug;
1a501907 2434 bool scan_adjusted;
9b4f98cd 2435
33377678 2436 get_scan_count(lruvec, memcg, sc, nr, lru_pages);
9b4f98cd 2437
e82e0561
MG
2438 /* Record the original scan target for proportional adjustments later */
2439 memcpy(targets, nr, sizeof(nr));
2440
1a501907
MG
2441 /*
2442 * Global reclaiming within direct reclaim at DEF_PRIORITY is a normal
2443 * event that can occur when there is little memory pressure e.g.
2444 * multiple streaming readers/writers. Hence, we do not abort scanning
2445 * when the requested number of pages are reclaimed when scanning at
2446 * DEF_PRIORITY on the assumption that the fact we are direct
2447 * reclaiming implies that kswapd is not keeping up and it is best to
2448 * do a batch of work at once. For memcg reclaim one check is made to
2449 * abort proportional reclaim if either the file or anon lru has already
2450 * dropped to zero at the first pass.
2451 */
2452 scan_adjusted = (global_reclaim(sc) && !current_is_kswapd() &&
2453 sc->priority == DEF_PRIORITY);
2454
9b4f98cd
JW
2455 blk_start_plug(&plug);
2456 while (nr[LRU_INACTIVE_ANON] || nr[LRU_ACTIVE_FILE] ||
2457 nr[LRU_INACTIVE_FILE]) {
e82e0561
MG
2458 unsigned long nr_anon, nr_file, percentage;
2459 unsigned long nr_scanned;
2460
9b4f98cd
JW
2461 for_each_evictable_lru(lru) {
2462 if (nr[lru]) {
2463 nr_to_scan = min(nr[lru], SWAP_CLUSTER_MAX);
2464 nr[lru] -= nr_to_scan;
2465
2466 nr_reclaimed += shrink_list(lru, nr_to_scan,
2a2e4885 2467 lruvec, memcg, sc);
9b4f98cd
JW
2468 }
2469 }
e82e0561 2470
bd041733
MH
2471 cond_resched();
2472
e82e0561
MG
2473 if (nr_reclaimed < nr_to_reclaim || scan_adjusted)
2474 continue;
2475
e82e0561
MG
2476 /*
2477 * For kswapd and memcg, reclaim at least the number of pages
1a501907 2478 * requested. Ensure that the anon and file LRUs are scanned
e82e0561
MG
2479 * proportionally what was requested by get_scan_count(). We
2480 * stop reclaiming one LRU and reduce the amount scanning
2481 * proportional to the original scan target.
2482 */
2483 nr_file = nr[LRU_INACTIVE_FILE] + nr[LRU_ACTIVE_FILE];
2484 nr_anon = nr[LRU_INACTIVE_ANON] + nr[LRU_ACTIVE_ANON];
2485
1a501907
MG
2486 /*
2487 * It's just vindictive to attack the larger once the smaller
2488 * has gone to zero. And given the way we stop scanning the
2489 * smaller below, this makes sure that we only make one nudge
2490 * towards proportionality once we've got nr_to_reclaim.
2491 */
2492 if (!nr_file || !nr_anon)
2493 break;
2494
e82e0561
MG
2495 if (nr_file > nr_anon) {
2496 unsigned long scan_target = targets[LRU_INACTIVE_ANON] +
2497 targets[LRU_ACTIVE_ANON] + 1;
2498 lru = LRU_BASE;
2499 percentage = nr_anon * 100 / scan_target;
2500 } else {
2501 unsigned long scan_target = targets[LRU_INACTIVE_FILE] +
2502 targets[LRU_ACTIVE_FILE] + 1;
2503 lru = LRU_FILE;
2504 percentage = nr_file * 100 / scan_target;
2505 }
2506
2507 /* Stop scanning the smaller of the LRU */
2508 nr[lru] = 0;
2509 nr[lru + LRU_ACTIVE] = 0;
2510
2511 /*
2512 * Recalculate the other LRU scan count based on its original
2513 * scan target and the percentage scanning already complete
2514 */
2515 lru = (lru == LRU_FILE) ? LRU_BASE : LRU_FILE;
2516 nr_scanned = targets[lru] - nr[lru];
2517 nr[lru] = targets[lru] * (100 - percentage) / 100;
2518 nr[lru] -= min(nr[lru], nr_scanned);
2519
2520 lru += LRU_ACTIVE;
2521 nr_scanned = targets[lru] - nr[lru];
2522 nr[lru] = targets[lru] * (100 - percentage) / 100;
2523 nr[lru] -= min(nr[lru], nr_scanned);
2524
2525 scan_adjusted = true;
9b4f98cd
JW
2526 }
2527 blk_finish_plug(&plug);
2528 sc->nr_reclaimed += nr_reclaimed;
2529
2530 /*
2531 * Even if we did not try to evict anon pages at all, we want to
2532 * rebalance the anon lru active/inactive ratio.
2533 */
2a2e4885 2534 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
9b4f98cd
JW
2535 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
2536 sc, LRU_ACTIVE_ANON);
9b4f98cd
JW
2537}
2538
23b9da55 2539/* Use reclaim/compaction for costly allocs or under memory pressure */
9e3b2f8c 2540static bool in_reclaim_compaction(struct scan_control *sc)
23b9da55 2541{
d84da3f9 2542 if (IS_ENABLED(CONFIG_COMPACTION) && sc->order &&
23b9da55 2543 (sc->order > PAGE_ALLOC_COSTLY_ORDER ||
9e3b2f8c 2544 sc->priority < DEF_PRIORITY - 2))
23b9da55
MG
2545 return true;
2546
2547 return false;
2548}
2549
3e7d3449 2550/*
23b9da55
MG
2551 * Reclaim/compaction is used for high-order allocation requests. It reclaims
2552 * order-0 pages before compacting the zone. should_continue_reclaim() returns
2553 * true if more pages should be reclaimed such that when the page allocator
2554 * calls try_to_compact_zone() that it will have enough free pages to succeed.
2555 * It will give up earlier than that if there is difficulty reclaiming pages.
3e7d3449 2556 */
a9dd0a83 2557static inline bool should_continue_reclaim(struct pglist_data *pgdat,
3e7d3449
MG
2558 unsigned long nr_reclaimed,
2559 unsigned long nr_scanned,
2560 struct scan_control *sc)
2561{
2562 unsigned long pages_for_compaction;
2563 unsigned long inactive_lru_pages;
a9dd0a83 2564 int z;
3e7d3449
MG
2565
2566 /* If not in reclaim/compaction mode, stop */
9e3b2f8c 2567 if (!in_reclaim_compaction(sc))
3e7d3449
MG
2568 return false;
2569
2876592f 2570 /* Consider stopping depending on scan and reclaim activity */
dcda9b04 2571 if (sc->gfp_mask & __GFP_RETRY_MAYFAIL) {
2876592f 2572 /*
dcda9b04 2573 * For __GFP_RETRY_MAYFAIL allocations, stop reclaiming if the
2876592f
MG
2574 * full LRU list has been scanned and we are still failing
2575 * to reclaim pages. This full LRU scan is potentially
dcda9b04 2576 * expensive but a __GFP_RETRY_MAYFAIL caller really wants to succeed
2876592f
MG
2577 */
2578 if (!nr_reclaimed && !nr_scanned)
2579 return false;
2580 } else {
2581 /*
dcda9b04 2582 * For non-__GFP_RETRY_MAYFAIL allocations which can presumably
2876592f
MG
2583 * fail without consequence, stop if we failed to reclaim
2584 * any pages from the last SWAP_CLUSTER_MAX number of
2585 * pages that were scanned. This will return to the
2586 * caller faster at the risk reclaim/compaction and
2587 * the resulting allocation attempt fails
2588 */
2589 if (!nr_reclaimed)
2590 return false;
2591 }
3e7d3449
MG
2592
2593 /*
2594 * If we have not reclaimed enough pages for compaction and the
2595 * inactive lists are large enough, continue reclaiming
2596 */
9861a62c 2597 pages_for_compaction = compact_gap(sc->order);
a9dd0a83 2598 inactive_lru_pages = node_page_state(pgdat, NR_INACTIVE_FILE);
ec8acf20 2599 if (get_nr_swap_pages() > 0)
a9dd0a83 2600 inactive_lru_pages += node_page_state(pgdat, NR_INACTIVE_ANON);
3e7d3449
MG
2601 if (sc->nr_reclaimed < pages_for_compaction &&
2602 inactive_lru_pages > pages_for_compaction)
2603 return true;
2604
2605 /* If compaction would go ahead or the allocation would succeed, stop */
a9dd0a83
MG
2606 for (z = 0; z <= sc->reclaim_idx; z++) {
2607 struct zone *zone = &pgdat->node_zones[z];
6aa303de 2608 if (!managed_zone(zone))
a9dd0a83
MG
2609 continue;
2610
2611 switch (compaction_suitable(zone, sc->order, 0, sc->reclaim_idx)) {
cf378319 2612 case COMPACT_SUCCESS:
a9dd0a83
MG
2613 case COMPACT_CONTINUE:
2614 return false;
2615 default:
2616 /* check next zone */
2617 ;
2618 }
3e7d3449 2619 }
a9dd0a83 2620 return true;
3e7d3449
MG
2621}
2622
970a39a3 2623static bool shrink_node(pg_data_t *pgdat, struct scan_control *sc)
1da177e4 2624{
cb731d6c 2625 struct reclaim_state *reclaim_state = current->reclaim_state;
f0fdc5e8 2626 unsigned long nr_reclaimed, nr_scanned;
2344d7e4 2627 bool reclaimable = false;
1da177e4 2628
9b4f98cd
JW
2629 do {
2630 struct mem_cgroup *root = sc->target_mem_cgroup;
2631 struct mem_cgroup_reclaim_cookie reclaim = {
ef8f2327 2632 .pgdat = pgdat,
9b4f98cd
JW
2633 .priority = sc->priority,
2634 };
a9dd0a83 2635 unsigned long node_lru_pages = 0;
694fbc0f 2636 struct mem_cgroup *memcg;
3e7d3449 2637
9b4f98cd
JW
2638 nr_reclaimed = sc->nr_reclaimed;
2639 nr_scanned = sc->nr_scanned;
1da177e4 2640
694fbc0f
AM
2641 memcg = mem_cgroup_iter(root, NULL, &reclaim);
2642 do {
6b4f7799 2643 unsigned long lru_pages;
8e8ae645 2644 unsigned long reclaimed;
cb731d6c 2645 unsigned long scanned;
5660048c 2646
241994ed 2647 if (mem_cgroup_low(root, memcg)) {
d6622f63
YX
2648 if (!sc->memcg_low_reclaim) {
2649 sc->memcg_low_skipped = 1;
241994ed 2650 continue;
d6622f63 2651 }
31176c78 2652 mem_cgroup_event(memcg, MEMCG_LOW);
241994ed
JW
2653 }
2654
8e8ae645 2655 reclaimed = sc->nr_reclaimed;
cb731d6c 2656 scanned = sc->nr_scanned;
f9be23d6 2657
a9dd0a83
MG
2658 shrink_node_memcg(pgdat, memcg, sc, &lru_pages);
2659 node_lru_pages += lru_pages;
f16015fb 2660
b5afba29 2661 if (memcg)
a9dd0a83 2662 shrink_slab(sc->gfp_mask, pgdat->node_id,
cb731d6c
VD
2663 memcg, sc->nr_scanned - scanned,
2664 lru_pages);
2665
8e8ae645
JW
2666 /* Record the group's reclaim efficiency */
2667 vmpressure(sc->gfp_mask, memcg, false,
2668 sc->nr_scanned - scanned,
2669 sc->nr_reclaimed - reclaimed);
2670
9b4f98cd 2671 /*
a394cb8e
MH
2672 * Direct reclaim and kswapd have to scan all memory
2673 * cgroups to fulfill the overall scan target for the
a9dd0a83 2674 * node.
