]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-mq.c
blk-mq: handle dma_drain_size
[mirror_ubuntu-zesty-kernel.git] / block / blk-mq.c
CommitLineData
320ae51f
JA
1#include <linux/kernel.h>
2#include <linux/module.h>
3#include <linux/backing-dev.h>
4#include <linux/bio.h>
5#include <linux/blkdev.h>
6#include <linux/mm.h>
7#include <linux/init.h>
8#include <linux/slab.h>
9#include <linux/workqueue.h>
10#include <linux/smp.h>
11#include <linux/llist.h>
12#include <linux/list_sort.h>
13#include <linux/cpu.h>
14#include <linux/cache.h>
15#include <linux/sched/sysctl.h>
16#include <linux/delay.h>
17
18#include <trace/events/block.h>
19
20#include <linux/blk-mq.h>
21#include "blk.h"
22#include "blk-mq.h"
23#include "blk-mq-tag.h"
24
25static DEFINE_MUTEX(all_q_mutex);
26static LIST_HEAD(all_q_list);
27
28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
29
320ae51f
JA
30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
31 unsigned int cpu)
32{
33 return per_cpu_ptr(q->queue_ctx, cpu);
34}
35
36/*
37 * This assumes per-cpu software queueing queues. They could be per-node
38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
39 * care about preemption, since we know the ctx's are persistent. This does
40 * mean that we can't rely on ctx always matching the currently running CPU.
41 */
42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
43{
44 return __blk_mq_get_ctx(q, get_cpu());
45}
46
47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
48{
49 put_cpu();
50}
51
52/*
53 * Check if any of the ctx's have pending work in this hardware queue
54 */
55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
56{
57 unsigned int i;
58
59 for (i = 0; i < hctx->nr_ctx_map; i++)
60 if (hctx->ctx_map[i])
61 return true;
62
63 return false;
64}
65
66/*
67 * Mark this ctx as having pending work in this hardware queue
68 */
69static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
70 struct blk_mq_ctx *ctx)
71{
72 if (!test_bit(ctx->index_hw, hctx->ctx_map))
73 set_bit(ctx->index_hw, hctx->ctx_map);
74}
75
76static struct request *blk_mq_alloc_rq(struct blk_mq_hw_ctx *hctx, gfp_t gfp,
77 bool reserved)
78{
79 struct request *rq;
80 unsigned int tag;
81
82 tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
83 if (tag != BLK_MQ_TAG_FAIL) {
84 rq = hctx->rqs[tag];
85 rq->tag = tag;
86
87 return rq;
88 }
89
90 return NULL;
91}
92
93static int blk_mq_queue_enter(struct request_queue *q)
94{
95 int ret;
96
97 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
98 smp_wmb();
99 /* we have problems to freeze the queue if it's initializing */
100 if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
101 return 0;
102
103 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
104
105 spin_lock_irq(q->queue_lock);
106 ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
43a5e4e2
ML
107 !blk_queue_bypass(q) || blk_queue_dying(q),
108 *q->queue_lock);
320ae51f 109 /* inc usage with lock hold to avoid freeze_queue runs here */
43a5e4e2 110 if (!ret && !blk_queue_dying(q))
320ae51f 111 __percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
43a5e4e2
ML
112 else if (blk_queue_dying(q))
113 ret = -ENODEV;
320ae51f
JA
114 spin_unlock_irq(q->queue_lock);
115
116 return ret;
117}
118
119static void blk_mq_queue_exit(struct request_queue *q)
120{
121 __percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
122}
123
43a5e4e2
ML
124static void __blk_mq_drain_queue(struct request_queue *q)
125{
126 while (true) {
127 s64 count;
128
129 spin_lock_irq(q->queue_lock);
130 count = percpu_counter_sum(&q->mq_usage_counter);
131 spin_unlock_irq(q->queue_lock);
132
133 if (count == 0)
134 break;
135 blk_mq_run_queues(q, false);
136 msleep(10);
137 }
138}
139
320ae51f
JA
140/*
141 * Guarantee no request is in use, so we can change any data structure of
142 * the queue afterward.
143 */
144static void blk_mq_freeze_queue(struct request_queue *q)
145{
146 bool drain;
147
148 spin_lock_irq(q->queue_lock);
149 drain = !q->bypass_depth++;
150 queue_flag_set(QUEUE_FLAG_BYPASS, q);
151 spin_unlock_irq(q->queue_lock);
152
43a5e4e2
ML
153 if (drain)
154 __blk_mq_drain_queue(q);
155}
320ae51f 156
43a5e4e2
ML
157void blk_mq_drain_queue(struct request_queue *q)
158{
159 __blk_mq_drain_queue(q);
320ae51f
JA
160}
161
162static void blk_mq_unfreeze_queue(struct request_queue *q)
163{
164 bool wake = false;
165
166 spin_lock_irq(q->queue_lock);
167 if (!--q->bypass_depth) {
168 queue_flag_clear(QUEUE_FLAG_BYPASS, q);
169 wake = true;
170 }
171 WARN_ON_ONCE(q->bypass_depth < 0);
172 spin_unlock_irq(q->queue_lock);
173 if (wake)
174 wake_up_all(&q->mq_freeze_wq);
175}
176
177bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
178{
179 return blk_mq_has_free_tags(hctx->tags);
180}
181EXPORT_SYMBOL(blk_mq_can_queue);
182
94eddfbe
JA
183static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
184 struct request *rq, unsigned int rw_flags)
320ae51f 185{
94eddfbe
JA
186 if (blk_queue_io_stat(q))
