]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - drivers/net/ethernet/intel/igb/igb_main.c
pci: Add SRIOV helper function to determine if VFs are assigned to guest
[mirror_ubuntu-zesty-kernel.git] / drivers / net / ethernet / intel / igb / igb_main.c
CommitLineData
9d5c8243
AK
1/*******************************************************************************
2
3 Intel(R) Gigabit Ethernet Linux driver
4b9ea462 4 Copyright(c) 2007-2013 Intel Corporation.
9d5c8243
AK
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 more details.
14
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
22 Contact Information:
23 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
24 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
25
26*******************************************************************************/
27
876d2d6f
JK
28#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
29
9d5c8243
AK
30#include <linux/module.h>
31#include <linux/types.h>
32#include <linux/init.h>
b2cb09b1 33#include <linux/bitops.h>
9d5c8243
AK
34#include <linux/vmalloc.h>
35#include <linux/pagemap.h>
36#include <linux/netdevice.h>
9d5c8243 37#include <linux/ipv6.h>
5a0e3ad6 38#include <linux/slab.h>
9d5c8243
AK
39#include <net/checksum.h>
40#include <net/ip6_checksum.h>
c6cb090b 41#include <linux/net_tstamp.h>
9d5c8243
AK
42#include <linux/mii.h>
43#include <linux/ethtool.h>
01789349 44#include <linux/if.h>
9d5c8243
AK
45#include <linux/if_vlan.h>
46#include <linux/pci.h>
c54106bb 47#include <linux/pci-aspm.h>
9d5c8243
AK
48#include <linux/delay.h>
49#include <linux/interrupt.h>
7d13a7d0
AD
50#include <linux/ip.h>
51#include <linux/tcp.h>
52#include <linux/sctp.h>
9d5c8243 53#include <linux/if_ether.h>
40a914fa 54#include <linux/aer.h>
70c71606 55#include <linux/prefetch.h>
749ab2cd 56#include <linux/pm_runtime.h>
421e02f0 57#ifdef CONFIG_IGB_DCA
fe4506b6
JC
58#include <linux/dca.h>
59#endif
441fc6fd 60#include <linux/i2c.h>
9d5c8243
AK
61#include "igb.h"
62
200e5fd5 63#define MAJ 4
6699938b
CW
64#define MIN 1
65#define BUILD 2
0d1fe82d 66#define DRV_VERSION __stringify(MAJ) "." __stringify(MIN) "." \
929dd047 67__stringify(BUILD) "-k"
9d5c8243
AK
68char igb_driver_name[] = "igb";
69char igb_driver_version[] = DRV_VERSION;
70static const char igb_driver_string[] =
71 "Intel(R) Gigabit Ethernet Network Driver";
4b9ea462
AA
72static const char igb_copyright[] =
73 "Copyright (c) 2007-2013 Intel Corporation.";
9d5c8243 74
9d5c8243
AK
75static const struct e1000_info *igb_info_tbl[] = {
76 [board_82575] = &e1000_82575_info,
77};
78
a3aa1884 79static DEFINE_PCI_DEVICE_TABLE(igb_pci_tbl) = {
ceb5f13b
CW
80 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_1GBPS) },
81 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_SGMII) },
82 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I354_BACKPLANE_2_5GBPS) },
f96a8a0b
CW
83 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I211_COPPER), board_82575 },
84 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_COPPER), board_82575 },
85 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_FIBER), board_82575 },
86 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SERDES), board_82575 },
87 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I210_SGMII), board_82575 },
d2ba2ed8
AD
88 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_COPPER), board_82575 },
89 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_FIBER), board_82575 },
90 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SERDES), board_82575 },
91 { PCI_VDEVICE(INTEL, E1000_DEV_ID_I350_SGMII), board_82575 },
55cac248
AD
92 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER), board_82575 },
93 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_FIBER), board_82575 },
6493d24f 94 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_QUAD_FIBER), board_82575 },
55cac248
AD
95 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SERDES), board_82575 },
96 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_SGMII), board_82575 },
97 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82580_COPPER_DUAL), board_82575 },
308fb39a
JG
98 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SGMII), board_82575 },
99 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SERDES), board_82575 },
1b5dda33
GJ
100 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_BACKPLANE), board_82575 },
101 { PCI_VDEVICE(INTEL, E1000_DEV_ID_DH89XXCC_SFP), board_82575 },
2d064c06 102 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576), board_82575 },
9eb2341d 103 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS), board_82575 },
747d49ba 104 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_NS_SERDES), board_82575 },
2d064c06
AD
105 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_FIBER), board_82575 },
106 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES), board_82575 },
4703bf73 107 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_SERDES_QUAD), board_82575 },
b894fa26 108 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER_ET2), board_82575 },
c8ea5ea9 109 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82576_QUAD_COPPER), board_82575 },
9d5c8243
AK
110 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_COPPER), board_82575 },
111 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575EB_FIBER_SERDES), board_82575 },
112 { PCI_VDEVICE(INTEL, E1000_DEV_ID_82575GB_QUAD_COPPER), board_82575 },
113 /* required last entry */
114 {0, }
115};
116
117MODULE_DEVICE_TABLE(pci, igb_pci_tbl);
118
119void igb_reset(struct igb_adapter *);
120static int igb_setup_all_tx_resources(struct igb_adapter *);
121static int igb_setup_all_rx_resources(struct igb_adapter *);
122static void igb_free_all_tx_resources(struct igb_adapter *);
123static void igb_free_all_rx_resources(struct igb_adapter *);
06cf2666 124static void igb_setup_mrqc(struct igb_adapter *);
9d5c8243 125static int igb_probe(struct pci_dev *, const struct pci_device_id *);
9f9a12f8 126static void igb_remove(struct pci_dev *pdev);
9d5c8243
AK
127static int igb_sw_init(struct igb_adapter *);
128static int igb_open(struct net_device *);
129static int igb_close(struct net_device *);
53c7d064 130static void igb_configure(struct igb_adapter *);
9d5c8243
AK
131static void igb_configure_tx(struct igb_adapter *);
132static void igb_configure_rx(struct igb_adapter *);
9d5c8243
AK
133static void igb_clean_all_tx_rings(struct igb_adapter *);
134static void igb_clean_all_rx_rings(struct igb_adapter *);
3b644cf6
MW
135static void igb_clean_tx_ring(struct igb_ring *);
136static void igb_clean_rx_ring(struct igb_ring *);
ff41f8dc 137static void igb_set_rx_mode(struct net_device *);
9d5c8243
AK
138static void igb_update_phy_info(unsigned long);
139static void igb_watchdog(unsigned long);
140static void igb_watchdog_task(struct work_struct *);
cd392f5c 141static netdev_tx_t igb_xmit_frame(struct sk_buff *skb, struct net_device *);
12dcd86b
ED
142static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *dev,
143 struct rtnl_link_stats64 *stats);
9d5c8243
AK
144static int igb_change_mtu(struct net_device *, int);
145static int igb_set_mac(struct net_device *, void *);
68d480c4 146static void igb_set_uta(struct igb_adapter *adapter);
9d5c8243
AK
147static irqreturn_t igb_intr(int irq, void *);
148static irqreturn_t igb_intr_msi(int irq, void *);
149static irqreturn_t igb_msix_other(int irq, void *);
047e0030 150static irqreturn_t igb_msix_ring(int irq, void *);
421e02f0 151#ifdef CONFIG_IGB_DCA
047e0030 152static void igb_update_dca(struct igb_q_vector *);
fe4506b6 153static void igb_setup_dca(struct igb_adapter *);
421e02f0 154#endif /* CONFIG_IGB_DCA */
661086df 155static int igb_poll(struct napi_struct *, int);
13fde97a 156static bool igb_clean_tx_irq(struct igb_q_vector *);
cd392f5c 157static bool igb_clean_rx_irq(struct igb_q_vector *, int);
9d5c8243
AK
158static int igb_ioctl(struct net_device *, struct ifreq *, int cmd);
159static void igb_tx_timeout(struct net_device *);
160static void igb_reset_task(struct work_struct *);
c8f44aff 161static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features);
80d5c368
PM
162static int igb_vlan_rx_add_vid(struct net_device *, __be16, u16);
163static int igb_vlan_rx_kill_vid(struct net_device *, __be16, u16);
9d5c8243 164static void igb_restore_vlan(struct igb_adapter *);
26ad9178 165static void igb_rar_set_qsel(struct igb_adapter *, u8 *, u32 , u8);
4ae196df
AD
