]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-core.c
block: Expand Xen blkfront for > 16 xvd
[mirror_ubuntu-zesty-kernel.git] / block / blk-core.c
CommitLineData
1da177e4 1/*
1da177e4
LT
2 * Copyright (C) 1991, 1992 Linus Torvalds
3 * Copyright (C) 1994, Karl Keyte: Added support for disk statistics
4 * Elevator latency, (C) 2000 Andrea Arcangeli <andrea@suse.de> SuSE
5 * Queue request tables / lock, selectable elevator, Jens Axboe <axboe@suse.de>
6728cb0e
JA
6 * kernel-doc documentation started by NeilBrown <neilb@cse.unsw.edu.au>
7 * - July2000
1da177e4
LT
8 * bio rewrite, highmem i/o, etc, Jens Axboe <axboe@suse.de> - may 2001
9 */
10
11/*
12 * This handles all read/write requests to block devices
13 */
1da177e4
LT
14#include <linux/kernel.h>
15#include <linux/module.h>
16#include <linux/backing-dev.h>
17#include <linux/bio.h>
18#include <linux/blkdev.h>
19#include <linux/highmem.h>
20#include <linux/mm.h>
21#include <linux/kernel_stat.h>
22#include <linux/string.h>
23#include <linux/init.h>
1da177e4
LT
24#include <linux/completion.h>
25#include <linux/slab.h>
26#include <linux/swap.h>
27#include <linux/writeback.h>
faccbd4b 28#include <linux/task_io_accounting_ops.h>
2056a782 29#include <linux/blktrace_api.h>
c17bb495 30#include <linux/fault-inject.h>
1da177e4 31
8324aa91
JA
32#include "blk.h"
33
165125e1 34static int __make_request(struct request_queue *q, struct bio *bio);
1da177e4
LT
35
36/*
37 * For the allocated request tables
38 */
5ece6c52 39static struct kmem_cache *request_cachep;
1da177e4
LT
40
41/*
42 * For queue allocation
43 */
6728cb0e 44struct kmem_cache *blk_requestq_cachep;
1da177e4 45
1da177e4
LT
46/*
47 * Controlling structure to kblockd
48 */
ff856bad 49static struct workqueue_struct *kblockd_workqueue;
1da177e4 50
26b8256e
JA
51static void drive_stat_acct(struct request *rq, int new_io)
52{
28f13702 53 struct hd_struct *part;
26b8256e 54 int rw = rq_data_dir(rq);
c9959059 55 int cpu;
26b8256e
JA
56
57 if (!blk_fs_request(rq) || !rq->rq_disk)
58 return;
59
074a7aca 60 cpu = part_stat_lock();
e71bf0d0 61 part = disk_map_sector_rcu(rq->rq_disk, rq->sector);
c9959059 62
28f13702 63 if (!new_io)
074a7aca 64 part_stat_inc(cpu, part, merges[rw]);
28f13702 65 else {
074a7aca
TH
66 part_round_stats(cpu, part);
67 part_inc_in_flight(part);
26b8256e 68 }
e71bf0d0 69
074a7aca 70 part_stat_unlock();
26b8256e
JA
71}
72
8324aa91 73void blk_queue_congestion_threshold(struct request_queue *q)
1da177e4
LT
74{
75 int nr;
76
77 nr = q->nr_requests - (q->nr_requests / 8) + 1;
78 if (nr > q->nr_requests)
79 nr = q->nr_requests;
80 q->nr_congestion_on = nr;
81
82 nr = q->nr_requests - (q->nr_requests / 8) - (q->nr_requests / 16) - 1;
83 if (nr < 1)
84 nr = 1;
85 q->nr_congestion_off = nr;
86}
87
1da177e4
LT
88/**
89 * blk_get_backing_dev_info - get the address of a queue's backing_dev_info
90 * @bdev: device
91 *
92 * Locates the passed device's request queue and returns the address of its
93 * backing_dev_info
94 *
95 * Will return NULL if the request queue cannot be located.
96 */
97struct backing_dev_info *blk_get_backing_dev_info(struct block_device *bdev)
98{
99 struct backing_dev_info *ret = NULL;
165125e1 100 struct request_queue *q = bdev_get_queue(bdev);
1da177e4
LT
101
102 if (q)
103 ret = &q->backing_dev_info;
104 return ret;
105}
1da177e4
LT
106EXPORT_SYMBOL(blk_get_backing_dev_info);
107
2a4aa30c 108void blk_rq_init(struct request_queue *q, struct request *rq)
1da177e4 109{
1afb20f3
FT
110 memset(rq, 0, sizeof(*rq));
111
1da177e4 112 INIT_LIST_HEAD(&rq->queuelist);
242f9dcb 113 INIT_LIST_HEAD(&rq->timeout_list);
c7c22e4d 114 rq->cpu = -1;
63a71386
JA
115 rq->q = q;
116 rq->sector = rq->hard_sector = (sector_t) -1;
2e662b65
JA
117 INIT_HLIST_NODE(&rq->hash);
118 RB_CLEAR_NODE(&rq->rb_node);
d7e3c324 119 rq->cmd = rq->__cmd;
63a71386 120 rq->tag = -1;
1da177e4 121 rq->ref_count = 1;
1da177e4 122}
2a4aa30c 123EXPORT_SYMBOL(blk_rq_init);
1da177e4 124
5bb23a68
N
125static void req_bio_endio(struct request *rq, struct bio *bio,
126 unsigned int nbytes, int error)
1da177e4 127{
165125e1 128 struct request_queue *q = rq->q;
797e7dbb 129
5bb23a68
N
130 if (&q->bar_rq != rq) {
131 if (error)
132 clear_bit(BIO_UPTODATE, &bio->bi_flags);
133 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
134 error = -EIO;
797e7dbb 135
5bb23a68 136 if (unlikely(nbytes > bio->bi_size)) {
6728cb0e 137 printk(KERN_ERR "%s: want %u bytes done, %u left\n",
24c03d47 138 __func__, nbytes, bio->bi_size);
5bb23a68
N
139 nbytes = bio->bi_size;
140 }
797e7dbb 141
5bb23a68
N
142 bio->bi_size -= nbytes;
143 bio->bi_sector += (nbytes >> 9);
7ba1ba12
MP
144
145 if (bio_integrity(bio))
146 bio_integrity_advance(bio, nbytes);
147
5bb23a68 148 if (bio->bi_size == 0)
6712ecf8 149 bio_endio(bio, error);
5bb23a68
N
150 } else {
151
152 /*
153 * Okay, this is the barrier request in progress, just
154 * record the error;
155 */
156 if (error && !q->orderr)
157 q->orderr = error;
158 }
1da177e4 159}
1da177e4 160
1da177e4
LT
161void blk_dump_rq_flags(struct request *rq, char *msg)
162{
163 int bit;
164
6728cb0e 165 printk(KERN_INFO "%s: dev %s: type=%x, flags=%x\n", msg,
4aff5e23
JA
166 rq->rq_disk ? rq->rq_disk->disk_name : "?", rq->cmd_type,
167 rq->cmd_flags);
1da177e4 168
6728cb0e
JA
169 printk(KERN_INFO " sector %llu, nr/cnr %lu/%u\n",
170 (unsigned long long)rq->sector,
171 rq->nr_sectors,
172 rq->current_nr_sectors);
173 printk(KERN_INFO " bio %p, biotail %p, buffer %p, data %p, len %u\n",
174 rq->bio, rq->biotail,
175 rq->buffer, rq->data,
176 rq->data_len);
1da177e4 177
4aff5e23 178 if (blk_pc_request(rq)) {
6728cb0e 179 printk(KERN_INFO " cdb: ");
d34c87e4 180 for (bit = 0; bit < BLK_MAX_CDB; bit++)
1da177e4
LT
181 printk("%02x ", rq->cmd[bit]);
182 printk("\n");
183 }
184}
1da177e4
LT
185EXPORT_SYMBOL(blk_dump_rq_flags);
186
1da177e4
LT
187/*
188 * "plug" the device if there are no outstanding requests: this will
189 * force the transfer to start only after we have put all the requests
190 * on the list.
191 *
192 * This is called with interrupts off and no requests on the queue and
193 * with the queue lock held.
194 */
165125e1 195void blk_plug_device(struct request_queue *q)
1da177e4
LT
196{
197 WARN_ON(!irqs_disabled());
198
199 /*
200 * don't plug a stopped queue, it must be paired with blk_start_queue()
201 * which will restart the queueing
202 */
7daac490 203 if (blk_queue_stopped(q))
1da177e4
LT
204 return;
205
e48ec690 206 if (!queue_flag_test_and_set(QUEUE_FLAG_PLUGGED, q)) {
1da177e4 207 mod_timer(&q->unplug_timer, jiffies + q->unplug_delay);
2056a782
JA
208 blk_add_trace_generic(q, NULL, 0, BLK_TA_PLUG);
209 }
1da177e4 210}
1da177e4
LT
211EXPORT_SYMBOL(blk_plug_device);
212
6c5e0c4d
JA
213/**
214 * blk_plug_device_unlocked - plug a device without queue lock held
215 * @q: The &struct request_queue to plug
216 *
217 * Description:
218 * Like @blk_plug_device(), but grabs the queue lock and disables
219 * interrupts.
220 **/
221void blk_plug_device_unlocked(struct request_queue *q)
222{
223 unsigned long flags;
224
225 spin_lock_irqsave(q->queue_lock, flags);
226 blk_plug_device(q);
227 spin_unlock_irqrestore(q->queue_lock, flags);
228}
229EXPORT_SYMBOL(blk_plug_device_unlocked);
230
1da177e4
LT
231/*
232 * remove the queue from the plugged list, if present. called with
233 * queue lock held and interrupts disabled.
234 */
165125e1 235int blk_remove_plug(struct request_queue *q)
1da177e4
LT
236{
237 WARN_ON(!irqs_disabled());
238
e48ec690 239 if (!queue_flag_test_and_clear(QUEUE_FLAG_PLUGGED, q))
1da177e4
LT
240 return 0;
241
242 del_timer(&q->unplug_timer);
243 return 1;
244}
1da177e4
LT
245EXPORT_SYMBOL(blk_remove_plug);
246
247/*
248 * remove the plug and let it rip..
