]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - block/blk-throttle.c
UBUNTU: Ubuntu-4.10.0-37.41
[mirror_ubuntu-zesty-kernel.git] / block / blk-throttle.c
CommitLineData
e43473b7
VG
1/*
2 * Interface for controlling IO bandwidth on a request queue
3 *
4 * Copyright (C) 2010 Vivek Goyal <vgoyal@redhat.com>
5 */
6
7#include <linux/module.h>
8#include <linux/slab.h>
9#include <linux/blkdev.h>
10#include <linux/bio.h>
11#include <linux/blktrace_api.h>
eea8f41c 12#include <linux/blk-cgroup.h>
bc9fcbf9 13#include "blk.h"
e43473b7
VG
14
15/* Max dispatch from a group in 1 round */
16static int throtl_grp_quantum = 8;
17
18/* Total max dispatch from all groups in one round */
19static int throtl_quantum = 32;
20
21/* Throttling is performed over 100ms slice and after that slice is renewed */
22static unsigned long throtl_slice = HZ/10; /* 100 ms */
23
3c798398 24static struct blkcg_policy blkcg_policy_throtl;
0381411e 25
450adcbe
VG
26/* A workqueue to queue throttle related work */
27static struct workqueue_struct *kthrotld_workqueue;
450adcbe 28
c5cc2070
TH
29/*
30 * To implement hierarchical throttling, throtl_grps form a tree and bios
31 * are dispatched upwards level by level until they reach the top and get
32 * issued. When dispatching bios from the children and local group at each
33 * level, if the bios are dispatched into a single bio_list, there's a risk
34 * of a local or child group which can queue many bios at once filling up
35 * the list starving others.
36 *
37 * To avoid such starvation, dispatched bios are queued separately
38 * according to where they came from. When they are again dispatched to
39 * the parent, they're popped in round-robin order so that no single source
40 * hogs the dispatch window.
41 *
42 * throtl_qnode is used to keep the queued bios separated by their sources.
43 * Bios are queued to throtl_qnode which in turn is queued to
44 * throtl_service_queue and then dispatched in round-robin order.
45 *
46 * It's also used to track the reference counts on blkg's. A qnode always
47 * belongs to a throtl_grp and gets queued on itself or the parent, so
48 * incrementing the reference of the associated throtl_grp when a qnode is
49 * queued and decrementing when dequeued is enough to keep the whole blkg
50 * tree pinned while bios are in flight.
51 */
52struct throtl_qnode {
53 struct list_head node; /* service_queue->queued[] */
54 struct bio_list bios; /* queued bios */
55 struct throtl_grp *tg; /* tg this qnode belongs to */
56};
57
c9e0332e 58struct throtl_service_queue {
77216b04
TH
59 struct throtl_service_queue *parent_sq; /* the parent service_queue */
60
73f0d49a
TH
61 /*
62 * Bios queued directly to this service_queue or dispatched from
63 * children throtl_grp's.
64 */
c5cc2070 65 struct list_head queued[2]; /* throtl_qnode [READ/WRITE] */
73f0d49a
TH
66 unsigned int nr_queued[2]; /* number of queued bios */
67
68 /*
69 * RB tree of active children throtl_grp's, which are sorted by
70 * their ->disptime.
71 */
c9e0332e
TH
72 struct rb_root pending_tree; /* RB tree of active tgs */
73 struct rb_node *first_pending; /* first node in the tree */
74 unsigned int nr_pending; /* # queued in the tree */
75 unsigned long first_pending_disptime; /* disptime of the first tg */
69df0ab0 76 struct timer_list pending_timer; /* fires on first_pending_disptime */
e43473b7
VG
77};
78
5b2c16aa
TH
79enum tg_state_flags {
80 THROTL_TG_PENDING = 1 << 0, /* on parent's pending tree */
0e9f4164 81 THROTL_TG_WAS_EMPTY = 1 << 1, /* bio_lists[] became non-empty */
5b2c16aa
TH
82};
83
e43473b7
VG
84#define rb_entry_tg(node) rb_entry((node), struct throtl_grp, rb_node)
85
86struct throtl_grp {
f95a04af
TH
87 /* must be the first member */
88 struct blkg_policy_data pd;
89
c9e0332e 90 /* active throtl group service_queue member */
e43473b7
VG
91 struct rb_node rb_node;
92
0f3457f6
TH
93 /* throtl_data this group belongs to */
94 struct throtl_data *td;
95
49a2f1e3
TH
96 /* this group's service queue */
97 struct throtl_service_queue service_queue;
98
c5cc2070
TH
99 /*
100 * qnode_on_self is used when bios are directly queued to this
101 * throtl_grp so that local bios compete fairly with bios
102 * dispatched from children. qnode_on_parent is used when bios are
103 * dispatched from this throtl_grp into its parent and will compete
104 * with the sibling qnode_on_parents and the parent's
105 * qnode_on_self.
106 */
107 struct throtl_qnode qnode_on_self[2];
108 struct throtl_qnode qnode_on_parent[2];
109
e43473b7
VG
110 /*
111 * Dispatch time in jiffies. This is the estimated time when group
112 * will unthrottle and is ready to dispatch more bio. It is used as
113 * key to sort active groups in service tree.
114 */
115 unsigned long disptime;
116
e43473b7
VG
117 unsigned int flags;
118
693e751e
TH
119 /* are there any throtl rules between this group and td? */
120 bool has_rules[2];
121
e43473b7
VG
122 /* bytes per second rate limits */
123 uint64_t bps[2];
124
8e89d13f
VG
125 /* IOPS limits */
126 unsigned int iops[2];
127
e43473b7
VG
128 /* Number of bytes disptached in current slice */
129 uint64_t bytes_disp[2];
8e89d13f
VG
130 /* Number of bio's dispatched in current slice */
131 unsigned int io_disp[2];
e43473b7
VG
132
133 /* When did we start a new slice */
134 unsigned long slice_start[2];
135 unsigned long slice_end[2];
136};
137
138struct throtl_data
139{
e43473b7 140 /* service tree for active throtl groups */
c9e0332e 141 struct throtl_service_queue service_queue;
e43473b7 142
e43473b7
VG
143 struct request_queue *queue;
144
145 /* Total Number of queued bios on READ and WRITE lists */
146 unsigned int nr_queued[2];
147
e43473b7 148 /* Work for dispatching throttled bios */
69df0ab0 149 struct work_struct dispatch_work;
e43473b7
VG
150};
151
69df0ab0
TH
152static void throtl_pending_timer_fn(unsigned long arg);
153
f95a04af
TH
154static inline struct throtl_grp *pd_to_tg(struct blkg_policy_data *pd)
155{
156 return pd ? container_of(pd, struct throtl_grp, pd) : NULL;
157}
158
3c798398 159static inline struct throtl_grp *blkg_to_tg(struct blkcg_gq *blkg)
0381411e 160{
f95a04af 161 return pd_to_tg(blkg_to_pd(blkg, &blkcg_policy_throtl));
0381411e
TH
162}
163
3c798398 164static inline struct blkcg_gq *tg_to_blkg(struct throtl_grp *tg)
0381411e 165{
f95a04af 166 return pd_to_blkg(&tg->pd);
0381411e
TH
167}
168
fda6f272
TH
169/**
170 * sq_to_tg - return the throl_grp the specified service queue belongs to
171 * @sq: the throtl_service_queue of interest
172 *
173 * Return the throtl_grp @sq belongs to. If @sq is the top-level one
174 * embedded in throtl_data, %NULL is returned.
175 */
176static struct throtl_grp *sq_to_tg(struct throtl_service_queue *sq)
177{
178 if (sq && sq->parent_sq)
179 return container_of(sq, struct throtl_grp, service_queue);
180 else
181 return NULL;
182}
183
184/**
185 * sq_to_td - return throtl_data the specified service queue belongs to
186 * @sq: the throtl_service_queue of interest
187 *
188 * A service_queue can be embeded in either a throtl_grp or throtl_data.
189 * Determine the associated throtl_data accordingly and return it.