166static void igb_ping_all_vfs(struct igb_adapter *);
167static void igb_msg_task(struct igb_adapter *);
4ae196df 168static void igb_vmm_control(struct igb_adapter *);
f2ca0dbe 169static int igb_set_vf_mac(struct igb_adapter *, int, unsigned char *);
4ae196df 170static void igb_restore_vf_multicasts(struct igb_adapter *adapter);
8151d294
WM
171static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac);
172static int igb_ndo_set_vf_vlan(struct net_device *netdev,
173 int vf, u16 vlan, u8 qos);
174static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate);
70ea4783
LL
175static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
176 bool setting);
8151d294
WM
177static int igb_ndo_get_vf_config(struct net_device *netdev, int vf,
178 struct ifla_vf_info *ivi);
17dc566c 179static void igb_check_vf_rate_limit(struct igb_adapter *);
46a01698
RL
180
181#ifdef CONFIG_PCI_IOV
0224d663 182static int igb_vf_configure(struct igb_adapter *adapter, int vf);
f557147c 183static bool igb_vfs_are_assigned(struct igb_adapter *adapter);
46a01698 184#endif
9d5c8243 185
9d5c8243 186#ifdef CONFIG_PM
d9dd966d 187#ifdef CONFIG_PM_SLEEP
749ab2cd 188static int igb_suspend(struct device *);
d9dd966d 189#endif
749ab2cd
YZ
190static int igb_resume(struct device *);
191#ifdef CONFIG_PM_RUNTIME
192static int igb_runtime_suspend(struct device *dev);
193static int igb_runtime_resume(struct device *dev);
194static int igb_runtime_idle(struct device *dev);
195#endif
196static const struct dev_pm_ops igb_pm_ops = {
197 SET_SYSTEM_SLEEP_PM_OPS(igb_suspend, igb_resume)
198 SET_RUNTIME_PM_OPS(igb_runtime_suspend, igb_runtime_resume,
199 igb_runtime_idle)
200};
9d5c8243
AK
201#endif
202static void igb_shutdown(struct pci_dev *);
fa44f2f1 203static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs);
421e02f0 204#ifdef CONFIG_IGB_DCA
fe4506b6
JC
205static int igb_notify_dca(struct notifier_block *, unsigned long, void *);
206static struct notifier_block dca_notifier = {
207 .notifier_call = igb_notify_dca,
208 .next = NULL,
209 .priority = 0
210};
211#endif
9d5c8243
AK
212#ifdef CONFIG_NET_POLL_CONTROLLER
213/* for netdump / net console */
214static void igb_netpoll(struct net_device *);
215#endif
37680117 216#ifdef CONFIG_PCI_IOV
2a3abf6d
AD
217static unsigned int max_vfs = 0;
218module_param(max_vfs, uint, 0);
219MODULE_PARM_DESC(max_vfs, "Maximum number of virtual functions to allocate "
220 "per physical function");
221#endif /* CONFIG_PCI_IOV */
222
9d5c8243
AK
223static pci_ers_result_t igb_io_error_detected(struct pci_dev *,
224 pci_channel_state_t);
225static pci_ers_result_t igb_io_slot_reset(struct pci_dev *);
226static void igb_io_resume(struct pci_dev *);
227
3646f0e5 228static const struct pci_error_handlers igb_err_handler = {
9d5c8243
AK
229 .error_detected = igb_io_error_detected,
230 .slot_reset = igb_io_slot_reset,
231 .resume = igb_io_resume,
232};
233
b6e0c419 234static void igb_init_dmac(struct igb_adapter *adapter, u32 pba);
9d5c8243
AK
235
236static struct pci_driver igb_driver = {
237 .name = igb_driver_name,
238 .id_table = igb_pci_tbl,
239 .probe = igb_probe,
9f9a12f8 240 .remove = igb_remove,
9d5c8243 241#ifdef CONFIG_PM
749ab2cd 242 .driver.pm = &igb_pm_ops,
9d5c8243
AK
243#endif
244 .shutdown = igb_shutdown,
fa44f2f1 245 .sriov_configure = igb_pci_sriov_configure,
9d5c8243
AK
246 .err_handler = &igb_err_handler
247};
248
249MODULE_AUTHOR("Intel Corporation, <e1000-devel@lists.sourceforge.net>");
250MODULE_DESCRIPTION("Intel(R) Gigabit Ethernet Network Driver");
251MODULE_LICENSE("GPL");
252MODULE_VERSION(DRV_VERSION);
253
b3f4d599 254#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
255static int debug = -1;
256module_param(debug, int, 0);
257MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
258
c97ec42a
TI
259struct igb_reg_info {
260 u32 ofs;
261 char *name;
262};
263
264static const struct igb_reg_info igb_reg_info_tbl[] = {
265
266 /* General Registers */
267 {E1000_CTRL, "CTRL"},
268 {E1000_STATUS, "STATUS"},
269 {E1000_CTRL_EXT, "CTRL_EXT"},
270
271 /* Interrupt Registers */
272 {E1000_ICR, "ICR"},
273
274 /* RX Registers */
275 {E1000_RCTL, "RCTL"},
276 {E1000_RDLEN(0), "RDLEN"},
277 {E1000_RDH(0), "RDH"},
278 {E1000_RDT(0), "RDT"},
279 {E1000_RXDCTL(0), "RXDCTL"},
280 {E1000_RDBAL(0), "RDBAL"},
281 {E1000_RDBAH(0), "RDBAH"},
282
283 /* TX Registers */
284 {E1000_TCTL, "TCTL"},
285 {E1000_TDBAL(0), "TDBAL"},
286 {E1000_TDBAH(0), "TDBAH"},
287 {E1000_TDLEN(0), "TDLEN"},
288 {E1000_TDH(0), "TDH"},
289 {E1000_TDT(0), "TDT"},
290 {E1000_TXDCTL(0), "TXDCTL"},
291 {E1000_TDFH, "TDFH"},
292 {E1000_TDFT, "TDFT"},
293 {E1000_TDFHS, "TDFHS"},
294 {E1000_TDFPC, "TDFPC"},
295
296 /* List Terminator */
297 {}
298};
299
b980ac18 300/* igb_regdump - register printout routine */
c97ec42a
TI
301static void igb_regdump(struct e1000_hw *hw, struct igb_reg_info *reginfo)
302{
303 int n = 0;
304 char rname[16];
305 u32 regs[8];
306
307 switch (reginfo->ofs) {
308 case E1000_RDLEN(0):
309 for (n = 0; n < 4; n++)
310 regs[n] = rd32(E1000_RDLEN(n));
311 break;
312 case E1000_RDH(0):
313 for (n = 0; n < 4; n++)
314 regs[n] = rd32(E1000_RDH(n));
315 break;
316 case E1000_RDT(0):
317 for (n = 0; n < 4; n++)
318 regs[n] = rd32(E1000_RDT(n));
319 break;
320 case E1000_RXDCTL(0):
321 for (n = 0; n < 4; n++)
322 regs[n] = rd32(E1000_RXDCTL(n));
323 break;
324 case E1000_RDBAL(0):
325 for (n = 0; n < 4; n++)
326 regs[n] = rd32(E1000_RDBAL(n));
327 break;
328 case E1000_RDBAH(0):
329 for (n = 0; n < 4; n++)
330 regs[n] = rd32(E1000_RDBAH(n));
331 break;
332 case E1000_TDBAL(0):
333 for (n = 0; n < 4; n++)
334 regs[n] = rd32(E1000_RDBAL(n));
335 break;
336 case E1000_TDBAH(0):
337 for (n = 0; n < 4; n++)
338 regs[n] = rd32(E1000_TDBAH(n));
339 break;
340 case E1000_TDLEN(0):
341 for (n = 0; n < 4; n++)
342 regs[n] = rd32(E1000_TDLEN(n));
343 break;
344 case E1000_TDH(0):
345 for (n = 0; n < 4; n++)
346 regs[n] = rd32(E1000_TDH(n));
347 break;
348 case E1000_TDT(0):
349 for (n = 0; n < 4; n++)
350 regs[n] = rd32(E1000_TDT(n));
351 break;
352 case E1000_TXDCTL(0):
353 for (n = 0; n < 4; n++)
354 regs[n] = rd32(E1000_TXDCTL(n));
355 break;
356 default:
876d2d6f 357 pr_info("%-15s %08x\n", reginfo->name, rd32(reginfo->ofs));
c97ec42a
TI
358 return;
359 }
360
361 snprintf(rname, 16, "%s%s", reginfo->name, "[0-3]");
876d2d6f
JK
362 pr_info("%-15s %08x %08x %08x %08x\n", rname, regs[0], regs[1],
363 regs[2], regs[3]);
c97ec42a
TI
364}
365
b980ac18 366/* igb_dump - Print registers, Tx-rings and Rx-rings */
c97ec42a
TI
367static void igb_dump(struct igb_adapter *adapter)
368{
369 struct net_device *netdev = adapter->netdev;
370 struct e1000_hw *hw = &adapter->hw;
371 struct igb_reg_info *reginfo;
c97ec42a
TI
372 struct igb_ring *tx_ring;
373 union e1000_adv_tx_desc *tx_desc;
374 struct my_u0 { u64 a; u64 b; } *u0;
c97ec42a
TI
375 struct igb_ring *rx_ring;
376 union e1000_adv_rx_desc *rx_desc;
377 u32 staterr;
6ad4edfc 378 u16 i, n;
c97ec42a
TI
379
380 if (!netif_msg_hw(adapter))
381 return;
382
383 /* Print netdevice Info */
384 if (netdev) {
385 dev_info(&adapter->pdev->dev, "Net device Info\n");
876d2d6f
JK
386 pr_info("Device Name state trans_start "
387 "last_rx\n");
388 pr_info("%-15s %016lX %016lX %016lX\n", netdev->name,
389 netdev->state, netdev->trans_start, netdev->last_rx);
c97ec42a
TI
390 }
391
392 /* Print Registers */
393 dev_info(&adapter->pdev->dev, "Register Dump\n");
876d2d6f 394 pr_info(" Register Name Value\n");
c97ec42a
TI
395 for (reginfo = (struct igb_reg_info *)igb_reg_info_tbl;
396 reginfo->name; reginfo++) {
397 igb_regdump(hw, reginfo);
398 }
399
400 /* Print TX Ring Summary */
401 if (!netdev || !netif_running(netdev))
402 goto exit;
403
404 dev_info(&adapter->pdev->dev, "TX Rings Summary\n");
876d2d6f 405 pr_info("Queue [NTU] [NTC] [bi(ntc)->dma ] leng ntw timestamp\n");
c97ec42a 406 for (n = 0; n < adapter->num_tx_queues; n++) {
06034649 407 struct igb_tx_buffer *buffer_info;
c97ec42a 408 tx_ring = adapter->tx_ring[n];
06034649 409 buffer_info = &tx_ring->tx_buffer_info[tx_ring->next_to_clean];
876d2d6f
JK
410 pr_info(" %5d %5X %5X %016llX %04X %p %016llX\n",
411 n, tx_ring->next_to_use, tx_ring->next_to_clean,
c9f14bf3
AD
412 (u64)dma_unmap_addr(buffer_info, dma),
413 dma_unmap_len(buffer_info, len),
876d2d6f
JK
414 buffer_info->next_to_watch,
415 (u64)buffer_info->time_stamp);
c97ec42a
TI
416 }
417
418 /* Print TX Rings */
419 if (!netif_msg_tx_done(adapter))
420 goto rx_ring_summary;
421