249 */
165125e1 250void __generic_unplug_device(struct request_queue *q)
1da177e4 251{
7daac490 252 if (unlikely(blk_queue_stopped(q)))
1da177e4
LT
253 return;
254
255 if (!blk_remove_plug(q))
256 return;
257
22e2c507 258 q->request_fn(q);
1da177e4
LT
259}
260EXPORT_SYMBOL(__generic_unplug_device);
261
262/**
263 * generic_unplug_device - fire a request queue
165125e1 264 * @q: The &struct request_queue in question
1da177e4
LT
265 *
266 * Description:
267 * Linux uses plugging to build bigger requests queues before letting
268 * the device have at them. If a queue is plugged, the I/O scheduler
269 * is still adding and merging requests on the queue. Once the queue
270 * gets unplugged, the request_fn defined for the queue is invoked and
271 * transfers started.
272 **/
165125e1 273void generic_unplug_device(struct request_queue *q)
1da177e4 274{
dbaf2c00
JA
275 if (blk_queue_plugged(q)) {
276 spin_lock_irq(q->queue_lock);
277 __generic_unplug_device(q);
278 spin_unlock_irq(q->queue_lock);
279 }
1da177e4
LT
280}
281EXPORT_SYMBOL(generic_unplug_device);
282
283static void blk_backing_dev_unplug(struct backing_dev_info *bdi,
284 struct page *page)
285{
165125e1 286 struct request_queue *q = bdi->unplug_io_data;
1da177e4 287
2ad8b1ef 288 blk_unplug(q);
1da177e4
LT
289}
290
86db1e29 291void blk_unplug_work(struct work_struct *work)
1da177e4 292{
165125e1
JA
293 struct request_queue *q =
294 container_of(work, struct request_queue, unplug_work);
1da177e4 295
2056a782
JA
296 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
297 q->rq.count[READ] + q->rq.count[WRITE]);
298
1da177e4
LT
299 q->unplug_fn(q);
300}
301
86db1e29 302void blk_unplug_timeout(unsigned long data)
1da177e4 303{
165125e1 304 struct request_queue *q = (struct request_queue *)data;
1da177e4 305
2056a782
JA
306 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_TIMER, NULL,
307 q->rq.count[READ] + q->rq.count[WRITE]);
308
18887ad9 309 kblockd_schedule_work(q, &q->unplug_work);
1da177e4
LT
310}
311
2ad8b1ef
AB
312void blk_unplug(struct request_queue *q)
313{
314 /*
315 * devices don't necessarily have an ->unplug_fn defined
316 */
317 if (q->unplug_fn) {
318 blk_add_trace_pdu_int(q, BLK_TA_UNPLUG_IO, NULL,
319 q->rq.count[READ] + q->rq.count[WRITE]);
320
321 q->unplug_fn(q);
322 }
323}
324EXPORT_SYMBOL(blk_unplug);
325
c7c22e4d
JA
326static void blk_invoke_request_fn(struct request_queue *q)
327{
328 /*
329 * one level of recursion is ok and is much faster than kicking
330 * the unplug handling
331 */
332 if (!queue_flag_test_and_set(QUEUE_FLAG_REENTER, q)) {
333 q->request_fn(q);
334 queue_flag_clear(QUEUE_FLAG_REENTER, q);
335 } else {
336 queue_flag_set(QUEUE_FLAG_PLUGGED, q);
337 kblockd_schedule_work(q, &q->unplug_work);
338 }
339}
340
1da177e4
LT
341/**
342 * blk_start_queue - restart a previously stopped queue
165125e1 343 * @q: The &struct request_queue in question
1da177e4
LT
344 *
345 * Description:
346 * blk_start_queue() will clear the stop flag on the queue, and call
347 * the request_fn for the queue if it was in a stopped state when
348 * entered. Also see blk_stop_queue(). Queue lock must be held.
349 **/
165125e1 350void blk_start_queue(struct request_queue *q)
1da177e4 351{
a038e253
PBG
352 WARN_ON(!irqs_disabled());
353
75ad23bc 354 queue_flag_clear(QUEUE_FLAG_STOPPED, q);
c7c22e4d 355 blk_invoke_request_fn(q);
1da177e4 356}
1da177e4
LT
357EXPORT_SYMBOL(blk_start_queue);
358
359/**
360 * blk_stop_queue - stop a queue
165125e1 361 * @q: The &struct request_queue in question
1da177e4
LT
362 *
363 * Description:
364 * The Linux block layer assumes that a block driver will consume all
365 * entries on the request queue when the request_fn strategy is called.
366 * Often this will not happen, because of hardware limitations (queue
367 * depth settings). If a device driver gets a 'queue full' response,
368 * or if it simply chooses not to queue more I/O at one point, it can
369 * call this function to prevent the request_fn from being called until
370 * the driver has signalled it's ready to go again. This happens by calling
371 * blk_start_queue() to restart queue operations. Queue lock must be held.
372 **/
165125e1 373void blk_stop_queue(struct request_queue *q)
1da177e4
LT
374{
375 blk_remove_plug(q);
75ad23bc 376 queue_flag_set(QUEUE_FLAG_STOPPED, q);
1da177e4
LT
377}
378EXPORT_SYMBOL(blk_stop_queue);
379
380/**
381 * blk_sync_queue - cancel any pending callbacks on a queue
382 * @q: the queue
383 *
384 * Description:
385 * The block layer may perform asynchronous callback activity
386 * on a queue, such as calling the unplug function after a timeout.
387 * A block device may call blk_sync_queue to ensure that any
388 * such activity is cancelled, thus allowing it to release resources
59c51591 389 * that the callbacks might use. The caller must already have made sure
1da177e4
LT
390 * that its ->make_request_fn will not re-add plugging prior to calling
391 * this function.
392 *
393 */
394void blk_sync_queue(struct request_queue *q)
395{
396 del_timer_sync(&q->unplug_timer);
abbeb88d 397 kblockd_flush_work(&q->unplug_work);
1da177e4
LT
398}
399EXPORT_SYMBOL(blk_sync_queue);
400
401/**
402 * blk_run_queue - run a single device queue
403 * @q: The queue to run
404 */
75ad23bc 405void __blk_run_queue(struct request_queue *q)
1da177e4 406{
1da177e4 407 blk_remove_plug(q);
dac07ec1
JA
408
409 /*
410 * Only recurse once to avoid overrunning the stack, let the unplug
411 * handling reinvoke the handler shortly if we already got there.
412 */
c7c22e4d
JA
413 if (!elv_queue_empty(q))
414 blk_invoke_request_fn(q);
75ad23bc
NP
415}
416EXPORT_SYMBOL(__blk_run_queue);
dac07ec1 417
75ad23bc
NP
418/**
419 * blk_run_queue - run a single device queue
420 * @q: The queue to run
421 */
422void blk_run_queue(struct request_queue *q)
423{
424 unsigned long flags;
425
426 spin_lock_irqsave(q->queue_lock, flags);
427 __blk_run_queue(q);
1da177e4
LT
428 spin_unlock_irqrestore(q->queue_lock, flags);
429}
430EXPORT_SYMBOL(blk_run_queue);
431
165125e1 432void blk_put_queue(struct request_queue *q)
483f4afc
AV
433{
434 kobject_put(&q->kobj);
435}
483f4afc 436
6728cb0e 437void blk_cleanup_queue(struct request_queue *q)
483f4afc
AV
438{
439 mutex_lock(&q->sysfs_lock);
75ad23bc 440 queue_flag_set_unlocked(QUEUE_FLAG_DEAD, q);
483f4afc
AV
441 mutex_unlock(&q->sysfs_lock);
442
443 if (q->elevator)
444 elevator_exit(q->elevator);
445
446 blk_put_queue(q);
447}
1da177e4
LT
448EXPORT_SYMBOL(blk_cleanup_queue);
449
165125e1 450static int blk_init_free_list(struct request_queue *q)
1da177e4
LT
451{
452 struct request_list *rl = &q->rq;
453
454 rl->count[READ] = rl->count[WRITE] = 0;
455 rl->starved[READ] = rl->starved[WRITE] = 0;
cb98fc8b 456 rl->elvpriv = 0;
1da177e4
LT
457 init_waitqueue_head(&rl->wait[READ]);
458 init_waitqueue_head(&rl->wait[WRITE]);
1da177e4 459
1946089a
CL
460 rl->rq_pool = mempool_create_node(BLKDEV_MIN_RQ, mempool_alloc_slab,
461 mempool_free_slab, request_cachep, q->node);
1da177e4
LT
462
463 if (!rl->rq_pool)
464 return -ENOMEM;
465
466 return 0;
467}
468
165125e1 469struct request_queue *blk_alloc_queue(gfp_t gfp_mask)
1da177e4 470{
1946089a
CL
471 return blk_alloc_queue_node(gfp_mask, -1);
472}
473EXPORT_SYMBOL(blk_alloc_queue);
1da177e4 474
165125e1 475struct request_queue *blk_alloc_queue_node(gfp_t gfp_mask, int node_id)
1946089a 476{
165125e1 477 struct request_queue *q;
e0bf68dd 478 int err;
1946089a 479
8324aa91 480 q = kmem_cache_alloc_node(blk_requestq_cachep,
94f6030c 481 gfp_mask | __GFP_ZERO, node_id);
1da177e4
LT
482 if (!q)
483 return NULL;
484
e0bf68dd
PZ
485 q->backing_dev_info.unplug_io_fn = blk_backing_dev_unplug;
486 q->backing_dev_info.unplug_io_data = q;
487 err = bdi_init(&q->backing_dev_info);
488 if (err) {
8324aa91 489 kmem_cache_free(blk_requestq_cachep, q);
e0bf68dd
PZ
490 return NULL;
491 }
492
1da177e4 493 init_timer(&q->unplug_timer);
242f9dcb
JA
494 setup_timer(&q->timeout, blk_rq_timed_out_timer, (unsigned long) q);
495 INIT_LIST_HEAD(&q->timeout_list);
483f4afc 496
8324aa91 497 kobject_init(&q->kobj, &blk_queue_ktype);
1da177e4 498
483f4afc 499 mutex_init(&q->sysfs_lock);
e7e72bf6 500 spin_lock_init(&q->__queue_lock);
483f4afc 501
1da177e4
LT
502 return q;
503}
1946089a 504EXPORT_SYMBOL(blk_alloc_queue_node);
1da177e4
LT
505
506/**
507 * blk_init_queue - prepare a request queue for use with a block device
508 * @rfn: The function to be called to process requests that have been
509 * placed on the queue.