190 */
191static struct throtl_data *sq_to_td(struct throtl_service_queue *sq)
192{
193 struct throtl_grp *tg = sq_to_tg(sq);
194
195 if (tg)
196 return tg->td;
197 else
198 return container_of(sq, struct throtl_data, service_queue);
199}
200
201/**
202 * throtl_log - log debug message via blktrace
203 * @sq: the service_queue being reported
204 * @fmt: printf format string
205 * @args: printf args
206 *
207 * The messages are prefixed with "throtl BLKG_NAME" if @sq belongs to a
208 * throtl_grp; otherwise, just "throtl".
fda6f272
TH
209 */
210#define throtl_log(sq, fmt, args...) do { \
211 struct throtl_grp *__tg = sq_to_tg((sq)); \
212 struct throtl_data *__td = sq_to_td((sq)); \
213 \
214 (void)__td; \
59fa0224
SL
215 if (likely(!blk_trace_note_message_enabled(__td->queue))) \
216 break; \
fda6f272
TH
217 if ((__tg)) { \
218 char __pbuf[128]; \
54e7ed12 219 \
fda6f272
TH
220 blkg_path(tg_to_blkg(__tg), __pbuf, sizeof(__pbuf)); \
221 blk_add_trace_msg(__td->queue, "throtl %s " fmt, __pbuf, ##args); \
222 } else { \
223 blk_add_trace_msg(__td->queue, "throtl " fmt, ##args); \
224 } \
54e7ed12 225} while (0)
e43473b7 226
c5cc2070
TH
227static void throtl_qnode_init(struct throtl_qnode *qn, struct throtl_grp *tg)
228{
229 INIT_LIST_HEAD(&qn->node);
230 bio_list_init(&qn->bios);
231 qn->tg = tg;
232}
233
234/**
235 * throtl_qnode_add_bio - add a bio to a throtl_qnode and activate it
236 * @bio: bio being added
237 * @qn: qnode to add bio to
238 * @queued: the service_queue->queued[] list @qn belongs to
239 *
240 * Add @bio to @qn and put @qn on @queued if it's not already on.
241 * @qn->tg's reference count is bumped when @qn is activated. See the
242 * comment on top of throtl_qnode definition for details.
243 */
244static void throtl_qnode_add_bio(struct bio *bio, struct throtl_qnode *qn,
245 struct list_head *queued)
246{
247 bio_list_add(&qn->bios, bio);
248 if (list_empty(&qn->node)) {
249 list_add_tail(&qn->node, queued);
250 blkg_get(tg_to_blkg(qn->tg));
251 }
252}
253
254/**
255 * throtl_peek_queued - peek the first bio on a qnode list
256 * @queued: the qnode list to peek
257 */
258static struct bio *throtl_peek_queued(struct list_head *queued)
259{
260 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
261 struct bio *bio;
262
263 if (list_empty(queued))
264 return NULL;
265
266 bio = bio_list_peek(&qn->bios);
267 WARN_ON_ONCE(!bio);
268 return bio;
269}
270
271/**
272 * throtl_pop_queued - pop the first bio form a qnode list
273 * @queued: the qnode list to pop a bio from
274 * @tg_to_put: optional out argument for throtl_grp to put
275 *
276 * Pop the first bio from the qnode list @queued. After popping, the first
277 * qnode is removed from @queued if empty or moved to the end of @queued so
278 * that the popping order is round-robin.
279 *
280 * When the first qnode is removed, its associated throtl_grp should be put
281 * too. If @tg_to_put is NULL, this function automatically puts it;
282 * otherwise, *@tg_to_put is set to the throtl_grp to put and the caller is
283 * responsible for putting it.
284 */
285static struct bio *throtl_pop_queued(struct list_head *queued,
286 struct throtl_grp **tg_to_put)
287{
288 struct throtl_qnode *qn = list_first_entry(queued, struct throtl_qnode, node);
289 struct bio *bio;
290
291 if (list_empty(queued))
292 return NULL;
293
294 bio = bio_list_pop(&qn->bios);
295 WARN_ON_ONCE(!bio);
296
297 if (bio_list_empty(&qn->bios)) {
298 list_del_init(&qn->node);
299 if (tg_to_put)
300 *tg_to_put = qn->tg;
301 else
302 blkg_put(tg_to_blkg(qn->tg));
303 } else {
304 list_move_tail(&qn->node, queued);
305 }
306
307 return bio;
308}
309
49a2f1e3 310/* init a service_queue, assumes the caller zeroed it */
b2ce2643 311static void throtl_service_queue_init(struct throtl_service_queue *sq)
49a2f1e3 312{
c5cc2070
TH
313 INIT_LIST_HEAD(&sq->queued[0]);
314 INIT_LIST_HEAD(&sq->queued[1]);
49a2f1e3 315 sq->pending_tree = RB_ROOT;
69df0ab0
TH
316 setup_timer(&sq->pending_timer, throtl_pending_timer_fn,
317 (unsigned long)sq);
318}
319
001bea73
TH
320static struct blkg_policy_data *throtl_pd_alloc(gfp_t gfp, int node)
321{
4fb72036 322 struct throtl_grp *tg;
24bdb8ef 323 int rw;
4fb72036
TH
324
325 tg = kzalloc_node(sizeof(*tg), gfp, node);
326 if (!tg)
77ea7338 327 return NULL;
4fb72036 328
b2ce2643
TH
329 throtl_service_queue_init(&tg->service_queue);
330
331 for (rw = READ; rw <= WRITE; rw++) {
332 throtl_qnode_init(&tg->qnode_on_self[rw], tg);
333 throtl_qnode_init(&tg->qnode_on_parent[rw], tg);
334 }
335
336 RB_CLEAR_NODE(&tg->rb_node);
337 tg->bps[READ] = -1;
338 tg->bps[WRITE] = -1;
339 tg->iops[READ] = -1;
340 tg->iops[WRITE] = -1;
341
4fb72036 342 return &tg->pd;
001bea73
TH
343}
344
a9520cd6 345static void throtl_pd_init(struct blkg_policy_data *pd)
a29a171e 346{
a9520cd6
TH
347 struct throtl_grp *tg = pd_to_tg(pd);
348 struct blkcg_gq *blkg = tg_to_blkg(tg);
77216b04 349 struct throtl_data *td = blkg->q->td;
b2ce2643 350 struct throtl_service_queue *sq = &tg->service_queue;
cd1604fa 351
9138125b 352 /*
aa6ec29b 353 * If on the default hierarchy, we switch to properly hierarchical
9138125b
TH
354 * behavior where limits on a given throtl_grp are applied to the
355 * whole subtree rather than just the group itself. e.g. If 16M
356 * read_bps limit is set on the root group, the whole system can't
357 * exceed 16M for the device.
358 *
aa6ec29b 359 * If not on the default hierarchy, the broken flat hierarchy
9138125b
TH
360 * behavior is retained where all throtl_grps are treated as if
361 * they're all separate root groups right below throtl_data.
362 * Limits of a group don't interact with limits of other groups
363 * regardless of the position of the group in the hierarchy.
364 */
b2ce2643 365 sq->parent_sq = &td->service_queue;
9e10a130 366 if (cgroup_subsys_on_dfl(io_cgrp_subsys) && blkg->parent)
b2ce2643 367 sq->parent_sq = &blkg_to_tg(blkg->parent)->service_queue;
77216b04 368 tg->td = td;
8a3d2615
TH
369}
370
693e751e
TH
371/*
372 * Set has_rules[] if @tg or any of its parents have limits configured.
373 * This doesn't require walking up to the top of the hierarchy as the
374 * parent's has_rules[] is guaranteed to be correct.
375 */
376static void tg_update_has_rules(struct throtl_grp *tg)
377{
378 struct throtl_grp *parent_tg = sq_to_tg(tg->service_queue.parent_sq);
379 int rw;
380
381 for (rw = READ; rw <= WRITE; rw++)
382 tg->has_rules[rw] = (parent_tg && parent_tg->has_rules[rw]) ||
383 (tg->bps[rw] != -1 || tg->iops[rw] != -1);
384}
385
a9520cd6 386static void throtl_pd_online(struct blkg_policy_data *pd)
693e751e
TH
387{
388 /*
389 * We don't want new groups to escape the limits of its ancestors.
390 * Update has_rules[] after a new group is brought online.