187 rw_flags |= REQ_IO_STAT;
188
320ae51f
JA
189 rq->mq_ctx = ctx;
190 rq->cmd_flags = rw_flags;
0fec08b4
ML
191 rq->start_time = jiffies;
192 set_start_time_ns(rq);
320ae51f
JA
193 ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
194}
195
196static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
f0276924
SL
197 gfp_t gfp, bool reserved,
198 int rw)
320ae51f 199{
f0276924
SL
200 struct request *req;
201 bool is_flush = false;
202 /*
203 * flush need allocate a request, leave at least one request for
204 * non-flush IO to avoid deadlock
205 */
206 if ((rw & REQ_FLUSH) && !(rw & REQ_FLUSH_SEQ)) {
207 if (atomic_inc_return(&hctx->pending_flush) >=
208 hctx->queue_depth - hctx->reserved_tags - 1) {
209 atomic_dec(&hctx->pending_flush);
210 return NULL;
211 }
212 is_flush = true;
213 }
214 req = blk_mq_alloc_rq(hctx, gfp, reserved);
215 if (!req && is_flush)
216 atomic_dec(&hctx->pending_flush);
217 return req;
320ae51f
JA
218}
219
220static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
221 int rw, gfp_t gfp,
222 bool reserved)
223{
224 struct request *rq;
225
226 do {
227 struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
228 struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
229
f0276924 230 rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved, rw);
320ae51f 231 if (rq) {
94eddfbe 232 blk_mq_rq_ctx_init(q, ctx, rq, rw);
320ae51f 233 break;
959a35f1 234 }
320ae51f
JA
235
236 blk_mq_put_ctx(ctx);
959a35f1
JM
237 if (!(gfp & __GFP_WAIT))
238 break;
239
320ae51f
JA
240 __blk_mq_run_hw_queue(hctx);
241 blk_mq_wait_for_tags(hctx->tags);
242 } while (1);
243
244 return rq;
245}
246
3228f48b
CH
247struct request *blk_mq_alloc_request(struct request_queue *q, int rw,
248 gfp_t gfp, bool reserved)
320ae51f
JA
249{
250 struct request *rq;
251
252 if (blk_mq_queue_enter(q))
253 return NULL;
254
3228f48b 255 rq = blk_mq_alloc_request_pinned(q, rw, gfp, reserved);
959a35f1
JM
256 if (rq)
257 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
258 return rq;
259}
260
261struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
262 gfp_t gfp)
263{
264 struct request *rq;
265
266 if (blk_mq_queue_enter(q))
267 return NULL;
268
269 rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
959a35f1
JM
270 if (rq)
271 blk_mq_put_ctx(rq->mq_ctx);
320ae51f
JA
272 return rq;
273}
274EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
275
276/*
277 * Re-init and set pdu, if we have it
278 */
279static void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
280{
281 blk_rq_init(hctx->queue, rq);
282
283 if (hctx->cmd_size)
284 rq->special = blk_mq_rq_to_pdu(rq);
285}
286
287static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
288 struct blk_mq_ctx *ctx, struct request *rq)
289{
290 const int tag = rq->tag;
291 struct request_queue *q = rq->q;
292
f0276924
SL
293 if ((rq->cmd_flags & REQ_FLUSH) && !(rq->cmd_flags & REQ_FLUSH_SEQ))
294 atomic_dec(&hctx->pending_flush);
295
320ae51f
JA
296 blk_mq_rq_init(hctx, rq);
297 blk_mq_put_tag(hctx->tags, tag);
298
299 blk_mq_queue_exit(q);
300}
301
302void blk_mq_free_request(struct request *rq)
303{
304 struct blk_mq_ctx *ctx = rq->mq_ctx;
305 struct blk_mq_hw_ctx *hctx;
306 struct request_queue *q = rq->q;
307
308 ctx->rq_completed[rq_is_sync(rq)]++;
309
310 hctx = q->mq_ops->map_queue(q, ctx->cpu);
311 __blk_mq_free_request(hctx, ctx, rq);
312}
313
314static void blk_mq_bio_endio(struct request *rq, struct bio *bio, int error)
315{
316 if (error)
317 clear_bit(BIO_UPTODATE, &bio->bi_flags);
318 else if (!test_bit(BIO_UPTODATE, &bio->bi_flags))
319 error = -EIO;
320
321 if (unlikely(rq->cmd_flags & REQ_QUIET))
322 set_bit(BIO_QUIET, &bio->bi_flags);
323
324 /* don't actually finish bio if it's part of flush sequence */
325 if (!(rq->cmd_flags & REQ_FLUSH_SEQ))
326 bio_endio(bio, error);
327}
328
329void blk_mq_complete_request(struct request *rq, int error)
330{
331 struct bio *bio = rq->bio;
332 unsigned int bytes = 0;
333
334 trace_block_rq_complete(rq->q, rq);
335
336 while (bio) {
337 struct bio *next = bio->bi_next;
338
339 bio->bi_next = NULL;
4f024f37 340 bytes += bio->bi_iter.bi_size;
320ae51f
JA
341 blk_mq_bio_endio(rq, bio, error);
342 bio = next;
343 }
344
345 blk_account_io_completion(rq, bytes);
346
0d11e6ac
ML
347 blk_account_io_done(rq);
348
320ae51f
JA
349 if (rq->end_io)
350 rq->end_io(rq, error);
351 else
352 blk_mq_free_request(rq);
320ae51f
JA
353}
354
355void __blk_mq_end_io(struct request *rq, int error)
356{
357 if (!blk_mark_rq_complete(rq))
358 blk_mq_complete_request(rq, error);
359}
360
3d6efbf6 361static void blk_mq_end_io_remote(void *data)
320ae51f 362{
3d6efbf6 363 struct request *rq = data;
320ae51f 364
3d6efbf6 365 __blk_mq_end_io(rq, rq->errors);
320ae51f 366}
320ae51f
JA
367
368/*
369 * End IO on this request on a multiqueue enabled driver. We'll either do
370 * it directly inline, or punt to a local IPI handler on the matching
371 * remote CPU.