510 * @lock: Request queue spin lock
511 *
512 * Description:
513 * If a block device wishes to use the standard request handling procedures,
514 * which sorts requests and coalesces adjacent requests, then it must
515 * call blk_init_queue(). The function @rfn will be called when there
516 * are requests on the queue that need to be processed. If the device
517 * supports plugging, then @rfn may not be called immediately when requests
518 * are available on the queue, but may be called at some time later instead.
519 * Plugged queues are generally unplugged when a buffer belonging to one
520 * of the requests on the queue is needed, or due to memory pressure.
521 *
522 * @rfn is not required, or even expected, to remove all requests off the
523 * queue, but only as many as it can handle at a time. If it does leave
524 * requests on the queue, it is responsible for arranging that the requests
525 * get dealt with eventually.
526 *
527 * The queue spin lock must be held while manipulating the requests on the
a038e253
PBG
528 * request queue; this lock will be taken also from interrupt context, so irq
529 * disabling is needed for it.
1da177e4 530 *
710027a4 531 * Function returns a pointer to the initialized request queue, or %NULL if
1da177e4
LT
532 * it didn't succeed.
533 *
534 * Note:
535 * blk_init_queue() must be paired with a blk_cleanup_queue() call
536 * when the block device is deactivated (such as at module unload).
537 **/
1946089a 538
165125e1 539struct request_queue *blk_init_queue(request_fn_proc *rfn, spinlock_t *lock)
1da177e4 540{
1946089a
CL
541 return blk_init_queue_node(rfn, lock, -1);
542}
543EXPORT_SYMBOL(blk_init_queue);
544
165125e1 545struct request_queue *
1946089a
CL
546blk_init_queue_node(request_fn_proc *rfn, spinlock_t *lock, int node_id)
547{
165125e1 548 struct request_queue *q = blk_alloc_queue_node(GFP_KERNEL, node_id);
1da177e4
LT
549
550 if (!q)
551 return NULL;
552
1946089a 553 q->node = node_id;
8669aafd 554 if (blk_init_free_list(q)) {
8324aa91 555 kmem_cache_free(blk_requestq_cachep, q);
8669aafd
AV
556 return NULL;
557 }
1da177e4 558
152587de
JA
559 /*
560 * if caller didn't supply a lock, they get per-queue locking with
561 * our embedded lock
562 */
e7e72bf6 563 if (!lock)
152587de 564 lock = &q->__queue_lock;
152587de 565
1da177e4 566 q->request_fn = rfn;
1da177e4
LT
567 q->prep_rq_fn = NULL;
568 q->unplug_fn = generic_unplug_device;
569 q->queue_flags = (1 << QUEUE_FLAG_CLUSTER);
570 q->queue_lock = lock;
571
572 blk_queue_segment_boundary(q, 0xffffffff);
573
574 blk_queue_make_request(q, __make_request);
575 blk_queue_max_segment_size(q, MAX_SEGMENT_SIZE);
576
577 blk_queue_max_hw_segments(q, MAX_HW_SEGMENTS);
578 blk_queue_max_phys_segments(q, MAX_PHYS_SEGMENTS);
579
44ec9542
AS
580 q->sg_reserved_size = INT_MAX;
581
abf54393
FT
582 blk_set_cmd_filter_defaults(&q->cmd_filter);
583
1da177e4
LT
584 /*
585 * all done
586 */
587 if (!elevator_init(q, NULL)) {
588 blk_queue_congestion_threshold(q);
589 return q;
590 }
591
8669aafd 592 blk_put_queue(q);
1da177e4
LT
593 return NULL;
594}
1946089a 595EXPORT_SYMBOL(blk_init_queue_node);
1da177e4 596
165125e1 597int blk_get_queue(struct request_queue *q)
1da177e4 598{
fde6ad22 599 if (likely(!test_bit(QUEUE_FLAG_DEAD, &q->queue_flags))) {
483f4afc 600 kobject_get(&q->kobj);
1da177e4
LT
601 return 0;
602 }
603
604 return 1;
605}
1da177e4 606
165125e1 607static inline void blk_free_request(struct request_queue *q, struct request *rq)
1da177e4 608{
4aff5e23 609 if (rq->cmd_flags & REQ_ELVPRIV)
cb98fc8b 610 elv_put_request(q, rq);
1da177e4
LT
611 mempool_free(rq, q->rq.rq_pool);
612}
613
1ea25ecb 614static struct request *
165125e1 615blk_alloc_request(struct request_queue *q, int rw, int priv, gfp_t gfp_mask)
1da177e4
LT
616{
617 struct request *rq = mempool_alloc(q->rq.rq_pool, gfp_mask);
618
619 if (!rq)
620 return NULL;
621
2a4aa30c 622 blk_rq_init(q, rq);
1afb20f3 623
49171e5c 624 rq->cmd_flags = rw | REQ_ALLOCED;
1da177e4 625
cb98fc8b 626 if (priv) {
cb78b285 627 if (unlikely(elv_set_request(q, rq, gfp_mask))) {
cb98fc8b
TH
628 mempool_free(rq, q->rq.rq_pool);
629 return NULL;
630 }
4aff5e23 631 rq->cmd_flags |= REQ_ELVPRIV;
cb98fc8b 632 }
1da177e4 633
cb98fc8b 634 return rq;
1da177e4
LT
635}
636
637/*
638 * ioc_batching returns true if the ioc is a valid batching request and
639 * should be given priority access to a request.
640 */
165125e1 641static inline int ioc_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
642{
643 if (!ioc)
644 return 0;
645
646 /*
647 * Make sure the process is able to allocate at least 1 request
648 * even if the batch times out, otherwise we could theoretically
649 * lose wakeups.
650 */
651 return ioc->nr_batch_requests == q->nr_batching ||
652 (ioc->nr_batch_requests > 0
653 && time_before(jiffies, ioc->last_waited + BLK_BATCH_TIME));
654}
655
656/*
657 * ioc_set_batching sets ioc to be a new "batcher" if it is not one. This
658 * will cause the process to be a "batcher" on all queues in the system. This
659 * is the behaviour we want though - once it gets a wakeup it should be given
660 * a nice run.
661 */
165125e1 662static void ioc_set_batching(struct request_queue *q, struct io_context *ioc)
1da177e4
LT
663{
664 if (!ioc || ioc_batching(q, ioc))
665 return;
666
667 ioc->nr_batch_requests = q->nr_batching;
668 ioc->last_waited = jiffies;
669}
670
165125e1 671static void __freed_request(struct request_queue *q, int rw)
1da177e4
LT
672{
673 struct request_list *rl = &q->rq;
674
675 if (rl->count[rw] < queue_congestion_off_threshold(q))
79e2de4b 676 blk_clear_queue_congested(q, rw);
1da177e4
LT
677
678 if (rl->count[rw] + 1 <= q->nr_requests) {
1da177e4
LT
679 if (waitqueue_active(&rl->wait[rw]))
680 wake_up(&rl->wait[rw]);
681
682 blk_clear_queue_full(q, rw);
683 }
684}
685
686/*
687 * A request has just been released. Account for it, update the full and
688 * congestion status, wake up any waiters. Called under q->queue_lock.
689 */
165125e1 690static void freed_request(struct request_queue *q, int rw, int priv)
1da177e4
LT
691{
692 struct request_list *rl = &q->rq;
693
694 rl->count[rw]--;
cb98fc8b
TH
695 if (priv)
696 rl->elvpriv--;
1da177e4
LT
697
698 __freed_request(q, rw);
699
700 if (unlikely(rl->starved[rw ^ 1]))
701 __freed_request(q, rw ^ 1);
1da177e4
LT
702}
703
704#define blkdev_free_rq(list) list_entry((list)->next, struct request, queuelist)
705/*
d6344532
NP
706 * Get a free request, queue_lock must be held.
707 * Returns NULL on failure, with queue_lock held.
708 * Returns !NULL on success, with queue_lock *not held*.
1da177e4 709 */
165125e1 710static struct request *get_request(struct request_queue *q, int rw_flags,
7749a8d4 711 struct bio *bio, gfp_t gfp_mask)
1da177e4
LT
712{
713 struct request *rq = NULL;
714 struct request_list *rl = &q->rq;
88ee5ef1 715 struct io_context *ioc = NULL;
7749a8d4 716 const int rw = rw_flags & 0x01;
88ee5ef1
JA
717 int may_queue, priv;
718
7749a8d4 719 may_queue = elv_may_queue(q, rw_flags);
88ee5ef1
JA
720 if (may_queue == ELV_MQUEUE_NO)
721 goto rq_starved;
722
723 if (rl->count[rw]+1 >= queue_congestion_on_threshold(q)) {
724 if (rl->count[rw]+1 >= q->nr_requests) {
b5deef90 725 ioc = current_io_context(GFP_ATOMIC, q->node);
88ee5ef1
JA
726 /*
727 * The queue will fill after this allocation, so set
728 * it as full, and mark this process as "batching".
729 * This process will be allowed to complete a batch of
730 * requests, others will be blocked.
731 */
732 if (!blk_queue_full(q, rw)) {
733 ioc_set_batching(q, ioc);
734 blk_set_queue_full(q, rw);
735 } else {
736 if (may_queue != ELV_MQUEUE_MUST
737 && !ioc_batching(q, ioc)) {
738 /*
739 * The queue is full and the allocating
740 * process is not a "batcher", and not
741 * exempted by the IO scheduler
742 */
743 goto out;
744 }
745 }
1da177e4 746 }
79e2de4b 747 blk_set_queue_congested(q, rw);
1da177e4
LT
748 }
749
082cf69e
JA
750 /*
751 * Only allow batching queuers to allocate up to 50% over the defined
752 * limit of requests, otherwise we could have thousands of requests
753 * allocated with any setting of ->nr_requests
754 */
fd782a4a 755 if (rl->count[rw] >= (3 * q->nr_requests / 2))
082cf69e 756 goto out;
fd782a4a 757
1da177e4
LT
758 rl->count[rw]++;
759 rl->starved[rw] = 0;
cb98fc8b 760
64521d1a 761 priv = !test_bit(QUEUE_FLAG_ELVSWITCH, &q->queue_flags);
cb98fc8b
TH
762 if (priv)
763 rl->elvpriv++;
764
1da177e4
LT
765 spin_unlock_irq(q->queue_lock);
766
7749a8d4 767 rq = blk_alloc_request(q, rw_flags, priv, gfp_mask);
88ee5ef1 768 if (unlikely(!rq)) {
1da177e4
LT
769 /*
770 * Allocation failed presumably due to memory. Undo anything
771 * we might have messed up.