391 */
a9520cd6 392 tg_update_has_rules(pd_to_tg(pd));
693e751e
TH
393}
394
001bea73
TH
395static void throtl_pd_free(struct blkg_policy_data *pd)
396{
4fb72036
TH
397 struct throtl_grp *tg = pd_to_tg(pd);
398
b2ce2643 399 del_timer_sync(&tg->service_queue.pending_timer);
4fb72036 400 kfree(tg);
001bea73
TH
401}
402
0049af73
TH
403static struct throtl_grp *
404throtl_rb_first(struct throtl_service_queue *parent_sq)
e43473b7
VG
405{
406 /* Service tree is empty */
0049af73 407 if (!parent_sq->nr_pending)
e43473b7
VG
408 return NULL;
409
0049af73
TH
410 if (!parent_sq->first_pending)
411 parent_sq->first_pending = rb_first(&parent_sq->pending_tree);
e43473b7 412
0049af73
TH
413 if (parent_sq->first_pending)
414 return rb_entry_tg(parent_sq->first_pending);
e43473b7
VG
415
416 return NULL;
417}
418
419static void rb_erase_init(struct rb_node *n, struct rb_root *root)
420{
421 rb_erase(n, root);
422 RB_CLEAR_NODE(n);
423}
424
0049af73
TH
425static void throtl_rb_erase(struct rb_node *n,
426 struct throtl_service_queue *parent_sq)
e43473b7 427{
0049af73
TH
428 if (parent_sq->first_pending == n)
429 parent_sq->first_pending = NULL;
430 rb_erase_init(n, &parent_sq->pending_tree);
431 --parent_sq->nr_pending;
e43473b7
VG
432}
433
0049af73 434static void update_min_dispatch_time(struct throtl_service_queue *parent_sq)
e43473b7
VG
435{
436 struct throtl_grp *tg;
437
0049af73 438 tg = throtl_rb_first(parent_sq);
e43473b7
VG
439 if (!tg)
440 return;
441
0049af73 442 parent_sq->first_pending_disptime = tg->disptime;
e43473b7
VG
443}
444
77216b04 445static void tg_service_queue_add(struct throtl_grp *tg)
e43473b7 446{
77216b04 447 struct throtl_service_queue *parent_sq = tg->service_queue.parent_sq;
0049af73 448 struct rb_node **node = &parent_sq->pending_tree.rb_node;
e43473b7
VG
449 struct rb_node *parent = NULL;
450 struct throtl_grp *__tg;
451 unsigned long key = tg->disptime;
452 int left = 1;
453
454 while (*node != NULL) {
455 parent = *node;
456 __tg = rb_entry_tg(parent);
457
458 if (time_before(key, __tg->disptime))
459 node = &parent->rb_left;
460 else {
461 node = &parent->rb_right;
462 left = 0;
463 }
464 }
465
466 if (left)
0049af73 467 parent_sq->first_pending = &tg->rb_node;
e43473b7
VG
468
469 rb_link_node(&tg->rb_node, parent, node);
0049af73 470 rb_insert_color(&tg->rb_node, &parent_sq->pending_tree);
e43473b7
VG
471}
472
77216b04 473static void __throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 474{
77216b04 475 tg_service_queue_add(tg);
5b2c16aa 476 tg->flags |= THROTL_TG_PENDING;
77216b04 477 tg->service_queue.parent_sq->nr_pending++;
e43473b7
VG
478}
479
77216b04 480static void throtl_enqueue_tg(struct throtl_grp *tg)
e43473b7 481{
5b2c16aa 482 if (!(tg->flags & THROTL_TG_PENDING))
77216b04 483 __throtl_enqueue_tg(tg);
e43473b7
VG
484}
485
77216b04 486static void __throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 487{
77216b04 488 throtl_rb_erase(&tg->rb_node, tg->service_queue.parent_sq);
5b2c16aa 489 tg->flags &= ~THROTL_TG_PENDING;
e43473b7
VG
490}
491
77216b04 492static void throtl_dequeue_tg(struct throtl_grp *tg)
e43473b7 493{
5b2c16aa 494 if (tg->flags & THROTL_TG_PENDING)
77216b04 495 __throtl_dequeue_tg(tg);
e43473b7
VG
496}
497
a9131a27 498/* Call with queue lock held */
69df0ab0
TH
499static void throtl_schedule_pending_timer(struct throtl_service_queue *sq,
500 unsigned long expires)
a9131a27 501{
69df0ab0
TH
502 mod_timer(&sq->pending_timer, expires);
503 throtl_log(sq, "schedule timer. delay=%lu jiffies=%lu",
504 expires - jiffies, jiffies);
a9131a27
TH
505}
506
7f52f98c
TH
507/**
508 * throtl_schedule_next_dispatch - schedule the next dispatch cycle
509 * @sq: the service_queue to schedule dispatch for
510 * @force: force scheduling
511 *
512 * Arm @sq->pending_timer so that the next dispatch cycle starts on the
513 * dispatch time of the first pending child. Returns %true if either timer
514 * is armed or there's no pending child left. %false if the current
515 * dispatch window is still open and the caller should continue
516 * dispatching.
517 *
518 * If @force is %true, the dispatch timer is always scheduled and this
519 * function is guaranteed to return %true. This is to be used when the
520 * caller can't dispatch itself and needs to invoke pending_timer
521 * unconditionally. Note that forced scheduling is likely to induce short
522 * delay before dispatch starts even if @sq->first_pending_disptime is not
523 * in the future and thus shouldn't be used in hot paths.
524 */
525static bool throtl_schedule_next_dispatch(struct throtl_service_queue *sq,
526 bool force)
e43473b7 527{
6a525600 528 /* any pending children left? */
c9e0332e 529 if (!sq->nr_pending)
7f52f98c 530 return true;
e43473b7 531
c9e0332e 532 update_min_dispatch_time(sq);
e43473b7 533
69df0ab0 534 /* is the next dispatch time in the future? */
7f52f98c 535 if (force || time_after(sq->first_pending_disptime, jiffies)) {
69df0ab0 536 throtl_schedule_pending_timer(sq, sq->first_pending_disptime);
7f52f98c 537 return true;
69df0ab0
TH
538 }
539
7f52f98c
TH
540 /* tell the caller to continue dispatching */
541 return false;
e43473b7
VG
542}
543
32ee5bc4
VG
544static inline void throtl_start_new_slice_with_credit(struct throtl_grp *tg,
545 bool rw, unsigned long start)
546{
547 tg->bytes_disp[rw] = 0;
548 tg->io_disp[rw] = 0;
549
550 /*
551 * Previous slice has expired. We must have trimmed it after last
552 * bio dispatch. That means since start of last slice, we never used
553 * that bandwidth. Do try to make use of that bandwidth while giving
554 * credit.
555 */
556 if (time_after_eq(start, tg->slice_start[rw]))
557 tg->slice_start[rw] = start;
558
559 tg->slice_end[rw] = jiffies + throtl_slice;
560 throtl_log(&tg->service_queue,
561 "[%c] new slice with credit start=%lu end=%lu jiffies=%lu",
562 rw == READ ? 'R' : 'W', tg->slice_start[rw],
563 tg->slice_end[rw], jiffies);
564}
565
0f3457f6 566static inline void throtl_start_new_slice(struct throtl_grp *tg, bool rw)
e43473b7
VG
567{
568 tg->bytes_disp[rw] = 0;
8e89d13f 569 tg->io_disp[rw] = 0;
e43473b7
VG
570 tg->slice_start[rw] = jiffies;
571 tg->slice_end[rw] = jiffies + throtl_slice;
fda6f272
TH
572 throtl_log(&tg->service_queue,
573 "[%c] new slice start=%lu end=%lu jiffies=%lu",
574 rw == READ ? 'R' : 'W', tg->slice_start[rw],
575 tg->slice_end[rw], jiffies);
e43473b7
VG
576}
577
0f3457f6
TH
578static inline void throtl_set_slice_end(struct throtl_grp *tg, bool rw,
579 unsigned long jiffy_end)
d1ae8ffd
VG
580{
581 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
582}
583
0f3457f6
TH
584static inline void throtl_extend_slice(struct throtl_grp *tg, bool rw,
585 unsigned long jiffy_end)
e43473b7
VG
586{
587 tg->slice_end[rw] = roundup(jiffy_end, throtl_slice);
fda6f272
TH
588 throtl_log(&tg->service_queue,
589 "[%c] extend slice start=%lu end=%lu jiffies=%lu",
590 rw == READ ? 'R' : 'W', tg->slice_start[rw],
591 tg->slice_end[rw], jiffies);
e43473b7
VG
592}
593
594/* Determine if previously allocated or extended slice is complete or not */
0f3457f6 595static bool throtl_slice_used(struct throtl_grp *tg, bool rw)
e43473b7
VG
596{
597 if (time_in_range(jiffies, tg->slice_start[rw], tg->slice_end[rw]))
5cf8c227 598 return false;
e43473b7
VG
599
600 return 1;
601}
602
603/* Trim the used slices and adjust slice start accordingly */
0f3457f6 604static inline void throtl_trim_slice(struct throtl_grp *tg, bool rw)
e43473b7 605{
3aad5d3e
VG
606 unsigned long nr_slices, time_elapsed, io_trim;
607 u64 bytes_trim, tmp;
e43473b7
VG
608
609 BUG_ON(time_before(tg->slice_end[rw], tg->slice_start[rw]));
610
611 /*
612 * If bps are unlimited (-1), then time slice don't get
613 * renewed. Don't try to trim the slice if slice is used. A new
614 * slice will start when appropriate.