a394cb8e
MH
2675 *
2676 * Limit reclaim, on the other hand, only cares about
2677 * nr_to_reclaim pages to be reclaimed and it will
2678 * retry with decreasing priority if one round over the
2679 * whole hierarchy is not sufficient.
9b4f98cd 2680 */
a394cb8e
MH
2681 if (!global_reclaim(sc) &&
2682 sc->nr_reclaimed >= sc->nr_to_reclaim) {
9b4f98cd
JW
2683 mem_cgroup_iter_break(root, memcg);
2684 break;
2685 }
241994ed 2686 } while ((memcg = mem_cgroup_iter(root, memcg, &reclaim)));
70ddf637 2687
6b4f7799
JW
2688 /*
2689 * Shrink the slab caches in the same proportion that
2690 * the eligible LRU pages were scanned.
2691 */
b2e18757 2692 if (global_reclaim(sc))
a9dd0a83 2693 shrink_slab(sc->gfp_mask, pgdat->node_id, NULL,
cb731d6c 2694 sc->nr_scanned - nr_scanned,
a9dd0a83 2695 node_lru_pages);
cb731d6c
VD
2696
2697 if (reclaim_state) {
2698 sc->nr_reclaimed += reclaim_state->reclaimed_slab;
2699 reclaim_state->reclaimed_slab = 0;
6b4f7799
JW
2700 }
2701
8e8ae645
JW
2702 /* Record the subtree's reclaim efficiency */
2703 vmpressure(sc->gfp_mask, sc->target_mem_cgroup, true,
70ddf637
AV
2704 sc->nr_scanned - nr_scanned,
2705 sc->nr_reclaimed - nr_reclaimed);
2706
2344d7e4
JW
2707 if (sc->nr_reclaimed - nr_reclaimed)
2708 reclaimable = true;
2709
a9dd0a83 2710 } while (should_continue_reclaim(pgdat, sc->nr_reclaimed - nr_reclaimed,
9b4f98cd 2711 sc->nr_scanned - nr_scanned, sc));
2344d7e4 2712
c73322d0
JW
2713 /*
2714 * Kswapd gives up on balancing particular nodes after too
2715 * many failures to reclaim anything from them and goes to
2716 * sleep. On reclaim progress, reset the failure counter. A
2717 * successful direct reclaim run will revive a dormant kswapd.
2718 */
2719 if (reclaimable)
2720 pgdat->kswapd_failures = 0;
2721
2344d7e4 2722 return reclaimable;
f16015fb
JW
2723}
2724
53853e2d 2725/*
fdd4c614
VB
2726 * Returns true if compaction should go ahead for a costly-order request, or
2727 * the allocation would already succeed without compaction. Return false if we
2728 * should reclaim first.
53853e2d 2729 */
4f588331 2730static inline bool compaction_ready(struct zone *zone, struct scan_control *sc)
fe4b1b24 2731{
31483b6a 2732 unsigned long watermark;
fdd4c614 2733 enum compact_result suitable;
fe4b1b24 2734
fdd4c614
VB
2735 suitable = compaction_suitable(zone, sc->order, 0, sc->reclaim_idx);
2736 if (suitable == COMPACT_SUCCESS)
2737 /* Allocation should succeed already. Don't reclaim. */
2738 return true;
2739 if (suitable == COMPACT_SKIPPED)
2740 /* Compaction cannot yet proceed. Do reclaim. */
2741 return false;
fe4b1b24 2742
53853e2d 2743 /*
fdd4c614
VB
2744 * Compaction is already possible, but it takes time to run and there
2745 * are potentially other callers using the pages just freed. So proceed
2746 * with reclaim to make a buffer of free pages available to give
2747 * compaction a reasonable chance of completing and allocating the page.
2748 * Note that we won't actually reclaim the whole buffer in one attempt
2749 * as the target watermark in should_continue_reclaim() is lower. But if
2750 * we are already above the high+gap watermark, don't reclaim at all.
53853e2d 2751 */
fdd4c614 2752 watermark = high_wmark_pages(zone) + compact_gap(sc->order);
fe4b1b24 2753
fdd4c614 2754 return zone_watermark_ok_safe(zone, 0, watermark, sc->reclaim_idx);
fe4b1b24
MG
2755}
2756
1da177e4
LT
2757/*
2758 * This is the direct reclaim path, for page-allocating processes. We only
2759 * try to reclaim pages from zones which will satisfy the caller's allocation
2760 * request.
2761 *
1da177e4
LT
2762 * If a zone is deemed to be full of pinned pages then just give it a light
2763 * scan then give up on it.
2764 */
0a0337e0 2765static void shrink_zones(struct zonelist *zonelist, struct scan_control *sc)
1da177e4 2766{
dd1a239f 2767 struct zoneref *z;
54a6eb5c 2768 struct zone *zone;
0608f43d
AM
2769 unsigned long nr_soft_reclaimed;
2770 unsigned long nr_soft_scanned;
619d0d76 2771 gfp_t orig_mask;
79dafcdc 2772 pg_data_t *last_pgdat = NULL;
1cfb419b 2773
cc715d99
MG
2774 /*
2775 * If the number of buffer_heads in the machine exceeds the maximum
2776 * allowed level, force direct reclaim to scan the highmem zone as
2777 * highmem pages could be pinning lowmem pages storing buffer_heads
2778 */
619d0d76 2779 orig_mask = sc->gfp_mask;
b2e18757 2780 if (buffer_heads_over_limit) {
cc715d99 2781 sc->gfp_mask |= __GFP_HIGHMEM;
4f588331 2782 sc->reclaim_idx = gfp_zone(sc->gfp_mask);
b2e18757 2783 }
cc715d99 2784
d4debc66 2785 for_each_zone_zonelist_nodemask(zone, z, zonelist,
b2e18757 2786 sc->reclaim_idx, sc->nodemask) {
1cfb419b
KH
2787 /*
2788 * Take care memory controller reclaiming has small influence
2789 * to global LRU.
2790 */
89b5fae5 2791 if (global_reclaim(sc)) {
344736f2
VD
2792 if (!cpuset_zone_allowed(zone,
2793 GFP_KERNEL | __GFP_HARDWALL))
1cfb419b 2794 continue;
65ec02cb 2795
0b06496a
JW
2796 /*
2797 * If we already have plenty of memory free for
2798 * compaction in this zone, don't free any more.
2799 * Even though compaction is invoked for any
2800 * non-zero order, only frequent costly order
2801 * reclamation is disruptive enough to become a
2802 * noticeable problem, like transparent huge
2803 * page allocations.
2804 */
2805 if (IS_ENABLED(CONFIG_COMPACTION) &&
2806 sc->order > PAGE_ALLOC_COSTLY_ORDER &&
4f588331 2807 compaction_ready(zone, sc)) {
0b06496a
JW
2808 sc->compaction_ready = true;
2809 continue;
e0887c19 2810 }
0b06496a 2811
79dafcdc
MG
2812 /*
2813 * Shrink each node in the zonelist once. If the
2814 * zonelist is ordered by zone (not the default) then a
2815 * node may be shrunk multiple times but in that case
2816 * the user prefers lower zones being preserved.
2817 */
2818 if (zone->zone_pgdat == last_pgdat)
2819 continue;
2820
0608f43d
AM
2821 /*
2822 * This steals pages from memory cgroups over softlimit
2823 * and returns the number of reclaimed pages and
2824 * scanned pages. This works for global memory pressure
2825 * and balancing, not for a memcg's limit.