772 *
773 * Allocating task should really be put onto the front of the
774 * wait queue, but this is pretty rare.
775 */
776 spin_lock_irq(q->queue_lock);
cb98fc8b 777 freed_request(q, rw, priv);
1da177e4
LT
778
779 /*
780 * in the very unlikely event that allocation failed and no
781 * requests for this direction was pending, mark us starved
782 * so that freeing of a request in the other direction will
783 * notice us. another possible fix would be to split the
784 * rq mempool into READ and WRITE
785 */
786rq_starved:
787 if (unlikely(rl->count[rw] == 0))
788 rl->starved[rw] = 1;
789
1da177e4
LT
790 goto out;
791 }
792
88ee5ef1
JA
793 /*
794 * ioc may be NULL here, and ioc_batching will be false. That's
795 * OK, if the queue is under the request limit then requests need
796 * not count toward the nr_batch_requests limit. There will always
797 * be some limit enforced by BLK_BATCH_TIME.
798 */
1da177e4
LT
799 if (ioc_batching(q, ioc))
800 ioc->nr_batch_requests--;
6728cb0e 801
2056a782 802 blk_add_trace_generic(q, bio, rw, BLK_TA_GETRQ);
1da177e4 803out:
1da177e4
LT
804 return rq;
805}
806
807/*
808 * No available requests for this queue, unplug the device and wait for some
809 * requests to become available.
d6344532
NP
810 *
811 * Called with q->queue_lock held, and returns with it unlocked.
1da177e4 812 */
165125e1 813static struct request *get_request_wait(struct request_queue *q, int rw_flags,
22e2c507 814 struct bio *bio)
1da177e4 815{
7749a8d4 816 const int rw = rw_flags & 0x01;
1da177e4
LT
817 struct request *rq;
818
7749a8d4 819 rq = get_request(q, rw_flags, bio, GFP_NOIO);
450991bc
NP
820 while (!rq) {
821 DEFINE_WAIT(wait);
05caf8db 822 struct io_context *ioc;
1da177e4
LT
823 struct request_list *rl = &q->rq;
824
825 prepare_to_wait_exclusive(&rl->wait[rw], &wait,
826 TASK_UNINTERRUPTIBLE);
827
05caf8db 828 blk_add_trace_generic(q, bio, rw, BLK_TA_SLEEPRQ);
1da177e4 829
05caf8db
ZY
830 __generic_unplug_device(q);
831 spin_unlock_irq(q->queue_lock);
832 io_schedule();
1da177e4 833
05caf8db
ZY
834 /*
835 * After sleeping, we become a "batching" process and
836 * will be able to allocate at least one request, and
837 * up to a big batch of them for a small period time.
838 * See ioc_batching, ioc_set_batching
839 */
840 ioc = current_io_context(GFP_NOIO, q->node);
841 ioc_set_batching(q, ioc);
d6344532 842
05caf8db 843 spin_lock_irq(q->queue_lock);
1da177e4 844 finish_wait(&rl->wait[rw], &wait);
05caf8db
ZY
845
846 rq = get_request(q, rw_flags, bio, GFP_NOIO);
847 };
1da177e4
LT
848
849 return rq;
850}
851
165125e1 852struct request *blk_get_request(struct request_queue *q, int rw, gfp_t gfp_mask)
1da177e4
LT
853{
854 struct request *rq;
855
856 BUG_ON(rw != READ && rw != WRITE);
857
d6344532
NP
858 spin_lock_irq(q->queue_lock);
859 if (gfp_mask & __GFP_WAIT) {
22e2c507 860 rq = get_request_wait(q, rw, NULL);
d6344532 861 } else {
22e2c507 862 rq = get_request(q, rw, NULL, gfp_mask);
d6344532
NP
863 if (!rq)
864 spin_unlock_irq(q->queue_lock);
865 }
866 /* q->queue_lock is unlocked at this point */
1da177e4
LT
867
868 return rq;
869}
1da177e4
LT
870EXPORT_SYMBOL(blk_get_request);
871
dc72ef4a
JA
872/**
873 * blk_start_queueing - initiate dispatch of requests to device
874 * @q: request queue to kick into gear
875 *
876 * This is basically a helper to remove the need to know whether a queue
877 * is plugged or not if someone just wants to initiate dispatch of requests
878 * for this queue.
879 *
880 * The queue lock must be held with interrupts disabled.
881 */
165125e1 882void blk_start_queueing(struct request_queue *q)
dc72ef4a
JA
883{
884 if (!blk_queue_plugged(q))
885 q->request_fn(q);
886 else
887 __generic_unplug_device(q);
888}
889EXPORT_SYMBOL(blk_start_queueing);
890
1da177e4
LT
891/**
892 * blk_requeue_request - put a request back on queue
893 * @q: request queue where request should be inserted
894 * @rq: request to be inserted
895 *
896 * Description:
897 * Drivers often keep queueing requests until the hardware cannot accept
898 * more, when that condition happens we need to put the request back
899 * on the queue. Must be called with queue lock held.
900 */
165125e1 901void blk_requeue_request(struct request_queue *q, struct request *rq)
1da177e4 902{
242f9dcb
JA
903 blk_delete_timer(rq);
904 blk_clear_rq_complete(rq);
2056a782
JA
905 blk_add_trace_rq(q, rq, BLK_TA_REQUEUE);
906
1da177e4
LT
907 if (blk_rq_tagged(rq))
908 blk_queue_end_tag(q, rq);
909
910 elv_requeue_request(q, rq);
911}
1da177e4
LT
912EXPORT_SYMBOL(blk_requeue_request);
913
914/**
710027a4 915 * blk_insert_request - insert a special request into a request queue
1da177e4
LT
916 * @q: request queue where request should be inserted
917 * @rq: request to be inserted
918 * @at_head: insert request at head or tail of queue
919 * @data: private data
1da177e4
LT
920 *
921 * Description:
922 * Many block devices need to execute commands asynchronously, so they don't
923 * block the whole kernel from preemption during request execution. This is
924 * accomplished normally by inserting aritficial requests tagged as
710027a4
RD
925 * REQ_TYPE_SPECIAL in to the corresponding request queue, and letting them
926 * be scheduled for actual execution by the request queue.
1da177e4
LT
927 *
928 * We have the option of inserting the head or the tail of the queue.
929 * Typically we use the tail for new ioctls and so forth. We use the head
930 * of the queue for things like a QUEUE_FULL message from a device, or a
931 * host that is unable to accept a particular command.
932 */
165125e1 933void blk_insert_request(struct request_queue *q, struct request *rq,
867d1191 934 int at_head, void *data)
1da177e4 935{
867d1191 936 int where = at_head ? ELEVATOR_INSERT_FRONT : ELEVATOR_INSERT_BACK;
1da177e4
LT
937 unsigned long flags;
938
939 /*
940 * tell I/O scheduler that this isn't a regular read/write (ie it
941 * must not attempt merges on this) and that it acts as a soft
942 * barrier
943 */
4aff5e23
JA
944 rq->cmd_type = REQ_TYPE_SPECIAL;
945 rq->cmd_flags |= REQ_SOFTBARRIER;
1da177e4
LT
946
947 rq->special = data;
948
949 spin_lock_irqsave(q->queue_lock, flags);
950
951 /*
952 * If command is tagged, release the tag
953 */
867d1191
TH
954 if (blk_rq_tagged(rq))
955 blk_queue_end_tag(q, rq);
1da177e4 956
b238b3d4 957 drive_stat_acct(rq, 1);
867d1191 958 __elv_add_request(q, rq, where, 0);
dc72ef4a 959 blk_start_queueing(q);
1da177e4
LT
960 spin_unlock_irqrestore(q->queue_lock, flags);
961}
1da177e4
LT
962EXPORT_SYMBOL(blk_insert_request);
963
1da177e4
LT
964/*
965 * add-request adds a request to the linked list.
966 * queue lock is held and interrupts disabled, as we muck with the
967 * request queue list.
968 */
6728cb0e 969static inline void add_request(struct request_queue *q, struct request *req)
1da177e4 970{
b238b3d4 971 drive_stat_acct(req, 1);
1da177e4 972
1da177e4
LT
973 /*
974 * elevator indicated where it wants this request to be
975 * inserted at elevator_merge time
976 */
977 __elv_add_request(q, req, ELEVATOR_INSERT_SORT, 0);
978}
6728cb0e 979
074a7aca
TH
980static void part_round_stats_single(int cpu, struct hd_struct *part,
981 unsigned long now)
982{
983 if (now == part->stamp)
984 return;
985
986 if (part->in_flight) {
987 __part_stat_add(cpu, part, time_in_queue,
988 part->in_flight * (now - part->stamp));
989 __part_stat_add(cpu, part, io_ticks, (now - part->stamp));
990 }
991 part->stamp = now;
992}
993
994/**
995 * part_round_stats() - Round off the performance stats on a struct
1da177e4
LT
996 * disk_stats.
997 *
998 * The average IO queue length and utilisation statistics are maintained
999 * by observing the current state of the queue length and the amount of
1000 * time it has been in this state for.
1001 *
1002 * Normally, that accounting is done on IO completion, but that can result
1003 * in more than a second's worth of IO being accounted for within any one
1004 * second, leading to >100% utilisation. To deal with that, we call this
1005 * function to do a round-off before returning the results when reading
1006 * /proc/diskstats. This accounts immediately for all queue usage up to
1007 * the current jiffies and restarts the counters again.