615 */
0f3457f6 616 if (throtl_slice_used(tg, rw))
e43473b7
VG
617 return;
618
d1ae8ffd
VG
619 /*
620 * A bio has been dispatched. Also adjust slice_end. It might happen
621 * that initially cgroup limit was very low resulting in high
622 * slice_end, but later limit was bumped up and bio was dispached
623 * sooner, then we need to reduce slice_end. A high bogus slice_end
624 * is bad because it does not allow new slice to start.
625 */
626
0f3457f6 627 throtl_set_slice_end(tg, rw, jiffies + throtl_slice);
d1ae8ffd 628
e43473b7
VG
629 time_elapsed = jiffies - tg->slice_start[rw];
630
631 nr_slices = time_elapsed / throtl_slice;
632
633 if (!nr_slices)
634 return;
3aad5d3e
VG
635 tmp = tg->bps[rw] * throtl_slice * nr_slices;
636 do_div(tmp, HZ);
637 bytes_trim = tmp;
e43473b7 638
8e89d13f 639 io_trim = (tg->iops[rw] * throtl_slice * nr_slices)/HZ;
e43473b7 640
8e89d13f 641 if (!bytes_trim && !io_trim)
e43473b7
VG
642 return;
643
644 if (tg->bytes_disp[rw] >= bytes_trim)
645 tg->bytes_disp[rw] -= bytes_trim;
646 else
647 tg->bytes_disp[rw] = 0;
648
8e89d13f
VG
649 if (tg->io_disp[rw] >= io_trim)
650 tg->io_disp[rw] -= io_trim;
651 else
652 tg->io_disp[rw] = 0;
653
e43473b7
VG
654 tg->slice_start[rw] += nr_slices * throtl_slice;
655
fda6f272
TH
656 throtl_log(&tg->service_queue,
657 "[%c] trim slice nr=%lu bytes=%llu io=%lu start=%lu end=%lu jiffies=%lu",
658 rw == READ ? 'R' : 'W', nr_slices, bytes_trim, io_trim,
659 tg->slice_start[rw], tg->slice_end[rw], jiffies);
e43473b7
VG
660}
661
0f3457f6
TH
662static bool tg_with_in_iops_limit(struct throtl_grp *tg, struct bio *bio,
663 unsigned long *wait)
e43473b7
VG
664{
665 bool rw = bio_data_dir(bio);
8e89d13f 666 unsigned int io_allowed;
e43473b7 667 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
c49c06e4 668 u64 tmp;
e43473b7 669
8e89d13f 670 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
e43473b7 671
8e89d13f
VG
672 /* Slice has just started. Consider one slice interval */
673 if (!jiffy_elapsed)
674 jiffy_elapsed_rnd = throtl_slice;
675
676 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
677
c49c06e4
VG
678 /*
679 * jiffy_elapsed_rnd should not be a big value as minimum iops can be
680 * 1 then at max jiffy elapsed should be equivalent of 1 second as we
681 * will allow dispatch after 1 second and after that slice should
682 * have been trimmed.
683 */
684
685 tmp = (u64)tg->iops[rw] * jiffy_elapsed_rnd;
686 do_div(tmp, HZ);
687
688 if (tmp > UINT_MAX)
689 io_allowed = UINT_MAX;
690 else
691 io_allowed = tmp;
8e89d13f
VG
692
693 if (tg->io_disp[rw] + 1 <= io_allowed) {
e43473b7
VG
694 if (wait)
695 *wait = 0;
5cf8c227 696 return true;
e43473b7
VG
697 }
698
8e89d13f
VG
699 /* Calc approx time to dispatch */
700 jiffy_wait = ((tg->io_disp[rw] + 1) * HZ)/tg->iops[rw] + 1;
701
702 if (jiffy_wait > jiffy_elapsed)
703 jiffy_wait = jiffy_wait - jiffy_elapsed;
704 else
705 jiffy_wait = 1;
706
707 if (wait)
708 *wait = jiffy_wait;
709 return 0;
710}
711
0f3457f6
TH
712static bool tg_with_in_bps_limit(struct throtl_grp *tg, struct bio *bio,
713 unsigned long *wait)
8e89d13f
VG
714{
715 bool rw = bio_data_dir(bio);
3aad5d3e 716 u64 bytes_allowed, extra_bytes, tmp;
8e89d13f 717 unsigned long jiffy_elapsed, jiffy_wait, jiffy_elapsed_rnd;
e43473b7
VG
718
719 jiffy_elapsed = jiffy_elapsed_rnd = jiffies - tg->slice_start[rw];
720
721 /* Slice has just started. Consider one slice interval */
722 if (!jiffy_elapsed)
723 jiffy_elapsed_rnd = throtl_slice;
724
725 jiffy_elapsed_rnd = roundup(jiffy_elapsed_rnd, throtl_slice);
726
5e901a2b
VG
727 tmp = tg->bps[rw] * jiffy_elapsed_rnd;
728 do_div(tmp, HZ);
3aad5d3e 729 bytes_allowed = tmp;
e43473b7 730
4f024f37 731 if (tg->bytes_disp[rw] + bio->bi_iter.bi_size <= bytes_allowed) {
e43473b7
VG
732 if (wait)
733 *wait = 0;
5cf8c227 734 return true;
e43473b7
VG
735 }
736
737 /* Calc approx time to dispatch */
4f024f37 738 extra_bytes = tg->bytes_disp[rw] + bio->bi_iter.bi_size - bytes_allowed;
e43473b7
VG
739 jiffy_wait = div64_u64(extra_bytes * HZ, tg->bps[rw]);
740
741 if (!jiffy_wait)
742 jiffy_wait = 1;
743
744 /*
745 * This wait time is without taking into consideration the rounding
746 * up we did. Add that time also.
747 */
748 jiffy_wait = jiffy_wait + (jiffy_elapsed_rnd - jiffy_elapsed);
e43473b7
VG
749 if (wait)
750 *wait = jiffy_wait;
8e89d13f
VG
751 return 0;
752}
753
754/*
755 * Returns whether one can dispatch a bio or not. Also returns approx number
756 * of jiffies to wait before this bio is with-in IO rate and can be dispatched
757 */
0f3457f6
TH
758static bool tg_may_dispatch(struct throtl_grp *tg, struct bio *bio,
759 unsigned long *wait)
8e89d13f
VG
760{
761 bool rw = bio_data_dir(bio);
762 unsigned long bps_wait = 0, iops_wait = 0, max_wait = 0;
763
764 /*
765 * Currently whole state machine of group depends on first bio
766 * queued in the group bio list. So one should not be calling
767 * this function with a different bio if there are other bios
768 * queued.
769 */
73f0d49a 770 BUG_ON(tg->service_queue.nr_queued[rw] &&
c5cc2070 771 bio != throtl_peek_queued(&tg->service_queue.queued[rw]));
e43473b7 772
8e89d13f
VG
773 /* If tg->bps = -1, then BW is unlimited */
774 if (tg->bps[rw] == -1 && tg->iops[rw] == -1) {
775 if (wait)
776 *wait = 0;
5cf8c227 777 return true;
8e89d13f
VG
778 }
779
780 /*
781 * If previous slice expired, start a new one otherwise renew/extend
782 * existing slice to make sure it is at least throtl_slice interval
164c80ed
VG
783 * long since now. New slice is started only for empty throttle group.
784 * If there is queued bio, that means there should be an active
785 * slice and it should be extended instead.
8e89d13f 786 */
164c80ed 787 if (throtl_slice_used(tg, rw) && !(tg->service_queue.nr_queued[rw]))
0f3457f6 788 throtl_start_new_slice(tg, rw);
8e89d13f
VG
789 else {
790 if (time_before(tg->slice_end[rw], jiffies + throtl_slice))
0f3457f6 791 throtl_extend_slice(tg, rw, jiffies + throtl_slice);
8e89d13f
VG
792 }
793
0f3457f6
TH
794 if (tg_with_in_bps_limit(tg, bio, &bps_wait) &&
795 tg_with_in_iops_limit(tg, bio, &iops_wait)) {
8e89d13f
VG
796 if (wait)
797 *wait = 0;
798 return 1;
799 }
800
801 max_wait = max(bps_wait, iops_wait);
802
803 if (wait)
804 *wait = max_wait;
805
806 if (time_before(tg->slice_end[rw], jiffies + max_wait))
0f3457f6 807 throtl_extend_slice(tg, rw, jiffies + max_wait);
e43473b7
VG
808
809 return 0;
810}
811
812static void throtl_charge_bio(struct throtl_grp *tg, struct bio *bio)
813{
814 bool rw = bio_data_dir(bio);
e43473b7
VG
815
816 /* Charge the bio to the group */
4f024f37 817 tg->bytes_disp[rw] += bio->bi_iter.bi_size;
8e89d13f 818 tg->io_disp[rw]++;
e43473b7 819
2a0f61e6 820 /*
8d2bbd4c 821 * BIO_THROTTLED is used to prevent the same bio to be throttled
2a0f61e6
TH
822 * more than once as a throttled bio will go through blk-throtl the
823 * second time when it eventually gets issued. Set it when a bio
824 * is being charged to a tg.