2826 */
2827 nr_soft_scanned = 0;
ef8f2327 2828 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(zone->zone_pgdat,
0608f43d
AM
2829 sc->order, sc->gfp_mask,
2830 &nr_soft_scanned);
2831 sc->nr_reclaimed += nr_soft_reclaimed;
2832 sc->nr_scanned += nr_soft_scanned;
ac34a1a3 2833 /* need some check for avoid more shrink_zone() */
1cfb419b 2834 }
408d8544 2835
79dafcdc
MG
2836 /* See comment about same check for global reclaim above */
2837 if (zone->zone_pgdat == last_pgdat)
2838 continue;
2839 last_pgdat = zone->zone_pgdat;
970a39a3 2840 shrink_node(zone->zone_pgdat, sc);
1da177e4 2841 }
e0c23279 2842
619d0d76
WY
2843 /*
2844 * Restore to original mask to avoid the impact on the caller if we
2845 * promoted it to __GFP_HIGHMEM.
2846 */
2847 sc->gfp_mask = orig_mask;
1da177e4 2848}
4f98a2fe 2849
2a2e4885
JW
2850static void snapshot_refaults(struct mem_cgroup *root_memcg, pg_data_t *pgdat)
2851{
2852 struct mem_cgroup *memcg;
2853
2854 memcg = mem_cgroup_iter(root_memcg, NULL, NULL);
2855 do {
2856 unsigned long refaults;
2857 struct lruvec *lruvec;
2858
2859 if (memcg)
ccda7f43 2860 refaults = memcg_page_state(memcg, WORKINGSET_ACTIVATE);
2a2e4885
JW
2861 else
2862 refaults = node_page_state(pgdat, WORKINGSET_ACTIVATE);
2863
2864 lruvec = mem_cgroup_lruvec(pgdat, memcg);
2865 lruvec->refaults = refaults;
2866 } while ((memcg = mem_cgroup_iter(root_memcg, memcg, NULL)));
2867}
2868
1da177e4
LT
2869/*
2870 * This is the main entry point to direct page reclaim.
2871 *
2872 * If a full scan of the inactive list fails to free enough memory then we
2873 * are "out of memory" and something needs to be killed.
2874 *
2875 * If the caller is !__GFP_FS then the probability of a failure is reasonably
2876 * high - the zone may be full of dirty or under-writeback pages, which this
5b0830cb
JA
2877 * caller can't do much about. We kick the writeback threads and take explicit
2878 * naps in the hope that some of these pages can be written. But if the
2879 * allocating task holds filesystem locks which prevent writeout this might not
2880 * work, and the allocation attempt will fail.
a41f24ea
NA
2881 *
2882 * returns: 0, if no pages reclaimed
2883 * else, the number of pages reclaimed
1da177e4 2884 */
dac1d27b 2885static unsigned long do_try_to_free_pages(struct zonelist *zonelist,
3115cd91 2886 struct scan_control *sc)
1da177e4 2887{
241994ed 2888 int initial_priority = sc->priority;
2a2e4885
JW
2889 pg_data_t *last_pgdat;
2890 struct zoneref *z;
2891 struct zone *zone;
241994ed 2892retry:
873b4771
KK
2893 delayacct_freepages_start();
2894
89b5fae5 2895 if (global_reclaim(sc))
7cc30fcf 2896 __count_zid_vm_events(ALLOCSTALL, sc->reclaim_idx, 1);
1da177e4 2897
9e3b2f8c 2898 do {
70ddf637
AV
2899 vmpressure_prio(sc->gfp_mask, sc->target_mem_cgroup,
2900 sc->priority);
66e1707b 2901 sc->nr_scanned = 0;
0a0337e0 2902 shrink_zones(zonelist, sc);
c6a8a8c5 2903
bb21c7ce 2904 if (sc->nr_reclaimed >= sc->nr_to_reclaim)
0b06496a
JW
2905 break;
2906
2907 if (sc->compaction_ready)
2908 break;
1da177e4 2909
0e50ce3b
MK
2910 /*
2911 * If we're getting trouble reclaiming, start doing
2912 * writepage even in laptop mode.
2913 */
2914 if (sc->priority < DEF_PRIORITY - 2)
2915 sc->may_writepage = 1;
0b06496a 2916 } while (--sc->priority >= 0);
bb21c7ce 2917
2a2e4885
JW
2918 last_pgdat = NULL;
2919 for_each_zone_zonelist_nodemask(zone, z, zonelist, sc->reclaim_idx,
2920 sc->nodemask) {
2921 if (zone->zone_pgdat == last_pgdat)
2922 continue;
2923 last_pgdat = zone->zone_pgdat;
2924 snapshot_refaults(sc->target_mem_cgroup, zone->zone_pgdat);
2925 }
2926
873b4771
KK
2927 delayacct_freepages_end();
2928
bb21c7ce
KM
2929 if (sc->nr_reclaimed)
2930 return sc->nr_reclaimed;
2931
0cee34fd 2932 /* Aborted reclaim to try compaction? don't OOM, then */
0b06496a 2933 if (sc->compaction_ready)
7335084d
MG
2934 return 1;
2935
241994ed 2936 /* Untapped cgroup reserves? Don't OOM, retry. */
d6622f63 2937 if (sc->memcg_low_skipped) {
241994ed 2938 sc->priority = initial_priority;
d6622f63
YX
2939 sc->memcg_low_reclaim = 1;
2940 sc->memcg_low_skipped = 0;
241994ed
JW
2941 goto retry;
2942 }
2943
bb21c7ce 2944 return 0;
1da177e4
LT
2945}
2946
c73322d0 2947static bool allow_direct_reclaim(pg_data_t *pgdat)
5515061d
MG
2948{
2949 struct zone *zone;
2950 unsigned long pfmemalloc_reserve = 0;
2951 unsigned long free_pages = 0;
2952 int i;
2953 bool wmark_ok;
2954
c73322d0
JW
2955 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
2956 return true;
2957
5515061d
MG
2958 for (i = 0; i <= ZONE_NORMAL; i++) {
2959 zone = &pgdat->node_zones[i];
d450abd8
JW
2960 if (!managed_zone(zone))
2961 continue;
2962
2963 if (!zone_reclaimable_pages(zone))
675becce
MG
2964 continue;
2965
5515061d
MG
2966 pfmemalloc_reserve += min_wmark_pages(zone);
2967 free_pages += zone_page_state(zone, NR_FREE_PAGES);
2968 }
2969
675becce
MG
2970 /* If there are no reserves (unexpected config) then do not throttle */
2971 if (!pfmemalloc_reserve)
2972 return true;
2973
5515061d
MG
2974 wmark_ok = free_pages > pfmemalloc_reserve / 2;
2975
2976 /* kswapd must be awake if processes are being throttled */
2977 if (!wmark_ok && waitqueue_active(&pgdat->kswapd_wait)) {
38087d9b 2978 pgdat->kswapd_classzone_idx = min(pgdat->kswapd_classzone_idx,
5515061d
MG
2979 (enum zone_type)ZONE_NORMAL);
2980 wake_up_interruptible(&pgdat->kswapd_wait);
2981 }
2982
2983 return wmark_ok;
2984}
2985
2986/*
2987 * Throttle direct reclaimers if backing storage is backed by the network
2988 * and the PFMEMALLOC reserve for the preferred node is getting dangerously
2989 * depleted. kswapd will continue to make progress and wake the processes
50694c28
MG
2990 * when the low watermark is reached.
2991 *
2992 * Returns true if a fatal signal was delivered during throttling. If this
2993 * happens, the page allocator should not consider triggering the OOM killer.
5515061d 2994 */
50694c28 2995static bool throttle_direct_reclaim(gfp_t gfp_mask, struct zonelist *zonelist,
5515061d
MG
2996 nodemask_t *nodemask)
2997{
675becce 2998 struct zoneref *z;
5515061d 2999 struct zone *zone;
675becce 3000 pg_data_t *pgdat = NULL;
5515061d
MG
3001
3002 /*
3003 * Kernel threads should not be throttled as they may be indirectly
3004 * responsible for cleaning pages necessary for reclaim to make forward
3005 * progress. kjournald for example may enter direct reclaim while
3006 * committing a transaction where throttling it could forcing other
3007 * processes to block on log_wait_commit().
3008 */
3009 if (current->flags & PF_KTHREAD)
50694c28
MG
3010 goto out;
3011
3012 /*
3013 * If a fatal signal is pending, this process should not throttle.
3014 * It should return quickly so it can exit and free its memory
3015 */
3016 if (fatal_signal_pending(current))
3017 goto out;
5515061d 3018
675becce
MG
3019 /*
3020 * Check if the pfmemalloc reserves are ok by finding the first node
3021 * with a usable ZONE_NORMAL or lower zone. The expectation is that
3022 * GFP_KERNEL will be required for allocating network buffers when
3023 * swapping over the network so ZONE_HIGHMEM is unusable.
3024 *
3025 * Throttling is based on the first usable node and throttled processes
3026 * wait on a queue until kswapd makes progress and wakes them. There
3027 * is an affinity then between processes waking up and where reclaim
3028 * progress has been made assuming the process wakes on the same node.
3029 * More importantly, processes running on remote nodes will not compete
3030 * for remote pfmemalloc reserves and processes on different nodes
3031 * should make reasonable progress.