372 */
373void blk_mq_end_io(struct request *rq, int error)
374{
375 struct blk_mq_ctx *ctx = rq->mq_ctx;
376 int cpu;
377
378 if (!ctx->ipi_redirect)
379 return __blk_mq_end_io(rq, error);
380
381 cpu = get_cpu();
3d6efbf6
CH
382 if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
383 rq->errors = error;
384 rq->csd.func = blk_mq_end_io_remote;
385 rq->csd.info = rq;
386 rq->csd.flags = 0;
387 __smp_call_function_single(ctx->cpu, &rq->csd, 0);
388 } else {
320ae51f 389 __blk_mq_end_io(rq, error);
3d6efbf6 390 }
320ae51f
JA
391 put_cpu();
392}
393EXPORT_SYMBOL(blk_mq_end_io);
394
395static void blk_mq_start_request(struct request *rq)
396{
397 struct request_queue *q = rq->q;
398
399 trace_block_rq_issue(q, rq);
400
401 /*
402 * Just mark start time and set the started bit. Due to memory
403 * ordering, we know we'll see the correct deadline as long as
404 * REQ_ATOMIC_STARTED is seen.
405 */
406 rq->deadline = jiffies + q->rq_timeout;
407 set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
408}
409
410static void blk_mq_requeue_request(struct request *rq)
411{
412 struct request_queue *q = rq->q;
413
414 trace_block_rq_requeue(q, rq);
415 clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
416}
417
418struct blk_mq_timeout_data {
419 struct blk_mq_hw_ctx *hctx;
420 unsigned long *next;
421 unsigned int *next_set;
422};
423
424static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
425{
426 struct blk_mq_timeout_data *data = __data;
427 struct blk_mq_hw_ctx *hctx = data->hctx;
428 unsigned int tag;
429
430 /* It may not be in flight yet (this is where
431 * the REQ_ATOMIC_STARTED flag comes in). The requests are
432 * statically allocated, so we know it's always safe to access the
433 * memory associated with a bit offset into ->rqs[].
434 */
435 tag = 0;
436 do {
437 struct request *rq;
438
439 tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
440 if (tag >= hctx->queue_depth)
441 break;
442
443 rq = hctx->rqs[tag++];
444
445 if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
446 continue;
447
448 blk_rq_check_expired(rq, data->next, data->next_set);
449 } while (1);
450}
451
452static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
453 unsigned long *next,
454 unsigned int *next_set)
455{
456 struct blk_mq_timeout_data data = {
457 .hctx = hctx,
458 .next = next,
459 .next_set = next_set,
460 };
461
462 /*
463 * Ask the tagging code to iterate busy requests, so we can
464 * check them for timeout.
465 */
466 blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
467}
468
469static void blk_mq_rq_timer(unsigned long data)
470{
471 struct request_queue *q = (struct request_queue *) data;
472 struct blk_mq_hw_ctx *hctx;
473 unsigned long next = 0;
474 int i, next_set = 0;
475
476 queue_for_each_hw_ctx(q, hctx, i)
477 blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
478
479 if (next_set)
480 mod_timer(&q->timeout, round_jiffies_up(next));
481}
482
483/*
484 * Reverse check our software queue for entries that we could potentially
485 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
486 * too much time checking for merges.
487 */
488static bool blk_mq_attempt_merge(struct request_queue *q,
489 struct blk_mq_ctx *ctx, struct bio *bio)
490{
491 struct request *rq;
492 int checked = 8;
493
494 list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
495 int el_ret;
496
497 if (!checked--)
498 break;
499
500 if (!blk_rq_merge_ok(rq, bio))
501 continue;
502
503 el_ret = blk_try_merge(rq, bio);
504 if (el_ret == ELEVATOR_BACK_MERGE) {
505 if (bio_attempt_back_merge(q, rq, bio)) {
506 ctx->rq_merged++;
507 return true;
508 }
509 break;
510 } else if (el_ret == ELEVATOR_FRONT_MERGE) {
511 if (bio_attempt_front_merge(q, rq, bio)) {
512 ctx->rq_merged++;
513 return true;
514 }
515 break;
516 }
517 }
518
519 return false;
520}
521
522void blk_mq_add_timer(struct request *rq)
523{
524 __blk_add_timer(rq, NULL);
525}
526
527/*
528 * Run this hardware queue, pulling any software queues mapped to it in.
529 * Note that this function currently has various problems around ordering
530 * of IO. In particular, we'd like FIFO behaviour on handling existing
531 * items on the hctx->dispatch list. Ignore that for now.
532 */
533static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
534{
535 struct request_queue *q = hctx->queue;
536 struct blk_mq_ctx *ctx;
537 struct request *rq;
538 LIST_HEAD(rq_list);
539 int bit, queued;
540
541 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
542 return;
543
544 hctx->run++;
545
546 /*
547 * Touch any software queue that has pending entries.
548 */
549 for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
550 clear_bit(bit, hctx->ctx_map);
551 ctx = hctx->ctxs[bit];
552 BUG_ON(bit != ctx->index_hw);
553
554 spin_lock(&ctx->lock);
555 list_splice_tail_init(&ctx->rq_list, &rq_list);
556 spin_unlock(&ctx->lock);
557 }
558
559 /*
560 * If we have previous entries on our dispatch list, grab them
561 * and stuff them at the front for more fair dispatch.
562 */
563 if (!list_empty_careful(&hctx->dispatch)) {
564 spin_lock(&hctx->lock);
565 if (!list_empty(&hctx->dispatch))
566 list_splice_init(&hctx->dispatch, &rq_list);
567 spin_unlock(&hctx->lock);
568 }
569
570 /*
571 * Delete and return all entries from our dispatch list
572 */
573 queued = 0;
574
575 /*
576 * Now process all the entries, sending them to the driver.