2a0f61e6 825 */
8d2bbd4c
CH
826 if (!bio_flagged(bio, BIO_THROTTLED))
827 bio_set_flag(bio, BIO_THROTTLED);
e43473b7
VG
828}
829
c5cc2070
TH
830/**
831 * throtl_add_bio_tg - add a bio to the specified throtl_grp
832 * @bio: bio to add
833 * @qn: qnode to use
834 * @tg: the target throtl_grp
835 *
836 * Add @bio to @tg's service_queue using @qn. If @qn is not specified,
837 * tg->qnode_on_self[] is used.
838 */
839static void throtl_add_bio_tg(struct bio *bio, struct throtl_qnode *qn,
840 struct throtl_grp *tg)
e43473b7 841{
73f0d49a 842 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
843 bool rw = bio_data_dir(bio);
844
c5cc2070
TH
845 if (!qn)
846 qn = &tg->qnode_on_self[rw];
847
0e9f4164
TH
848 /*
849 * If @tg doesn't currently have any bios queued in the same
850 * direction, queueing @bio can change when @tg should be
851 * dispatched. Mark that @tg was empty. This is automatically
852 * cleaered on the next tg_update_disptime().
853 */
854 if (!sq->nr_queued[rw])
855 tg->flags |= THROTL_TG_WAS_EMPTY;
856
c5cc2070
TH
857 throtl_qnode_add_bio(bio, qn, &sq->queued[rw]);
858
73f0d49a 859 sq->nr_queued[rw]++;
77216b04 860 throtl_enqueue_tg(tg);
e43473b7
VG
861}
862
77216b04 863static void tg_update_disptime(struct throtl_grp *tg)
e43473b7 864{
73f0d49a 865 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
866 unsigned long read_wait = -1, write_wait = -1, min_wait = -1, disptime;
867 struct bio *bio;
868
c5cc2070 869 if ((bio = throtl_peek_queued(&sq->queued[READ])))
0f3457f6 870 tg_may_dispatch(tg, bio, &read_wait);
e43473b7 871
c5cc2070 872 if ((bio = throtl_peek_queued(&sq->queued[WRITE])))
0f3457f6 873 tg_may_dispatch(tg, bio, &write_wait);
e43473b7
VG
874
875 min_wait = min(read_wait, write_wait);
876 disptime = jiffies + min_wait;
877
e43473b7 878 /* Update dispatch time */
77216b04 879 throtl_dequeue_tg(tg);
e43473b7 880 tg->disptime = disptime;
77216b04 881 throtl_enqueue_tg(tg);
0e9f4164
TH
882
883 /* see throtl_add_bio_tg() */
884 tg->flags &= ~THROTL_TG_WAS_EMPTY;
e43473b7
VG
885}
886
32ee5bc4
VG
887static void start_parent_slice_with_credit(struct throtl_grp *child_tg,
888 struct throtl_grp *parent_tg, bool rw)
889{
890 if (throtl_slice_used(parent_tg, rw)) {
891 throtl_start_new_slice_with_credit(parent_tg, rw,
892 child_tg->slice_start[rw]);
893 }
894
895}
896
77216b04 897static void tg_dispatch_one_bio(struct throtl_grp *tg, bool rw)
e43473b7 898{
73f0d49a 899 struct throtl_service_queue *sq = &tg->service_queue;
6bc9c2b4
TH
900 struct throtl_service_queue *parent_sq = sq->parent_sq;
901 struct throtl_grp *parent_tg = sq_to_tg(parent_sq);
c5cc2070 902 struct throtl_grp *tg_to_put = NULL;
e43473b7
VG
903 struct bio *bio;
904
c5cc2070
TH
905 /*
906 * @bio is being transferred from @tg to @parent_sq. Popping a bio
907 * from @tg may put its reference and @parent_sq might end up
908 * getting released prematurely. Remember the tg to put and put it
909 * after @bio is transferred to @parent_sq.
910 */
911 bio = throtl_pop_queued(&sq->queued[rw], &tg_to_put);
73f0d49a 912 sq->nr_queued[rw]--;
e43473b7
VG
913
914 throtl_charge_bio(tg, bio);
6bc9c2b4
TH
915
916 /*
917 * If our parent is another tg, we just need to transfer @bio to
918 * the parent using throtl_add_bio_tg(). If our parent is
919 * @td->service_queue, @bio is ready to be issued. Put it on its
920 * bio_lists[] and decrease total number queued. The caller is
921 * responsible for issuing these bios.
922 */
923 if (parent_tg) {
c5cc2070 924 throtl_add_bio_tg(bio, &tg->qnode_on_parent[rw], parent_tg);
32ee5bc4 925 start_parent_slice_with_credit(tg, parent_tg, rw);
6bc9c2b4 926 } else {
c5cc2070
TH
927 throtl_qnode_add_bio(bio, &tg->qnode_on_parent[rw],
928 &parent_sq->queued[rw]);
6bc9c2b4
TH
929 BUG_ON(tg->td->nr_queued[rw] <= 0);
930 tg->td->nr_queued[rw]--;
931 }
e43473b7 932
0f3457f6 933 throtl_trim_slice(tg, rw);
6bc9c2b4 934
c5cc2070
TH
935 if (tg_to_put)
936 blkg_put(tg_to_blkg(tg_to_put));
e43473b7
VG
937}
938
77216b04 939static int throtl_dispatch_tg(struct throtl_grp *tg)
e43473b7 940{
73f0d49a 941 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
942 unsigned int nr_reads = 0, nr_writes = 0;
943 unsigned int max_nr_reads = throtl_grp_quantum*3/4;
c2f6805d 944 unsigned int max_nr_writes = throtl_grp_quantum - max_nr_reads;
e43473b7
VG
945 struct bio *bio;
946
947 /* Try to dispatch 75% READS and 25% WRITES */
948
c5cc2070 949 while ((bio = throtl_peek_queued(&sq->queued[READ])) &&
0f3457f6 950 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 951
77216b04 952 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
953 nr_reads++;
954
955 if (nr_reads >= max_nr_reads)
956 break;
957 }
958
c5cc2070 959 while ((bio = throtl_peek_queued(&sq->queued[WRITE])) &&
0f3457f6 960 tg_may_dispatch(tg, bio, NULL)) {
e43473b7 961
77216b04 962 tg_dispatch_one_bio(tg, bio_data_dir(bio));
e43473b7
VG
963 nr_writes++;
964
965 if (nr_writes >= max_nr_writes)
966 break;
967 }
968
969 return nr_reads + nr_writes;
970}
971
651930bc 972static int throtl_select_dispatch(struct throtl_service_queue *parent_sq)
e43473b7
VG
973{
974 unsigned int nr_disp = 0;
e43473b7
VG
975
976 while (1) {
73f0d49a
TH
977 struct throtl_grp *tg = throtl_rb_first(parent_sq);
978 struct throtl_service_queue *sq = &tg->service_queue;
e43473b7
VG
979
980 if (!tg)
981 break;
982
983 if (time_before(jiffies, tg->disptime))
984 break;
985
77216b04 986 throtl_dequeue_tg(tg);
e43473b7 987
77216b04 988 nr_disp += throtl_dispatch_tg(tg);
e43473b7 989
73f0d49a 990 if (sq->nr_queued[0] || sq->nr_queued[1])
77216b04 991 tg_update_disptime(tg);
e43473b7
VG
992
993 if (nr_disp >= throtl_quantum)
994 break;
995 }
996
997 return nr_disp;
998}
999
6e1a5704
TH
1000/**
1001 * throtl_pending_timer_fn - timer function for service_queue->pending_timer
1002 * @arg: the throtl_service_queue being serviced
1003 *
1004 * This timer is armed when a child throtl_grp with active bio's become
1005 * pending and queued on the service_queue's pending_tree and expires when
1006 * the first child throtl_grp should be dispatched. This function
2e48a530
TH
1007 * dispatches bio's from the children throtl_grps to the parent
1008 * service_queue.
1009 *
1010 * If the parent's parent is another throtl_grp, dispatching is propagated
1011 * by either arming its pending_timer or repeating dispatch directly. If
1012 * the top-level service_tree is reached, throtl_data->dispatch_work is
1013 * kicked so that the ready bio's are issued.
