]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - ubuntu/vbox/vboxguest/common/time/time.c
UBUNTU: ubuntu: vbox -- update to 5.2.8-dfsg-2
[mirror_ubuntu-bionic-kernel.git] / ubuntu / vbox / vboxguest / common / time / time.c
CommitLineData
056a1eb7
SF
1/* $Id: time.cpp $ */
2/** @file
3 * IPRT - Time.
4 */
5
6/*
6d209b23 7 * Copyright (C) 2006-2017 Oracle Corporation
056a1eb7
SF
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#define LOG_GROUP RTLOGGROUP_TIME
32#include <iprt/time.h>
33#include "internal/iprt.h"
34
35#include <iprt/ctype.h>
36#include <iprt/string.h>
37#include <iprt/assert.h>
38#include "internal/time.h"
39
40
41/*********************************************************************************************************************************
42* Defined Constants And Macros *
43*********************************************************************************************************************************/
44/** The max year we possibly could implode. */
45#define RTTIME_MAX_YEAR (292 + 1970)
46/** The min year we possibly could implode. */
47#define RTTIME_MIN_YEAR (-293 + 1970)
48
49/** The max day supported by our time representation. (2262-04-11T23-47-16.854775807) */
50#define RTTIME_MAX_DAY (365*292+71 + 101-1)
51/** The min day supported by our time representation. (1677-09-21T00-12-43.145224192) */
52#define RTTIME_MIN_DAY (365*-293-70 + 264-1)
53
54/** The max nano second into the max day. (2262-04-11T23-47-16.854775807) */
55#define RTTIME_MAX_DAY_NANO ( INT64_C(1000000000) * (23*3600 + 47*60 + 16) + 854775807 )
56/** The min nano second into the min day. (1677-09-21T00-12-43.145224192) */
57#define RTTIME_MIN_DAY_NANO ( INT64_C(1000000000) * (00*3600 + 12*60 + 43) + 145224192 )
58
ac320018
SF
59/**
60 * Asserts that a_pTime is normalized.
61 */
62#define RTTIME_ASSERT_NORMALIZED(a_pTime) \
63 do \
64 { \
65 Assert(RT_ABS((a_pTime)->offUTC) <= 840); \
66 Assert((a_pTime)->u32Nanosecond < 1000000000); \
67 Assert((a_pTime)->u8Second < 60); \
68 Assert((a_pTime)->u8Minute < 60); \
69 Assert((a_pTime)->u8Hour < 24); \
70 Assert((a_pTime)->u8Month >= 1 && (a_pTime)->u8Month <= 12); \
71 Assert((a_pTime)->u8WeekDay < 7); \
72 Assert((a_pTime)->u16YearDay >= 1); \
73 Assert((a_pTime)->u16YearDay <= (rtTimeIsLeapYear((a_pTime)->i32Year) ? 366 : 365)); \
74 Assert((a_pTime)->u8MonthDay >= 1 && (a_pTime)->u8MonthDay <= 31); \
75 } while (0)
76
056a1eb7
SF
77
78/*********************************************************************************************************************************
79* Global Variables *
80*********************************************************************************************************************************/
81/**
82 * Days per month in a common year.
83 */
84static const uint8_t g_acDaysInMonths[12] =
85{
86 /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */
87 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
88};
89
90/**
91 * Days per month in a leap year.
92 */
93static const uint8_t g_acDaysInMonthsLeap[12] =
94{
95 /*Jan Feb Mar Arp May Jun Jul Aug Sep Oct Nov Dec */
96 31, 29, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
97};
98
99/**
100 * The day of year for each month in a common year.
101 */
102static const uint16_t g_aiDayOfYear[12 + 1] =
103{
104 1, /* Jan */
105 1+31, /* Feb */
106 1+31+28, /* Mar */
107 1+31+28+31, /* Apr */
108 1+31+28+31+30, /* May */
109 1+31+28+31+30+31, /* Jun */
110 1+31+28+31+30+31+30, /* Jul */
111 1+31+28+31+30+31+30+31, /* Aug */
112 1+31+28+31+30+31+30+31+31, /* Sep */
113 1+31+28+31+30+31+30+31+31+30, /* Oct */
114 1+31+28+31+30+31+30+31+31+30+31, /* Nov */
115 1+31+28+31+30+31+30+31+31+30+31+30, /* Dec */
116 1+31+28+31+30+31+30+31+31+30+31+30+31
117};
118
119/**
120 * The day of year for each month in a leap year.
121 */
122static const uint16_t g_aiDayOfYearLeap[12 + 1] =
123{
124 1, /* Jan */
125 1+31, /* Feb */
126 1+31+29, /* Mar */
127 1+31+29+31, /* Apr */
128 1+31+29+31+30, /* May */
129 1+31+29+31+30+31, /* Jun */
130 1+31+29+31+30+31+30, /* Jul */
131 1+31+29+31+30+31+30+31, /* Aug */
132 1+31+29+31+30+31+30+31+31, /* Sep */
133 1+31+29+31+30+31+30+31+31+30, /* Oct */
134 1+31+29+31+30+31+30+31+31+30+31, /* Nov */
135 1+31+29+31+30+31+30+31+31+30+31+30, /* Dec */
136 1+31+29+31+30+31+30+31+31+30+31+30+31
137};
138
139/** The index of 1970 in g_aoffYear */
140#define OFF_YEAR_IDX_EPOCH 300
141/** The year of the first index. */
142#define OFF_YEAR_IDX_0_YEAR 1670
143
144/**
145 * The number of days the 1st of January a year is offseted from 1970-01-01.