3032 */
3033 for_each_zone_zonelist_nodemask(zone, z, zonelist,
17636faa 3034 gfp_zone(gfp_mask), nodemask) {
675becce
MG
3035 if (zone_idx(zone) > ZONE_NORMAL)
3036 continue;
3037
3038 /* Throttle based on the first usable node */
3039 pgdat = zone->zone_pgdat;
c73322d0 3040 if (allow_direct_reclaim(pgdat))
675becce
MG
3041 goto out;
3042 break;
3043 }
3044
3045 /* If no zone was usable by the allocation flags then do not throttle */
3046 if (!pgdat)
50694c28 3047 goto out;
5515061d 3048
68243e76
MG
3049 /* Account for the throttling */
3050 count_vm_event(PGSCAN_DIRECT_THROTTLE);
3051
5515061d
MG
3052 /*
3053 * If the caller cannot enter the filesystem, it's possible that it
3054 * is due to the caller holding an FS lock or performing a journal
3055 * transaction in the case of a filesystem like ext[3|4]. In this case,
3056 * it is not safe to block on pfmemalloc_wait as kswapd could be
3057 * blocked waiting on the same lock. Instead, throttle for up to a
3058 * second before continuing.
3059 */
3060 if (!(gfp_mask & __GFP_FS)) {
3061 wait_event_interruptible_timeout(pgdat->pfmemalloc_wait,
c73322d0 3062 allow_direct_reclaim(pgdat), HZ);
50694c28
MG
3063
3064 goto check_pending;
5515061d
MG
3065 }
3066
3067 /* Throttle until kswapd wakes the process */
3068 wait_event_killable(zone->zone_pgdat->pfmemalloc_wait,
c73322d0 3069 allow_direct_reclaim(pgdat));
50694c28
MG
3070
3071check_pending:
3072 if (fatal_signal_pending(current))
3073 return true;
3074
3075out:
3076 return false;
5515061d
MG
3077}
3078
dac1d27b 3079unsigned long try_to_free_pages(struct zonelist *zonelist, int order,
327c0e96 3080 gfp_t gfp_mask, nodemask_t *nodemask)
66e1707b 3081{
33906bc5 3082 unsigned long nr_reclaimed;
66e1707b 3083 struct scan_control sc = {
ee814fe2 3084 .nr_to_reclaim = SWAP_CLUSTER_MAX,
f2f43e56 3085 .gfp_mask = current_gfp_context(gfp_mask),
b2e18757 3086 .reclaim_idx = gfp_zone(gfp_mask),
ee814fe2
JW
3087 .order = order,
3088 .nodemask = nodemask,
3089 .priority = DEF_PRIORITY,
66e1707b 3090 .may_writepage = !laptop_mode,
a6dc60f8 3091 .may_unmap = 1,
2e2e4259 3092 .may_swap = 1,
66e1707b
BS
3093 };
3094
5515061d 3095 /*
50694c28
MG
3096 * Do not enter reclaim if fatal signal was delivered while throttled.
3097 * 1 is returned so that the page allocator does not OOM kill at this
3098 * point.
5515061d 3099 */
f2f43e56 3100 if (throttle_direct_reclaim(sc.gfp_mask, zonelist, nodemask))
5515061d
MG
3101 return 1;
3102
33906bc5
MG
3103 trace_mm_vmscan_direct_reclaim_begin(order,
3104 sc.may_writepage,
f2f43e56 3105 sc.gfp_mask,
e5146b12 3106 sc.reclaim_idx);
33906bc5 3107
3115cd91 3108 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
33906bc5
MG
3109
3110 trace_mm_vmscan_direct_reclaim_end(nr_reclaimed);
3111
3112 return nr_reclaimed;
66e1707b
BS
3113}
3114
c255a458 3115#ifdef CONFIG_MEMCG
66e1707b 3116
a9dd0a83 3117unsigned long mem_cgroup_shrink_node(struct mem_cgroup *memcg,
4e416953 3118 gfp_t gfp_mask, bool noswap,
ef8f2327 3119 pg_data_t *pgdat,
0ae5e89c 3120 unsigned long *nr_scanned)
4e416953
BS
3121{
3122 struct scan_control sc = {
b8f5c566 3123 .nr_to_reclaim = SWAP_CLUSTER_MAX,
ee814fe2 3124 .target_mem_cgroup = memcg,
4e416953
BS
3125 .may_writepage = !laptop_mode,
3126 .may_unmap = 1,
b2e18757 3127 .reclaim_idx = MAX_NR_ZONES - 1,
4e416953 3128 .may_swap = !noswap,
4e416953 3129 };
6b4f7799 3130 unsigned long lru_pages;
0ae5e89c 3131
4e416953
BS
3132 sc.gfp_mask = (gfp_mask & GFP_RECLAIM_MASK) |
3133 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK);
bdce6d9e 3134
9e3b2f8c 3135 trace_mm_vmscan_memcg_softlimit_reclaim_begin(sc.order,
bdce6d9e 3136 sc.may_writepage,
e5146b12
MG
3137 sc.gfp_mask,
3138 sc.reclaim_idx);
bdce6d9e 3139
4e416953
BS
3140 /*
3141 * NOTE: Although we can get the priority field, using it
3142 * here is not a good idea, since it limits the pages we can scan.
a9dd0a83 3143 * if we don't reclaim here, the shrink_node from balance_pgdat
4e416953
BS
3144 * will pick up pages from other mem cgroup's as well. We hack
3145 * the priority and make it zero.
3146 */
ef8f2327 3147 shrink_node_memcg(pgdat, memcg, &sc, &lru_pages);
bdce6d9e
KM
3148
3149 trace_mm_vmscan_memcg_softlimit_reclaim_end(sc.nr_reclaimed);
3150
0ae5e89c 3151 *nr_scanned = sc.nr_scanned;
4e416953
BS
3152 return sc.nr_reclaimed;
3153}
3154
72835c86 3155unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup *memcg,
b70a2a21 3156 unsigned long nr_pages,
a7885eb8 3157 gfp_t gfp_mask,
b70a2a21 3158 bool may_swap)
66e1707b 3159{
4e416953 3160 struct zonelist *zonelist;
bdce6d9e 3161 unsigned long nr_reclaimed;
889976db 3162 int nid;
499118e9 3163 unsigned int noreclaim_flag;
66e1707b 3164 struct scan_control sc = {
b70a2a21 3165 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
7dea19f9 3166 .gfp_mask = (current_gfp_context(gfp_mask) & GFP_RECLAIM_MASK) |
a09ed5e0 3167 (GFP_HIGHUSER_MOVABLE & ~GFP_RECLAIM_MASK),
b2e18757 3168 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2
JW
3169 .target_mem_cgroup = memcg,
3170 .priority = DEF_PRIORITY,
3171 .may_writepage = !laptop_mode,
3172 .may_unmap = 1,
b70a2a21 3173 .may_swap = may_swap,
a09ed5e0 3174 };
66e1707b 3175
889976db
YH
3176 /*
3177 * Unlike direct reclaim via alloc_pages(), memcg's reclaim doesn't
3178 * take care of from where we get pages. So the node where we start the
3179 * scan does not need to be the current node.
3180 */
72835c86 3181 nid = mem_cgroup_select_victim_node(memcg);
889976db 3182
c9634cf0 3183 zonelist = &NODE_DATA(nid)->node_zonelists[ZONELIST_FALLBACK];
bdce6d9e
KM
3184
3185 trace_mm_vmscan_memcg_reclaim_begin(0,
3186 sc.may_writepage,
e5146b12
MG
3187 sc.gfp_mask,
3188 sc.reclaim_idx);
bdce6d9e 3189
499118e9 3190 noreclaim_flag = memalloc_noreclaim_save();
3115cd91 3191 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
499118e9 3192 memalloc_noreclaim_restore(noreclaim_flag);
bdce6d9e
KM
3193
3194 trace_mm_vmscan_memcg_reclaim_end(nr_reclaimed);
3195
3196 return nr_reclaimed;
66e1707b
BS
3197}
3198#endif
3199
1d82de61 3200static void age_active_anon(struct pglist_data *pgdat,
ef8f2327 3201 struct scan_control *sc)
f16015fb 3202{
b95a2f2d 3203 struct mem_cgroup *memcg;
f16015fb 3204
b95a2f2d
JW
3205 if (!total_swap_pages)
3206 return;
3207
3208 memcg = mem_cgroup_iter(NULL, NULL, NULL);
3209 do {
ef8f2327 3210 struct lruvec *lruvec = mem_cgroup_lruvec(pgdat, memcg);
b95a2f2d 3211
2a2e4885 3212 if (inactive_list_is_low(lruvec, false, memcg, sc, true))
1a93be0e 3213 shrink_active_list(SWAP_CLUSTER_MAX, lruvec,
9e3b2f8c 3214 sc, LRU_ACTIVE_ANON);
b95a2f2d
JW
3215
3216 memcg = mem_cgroup_iter(NULL, memcg, NULL);
3217 } while (memcg);
f16015fb
JW
3218}
3219
e716f2eb
MG
3220/*
3221 * Returns true if there is an eligible zone balanced for the request order
3222 * and classzone_idx
3223 */
3224static bool pgdat_balanced(pg_data_t *pgdat, int order, int classzone_idx)
60cefed4 3225{
e716f2eb
MG
3226 int i;
3227 unsigned long mark = -1;
3228 struct zone *zone;
60cefed4 3229
e716f2eb
MG
3230 for (i = 0; i <= classzone_idx; i++) {
3231 zone = pgdat->node_zones + i;
6256c6b4 3232
e716f2eb
MG
3233 if (!managed_zone(zone))
3234 continue;
3235
3236 mark = high_wmark_pages(zone);
3237 if (zone_watermark_ok_safe(zone, order, mark, classzone_idx))
3238 return true;
3239 }
3240
3241 /*
3242 * If a node has no populated zone within classzone_idx, it does not
3243 * need balancing by definition. This can happen if a zone-restricted
3244 * allocation tries to wake a remote kswapd.