577 */
578 while (!list_empty(&rq_list)) {
579 int ret;
580
581 rq = list_first_entry(&rq_list, struct request, queuelist);
582 list_del_init(&rq->queuelist);
583 blk_mq_start_request(rq);
584
4f7f418c
CH
585 if (q->dma_drain_size && blk_rq_bytes(rq)) {
586 /*
587 * make sure space for the drain appears we
588 * know we can do this because max_hw_segments
589 * has been adjusted to be one fewer than the
590 * device can handle
591 */
592 rq->nr_phys_segments++;
593 }
594
320ae51f
JA
595 /*
596 * Last request in the series. Flag it as such, this
597 * enables drivers to know when IO should be kicked off,
598 * if they don't do it on a per-request basis.
599 *
600 * Note: the flag isn't the only condition drivers
601 * should do kick off. If drive is busy, the last
602 * request might not have the bit set.
603 */
604 if (list_empty(&rq_list))
605 rq->cmd_flags |= REQ_END;
606
607 ret = q->mq_ops->queue_rq(hctx, rq);
608 switch (ret) {
609 case BLK_MQ_RQ_QUEUE_OK:
610 queued++;
611 continue;
612 case BLK_MQ_RQ_QUEUE_BUSY:
613 /*
614 * FIXME: we should have a mechanism to stop the queue
615 * like blk_stop_queue, otherwise we will waste cpu
616 * time
617 */
618 list_add(&rq->queuelist, &rq_list);
619 blk_mq_requeue_request(rq);
620 break;
621 default:
622 pr_err("blk-mq: bad return on queue: %d\n", ret);
623 rq->errors = -EIO;
624 case BLK_MQ_RQ_QUEUE_ERROR:
625 blk_mq_end_io(rq, rq->errors);
626 break;
627 }
628
629 if (ret == BLK_MQ_RQ_QUEUE_BUSY)
630 break;
631 }
632
633 if (!queued)
634 hctx->dispatched[0]++;
635 else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
636 hctx->dispatched[ilog2(queued) + 1]++;
637
638 /*
639 * Any items that need requeuing? Stuff them into hctx->dispatch,
640 * that is where we will continue on next queue run.
641 */
642 if (!list_empty(&rq_list)) {
643 spin_lock(&hctx->lock);
644 list_splice(&rq_list, &hctx->dispatch);
645 spin_unlock(&hctx->lock);
646 }
647}
648
649void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
650{
651 if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->flags)))
652 return;
653
654 if (!async)
655 __blk_mq_run_hw_queue(hctx);
656 else {
657 struct request_queue *q = hctx->queue;
658
659 kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
660 }
661}
662
663void blk_mq_run_queues(struct request_queue *q, bool async)
664{
665 struct blk_mq_hw_ctx *hctx;
666 int i;
667
668 queue_for_each_hw_ctx(q, hctx, i) {
669 if ((!blk_mq_hctx_has_pending(hctx) &&
670 list_empty_careful(&hctx->dispatch)) ||
671 test_bit(BLK_MQ_S_STOPPED, &hctx->flags))
672 continue;
673
674 blk_mq_run_hw_queue(hctx, async);
675 }
676}
677EXPORT_SYMBOL(blk_mq_run_queues);
678
679void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
680{
681 cancel_delayed_work(&hctx->delayed_work);
682 set_bit(BLK_MQ_S_STOPPED, &hctx->state);
683}
684EXPORT_SYMBOL(blk_mq_stop_hw_queue);
685
280d45f6
CH
686void blk_mq_stop_hw_queues(struct request_queue *q)
687{
688 struct blk_mq_hw_ctx *hctx;
689 int i;
690
691 queue_for_each_hw_ctx(q, hctx, i)
692 blk_mq_stop_hw_queue(hctx);
693}
694EXPORT_SYMBOL(blk_mq_stop_hw_queues);
695
320ae51f
JA
696void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
697{
698 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
699 __blk_mq_run_hw_queue(hctx);
700}
701EXPORT_SYMBOL(blk_mq_start_hw_queue);
702
703void blk_mq_start_stopped_hw_queues(struct request_queue *q)
704{
705 struct blk_mq_hw_ctx *hctx;
706 int i;
707
708 queue_for_each_hw_ctx(q, hctx, i) {
709 if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
710 continue;
711
712 clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
713 blk_mq_run_hw_queue(hctx, true);
714 }
715}
716EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
717
718static void blk_mq_work_fn(struct work_struct *work)
719{
720 struct blk_mq_hw_ctx *hctx;
721
722 hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
723 __blk_mq_run_hw_queue(hctx);
724}
725
726static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
72a0a36e 727 struct request *rq, bool at_head)
320ae51f
JA
728{
729 struct blk_mq_ctx *ctx = rq->mq_ctx;
730
01b983c9
JA
731 trace_block_rq_insert(hctx->queue, rq);
732
72a0a36e
CH
733 if (at_head)
734 list_add(&rq->queuelist, &ctx->rq_list);
735 else
736 list_add_tail(&rq->queuelist, &ctx->rq_list);
320ae51f
JA
737 blk_mq_hctx_mark_pending(hctx, ctx);
738
739 /*
740 * We do this early, to ensure we are on the right CPU.
741 */
742 blk_mq_add_timer(rq);
743}
744
745void blk_mq_insert_request(struct request_queue *q, struct request *rq,
72a0a36e 746 bool at_head, bool run_queue)
320ae51f
JA
747{
748 struct blk_mq_hw_ctx *hctx;
749 struct blk_mq_ctx *ctx, *current_ctx;
750
751 ctx = rq->mq_ctx;
752 hctx = q->mq_ops->map_queue(q, ctx->cpu);
753
754 if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA)) {
755 blk_insert_flush(rq);
756 } else {
757 current_ctx = blk_mq_get_ctx(q);
758
759 if (!cpu_online(ctx->cpu)) {
760 ctx = current_ctx;
761 hctx = q->mq_ops->map_queue(q, ctx->cpu);
762 rq->mq_ctx = ctx;
763 }
764 spin_lock(&ctx->lock);
72a0a36e 765 __blk_mq_insert_request(hctx, rq, at_head);
320ae51f
JA
766 spin_unlock(&ctx->lock);
767
768 blk_mq_put_ctx(current_ctx);
769 }
770
771 if (run_queue)
772 __blk_mq_run_hw_queue(hctx);
773}
774EXPORT_SYMBOL(blk_mq_insert_request);
775
776/*
777 * This is a special version of blk_mq_insert_request to bypass FLUSH request
778 * check. Should only be used internally.