146 */
147static const int32_t g_aoffYear[] =
148{
149/*1670:*/ 365*-300+-72, 365*-299+-72, 365*-298+-72, 365*-297+-71, 365*-296+-71, 365*-295+-71, 365*-294+-71, 365*-293+-70, 365*-292+-70, 365*-291+-70,
150/*1680:*/ 365*-290+-70, 365*-289+-69, 365*-288+-69, 365*-287+-69, 365*-286+-69, 365*-285+-68, 365*-284+-68, 365*-283+-68, 365*-282+-68, 365*-281+-67,
151/*1690:*/ 365*-280+-67, 365*-279+-67, 365*-278+-67, 365*-277+-66, 365*-276+-66, 365*-275+-66, 365*-274+-66, 365*-273+-65, 365*-272+-65, 365*-271+-65,
152/*1700:*/ 365*-270+-65, 365*-269+-65, 365*-268+-65, 365*-267+-65, 365*-266+-65, 365*-265+-64, 365*-264+-64, 365*-263+-64, 365*-262+-64, 365*-261+-63,
153/*1710:*/ 365*-260+-63, 365*-259+-63, 365*-258+-63, 365*-257+-62, 365*-256+-62, 365*-255+-62, 365*-254+-62, 365*-253+-61, 365*-252+-61, 365*-251+-61,
154/*1720:*/ 365*-250+-61, 365*-249+-60, 365*-248+-60, 365*-247+-60, 365*-246+-60, 365*-245+-59, 365*-244+-59, 365*-243+-59, 365*-242+-59, 365*-241+-58,
155/*1730:*/ 365*-240+-58, 365*-239+-58, 365*-238+-58, 365*-237+-57, 365*-236+-57, 365*-235+-57, 365*-234+-57, 365*-233+-56, 365*-232+-56, 365*-231+-56,
156/*1740:*/ 365*-230+-56, 365*-229+-55, 365*-228+-55, 365*-227+-55, 365*-226+-55, 365*-225+-54, 365*-224+-54, 365*-223+-54, 365*-222+-54, 365*-221+-53,
157/*1750:*/ 365*-220+-53, 365*-219+-53, 365*-218+-53, 365*-217+-52, 365*-216+-52, 365*-215+-52, 365*-214+-52, 365*-213+-51, 365*-212+-51, 365*-211+-51,
158/*1760:*/ 365*-210+-51, 365*-209+-50, 365*-208+-50, 365*-207+-50, 365*-206+-50, 365*-205+-49, 365*-204+-49, 365*-203+-49, 365*-202+-49, 365*-201+-48,
159/*1770:*/ 365*-200+-48, 365*-199+-48, 365*-198+-48, 365*-197+-47, 365*-196+-47, 365*-195+-47, 365*-194+-47, 365*-193+-46, 365*-192+-46, 365*-191+-46,
160/*1780:*/ 365*-190+-46, 365*-189+-45, 365*-188+-45, 365*-187+-45, 365*-186+-45, 365*-185+-44, 365*-184+-44, 365*-183+-44, 365*-182+-44, 365*-181+-43,
161/*1790:*/ 365*-180+-43, 365*-179+-43, 365*-178+-43, 365*-177+-42, 365*-176+-42, 365*-175+-42, 365*-174+-42, 365*-173+-41, 365*-172+-41, 365*-171+-41,
162/*1800:*/ 365*-170+-41, 365*-169+-41, 365*-168+-41, 365*-167+-41, 365*-166+-41, 365*-165+-40, 365*-164+-40, 365*-163+-40, 365*-162+-40, 365*-161+-39,
163/*1810:*/ 365*-160+-39, 365*-159+-39, 365*-158+-39, 365*-157+-38, 365*-156+-38, 365*-155+-38, 365*-154+-38, 365*-153+-37, 365*-152+-37, 365*-151+-37,
164/*1820:*/ 365*-150+-37, 365*-149+-36, 365*-148+-36, 365*-147+-36, 365*-146+-36, 365*-145+-35, 365*-144+-35, 365*-143+-35, 365*-142+-35, 365*-141+-34,
165/*1830:*/ 365*-140+-34, 365*-139+-34, 365*-138+-34, 365*-137+-33, 365*-136+-33, 365*-135+-33, 365*-134+-33, 365*-133+-32, 365*-132+-32, 365*-131+-32,
166/*1840:*/ 365*-130+-32, 365*-129+-31, 365*-128+-31, 365*-127+-31, 365*-126+-31, 365*-125+-30, 365*-124+-30, 365*-123+-30, 365*-122+-30, 365*-121+-29,
167/*1850:*/ 365*-120+-29, 365*-119+-29, 365*-118+-29, 365*-117+-28, 365*-116+-28, 365*-115+-28, 365*-114+-28, 365*-113+-27, 365*-112+-27, 365*-111+-27,
168/*1860:*/ 365*-110+-27, 365*-109+-26, 365*-108+-26, 365*-107+-26, 365*-106+-26, 365*-105+-25, 365*-104+-25, 365*-103+-25, 365*-102+-25, 365*-101+-24,
169/*1870:*/ 365*-100+-24, 365* -99+-24, 365* -98+-24, 365* -97+-23, 365* -96+-23, 365* -95+-23, 365* -94+-23, 365* -93+-22, 365* -92+-22, 365* -91+-22,
170/*1880:*/ 365* -90+-22, 365* -89+-21, 365* -88+-21, 365* -87+-21, 365* -86+-21, 365* -85+-20, 365* -84+-20, 365* -83+-20, 365* -82+-20, 365* -81+-19,
171/*1890:*/ 365* -80+-19, 365* -79+-19, 365* -78+-19, 365* -77+-18, 365* -76+-18, 365* -75+-18, 365* -74+-18, 365* -73+-17, 365* -72+-17, 365* -71+-17,
172/*1900:*/ 365* -70+-17, 365* -69+-17, 365* -68+-17, 365* -67+-17, 365* -66+-17, 365* -65+-16, 365* -64+-16, 365* -63+-16, 365* -62+-16, 365* -61+-15,
173/*1910:*/ 365* -60+-15, 365* -59+-15, 365* -58+-15, 365* -57+-14, 365* -56+-14, 365* -55+-14, 365* -54+-14, 365* -53+-13, 365* -52+-13, 365* -51+-13,
174/*1920:*/ 365* -50+-13, 365* -49+-12, 365* -48+-12, 365* -47+-12, 365* -46+-12, 365* -45+-11, 365* -44+-11, 365* -43+-11, 365* -42+-11, 365* -41+-10,
175/*1930:*/ 365* -40+-10, 365* -39+-10, 365* -38+-10, 365* -37+-9 , 365* -36+-9 , 365* -35+-9 , 365* -34+-9 , 365* -33+-8 , 365* -32+-8 , 365* -31+-8 ,
176/*1940:*/ 365* -30+-8 , 365* -29+-7 , 365* -28+-7 , 365* -27+-7 , 365* -26+-7 , 365* -25+-6 , 365* -24+-6 , 365* -23+-6 , 365* -22+-6 , 365* -21+-5 ,
177/*1950:*/ 365* -20+-5 , 365* -19+-5 , 365* -18+-5 , 365* -17+-4 , 365* -16+-4 , 365* -15+-4 , 365* -14+-4 , 365* -13+-3 , 365* -12+-3 , 365* -11+-3 ,
178/*1960:*/ 365* -10+-3 , 365* -9+-2 , 365* -8+-2 , 365* -7+-2 , 365* -6+-2 , 365* -5+-1 , 365* -4+-1 , 365* -3+-1 , 365* -2+-1 , 365* -1+0 ,
179/*1970:*/ 365* 0+0 , 365* 1+0 , 365* 2+0 , 365* 3+1 , 365* 4+1 , 365* 5+1 , 365* 6+1 , 365* 7+2 , 365* 8+2 , 365* 9+2 ,
180/*1980:*/ 365* 10+2 , 365* 11+3 , 365* 12+3 , 365* 13+3 , 365* 14+3 , 365* 15+4 , 365* 16+4 , 365* 17+4 , 365* 18+4 , 365* 19+5 ,