3245 */
3246 if (mark == -1)
3247 return true;
3248
3249 return false;
60cefed4
JW
3250}
3251
631b6e08
MG
3252/* Clear pgdat state for congested, dirty or under writeback. */
3253static void clear_pgdat_congested(pg_data_t *pgdat)
3254{
3255 clear_bit(PGDAT_CONGESTED, &pgdat->flags);
3256 clear_bit(PGDAT_DIRTY, &pgdat->flags);
3257 clear_bit(PGDAT_WRITEBACK, &pgdat->flags);
3258}
3259
5515061d
MG
3260/*
3261 * Prepare kswapd for sleeping. This verifies that there are no processes
3262 * waiting in throttle_direct_reclaim() and that watermarks have been met.
3263 *
3264 * Returns true if kswapd is ready to sleep
3265 */
d9f21d42 3266static bool prepare_kswapd_sleep(pg_data_t *pgdat, int order, int classzone_idx)
f50de2d3 3267{
5515061d 3268 /*
9e5e3661 3269 * The throttled processes are normally woken up in balance_pgdat() as
c73322d0 3270 * soon as allow_direct_reclaim() is true. But there is a potential
9e5e3661
VB
3271 * race between when kswapd checks the watermarks and a process gets
3272 * throttled. There is also a potential race if processes get
3273 * throttled, kswapd wakes, a large process exits thereby balancing the
3274 * zones, which causes kswapd to exit balance_pgdat() before reaching
3275 * the wake up checks. If kswapd is going to sleep, no process should
3276 * be sleeping on pfmemalloc_wait, so wake them now if necessary. If
3277 * the wake up is premature, processes will wake kswapd and get
3278 * throttled again. The difference from wake ups in balance_pgdat() is
3279 * that here we are under prepare_to_wait().
5515061d 3280 */
9e5e3661
VB
3281 if (waitqueue_active(&pgdat->pfmemalloc_wait))
3282 wake_up_all(&pgdat->pfmemalloc_wait);
f50de2d3 3283
c73322d0
JW
3284 /* Hopeless node, leave it to direct reclaim */
3285 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3286 return true;
3287
e716f2eb
MG
3288 if (pgdat_balanced(pgdat, order, classzone_idx)) {
3289 clear_pgdat_congested(pgdat);
3290 return true;
1d82de61
MG
3291 }
3292
333b0a45 3293 return false;
f50de2d3
MG
3294}
3295
75485363 3296/*
1d82de61
MG
3297 * kswapd shrinks a node of pages that are at or below the highest usable
3298 * zone that is currently unbalanced.
b8e83b94
MG
3299 *
3300 * Returns true if kswapd scanned at least the requested number of pages to
283aba9f
MG
3301 * reclaim or if the lack of progress was due to pages under writeback.
3302 * This is used to determine if the scanning priority needs to be raised.
75485363 3303 */
1d82de61 3304static bool kswapd_shrink_node(pg_data_t *pgdat,
accf6242 3305 struct scan_control *sc)
75485363 3306{
1d82de61
MG
3307 struct zone *zone;
3308 int z;
75485363 3309
1d82de61
MG
3310 /* Reclaim a number of pages proportional to the number of zones */
3311 sc->nr_to_reclaim = 0;
970a39a3 3312 for (z = 0; z <= sc->reclaim_idx; z++) {
1d82de61 3313 zone = pgdat->node_zones + z;
6aa303de 3314 if (!managed_zone(zone))
1d82de61 3315 continue;
7c954f6d 3316
1d82de61
MG
3317 sc->nr_to_reclaim += max(high_wmark_pages(zone), SWAP_CLUSTER_MAX);
3318 }
7c954f6d
MG
3319
3320 /*
1d82de61
MG
3321 * Historically care was taken to put equal pressure on all zones but
3322 * now pressure is applied based on node LRU order.
7c954f6d 3323 */
970a39a3 3324 shrink_node(pgdat, sc);
283aba9f 3325
7c954f6d 3326 /*
1d82de61
MG
3327 * Fragmentation may mean that the system cannot be rebalanced for
3328 * high-order allocations. If twice the allocation size has been
3329 * reclaimed then recheck watermarks only at order-0 to prevent
3330 * excessive reclaim. Assume that a process requested a high-order
3331 * can direct reclaim/compact.
7c954f6d 3332 */
9861a62c 3333 if (sc->order && sc->nr_reclaimed >= compact_gap(sc->order))
1d82de61 3334 sc->order = 0;
7c954f6d 3335
b8e83b94 3336 return sc->nr_scanned >= sc->nr_to_reclaim;
75485363
MG
3337}
3338
1da177e4 3339/*
1d82de61
MG
3340 * For kswapd, balance_pgdat() will reclaim pages across a node from zones
3341 * that are eligible for use by the caller until at least one zone is
3342 * balanced.
1da177e4 3343 *
1d82de61 3344 * Returns the order kswapd finished reclaiming at.
1da177e4
LT
3345 *
3346 * kswapd scans the zones in the highmem->normal->dma direction. It skips
41858966 3347 * zones which have free_pages > high_wmark_pages(zone), but once a zone is
1d82de61
MG
3348 * found to have free_pages <= high_wmark_pages(zone), any page is that zone
3349 * or lower is eligible for reclaim until at least one usable zone is
3350 * balanced.
1da177e4 3351 */
accf6242 3352static int balance_pgdat(pg_data_t *pgdat, int order, int classzone_idx)
1da177e4 3353{
1da177e4 3354 int i;
0608f43d
AM
3355 unsigned long nr_soft_reclaimed;
3356 unsigned long nr_soft_scanned;
1d82de61 3357 struct zone *zone;
179e9639
AM
3358 struct scan_control sc = {
3359 .gfp_mask = GFP_KERNEL,
ee814fe2 3360 .order = order,
b8e83b94 3361 .priority = DEF_PRIORITY,
ee814fe2 3362 .may_writepage = !laptop_mode,
a6dc60f8 3363 .may_unmap = 1,
2e2e4259 3364 .may_swap = 1,
179e9639 3365 };
f8891e5e 3366 count_vm_event(PAGEOUTRUN);
1da177e4 3367
9e3b2f8c 3368 do {
c73322d0 3369 unsigned long nr_reclaimed = sc.nr_reclaimed;
b8e83b94
MG
3370 bool raise_priority = true;
3371
84c7a777 3372 sc.reclaim_idx = classzone_idx;
1da177e4 3373
86c79f6b 3374 /*
84c7a777
MG
3375 * If the number of buffer_heads exceeds the maximum allowed
3376 * then consider reclaiming from all zones. This has a dual
3377 * purpose -- on 64-bit systems it is expected that
3378 * buffer_heads are stripped during active rotation. On 32-bit
3379 * systems, highmem pages can pin lowmem memory and shrinking
3380 * buffers can relieve lowmem pressure. Reclaim may still not
3381 * go ahead if all eligible zones for the original allocation
3382 * request are balanced to avoid excessive reclaim from kswapd.
86c79f6b
MG
3383 */
3384 if (buffer_heads_over_limit) {
3385 for (i = MAX_NR_ZONES - 1; i >= 0; i--) {
3386 zone = pgdat->node_zones + i;
6aa303de 3387 if (!managed_zone(zone))
86c79f6b 3388 continue;
cc715d99 3389
970a39a3 3390 sc.reclaim_idx = i;
e1dbeda6 3391 break;
1da177e4 3392 }
1da177e4 3393 }
dafcb73e 3394
86c79f6b 3395 /*
e716f2eb
MG
3396 * Only reclaim if there are no eligible zones. Note that
3397 * sc.reclaim_idx is not used as buffer_heads_over_limit may
3398 * have adjusted it.
86c79f6b 3399 */
e716f2eb
MG
3400 if (pgdat_balanced(pgdat, sc.order, classzone_idx))
3401 goto out;
e1dbeda6 3402
1d82de61
MG
3403 /*
3404 * Do some background aging of the anon list, to give
3405 * pages a chance to be referenced before reclaiming. All
3406 * pages are rotated regardless of classzone as this is
3407 * about consistent aging.
3408 */
ef8f2327 3409 age_active_anon(pgdat, &sc);
1d82de61 3410
b7ea3c41
MG
3411 /*
3412 * If we're getting trouble reclaiming, start doing writepage
3413 * even in laptop mode.
3414 */
047d72c3 3415 if (sc.priority < DEF_PRIORITY - 2)
b7ea3c41
MG
3416 sc.may_writepage = 1;
3417
1d82de61
MG
3418 /* Call soft limit reclaim before calling shrink_node. */
3419 sc.nr_scanned = 0;
3420 nr_soft_scanned = 0;
ef8f2327 3421 nr_soft_reclaimed = mem_cgroup_soft_limit_reclaim(pgdat, sc.order,
1d82de61
MG
3422 sc.gfp_mask, &nr_soft_scanned);
3423 sc.nr_reclaimed += nr_soft_reclaimed;
3424
1da177e4 3425 /*
1d82de61
MG
3426 * There should be no need to raise the scanning priority if
3427 * enough pages are already being scanned that that high
3428 * watermark would be met at 100% efficiency.
1da177e4 3429 */
970a39a3 3430 if (kswapd_shrink_node(pgdat, &sc))
1d82de61 3431 raise_priority = false;
5515061d
MG
3432
3433 /*
3434 * If the low watermark is met there is no need for processes
3435 * to be throttled on pfmemalloc_wait as they should not be
3436 * able to safely make forward progress. Wake them
3437 */
3438 if (waitqueue_active(&pgdat->pfmemalloc_wait) &&
c73322d0 3439 allow_direct_reclaim(pgdat))
cfc51155 3440 wake_up_all(&pgdat->pfmemalloc_wait);
5515061d 3441
b8e83b94
MG
3442 /* Check if kswapd should be suspending */
3443 if (try_to_freeze() || kthread_should_stop())
3444 break;
8357376d 3445
73ce02e9 3446 /*
b8e83b94
MG
3447 * Raise priority if scanning rate is too low or there was no
3448 * progress in reclaiming pages
73ce02e9 3449 */
c73322d0
JW
3450 nr_reclaimed = sc.nr_reclaimed - nr_reclaimed;
3451 if (raise_priority || !nr_reclaimed)
b8e83b94 3452 sc.priority--;
1d82de61 3453 } while (sc.priority >= 1);
1da177e4 3454
c73322d0
JW
3455 if (!sc.nr_reclaimed)
3456 pgdat->kswapd_failures++;
3457
b8e83b94 3458out:
2a2e4885 3459 snapshot_refaults(NULL, pgdat);
0abdee2b 3460 /*
1d82de61
MG
3461 * Return the order kswapd stopped reclaiming at as
3462 * prepare_kswapd_sleep() takes it into account. If another caller
3463 * entered the allocator slow path while kswapd was awake, order will
3464 * remain at the higher level.