6e1a5704 1014 */
69df0ab0
TH
1015static void throtl_pending_timer_fn(unsigned long arg)
1016{
1017 struct throtl_service_queue *sq = (void *)arg;
2e48a530 1018 struct throtl_grp *tg = sq_to_tg(sq);
69df0ab0 1019 struct throtl_data *td = sq_to_td(sq);
cb76199c 1020 struct request_queue *q = td->queue;
2e48a530
TH
1021 struct throtl_service_queue *parent_sq;
1022 bool dispatched;
6e1a5704 1023 int ret;
e43473b7
VG
1024
1025 spin_lock_irq(q->queue_lock);
2e48a530
TH
1026again:
1027 parent_sq = sq->parent_sq;
1028 dispatched = false;
e43473b7 1029
7f52f98c
TH
1030 while (true) {
1031 throtl_log(sq, "dispatch nr_queued=%u read=%u write=%u",
2e48a530
TH
1032 sq->nr_queued[READ] + sq->nr_queued[WRITE],
1033 sq->nr_queued[READ], sq->nr_queued[WRITE]);
7f52f98c
TH
1034
1035 ret = throtl_select_dispatch(sq);
1036 if (ret) {
7f52f98c
TH
1037 throtl_log(sq, "bios disp=%u", ret);
1038 dispatched = true;
1039 }
e43473b7 1040
7f52f98c
TH
1041 if (throtl_schedule_next_dispatch(sq, false))
1042 break;
e43473b7 1043
7f52f98c
TH
1044 /* this dispatch windows is still open, relax and repeat */
1045 spin_unlock_irq(q->queue_lock);
1046 cpu_relax();
1047 spin_lock_irq(q->queue_lock);
651930bc 1048 }
e43473b7 1049
2e48a530
TH
1050 if (!dispatched)
1051 goto out_unlock;
6e1a5704 1052
2e48a530
TH
1053 if (parent_sq) {
1054 /* @parent_sq is another throl_grp, propagate dispatch */
1055 if (tg->flags & THROTL_TG_WAS_EMPTY) {
1056 tg_update_disptime(tg);
1057 if (!throtl_schedule_next_dispatch(parent_sq, false)) {
1058 /* window is already open, repeat dispatching */
1059 sq = parent_sq;
1060 tg = sq_to_tg(sq);
1061 goto again;
1062 }
1063 }
1064 } else {
1065 /* reached the top-level, queue issueing */
1066 queue_work(kthrotld_workqueue, &td->dispatch_work);
1067 }
1068out_unlock:
e43473b7 1069 spin_unlock_irq(q->queue_lock);
6e1a5704 1070}
e43473b7 1071
6e1a5704
TH
1072/**
1073 * blk_throtl_dispatch_work_fn - work function for throtl_data->dispatch_work
1074 * @work: work item being executed
1075 *
1076 * This function is queued for execution when bio's reach the bio_lists[]
1077 * of throtl_data->service_queue. Those bio's are ready and issued by this
1078 * function.
1079 */
8876e140 1080static void blk_throtl_dispatch_work_fn(struct work_struct *work)
6e1a5704
TH
1081{
1082 struct throtl_data *td = container_of(work, struct throtl_data,
1083 dispatch_work);
1084 struct throtl_service_queue *td_sq = &td->service_queue;
1085 struct request_queue *q = td->queue;
1086 struct bio_list bio_list_on_stack;
1087 struct bio *bio;
1088 struct blk_plug plug;
1089 int rw;
1090
1091 bio_list_init(&bio_list_on_stack);
1092
1093 spin_lock_irq(q->queue_lock);
c5cc2070
TH
1094 for (rw = READ; rw <= WRITE; rw++)
1095 while ((bio = throtl_pop_queued(&td_sq->queued[rw], NULL)))
1096 bio_list_add(&bio_list_on_stack, bio);
6e1a5704
TH
1097 spin_unlock_irq(q->queue_lock);
1098
1099 if (!bio_list_empty(&bio_list_on_stack)) {
69d60eb9 1100 blk_start_plug(&plug);
e43473b7
VG
1101 while((bio = bio_list_pop(&bio_list_on_stack)))
1102 generic_make_request(bio);
69d60eb9 1103 blk_finish_plug(&plug);
e43473b7 1104 }
e43473b7
VG
1105}
1106
f95a04af
TH
1107static u64 tg_prfill_conf_u64(struct seq_file *sf, struct blkg_policy_data *pd,
1108 int off)
60c2bc2d 1109{
f95a04af
TH
1110 struct throtl_grp *tg = pd_to_tg(pd);
1111 u64 v = *(u64 *)((void *)tg + off);
60c2bc2d 1112
af133ceb 1113 if (v == -1)
60c2bc2d 1114 return 0;
f95a04af 1115 return __blkg_prfill_u64(sf, pd, v);
60c2bc2d
TH
1116}
1117
f95a04af
TH
1118static u64 tg_prfill_conf_uint(struct seq_file *sf, struct blkg_policy_data *pd,
1119 int off)
e43473b7 1120{
f95a04af
TH
1121 struct throtl_grp *tg = pd_to_tg(pd);
1122 unsigned int v = *(unsigned int *)((void *)tg + off);
fe071437 1123
af133ceb
TH
1124 if (v == -1)
1125 return 0;
f95a04af 1126 return __blkg_prfill_u64(sf, pd, v);
e43473b7
VG
1127}
1128
2da8ca82 1129static int tg_print_conf_u64(struct seq_file *sf, void *v)
8e89d13f 1130{
2da8ca82
TH
1131 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_u64,
1132 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1133 return 0;
8e89d13f
VG
1134}
1135
2da8ca82 1136static int tg_print_conf_uint(struct seq_file *sf, void *v)
8e89d13f 1137{
2da8ca82
TH
1138 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_conf_uint,
1139 &blkcg_policy_throtl, seq_cft(sf)->private, false);
af133ceb 1140 return 0;
60c2bc2d
TH
1141}
1142
69948b07 1143static void tg_conf_updated(struct throtl_grp *tg)
60c2bc2d 1144{
69948b07 1145 struct throtl_service_queue *sq = &tg->service_queue;
492eb21b 1146 struct cgroup_subsys_state *pos_css;
69948b07 1147 struct blkcg_gq *blkg;
af133ceb 1148
fda6f272
TH
1149 throtl_log(&tg->service_queue,
1150 "limit change rbps=%llu wbps=%llu riops=%u wiops=%u",
1151 tg->bps[READ], tg->bps[WRITE],
1152 tg->iops[READ], tg->iops[WRITE]);
632b4493 1153
693e751e
TH
1154 /*
1155 * Update has_rules[] flags for the updated tg's subtree. A tg is
1156 * considered to have rules if either the tg itself or any of its
1157 * ancestors has rules. This identifies groups without any
1158 * restrictions in the whole hierarchy and allows them to bypass
1159 * blk-throttle.
1160 */
69948b07 1161 blkg_for_each_descendant_pre(blkg, pos_css, tg_to_blkg(tg))
693e751e
TH
1162 tg_update_has_rules(blkg_to_tg(blkg));
1163
632b4493
TH
1164 /*
1165 * We're already holding queue_lock and know @tg is valid. Let's
1166 * apply the new config directly.
1167 *
1168 * Restart the slices for both READ and WRITES. It might happen
1169 * that a group's limit are dropped suddenly and we don't want to
1170 * account recently dispatched IO with new low rate.