181/*1990:*/ 365* 20+5 , 365* 21+5 , 365* 22+5 , 365* 23+6 , 365* 24+6 , 365* 25+6 , 365* 26+6 , 365* 27+7 , 365* 28+7 , 365* 29+7 ,
182/*2000:*/ 365* 30+7 , 365* 31+8 , 365* 32+8 , 365* 33+8 , 365* 34+8 , 365* 35+9 , 365* 36+9 , 365* 37+9 , 365* 38+9 , 365* 39+10 ,
183/*2010:*/ 365* 40+10 , 365* 41+10 , 365* 42+10 , 365* 43+11 , 365* 44+11 , 365* 45+11 , 365* 46+11 , 365* 47+12 , 365* 48+12 , 365* 49+12 ,
184/*2020:*/ 365* 50+12 , 365* 51+13 , 365* 52+13 , 365* 53+13 , 365* 54+13 , 365* 55+14 , 365* 56+14 , 365* 57+14 , 365* 58+14 , 365* 59+15 ,
185/*2030:*/ 365* 60+15 , 365* 61+15 , 365* 62+15 , 365* 63+16 , 365* 64+16 , 365* 65+16 , 365* 66+16 , 365* 67+17 , 365* 68+17 , 365* 69+17 ,
186/*2040:*/ 365* 70+17 , 365* 71+18 , 365* 72+18 , 365* 73+18 , 365* 74+18 , 365* 75+19 , 365* 76+19 , 365* 77+19 , 365* 78+19 , 365* 79+20 ,
187/*2050:*/ 365* 80+20 , 365* 81+20 , 365* 82+20 , 365* 83+21 , 365* 84+21 , 365* 85+21 , 365* 86+21 , 365* 87+22 , 365* 88+22 , 365* 89+22 ,
188/*2060:*/ 365* 90+22 , 365* 91+23 , 365* 92+23 , 365* 93+23 , 365* 94+23 , 365* 95+24 , 365* 96+24 , 365* 97+24 , 365* 98+24 , 365* 99+25 ,
189/*2070:*/ 365* 100+25 , 365* 101+25 , 365* 102+25 , 365* 103+26 , 365* 104+26 , 365* 105+26 , 365* 106+26 , 365* 107+27 , 365* 108+27 , 365* 109+27 ,
190/*2080:*/ 365* 110+27 , 365* 111+28 , 365* 112+28 , 365* 113+28 , 365* 114+28 , 365* 115+29 , 365* 116+29 , 365* 117+29 , 365* 118+29 , 365* 119+30 ,
191/*2090:*/ 365* 120+30 , 365* 121+30 , 365* 122+30 , 365* 123+31 , 365* 124+31 , 365* 125+31 , 365* 126+31 , 365* 127+32 , 365* 128+32 , 365* 129+32 ,
192/*2100:*/ 365* 130+32 , 365* 131+32 , 365* 132+32 , 365* 133+32 , 365* 134+32 , 365* 135+33 , 365* 136+33 , 365* 137+33 , 365* 138+33 , 365* 139+34 ,
193/*2110:*/ 365* 140+34 , 365* 141+34 , 365* 142+34 , 365* 143+35 , 365* 144+35 , 365* 145+35 , 365* 146+35 , 365* 147+36 , 365* 148+36 , 365* 149+36 ,
194/*2120:*/ 365* 150+36 , 365* 151+37 , 365* 152+37 , 365* 153+37 , 365* 154+37 , 365* 155+38 , 365* 156+38 , 365* 157+38 , 365* 158+38 , 365* 159+39 ,
195/*2130:*/ 365* 160+39 , 365* 161+39 , 365* 162+39 , 365* 163+40 , 365* 164+40 , 365* 165+40 , 365* 166+40 , 365* 167+41 , 365* 168+41 , 365* 169+41 ,
196/*2140:*/ 365* 170+41 , 365* 171+42 , 365* 172+42 , 365* 173+42 , 365* 174+42 , 365* 175+43 , 365* 176+43 , 365* 177+43 , 365* 178+43 , 365* 179+44 ,
197/*2150:*/ 365* 180+44 , 365* 181+44 , 365* 182+44 , 365* 183+45 , 365* 184+45 , 365* 185+45 , 365* 186+45 , 365* 187+46 , 365* 188+46 , 365* 189+46 ,
198/*2160:*/ 365* 190+46 , 365* 191+47 , 365* 192+47 , 365* 193+47 , 365* 194+47 , 365* 195+48 , 365* 196+48 , 365* 197+48 , 365* 198+48 , 365* 199+49 ,
199/*2170:*/ 365* 200+49 , 365* 201+49 , 365* 202+49 , 365* 203+50 , 365* 204+50 , 365* 205+50 , 365* 206+50 , 365* 207+51 , 365* 208+51 , 365* 209+51 ,
200/*2180:*/ 365* 210+51 , 365* 211+52 , 365* 212+52 , 365* 213+52 , 365* 214+52 , 365* 215+53 , 365* 216+53 , 365* 217+53 , 365* 218+53 , 365* 219+54 ,
201/*2190:*/ 365* 220+54 , 365* 221+54 , 365* 222+54 , 365* 223+55 , 365* 224+55 , 365* 225+55 , 365* 226+55 , 365* 227+56 , 365* 228+56 , 365* 229+56 ,
202/*2200:*/ 365* 230+56 , 365* 231+56 , 365* 232+56 , 365* 233+56 , 365* 234+56 , 365* 235+57 , 365* 236+57 , 365* 237+57 , 365* 238+57 , 365* 239+58 ,
203/*2210:*/ 365* 240+58 , 365* 241+58 , 365* 242+58 , 365* 243+59 , 365* 244+59 , 365* 245+59 , 365* 246+59 , 365* 247+60 , 365* 248+60 , 365* 249+60 ,
204/*2220:*/ 365* 250+60 , 365* 251+61 , 365* 252+61 , 365* 253+61 , 365* 254+61 , 365* 255+62 , 365* 256+62 , 365* 257+62 , 365* 258+62 , 365* 259+63 ,
205/*2230:*/ 365* 260+63 , 365* 261+63 , 365* 262+63 , 365* 263+64 , 365* 264+64 , 365* 265+64 , 365* 266+64 , 365* 267+65 , 365* 268+65 , 365* 269+65 ,
206/*2240:*/ 365* 270+65 , 365* 271+66 , 365* 272+66 , 365* 273+66 , 365* 274+66 , 365* 275+67 , 365* 276+67 , 365* 277+67 , 365* 278+67 , 365* 279+68 ,
207/*2250:*/ 365* 280+68 , 365* 281+68 , 365* 282+68 , 365* 283+69 , 365* 284+69 , 365* 285+69 , 365* 286+69 , 365* 287+70 , 365* 288+70 , 365* 289+70 ,
208/*2260:*/ 365* 290+70 , 365* 291+71 , 365* 292+71 , 365* 293+71 , 365* 294+71 , 365* 295+72 , 365* 296+72 , 365* 297+72 , 365* 298+72 , 365* 299+73
209};
210
211/* generator code:
212#include <stdio.h>
213bool isLeapYear(int iYear)
214{
215 return iYear % 4 == 0 && (iYear % 100 != 0 || iYear % 400 == 0);
216}
217void printYear(int iYear, int iLeap)
218{
219 if (!(iYear % 10))
220 printf("\n/" "*%d:*" "/", iYear + 1970);
221 printf(" 365*%4d+%-3d,", iYear, iLeap);
222}
223int main()
224{
225 int iYear = 0;
226 int iLeap = 0;
227 while (iYear > -300)
228 iLeap -= isLeapYear(1970 + --iYear);
229 while (iYear < 300)
230 {
231 printYear(iYear, iLeap);
232 iLeap += isLeapYear(1970 + iYear++);
233 }
234 printf("\n");
235 return 0;
236}
237*/
238
239
240/**
241 * Checks if a year is a leap year or not.