779 */
780void blk_mq_run_request(struct request *rq, bool run_queue, bool async)
781{
782 struct request_queue *q = rq->q;
783 struct blk_mq_hw_ctx *hctx;
784 struct blk_mq_ctx *ctx, *current_ctx;
785
786 current_ctx = blk_mq_get_ctx(q);
787
788 ctx = rq->mq_ctx;
789 if (!cpu_online(ctx->cpu)) {
790 ctx = current_ctx;
791 rq->mq_ctx = ctx;
792 }
793 hctx = q->mq_ops->map_queue(q, ctx->cpu);
794
795 /* ctx->cpu might be offline */
796 spin_lock(&ctx->lock);
72a0a36e 797 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
798 spin_unlock(&ctx->lock);
799
800 blk_mq_put_ctx(current_ctx);
801
802 if (run_queue)
803 blk_mq_run_hw_queue(hctx, async);
804}
805
806static void blk_mq_insert_requests(struct request_queue *q,
807 struct blk_mq_ctx *ctx,
808 struct list_head *list,
809 int depth,
810 bool from_schedule)
811
812{
813 struct blk_mq_hw_ctx *hctx;
814 struct blk_mq_ctx *current_ctx;
815
816 trace_block_unplug(q, depth, !from_schedule);
817
818 current_ctx = blk_mq_get_ctx(q);
819
820 if (!cpu_online(ctx->cpu))
821 ctx = current_ctx;
822 hctx = q->mq_ops->map_queue(q, ctx->cpu);
823
824 /*
825 * preemption doesn't flush plug list, so it's possible ctx->cpu is
826 * offline now
827 */
828 spin_lock(&ctx->lock);
829 while (!list_empty(list)) {
830 struct request *rq;
831
832 rq = list_first_entry(list, struct request, queuelist);
833 list_del_init(&rq->queuelist);
834 rq->mq_ctx = ctx;
72a0a36e 835 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
836 }
837 spin_unlock(&ctx->lock);
838
839 blk_mq_put_ctx(current_ctx);
840
841 blk_mq_run_hw_queue(hctx, from_schedule);
842}
843
844static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
845{
846 struct request *rqa = container_of(a, struct request, queuelist);
847 struct request *rqb = container_of(b, struct request, queuelist);
848
849 return !(rqa->mq_ctx < rqb->mq_ctx ||
850 (rqa->mq_ctx == rqb->mq_ctx &&
851 blk_rq_pos(rqa) < blk_rq_pos(rqb)));
852}
853
854void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
855{
856 struct blk_mq_ctx *this_ctx;
857 struct request_queue *this_q;
858 struct request *rq;
859 LIST_HEAD(list);
860 LIST_HEAD(ctx_list);
861 unsigned int depth;
862
863 list_splice_init(&plug->mq_list, &list);
864
865 list_sort(NULL, &list, plug_ctx_cmp);
866
867 this_q = NULL;
868 this_ctx = NULL;
869 depth = 0;
870
871 while (!list_empty(&list)) {
872 rq = list_entry_rq(list.next);
873 list_del_init(&rq->queuelist);
874 BUG_ON(!rq->q);
875 if (rq->mq_ctx != this_ctx) {
876 if (this_ctx) {
877 blk_mq_insert_requests(this_q, this_ctx,
878 &ctx_list, depth,
879 from_schedule);
880 }
881
882 this_ctx = rq->mq_ctx;
883 this_q = rq->q;
884 depth = 0;
885 }
886
887 depth++;
888 list_add_tail(&rq->queuelist, &ctx_list);
889 }
890
891 /*
892 * If 'this_ctx' is set, we know we have entries to complete
893 * on 'ctx_list'. Do those.
894 */
895 if (this_ctx) {
896 blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
897 from_schedule);
898 }
899}
900
901static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
902{
903 init_request_from_bio(rq, bio);
904 blk_account_io_start(rq, 1);
905}
906
907static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
908{
909 struct blk_mq_hw_ctx *hctx;
910 struct blk_mq_ctx *ctx;
911 const int is_sync = rw_is_sync(bio->bi_rw);
912 const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
913 int rw = bio_data_dir(bio);
914 struct request *rq;
915 unsigned int use_plug, request_count = 0;
916
917 /*
918 * If we have multiple hardware queues, just go directly to
919 * one of those for sync IO.
920 */
921 use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
922
923 blk_queue_bounce(q, &bio);
924
925 if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
926 return;
927
928 if (blk_mq_queue_enter(q)) {
929 bio_endio(bio, -EIO);
930 return;
931 }
932
933 ctx = blk_mq_get_ctx(q);
934 hctx = q->mq_ops->map_queue(q, ctx->cpu);
935
936 trace_block_getrq(q, bio, rw);
f0276924 937 rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false, bio->bi_rw);
320ae51f 938 if (likely(rq))
f0276924 939 blk_mq_rq_ctx_init(q, ctx, rq, bio->bi_rw);
320ae51f
JA
940 else {
941 blk_mq_put_ctx(ctx);
942 trace_block_sleeprq(q, bio, rw);
f0276924
SL
943 rq = blk_mq_alloc_request_pinned(q, bio->bi_rw,
944 __GFP_WAIT|GFP_ATOMIC, false);
320ae51f
JA
945 ctx = rq->mq_ctx;
946 hctx = q->mq_ops->map_queue(q, ctx->cpu);
947 }
948
949 hctx->queued++;
950
951 if (unlikely(is_flush_fua)) {
952 blk_mq_bio_to_request(rq, bio);
953 blk_mq_put_ctx(ctx);
954 blk_insert_flush(rq);
955 goto run_queue;
956 }
957
958 /*
959 * A task plug currently exists. Since this is completely lockless,
960 * utilize that to temporarily store requests until the task is
961 * either done or scheduled away.