1008 */
c9959059 1009void part_round_stats(int cpu, struct hd_struct *part)
6f2576af
JM
1010{
1011 unsigned long now = jiffies;
1012
074a7aca
TH
1013 if (part->partno)
1014 part_round_stats_single(cpu, &part_to_disk(part)->part0, now);
1015 part_round_stats_single(cpu, part, now);
6f2576af 1016}
074a7aca 1017EXPORT_SYMBOL_GPL(part_round_stats);
6f2576af 1018
1da177e4
LT
1019/*
1020 * queue lock must be held
1021 */
165125e1 1022void __blk_put_request(struct request_queue *q, struct request *req)
1da177e4 1023{
1da177e4
LT
1024 if (unlikely(!q))
1025 return;
1026 if (unlikely(--req->ref_count))
1027 return;
1028
8922e16c
TH
1029 elv_completed_request(q, req);
1030
1da177e4
LT
1031 /*
1032 * Request may not have originated from ll_rw_blk. if not,
1033 * it didn't come out of our reserved rq pools
1034 */
49171e5c 1035 if (req->cmd_flags & REQ_ALLOCED) {
1da177e4 1036 int rw = rq_data_dir(req);
4aff5e23 1037 int priv = req->cmd_flags & REQ_ELVPRIV;
1da177e4 1038
1da177e4 1039 BUG_ON(!list_empty(&req->queuelist));
9817064b 1040 BUG_ON(!hlist_unhashed(&req->hash));
1da177e4
LT
1041
1042 blk_free_request(q, req);
cb98fc8b 1043 freed_request(q, rw, priv);
1da177e4
LT
1044 }
1045}
6e39b69e
MC
1046EXPORT_SYMBOL_GPL(__blk_put_request);
1047
1da177e4
LT
1048void blk_put_request(struct request *req)
1049{
8922e16c 1050 unsigned long flags;
165125e1 1051 struct request_queue *q = req->q;
8922e16c 1052
52a93ba8
FT
1053 spin_lock_irqsave(q->queue_lock, flags);
1054 __blk_put_request(q, req);
1055 spin_unlock_irqrestore(q->queue_lock, flags);
1da177e4 1056}
1da177e4
LT
1057EXPORT_SYMBOL(blk_put_request);
1058
86db1e29 1059void init_request_from_bio(struct request *req, struct bio *bio)
52d9e675 1060{
c7c22e4d 1061 req->cpu = bio->bi_comp_cpu;
4aff5e23 1062 req->cmd_type = REQ_TYPE_FS;
52d9e675
TH
1063
1064 /*
1065 * inherit FAILFAST from bio (for read-ahead, and explicit FAILFAST)
1066 */
1067 if (bio_rw_ahead(bio) || bio_failfast(bio))
4aff5e23 1068 req->cmd_flags |= REQ_FAILFAST;
52d9e675
TH
1069
1070 /*
1071 * REQ_BARRIER implies no merging, but lets make it explicit
1072 */
fb2dce86 1073 if (unlikely(bio_discard(bio))) {
e17fc0a1
DW
1074 req->cmd_flags |= REQ_DISCARD;
1075 if (bio_barrier(bio))
1076 req->cmd_flags |= REQ_SOFTBARRIER;
fb2dce86 1077 req->q->prepare_discard_fn(req->q, req);
e17fc0a1
DW
1078 } else if (unlikely(bio_barrier(bio)))
1079 req->cmd_flags |= (REQ_HARDBARRIER | REQ_NOMERGE);
52d9e675 1080
b31dc66a 1081 if (bio_sync(bio))
4aff5e23 1082 req->cmd_flags |= REQ_RW_SYNC;
5404bc7a
JA
1083 if (bio_rw_meta(bio))
1084 req->cmd_flags |= REQ_RW_META;
b31dc66a 1085
52d9e675
TH
1086 req->errors = 0;
1087 req->hard_sector = req->sector = bio->bi_sector;
52d9e675 1088 req->ioprio = bio_prio(bio);
52d9e675 1089 req->start_time = jiffies;
bc1c56fd 1090 blk_rq_bio_prep(req->q, req, bio);
52d9e675
TH
1091}
1092
165125e1 1093static int __make_request(struct request_queue *q, struct bio *bio)
1da177e4 1094{
450991bc 1095 struct request *req;
fb2dce86 1096 int el_ret, nr_sectors, barrier, discard, err;
51da90fc
JA
1097 const unsigned short prio = bio_prio(bio);
1098 const int sync = bio_sync(bio);
7749a8d4 1099 int rw_flags;
1da177e4 1100
1da177e4 1101 nr_sectors = bio_sectors(bio);
1da177e4
LT
1102
1103 /*
1104 * low level driver can indicate that it wants pages above a
1105 * certain limit bounced to low memory (ie for highmem, or even
1106 * ISA dma in theory)
1107 */
1108 blk_queue_bounce(q, &bio);
1109
1da177e4 1110 barrier = bio_barrier(bio);
e17fc0a1
DW
1111 if (unlikely(barrier) && bio_has_data(bio) &&
1112 (q->next_ordered == QUEUE_ORDERED_NONE)) {
1da177e4
LT
1113 err = -EOPNOTSUPP;
1114 goto end_io;
1115 }
1116
fb2dce86
DW
1117 discard = bio_discard(bio);
1118 if (unlikely(discard) && !q->prepare_discard_fn) {
1119 err = -EOPNOTSUPP;
1120 goto end_io;
1121 }
1122
1da177e4
LT
1123 spin_lock_irq(q->queue_lock);
1124
450991bc 1125 if (unlikely(barrier) || elv_queue_empty(q))
1da177e4
LT
1126 goto get_rq;
1127
1128 el_ret = elv_merge(q, &req, bio);
1129 switch (el_ret) {
6728cb0e
JA
1130 case ELEVATOR_BACK_MERGE:
1131 BUG_ON(!rq_mergeable(req));
1da177e4 1132
6728cb0e
JA
1133 if (!ll_back_merge_fn(q, req, bio))
1134 break;
1da177e4 1135
6728cb0e 1136 blk_add_trace_bio(q, bio, BLK_TA_BACKMERGE);
2056a782 1137
6728cb0e
JA
1138 req->biotail->bi_next = bio;
1139 req->biotail = bio;
1140 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1141 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1142 if (!blk_rq_cpu_valid(req))
1143 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1144 drive_stat_acct(req, 0);
1145 if (!attempt_back_merge(q, req))
1146 elv_merged_request(q, req, el_ret);
1147 goto out;
1da177e4 1148
6728cb0e
JA
1149 case ELEVATOR_FRONT_MERGE:
1150 BUG_ON(!rq_mergeable(req));
1da177e4 1151
6728cb0e
JA
1152 if (!ll_front_merge_fn(q, req, bio))
1153 break;
1da177e4 1154
6728cb0e 1155 blk_add_trace_bio(q, bio, BLK_TA_FRONTMERGE);
2056a782 1156
6728cb0e
JA
1157 bio->bi_next = req->bio;
1158 req->bio = bio;
1da177e4 1159
6728cb0e
JA
1160 /*
1161 * may not be valid. if the low level driver said
1162 * it didn't need a bounce buffer then it better
1163 * not touch req->buffer either...
1164 */
1165 req->buffer = bio_data(bio);
1166 req->current_nr_sectors = bio_cur_sectors(bio);
1167 req->hard_cur_sectors = req->current_nr_sectors;
1168 req->sector = req->hard_sector = bio->bi_sector;
1169 req->nr_sectors = req->hard_nr_sectors += nr_sectors;
1170 req->ioprio = ioprio_best(req->ioprio, prio);
ab780f1e
JA
1171 if (!blk_rq_cpu_valid(req))
1172 req->cpu = bio->bi_comp_cpu;
6728cb0e
JA
1173 drive_stat_acct(req, 0);
1174 if (!attempt_front_merge(q, req))
1175 elv_merged_request(q, req, el_ret);
1176 goto out;
1177
1178 /* ELV_NO_MERGE: elevator says don't/can't merge. */
1179 default:
1180 ;
1da177e4
LT
1181 }
1182
450991bc 1183get_rq:
7749a8d4
JA
1184 /*
1185 * This sync check and mask will be re-done in init_request_from_bio(),
1186 * but we need to set it earlier to expose the sync flag to the
1187 * rq allocator and io schedulers.
1188 */
1189 rw_flags = bio_data_dir(bio);
1190 if (sync)
1191 rw_flags |= REQ_RW_SYNC;
1192
1da177e4 1193 /*
450991bc 1194 * Grab a free request. This is might sleep but can not fail.
d6344532 1195 * Returns with the queue unlocked.
450991bc 1196 */
7749a8d4 1197 req = get_request_wait(q, rw_flags, bio);
d6344532 1198
450991bc
NP
1199 /*
1200 * After dropping the lock and possibly sleeping here, our request
1201 * may now be mergeable after it had proven unmergeable (above).
1202 * We don't worry about that case for efficiency. It won't happen
1203 * often, and the elevators are able to handle it.
1da177e4 1204 */
52d9e675 1205 init_request_from_bio(req, bio);
1da177e4 1206
450991bc 1207 spin_lock_irq(q->queue_lock);
c7c22e4d
JA
1208 if (test_bit(QUEUE_FLAG_SAME_COMP, &q->queue_flags) ||
1209 bio_flagged(bio, BIO_CPU_AFFINE))
1210 req->cpu = blk_cpu_to_group(smp_processor_id());
450991bc
NP
1211 if (elv_queue_empty(q))
1212 blk_plug_device(q);
1da177e4
LT
1213 add_request(q, req);
1214out:
4a534f93 1215 if (sync)
1da177e4 1216 __generic_unplug_device(q);
1da177e4
LT
1217 spin_unlock_irq(q->queue_lock);
1218 return 0;
1219
1220end_io:
6712ecf8 1221 bio_endio(bio, err);
1da177e4
LT
1222 return 0;
1223}
1224
1225/*
1226 * If bio->bi_dev is a partition, remap the location
1227 */
1228static inline void blk_partition_remap(struct bio *bio)
1229{
1230 struct block_device *bdev = bio->bi_bdev;
1231
bf2de6f5 1232 if (bio_sectors(bio) && bdev != bdev->bd_contains) {
1da177e4
LT
1233 struct hd_struct *p = bdev->bd_part;
1234
1da177e4
LT
1235 bio->bi_sector += p->start_sect;
1236 bio->bi_bdev = bdev->bd_contains;
c7149d6b
AB
1237
1238 blk_add_trace_remap(bdev_get_queue(bio->bi_bdev), bio,
1239 bdev->bd_dev, bio->bi_sector,
1240 bio->bi_sector - p->start_sect);
1da177e4
LT
1241 }
1242}
1243
1da177e4
LT
1244static void handle_bad_sector(struct bio *bio)
1245{
1246 char b[BDEVNAME_SIZE];
1247
1248 printk(KERN_INFO "attempt to access beyond end of device\n");
1249 printk(KERN_INFO "%s: rw=%ld, want=%Lu, limit=%Lu\n",
1250 bdevname(bio->bi_bdev, b),
1251 bio->bi_rw,
1252 (unsigned long long)bio->bi_sector + bio_sectors(bio),
1253 (long long)(bio->bi_bdev->bd_inode->i_size >> 9));
1254
1255 set_bit(BIO_EOF, &bio->bi_flags);
1256}
1257
c17bb495
AM
1258#ifdef CONFIG_FAIL_MAKE_REQUEST
1259
1260static DECLARE_FAULT_ATTR(fail_make_request);
1261
1262static int __init setup_fail_make_request(char *str)
1263{
1264 return setup_fault_attr(&fail_make_request, str);
1265}
1266__setup("fail_make_request=", setup_fail_make_request);
1267
1268static int should_fail_request(struct bio *bio)
1269{
eddb2e26
TH
1270 struct hd_struct *part = bio->bi_bdev->bd_part;
1271
1272 if (part_to_disk(part)->part0.make_it_fail || part->make_it_fail)
c17bb495
AM
1273 return should_fail(&fail_make_request, bio->bi_size);
1274
1275 return 0;
1276}
1277
1278static int __init fail_make_request_debugfs(void)
1279{
1280 return init_fault_attr_dentries(&fail_make_request,
1281 "fail_make_request");
1282}
1283
1284late_initcall(fail_make_request_debugfs);
1285
1286#else /* CONFIG_FAIL_MAKE_REQUEST */
1287
1288static inline int should_fail_request(struct bio *bio)
1289{
1290 return 0;
1291}
1292
1293#endif /* CONFIG_FAIL_MAKE_REQUEST */
1294
c07e2b41
JA
1295/*
1296 * Check whether this bio extends beyond the end of the device.