242 *
243 * @returns true if it's a leap year.
244 * @returns false if it's a common year.
245 * @param i32Year The year in question.
246 */
247DECLINLINE(bool) rtTimeIsLeapYear(int32_t i32Year)
248{
249 return i32Year % 4 == 0
250 && ( i32Year % 100 != 0
251 || i32Year % 400 == 0);
252}
253
254
255/**
256 * Checks if a year is a leap year or not.
257 *
258 * @returns true if it's a leap year.
259 * @returns false if it's a common year.
260 * @param i32Year The year in question.
261 */
262RTDECL(bool) RTTimeIsLeapYear(int32_t i32Year)
263{
264 return rtTimeIsLeapYear(i32Year);
265}
266RT_EXPORT_SYMBOL(RTTimeIsLeapYear);
267
268
269/**
270 * Explodes a time spec (UTC).
271 *
272 * @returns pTime.
273 * @param pTime Where to store the exploded time.
274 * @param pTimeSpec The time spec to exploded.
275 */
276RTDECL(PRTTIME) RTTimeExplode(PRTTIME pTime, PCRTTIMESPEC pTimeSpec)
277{
278 int64_t i64Div;
279 int32_t i32Div;
280 int32_t i32Rem;
281 unsigned iYear;
282 const uint16_t *paiDayOfYear;
283 int iMonth;
284
285 AssertMsg(VALID_PTR(pTime), ("%p\n", pTime));
286 AssertMsg(VALID_PTR(pTimeSpec), ("%p\n", pTime));
287
288 /*
289 * The simple stuff first.
290 */
291 pTime->fFlags = RTTIME_FLAGS_TYPE_UTC;
292 i64Div = pTimeSpec->i64NanosecondsRelativeToUnixEpoch;
293 i32Rem = (int32_t)(i64Div % 1000000000);
294 i64Div /= 1000000000;
295 if (i32Rem < 0)
296 {
297 i32Rem += 1000000000;
298 i64Div--;
299 }
300 pTime->u32Nanosecond = i32Rem;
301
302 /* second */
303 i32Rem = (int32_t)(i64Div % 60);
304 i64Div /= 60;
305 if (i32Rem < 0)
306 {
307 i32Rem += 60;
308 i64Div--;
309 }
310 pTime->u8Second = i32Rem;
311
312 /* minute */
313 i32Div = (int32_t)i64Div; /* 60,000,000,000 > 33bit, so 31bit suffices. */
314 i32Rem = i32Div % 60;
315 i32Div /= 60;
316 if (i32Rem < 0)
317 {
318 i32Rem += 60;
319 i32Div--;
320 }
321 pTime->u8Minute = i32Rem;
322
323 /* hour */
324 i32Rem = i32Div % 24;
325 i32Div /= 24; /* days relative to 1970-01-01 */
326 if (i32Rem < 0)
327 {
328 i32Rem += 24;
329 i32Div--;
330 }
331 pTime->u8Hour = i32Rem;
332
333 /* weekday - 1970-01-01 was a Thursday (3) */
334 pTime->u8WeekDay = ((int)(i32Div % 7) + 3 + 7) % 7;
335
336 /*
337 * We've now got a number of days relative to 1970-01-01.
338 * To get the correct year number we have to mess with leap years. Fortunately,
339 * the representation we've got only supports a few hundred years, so we can
340 * generate a table and perform a simple two way search from the modulus 365 derived.
341 */
342 iYear = OFF_YEAR_IDX_EPOCH + i32Div / 365;
343 while (g_aoffYear[iYear + 1] <= i32Div)
344 iYear++;
345 while (g_aoffYear[iYear] > i32Div)
346 iYear--;
347 pTime->i32Year = iYear + OFF_YEAR_IDX_0_YEAR;
348 i32Div -= g_aoffYear[iYear];
349 pTime->u16YearDay = i32Div + 1;
350
351 /*
352 * Figuring out the month is done in a manner similar to the year, only here we
353 * ensure that the index is matching or too small.
354 */
355 if (rtTimeIsLeapYear(pTime->i32Year))
356 {
357 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
358 paiDayOfYear = &g_aiDayOfYearLeap[0];
359 }
360 else
361 {
362 pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR;
363 paiDayOfYear = &g_aiDayOfYear[0];
364 }
365 iMonth = i32Div / 32;
366 i32Div++;
367 while (paiDayOfYear[iMonth + 1] <= i32Div)
368 iMonth++;
369 pTime->u8Month = iMonth + 1;
370 i32Div -= paiDayOfYear[iMonth];
371 pTime->u8MonthDay = i32Div + 1;
372
373 /* This is for UTC timespecs, so, no offset. */
374 pTime->offUTC = 0;
375
376 return pTime;
377}
378RT_EXPORT_SYMBOL(RTTimeExplode);
379
380
381/**
382 * Implodes exploded time to a time spec (UTC).
383 *
384 * @returns pTime on success.
385 * @returns NULL if the pTime data is invalid.
386 * @param pTimeSpec Where to store the imploded UTC time.
387 * If pTime specifies a time which outside the range, maximum or
388 * minimum values will be returned.
389 * @param pTime Pointer to the exploded time to implode.