962 */
963 if (use_plug) {
964 struct blk_plug *plug = current->plug;
965
966 if (plug) {
967 blk_mq_bio_to_request(rq, bio);
92f399c7 968 if (list_empty(&plug->mq_list))
320ae51f
JA
969 trace_block_plug(q);
970 else if (request_count >= BLK_MAX_REQUEST_COUNT) {
971 blk_flush_plug_list(plug, false);
972 trace_block_plug(q);
973 }
974 list_add_tail(&rq->queuelist, &plug->mq_list);
975 blk_mq_put_ctx(ctx);
976 return;
977 }
978 }
979
980 spin_lock(&ctx->lock);
981
982 if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
983 blk_mq_attempt_merge(q, ctx, bio))
984 __blk_mq_free_request(hctx, ctx, rq);
985 else {
986 blk_mq_bio_to_request(rq, bio);
72a0a36e 987 __blk_mq_insert_request(hctx, rq, false);
320ae51f
JA
988 }
989
990 spin_unlock(&ctx->lock);
991 blk_mq_put_ctx(ctx);
992
993 /*
994 * For a SYNC request, send it to the hardware immediately. For an
995 * ASYNC request, just ensure that we run it later on. The latter
996 * allows for merging opportunities and more efficient dispatching.
997 */
998run_queue:
999 blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
1000}
1001
1002/*
1003 * Default mapping to a software queue, since we use one per CPU.
1004 */
1005struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
1006{
1007 return q->queue_hw_ctx[q->mq_map[cpu]];
1008}
1009EXPORT_SYMBOL(blk_mq_map_queue);
1010
1011struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
1012 unsigned int hctx_index)
1013{
1014 return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
1015 GFP_KERNEL | __GFP_ZERO, reg->numa_node);
1016}
1017EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
1018
1019void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
1020 unsigned int hctx_index)
1021{
1022 kfree(hctx);
1023}
1024EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
1025
1026static void blk_mq_hctx_notify(void *data, unsigned long action,
1027 unsigned int cpu)
1028{
1029 struct blk_mq_hw_ctx *hctx = data;
1030 struct blk_mq_ctx *ctx;
1031 LIST_HEAD(tmp);
1032
1033 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
1034 return;
1035
1036 /*
1037 * Move ctx entries to new CPU, if this one is going away.
1038 */
1039 ctx = __blk_mq_get_ctx(hctx->queue, cpu);
1040
1041 spin_lock(&ctx->lock);
1042 if (!list_empty(&ctx->rq_list)) {
1043 list_splice_init(&ctx->rq_list, &tmp);
1044 clear_bit(ctx->index_hw, hctx->ctx_map);
1045 }
1046 spin_unlock(&ctx->lock);
1047
1048 if (list_empty(&tmp))
1049 return;
1050
1051 ctx = blk_mq_get_ctx(hctx->queue);
1052 spin_lock(&ctx->lock);
1053
1054 while (!list_empty(&tmp)) {
1055 struct request *rq;
1056
1057 rq = list_first_entry(&tmp, struct request, queuelist);
1058 rq->mq_ctx = ctx;
1059 list_move_tail(&rq->queuelist, &ctx->rq_list);
1060 }
1061
1062 blk_mq_hctx_mark_pending(hctx, ctx);
1063
1064 spin_unlock(&ctx->lock);
1065 blk_mq_put_ctx(ctx);
1066}
1067
1068static void blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1069 void (*init)(void *, struct blk_mq_hw_ctx *,
1070 struct request *, unsigned int),
1071 void *data)
1072{
1073 unsigned int i;
1074
1075 for (i = 0; i < hctx->queue_depth; i++) {
1076 struct request *rq = hctx->rqs[i];
1077
1078 init(data, hctx, rq, i);
1079 }
1080}
1081
1082void blk_mq_init_commands(struct request_queue *q,
1083 void (*init)(void *, struct blk_mq_hw_ctx *,
1084 struct request *, unsigned int),
1085 void *data)
1086{
1087 struct blk_mq_hw_ctx *hctx;
1088 unsigned int i;
1089
1090 queue_for_each_hw_ctx(q, hctx, i)
1091 blk_mq_init_hw_commands(hctx, init, data);
1092}
1093EXPORT_SYMBOL(blk_mq_init_commands);
1094
1095static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1096{
1097 struct page *page;
1098
1099 while (!list_empty(&hctx->page_list)) {
6753471c
DH
1100 page = list_first_entry(&hctx->page_list, struct page, lru);
1101 list_del_init(&page->lru);
320ae51f
JA
1102 __free_pages(page, page->private);
1103 }
1104
1105 kfree(hctx->rqs);
1106
1107 if (hctx->tags)
1108 blk_mq_free_tags(hctx->tags);
1109}
1110
1111static size_t order_to_size(unsigned int order)
1112{
1113 size_t ret = PAGE_SIZE;
1114
1115 while (order--)
1116 ret *= 2;
1117
1118 return ret;
1119}
1120
1121static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1122 unsigned int reserved_tags, int node)
1123{
1124 unsigned int i, j, entries_per_page, max_order = 4;
1125 size_t rq_size, left;
1126
1127 INIT_LIST_HEAD(&hctx->page_list);
1128
1129 hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1130 GFP_KERNEL, node);
1131 if (!hctx->rqs)
1132 return -ENOMEM;
1133
1134 /*
1135 * rq_size is the size of the request plus driver payload, rounded
1136 * to the cacheline size
1137 */
1138 rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1139 cache_line_size());
1140 left = rq_size * hctx->queue_depth;
1141
1142 for (i = 0; i < hctx->queue_depth;) {