422 dev_info(&adapter->pdev->dev, "TX Rings Dump\n");
423
424 /* Transmit Descriptor Formats
425 *
426 * Advanced Transmit Descriptor
427 * +--------------------------------------------------------------+
428 * 0 | Buffer Address [63:0] |
429 * +--------------------------------------------------------------+
430 * 8 | PAYLEN | PORTS |CC|IDX | STA | DCMD |DTYP|MAC|RSV| DTALEN |
431 * +--------------------------------------------------------------+
432 * 63 46 45 40 39 38 36 35 32 31 24 15 0
433 */
434
435 for (n = 0; n < adapter->num_tx_queues; n++) {
436 tx_ring = adapter->tx_ring[n];
876d2d6f
JK
437 pr_info("------------------------------------\n");
438 pr_info("TX QUEUE INDEX = %d\n", tx_ring->queue_index);
439 pr_info("------------------------------------\n");
440 pr_info("T [desc] [address 63:0 ] [PlPOCIStDDM Ln] "
441 "[bi->dma ] leng ntw timestamp "
442 "bi->skb\n");
c97ec42a
TI
443
444 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
876d2d6f 445 const char *next_desc;
06034649 446 struct igb_tx_buffer *buffer_info;
60136906 447 tx_desc = IGB_TX_DESC(tx_ring, i);
06034649 448 buffer_info = &tx_ring->tx_buffer_info[i];
c97ec42a 449 u0 = (struct my_u0 *)tx_desc;
876d2d6f
JK
450 if (i == tx_ring->next_to_use &&
451 i == tx_ring->next_to_clean)
452 next_desc = " NTC/U";
453 else if (i == tx_ring->next_to_use)
454 next_desc = " NTU";
455 else if (i == tx_ring->next_to_clean)
456 next_desc = " NTC";
457 else
458 next_desc = "";
459
460 pr_info("T [0x%03X] %016llX %016llX %016llX"
461 " %04X %p %016llX %p%s\n", i,
c97ec42a
TI
462 le64_to_cpu(u0->a),
463 le64_to_cpu(u0->b),
c9f14bf3
AD
464 (u64)dma_unmap_addr(buffer_info, dma),
465 dma_unmap_len(buffer_info, len),
c97ec42a
TI
466 buffer_info->next_to_watch,
467 (u64)buffer_info->time_stamp,
876d2d6f 468 buffer_info->skb, next_desc);
c97ec42a 469
b669588a 470 if (netif_msg_pktdata(adapter) && buffer_info->skb)
c97ec42a
TI
471 print_hex_dump(KERN_INFO, "",
472 DUMP_PREFIX_ADDRESS,
b669588a 473 16, 1, buffer_info->skb->data,
c9f14bf3
AD
474 dma_unmap_len(buffer_info, len),
475 true);
c97ec42a
TI
476 }
477 }
478
479 /* Print RX Rings Summary */
480rx_ring_summary:
481 dev_info(&adapter->pdev->dev, "RX Rings Summary\n");
876d2d6f 482 pr_info("Queue [NTU] [NTC]\n");
c97ec42a
TI
483 for (n = 0; n < adapter->num_rx_queues; n++) {
484 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
485 pr_info(" %5d %5X %5X\n",
486 n, rx_ring->next_to_use, rx_ring->next_to_clean);
c97ec42a
TI
487 }
488
489 /* Print RX Rings */
490 if (!netif_msg_rx_status(adapter))
491 goto exit;
492
493 dev_info(&adapter->pdev->dev, "RX Rings Dump\n");
494
495 /* Advanced Receive Descriptor (Read) Format
496 * 63 1 0
497 * +-----------------------------------------------------+
498 * 0 | Packet Buffer Address [63:1] |A0/NSE|
499 * +----------------------------------------------+------+
500 * 8 | Header Buffer Address [63:1] | DD |
501 * +-----------------------------------------------------+
502 *
503 *
504 * Advanced Receive Descriptor (Write-Back) Format
505 *
506 * 63 48 47 32 31 30 21 20 17 16 4 3 0
507 * +------------------------------------------------------+
508 * 0 | Packet IP |SPH| HDR_LEN | RSV|Packet| RSS |
509 * | Checksum Ident | | | | Type | Type |
510 * +------------------------------------------------------+
511 * 8 | VLAN Tag | Length | Extended Error | Extended Status |
512 * +------------------------------------------------------+
513 * 63 48 47 32 31 20 19 0
514 */
515
516 for (n = 0; n < adapter->num_rx_queues; n++) {
517 rx_ring = adapter->rx_ring[n];
876d2d6f
JK
518 pr_info("------------------------------------\n");
519 pr_info("RX QUEUE INDEX = %d\n", rx_ring->queue_index);
520 pr_info("------------------------------------\n");
521 pr_info("R [desc] [ PktBuf A0] [ HeadBuf DD] "
522 "[bi->dma ] [bi->skb] <-- Adv Rx Read format\n");
523 pr_info("RWB[desc] [PcsmIpSHl PtRs] [vl er S cks ln] -----"
524 "----------- [bi->skb] <-- Adv Rx Write-Back format\n");
c97ec42a
TI
525
526 for (i = 0; i < rx_ring->count; i++) {
876d2d6f 527 const char *next_desc;
06034649
AD
528 struct igb_rx_buffer *buffer_info;
529 buffer_info = &rx_ring->rx_buffer_info[i];
60136906 530 rx_desc = IGB_RX_DESC(rx_ring, i);
c97ec42a
TI
531 u0 = (struct my_u0 *)rx_desc;
532 staterr = le32_to_cpu(rx_desc->wb.upper.status_error);
876d2d6f
JK
533
534 if (i == rx_ring->next_to_use)
535 next_desc = " NTU";
536 else if (i == rx_ring->next_to_clean)
537 next_desc = " NTC";
538 else
539 next_desc = "";
540
c97ec42a
TI
541 if (staterr & E1000_RXD_STAT_DD) {
542 /* Descriptor Done */
1a1c225b
AD
543 pr_info("%s[0x%03X] %016llX %016llX ---------------- %s\n",
544 "RWB", i,
c97ec42a
TI
545 le64_to_cpu(u0->a),
546 le64_to_cpu(u0->b),
1a1c225b 547 next_desc);
c97ec42a 548 } else {
1a1c225b
AD
549 pr_info("%s[0x%03X] %016llX %016llX %016llX %s\n",
550 "R ", i,
c97ec42a
TI
551 le64_to_cpu(u0->a),
552 le64_to_cpu(u0->b),
553 (u64)buffer_info->dma,
1a1c225b 554 next_desc);
c97ec42a 555
b669588a 556 if (netif_msg_pktdata(adapter) &&
1a1c225b 557 buffer_info->dma && buffer_info->page) {
44390ca6
AD
558 print_hex_dump(KERN_INFO, "",
559 DUMP_PREFIX_ADDRESS,
560 16, 1,
b669588a
ET
561 page_address(buffer_info->page) +
562 buffer_info->page_offset,
de78d1f9 563 IGB_RX_BUFSZ, true);
c97ec42a
TI
564 }
565 }
c97ec42a
TI
566 }
567 }
568
569exit:
570 return;
571}
572
b980ac18
JK
573/**
574 * igb_get_i2c_data - Reads the I2C SDA data bit
441fc6fd
CW
575 * @hw: pointer to hardware structure
576 * @i2cctl: Current value of I2CCTL register
577 *
578 * Returns the I2C data bit value
b980ac18 579 **/
441fc6fd
CW
580static int igb_get_i2c_data(void *data)
581{
582 struct igb_adapter *adapter = (struct igb_adapter *)data;
583 struct e1000_hw *hw = &adapter->hw;
584 s32 i2cctl = rd32(E1000_I2CPARAMS);
585
586 return ((i2cctl & E1000_I2C_DATA_IN) != 0);
587}
588
b980ac18
JK
589/**
590 * igb_set_i2c_data - Sets the I2C data bit
441fc6fd
CW
591 * @data: pointer to hardware structure
592 * @state: I2C data value (0 or 1) to set
593 *
594 * Sets the I2C data bit
b980ac18 595 **/
441fc6fd
CW
596static void igb_set_i2c_data(void *data, int state)
597{
598 struct igb_adapter *adapter = (struct igb_adapter *)data;
599 struct e1000_hw *hw = &adapter->hw;
600 s32 i2cctl = rd32(E1000_I2CPARAMS);
601
602 if (state)
603 i2cctl |= E1000_I2C_DATA_OUT;
604 else
605 i2cctl &= ~E1000_I2C_DATA_OUT;
606
607 i2cctl &= ~E1000_I2C_DATA_OE_N;
608 i2cctl |= E1000_I2C_CLK_OE_N;
609 wr32(E1000_I2CPARAMS, i2cctl);
610 wrfl();
611
612}
613
b980ac18
JK
614/**
615 * igb_set_i2c_clk - Sets the I2C SCL clock
441fc6fd
CW
616 * @data: pointer to hardware structure
617 * @state: state to set clock
618 *
619 * Sets the I2C clock line to state
b980ac18 620 **/
441fc6fd
CW
621static void igb_set_i2c_clk(void *data, int state)
622{
623 struct igb_adapter *adapter = (struct igb_adapter *)data;
624 struct e1000_hw *hw = &adapter->hw;
625 s32 i2cctl = rd32(E1000_I2CPARAMS);
626
627 if (state) {
628 i2cctl |= E1000_I2C_CLK_OUT;
629 i2cctl &= ~E1000_I2C_CLK_OE_N;
630 } else {
631 i2cctl &= ~E1000_I2C_CLK_OUT;
632 i2cctl &= ~E1000_I2C_CLK_OE_N;
633 }
634 wr32(E1000_I2CPARAMS, i2cctl);
635 wrfl();
636}
637
b980ac18
JK
638/**
639 * igb_get_i2c_clk - Gets the I2C SCL clock state
441fc6fd
CW
640 * @data: pointer to hardware structure
641 *
642 * Gets the I2C clock state
b980ac18 643 **/
441fc6fd
CW
644static int igb_get_i2c_clk(void *data)
645{
646 struct igb_adapter *adapter = (struct igb_adapter *)data;
647 struct e1000_hw *hw = &adapter->hw;
648 s32 i2cctl = rd32(E1000_I2CPARAMS);
649
650 return ((i2cctl & E1000_I2C_CLK_IN) != 0);
651}
652
653static const struct i2c_algo_bit_data igb_i2c_algo = {
654 .setsda = igb_set_i2c_data,
655 .setscl = igb_set_i2c_clk,
656 .getsda = igb_get_i2c_data,
657 .getscl = igb_get_i2c_clk,
658 .udelay = 5,
659 .timeout = 20,
660};
661
9d5c8243 662/**
b980ac18
JK
663 * igb_get_hw_dev - return device
664 * @hw: pointer to hardware structure
665 *
666 * used by hardware layer to print debugging information
9d5c8243 667 **/
c041076a 668struct net_device *igb_get_hw_dev(struct e1000_hw *hw)
9d5c8243
AK
669{
670 struct igb_adapter *adapter = hw->back;
c041076a 671 return adapter->netdev;
9d5c8243 672}
38c845c7 673
9d5c8243 674/**
b980ac18 675 * igb_init_module - Driver Registration Routine
9d5c8243 676 *
b980ac18
JK
677 * igb_init_module is the first routine called when the driver is
678 * loaded. All it does is register with the PCI subsystem.