1297 */
1298static inline int bio_check_eod(struct bio *bio, unsigned int nr_sectors)
1299{
1300 sector_t maxsector;
1301
1302 if (!nr_sectors)
1303 return 0;
1304
1305 /* Test device or partition size, when known. */
1306 maxsector = bio->bi_bdev->bd_inode->i_size >> 9;
1307 if (maxsector) {
1308 sector_t sector = bio->bi_sector;
1309
1310 if (maxsector < nr_sectors || maxsector - nr_sectors < sector) {
1311 /*
1312 * This may well happen - the kernel calls bread()
1313 * without checking the size of the device, e.g., when
1314 * mounting a device.
1315 */
1316 handle_bad_sector(bio);
1317 return 1;
1318 }
1319 }
1320
1321 return 0;
1322}
1323
1da177e4 1324/**
710027a4 1325 * generic_make_request - hand a buffer to its device driver for I/O
1da177e4
LT
1326 * @bio: The bio describing the location in memory and on the device.
1327 *
1328 * generic_make_request() is used to make I/O requests of block
1329 * devices. It is passed a &struct bio, which describes the I/O that needs
1330 * to be done.
1331 *
1332 * generic_make_request() does not return any status. The
1333 * success/failure status of the request, along with notification of
1334 * completion, is delivered asynchronously through the bio->bi_end_io
1335 * function described (one day) else where.
1336 *
1337 * The caller of generic_make_request must make sure that bi_io_vec
1338 * are set to describe the memory buffer, and that bi_dev and bi_sector are
1339 * set to describe the device address, and the
1340 * bi_end_io and optionally bi_private are set to describe how
1341 * completion notification should be signaled.
1342 *
1343 * generic_make_request and the drivers it calls may use bi_next if this
1344 * bio happens to be merged with someone else, and may change bi_dev and
1345 * bi_sector for remaps as it sees fit. So the values of these fields
1346 * should NOT be depended on after the call to generic_make_request.
1347 */
d89d8796 1348static inline void __generic_make_request(struct bio *bio)
1da177e4 1349{
165125e1 1350 struct request_queue *q;
5ddfe969 1351 sector_t old_sector;
1da177e4 1352 int ret, nr_sectors = bio_sectors(bio);
2056a782 1353 dev_t old_dev;
51fd77bd 1354 int err = -EIO;
1da177e4
LT
1355
1356 might_sleep();
1da177e4 1357
c07e2b41
JA
1358 if (bio_check_eod(bio, nr_sectors))
1359 goto end_io;
1da177e4
LT
1360
1361 /*
1362 * Resolve the mapping until finished. (drivers are
1363 * still free to implement/resolve their own stacking
1364 * by explicitly returning 0)
1365 *
1366 * NOTE: we don't repeat the blk_size check for each new device.
1367 * Stacking drivers are expected to know what they are doing.
1368 */
5ddfe969 1369 old_sector = -1;
2056a782 1370 old_dev = 0;
1da177e4
LT
1371 do {
1372 char b[BDEVNAME_SIZE];
1373
1374 q = bdev_get_queue(bio->bi_bdev);
1375 if (!q) {
1376 printk(KERN_ERR
1377 "generic_make_request: Trying to access "
1378 "nonexistent block-device %s (%Lu)\n",
1379 bdevname(bio->bi_bdev, b),
1380 (long long) bio->bi_sector);
1381end_io:
51fd77bd 1382 bio_endio(bio, err);
1da177e4
LT
1383 break;
1384 }
1385
4fa253f3 1386 if (unlikely(nr_sectors > q->max_hw_sectors)) {
6728cb0e 1387 printk(KERN_ERR "bio too big device %s (%u > %u)\n",
1da177e4
LT
1388 bdevname(bio->bi_bdev, b),
1389 bio_sectors(bio),
1390 q->max_hw_sectors);
1391 goto end_io;
1392 }
1393
fde6ad22 1394 if (unlikely(test_bit(QUEUE_FLAG_DEAD, &q->queue_flags)))
1da177e4
LT
1395 goto end_io;
1396
c17bb495
AM
1397 if (should_fail_request(bio))
1398 goto end_io;
1399
1da177e4
LT
1400 /*
1401 * If this device has partitions, remap block n
1402 * of partition p to block n+start(p) of the disk.
1403 */
1404 blk_partition_remap(bio);
1405
7ba1ba12
MP
1406 if (bio_integrity_enabled(bio) && bio_integrity_prep(bio))
1407 goto end_io;
1408
5ddfe969 1409 if (old_sector != -1)
4fa253f3 1410 blk_add_trace_remap(q, bio, old_dev, bio->bi_sector,
5ddfe969 1411 old_sector);
2056a782
JA
1412
1413 blk_add_trace_bio(q, bio, BLK_TA_QUEUE);
1414
5ddfe969 1415 old_sector = bio->bi_sector;
2056a782
JA
1416 old_dev = bio->bi_bdev->bd_dev;
1417
c07e2b41
JA
1418 if (bio_check_eod(bio, nr_sectors))
1419 goto end_io;
fb2dce86
DW
1420 if ((bio_empty_barrier(bio) && !q->prepare_flush_fn) ||
1421 (bio_discard(bio) && !q->prepare_discard_fn)) {
51fd77bd
JA
1422 err = -EOPNOTSUPP;
1423 goto end_io;
1424 }
5ddfe969 1425
1da177e4
LT
1426 ret = q->make_request_fn(q, bio);
1427 } while (ret);
1428}
1429
d89d8796
NB
1430/*
1431 * We only want one ->make_request_fn to be active at a time,
1432 * else stack usage with stacked devices could be a problem.
1433 * So use current->bio_{list,tail} to keep a list of requests
1434 * submited by a make_request_fn function.
1435 * current->bio_tail is also used as a flag to say if
1436 * generic_make_request is currently active in this task or not.
1437 * If it is NULL, then no make_request is active. If it is non-NULL,
1438 * then a make_request is active, and new requests should be added
1439 * at the tail
1440 */
1441void generic_make_request(struct bio *bio)
1442{
1443 if (current->bio_tail) {
1444 /* make_request is active */
1445 *(current->bio_tail) = bio;
1446 bio->bi_next = NULL;
1447 current->bio_tail = &bio->bi_next;
1448 return;
1449 }
1450 /* following loop may be a bit non-obvious, and so deserves some
1451 * explanation.
1452 * Before entering the loop, bio->bi_next is NULL (as all callers
1453 * ensure that) so we have a list with a single bio.
1454 * We pretend that we have just taken it off a longer list, so
1455 * we assign bio_list to the next (which is NULL) and bio_tail
1456 * to &bio_list, thus initialising the bio_list of new bios to be
1457 * added. __generic_make_request may indeed add some more bios
1458 * through a recursive call to generic_make_request. If it
1459 * did, we find a non-NULL value in bio_list and re-enter the loop
1460 * from the top. In this case we really did just take the bio
1461 * of the top of the list (no pretending) and so fixup bio_list and
1462 * bio_tail or bi_next, and call into __generic_make_request again.
1463 *
1464 * The loop was structured like this to make only one call to
1465 * __generic_make_request (which is important as it is large and
1466 * inlined) and to keep the structure simple.
1467 */
1468 BUG_ON(bio->bi_next);
1469 do {
1470 current->bio_list = bio->bi_next;
1471 if (bio->bi_next == NULL)
1472 current->bio_tail = &current->bio_list;
1473 else
1474 bio->bi_next = NULL;
1475 __generic_make_request(bio);
1476 bio = current->bio_list;
1477 } while (bio);
1478 current->bio_tail = NULL; /* deactivate */
1479}
1da177e4
LT
1480EXPORT_SYMBOL(generic_make_request);
1481
1482/**
710027a4 1483 * submit_bio - submit a bio to the block device layer for I/O
1da177e4
LT
1484 * @rw: whether to %READ or %WRITE, or maybe to %READA (read ahead)
1485 * @bio: The &struct bio which describes the I/O
1486 *
1487 * submit_bio() is very similar in purpose to generic_make_request(), and
1488 * uses that function to do most of the work. Both are fairly rough
710027a4 1489 * interfaces; @bio must be presetup and ready for I/O.
1da177e4
LT
1490 *
1491 */
1492void submit_bio(int rw, struct bio *bio)
1493{
1494 int count = bio_sectors(bio);
1495
22e2c507 1496 bio->bi_rw |= rw;
1da177e4 1497
bf2de6f5
JA
1498 /*
1499 * If it's a regular read/write or a barrier with data attached,
1500 * go through the normal accounting stuff before submission.
