]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - ubuntu/vbox/vboxguest/r0drv/linux/alloc-r0drv-linux.c
UBUNTU: ubuntu: vbox -- update to 5.2.0-dfsg-2
[mirror_ubuntu-bionic-kernel.git] / ubuntu / vbox / vboxguest / r0drv / linux / alloc-r0drv-linux.c
CommitLineData
056a1eb7
SF
1/* $Id: alloc-r0drv-linux.c $ */
2/** @file
3 * IPRT - Memory Allocation, Ring-0 Driver, Linux.
4 */
5
6/*
6d209b23 7 * Copyright (C) 2006-2017 Oracle Corporation
056a1eb7
SF
8 *
9 * This file is part of VirtualBox Open Source Edition (OSE), as
10 * available from http://www.virtualbox.org. This file is free software;
11 * you can redistribute it and/or modify it under the terms of the GNU
12 * General Public License (GPL) as published by the Free Software
13 * Foundation, in version 2 as it comes in the "COPYING" file of the
14 * VirtualBox OSE distribution. VirtualBox OSE is distributed in the
15 * hope that it will be useful, but WITHOUT ANY WARRANTY of any kind.
16 *
17 * The contents of this file may alternatively be used under the terms
18 * of the Common Development and Distribution License Version 1.0
19 * (CDDL) only, as it comes in the "COPYING.CDDL" file of the
20 * VirtualBox OSE distribution, in which case the provisions of the
21 * CDDL are applicable instead of those of the GPL.
22 *
23 * You may elect to license modified versions of this file under the
24 * terms and conditions of either the GPL or the CDDL or both.
25 */
26
27
28/*********************************************************************************************************************************
29* Header Files *
30*********************************************************************************************************************************/
31#include "the-linux-kernel.h"
32#include "internal/iprt.h"
33#include <iprt/mem.h>
34
35#include <iprt/assert.h>
36#include <iprt/err.h>
37#include "r0drv/alloc-r0drv.h"
38
39
40#if (defined(RT_ARCH_AMD64) || defined(DOXYGEN_RUNNING)) && !defined(RTMEMALLOC_EXEC_HEAP)
41# if LINUX_VERSION_CODE >= KERNEL_VERSION(2, 6, 23)
42/**
43 * Starting with 2.6.23 we can use __get_vm_area and map_vm_area to allocate
44 * memory in the moduel range. This is preferrable to the exec heap below.
45 */
46# define RTMEMALLOC_EXEC_VM_AREA
47# else
48/**
49 * We need memory in the module range (~2GB to ~0) this can only be obtained
50 * thru APIs that are not exported (see module_alloc()).
51 *
52 * So, we'll have to create a quick and dirty heap here using BSS memory.
53 * Very annoying and it's going to restrict us!
54 */
55# define RTMEMALLOC_EXEC_HEAP
56# endif
57#endif
58
59#ifdef RTMEMALLOC_EXEC_HEAP
60# include <iprt/heap.h>
61# include <iprt/spinlock.h>
62# include <iprt/err.h>
63#endif
64
65
66/*********************************************************************************************************************************
67* Structures and Typedefs *
68*********************************************************************************************************************************/
69#ifdef RTMEMALLOC_EXEC_VM_AREA
70/**
71 * Extended header used for headers marked with RTMEMHDR_FLAG_EXEC_VM_AREA.
72 *
73 * This is used with allocating executable memory, for things like generated
74 * code and loaded modules.
75 */
76typedef struct RTMEMLNXHDREX
77{
78 /** The VM area for this allocation. */
79 struct vm_struct *pVmArea;
80 void *pvDummy;
81 /** The header we present to the generic API. */
82 RTMEMHDR Hdr;
83} RTMEMLNXHDREX;
84AssertCompileSize(RTMEMLNXHDREX, 32);
85/** Pointer to an extended memory header. */
86typedef RTMEMLNXHDREX *PRTMEMLNXHDREX;
87#endif
88
89
90/*********************************************************************************************************************************
91* Global Variables *
92*********************************************************************************************************************************/
93#ifdef RTMEMALLOC_EXEC_HEAP
94/** The heap. */
95static RTHEAPSIMPLE g_HeapExec = NIL_RTHEAPSIMPLE;
96/** Spinlock protecting the heap. */
97static RTSPINLOCK g_HeapExecSpinlock = NIL_RTSPINLOCK;
98#endif
99
100
101/**
102 * API for cleaning up the heap spinlock on IPRT termination.