1171 */
0f3457f6
TH
1172 throtl_start_new_slice(tg, 0);
1173 throtl_start_new_slice(tg, 1);
632b4493 1174
5b2c16aa 1175 if (tg->flags & THROTL_TG_PENDING) {
77216b04 1176 tg_update_disptime(tg);
7f52f98c 1177 throtl_schedule_next_dispatch(sq->parent_sq, true);
632b4493 1178 }
69948b07
TH
1179}
1180
1181static ssize_t tg_set_conf(struct kernfs_open_file *of,
1182 char *buf, size_t nbytes, loff_t off, bool is_u64)
1183{
1184 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1185 struct blkg_conf_ctx ctx;
1186 struct throtl_grp *tg;
1187 int ret;
1188 u64 v;
1189
1190 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1191 if (ret)
1192 return ret;
1193
1194 ret = -EINVAL;
1195 if (sscanf(ctx.body, "%llu", &v) != 1)
1196 goto out_finish;
1197 if (!v)
1198 v = -1;
1199
1200 tg = blkg_to_tg(ctx.blkg);
1201
1202 if (is_u64)
1203 *(u64 *)((void *)tg + of_cft(of)->private) = v;
1204 else
1205 *(unsigned int *)((void *)tg + of_cft(of)->private) = v;
60c2bc2d 1206
69948b07 1207 tg_conf_updated(tg);
36aa9e5f
TH
1208 ret = 0;
1209out_finish:
60c2bc2d 1210 blkg_conf_finish(&ctx);
36aa9e5f 1211 return ret ?: nbytes;
8e89d13f
VG
1212}
1213
451af504
TH
1214static ssize_t tg_set_conf_u64(struct kernfs_open_file *of,
1215 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1216{
451af504 1217 return tg_set_conf(of, buf, nbytes, off, true);
60c2bc2d
TH
1218}
1219
451af504
TH
1220static ssize_t tg_set_conf_uint(struct kernfs_open_file *of,
1221 char *buf, size_t nbytes, loff_t off)
60c2bc2d 1222{
451af504 1223 return tg_set_conf(of, buf, nbytes, off, false);
60c2bc2d
TH
1224}
1225
880f50e2 1226static struct cftype throtl_legacy_files[] = {
60c2bc2d
TH
1227 {
1228 .name = "throttle.read_bps_device",
af133ceb 1229 .private = offsetof(struct throtl_grp, bps[READ]),
2da8ca82 1230 .seq_show = tg_print_conf_u64,
451af504 1231 .write = tg_set_conf_u64,
60c2bc2d
TH
1232 },
1233 {
1234 .name = "throttle.write_bps_device",
af133ceb 1235 .private = offsetof(struct throtl_grp, bps[WRITE]),
2da8ca82 1236 .seq_show = tg_print_conf_u64,
451af504 1237 .write = tg_set_conf_u64,
60c2bc2d
TH
1238 },
1239 {
1240 .name = "throttle.read_iops_device",
af133ceb 1241 .private = offsetof(struct throtl_grp, iops[READ]),
2da8ca82 1242 .seq_show = tg_print_conf_uint,
451af504 1243 .write = tg_set_conf_uint,
60c2bc2d
TH
1244 },
1245 {
1246 .name = "throttle.write_iops_device",
af133ceb 1247 .private = offsetof(struct throtl_grp, iops[WRITE]),
2da8ca82 1248 .seq_show = tg_print_conf_uint,
451af504 1249 .write = tg_set_conf_uint,
60c2bc2d
TH
1250 },
1251 {
1252 .name = "throttle.io_service_bytes",
77ea7338
TH
1253 .private = (unsigned long)&blkcg_policy_throtl,
1254 .seq_show = blkg_print_stat_bytes,
60c2bc2d
TH
1255 },
1256 {
1257 .name = "throttle.io_serviced",
77ea7338
TH
1258 .private = (unsigned long)&blkcg_policy_throtl,
1259 .seq_show = blkg_print_stat_ios,
60c2bc2d
TH
1260 },
1261 { } /* terminate */
1262};
1263
2ee867dc
TH
1264static u64 tg_prfill_max(struct seq_file *sf, struct blkg_policy_data *pd,
1265 int off)
1266{
1267 struct throtl_grp *tg = pd_to_tg(pd);
1268 const char *dname = blkg_dev_name(pd->blkg);
1269 char bufs[4][21] = { "max", "max", "max", "max" };
1270
1271 if (!dname)
1272 return 0;
1273 if (tg->bps[READ] == -1 && tg->bps[WRITE] == -1 &&
1274 tg->iops[READ] == -1 && tg->iops[WRITE] == -1)
1275 return 0;
1276
1277 if (tg->bps[READ] != -1)
1278 snprintf(bufs[0], sizeof(bufs[0]), "%llu", tg->bps[READ]);
1279 if (tg->bps[WRITE] != -1)
1280 snprintf(bufs[1], sizeof(bufs[1]), "%llu", tg->bps[WRITE]);
1281 if (tg->iops[READ] != -1)
1282 snprintf(bufs[2], sizeof(bufs[2]), "%u", tg->iops[READ]);
1283 if (tg->iops[WRITE] != -1)
1284 snprintf(bufs[3], sizeof(bufs[3]), "%u", tg->iops[WRITE]);
1285
1286 seq_printf(sf, "%s rbps=%s wbps=%s riops=%s wiops=%s\n",
1287 dname, bufs[0], bufs[1], bufs[2], bufs[3]);
1288 return 0;
1289}
1290
1291static int tg_print_max(struct seq_file *sf, void *v)
1292{
1293 blkcg_print_blkgs(sf, css_to_blkcg(seq_css(sf)), tg_prfill_max,
1294 &blkcg_policy_throtl, seq_cft(sf)->private, false);
1295 return 0;
1296}
1297
1298static ssize_t tg_set_max(struct kernfs_open_file *of,
1299 char *buf, size_t nbytes, loff_t off)
1300{
1301 struct blkcg *blkcg = css_to_blkcg(of_css(of));
1302 struct blkg_conf_ctx ctx;
1303 struct throtl_grp *tg;
1304 u64 v[4];
1305 int ret;
1306
1307 ret = blkg_conf_prep(blkcg, &blkcg_policy_throtl, buf, &ctx);
1308 if (ret)
1309 return ret;
1310
1311 tg = blkg_to_tg(ctx.blkg);
1312
1313 v[0] = tg->bps[READ];
1314 v[1] = tg->bps[WRITE];
1315 v[2] = tg->iops[READ];
1316 v[3] = tg->iops[WRITE];
1317
1318 while (true) {
1319 char tok[27]; /* wiops=18446744073709551616 */
1320 char *p;
1321 u64 val = -1;
1322 int len;
1323
1324 if (sscanf(ctx.body, "%26s%n", tok, &len) != 1)
1325 break;
1326 if (tok[0] == '\0')
1327 break;
1328 ctx.body += len;
1329
1330 ret = -EINVAL;
1331 p = tok;
1332 strsep(&p, "=");
1333 if (!p || (sscanf(p, "%llu", &val) != 1 && strcmp(p, "max")))
1334 goto out_finish;
1335
1336 ret = -ERANGE;
1337 if (!val)
1338 goto out_finish;
1339
1340 ret = -EINVAL;
1341 if (!strcmp(tok, "rbps"))
1342 v[0] = val;
1343 else if (!strcmp(tok, "wbps"))
1344 v[1] = val;
1345 else if (!strcmp(tok, "riops"))
1346 v[2] = min_t(u64, val, UINT_MAX);
1347 else if (!strcmp(tok, "wiops"))
1348 v[3] = min_t(u64, val, UINT_MAX);
1349 else
1350 goto out_finish;
1351 }
1352
1353 tg->bps[READ] = v[0];
1354 tg->bps[WRITE] = v[1];
1355 tg->iops[READ] = v[2];
1356 tg->iops[WRITE] = v[3];
1357
1358 tg_conf_updated(tg);
1359 ret = 0;
1360out_finish:
1361 blkg_conf_finish(&ctx);
1362 return ret ?: nbytes;
1363}
1364
1365static struct cftype throtl_files[] = {
1366 {
1367 .name = "max",
1368 .flags = CFTYPE_NOT_ON_ROOT,
1369 .seq_show = tg_print_max,
1370 .write = tg_set_max,
1371 },
1372 { } /* terminate */
1373};
1374
da527770 1375static void throtl_shutdown_wq(struct request_queue *q)
e43473b7
VG
1376{
1377 struct throtl_data *td = q->td;
1378
69df0ab0 1379 cancel_work_sync(&td->dispatch_work);
e43473b7
VG
1380}
1381
3c798398 1382static struct blkcg_policy blkcg_policy_throtl = {
2ee867dc 1383 .dfl_cftypes = throtl_files,
880f50e2 1384 .legacy_cftypes = throtl_legacy_files,
f9fcc2d3 1385
001bea73 1386 .pd_alloc_fn = throtl_pd_alloc,
f9fcc2d3 1387 .pd_init_fn = throtl_pd_init,
693e751e 1388 .pd_online_fn = throtl_pd_online,
001bea73 1389 .pd_free_fn = throtl_pd_free,
e43473b7
VG
1390};
1391
ae118896
TH
1392bool blk_throtl_bio(struct request_queue *q, struct blkcg_gq *blkg,
1393 struct bio *bio)
e43473b7 1394{
c5cc2070 1395 struct throtl_qnode *qn = NULL;
ae118896 1396 struct throtl_grp *tg = blkg_to_tg(blkg ?: q->root_blkg);
73f0d49a 1397 struct throtl_service_queue *sq;
0e9f4164 1398 bool rw = bio_data_dir(bio);
bc16a4f9 1399 bool throttled = false;
e43473b7 1400
ae118896
TH
1401 WARN_ON_ONCE(!rcu_read_lock_held());
1402
2a0f61e6 1403 /* see throtl_charge_bio() */
8d2bbd4c 1404 if (bio_flagged(bio, BIO_THROTTLED) || !tg->has_rules[rw])
bc16a4f9 1405 goto out;
e43473b7
VG
1406
1407 spin_lock_irq(q->queue_lock);
c9589f03
TH
1408
1409 if (unlikely(blk_queue_bypass(q)))
bc16a4f9 1410 goto out_unlock;
f469a7b4 1411
73f0d49a
TH
1412 sq = &tg->service_queue;
1413
9e660acf
TH
1414 while (true) {
1415 /* throtl is FIFO - if bios are already queued, should queue */
1416 if (sq->nr_queued[rw])
1417 break;
de701c74 1418
9e660acf
TH
1419 /* if above limits, break to queue */
1420 if (!tg_may_dispatch(tg, bio, NULL))
1421 break;
1422
1423 /* within limits, let's charge and dispatch directly */
e43473b7 1424 throtl_charge_bio(tg, bio);
04521db0
VG
1425
1426 /*
1427 * We need to trim slice even when bios are not being queued
1428 * otherwise it might happen that a bio is not queued for
1429 * a long time and slice keeps on extending and trim is not
1430 * called for a long time. Now if limits are reduced suddenly
1431 * we take into account all the IO dispatched so far at new
1432 * low rate and * newly queued IO gets a really long dispatch
1433 * time.