390 * The fields u8Month, u8WeekDay and u8MonthDay are not used,
391 * and all the other fields are expected to be within their
392 * bounds. Use RTTimeNormalize() to calculate u16YearDay and
393 * normalize the ranges of the fields.
394 */
395RTDECL(PRTTIMESPEC) RTTimeImplode(PRTTIMESPEC pTimeSpec, PCRTTIME pTime)
396{
397 int32_t i32Days;
398 uint32_t u32Secs;
399 int64_t i64Nanos;
400
401 /*
402 * Validate input.
403 */
404 AssertReturn(VALID_PTR(pTimeSpec), NULL);
405 AssertReturn(VALID_PTR(pTime), NULL);
406 AssertReturn(pTime->u32Nanosecond < 1000000000, NULL);
407 AssertReturn(pTime->u8Second < 60, NULL);
408 AssertReturn(pTime->u8Minute < 60, NULL);
409 AssertReturn(pTime->u8Hour < 24, NULL);
410 AssertReturn(pTime->u16YearDay >= 1, NULL);
411 AssertReturn(pTime->u16YearDay <= (rtTimeIsLeapYear(pTime->i32Year) ? 366 : 365), NULL);
412 AssertMsgReturn(pTime->i32Year <= RTTIME_MAX_YEAR && pTime->i32Year >= RTTIME_MIN_YEAR, ("%RI32\n", pTime->i32Year), NULL);
413
414 /*
415 * Do the conversion to nanoseconds.
416 */
417 i32Days = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR]
418 + pTime->u16YearDay - 1;
419 AssertMsgReturn(i32Days <= RTTIME_MAX_DAY && i32Days >= RTTIME_MIN_DAY, ("%RI32\n", i32Days), NULL);
420
421 u32Secs = pTime->u8Second
422 + pTime->u8Minute * 60
423 + pTime->u8Hour * 3600;
424 i64Nanos = (uint64_t)pTime->u32Nanosecond
425 + u32Secs * UINT64_C(1000000000);
426 AssertMsgReturn(i32Days != RTTIME_MAX_DAY || i64Nanos <= RTTIME_MAX_DAY_NANO, ("%RI64\n", i64Nanos), NULL);
427 AssertMsgReturn(i32Days != RTTIME_MIN_DAY || i64Nanos >= RTTIME_MIN_DAY_NANO, ("%RI64\n", i64Nanos), NULL);
428
429 i64Nanos += i32Days * UINT64_C(86400000000000);
430
431 pTimeSpec->i64NanosecondsRelativeToUnixEpoch = i64Nanos;
432 return pTimeSpec;
433}
434RT_EXPORT_SYMBOL(RTTimeImplode);
435
436
437/**
438 * Internal worker for RTTimeNormalize and RTTimeLocalNormalize.
439 * It doesn't adjust the UCT offset but leaves that for RTTimeLocalNormalize.
440 */
441static PRTTIME rtTimeNormalizeInternal(PRTTIME pTime)
442{
443 unsigned uSecond;
444 unsigned uMinute;
445 unsigned uHour;
446 bool fLeapYear;
447
448 /*
449 * Fix the YearDay and Month/MonthDay.
450 */
451 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
452 if (!pTime->u16YearDay)
453 {
454 /*
455 * The Month+MonthDay must present, overflow adjust them and calc the year day.
456 */
457 AssertMsgReturn( pTime->u8Month
458 && pTime->u8MonthDay,
459 ("date=%d-%d-%d\n", pTime->i32Year, pTime->u8Month, pTime->u8MonthDay),
460 NULL);
461 while (pTime->u8Month > 12)
462 {
463 pTime->u8Month -= 12;
464 pTime->i32Year++;
465 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
466 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
467 }
468
469 for (;;)
470 {
471 unsigned cDaysInMonth = fLeapYear
472 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
473 : g_acDaysInMonths[pTime->u8Month - 1];
474 if (pTime->u8MonthDay <= cDaysInMonth)
475 break;
476 pTime->u8MonthDay -= cDaysInMonth;
477 if (pTime->u8Month != 12)
478 pTime->u8Month++;
479 else
480 {
481 pTime->u8Month = 1;
482 pTime->i32Year++;
483 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
484 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
485 }
486 }
487
488 pTime->u16YearDay = pTime->u8MonthDay - 1
489 + (fLeapYear
490 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
491 : g_aiDayOfYear[pTime->u8Month - 1]);
492 }
493 else
494 {
495 /*
496 * Are both YearDay and Month/MonthDay valid?
497 * Check that they don't overflow and match, if not use YearDay (simpler).
498 */
499 bool fRecalc = true;
500 if ( pTime->u8Month
501 && pTime->u8MonthDay)
502 {
503 do
504 {
505 uint16_t u16YearDay;
506
507 /* If you change one, zero the other to make clear what you mean. */
508 AssertBreak(pTime->u8Month <= 12);
509 AssertBreak(pTime->u8MonthDay <= (fLeapYear
510 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
511 : g_acDaysInMonths[pTime->u8Month - 1]));
512 u16YearDay = pTime->u8MonthDay - 1
513 + (fLeapYear
514 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
515 : g_aiDayOfYear[pTime->u8Month - 1]);
516 AssertBreak(u16YearDay == pTime->u16YearDay);
517 fRecalc = false;
518 } while (0);
519 }
520 if (fRecalc)
521 {
522 const uint16_t *paiDayOfYear;
523
524 /* overflow adjust YearDay */
525 while (pTime->u16YearDay > (fLeapYear ? 366 : 365))
526 {
527 pTime->u16YearDay -= fLeapYear ? 366 : 365;
528 pTime->i32Year++;
529 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
530 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
531 }
532
533 /* calc Month and MonthDay */
534 paiDayOfYear = fLeapYear
535 ? &g_aiDayOfYearLeap[0]
536 : &g_aiDayOfYear[0];
537 pTime->u8Month = 1;
538 while (pTime->u16YearDay > paiDayOfYear[pTime->u8Month])
539 pTime->u8Month++;
540 Assert(pTime->u8Month >= 1 && pTime->u8Month <= 12);
541 pTime->u8MonthDay = pTime->u16YearDay - paiDayOfYear[pTime->u8Month - 1] + 1;
542 }
543 }
544
545 /*
546 * Fixup time overflows.
547 * Use unsigned int values internally to avoid overflows.