1143 int this_order = max_order;
1144 struct page *page;
1145 int to_do;
1146 void *p;
1147
1148 while (left < order_to_size(this_order - 1) && this_order)
1149 this_order--;
1150
1151 do {
1152 page = alloc_pages_node(node, GFP_KERNEL, this_order);
1153 if (page)
1154 break;
1155 if (!this_order--)
1156 break;
1157 if (order_to_size(this_order) < rq_size)
1158 break;
1159 } while (1);
1160
1161 if (!page)
1162 break;
1163
1164 page->private = this_order;
6753471c 1165 list_add_tail(&page->lru, &hctx->page_list);
320ae51f
JA
1166
1167 p = page_address(page);
1168 entries_per_page = order_to_size(this_order) / rq_size;
1169 to_do = min(entries_per_page, hctx->queue_depth - i);
1170 left -= to_do * rq_size;
1171 for (j = 0; j < to_do; j++) {
1172 hctx->rqs[i] = p;
1173 blk_mq_rq_init(hctx, hctx->rqs[i]);
1174 p += rq_size;
1175 i++;
1176 }
1177 }
1178
1179 if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1180 goto err_rq_map;
1181 else if (i != hctx->queue_depth) {
1182 hctx->queue_depth = i;
1183 pr_warn("%s: queue depth set to %u because of low memory\n",
1184 __func__, i);
1185 }
1186
1187 hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1188 if (!hctx->tags) {
1189err_rq_map:
1190 blk_mq_free_rq_map(hctx);
1191 return -ENOMEM;
1192 }
1193
1194 return 0;
1195}
1196
1197static int blk_mq_init_hw_queues(struct request_queue *q,
1198 struct blk_mq_reg *reg, void *driver_data)
1199{
1200 struct blk_mq_hw_ctx *hctx;
1201 unsigned int i, j;
1202
1203 /*
1204 * Initialize hardware queues
1205 */
1206 queue_for_each_hw_ctx(q, hctx, i) {
1207 unsigned int num_maps;
1208 int node;
1209
1210 node = hctx->numa_node;
1211 if (node == NUMA_NO_NODE)
1212 node = hctx->numa_node = reg->numa_node;
1213
1214 INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1215 spin_lock_init(&hctx->lock);
1216 INIT_LIST_HEAD(&hctx->dispatch);
1217 hctx->queue = q;
1218 hctx->queue_num = i;
1219 hctx->flags = reg->flags;
1220 hctx->queue_depth = reg->queue_depth;
f0276924 1221 hctx->reserved_tags = reg->reserved_tags;
320ae51f 1222 hctx->cmd_size = reg->cmd_size;
f0276924 1223 atomic_set(&hctx->pending_flush, 0);
320ae51f
JA
1224
1225 blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1226 blk_mq_hctx_notify, hctx);
1227 blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1228
1229 if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1230 break;
1231
1232 /*
1233 * Allocate space for all possible cpus to avoid allocation in
1234 * runtime
1235 */
1236 hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1237 GFP_KERNEL, node);
1238 if (!hctx->ctxs)
1239 break;
1240
1241 num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1242 hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1243 GFP_KERNEL, node);
1244 if (!hctx->ctx_map)
1245 break;
1246
1247 hctx->nr_ctx_map = num_maps;
1248 hctx->nr_ctx = 0;
1249
1250 if (reg->ops->init_hctx &&
1251 reg->ops->init_hctx(hctx, driver_data, i))
1252 break;
1253 }
1254
1255 if (i == q->nr_hw_queues)
1256 return 0;
1257
1258 /*
1259 * Init failed
1260 */
1261 queue_for_each_hw_ctx(q, hctx, j) {
1262 if (i == j)
1263 break;
1264
1265 if (reg->ops->exit_hctx)
1266 reg->ops->exit_hctx(hctx, j);
1267
1268 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1269 blk_mq_free_rq_map(hctx);
1270 kfree(hctx->ctxs);
1271 }
1272
1273 return 1;
1274}
1275
1276static void blk_mq_init_cpu_queues(struct request_queue *q,
1277 unsigned int nr_hw_queues)
1278{
1279 unsigned int i;
1280
1281 for_each_possible_cpu(i) {
1282 struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1283 struct blk_mq_hw_ctx *hctx;
1284
1285 memset(__ctx, 0, sizeof(*__ctx));
1286 __ctx->cpu = i;
1287 spin_lock_init(&__ctx->lock);
1288 INIT_LIST_HEAD(&__ctx->rq_list);
1289 __ctx->queue = q;
1290
1291 /* If the cpu isn't online, the cpu is mapped to first hctx */
1292 hctx = q->mq_ops->map_queue(q, i);
1293 hctx->nr_ctx++;
1294
1295 if (!cpu_online(i))
1296 continue;
1297
1298 /*
1299 * Set local node, IFF we have more than one hw queue. If
1300 * not, we remain on the home node of the device
1301 */
1302 if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1303 hctx->numa_node = cpu_to_node(i);
1304 }
1305}
1306
1307static void blk_mq_map_swqueue(struct request_queue *q)
1308{
1309 unsigned int i;
1310 struct blk_mq_hw_ctx *hctx;
1311 struct blk_mq_ctx *ctx;
1312
1313 queue_for_each_hw_ctx(q, hctx, i) {
1314 hctx->nr_ctx = 0;
1315 }
1316
1317 /*
1318 * Map software to hardware queues
1319 */
1320 queue_for_each_ctx(q, ctx, i) {
1321 /* If the cpu isn't online, the cpu is mapped to first hctx */
1322 hctx = q->mq_ops->map_queue(q, i);
1323 ctx->index_hw = hctx->nr_ctx;
1324 hctx->ctxs[hctx->nr_ctx++] = ctx;
1325 }
1326}
1327
1328struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1329 void *driver_data)