9d5c8243
AK
679 **/
680static int __init igb_init_module(void)
681{
682 int ret;
876d2d6f 683 pr_info("%s - version %s\n",
9d5c8243
AK
684 igb_driver_string, igb_driver_version);
685
876d2d6f 686 pr_info("%s\n", igb_copyright);
9d5c8243 687
421e02f0 688#ifdef CONFIG_IGB_DCA
fe4506b6
JC
689 dca_register_notify(&dca_notifier);
690#endif
bbd98fe4 691 ret = pci_register_driver(&igb_driver);
9d5c8243
AK
692 return ret;
693}
694
695module_init(igb_init_module);
696
697/**
b980ac18 698 * igb_exit_module - Driver Exit Cleanup Routine
9d5c8243 699 *
b980ac18
JK
700 * igb_exit_module is called just before the driver is removed
701 * from memory.
9d5c8243
AK
702 **/
703static void __exit igb_exit_module(void)
704{
421e02f0 705#ifdef CONFIG_IGB_DCA
fe4506b6
JC
706 dca_unregister_notify(&dca_notifier);
707#endif
9d5c8243
AK
708 pci_unregister_driver(&igb_driver);
709}
710
711module_exit(igb_exit_module);
712
26bc19ec
AD
713#define Q_IDX_82576(i) (((i & 0x1) << 3) + (i >> 1))
714/**
b980ac18
JK
715 * igb_cache_ring_register - Descriptor ring to register mapping
716 * @adapter: board private structure to initialize
26bc19ec 717 *
b980ac18
JK
718 * Once we know the feature-set enabled for the device, we'll cache
719 * the register offset the descriptor ring is assigned to.
26bc19ec
AD
720 **/
721static void igb_cache_ring_register(struct igb_adapter *adapter)
722{
ee1b9f06 723 int i = 0, j = 0;
047e0030 724 u32 rbase_offset = adapter->vfs_allocated_count;
26bc19ec
AD
725
726 switch (adapter->hw.mac.type) {
727 case e1000_82576:
728 /* The queues are allocated for virtualization such that VF 0
729 * is allocated queues 0 and 8, VF 1 queues 1 and 9, etc.
730 * In order to avoid collision we start at the first free queue
731 * and continue consuming queues in the same sequence
732 */
ee1b9f06 733 if (adapter->vfs_allocated_count) {
a99955fc 734 for (; i < adapter->rss_queues; i++)
3025a446 735 adapter->rx_ring[i]->reg_idx = rbase_offset +
b980ac18 736 Q_IDX_82576(i);
ee1b9f06 737 }
26bc19ec 738 case e1000_82575:
55cac248 739 case e1000_82580:
d2ba2ed8 740 case e1000_i350:
ceb5f13b 741 case e1000_i354:
f96a8a0b
CW
742 case e1000_i210:
743 case e1000_i211:
26bc19ec 744 default:
ee1b9f06 745 for (; i < adapter->num_rx_queues; i++)
3025a446 746 adapter->rx_ring[i]->reg_idx = rbase_offset + i;
ee1b9f06 747 for (; j < adapter->num_tx_queues; j++)
3025a446 748 adapter->tx_ring[j]->reg_idx = rbase_offset + j;
26bc19ec
AD
749 break;
750 }
751}
752
4be000c8
AD
753/**
754 * igb_write_ivar - configure ivar for given MSI-X vector
755 * @hw: pointer to the HW structure
756 * @msix_vector: vector number we are allocating to a given ring
757 * @index: row index of IVAR register to write within IVAR table
758 * @offset: column offset of in IVAR, should be multiple of 8
759 *
760 * This function is intended to handle the writing of the IVAR register
761 * for adapters 82576 and newer. The IVAR table consists of 2 columns,
762 * each containing an cause allocation for an Rx and Tx ring, and a
763 * variable number of rows depending on the number of queues supported.
764 **/
765static void igb_write_ivar(struct e1000_hw *hw, int msix_vector,
766 int index, int offset)
767{
768 u32 ivar = array_rd32(E1000_IVAR0, index);
769
770 /* clear any bits that are currently set */
771 ivar &= ~((u32)0xFF << offset);
772
773 /* write vector and valid bit */
774 ivar |= (msix_vector | E1000_IVAR_VALID) << offset;
775
776 array_wr32(E1000_IVAR0, index, ivar);
777}
778
9d5c8243 779#define IGB_N0_QUEUE -1
047e0030 780static void igb_assign_vector(struct igb_q_vector *q_vector, int msix_vector)
9d5c8243 781{
047e0030 782 struct igb_adapter *adapter = q_vector->adapter;
9d5c8243 783 struct e1000_hw *hw = &adapter->hw;
047e0030
AD
784 int rx_queue = IGB_N0_QUEUE;
785 int tx_queue = IGB_N0_QUEUE;
4be000c8 786 u32 msixbm = 0;
047e0030 787
0ba82994
AD
788 if (q_vector->rx.ring)
789 rx_queue = q_vector->rx.ring->reg_idx;
790 if (q_vector->tx.ring)
791 tx_queue = q_vector->tx.ring->reg_idx;
2d064c06
AD
792
793 switch (hw->mac.type) {
794 case e1000_82575:
9d5c8243 795 /* The 82575 assigns vectors using a bitmask, which matches the
b980ac18
JK
796 * bitmask for the EICR/EIMS/EIMC registers. To assign one
797 * or more queues to a vector, we write the appropriate bits
798 * into the MSIXBM register for that vector.
799 */
047e0030 800 if (rx_queue > IGB_N0_QUEUE)
9d5c8243 801 msixbm = E1000_EICR_RX_QUEUE0 << rx_queue;
047e0030 802 if (tx_queue > IGB_N0_QUEUE)
9d5c8243 803 msixbm |= E1000_EICR_TX_QUEUE0 << tx_queue;
feeb2721
AD
804 if (!adapter->msix_entries && msix_vector == 0)
805 msixbm |= E1000_EIMS_OTHER;
9d5c8243 806 array_wr32(E1000_MSIXBM(0), msix_vector, msixbm);
047e0030 807 q_vector->eims_value = msixbm;
2d064c06
AD
808 break;
809 case e1000_82576:
b980ac18 810 /* 82576 uses a table that essentially consists of 2 columns
4be000c8
AD
811 * with 8 rows. The ordering is column-major so we use the
812 * lower 3 bits as the row index, and the 4th bit as the
813 * column offset.
814 */
815 if (rx_queue > IGB_N0_QUEUE)
816 igb_write_ivar(hw, msix_vector,
817 rx_queue & 0x7,
818 (rx_queue & 0x8) << 1);
819 if (tx_queue > IGB_N0_QUEUE)
820 igb_write_ivar(hw, msix_vector,
821 tx_queue & 0x7,
822 ((tx_queue & 0x8) << 1) + 8);
047e0030 823 q_vector->eims_value = 1 << msix_vector;
2d064c06 824 break;
55cac248 825 case e1000_82580:
d2ba2ed8 826 case e1000_i350:
ceb5f13b 827 case e1000_i354:
f96a8a0b
CW
828 case e1000_i210:
829 case e1000_i211:
b980ac18 830 /* On 82580 and newer adapters the scheme is similar to 82576
4be000c8
AD
831 * however instead of ordering column-major we have things
832 * ordered row-major. So we traverse the table by using
833 * bit 0 as the column offset, and the remaining bits as the
834 * row index.
835 */
836 if (rx_queue > IGB_N0_QUEUE)
837 igb_write_ivar(hw, msix_vector,
838 rx_queue >> 1,
839 (rx_queue & 0x1) << 4);
840 if (tx_queue > IGB_N0_QUEUE)
841 igb_write_ivar(hw, msix_vector,
842 tx_queue >> 1,
843 ((tx_queue & 0x1) << 4) + 8);
55cac248
AD
844 q_vector->eims_value = 1 << msix_vector;
845 break;
2d064c06
AD
846 default:
847 BUG();
848 break;
849 }
26b39276
AD
850
851 /* add q_vector eims value to global eims_enable_mask */
852 adapter->eims_enable_mask |= q_vector->eims_value;
853
854 /* configure q_vector to set itr on first interrupt */
855 q_vector->set_itr = 1;
9d5c8243
AK
856}
857
858/**
b980ac18
JK
859 * igb_configure_msix - Configure MSI-X hardware
860 * @adapter: board private structure to initialize
9d5c8243 861 *
b980ac18
JK
862 * igb_configure_msix sets up the hardware to properly
863 * generate MSI-X interrupts.