103 * This is as RTMemExecDonate specific to AMD64 Linux/GNU.
104 */
105DECLHIDDEN(void) rtR0MemExecCleanup(void)
106{
107#ifdef RTMEMALLOC_EXEC_HEAP
108 RTSpinlockDestroy(g_HeapExecSpinlock);
109 g_HeapExecSpinlock = NIL_RTSPINLOCK;
110#endif
111}
112
113
114/**
115 * Donate read+write+execute memory to the exec heap.
116 *
117 * This API is specific to AMD64 and Linux/GNU. A kernel module that desires to
118 * use RTMemExecAlloc on AMD64 Linux/GNU will have to donate some statically
119 * allocated memory in the module if it wishes for GCC generated code to work.
120 * GCC can only generate modules that work in the address range ~2GB to ~0
121 * currently.
122 *
123 * The API only accept one single donation.
124 *
125 * @returns IPRT status code.
126 * @retval VERR_NOT_SUPPORTED if the code isn't enabled.
127 * @param pvMemory Pointer to the memory block.
128 * @param cb The size of the memory block.
129 */
130RTR0DECL(int) RTR0MemExecDonate(void *pvMemory, size_t cb)
131{
132#ifdef RTMEMALLOC_EXEC_HEAP
133 int rc;
134 AssertReturn(g_HeapExec == NIL_RTHEAPSIMPLE, VERR_WRONG_ORDER);
135
136 rc = RTSpinlockCreate(&g_HeapExecSpinlock, RTSPINLOCK_FLAGS_INTERRUPT_SAFE, "RTR0MemExecDonate");
137 if (RT_SUCCESS(rc))
138 {
139 rc = RTHeapSimpleInit(&g_HeapExec, pvMemory, cb);
140 if (RT_FAILURE(rc))
141 rtR0MemExecCleanup();
142 }
143 return rc;
144#else
145 RT_NOREF_PV(pvMemory); RT_NOREF_PV(cb);
146 return VERR_NOT_SUPPORTED;
147#endif
148}
149RT_EXPORT_SYMBOL(RTR0MemExecDonate);
150
151
152
153#ifdef RTMEMALLOC_EXEC_VM_AREA
154/**
155 * Allocate executable kernel memory in the module range.
156 *
157 * @returns Pointer to a allocation header success. NULL on failure.
158 *
159 * @param cb The size the user requested.
160 */
161static PRTMEMHDR rtR0MemAllocExecVmArea(size_t cb)
162{
163 size_t const cbAlloc = RT_ALIGN_Z(sizeof(RTMEMLNXHDREX) + cb, PAGE_SIZE);
164 size_t const cPages = cbAlloc >> PAGE_SHIFT;
165 struct page **papPages;
166 struct vm_struct *pVmArea;
167 size_t iPage;
168
169 pVmArea = __get_vm_area(cbAlloc, VM_ALLOC, MODULES_VADDR, MODULES_END);
170 if (!pVmArea)
171 return NULL;
172 pVmArea->nr_pages = 0; /* paranoia? */
173 pVmArea->pages = NULL; /* paranoia? */
174
175 papPages = (struct page **)kmalloc(cPages * sizeof(papPages[0]), GFP_KERNEL | __GFP_NOWARN);
176 if (!papPages)
177 {
178 vunmap(pVmArea->addr);
179 return NULL;
180 }
181
182 for (iPage = 0; iPage < cPages; iPage++)
183 {
184 papPages[iPage] = alloc_page(GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN);
185 if (!papPages[iPage])
186 break;
187 }
188 if (iPage == cPages)
189 {
190 /*
191 * Map the pages.
192 *
193 * Not entirely sure we really need to set nr_pages and pages here, but
194 * they provide a very convenient place for storing something we need
195 * in the free function, if nothing else...