1501 */
a9c701e5 1502 if (bio_has_data(bio)) {
bf2de6f5
JA
1503 if (rw & WRITE) {
1504 count_vm_events(PGPGOUT, count);
1505 } else {
1506 task_io_account_read(bio->bi_size);
1507 count_vm_events(PGPGIN, count);
1508 }
1509
1510 if (unlikely(block_dump)) {
1511 char b[BDEVNAME_SIZE];
1512 printk(KERN_DEBUG "%s(%d): %s block %Lu on %s\n",
ba25f9dc 1513 current->comm, task_pid_nr(current),
bf2de6f5
JA
1514 (rw & WRITE) ? "WRITE" : "READ",
1515 (unsigned long long)bio->bi_sector,
6728cb0e 1516 bdevname(bio->bi_bdev, b));
bf2de6f5 1517 }
1da177e4
LT
1518 }
1519
1520 generic_make_request(bio);
1521}
1da177e4
LT
1522EXPORT_SYMBOL(submit_bio);
1523
3bcddeac
KU
1524/**
1525 * __end_that_request_first - end I/O on a request
1526 * @req: the request being processed
710027a4 1527 * @error: %0 for success, < %0 for error
3bcddeac
KU
1528 * @nr_bytes: number of bytes to complete
1529 *
1530 * Description:
1531 * Ends I/O on a number of bytes attached to @req, and sets it up
1532 * for the next range of segments (if any) in the cluster.
1533 *
1534 * Return:
710027a4
RD
1535 * %0 - we are done with this request, call end_that_request_last()
1536 * %1 - still buffers pending for this request
3bcddeac 1537 **/
5450d3e1 1538static int __end_that_request_first(struct request *req, int error,
1da177e4
LT
1539 int nr_bytes)
1540{
5450d3e1 1541 int total_bytes, bio_nbytes, next_idx = 0;
1da177e4
LT
1542 struct bio *bio;
1543
2056a782
JA
1544 blk_add_trace_rq(req->q, req, BLK_TA_COMPLETE);
1545
1da177e4 1546 /*
710027a4 1547 * for a REQ_TYPE_BLOCK_PC request, we want to carry any eventual
1da177e4
LT
1548 * sense key with us all the way through
1549 */
1550 if (!blk_pc_request(req))
1551 req->errors = 0;
1552
6728cb0e
JA
1553 if (error && (blk_fs_request(req) && !(req->cmd_flags & REQ_QUIET))) {
1554 printk(KERN_ERR "end_request: I/O error, dev %s, sector %llu\n",
1da177e4
LT
1555 req->rq_disk ? req->rq_disk->disk_name : "?",
1556 (unsigned long long)req->sector);
1557 }
1558
d72d904a 1559 if (blk_fs_request(req) && req->rq_disk) {
a362357b 1560 const int rw = rq_data_dir(req);
e71bf0d0 1561 struct hd_struct *part;
c9959059 1562 int cpu;
a362357b 1563
074a7aca 1564 cpu = part_stat_lock();
e71bf0d0 1565 part = disk_map_sector_rcu(req->rq_disk, req->sector);
074a7aca
TH
1566 part_stat_add(cpu, part, sectors[rw], nr_bytes >> 9);
1567 part_stat_unlock();
d72d904a
JA
1568 }
1569
1da177e4
LT
1570 total_bytes = bio_nbytes = 0;
1571 while ((bio = req->bio) != NULL) {
1572 int nbytes;
1573
bf2de6f5
JA
1574 /*
1575 * For an empty barrier request, the low level driver must
1576 * store a potential error location in ->sector. We pass
1577 * that back up in ->bi_sector.
1578 */
1579 if (blk_empty_barrier(req))
1580 bio->bi_sector = req->sector;
1581
1da177e4
LT
1582 if (nr_bytes >= bio->bi_size) {
1583 req->bio = bio->bi_next;
1584 nbytes = bio->bi_size;
5bb23a68 1585 req_bio_endio(req, bio, nbytes, error);
1da177e4
LT
1586 next_idx = 0;
1587 bio_nbytes = 0;
1588 } else {
1589 int idx = bio->bi_idx + next_idx;
1590
1591 if (unlikely(bio->bi_idx >= bio->bi_vcnt)) {
1592 blk_dump_rq_flags(req, "__end_that");
6728cb0e 1593 printk(KERN_ERR "%s: bio idx %d >= vcnt %d\n",
24c03d47 1594 __func__, bio->bi_idx, bio->bi_vcnt);
1da177e4
LT
1595 break;
1596 }
1597
1598 nbytes = bio_iovec_idx(bio, idx)->bv_len;
1599 BIO_BUG_ON(nbytes > bio->bi_size);
1600
1601 /*
1602 * not a complete bvec done
1603 */
1604 if (unlikely(nbytes > nr_bytes)) {
1605 bio_nbytes += nr_bytes;
1606 total_bytes += nr_bytes;
1607 break;
1608 }
1609
1610 /*
1611 * advance to the next vector
1612 */
1613 next_idx++;
1614 bio_nbytes += nbytes;
1615 }
1616
1617 total_bytes += nbytes;
1618 nr_bytes -= nbytes;
1619
6728cb0e
JA
1620 bio = req->bio;
1621 if (bio) {
1da177e4
LT
1622 /*
1623 * end more in this run, or just return 'not-done'
1624 */
1625 if (unlikely(nr_bytes <= 0))
1626 break;
1627 }
1628 }
1629
1630 /*
1631 * completely done
1632 */
1633 if (!req->bio)
1634 return 0;
1635
1636 /*
1637 * if the request wasn't completed, update state
1638 */
1639 if (bio_nbytes) {
5bb23a68 1640 req_bio_endio(req, bio, bio_nbytes, error);
1da177e4
LT
1641 bio->bi_idx += next_idx;
1642 bio_iovec(bio)->bv_offset += nr_bytes;
1643 bio_iovec(bio)->bv_len -= nr_bytes;
1644 }
1645
1646 blk_recalc_rq_sectors(req, total_bytes >> 9);
1647 blk_recalc_rq_segments(req);
1648 return 1;
1649}
1650
1da177e4
LT
1651/*
1652 * queue lock must be held
1653 */
5450d3e1 1654static void end_that_request_last(struct request *req, int error)
1da177e4
LT
1655{
1656 struct gendisk *disk = req->rq_disk;
8ffdc655 1657
242f9dcb
JA
1658 blk_delete_timer(req);
1659
b8286239
KU
1660 if (blk_rq_tagged(req))
1661 blk_queue_end_tag(req->q, req);
1662
1663 if (blk_queued_rq(req))
1664 blkdev_dequeue_request(req);
1da177e4
LT
1665
1666 if (unlikely(laptop_mode) && blk_fs_request(req))
1667 laptop_io_completion();
1668
fd0ff8aa
JA
1669 /*
1670 * Account IO completion. bar_rq isn't accounted as a normal
1671 * IO on queueing nor completion. Accounting the containing
1672 * request is enough.
1673 */
1674 if (disk && blk_fs_request(req) && req != &req->q->bar_rq) {
1da177e4 1675 unsigned long duration = jiffies - req->start_time;
a362357b 1676 const int rw = rq_data_dir(req);
e71bf0d0 1677 struct hd_struct *part;
c9959059 1678 int cpu;
e71bf0d0 1679
074a7aca 1680 cpu = part_stat_lock();
e71bf0d0 1681 part = disk_map_sector_rcu(disk, req->sector);
a362357b 1682
074a7aca
TH
1683 part_stat_inc(cpu, part, ios[rw]);
1684 part_stat_add(cpu, part, ticks[rw], duration);
1685 part_round_stats(cpu, part);
1686 part_dec_in_flight(part);
e71bf0d0 1687
074a7aca 1688 part_stat_unlock();
1da177e4 1689 }
b8286239 1690
1da177e4 1691 if (req->end_io)
8ffdc655 1692 req->end_io(req, error);
b8286239
KU
1693 else {
1694 if (blk_bidi_rq(req))
1695 __blk_put_request(req->next_rq->q, req->next_rq);
1696
1da177e4 1697 __blk_put_request(req->q, req);
b8286239 1698 }
1da177e4
LT
1699}
1700
a0cd1285 1701static inline void __end_request(struct request *rq, int uptodate,
9e6e39f2 1702 unsigned int nr_bytes)
1da177e4 1703{
9e6e39f2
KU
1704 int error = 0;
1705
1706 if (uptodate <= 0)
1707 error = uptodate ? uptodate : -EIO;
1708
1709 __blk_end_request(rq, error, nr_bytes);
1da177e4
LT
1710}
1711
3b11313a
KU
1712/**
1713 * blk_rq_bytes - Returns bytes left to complete in the entire request
5d87a052 1714 * @rq: the request being processed
3b11313a
KU
1715 **/
1716unsigned int blk_rq_bytes(struct request *rq)
a0cd1285
JA
1717{
1718 if (blk_fs_request(rq))
1719 return rq->hard_nr_sectors << 9;
1720
1721 return rq->data_len;
1722}
3b11313a
KU
1723EXPORT_SYMBOL_GPL(blk_rq_bytes);
1724
1725/**
1726 * blk_rq_cur_bytes - Returns bytes left to complete in the current segment
5d87a052 1727 * @rq: the request being processed
3b11313a
KU
1728 **/
1729unsigned int blk_rq_cur_bytes(struct request *rq)
1730{
1731 if (blk_fs_request(rq))
1732 return rq->current_nr_sectors << 9;
1733
1734 if (rq->bio)
1735 return rq->bio->bi_size;
1736
1737 return rq->data_len;
1738}
1739EXPORT_SYMBOL_GPL(blk_rq_cur_bytes);
a0cd1285
JA
1740
1741/**
1742 * end_queued_request - end all I/O on a queued request
1743 * @rq: the request being processed
710027a4 1744 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1745 *
1746 * Description:
1747 * Ends all I/O on a request, and removes it from the block layer queues.
710027a4 1748 * Not suitable for normal I/O completion, unless the driver still has
a0cd1285
JA
1749 * the request attached to the block layer.
1750 *
1751 **/
1752void end_queued_request(struct request *rq, int uptodate)
1753{
9e6e39f2 1754 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1755}
1756EXPORT_SYMBOL(end_queued_request);
1757
1758/**
1759 * end_dequeued_request - end all I/O on a dequeued request
1760 * @rq: the request being processed
710027a4 1761 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1762 *
1763 * Description:
1764 * Ends all I/O on a request. The request must already have been
1765 * dequeued using blkdev_dequeue_request(), as is normally the case
1766 * for most drivers.