9d5c8243
AK
864 **/
865static void igb_configure_msix(struct igb_adapter *adapter)
866{
867 u32 tmp;
868 int i, vector = 0;
869 struct e1000_hw *hw = &adapter->hw;
870
871 adapter->eims_enable_mask = 0;
9d5c8243
AK
872
873 /* set vector for other causes, i.e. link changes */
2d064c06
AD
874 switch (hw->mac.type) {
875 case e1000_82575:
9d5c8243
AK
876 tmp = rd32(E1000_CTRL_EXT);
877 /* enable MSI-X PBA support*/
878 tmp |= E1000_CTRL_EXT_PBA_CLR;
879
880 /* Auto-Mask interrupts upon ICR read. */
881 tmp |= E1000_CTRL_EXT_EIAME;
882 tmp |= E1000_CTRL_EXT_IRCA;
883
884 wr32(E1000_CTRL_EXT, tmp);
047e0030
AD
885
886 /* enable msix_other interrupt */
b980ac18 887 array_wr32(E1000_MSIXBM(0), vector++, E1000_EIMS_OTHER);
844290e5 888 adapter->eims_other = E1000_EIMS_OTHER;
9d5c8243 889
2d064c06
AD
890 break;
891
892 case e1000_82576:
55cac248 893 case e1000_82580:
d2ba2ed8 894 case e1000_i350:
ceb5f13b 895 case e1000_i354:
f96a8a0b
CW
896 case e1000_i210:
897 case e1000_i211:
047e0030 898 /* Turn on MSI-X capability first, or our settings
b980ac18
JK
899 * won't stick. And it will take days to debug.
900 */
047e0030 901 wr32(E1000_GPIE, E1000_GPIE_MSIX_MODE |
b980ac18
JK
902 E1000_GPIE_PBA | E1000_GPIE_EIAME |
903 E1000_GPIE_NSICR);
047e0030
AD
904
905 /* enable msix_other interrupt */
906 adapter->eims_other = 1 << vector;
2d064c06 907 tmp = (vector++ | E1000_IVAR_VALID) << 8;
2d064c06 908
047e0030 909 wr32(E1000_IVAR_MISC, tmp);
2d064c06
AD
910 break;
911 default:
912 /* do nothing, since nothing else supports MSI-X */
913 break;
914 } /* switch (hw->mac.type) */
047e0030
AD
915
916 adapter->eims_enable_mask |= adapter->eims_other;
917
26b39276
AD
918 for (i = 0; i < adapter->num_q_vectors; i++)
919 igb_assign_vector(adapter->q_vector[i], vector++);
047e0030 920
9d5c8243
AK
921 wrfl();
922}
923
924/**
b980ac18
JK
925 * igb_request_msix - Initialize MSI-X interrupts
926 * @adapter: board private structure to initialize
9d5c8243 927 *
b980ac18
JK
928 * igb_request_msix allocates MSI-X vectors and requests interrupts from the
929 * kernel.
9d5c8243
AK
930 **/
931static int igb_request_msix(struct igb_adapter *adapter)
932{
933 struct net_device *netdev = adapter->netdev;
047e0030 934 struct e1000_hw *hw = &adapter->hw;
52285b76 935 int i, err = 0, vector = 0, free_vector = 0;
9d5c8243 936
047e0030 937 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18 938 igb_msix_other, 0, netdev->name, adapter);
047e0030 939 if (err)
52285b76 940 goto err_out;
047e0030
AD
941
942 for (i = 0; i < adapter->num_q_vectors; i++) {
943 struct igb_q_vector *q_vector = adapter->q_vector[i];
944
52285b76
SA
945 vector++;
946
047e0030
AD
947 q_vector->itr_register = hw->hw_addr + E1000_EITR(vector);
948
0ba82994 949 if (q_vector->rx.ring && q_vector->tx.ring)
047e0030 950 sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
0ba82994
AD
951 q_vector->rx.ring->queue_index);
952 else if (q_vector->tx.ring)
047e0030 953 sprintf(q_vector->name, "%s-tx-%u", netdev->name,
0ba82994
AD
954 q_vector->tx.ring->queue_index);
955 else if (q_vector->rx.ring)
047e0030 956 sprintf(q_vector->name, "%s-rx-%u", netdev->name,
0ba82994 957 q_vector->rx.ring->queue_index);
9d5c8243 958 else
047e0030
AD
959 sprintf(q_vector->name, "%s-unused", netdev->name);
960
9d5c8243 961 err = request_irq(adapter->msix_entries[vector].vector,
b980ac18
JK
962 igb_msix_ring, 0, q_vector->name,
963 q_vector);
9d5c8243 964 if (err)
52285b76 965 goto err_free;
9d5c8243
AK
966 }
967
9d5c8243
AK
968 igb_configure_msix(adapter);
969 return 0;
52285b76
SA
970
971err_free:
972 /* free already assigned IRQs */
973 free_irq(adapter->msix_entries[free_vector++].vector, adapter);
974
975 vector--;
976 for (i = 0; i < vector; i++) {
977 free_irq(adapter->msix_entries[free_vector++].vector,
978 adapter->q_vector[i]);
979 }
980err_out:
9d5c8243
AK
981 return err;
982}
983
984static void igb_reset_interrupt_capability(struct igb_adapter *adapter)
985{
986 if (adapter->msix_entries) {
987 pci_disable_msix(adapter->pdev);
988 kfree(adapter->msix_entries);
989 adapter->msix_entries = NULL;
047e0030 990 } else if (adapter->flags & IGB_FLAG_HAS_MSI) {
9d5c8243 991 pci_disable_msi(adapter->pdev);
047e0030 992 }
9d5c8243
AK
993}
994
5536d210 995/**
b980ac18
JK
996 * igb_free_q_vector - Free memory allocated for specific interrupt vector
997 * @adapter: board private structure to initialize
998 * @v_idx: Index of vector to be freed
5536d210 999 *
b980ac18
JK
1000 * This function frees the memory allocated to the q_vector. In addition if
1001 * NAPI is enabled it will delete any references to the NAPI struct prior
1002 * to freeing the q_vector.
5536d210
AD
1003 **/
1004static void igb_free_q_vector(struct igb_adapter *adapter, int v_idx)
1005{
1006 struct igb_q_vector *q_vector = adapter->q_vector[v_idx];
1007
1008 if (q_vector->tx.ring)
1009 adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
1010
1011 if (q_vector->rx.ring)
1012 adapter->tx_ring[q_vector->rx.ring->queue_index] = NULL;
1013
1014 adapter->q_vector[v_idx] = NULL;
1015 netif_napi_del(&q_vector->napi);
1016
b980ac18 1017 /* ixgbe_get_stats64() might access the rings on this vector,
5536d210
AD
1018 * we must wait a grace period before freeing it.
1019 */
1020 kfree_rcu(q_vector, rcu);
1021}
1022
047e0030 1023/**
b980ac18
JK
1024 * igb_free_q_vectors - Free memory allocated for interrupt vectors
1025 * @adapter: board private structure to initialize
047e0030 1026 *
b980ac18
JK
1027 * This function frees the memory allocated to the q_vectors. In addition if
1028 * NAPI is enabled it will delete any references to the NAPI struct prior
1029 * to freeing the q_vector.
047e0030
AD
1030 **/
1031static void igb_free_q_vectors(struct igb_adapter *adapter)
1032{
5536d210
AD
1033 int v_idx = adapter->num_q_vectors;
1034
1035 adapter->num_tx_queues = 0;
1036 adapter->num_rx_queues = 0;
047e0030 1037 adapter->num_q_vectors = 0;
5536d210
AD
1038
1039 while (v_idx--)
1040 igb_free_q_vector(adapter, v_idx);
047e0030
AD
1041}
1042
1043/**
b980ac18
JK
1044 * igb_clear_interrupt_scheme - reset the device to a state of no interrupts
1045 * @adapter: board private structure to initialize
047e0030 1046 *
b980ac18
JK
1047 * This function resets the device so that it has 0 Rx queues, Tx queues, and
1048 * MSI-X interrupts allocated.
047e0030
AD
1049 */
1050static void igb_clear_interrupt_scheme(struct igb_adapter *adapter)
1051{
047e0030
AD
1052 igb_free_q_vectors(adapter);
1053 igb_reset_interrupt_capability(adapter);
1054}
9d5c8243
AK
1055
1056/**
b980ac18
JK
1057 * igb_set_interrupt_capability - set MSI or MSI-X if supported
1058 * @adapter: board private structure to initialize
1059 * @msix: boolean value of MSIX capability
9d5c8243 1060 *
b980ac18
JK
1061 * Attempt to configure interrupts using the best available
1062 * capabilities of the hardware and kernel.