0abdee2b 3465 */
1d82de61 3466 return sc.order;
1da177e4
LT
3467}
3468
e716f2eb
MG
3469/*
3470 * pgdat->kswapd_classzone_idx is the highest zone index that a recent
3471 * allocation request woke kswapd for. When kswapd has not woken recently,
3472 * the value is MAX_NR_ZONES which is not a valid index. This compares a
3473 * given classzone and returns it or the highest classzone index kswapd
3474 * was recently woke for.
3475 */
3476static enum zone_type kswapd_classzone_idx(pg_data_t *pgdat,
3477 enum zone_type classzone_idx)
3478{
3479 if (pgdat->kswapd_classzone_idx == MAX_NR_ZONES)
3480 return classzone_idx;
3481
3482 return max(pgdat->kswapd_classzone_idx, classzone_idx);
3483}
3484
38087d9b
MG
3485static void kswapd_try_to_sleep(pg_data_t *pgdat, int alloc_order, int reclaim_order,
3486 unsigned int classzone_idx)
f0bc0a60
KM
3487{
3488 long remaining = 0;
3489 DEFINE_WAIT(wait);
3490
3491 if (freezing(current) || kthread_should_stop())
3492 return;
3493
3494 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3495
333b0a45
SG
3496 /*
3497 * Try to sleep for a short interval. Note that kcompactd will only be
3498 * woken if it is possible to sleep for a short interval. This is
3499 * deliberate on the assumption that if reclaim cannot keep an
3500 * eligible zone balanced that it's also unlikely that compaction will
3501 * succeed.
3502 */
d9f21d42 3503 if (prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
fd901c95
VB
3504 /*
3505 * Compaction records what page blocks it recently failed to
3506 * isolate pages from and skips them in the future scanning.
3507 * When kswapd is going to sleep, it is reasonable to assume
3508 * that pages and compaction may succeed so reset the cache.
3509 */
3510 reset_isolation_suitable(pgdat);
3511
3512 /*
3513 * We have freed the memory, now we should compact it to make
3514 * allocation of the requested order possible.
3515 */
38087d9b 3516 wakeup_kcompactd(pgdat, alloc_order, classzone_idx);
fd901c95 3517
f0bc0a60 3518 remaining = schedule_timeout(HZ/10);
38087d9b
MG
3519
3520 /*
3521 * If woken prematurely then reset kswapd_classzone_idx and
3522 * order. The values will either be from a wakeup request or
3523 * the previous request that slept prematurely.
3524 */
3525 if (remaining) {
e716f2eb 3526 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
38087d9b
MG
3527 pgdat->kswapd_order = max(pgdat->kswapd_order, reclaim_order);
3528 }
3529
f0bc0a60
KM
3530 finish_wait(&pgdat->kswapd_wait, &wait);
3531 prepare_to_wait(&pgdat->kswapd_wait, &wait, TASK_INTERRUPTIBLE);
3532 }
3533
3534 /*
3535 * After a short sleep, check if it was a premature sleep. If not, then
3536 * go fully to sleep until explicitly woken up.
3537 */
d9f21d42
MG
3538 if (!remaining &&
3539 prepare_kswapd_sleep(pgdat, reclaim_order, classzone_idx)) {
f0bc0a60
KM
3540 trace_mm_vmscan_kswapd_sleep(pgdat->node_id);
3541
3542 /*
3543 * vmstat counters are not perfectly accurate and the estimated
3544 * value for counters such as NR_FREE_PAGES can deviate from the
3545 * true value by nr_online_cpus * threshold. To avoid the zone
3546 * watermarks being breached while under pressure, we reduce the
3547 * per-cpu vmstat threshold while kswapd is awake and restore
3548 * them before going back to sleep.
3549 */
3550 set_pgdat_percpu_threshold(pgdat, calculate_normal_threshold);
1c7e7f6c
AK
3551
3552 if (!kthread_should_stop())
3553 schedule();
3554
f0bc0a60
KM
3555 set_pgdat_percpu_threshold(pgdat, calculate_pressure_threshold);
3556 } else {
3557 if (remaining)
3558 count_vm_event(KSWAPD_LOW_WMARK_HIT_QUICKLY);
3559 else
3560 count_vm_event(KSWAPD_HIGH_WMARK_HIT_QUICKLY);
3561 }
3562 finish_wait(&pgdat->kswapd_wait, &wait);
3563}
3564
1da177e4
LT
3565/*
3566 * The background pageout daemon, started as a kernel thread
4f98a2fe 3567 * from the init process.
1da177e4
LT
3568 *
3569 * This basically trickles out pages so that we have _some_
3570 * free memory available even if there is no other activity
3571 * that frees anything up. This is needed for things like routing
3572 * etc, where we otherwise might have all activity going on in
3573 * asynchronous contexts that cannot page things out.
3574 *
3575 * If there are applications that are active memory-allocators
3576 * (most normal use), this basically shouldn't matter.
3577 */
3578static int kswapd(void *p)
3579{
e716f2eb
MG
3580 unsigned int alloc_order, reclaim_order;
3581 unsigned int classzone_idx = MAX_NR_ZONES - 1;
1da177e4
LT
3582 pg_data_t *pgdat = (pg_data_t*)p;
3583 struct task_struct *tsk = current;
f0bc0a60 3584
1da177e4
LT
3585 struct reclaim_state reclaim_state = {
3586 .reclaimed_slab = 0,
3587 };
a70f7302 3588 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1da177e4 3589
174596a0 3590 if (!cpumask_empty(cpumask))
c5f59f08 3591 set_cpus_allowed_ptr(tsk, cpumask);
1da177e4
LT
3592 current->reclaim_state = &reclaim_state;
3593
3594 /*
3595 * Tell the memory management that we're a "memory allocator",
3596 * and that if we need more memory we should get access to it
3597 * regardless (see "__alloc_pages()"). "kswapd" should
3598 * never get caught in the normal page freeing logic.
3599 *
3600 * (Kswapd normally doesn't need memory anyway, but sometimes
3601 * you need a small amount of memory in order to be able to
3602 * page out something else, and this flag essentially protects
3603 * us from recursively trying to free more memory as we're
3604 * trying to free the first piece of memory in the first place).
3605 */
930d9152 3606 tsk->flags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
83144186 3607 set_freezable();
1da177e4 3608
e716f2eb
MG
3609 pgdat->kswapd_order = 0;
3610 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3611 for ( ; ; ) {
6f6313d4 3612 bool ret;
3e1d1d28 3613
e716f2eb
MG
3614 alloc_order = reclaim_order = pgdat->kswapd_order;
3615 classzone_idx = kswapd_classzone_idx(pgdat, classzone_idx);
3616
38087d9b
MG
3617kswapd_try_sleep:
3618 kswapd_try_to_sleep(pgdat, alloc_order, reclaim_order,
3619 classzone_idx);
215ddd66 3620
38087d9b
MG
3621 /* Read the new order and classzone_idx */
3622 alloc_order = reclaim_order = pgdat->kswapd_order;
e716f2eb 3623 classzone_idx = kswapd_classzone_idx(pgdat, 0);
38087d9b 3624 pgdat->kswapd_order = 0;
e716f2eb 3625 pgdat->kswapd_classzone_idx = MAX_NR_ZONES;
1da177e4 3626
8fe23e05
DR
3627 ret = try_to_freeze();
3628 if (kthread_should_stop())
3629 break;
3630
3631 /*
3632 * We can speed up thawing tasks if we don't call balance_pgdat
3633 * after returning from the refrigerator
3634 */
38087d9b
MG
3635 if (ret)
3636 continue;
3637
3638 /*
3639 * Reclaim begins at the requested order but if a high-order
3640 * reclaim fails then kswapd falls back to reclaiming for
3641 * order-0. If that happens, kswapd will consider sleeping
3642 * for the order it finished reclaiming at (reclaim_order)
3643 * but kcompactd is woken to compact for the original
3644 * request (alloc_order).
3645 */
e5146b12
MG
3646 trace_mm_vmscan_kswapd_wake(pgdat->node_id, classzone_idx,
3647 alloc_order);
d92a8cfc 3648 fs_reclaim_acquire(GFP_KERNEL);
38087d9b 3649 reclaim_order = balance_pgdat(pgdat, alloc_order, classzone_idx);
d92a8cfc 3650 fs_reclaim_release(GFP_KERNEL);
38087d9b
MG
3651 if (reclaim_order < alloc_order)
3652 goto kswapd_try_sleep;
1da177e4 3653 }
b0a8cc58 3654
71abdc15 3655 tsk->flags &= ~(PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD);
b0a8cc58 3656 current->reclaim_state = NULL;
71abdc15 3657
1da177e4
LT
3658 return 0;
3659}
3660
3661/*
3662 * A zone is low on free memory, so wake its kswapd task to service it.