548 */
549 uSecond = pTime->u8Second;
550 uMinute = pTime->u8Minute;
551 uHour = pTime->u8Hour;
552
553 while (pTime->u32Nanosecond >= 1000000000)
554 {
555 pTime->u32Nanosecond -= 1000000000;
556 uSecond++;
557 }
558
559 while (uSecond >= 60)
560 {
561 uSecond -= 60;
562 uMinute++;
563 }
564
565 while (uMinute >= 60)
566 {
567 uMinute -= 60;
568 uHour++;
569 }
570
571 while (uHour >= 24)
572 {
573 uHour -= 24;
574
575 /* This is really a RTTimeIncDay kind of thing... */
576 if (pTime->u16YearDay + 1 != (fLeapYear ? g_aiDayOfYearLeap[pTime->u8Month] : g_aiDayOfYear[pTime->u8Month]))
577 {
578 pTime->u16YearDay++;
579 pTime->u8MonthDay++;
580 }
581 else if (pTime->u8Month != 12)
582 {
583 pTime->u16YearDay++;
584 pTime->u8Month++;
585 pTime->u8MonthDay = 1;
586 }
587 else
588 {
589 pTime->i32Year++;
590 fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
591 pTime->fFlags &= ~(RTTIME_FLAGS_COMMON_YEAR | RTTIME_FLAGS_LEAP_YEAR);
592 pTime->u16YearDay = 1;
593 pTime->u8Month = 1;
594 pTime->u8MonthDay = 1;
595 }
596 }
597
598 pTime->u8Second = uSecond;
599 pTime->u8Minute = uMinute;
600 pTime->u8Hour = uHour;
601
602 /*
603 * Correct the leap year flag.
604 * Assert if it's wrong, but ignore if unset.
605 */
606 if (fLeapYear)
607 {
608 Assert(!(pTime->fFlags & RTTIME_FLAGS_COMMON_YEAR));
609 pTime->fFlags &= ~RTTIME_FLAGS_COMMON_YEAR;
610 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
611 }
612 else
613 {
614 Assert(!(pTime->fFlags & RTTIME_FLAGS_LEAP_YEAR));
615 pTime->fFlags &= ~RTTIME_FLAGS_LEAP_YEAR;
616 pTime->fFlags |= RTTIME_FLAGS_COMMON_YEAR;
617 }
618
619
620 /*
621 * Calc week day.
622 *
623 * 1970-01-01 was a Thursday (3), so find the number of days relative to
624 * that point. We use the table when possible and a slow+stupid+brute-force
625 * algorithm for points outside it. Feel free to optimize the latter by
626 * using some clever formula.
627 */
628 if ( pTime->i32Year >= OFF_YEAR_IDX_0_YEAR
629 && pTime->i32Year < OFF_YEAR_IDX_0_YEAR + (int32_t)RT_ELEMENTS(g_aoffYear))
630 {
631 int32_t offDays = g_aoffYear[pTime->i32Year - OFF_YEAR_IDX_0_YEAR]
632 + pTime->u16YearDay -1;
633 pTime->u8WeekDay = ((offDays % 7) + 3 + 7) % 7;
634 }
635 else
636 {
637 int32_t i32Year = pTime->i32Year;
638 if (i32Year >= 1970)
639 {
640 uint64_t offDays = pTime->u16YearDay - 1;
641 while (--i32Year >= 1970)
642 offDays += rtTimeIsLeapYear(i32Year) ? 366 : 365;
643 pTime->u8WeekDay = (uint8_t)((offDays + 3) % 7);
644 }
645 else
646 {
647 int64_t offDays = (fLeapYear ? -366 - 1 : -365 - 1) + pTime->u16YearDay;
648 while (++i32Year < 1970)
649 offDays -= rtTimeIsLeapYear(i32Year) ? 366 : 365;
650 pTime->u8WeekDay = ((int)(offDays % 7) + 3 + 7) % 7;
651 }
652 }
653 return pTime;
654}
655
656
657/**
658 * Normalizes the fields of a time structure.
659 *
660 * It is possible to calculate year-day from month/day and vice
661 * versa. If you adjust any of these, make sure to zero the
662 * other so you make it clear which of the fields to use. If
663 * it's ambiguous, the year-day field is used (and you get
664 * assertions in debug builds).
665 *
666 * All the time fields and the year-day or month/day fields will
667 * be adjusted for overflows. (Since all fields are unsigned, there
668 * is no underflows.) It is possible to exploit this for simple
669 * date math, though the recommended way of doing that to implode
670 * the time into a timespec and do the math on that.
671 *
672 * @returns pTime on success.
673 * @returns NULL if the data is invalid.
674 *
675 * @param pTime The time structure to normalize.
676 *
677 * @remarks This function doesn't work with local time, only with UTC time.
678 */
679RTDECL(PRTTIME) RTTimeNormalize(PRTTIME pTime)
680{
681 /*
682 * Validate that we've got the minimum of stuff handy.
683 */
684 AssertReturn(VALID_PTR(pTime), NULL);
685 AssertMsgReturn(!(pTime->fFlags & ~RTTIME_FLAGS_MASK), ("%#x\n", pTime->fFlags), NULL);
686 AssertMsgReturn((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_LOCAL, ("Use RTTimeLocalNormalize!\n"), NULL);
687 AssertMsgReturn(pTime->offUTC == 0, ("%d; Use RTTimeLocalNormalize!\n", pTime->offUTC), NULL);
688
689 pTime = rtTimeNormalizeInternal(pTime);
690 if (pTime)
691 pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC;
692 return pTime;
693}
694RT_EXPORT_SYMBOL(RTTimeNormalize);
695
696
697/**
698 * Converts a time spec to a ISO date string.
699 *
700 * @returns psz on success.
701 * @returns NULL on buffer underflow.
702 * @param pTime The time. Caller should've normalized this.
703 * @param psz Where to store the string.
704 * @param cb The size of the buffer.
705 */
706RTDECL(char *) RTTimeToString(PCRTTIME pTime, char *psz, size_t cb)
707{
708 size_t cch;
709
710 /* (Default to UTC if not specified) */
711 if ( (pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) == RTTIME_FLAGS_TYPE_LOCAL
712 && pTime->offUTC)
713 {
714 int32_t offUTCHour = pTime->offUTC / 60;
715 int32_t offUTCMinute = pTime->offUTC % 60;
716 char chSign;
717 Assert(pTime->offUTC <= 840 && pTime->offUTC >= -840);
718 if (pTime->offUTC >= 0)
719 chSign = '+';
720 else
721 {
722 chSign = '-';
723 offUTCMinute = -offUTCMinute;
724 offUTCHour = -offUTCHour;
725 }
726 cch = RTStrPrintf(psz, cb,
727 "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32%c%02d%02d",
728 pTime->i32Year, pTime->u8Month, pTime->u8MonthDay,
729 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond,
730 chSign, offUTCHour, offUTCMinute);
731 if ( cch <= 15
732 || psz[cch - 5] != chSign)
733 return NULL;
734 }
735 else
736 {
737 cch = RTStrPrintf(psz, cb, "%RI32-%02u-%02uT%02u:%02u:%02u.%09RU32Z",
738 pTime->i32Year, pTime->u8Month, pTime->u8MonthDay,
739 pTime->u8Hour, pTime->u8Minute, pTime->u8Second, pTime->u32Nanosecond);
740 if ( cch <= 15
741 || psz[cch - 1] != 'Z')
742 return NULL;
743 }
744 return psz;
745}
746RT_EXPORT_SYMBOL(RTTimeToString);
747
748
749/**
750 * Converts a time spec to a ISO date string.