9d5c8243 1063 **/
53c7d064 1064static void igb_set_interrupt_capability(struct igb_adapter *adapter, bool msix)
9d5c8243
AK
1065{
1066 int err;
1067 int numvecs, i;
1068
53c7d064
SA
1069 if (!msix)
1070 goto msi_only;
1071
83b7180d 1072 /* Number of supported queues. */
a99955fc 1073 adapter->num_rx_queues = adapter->rss_queues;
5fa8517f
GR
1074 if (adapter->vfs_allocated_count)
1075 adapter->num_tx_queues = 1;
1076 else
1077 adapter->num_tx_queues = adapter->rss_queues;
83b7180d 1078
b980ac18 1079 /* start with one vector for every Rx queue */
047e0030
AD
1080 numvecs = adapter->num_rx_queues;
1081
b980ac18 1082 /* if Tx handler is separate add 1 for every Tx queue */
a99955fc
AD
1083 if (!(adapter->flags & IGB_FLAG_QUEUE_PAIRS))
1084 numvecs += adapter->num_tx_queues;
047e0030
AD
1085
1086 /* store the number of vectors reserved for queues */
1087 adapter->num_q_vectors = numvecs;
1088
1089 /* add 1 vector for link status interrupts */
1090 numvecs++;
9d5c8243
AK
1091 adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
1092 GFP_KERNEL);
f96a8a0b 1093
9d5c8243
AK
1094 if (!adapter->msix_entries)
1095 goto msi_only;
1096
1097 for (i = 0; i < numvecs; i++)
1098 adapter->msix_entries[i].entry = i;
1099
1100 err = pci_enable_msix(adapter->pdev,
1101 adapter->msix_entries,
1102 numvecs);
1103 if (err == 0)
0c2cc02e 1104 return;
9d5c8243
AK
1105
1106 igb_reset_interrupt_capability(adapter);
1107
1108 /* If we can't do MSI-X, try MSI */
1109msi_only:
2a3abf6d
AD
1110#ifdef CONFIG_PCI_IOV
1111 /* disable SR-IOV for non MSI-X configurations */
1112 if (adapter->vf_data) {
1113 struct e1000_hw *hw = &adapter->hw;
1114 /* disable iov and allow time for transactions to clear */
1115 pci_disable_sriov(adapter->pdev);
1116 msleep(500);
1117
1118 kfree(adapter->vf_data);
1119 adapter->vf_data = NULL;
1120 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
945a5151 1121 wrfl();
2a3abf6d
AD
1122 msleep(100);
1123 dev_info(&adapter->pdev->dev, "IOV Disabled\n");
1124 }
1125#endif
4fc82adf 1126 adapter->vfs_allocated_count = 0;
a99955fc 1127 adapter->rss_queues = 1;
4fc82adf 1128 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
9d5c8243 1129 adapter->num_rx_queues = 1;
661086df 1130 adapter->num_tx_queues = 1;
047e0030 1131 adapter->num_q_vectors = 1;
9d5c8243 1132 if (!pci_enable_msi(adapter->pdev))
7dfc16fa 1133 adapter->flags |= IGB_FLAG_HAS_MSI;
9d5c8243
AK
1134}
1135
5536d210
AD
1136static void igb_add_ring(struct igb_ring *ring,
1137 struct igb_ring_container *head)
1138{
1139 head->ring = ring;
1140 head->count++;
1141}
1142
047e0030 1143/**
b980ac18
JK
1144 * igb_alloc_q_vector - Allocate memory for a single interrupt vector
1145 * @adapter: board private structure to initialize
1146 * @v_count: q_vectors allocated on adapter, used for ring interleaving
1147 * @v_idx: index of vector in adapter struct
1148 * @txr_count: total number of Tx rings to allocate
1149 * @txr_idx: index of first Tx ring to allocate
1150 * @rxr_count: total number of Rx rings to allocate
1151 * @rxr_idx: index of first Rx ring to allocate
047e0030 1152 *
b980ac18 1153 * We allocate one q_vector. If allocation fails we return -ENOMEM.
047e0030 1154 **/
5536d210
AD
1155static int igb_alloc_q_vector(struct igb_adapter *adapter,
1156 int v_count, int v_idx,
1157 int txr_count, int txr_idx,
1158 int rxr_count, int rxr_idx)
047e0030
AD
1159{
1160 struct igb_q_vector *q_vector;
5536d210
AD
1161 struct igb_ring *ring;
1162 int ring_count, size;
047e0030 1163
5536d210
AD
1164 /* igb only supports 1 Tx and/or 1 Rx queue per vector */
1165 if (txr_count > 1 || rxr_count > 1)
1166 return -ENOMEM;
1167
1168 ring_count = txr_count + rxr_count;
1169 size = sizeof(struct igb_q_vector) +
1170 (sizeof(struct igb_ring) * ring_count);
1171
1172 /* allocate q_vector and rings */
1173 q_vector = kzalloc(size, GFP_KERNEL);
1174 if (!q_vector)
1175 return -ENOMEM;
1176
1177 /* initialize NAPI */
1178 netif_napi_add(adapter->netdev, &q_vector->napi,
1179 igb_poll, 64);
1180
1181 /* tie q_vector and adapter together */
1182 adapter->q_vector[v_idx] = q_vector;
1183 q_vector->adapter = adapter;
1184
1185 /* initialize work limits */
1186 q_vector->tx.work_limit = adapter->tx_work_limit;
1187
1188 /* initialize ITR configuration */
1189 q_vector->itr_register = adapter->hw.hw_addr + E1000_EITR(0);
1190 q_vector->itr_val = IGB_START_ITR;
1191
1192 /* initialize pointer to rings */
1193 ring = q_vector->ring;
1194
4e227667
AD
1195 /* intialize ITR */
1196 if (rxr_count) {
1197 /* rx or rx/tx vector */
1198 if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
1199 q_vector->itr_val = adapter->rx_itr_setting;
1200 } else {
1201 /* tx only vector */
1202 if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
1203 q_vector->itr_val = adapter->tx_itr_setting;
1204 }
1205
5536d210
AD
1206 if (txr_count) {
1207 /* assign generic ring traits */
1208 ring->dev = &adapter->pdev->dev;
1209 ring->netdev = adapter->netdev;
1210
1211 /* configure backlink on ring */
1212 ring->q_vector = q_vector;
1213
1214 /* update q_vector Tx values */
1215 igb_add_ring(ring, &q_vector->tx);
1216
1217 /* For 82575, context index must be unique per ring. */
1218 if (adapter->hw.mac.type == e1000_82575)
1219 set_bit(IGB_RING_FLAG_TX_CTX_IDX, &ring->flags);
1220
1221 /* apply Tx specific ring traits */
1222 ring->count = adapter->tx_ring_count;
1223 ring->queue_index = txr_idx;
1224
1225 /* assign ring to adapter */
1226 adapter->tx_ring[txr_idx] = ring;
1227
1228 /* push pointer to next ring */
1229 ring++;
047e0030 1230 }
81c2fc22 1231
5536d210
AD
1232 if (rxr_count) {
1233 /* assign generic ring traits */
1234 ring->dev = &adapter->pdev->dev;
1235 ring->netdev = adapter->netdev;
047e0030 1236
5536d210
AD
1237 /* configure backlink on ring */
1238 ring->q_vector = q_vector;
047e0030 1239
5536d210
AD
1240 /* update q_vector Rx values */
1241 igb_add_ring(ring, &q_vector->rx);
047e0030 1242
5536d210
AD
1243 /* set flag indicating ring supports SCTP checksum offload */
1244 if (adapter->hw.mac.type >= e1000_82576)
1245 set_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags);
047e0030 1246
ceb5f13b
CW
1247 /*
1248 * On i350, i354, i210, and i211, loopback VLAN packets
5536d210 1249 * have the tag byte-swapped.
b980ac18 1250 */
5536d210
AD
1251 if (adapter->hw.mac.type >= e1000_i350)
1252 set_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &ring->flags);
047e0030 1253
5536d210
AD
1254 /* apply Rx specific ring traits */
1255 ring->count = adapter->rx_ring_count;
1256 ring->queue_index = rxr_idx;
1257
1258 /* assign ring to adapter */
1259 adapter->rx_ring[rxr_idx] = ring;
1260 }
1261
1262 return 0;
047e0030
AD
1263}
1264
5536d210 1265
047e0030 1266/**
b980ac18
JK
1267 * igb_alloc_q_vectors - Allocate memory for interrupt vectors
1268 * @adapter: board private structure to initialize
047e0030 1269 *
b980ac18
JK
1270 * We allocate one q_vector per queue interrupt. If allocation fails we
1271 * return -ENOMEM.
047e0030 1272 **/
5536d210 1273static int igb_alloc_q_vectors(struct igb_adapter *adapter)
047e0030 1274{
5536d210
AD
1275 int q_vectors = adapter->num_q_vectors;
1276 int rxr_remaining = adapter->num_rx_queues;
1277 int txr_remaining = adapter->num_tx_queues;
1278 int rxr_idx = 0, txr_idx = 0, v_idx = 0;
1279 int err;
047e0030 1280
5536d210
AD
1281 if (q_vectors >= (rxr_remaining + txr_remaining)) {
1282 for (; rxr_remaining; v_idx++) {
1283 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1284 0, 0, 1, rxr_idx);
047e0030 1285
5536d210
AD
1286 if (err)
1287 goto err_out;
1288
1289 /* update counts and index */
1290 rxr_remaining--;
1291 rxr_idx++;
047e0030 1292 }
047e0030 1293 }
5536d210
AD
1294
1295 for (; v_idx < q_vectors; v_idx++) {
1296 int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
1297 int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
1298 err = igb_alloc_q_vector(adapter, q_vectors, v_idx,
1299 tqpv, txr_idx, rqpv, rxr_idx);
1300
1301 if (err)
1302 goto err_out;
1303
1304 /* update counts and index */
1305 rxr_remaining -= rqpv;
1306 txr_remaining -= tqpv;
1307 rxr_idx++;
1308 txr_idx++;
1309 }
1310
047e0030 1311 return 0;
5536d210
AD
1312
1313err_out:
1314 adapter->num_tx_queues = 0;
1315 adapter->num_rx_queues = 0;
1316 adapter->num_q_vectors = 0;
1317
1318 while (v_idx--)
1319 igb_free_q_vector(adapter, v_idx);
1320
1321 return -ENOMEM;
047e0030
AD
1322}
1323
1324/**
b980ac18
JK
1325 * igb_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
1326 * @adapter: board private structure to initialize
1327 * @msix: boolean value of MSIX capability
047e0030 1328 *
b980ac18 1329 * This function initializes the interrupts and allocates all of the queues.
047e0030 1330 **/
53c7d064 1331static int igb_init_interrupt_scheme(struct igb_adapter *adapter, bool msix)
047e0030
AD
1332{
1333 struct pci_dev *pdev = adapter->pdev;
1334 int err;
1335
53c7d064 1336 igb_set_interrupt_capability(adapter, msix);
047e0030
AD
1337
1338 err = igb_alloc_q_vectors(adapter);
1339 if (err) {
1340 dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
1341 goto err_alloc_q_vectors;
1342 }
1343
5536d210 1344 igb_cache_ring_register(adapter);
047e0030
AD
1345
1346 return 0;
5536d210 1347
047e0030
AD
1348err_alloc_q_vectors:
1349 igb_reset_interrupt_capability(adapter);
1350 return err;
1351}
1352
9d5c8243 1353/**
b980ac18
JK
1354 * igb_request_irq - initialize interrupts
1355 * @adapter: board private structure to initialize
9d5c8243 1356 *
b980ac18
JK
1357 * Attempts to configure interrupts using the best available
1358 * capabilities of the hardware and kernel.