3663 */
99504748 3664void wakeup_kswapd(struct zone *zone, int order, enum zone_type classzone_idx)
1da177e4
LT
3665{
3666 pg_data_t *pgdat;
3667
6aa303de 3668 if (!managed_zone(zone))
1da177e4
LT
3669 return;
3670
344736f2 3671 if (!cpuset_zone_allowed(zone, GFP_KERNEL | __GFP_HARDWALL))
1da177e4 3672 return;
88f5acf8 3673 pgdat = zone->zone_pgdat;
e716f2eb
MG
3674 pgdat->kswapd_classzone_idx = kswapd_classzone_idx(pgdat,
3675 classzone_idx);
38087d9b 3676 pgdat->kswapd_order = max(pgdat->kswapd_order, order);
8d0986e2 3677 if (!waitqueue_active(&pgdat->kswapd_wait))
1da177e4 3678 return;
e1a55637 3679
c73322d0
JW
3680 /* Hopeless node, leave it to direct reclaim */
3681 if (pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES)
3682 return;
3683
e716f2eb
MG
3684 if (pgdat_balanced(pgdat, order, classzone_idx))
3685 return;
88f5acf8 3686
e716f2eb 3687 trace_mm_vmscan_wakeup_kswapd(pgdat->node_id, classzone_idx, order);
8d0986e2 3688 wake_up_interruptible(&pgdat->kswapd_wait);
1da177e4
LT
3689}
3690
c6f37f12 3691#ifdef CONFIG_HIBERNATION
1da177e4 3692/*
7b51755c 3693 * Try to free `nr_to_reclaim' of memory, system-wide, and return the number of
d6277db4
RW
3694 * freed pages.
3695 *
3696 * Rather than trying to age LRUs the aim is to preserve the overall
3697 * LRU order by reclaiming preferentially
3698 * inactive > active > active referenced > active mapped
1da177e4 3699 */
7b51755c 3700unsigned long shrink_all_memory(unsigned long nr_to_reclaim)
1da177e4 3701{
d6277db4 3702 struct reclaim_state reclaim_state;
d6277db4 3703 struct scan_control sc = {
ee814fe2 3704 .nr_to_reclaim = nr_to_reclaim,
7b51755c 3705 .gfp_mask = GFP_HIGHUSER_MOVABLE,
b2e18757 3706 .reclaim_idx = MAX_NR_ZONES - 1,
ee814fe2 3707 .priority = DEF_PRIORITY,
d6277db4 3708 .may_writepage = 1,
ee814fe2
JW
3709 .may_unmap = 1,
3710 .may_swap = 1,
7b51755c 3711 .hibernation_mode = 1,
1da177e4 3712 };
a09ed5e0 3713 struct zonelist *zonelist = node_zonelist(numa_node_id(), sc.gfp_mask);
7b51755c
KM
3714 struct task_struct *p = current;
3715 unsigned long nr_reclaimed;
499118e9 3716 unsigned int noreclaim_flag;
1da177e4 3717
499118e9 3718 noreclaim_flag = memalloc_noreclaim_save();
d92a8cfc 3719 fs_reclaim_acquire(sc.gfp_mask);
7b51755c
KM
3720 reclaim_state.reclaimed_slab = 0;
3721 p->reclaim_state = &reclaim_state;
d6277db4 3722
3115cd91 3723 nr_reclaimed = do_try_to_free_pages(zonelist, &sc);
d979677c 3724
7b51755c 3725 p->reclaim_state = NULL;
d92a8cfc 3726 fs_reclaim_release(sc.gfp_mask);
499118e9 3727 memalloc_noreclaim_restore(noreclaim_flag);
d6277db4 3728
7b51755c 3729 return nr_reclaimed;
1da177e4 3730}
c6f37f12 3731#endif /* CONFIG_HIBERNATION */
1da177e4 3732
1da177e4
LT
3733/* It's optimal to keep kswapds on the same CPUs as their memory, but
3734 not required for correctness. So if the last cpu in a node goes
3735 away, we get changed to run anywhere: as the first one comes back,
3736 restore their cpu bindings. */
517bbed9 3737static int kswapd_cpu_online(unsigned int cpu)
1da177e4 3738{
58c0a4a7 3739 int nid;
1da177e4 3740
517bbed9
SAS
3741 for_each_node_state(nid, N_MEMORY) {
3742 pg_data_t *pgdat = NODE_DATA(nid);
3743 const struct cpumask *mask;
a70f7302 3744
517bbed9 3745 mask = cpumask_of_node(pgdat->node_id);
c5f59f08 3746
517bbed9
SAS
3747 if (cpumask_any_and(cpu_online_mask, mask) < nr_cpu_ids)
3748 /* One of our CPUs online: restore mask */
3749 set_cpus_allowed_ptr(pgdat->kswapd, mask);
1da177e4 3750 }
517bbed9 3751 return 0;
1da177e4 3752}
1da177e4 3753
3218ae14
YG
3754/*
3755 * This kswapd start function will be called by init and node-hot-add.
3756 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
3757 */
3758int kswapd_run(int nid)
3759{
3760 pg_data_t *pgdat = NODE_DATA(nid);
3761 int ret = 0;
3762
3763 if (pgdat->kswapd)
3764 return 0;
3765
3766 pgdat->kswapd = kthread_run(kswapd, pgdat, "kswapd%d", nid);
3767 if (IS_ERR(pgdat->kswapd)) {
3768 /* failure at boot is fatal */
c6202adf 3769 BUG_ON(system_state < SYSTEM_RUNNING);
d5dc0ad9
GS
3770 pr_err("Failed to start kswapd on node %d\n", nid);
3771 ret = PTR_ERR(pgdat->kswapd);
d72515b8 3772 pgdat->kswapd = NULL;
3218ae14
YG
3773 }
3774 return ret;
3775}
3776
8fe23e05 3777/*
d8adde17 3778 * Called by memory hotplug when all memory in a node is offlined. Caller must
bfc8c901 3779 * hold mem_hotplug_begin/end().
8fe23e05
DR
3780 */
3781void kswapd_stop(int nid)
3782{
3783 struct task_struct *kswapd = NODE_DATA(nid)->kswapd;
3784
d8adde17 3785 if (kswapd) {
8fe23e05 3786 kthread_stop(kswapd);
d8adde17
JL
3787 NODE_DATA(nid)->kswapd = NULL;
3788 }
8fe23e05
DR
3789}
3790
1da177e4
LT
3791static int __init kswapd_init(void)
3792{
517bbed9 3793 int nid, ret;
69e05944 3794
1da177e4 3795 swap_setup();
48fb2e24 3796 for_each_node_state(nid, N_MEMORY)
3218ae14 3797 kswapd_run(nid);
517bbed9
SAS
3798 ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
3799 "mm/vmscan:online", kswapd_cpu_online,
3800 NULL);
3801 WARN_ON(ret < 0);
1da177e4
LT
3802 return 0;
3803}
3804
3805module_init(kswapd_init)
9eeff239
CL
3806
3807#ifdef CONFIG_NUMA
3808/*
a5f5f91d 3809 * Node reclaim mode
9eeff239 3810 *
a5f5f91d 3811 * If non-zero call node_reclaim when the number of free pages falls below
9eeff239 3812 * the watermarks.
9eeff239 3813 */
a5f5f91d 3814int node_reclaim_mode __read_mostly;
9eeff239 3815
1b2ffb78 3816#define RECLAIM_OFF 0
7d03431c 3817#define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
1b2ffb78 3818#define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
95bbc0c7 3819#define RECLAIM_UNMAP (1<<2) /* Unmap pages during reclaim */
1b2ffb78 3820
a92f7126 3821/*
a5f5f91d 3822 * Priority for NODE_RECLAIM. This determines the fraction of pages
a92f7126
CL
3823 * of a node considered for each zone_reclaim. 4 scans 1/16th of
3824 * a zone.
3825 */
a5f5f91d 3826#define NODE_RECLAIM_PRIORITY 4
a92f7126 3827
9614634f 3828/*
a5f5f91d 3829 * Percentage of pages in a zone that must be unmapped for node_reclaim to
9614634f
CL
3830 * occur.
3831 */
3832int sysctl_min_unmapped_ratio = 1;
3833
0ff38490
CL
3834/*
3835 * If the number of slab pages in a zone grows beyond this percentage then
3836 * slab reclaim needs to occur.
3837 */
3838int sysctl_min_slab_ratio = 5;
3839
11fb9989 3840static inline unsigned long node_unmapped_file_pages(struct pglist_data *pgdat)
90afa5de 3841{
11fb9989
MG
3842 unsigned long file_mapped = node_page_state(pgdat, NR_FILE_MAPPED);
3843 unsigned long file_lru = node_page_state(pgdat, NR_INACTIVE_FILE) +
3844 node_page_state(pgdat, NR_ACTIVE_FILE);
90afa5de
MG
3845
3846 /*
3847 * It's possible for there to be more file mapped pages than
3848 * accounted for by the pages on the file LRU lists because
3849 * tmpfs pages accounted for as ANON can also be FILE_MAPPED
3850 */
3851 return (file_lru > file_mapped) ? (file_lru - file_mapped) : 0;
3852}
3853
3854/* Work out how many page cache pages we can reclaim in this reclaim_mode */
a5f5f91d 3855static unsigned long node_pagecache_reclaimable(struct pglist_data *pgdat)
90afa5de 3856{
d031a157
AM
3857 unsigned long nr_pagecache_reclaimable;
3858 unsigned long delta = 0;
90afa5de
MG
3859
3860 /*
95bbc0c7 3861 * If RECLAIM_UNMAP is set, then all file pages are considered
90afa5de 3862 * potentially reclaimable. Otherwise, we have to worry about
11fb9989 3863 * pages like swapcache and node_unmapped_file_pages() provides
90afa5de
MG
3864 * a better estimate
3865 */
a5f5f91d
MG
3866 if (node_reclaim_mode & RECLAIM_UNMAP)
3867 nr_pagecache_reclaimable = node_page_state(pgdat, NR_FILE_PAGES);
90afa5de 3868 else
a5f5f91d 3869 nr_pagecache_reclaimable = node_unmapped_file_pages(pgdat);
90afa5de
MG
3870
3871 /* If we can't clean pages, remove dirty pages from consideration */
a5f5f91d
MG
3872 if (!(node_reclaim_mode & RECLAIM_WRITE))
3873 delta += node_page_state(pgdat, NR_FILE_DIRTY);
90afa5de
MG
3874
3875 /* Watch for any possible underflows due to delta */
3876 if (unlikely(delta > nr_pagecache_reclaimable))
3877 delta = nr_pagecache_reclaimable;
3878
3879 return nr_pagecache_reclaimable - delta;
3880}
3881
9eeff239 3882/*
a5f5f91d 3883 * Try to free up some pages from this node through reclaim.