1434 *
1435 * So keep on trimming slice even if bio is not queued.
1436 */
0f3457f6 1437 throtl_trim_slice(tg, rw);
9e660acf
TH
1438
1439 /*
1440 * @bio passed through this layer without being throttled.
1441 * Climb up the ladder. If we''re already at the top, it
1442 * can be executed directly.
1443 */
c5cc2070 1444 qn = &tg->qnode_on_parent[rw];
9e660acf
TH
1445 sq = sq->parent_sq;
1446 tg = sq_to_tg(sq);
1447 if (!tg)
1448 goto out_unlock;
e43473b7
VG
1449 }
1450
9e660acf 1451 /* out-of-limit, queue to @tg */
fda6f272
TH
1452 throtl_log(sq, "[%c] bio. bdisp=%llu sz=%u bps=%llu iodisp=%u iops=%u queued=%d/%d",
1453 rw == READ ? 'R' : 'W',
4f024f37 1454 tg->bytes_disp[rw], bio->bi_iter.bi_size, tg->bps[rw],
fda6f272
TH
1455 tg->io_disp[rw], tg->iops[rw],
1456 sq->nr_queued[READ], sq->nr_queued[WRITE]);
e43473b7 1457
671058fb 1458 bio_associate_current(bio);
6bc9c2b4 1459 tg->td->nr_queued[rw]++;
c5cc2070 1460 throtl_add_bio_tg(bio, qn, tg);
bc16a4f9 1461 throttled = true;
e43473b7 1462
7f52f98c
TH
1463 /*
1464 * Update @tg's dispatch time and force schedule dispatch if @tg
1465 * was empty before @bio. The forced scheduling isn't likely to
1466 * cause undue delay as @bio is likely to be dispatched directly if
1467 * its @tg's disptime is not in the future.
1468 */
0e9f4164 1469 if (tg->flags & THROTL_TG_WAS_EMPTY) {
77216b04 1470 tg_update_disptime(tg);
7f52f98c 1471 throtl_schedule_next_dispatch(tg->service_queue.parent_sq, true);
e43473b7
VG
1472 }
1473
bc16a4f9 1474out_unlock:
e43473b7 1475 spin_unlock_irq(q->queue_lock);
bc16a4f9 1476out:
2a0f61e6
TH
1477 /*
1478 * As multiple blk-throtls may stack in the same issue path, we
1479 * don't want bios to leave with the flag set. Clear the flag if
1480 * being issued.
1481 */
1482 if (!throttled)
8d2bbd4c 1483 bio_clear_flag(bio, BIO_THROTTLED);
bc16a4f9 1484 return throttled;
e43473b7
VG
1485}
1486
2a12f0dc
TH
1487/*
1488 * Dispatch all bios from all children tg's queued on @parent_sq. On
1489 * return, @parent_sq is guaranteed to not have any active children tg's
1490 * and all bios from previously active tg's are on @parent_sq->bio_lists[].
1491 */
1492static void tg_drain_bios(struct throtl_service_queue *parent_sq)
1493{
1494 struct throtl_grp *tg;
1495
1496 while ((tg = throtl_rb_first(parent_sq))) {
1497 struct throtl_service_queue *sq = &tg->service_queue;
1498 struct bio *bio;
1499
1500 throtl_dequeue_tg(tg);
1501
c5cc2070 1502 while ((bio = throtl_peek_queued(&sq->queued[READ])))
2a12f0dc 1503 tg_dispatch_one_bio(tg, bio_data_dir(bio));
c5cc2070 1504 while ((bio = throtl_peek_queued(&sq->queued[WRITE])))
2a12f0dc
TH
1505 tg_dispatch_one_bio(tg, bio_data_dir(bio));
1506 }
1507}
1508
c9a929dd
TH
1509/**
1510 * blk_throtl_drain - drain throttled bios
1511 * @q: request_queue to drain throttled bios for
1512 *
1513 * Dispatch all currently throttled bios on @q through ->make_request_fn().
1514 */
1515void blk_throtl_drain(struct request_queue *q)
1516 __releases(q->queue_lock) __acquires(q->queue_lock)
1517{
1518 struct throtl_data *td = q->td;
2a12f0dc 1519 struct blkcg_gq *blkg;
492eb21b 1520 struct cgroup_subsys_state *pos_css;
c9a929dd 1521 struct bio *bio;
651930bc 1522 int rw;
c9a929dd 1523
8bcb6c7d 1524 queue_lockdep_assert_held(q);
2a12f0dc 1525 rcu_read_lock();
c9a929dd 1526
2a12f0dc
TH
1527 /*
1528 * Drain each tg while doing post-order walk on the blkg tree, so
1529 * that all bios are propagated to td->service_queue. It'd be
1530 * better to walk service_queue tree directly but blkg walk is
1531 * easier.
1532 */
492eb21b 1533 blkg_for_each_descendant_post(blkg, pos_css, td->queue->root_blkg)
2a12f0dc 1534 tg_drain_bios(&blkg_to_tg(blkg)->service_queue);
73f0d49a 1535
2a12f0dc
TH
1536 /* finally, transfer bios from top-level tg's into the td */
1537 tg_drain_bios(&td->service_queue);
1538
1539 rcu_read_unlock();
c9a929dd
TH
1540 spin_unlock_irq(q->queue_lock);
1541
2a12f0dc 1542 /* all bios now should be in td->service_queue, issue them */
651930bc 1543 for (rw = READ; rw <= WRITE; rw++)
c5cc2070
TH
1544 while ((bio = throtl_pop_queued(&td->service_queue.queued[rw],
1545 NULL)))
651930bc 1546 generic_make_request(bio);
c9a929dd
TH
1547
1548 spin_lock_irq(q->queue_lock);
1549}
1550
e43473b7
VG
1551int blk_throtl_init(struct request_queue *q)
1552{
1553 struct throtl_data *td;
a2b1693b 1554 int ret;
e43473b7
VG
1555
1556 td = kzalloc_node(sizeof(*td), GFP_KERNEL, q->node);
1557 if (!td)
1558 return -ENOMEM;
1559
69df0ab0 1560 INIT_WORK(&td->dispatch_work, blk_throtl_dispatch_work_fn);
b2ce2643 1561 throtl_service_queue_init(&td->service_queue);
e43473b7 1562
cd1604fa 1563 q->td = td;
29b12589 1564 td->queue = q;
02977e4a 1565
a2b1693b 1566 /* activate policy */
3c798398 1567 ret = blkcg_activate_policy(q, &blkcg_policy_throtl);
a2b1693b 1568 if (ret)
f51b802c 1569 kfree(td);
a2b1693b 1570 return ret;
e43473b7
VG
1571}
1572
1573void blk_throtl_exit(struct request_queue *q)
1574{
c875f4d0 1575 BUG_ON(!q->td);
da527770 1576 throtl_shutdown_wq(q);
3c798398 1577 blkcg_deactivate_policy(q, &blkcg_policy_throtl);
c9a929dd 1578 kfree(q->td);
e43473b7
VG
1579}
1580
1581static int __init throtl_init(void)
1582{
450adcbe
VG
1583 kthrotld_workqueue = alloc_workqueue("kthrotld", WQ_MEM_RECLAIM, 0);
1584 if (!kthrotld_workqueue)
1585 panic("Failed to create kthrotld\n");
1586
3c798398 1587 return blkcg_policy_register(&blkcg_policy_throtl);
e43473b7
VG
1588}
1589
1590module_init(throtl_init);