9d5c8243
AK
1359 **/
1360static int igb_request_irq(struct igb_adapter *adapter)
1361{
1362 struct net_device *netdev = adapter->netdev;
047e0030 1363 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
1364 int err = 0;
1365
1366 if (adapter->msix_entries) {
1367 err = igb_request_msix(adapter);
844290e5 1368 if (!err)
9d5c8243 1369 goto request_done;
9d5c8243 1370 /* fall back to MSI */
5536d210
AD
1371 igb_free_all_tx_resources(adapter);
1372 igb_free_all_rx_resources(adapter);
53c7d064 1373
047e0030 1374 igb_clear_interrupt_scheme(adapter);
53c7d064
SA
1375 err = igb_init_interrupt_scheme(adapter, false);
1376 if (err)
047e0030 1377 goto request_done;
53c7d064 1378
047e0030
AD
1379 igb_setup_all_tx_resources(adapter);
1380 igb_setup_all_rx_resources(adapter);
53c7d064 1381 igb_configure(adapter);
9d5c8243 1382 }
844290e5 1383
c74d588e
AD
1384 igb_assign_vector(adapter->q_vector[0], 0);
1385
7dfc16fa 1386 if (adapter->flags & IGB_FLAG_HAS_MSI) {
c74d588e 1387 err = request_irq(pdev->irq, igb_intr_msi, 0,
047e0030 1388 netdev->name, adapter);
9d5c8243
AK
1389 if (!err)
1390 goto request_done;
047e0030 1391
9d5c8243
AK
1392 /* fall back to legacy interrupts */
1393 igb_reset_interrupt_capability(adapter);
7dfc16fa 1394 adapter->flags &= ~IGB_FLAG_HAS_MSI;
9d5c8243
AK
1395 }
1396
c74d588e 1397 err = request_irq(pdev->irq, igb_intr, IRQF_SHARED,
047e0030 1398 netdev->name, adapter);
9d5c8243 1399
6cb5e577 1400 if (err)
c74d588e 1401 dev_err(&pdev->dev, "Error %d getting interrupt\n",
9d5c8243 1402 err);
9d5c8243
AK
1403
1404request_done:
1405 return err;
1406}
1407
1408static void igb_free_irq(struct igb_adapter *adapter)
1409{
9d5c8243
AK
1410 if (adapter->msix_entries) {
1411 int vector = 0, i;
1412
047e0030 1413 free_irq(adapter->msix_entries[vector++].vector, adapter);
9d5c8243 1414
0d1ae7f4 1415 for (i = 0; i < adapter->num_q_vectors; i++)
047e0030 1416 free_irq(adapter->msix_entries[vector++].vector,
0d1ae7f4 1417 adapter->q_vector[i]);
047e0030
AD
1418 } else {
1419 free_irq(adapter->pdev->irq, adapter);
9d5c8243 1420 }
9d5c8243
AK
1421}
1422
1423/**
b980ac18
JK
1424 * igb_irq_disable - Mask off interrupt generation on the NIC
1425 * @adapter: board private structure
9d5c8243
AK
1426 **/
1427static void igb_irq_disable(struct igb_adapter *adapter)
1428{
1429 struct e1000_hw *hw = &adapter->hw;
1430
b980ac18 1431 /* we need to be careful when disabling interrupts. The VFs are also
25568a53
AD
1432 * mapped into these registers and so clearing the bits can cause
1433 * issues on the VF drivers so we only need to clear what we set
1434 */
9d5c8243 1435 if (adapter->msix_entries) {
2dfd1212
AD
1436 u32 regval = rd32(E1000_EIAM);
1437 wr32(E1000_EIAM, regval & ~adapter->eims_enable_mask);
1438 wr32(E1000_EIMC, adapter->eims_enable_mask);
1439 regval = rd32(E1000_EIAC);
1440 wr32(E1000_EIAC, regval & ~adapter->eims_enable_mask);
9d5c8243 1441 }
844290e5
PW
1442
1443 wr32(E1000_IAM, 0);
9d5c8243
AK
1444 wr32(E1000_IMC, ~0);
1445 wrfl();
81a61859
ET
1446 if (adapter->msix_entries) {
1447 int i;
1448 for (i = 0; i < adapter->num_q_vectors; i++)
1449 synchronize_irq(adapter->msix_entries[i].vector);
1450 } else {
1451 synchronize_irq(adapter->pdev->irq);
1452 }
9d5c8243
AK
1453}
1454
1455/**
b980ac18
JK
1456 * igb_irq_enable - Enable default interrupt generation settings
1457 * @adapter: board private structure
9d5c8243
AK
1458 **/
1459static void igb_irq_enable(struct igb_adapter *adapter)
1460{
1461 struct e1000_hw *hw = &adapter->hw;
1462
1463 if (adapter->msix_entries) {
06218a8d 1464 u32 ims = E1000_IMS_LSC | E1000_IMS_DOUTSYNC | E1000_IMS_DRSTA;
2dfd1212
AD
1465 u32 regval = rd32(E1000_EIAC);
1466 wr32(E1000_EIAC, regval | adapter->eims_enable_mask);
1467 regval = rd32(E1000_EIAM);
1468 wr32(E1000_EIAM, regval | adapter->eims_enable_mask);
844290e5 1469 wr32(E1000_EIMS, adapter->eims_enable_mask);
25568a53 1470 if (adapter->vfs_allocated_count) {
4ae196df 1471 wr32(E1000_MBVFIMR, 0xFF);
25568a53
AD
1472 ims |= E1000_IMS_VMMB;
1473 }
1474 wr32(E1000_IMS, ims);
844290e5 1475 } else {
55cac248
AD
1476 wr32(E1000_IMS, IMS_ENABLE_MASK |
1477 E1000_IMS_DRSTA);
1478 wr32(E1000_IAM, IMS_ENABLE_MASK |
1479 E1000_IMS_DRSTA);
844290e5 1480 }
9d5c8243
AK
1481}
1482
1483static void igb_update_mng_vlan(struct igb_adapter *adapter)
1484{
51466239 1485 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1486 u16 vid = adapter->hw.mng_cookie.vlan_id;
1487 u16 old_vid = adapter->mng_vlan_id;
51466239
AD
1488
1489 if (hw->mng_cookie.status & E1000_MNG_DHCP_COOKIE_STATUS_VLAN) {
1490 /* add VID to filter table */
1491 igb_vfta_set(hw, vid, true);
1492 adapter->mng_vlan_id = vid;
1493 } else {
1494 adapter->mng_vlan_id = IGB_MNG_VLAN_NONE;
1495 }
1496
1497 if ((old_vid != (u16)IGB_MNG_VLAN_NONE) &&
1498 (vid != old_vid) &&
b2cb09b1 1499 !test_bit(old_vid, adapter->active_vlans)) {
51466239
AD
1500 /* remove VID from filter table */
1501 igb_vfta_set(hw, old_vid, false);
9d5c8243
AK
1502 }
1503}
1504
1505/**
b980ac18
JK
1506 * igb_release_hw_control - release control of the h/w to f/w
1507 * @adapter: address of board private structure
9d5c8243 1508 *
b980ac18
JK
1509 * igb_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
1510 * For ASF and Pass Through versions of f/w this means that the
1511 * driver is no longer loaded.
9d5c8243
AK
1512 **/
1513static void igb_release_hw_control(struct igb_adapter *adapter)
1514{
1515 struct e1000_hw *hw = &adapter->hw;
1516 u32 ctrl_ext;
1517
1518 /* Let firmware take over control of h/w */
1519 ctrl_ext = rd32(E1000_CTRL_EXT);
1520 wr32(E1000_CTRL_EXT,
1521 ctrl_ext & ~E1000_CTRL_EXT_DRV_LOAD);
1522}
1523
9d5c8243 1524/**
b980ac18
JK
1525 * igb_get_hw_control - get control of the h/w from f/w
1526 * @adapter: address of board private structure
9d5c8243 1527 *
b980ac18
JK
1528 * igb_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
1529 * For ASF and Pass Through versions of f/w this means that
1530 * the driver is loaded.