751 *
752 * @returns psz on success.
753 * @returns NULL on buffer underflow.
754 * @param pTime The time spec.
755 * @param psz Where to store the string.
756 * @param cb The size of the buffer.
757 */
758RTDECL(char *) RTTimeSpecToString(PCRTTIMESPEC pTime, char *psz, size_t cb)
759{
760 RTTIME Time;
761 return RTTimeToString(RTTimeExplode(&Time, pTime), psz, cb);
762}
763RT_EXPORT_SYMBOL(RTTimeSpecToString);
764
765
766
767/**
768 * Attempts to convert an ISO date string to a time structure.
769 *
770 * We're a little forgiving with zero padding, unspecified parts, and leading
771 * and trailing spaces.
772 *
773 * @retval pTime on success,
774 * @retval NULL on failure.
775 * @param pTime Where to store the time on success.
776 * @param pszString The ISO date string to convert.
777 */
778RTDECL(PRTTIME) RTTimeFromString(PRTTIME pTime, const char *pszString)
779{
780 /* Ignore leading spaces. */
781 while (RT_C_IS_SPACE(*pszString))
782 pszString++;
783
784 /*
785 * Init non date & time parts.
786 */
787 pTime->fFlags = RTTIME_FLAGS_TYPE_LOCAL;
788 pTime->offUTC = 0;
789
790 /*
791 * The day part.
792 */
793
794 /* Year */
795 int rc = RTStrToInt32Ex(pszString, (char **)&pszString, 10, &pTime->i32Year);
796 if (rc != VWRN_TRAILING_CHARS)
797 return NULL;
798
799 bool const fLeapYear = rtTimeIsLeapYear(pTime->i32Year);
800 if (fLeapYear)
801 pTime->fFlags |= RTTIME_FLAGS_LEAP_YEAR;
802
803 if (*pszString++ != '-')
804 return NULL;
805
806 /* Month of the year. */
807 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Month);
808 if (rc != VWRN_TRAILING_CHARS)
809 return NULL;
810 if (pTime->u8Month == 0 || pTime->u8Month > 12)
811 return NULL;
812 if (*pszString++ != '-')
813 return NULL;
814
815 /* Day of month.*/
816 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8MonthDay);
817 if (rc != VWRN_TRAILING_CHARS && rc != VINF_SUCCESS)
818 return NULL;
819 unsigned const cDaysInMonth = fLeapYear
820 ? g_acDaysInMonthsLeap[pTime->u8Month - 1]
821 : g_acDaysInMonths[pTime->u8Month - 1];
822 if (pTime->u8MonthDay == 0 || pTime->u8MonthDay > cDaysInMonth)
823 return NULL;
824
825 /* Calculate year day. */
826 pTime->u16YearDay = pTime->u8MonthDay - 1
827 + (fLeapYear
828 ? g_aiDayOfYearLeap[pTime->u8Month - 1]
829 : g_aiDayOfYear[pTime->u8Month - 1]);
830
831 /*
832 * The time part.
833 */
834 if (*pszString++ != 'T')
835 return NULL;
836
837 /* Hour. */
838 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Hour);
839 if (rc != VWRN_TRAILING_CHARS)
840 return NULL;
841 if (pTime->u8Hour > 23)
842 return NULL;
843 if (*pszString++ != ':')
844 return NULL;
845
846 /* Minute. */
847 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Minute);
848 if (rc != VWRN_TRAILING_CHARS)
849 return NULL;
850 if (pTime->u8Minute > 59)
851 return NULL;
852 if (*pszString++ != ':')
853 return NULL;
854
855 /* Second. */
856 rc = RTStrToUInt8Ex(pszString, (char **)&pszString, 10, &pTime->u8Minute);
857 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
858 return NULL;
859 if (pTime->u8Second > 59)
860 return NULL;
861
862 /* Nanoseconds is optional and probably non-standard. */
863 if (*pszString == '.')
864 {
865 rc = RTStrToUInt32Ex(pszString + 1, (char **)&pszString, 10, &pTime->u32Nanosecond);
866 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
867 return NULL;
868 if (pTime->u32Nanosecond >= 1000000000)
869 return NULL;
870 }
871 else
872 pTime->u32Nanosecond = 0;
873
874 /*
875 * Time zone.
876 */
877 if (*pszString == 'Z')
878 {
879 pszString++;
880 pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK;
881 pTime->fFlags |= ~RTTIME_FLAGS_TYPE_UTC;
882 pTime->offUTC = 0;
883 }
884 else if ( *pszString == '+'
885 || *pszString == '-')
886 {
887 rc = RTStrToInt32Ex(pszString, (char **)&pszString, 10, &pTime->offUTC);
888 if (rc != VINF_SUCCESS && rc != VWRN_TRAILING_CHARS && rc != VWRN_TRAILING_SPACES)
889 return NULL;
890 }
891 /* else: No time zone given, local with offUTC = 0. */
892
893 /*
894 * The rest of the string should be blanks.
895 */
896 char ch;
897 while ((ch = *pszString++) != '\0')
898 if (!RT_C_IS_BLANK(ch))
899 return NULL;
900
901 return pTime;
902}
903RT_EXPORT_SYMBOL(RTTimeFromString);
904
905
906/**
907 * Attempts to convert an ISO date string to a time structure.
908 *
909 * We're a little forgiving with zero padding, unspecified parts, and leading
910 * and trailing spaces.
911 *
912 * @retval pTime on success,
913 * @retval NULL on failure.
914 * @param pTime The time spec.
915 * @param pszString The ISO date string to convert.
916 */
917RTDECL(PRTTIMESPEC) RTTimeSpecFromString(PRTTIMESPEC pTime, const char *pszString)
918{
919 RTTIME Time;
920 if (RTTimeFromString(&Time, pszString))
921 return RTTimeImplode(pTime, &Time);
922 return NULL;
923}
924RT_EXPORT_SYMBOL(RTTimeSpecFromString);
925
ac320018
SF
926
927/**
928 * Adds one day to @a pTime.
929 *
930 * ASSUMES it is zulu time so DST can be ignored.