1767 *
1768 **/
1769void end_dequeued_request(struct request *rq, int uptodate)
1770{
9e6e39f2 1771 __end_request(rq, uptodate, blk_rq_bytes(rq));
a0cd1285
JA
1772}
1773EXPORT_SYMBOL(end_dequeued_request);
1774
1775
1776/**
1777 * end_request - end I/O on the current segment of the request
8f731f7d 1778 * @req: the request being processed
710027a4 1779 * @uptodate: error value or %0/%1 uptodate flag
a0cd1285
JA
1780 *
1781 * Description:
1782 * Ends I/O on the current segment of a request. If that is the only
1783 * remaining segment, the request is also completed and freed.
1784 *
710027a4
RD
1785 * This is a remnant of how older block drivers handled I/O completions.
1786 * Modern drivers typically end I/O on the full request in one go, unless
a0cd1285
JA
1787 * they have a residual value to account for. For that case this function
1788 * isn't really useful, unless the residual just happens to be the
1789 * full current segment. In other words, don't use this function in new
839e96af
JA
1790 * code. Use blk_end_request() or __blk_end_request() to end partial parts
1791 * of a request, or end_dequeued_request() and end_queued_request() to
1792 * completely end IO on a dequeued/queued request.
a0cd1285
JA
1793 *
1794 **/
1795void end_request(struct request *req, int uptodate)
1796{
9e6e39f2 1797 __end_request(req, uptodate, req->hard_cur_sectors << 9);
a0cd1285 1798}
1da177e4
LT
1799EXPORT_SYMBOL(end_request);
1800
336cdb40 1801/**
e19a3ab0
KU
1802 * blk_end_io - Generic end_io function to complete a request.
1803 * @rq: the request being processed
710027a4 1804 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1805 * @nr_bytes: number of bytes to complete @rq
1806 * @bidi_bytes: number of bytes to complete @rq->next_rq
e19a3ab0
KU
1807 * @drv_callback: function called between completion of bios in the request
1808 * and completion of the request.
710027a4 1809 * If the callback returns non %0, this helper returns without
e19a3ab0 1810 * completion of the request.
336cdb40
KU
1811 *
1812 * Description:
e3a04fe3 1813 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
336cdb40
KU
1814 * If @rq has leftover, sets it up for the next range of segments.
1815 *
1816 * Return:
710027a4
RD
1817 * %0 - we are done with this request
1818 * %1 - this request is not freed yet, it still has pending buffers.
336cdb40 1819 **/
22b13210
JA
1820static int blk_end_io(struct request *rq, int error, unsigned int nr_bytes,
1821 unsigned int bidi_bytes,
1822 int (drv_callback)(struct request *))
336cdb40
KU
1823{
1824 struct request_queue *q = rq->q;
1825 unsigned long flags = 0UL;
336cdb40 1826
60540161 1827 if (rq->bio) {
5450d3e1 1828 if (__end_that_request_first(rq, error, nr_bytes))
336cdb40 1829 return 1;
e3a04fe3
KU
1830
1831 /* Bidi request must be completed as a whole */
1832 if (blk_bidi_rq(rq) &&
5450d3e1 1833 __end_that_request_first(rq->next_rq, error, bidi_bytes))
e3a04fe3 1834 return 1;
336cdb40
KU
1835 }
1836
e19a3ab0
KU
1837 /* Special feature for tricky drivers */
1838 if (drv_callback && drv_callback(rq))
1839 return 1;
1840
336cdb40
KU
1841 add_disk_randomness(rq->rq_disk);
1842
1843 spin_lock_irqsave(q->queue_lock, flags);
b8286239 1844 end_that_request_last(rq, error);
336cdb40
KU
1845 spin_unlock_irqrestore(q->queue_lock, flags);
1846
1847 return 0;
1848}
e19a3ab0
KU
1849
1850/**
1851 * blk_end_request - Helper function for drivers to complete the request.
1852 * @rq: the request being processed
710027a4 1853 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1854 * @nr_bytes: number of bytes to complete
1855 *
1856 * Description:
1857 * Ends I/O on a number of bytes attached to @rq.
1858 * If @rq has leftover, sets it up for the next range of segments.
1859 *
1860 * Return:
710027a4
RD
1861 * %0 - we are done with this request
1862 * %1 - still buffers pending for this request
e19a3ab0 1863 **/
22b13210 1864int blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
e19a3ab0 1865{
e3a04fe3 1866 return blk_end_io(rq, error, nr_bytes, 0, NULL);
e19a3ab0 1867}
336cdb40
KU
1868EXPORT_SYMBOL_GPL(blk_end_request);
1869
1870/**
1871 * __blk_end_request - Helper function for drivers to complete the request.
1872 * @rq: the request being processed
710027a4 1873 * @error: %0 for success, < %0 for error
336cdb40
KU
1874 * @nr_bytes: number of bytes to complete
1875 *
1876 * Description:
1877 * Must be called with queue lock held unlike blk_end_request().
1878 *
1879 * Return:
710027a4
RD
1880 * %0 - we are done with this request
1881 * %1 - still buffers pending for this request
336cdb40 1882 **/
22b13210 1883int __blk_end_request(struct request *rq, int error, unsigned int nr_bytes)
336cdb40 1884{
60540161 1885 if (rq->bio && __end_that_request_first(rq, error, nr_bytes))
051cc395 1886 return 1;
336cdb40
KU
1887
1888 add_disk_randomness(rq->rq_disk);
1889
b8286239 1890 end_that_request_last(rq, error);
336cdb40
KU
1891
1892 return 0;
1893}
1894EXPORT_SYMBOL_GPL(__blk_end_request);
1895
e3a04fe3
KU
1896/**
1897 * blk_end_bidi_request - Helper function for drivers to complete bidi request.
1898 * @rq: the bidi request being processed
710027a4 1899 * @error: %0 for success, < %0 for error
e3a04fe3
KU
1900 * @nr_bytes: number of bytes to complete @rq
1901 * @bidi_bytes: number of bytes to complete @rq->next_rq
1902 *
1903 * Description:
1904 * Ends I/O on a number of bytes attached to @rq and @rq->next_rq.
1905 *
1906 * Return:
710027a4
RD
1907 * %0 - we are done with this request
1908 * %1 - still buffers pending for this request
e3a04fe3 1909 **/
22b13210
JA
1910int blk_end_bidi_request(struct request *rq, int error, unsigned int nr_bytes,
1911 unsigned int bidi_bytes)
e3a04fe3
KU
1912{
1913 return blk_end_io(rq, error, nr_bytes, bidi_bytes, NULL);
1914}
1915EXPORT_SYMBOL_GPL(blk_end_bidi_request);
1916
e19a3ab0
KU
1917/**
1918 * blk_end_request_callback - Special helper function for tricky drivers
1919 * @rq: the request being processed
710027a4 1920 * @error: %0 for success, < %0 for error
e19a3ab0
KU
1921 * @nr_bytes: number of bytes to complete
1922 * @drv_callback: function called between completion of bios in the request
1923 * and completion of the request.
710027a4 1924 * If the callback returns non %0, this helper returns without
e19a3ab0
KU
1925 * completion of the request.
1926 *
1927 * Description:
1928 * Ends I/O on a number of bytes attached to @rq.
1929 * If @rq has leftover, sets it up for the next range of segments.
1930 *
1931 * This special helper function is used only for existing tricky drivers.
1932 * (e.g. cdrom_newpc_intr() of ide-cd)
1933 * This interface will be removed when such drivers are rewritten.
1934 * Don't use this interface in other places anymore.
1935 *
1936 * Return:
710027a4
RD
1937 * %0 - we are done with this request
1938 * %1 - this request is not freed yet.
1939 * this request still has pending buffers or
1940 * the driver doesn't want to finish this request yet.
e19a3ab0 1941 **/
22b13210
JA
1942int blk_end_request_callback(struct request *rq, int error,
1943 unsigned int nr_bytes,
e19a3ab0
KU
1944 int (drv_callback)(struct request *))
1945{
e3a04fe3 1946 return blk_end_io(rq, error, nr_bytes, 0, drv_callback);
e19a3ab0
KU
1947}
1948EXPORT_SYMBOL_GPL(blk_end_request_callback);
1949
86db1e29
JA
1950void blk_rq_bio_prep(struct request_queue *q, struct request *rq,
1951 struct bio *bio)
1da177e4 1952{
d628eaef
DW
1953 /* Bit 0 (R/W) is identical in rq->cmd_flags and bio->bi_rw, and
1954 we want BIO_RW_AHEAD (bit 1) to imply REQ_FAILFAST (bit 1). */
4aff5e23 1955 rq->cmd_flags |= (bio->bi_rw & 3);
1da177e4 1956
fb2dce86
DW
1957 if (bio_has_data(bio)) {
1958 rq->nr_phys_segments = bio_phys_segments(q, bio);
fb2dce86
DW
1959 rq->buffer = bio_data(bio);
1960 }
1da177e4
LT
1961 rq->current_nr_sectors = bio_cur_sectors(bio);
1962 rq->hard_cur_sectors = rq->current_nr_sectors;
1963 rq->hard_nr_sectors = rq->nr_sectors = bio_sectors(bio);
0e75f906 1964 rq->data_len = bio->bi_size;
1da177e4
LT
1965
1966 rq->bio = rq->biotail = bio;
1da177e4 1967
66846572
N
1968 if (bio->bi_bdev)
1969 rq->rq_disk = bio->bi_bdev->bd_disk;
1970}
1da177e4 1971
18887ad9 1972int kblockd_schedule_work(struct request_queue *q, struct work_struct *work)
1da177e4
LT
1973{
1974 return queue_work(kblockd_workqueue, work);
1975}
1da177e4
LT
1976EXPORT_SYMBOL(kblockd_schedule_work);
1977
19a75d83 1978void kblockd_flush_work(struct work_struct *work)
1da177e4 1979{
28e53bdd 1980 cancel_work_sync(work);
1da177e4 1981}
19a75d83 1982EXPORT_SYMBOL(kblockd_flush_work);
1da177e4
LT
1983
1984int __init blk_dev_init(void)
1985{
1986 kblockd_workqueue = create_workqueue("kblockd");
1987 if (!kblockd_workqueue)
1988 panic("Failed to create kblockd\n");
1989
1990 request_cachep = kmem_cache_create("blkdev_requests",
20c2df83 1991 sizeof(struct request), 0, SLAB_PANIC, NULL);
1da177e4 1992
8324aa91 1993 blk_requestq_cachep = kmem_cache_create("blkdev_queue",
165125e1 1994 sizeof(struct request_queue), 0, SLAB_PANIC, NULL);
1da177e4 1995
d38ecf93 1996 return 0;
1da177e4 1997}
1da177e4 1998