196 */
197# if LINUX_VERSION_CODE < KERNEL_VERSION(3, 17, 0)
198 struct page **papPagesIterator = papPages;
199# endif
200 pVmArea->nr_pages = cPages;
201 pVmArea->pages = papPages;
202 if (!map_vm_area(pVmArea, PAGE_KERNEL_EXEC,
203# if LINUX_VERSION_CODE < KERNEL_VERSION(3, 17, 0)
204 &papPagesIterator
205# else
206 papPages
207# endif
208 ))
209 {
210 PRTMEMLNXHDREX pHdrEx = (PRTMEMLNXHDREX)pVmArea->addr;
211 pHdrEx->pVmArea = pVmArea;
212 pHdrEx->pvDummy = NULL;
213 return &pHdrEx->Hdr;
214 }
215 /* bail out */
216# if LINUX_VERSION_CODE < KERNEL_VERSION(3, 17, 0)
217 pVmArea->nr_pages = papPagesIterator - papPages;
218# endif
219 }
220
221 vunmap(pVmArea->addr);
222
223 while (iPage-- > 0)
224 __free_page(papPages[iPage]);
225 kfree(papPages);
226
227 return NULL;
228}
229#endif /* RTMEMALLOC_EXEC_VM_AREA */
230
231
232/**
233 * OS specific allocation function.
234 */
235DECLHIDDEN(int) rtR0MemAllocEx(size_t cb, uint32_t fFlags, PRTMEMHDR *ppHdr)
236{
237 PRTMEMHDR pHdr;
238 IPRT_LINUX_SAVE_EFL_AC();
239
240 /*
241 * Allocate.
242 */
243 if (fFlags & RTMEMHDR_FLAG_EXEC)
244 {
245 if (fFlags & RTMEMHDR_FLAG_ANY_CTX)
246 return VERR_NOT_SUPPORTED;
247
248#if defined(RT_ARCH_AMD64)
249# ifdef RTMEMALLOC_EXEC_HEAP
250 if (g_HeapExec != NIL_RTHEAPSIMPLE)
251 {
252 RTSpinlockAcquire(g_HeapExecSpinlock);
253 pHdr = (PRTMEMHDR)RTHeapSimpleAlloc(g_HeapExec, cb + sizeof(*pHdr), 0);
254 RTSpinlockRelease(g_HeapExecSpinlock);
255 fFlags |= RTMEMHDR_FLAG_EXEC_HEAP;
256 }
257 else
258 pHdr = NULL;
259
260# elif defined(RTMEMALLOC_EXEC_VM_AREA)
261 pHdr = rtR0MemAllocExecVmArea(cb);
262 fFlags |= RTMEMHDR_FLAG_EXEC_VM_AREA;
263
264# else /* !RTMEMALLOC_EXEC_HEAP */
265# error "you don not want to go here..."
266 pHdr = (PRTMEMHDR)__vmalloc(cb + sizeof(*pHdr), GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, MY_PAGE_KERNEL_EXEC);
267# endif /* !RTMEMALLOC_EXEC_HEAP */
268
269#elif defined(PAGE_KERNEL_EXEC) && defined(CONFIG_X86_PAE)
270 pHdr = (PRTMEMHDR)__vmalloc(cb + sizeof(*pHdr), GFP_KERNEL | __GFP_HIGHMEM | __GFP_NOWARN, MY_PAGE_KERNEL_EXEC);
271#else
272 pHdr = (PRTMEMHDR)vmalloc(cb + sizeof(*pHdr));
273#endif
274 }
275 else
276 {
277 if (
278#if 1 /* vmalloc has serious performance issues, avoid it. */
279 cb <= PAGE_SIZE*16 - sizeof(*pHdr)
280#else
281 cb <= PAGE_SIZE
282#endif
283 || (fFlags & RTMEMHDR_FLAG_ANY_CTX)
284 )
285 {
286 fFlags |= RTMEMHDR_FLAG_KMALLOC;
287 pHdr = kmalloc(cb + sizeof(*pHdr),
288 (fFlags & RTMEMHDR_FLAG_ANY_CTX_ALLOC) ? (GFP_ATOMIC | __GFP_NOWARN)
289 : (GFP_KERNEL | __GFP_NOWARN));
290 if (RT_UNLIKELY( !pHdr
291 && cb > PAGE_SIZE
292 && !(fFlags & RTMEMHDR_FLAG_ANY_CTX) ))
293 {
294 fFlags &= ~RTMEMHDR_FLAG_KMALLOC;
295 pHdr = vmalloc(cb + sizeof(*pHdr));
296 }
297 }
298 else
299 pHdr = vmalloc(cb + sizeof(*pHdr));
300 }
301 if (RT_UNLIKELY(!pHdr))
302 {
303 IPRT_LINUX_RESTORE_EFL_AC();
304 return VERR_NO_MEMORY;
305 }
306
307 /*
308 * Initialize.