9eeff239 3884 */
a5f5f91d 3885static int __node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
9eeff239 3886{
7fb2d46d 3887 /* Minimum pages needed in order to stay on node */
69e05944 3888 const unsigned long nr_pages = 1 << order;
9eeff239
CL
3889 struct task_struct *p = current;
3890 struct reclaim_state reclaim_state;
499118e9 3891 unsigned int noreclaim_flag;
179e9639 3892 struct scan_control sc = {
62b726c1 3893 .nr_to_reclaim = max(nr_pages, SWAP_CLUSTER_MAX),
f2f43e56 3894 .gfp_mask = current_gfp_context(gfp_mask),
bd2f6199 3895 .order = order,
a5f5f91d
MG
3896 .priority = NODE_RECLAIM_PRIORITY,
3897 .may_writepage = !!(node_reclaim_mode & RECLAIM_WRITE),
3898 .may_unmap = !!(node_reclaim_mode & RECLAIM_UNMAP),
ee814fe2 3899 .may_swap = 1,
f2f43e56 3900 .reclaim_idx = gfp_zone(gfp_mask),
179e9639 3901 };
9eeff239 3902
9eeff239 3903 cond_resched();
d4f7796e 3904 /*
95bbc0c7 3905 * We need to be able to allocate from the reserves for RECLAIM_UNMAP
d4f7796e 3906 * and we also need to be able to write out pages for RECLAIM_WRITE
95bbc0c7 3907 * and RECLAIM_UNMAP.
d4f7796e 3908 */
499118e9
VB
3909 noreclaim_flag = memalloc_noreclaim_save();
3910 p->flags |= PF_SWAPWRITE;
d92a8cfc 3911 fs_reclaim_acquire(sc.gfp_mask);
9eeff239
CL
3912 reclaim_state.reclaimed_slab = 0;
3913 p->reclaim_state = &reclaim_state;
c84db23c 3914
a5f5f91d 3915 if (node_pagecache_reclaimable(pgdat) > pgdat->min_unmapped_pages) {
0ff38490
CL
3916 /*
3917 * Free memory by calling shrink zone with increasing
3918 * priorities until we have enough memory freed.
3919 */
0ff38490 3920 do {
970a39a3 3921 shrink_node(pgdat, &sc);
9e3b2f8c 3922 } while (sc.nr_reclaimed < nr_pages && --sc.priority >= 0);
0ff38490 3923 }
c84db23c 3924
9eeff239 3925 p->reclaim_state = NULL;
d92a8cfc 3926 fs_reclaim_release(gfp_mask);
499118e9
VB
3927 current->flags &= ~PF_SWAPWRITE;
3928 memalloc_noreclaim_restore(noreclaim_flag);
a79311c1 3929 return sc.nr_reclaimed >= nr_pages;
9eeff239 3930}
179e9639 3931
a5f5f91d 3932int node_reclaim(struct pglist_data *pgdat, gfp_t gfp_mask, unsigned int order)
179e9639 3933{
d773ed6b 3934 int ret;
179e9639
AM
3935
3936 /*
a5f5f91d 3937 * Node reclaim reclaims unmapped file backed pages and
0ff38490 3938 * slab pages if we are over the defined limits.
34aa1330 3939 *
9614634f
CL
3940 * A small portion of unmapped file backed pages is needed for
3941 * file I/O otherwise pages read by file I/O will be immediately
a5f5f91d
MG
3942 * thrown out if the node is overallocated. So we do not reclaim
3943 * if less than a specified percentage of the node is used by
9614634f 3944 * unmapped file backed pages.
179e9639 3945 */
a5f5f91d 3946 if (node_pagecache_reclaimable(pgdat) <= pgdat->min_unmapped_pages &&
385386cf 3947 node_page_state(pgdat, NR_SLAB_RECLAIMABLE) <= pgdat->min_slab_pages)
a5f5f91d 3948 return NODE_RECLAIM_FULL;
179e9639
AM
3949
3950 /*
d773ed6b 3951 * Do not scan if the allocation should not be delayed.
179e9639 3952 */
d0164adc 3953 if (!gfpflags_allow_blocking(gfp_mask) || (current->flags & PF_MEMALLOC))
a5f5f91d 3954 return NODE_RECLAIM_NOSCAN;
179e9639
AM
3955
3956 /*
a5f5f91d 3957 * Only run node reclaim on the local node or on nodes that do not
179e9639
AM
3958 * have associated processors. This will favor the local processor
3959 * over remote processors and spread off node memory allocations
3960 * as wide as possible.
3961 */
a5f5f91d
MG
3962 if (node_state(pgdat->node_id, N_CPU) && pgdat->node_id != numa_node_id())
3963 return NODE_RECLAIM_NOSCAN;
d773ed6b 3964
a5f5f91d
MG
3965 if (test_and_set_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags))
3966 return NODE_RECLAIM_NOSCAN;
fa5e084e 3967
a5f5f91d
MG
3968 ret = __node_reclaim(pgdat, gfp_mask, order);
3969 clear_bit(PGDAT_RECLAIM_LOCKED, &pgdat->flags);
d773ed6b 3970
24cf7251
MG
3971 if (!ret)
3972 count_vm_event(PGSCAN_ZONE_RECLAIM_FAILED);
3973
d773ed6b 3974 return ret;
179e9639 3975}
9eeff239 3976#endif
894bc310 3977
894bc310
LS
3978/*
3979 * page_evictable - test whether a page is evictable
3980 * @page: the page to test
894bc310
LS
3981 *
3982 * Test whether page is evictable--i.e., should be placed on active/inactive
39b5f29a 3983 * lists vs unevictable list.
894bc310
LS
3984 *
3985 * Reasons page might not be evictable:
ba9ddf49 3986 * (1) page's mapping marked unevictable
b291f000 3987 * (2) page is part of an mlocked VMA
ba9ddf49 3988 *
894bc310 3989 */
39b5f29a 3990int page_evictable(struct page *page)
894bc310 3991{
f63ea7fc
HY
3992 int ret;
3993
3994 /* Prevent address_space of inode and swap cache from being freed */
3995 rcu_read_lock();
3996 ret = !mapping_unevictable(page_mapping(page)) && !PageMlocked(page);
3997 rcu_read_unlock();
3998 return ret;
894bc310 3999}
89e004ea 4000
85046579 4001#ifdef CONFIG_SHMEM
89e004ea 4002/**
24513264
HD
4003 * check_move_unevictable_pages - check pages for evictability and move to appropriate zone lru list
4004 * @pages: array of pages to check
4005 * @nr_pages: number of pages to check
89e004ea 4006 *
24513264 4007 * Checks pages for evictability and moves them to the appropriate lru list.
85046579
HD
4008 *
4009 * This function is only used for SysV IPC SHM_UNLOCK.
89e004ea 4010 */
24513264 4011void check_move_unevictable_pages(struct page **pages, int nr_pages)
89e004ea 4012{
925b7673 4013 struct lruvec *lruvec;
785b99fe 4014 struct pglist_data *pgdat = NULL;
24513264
HD
4015 int pgscanned = 0;
4016 int pgrescued = 0;
4017 int i;
89e004ea 4018
24513264
HD
4019 for (i = 0; i < nr_pages; i++) {
4020 struct page *page = pages[i];
785b99fe 4021 struct pglist_data *pagepgdat = page_pgdat(page);
89e004ea 4022
24513264 4023 pgscanned++;
785b99fe
MG
4024 if (pagepgdat != pgdat) {
4025 if (pgdat)
4026 spin_unlock_irq(&pgdat->lru_lock);
4027 pgdat = pagepgdat;
4028 spin_lock_irq(&pgdat->lru_lock);
24513264 4029 }
785b99fe 4030 lruvec = mem_cgroup_page_lruvec(page, pgdat);
89e004ea 4031
24513264
HD
4032 if (!PageLRU(page) || !PageUnevictable(page))
4033 continue;
89e004ea 4034
39b5f29a 4035 if (page_evictable(page)) {
24513264
HD
4036 enum lru_list lru = page_lru_base_type(page);
4037
309381fe 4038 VM_BUG_ON_PAGE(PageActive(page), page);
24513264 4039 ClearPageUnevictable(page);
fa9add64
HD
4040 del_page_from_lru_list(page, lruvec, LRU_UNEVICTABLE);
4041 add_page_to_lru_list(page, lruvec, lru);
24513264 4042 pgrescued++;
89e004ea 4043 }
24513264 4044 }
89e004ea 4045
785b99fe 4046 if (pgdat) {
24513264
HD
4047 __count_vm_events(UNEVICTABLE_PGRESCUED, pgrescued);
4048 __count_vm_events(UNEVICTABLE_PGSCANNED, pgscanned);
785b99fe 4049 spin_unlock_irq(&pgdat->lru_lock);
89e004ea 4050 }
89e004ea 4051}
85046579 4052#endif /* CONFIG_SHMEM */