1330{
1331 struct blk_mq_hw_ctx **hctxs;
1332 struct blk_mq_ctx *ctx;
1333 struct request_queue *q;
1334 int i;
1335
1336 if (!reg->nr_hw_queues ||
1337 !reg->ops->queue_rq || !reg->ops->map_queue ||
1338 !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1339 return ERR_PTR(-EINVAL);
1340
1341 if (!reg->queue_depth)
1342 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1343 else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1344 pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1345 reg->queue_depth = BLK_MQ_MAX_DEPTH;
1346 }
1347
1348 if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1349 return ERR_PTR(-EINVAL);
1350
1351 ctx = alloc_percpu(struct blk_mq_ctx);
1352 if (!ctx)
1353 return ERR_PTR(-ENOMEM);
1354
1355 hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1356 reg->numa_node);
1357
1358 if (!hctxs)
1359 goto err_percpu;
1360
1361 for (i = 0; i < reg->nr_hw_queues; i++) {
1362 hctxs[i] = reg->ops->alloc_hctx(reg, i);
1363 if (!hctxs[i])
1364 goto err_hctxs;
1365
1366 hctxs[i]->numa_node = NUMA_NO_NODE;
1367 hctxs[i]->queue_num = i;
1368 }
1369
1370 q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1371 if (!q)
1372 goto err_hctxs;
1373
1374 q->mq_map = blk_mq_make_queue_map(reg);
1375 if (!q->mq_map)
1376 goto err_map;
1377
1378 setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1379 blk_queue_rq_timeout(q, 30000);
1380
1381 q->nr_queues = nr_cpu_ids;
1382 q->nr_hw_queues = reg->nr_hw_queues;
1383
1384 q->queue_ctx = ctx;
1385 q->queue_hw_ctx = hctxs;
1386
1387 q->mq_ops = reg->ops;
94eddfbe 1388 q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
320ae51f
JA
1389
1390 blk_queue_make_request(q, blk_mq_make_request);
1391 blk_queue_rq_timed_out(q, reg->ops->timeout);
1392 if (reg->timeout)
1393 blk_queue_rq_timeout(q, reg->timeout);
1394
1395 blk_mq_init_flush(q);
1396 blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1397
1398 if (blk_mq_init_hw_queues(q, reg, driver_data))
1399 goto err_hw;
1400
1401 blk_mq_map_swqueue(q);
1402
1403 mutex_lock(&all_q_mutex);
1404 list_add_tail(&q->all_q_node, &all_q_list);
1405 mutex_unlock(&all_q_mutex);
1406
1407 return q;
1408err_hw:
1409 kfree(q->mq_map);
1410err_map:
1411 blk_cleanup_queue(q);
1412err_hctxs:
1413 for (i = 0; i < reg->nr_hw_queues; i++) {
1414 if (!hctxs[i])
1415 break;
1416 reg->ops->free_hctx(hctxs[i], i);
1417 }
1418 kfree(hctxs);
1419err_percpu:
1420 free_percpu(ctx);
1421 return ERR_PTR(-ENOMEM);
1422}
1423EXPORT_SYMBOL(blk_mq_init_queue);
1424
1425void blk_mq_free_queue(struct request_queue *q)
1426{
1427 struct blk_mq_hw_ctx *hctx;
1428 int i;
1429
1430 queue_for_each_hw_ctx(q, hctx, i) {
320ae51f
JA
1431 kfree(hctx->ctx_map);
1432 kfree(hctx->ctxs);
1433 blk_mq_free_rq_map(hctx);
1434 blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1435 if (q->mq_ops->exit_hctx)
1436 q->mq_ops->exit_hctx(hctx, i);
1437 q->mq_ops->free_hctx(hctx, i);
1438 }
1439
1440 free_percpu(q->queue_ctx);
1441 kfree(q->queue_hw_ctx);
1442 kfree(q->mq_map);
1443
1444 q->queue_ctx = NULL;
1445 q->queue_hw_ctx = NULL;
1446 q->mq_map = NULL;
1447
1448 mutex_lock(&all_q_mutex);
1449 list_del_init(&q->all_q_node);
1450 mutex_unlock(&all_q_mutex);
1451}
320ae51f
JA
1452
1453/* Basically redo blk_mq_init_queue with queue frozen */
f618ef7c 1454static void blk_mq_queue_reinit(struct request_queue *q)
320ae51f
JA
1455{
1456 blk_mq_freeze_queue(q);
1457
1458 blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1459
1460 /*
1461 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1462 * we should change hctx numa_node according to new topology (this
1463 * involves free and re-allocate memory, worthy doing?)
1464 */
1465
1466 blk_mq_map_swqueue(q);
1467
1468 blk_mq_unfreeze_queue(q);
1469}
1470
f618ef7c
PG
1471static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1472 unsigned long action, void *hcpu)
320ae51f
JA
1473{
1474 struct request_queue *q;
1475
1476 /*
1477 * Before new mapping is established, hotadded cpu might already start
1478 * handling requests. This doesn't break anything as we map offline
1479 * CPUs to first hardware queue. We will re-init queue below to get
1480 * optimal settings.
1481 */
1482 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1483 action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1484 return NOTIFY_OK;
1485
1486 mutex_lock(&all_q_mutex);
1487 list_for_each_entry(q, &all_q_list, all_q_node)
1488 blk_mq_queue_reinit(q);
1489 mutex_unlock(&all_q_mutex);
1490 return NOTIFY_OK;
1491}
1492
1493static int __init blk_mq_init(void)
1494{
320ae51f
JA
1495 blk_mq_cpu_init();
1496
1497 /* Must be called after percpu_counter_hotcpu_callback() */
1498 hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1499
1500 return 0;
1501}
1502subsys_initcall(blk_mq_init);