309 */
310 pHdr->u32Magic = RTMEMHDR_MAGIC;
311 pHdr->fFlags = fFlags;
312 pHdr->cb = cb;
313 pHdr->cbReq = cb;
314
315 *ppHdr = pHdr;
316 IPRT_LINUX_RESTORE_EFL_AC();
317 return VINF_SUCCESS;
318}
319
320
321/**
322 * OS specific free function.
323 */
324DECLHIDDEN(void) rtR0MemFree(PRTMEMHDR pHdr)
325{
326 IPRT_LINUX_SAVE_EFL_AC();
327
328 pHdr->u32Magic += 1;
329 if (pHdr->fFlags & RTMEMHDR_FLAG_KMALLOC)
330 kfree(pHdr);
331#ifdef RTMEMALLOC_EXEC_HEAP
332 else if (pHdr->fFlags & RTMEMHDR_FLAG_EXEC_HEAP)
333 {
334 RTSpinlockAcquire(g_HeapExecSpinlock);
335 RTHeapSimpleFree(g_HeapExec, pHdr);
336 RTSpinlockRelease(g_HeapExecSpinlock);
337 }
338#endif
339#ifdef RTMEMALLOC_EXEC_VM_AREA
340 else if (pHdr->fFlags & RTMEMHDR_FLAG_EXEC_VM_AREA)
341 {
342 PRTMEMLNXHDREX pHdrEx = RT_FROM_MEMBER(pHdr, RTMEMLNXHDREX, Hdr);
343 size_t iPage = pHdrEx->pVmArea->nr_pages;
344 struct page **papPages = pHdrEx->pVmArea->pages;
345 void *pvMapping = pHdrEx->pVmArea->addr;
346
347 vunmap(pvMapping);
348
349 while (iPage-- > 0)
350 __free_page(papPages[iPage]);
351 kfree(papPages);
352 }
353#endif
354 else
355 vfree(pHdr);
356
357 IPRT_LINUX_RESTORE_EFL_AC();
358}
359
360
361
362/**
363 * Compute order. Some functions allocate 2^order pages.
364 *
365 * @returns order.
366 * @param cPages Number of pages.
367 */
368static int CalcPowerOf2Order(unsigned long cPages)
369{
370 int iOrder;
371 unsigned long cTmp;
372
373 for (iOrder = 0, cTmp = cPages; cTmp >>= 1; ++iOrder)
374 ;
375 if (cPages & ~(1 << iOrder))
376 ++iOrder;
377
378 return iOrder;
379}
380
381
382/**
383 * Allocates physical contiguous memory (below 4GB).
384 * The allocation is page aligned and the content is undefined.
385 *
386 * @returns Pointer to the memory block. This is page aligned.
387 * @param pPhys Where to store the physical address.
388 * @param cb The allocation size in bytes. This is always
389 * rounded up to PAGE_SIZE.
390 */
391RTR0DECL(void *) RTMemContAlloc(PRTCCPHYS pPhys, size_t cb)
392{
393 int cOrder;
394 unsigned cPages;
395 struct page *paPages;
396 void *pvRet;
397 IPRT_LINUX_SAVE_EFL_AC();
398
399 /*
400 * validate input.
401 */
402 Assert(VALID_PTR(pPhys));
403 Assert(cb > 0);
404
405 /*
406 * Allocate page pointer array.