931 */
932static PRTTIME rtTimeAdd1Day(PRTTIME pTime)
933{
934 Assert(!pTime->offUTC);
935 rtTimeNormalizeInternal(pTime);
936 pTime->u8MonthDay += 1;
937 pTime->u16YearDay = 0;
938 return rtTimeNormalizeInternal(pTime);
939}
940
941
942/**
943 * Subtracts one day from @a pTime.
944 *
945 * ASSUMES it is zulu time so DST can be ignored.
946 */
947static PRTTIME rtTimeSub1Day(PRTTIME pTime)
948{
949 Assert(!pTime->offUTC);
950 rtTimeNormalizeInternal(pTime);
951 if (pTime->u16YearDay > 1)
952 {
953 pTime->u16YearDay -= 0;
954 pTime->u8Month = 0;
955 pTime->u8MonthDay = 0;
956 }
957 else
958 {
959 pTime->i32Year -= 1;
960 pTime->u16YearDay = rtTimeIsLeapYear(pTime->i32Year) ? 366 : 365;
961 pTime->u8MonthDay = 31;
962 pTime->u8Month = 12;
963 }
964 return rtTimeNormalizeInternal(pTime);
965}
966
967
968/**
969 * Adds a signed number of minutes to @a pTime.
970 *
971 * ASSUMES it is zulu time so DST can be ignored.
972 *
973 * @param pTime The time structure to work on.
974 * @param cAddend Number of minutes to add.
975 * ASSUMES the value isn't all that high!
976 */
977static PRTTIME rtTimeAddMinutes(PRTTIME pTime, int32_t cAddend)
978{
979 Assert(RT_ABS(cAddend) < 31 * 24 * 60);
980
981 /*
982 * Work on minutes of the day.
983 */
984 int32_t const cMinutesInDay = 24 * 60;
985 int32_t iDayMinute = (unsigned)pTime->u8Hour * 60 + pTime->u8Minute;
986 iDayMinute += cAddend;
987
988 while (iDayMinute >= cMinutesInDay)
989 {
990 rtTimeAdd1Day(pTime);
991 iDayMinute -= cMinutesInDay;
992 }
993
994 while (iDayMinute < 0)
995 {
996 rtTimeSub1Day(pTime);
997 iDayMinute += cMinutesInDay;
998 }
999
1000 pTime->u8Hour = iDayMinute / 60;
1001 pTime->u8Minute = iDayMinute % 60;
1002
1003 return pTime;
1004}
1005
1006
1007/**
1008 * Converts @a pTime to zulu time (UTC) if needed.
1009 *
1010 * @returns pTime.
1011 * @param pTime What to convers (in/out).
1012 */
1013static PRTTIME rtTimeConvertToZulu(PRTTIME pTime)
1014{
1015 RTTIME_ASSERT_NORMALIZED(pTime);
1016 if ((pTime->fFlags & RTTIME_FLAGS_TYPE_MASK) != RTTIME_FLAGS_TYPE_UTC)
1017 {
1018 int32_t offUTC = pTime->offUTC;
1019 pTime->offUTC = 0;
1020 pTime->fFlags &= ~RTTIME_FLAGS_TYPE_MASK;
1021 pTime->fFlags |= RTTIME_FLAGS_TYPE_UTC;
1022 if (offUTC != 0)
1023 rtTimeAddMinutes(pTime, offUTC);
1024 }
1025 return pTime;
1026}
1027
1028
1029/**
1030 * Compares two normalized time structures.
1031 *
1032 * @retval 0 if equal.
1033 * @retval -1 if @a pLeft is earlier than @a pRight.
1034 * @retval 1 if @a pRight is earlier than @a pLeft.
1035 *
1036 * @param pLeft The left side time. NULL is accepted.
1037 * @param pRight The right side time. NULL is accepted.
1038 *
1039 * @note A NULL time is considered smaller than anything else. If both are
1040 * NULL, they are considered equal.
1041 */
1042RTDECL(int) RTTimeCompare(PCRTTIME pLeft, PCRTTIME pRight)
1043{
1044#ifdef RT_STRICT
1045 if (pLeft)
1046 RTTIME_ASSERT_NORMALIZED(pLeft);
1047 if (pRight)
1048 RTTIME_ASSERT_NORMALIZED(pRight);
1049#endif
1050
1051 int iRet;
1052 if (pLeft)
1053 {
1054 if (pRight)
1055 {
1056 /*
1057 * Only work with normalized zulu time.
1058 */
1059 RTTIME TmpLeft;
1060 if ( pLeft->offUTC != 0
1061 || pLeft->u16YearDay == 0
1062 || pLeft->u16YearDay > 366
1063 || pLeft->u8Hour >= 60
1064 || pLeft->u8Minute >= 60
1065 || pLeft->u8Second >= 60)
1066 {
1067 TmpLeft = *pLeft;
1068 pLeft = rtTimeConvertToZulu(rtTimeNormalizeInternal(&TmpLeft));
1069 }
1070
1071 RTTIME TmpRight;
1072 if ( pRight->offUTC != 0
1073 || pRight->u16YearDay == 0
1074 || pRight->u16YearDay > 366
1075 || pRight->u8Hour >= 60
1076 || pRight->u8Minute >= 60
1077 || pRight->u8Second >= 60)
1078 {
1079 TmpRight = *pRight;
1080 pRight = rtTimeConvertToZulu(rtTimeNormalizeInternal(&TmpRight));
1081 }
1082
1083 /*
1084 * Do the comparison.
1085 */
1086 if ( pLeft->i32Year != pRight->i32Year)
1087 iRet = pLeft->i32Year < pRight->i32Year ? -1 : 1;
1088 else if ( pLeft->u16YearDay != pRight->u16YearDay)
1089 iRet = pLeft->u16YearDay < pRight->u16YearDay ? -1 : 1;
1090 else if ( pLeft->u8Hour != pRight->u8Hour)
1091 iRet = pLeft->u8Hour < pRight->u8Hour ? -1 : 1;
1092 else if ( pLeft->u8Minute != pRight->u8Minute)
1093 iRet = pLeft->u8Minute < pRight->u8Minute ? -1 : 1;
1094 else if ( pLeft->u8Second != pRight->u8Second)
1095 iRet = pLeft->u8Second < pRight->u8Second ? -1 : 1;
1096 else if ( pLeft->u32Nanosecond != pRight->u32Nanosecond)
1097 iRet = pLeft->u32Nanosecond < pRight->u32Nanosecond ? -1 : 1;
1098 else
1099 iRet = 0;
1100 }
1101 else
1102 iRet = 1;
1103 }
1104 else
1105 iRet = pRight ? -1 : 0;
1106 return iRet;
1107}
1108RT_EXPORT_SYMBOL(RTTimeCompare);
1109