407 */
408 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
409 cPages = cb >> PAGE_SHIFT;
410 cOrder = CalcPowerOf2Order(cPages);
411#if (defined(RT_ARCH_AMD64) || defined(CONFIG_X86_PAE)) && defined(GFP_DMA32)
412 /* ZONE_DMA32: 0-4GB */
413 paPages = alloc_pages(GFP_DMA32 | __GFP_NOWARN, cOrder);
414 if (!paPages)
415#endif
416#ifdef RT_ARCH_AMD64
417 /* ZONE_DMA; 0-16MB */
418 paPages = alloc_pages(GFP_DMA | __GFP_NOWARN, cOrder);
419#else
420 /* ZONE_NORMAL: 0-896MB */
421 paPages = alloc_pages(GFP_USER | __GFP_NOWARN, cOrder);
422#endif
423 if (paPages)
424 {
425 /*
426 * Reserve the pages and mark them executable.
427 */
428 unsigned iPage;
429 for (iPage = 0; iPage < cPages; iPage++)
430 {
431 Assert(!PageHighMem(&paPages[iPage]));
432 if (iPage + 1 < cPages)
433 {
434 AssertMsg( (uintptr_t)phys_to_virt(page_to_phys(&paPages[iPage])) + PAGE_SIZE
435 == (uintptr_t)phys_to_virt(page_to_phys(&paPages[iPage + 1]))
436 && page_to_phys(&paPages[iPage]) + PAGE_SIZE
437 == page_to_phys(&paPages[iPage + 1]),
438 ("iPage=%i cPages=%u [0]=%#llx,%p [1]=%#llx,%p\n", iPage, cPages,
439 (long long)page_to_phys(&paPages[iPage]), phys_to_virt(page_to_phys(&paPages[iPage])),
440 (long long)page_to_phys(&paPages[iPage + 1]), phys_to_virt(page_to_phys(&paPages[iPage + 1])) ));
441 }
442
443 SetPageReserved(&paPages[iPage]);
444#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 20) /** @todo find the exact kernel where change_page_attr was introduced. */
445 MY_SET_PAGES_EXEC(&paPages[iPage], 1);
446#endif
447 }
448 *pPhys = page_to_phys(paPages);
449 pvRet = phys_to_virt(page_to_phys(paPages));
450 }
451 else
452 pvRet = NULL;
453
454 IPRT_LINUX_RESTORE_EFL_AC();
455 return pvRet;
456}
457RT_EXPORT_SYMBOL(RTMemContAlloc);
458
459
460/**
461 * Frees memory allocated using RTMemContAlloc().
462 *
463 * @param pv Pointer to return from RTMemContAlloc().
464 * @param cb The cb parameter passed to RTMemContAlloc().
465 */
466RTR0DECL(void) RTMemContFree(void *pv, size_t cb)
467{
468 if (pv)
469 {
470 int cOrder;
471 unsigned cPages;
472 unsigned iPage;
473 struct page *paPages;
474 IPRT_LINUX_SAVE_EFL_AC();
475
476 /* validate */
477 AssertMsg(!((uintptr_t)pv & PAGE_OFFSET_MASK), ("pv=%p\n", pv));
478 Assert(cb > 0);
479
480 /* calc order and get pages */
481 cb = RT_ALIGN_Z(cb, PAGE_SIZE);
482 cPages = cb >> PAGE_SHIFT;
483 cOrder = CalcPowerOf2Order(cPages);
484 paPages = virt_to_page(pv);
485
486 /*
487 * Restore page attributes freeing the pages.
488 */
489 for (iPage = 0; iPage < cPages; iPage++)
490 {
491 ClearPageReserved(&paPages[iPage]);
492#if LINUX_VERSION_CODE > KERNEL_VERSION(2, 4, 20) /** @todo find the exact kernel where change_page_attr was introduced. */
493 MY_SET_PAGES_NOEXEC(&paPages[iPage], 1);
494#endif
495 }
496 __free_pages(paPages, cOrder);
497 IPRT_LINUX_RESTORE_EFL_AC();
498 }
499}
500RT_EXPORT_SYMBOL(RTMemContFree);
501