9d5c8243
AK
1531 **/
1532static void igb_get_hw_control(struct igb_adapter *adapter)
1533{
1534 struct e1000_hw *hw = &adapter->hw;
1535 u32 ctrl_ext;
1536
1537 /* Let firmware know the driver has taken over */
1538 ctrl_ext = rd32(E1000_CTRL_EXT);
1539 wr32(E1000_CTRL_EXT,
1540 ctrl_ext | E1000_CTRL_EXT_DRV_LOAD);
1541}
1542
9d5c8243 1543/**
b980ac18
JK
1544 * igb_configure - configure the hardware for RX and TX
1545 * @adapter: private board structure
9d5c8243
AK
1546 **/
1547static void igb_configure(struct igb_adapter *adapter)
1548{
1549 struct net_device *netdev = adapter->netdev;
1550 int i;
1551
1552 igb_get_hw_control(adapter);
ff41f8dc 1553 igb_set_rx_mode(netdev);
9d5c8243
AK
1554
1555 igb_restore_vlan(adapter);
9d5c8243 1556
85b430b4 1557 igb_setup_tctl(adapter);
06cf2666 1558 igb_setup_mrqc(adapter);
9d5c8243 1559 igb_setup_rctl(adapter);
85b430b4
AD
1560
1561 igb_configure_tx(adapter);
9d5c8243 1562 igb_configure_rx(adapter);
662d7205
AD
1563
1564 igb_rx_fifo_flush_82575(&adapter->hw);
1565
c493ea45 1566 /* call igb_desc_unused which always leaves
9d5c8243 1567 * at least 1 descriptor unused to make sure
b980ac18
JK
1568 * next_to_use != next_to_clean
1569 */
9d5c8243 1570 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 1571 struct igb_ring *ring = adapter->rx_ring[i];
cd392f5c 1572 igb_alloc_rx_buffers(ring, igb_desc_unused(ring));
9d5c8243 1573 }
9d5c8243
AK
1574}
1575
88a268c1 1576/**
b980ac18
JK
1577 * igb_power_up_link - Power up the phy/serdes link
1578 * @adapter: address of board private structure
88a268c1
NN
1579 **/
1580void igb_power_up_link(struct igb_adapter *adapter)
1581{
76886596
AA
1582 igb_reset_phy(&adapter->hw);
1583
88a268c1
NN
1584 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1585 igb_power_up_phy_copper(&adapter->hw);
1586 else
1587 igb_power_up_serdes_link_82575(&adapter->hw);
1588}
1589
1590/**
b980ac18
JK
1591 * igb_power_down_link - Power down the phy/serdes link
1592 * @adapter: address of board private structure
88a268c1
NN
1593 */
1594static void igb_power_down_link(struct igb_adapter *adapter)
1595{
1596 if (adapter->hw.phy.media_type == e1000_media_type_copper)
1597 igb_power_down_phy_copper_82575(&adapter->hw);
1598 else
1599 igb_shutdown_serdes_link_82575(&adapter->hw);
1600}
9d5c8243
AK
1601
1602/**
b980ac18
JK
1603 * igb_up - Open the interface and prepare it to handle traffic
1604 * @adapter: board private structure
9d5c8243 1605 **/
9d5c8243
AK
1606int igb_up(struct igb_adapter *adapter)
1607{
1608 struct e1000_hw *hw = &adapter->hw;
1609 int i;
1610
1611 /* hardware has been reset, we need to reload some things */
1612 igb_configure(adapter);
1613
1614 clear_bit(__IGB_DOWN, &adapter->state);
1615
0d1ae7f4
AD
1616 for (i = 0; i < adapter->num_q_vectors; i++)
1617 napi_enable(&(adapter->q_vector[i]->napi));
1618
844290e5 1619 if (adapter->msix_entries)
9d5c8243 1620 igb_configure_msix(adapter);
feeb2721
AD
1621 else
1622 igb_assign_vector(adapter->q_vector[0], 0);
9d5c8243
AK
1623
1624 /* Clear any pending interrupts. */
1625 rd32(E1000_ICR);
1626 igb_irq_enable(adapter);
1627
d4960307
AD
1628 /* notify VFs that reset has been completed */
1629 if (adapter->vfs_allocated_count) {
1630 u32 reg_data = rd32(E1000_CTRL_EXT);
1631 reg_data |= E1000_CTRL_EXT_PFRSTD;
1632 wr32(E1000_CTRL_EXT, reg_data);
1633 }
1634
4cb9be7a
JB
1635 netif_tx_start_all_queues(adapter->netdev);
1636
25568a53
AD
1637 /* start the watchdog. */
1638 hw->mac.get_link_status = 1;
1639 schedule_work(&adapter->watchdog_task);
1640
9d5c8243
AK
1641 return 0;
1642}
1643
1644void igb_down(struct igb_adapter *adapter)
1645{
9d5c8243 1646 struct net_device *netdev = adapter->netdev;
330a6d6a 1647 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
1648 u32 tctl, rctl;
1649 int i;
1650
1651 /* signal that we're down so the interrupt handler does not
b980ac18
JK
1652 * reschedule our watchdog timer
1653 */
9d5c8243
AK
1654 set_bit(__IGB_DOWN, &adapter->state);
1655
1656 /* disable receives in the hardware */
1657 rctl = rd32(E1000_RCTL);
1658 wr32(E1000_RCTL, rctl & ~E1000_RCTL_EN);
1659 /* flush and sleep below */
1660
fd2ea0a7 1661 netif_tx_stop_all_queues(netdev);
9d5c8243
AK
1662
1663 /* disable transmits in the hardware */
1664 tctl = rd32(E1000_TCTL);
1665 tctl &= ~E1000_TCTL_EN;
1666 wr32(E1000_TCTL, tctl);
1667 /* flush both disables and wait for them to finish */
1668 wrfl();
1669 msleep(10);
1670
0d1ae7f4
AD
1671 for (i = 0; i < adapter->num_q_vectors; i++)
1672 napi_disable(&(adapter->q_vector[i]->napi));
9d5c8243 1673
9d5c8243
AK
1674 igb_irq_disable(adapter);
1675
1676 del_timer_sync(&adapter->watchdog_timer);
1677 del_timer_sync(&adapter->phy_info_timer);
1678
9d5c8243 1679 netif_carrier_off(netdev);
04fe6358
AD
1680
1681 /* record the stats before reset*/
12dcd86b
ED
1682 spin_lock(&adapter->stats64_lock);
1683 igb_update_stats(adapter, &adapter->stats64);
1684 spin_unlock(&adapter->stats64_lock);
04fe6358 1685
9d5c8243
AK
1686 adapter->link_speed = 0;
1687 adapter->link_duplex = 0;
1688
3023682e
JK
1689 if (!pci_channel_offline(adapter->pdev))
1690 igb_reset(adapter);
9d5c8243
AK
1691 igb_clean_all_tx_rings(adapter);
1692 igb_clean_all_rx_rings(adapter);
7e0e99ef
AD
1693#ifdef CONFIG_IGB_DCA
1694
1695 /* since we reset the hardware DCA settings were cleared */
1696 igb_setup_dca(adapter);
1697#endif
9d5c8243
AK
1698}
1699
1700void igb_reinit_locked(struct igb_adapter *adapter)
1701{
1702 WARN_ON(in_interrupt());
1703 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
1704 msleep(1);
1705 igb_down(adapter);
1706 igb_up(adapter);
1707 clear_bit(__IGB_RESETTING, &adapter->state);
1708}
1709
1710void igb_reset(struct igb_adapter *adapter)
1711{
090b1795 1712 struct pci_dev *pdev = adapter->pdev;
9d5c8243 1713 struct e1000_hw *hw = &adapter->hw;
2d064c06
AD
1714 struct e1000_mac_info *mac = &hw->mac;
1715 struct e1000_fc_info *fc = &hw->fc;
d48507fe 1716 u32 pba = 0, tx_space, min_tx_space, min_rx_space, hwm;
9d5c8243
AK
1717
1718 /* Repartition Pba for greater than 9k mtu
1719 * To take effect CTRL.RST is required.
1720 */
fa4dfae0 1721 switch (mac->type) {
d2ba2ed8 1722 case e1000_i350:
ceb5f13b 1723 case e1000_i354:
55cac248
AD
1724 case e1000_82580:
1725 pba = rd32(E1000_RXPBS);
1726 pba = igb_rxpbs_adjust_82580(pba);
1727 break;
fa4dfae0 1728 case e1000_82576:
d249be54
AD
1729 pba = rd32(E1000_RXPBS);
1730 pba &= E1000_RXPBS_SIZE_MASK_82576;
fa4dfae0
AD
1731 break;
1732 case e1000_82575:
f96a8a0b
CW
1733 case e1000_i210:
1734 case e1000_i211:
fa4dfae0
AD
1735 default:
1736 pba = E1000_PBA_34K;
1737 break;
2d064c06 1738 }
9d5c8243 1739
2d064c06
AD
1740 if ((adapter->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) &&
1741 (mac->type < e1000_82576)) {
9d5c8243
AK
1742 /* adjust PBA for jumbo frames */
1743 wr32(E1000_PBA, pba);
1744
1745 /* To maintain wire speed transmits, the Tx FIFO should be
1746 * large enough to accommodate two full transmit packets,
1747 * rounded up to the next 1KB and expressed in KB. Likewise,
1748 * the Rx FIFO should be large enough to accommodate at least
1749 * one full receive packet and is similarly rounded up and
b980ac18
JK
1750 * expressed in KB.
1751 */
9d5c8243
AK
1752 pba = rd32(E1000_PBA);
1753 /* upper 16 bits has Tx packet buffer allocation size in KB */
1754 tx_space = pba >> 16;
1755 /* lower 16 bits has Rx packet buffer allocation size in KB */
1756 pba &= 0xffff;
b980ac18
JK
1757 /* the Tx fifo also stores 16 bytes of information about the Tx
1758 * but don't include ethernet FCS because hardware appends it
1759 */
9d5c8243 1760 min_tx_space = (adapter->max_frame_size +
85e8d004 1761 sizeof(union e1000_adv_tx_desc) -
9d5c8243
AK
1762 ETH_FCS_LEN) * 2;
1763 min_tx_space = ALIGN(min_tx_space, 1024);
1764 min_tx_space >>= 10;
1765 /* software strips receive CRC, so leave room for it */
1766 min_rx_space = adapter->max_frame_size;
1767 min_rx_space = ALIGN(min_rx_space, 1024);
1768 min_rx_space >>= 10;
1769
1770 /* If current Tx allocation is less than the min Tx FIFO size,
1771 * and the min Tx FIFO size is less than the current Rx FIFO
b980ac18
JK
1772 * allocation, take space away from current Rx allocation
1773 */
9d5c8243
AK
1774 if (tx_space < min_tx_space &&
1775 ((min_tx_space - tx_space) < pba)) {
1776 pba = pba - (min_tx_space - tx_space);
1777
b980ac18
JK
1778 /* if short on Rx space, Rx wins and must trump Tx
1779 * adjustment
1780 */
9d5c8243
AK
1781 if (pba < min_rx_space)
1782 pba = min_rx_space;
1783 }
2d064c06 1784 wr32(E1000_PBA, pba);
9d5c8243 1785 }
9d5c8243
AK
1786
1787 /* flow control settings */
1788 /* The high water mark must be low enough to fit one full frame
1789 * (or the size used for early receive) above it in the Rx FIFO.
1790 * Set it to the lower of:
1791 * - 90% of the Rx FIFO size, or
b980ac18
JK
1792 * - the full Rx FIFO size minus one full frame
1793 */
9d5c8243 1794 hwm = min(((pba << 10) * 9 / 10),
2d064c06 1795 ((pba << 10) - 2 * adapter->max_frame_size));
9d5c8243 1796
d48507fe 1797 fc->high_water = hwm & 0xFFFFFFF0; /* 16-byte granularity */
d405ea3e 1798 fc->low_water = fc->high_water - 16;
9d5c8243
AK
1799 fc->pause_time = 0xFFFF;
1800 fc->send_xon = 1;
0cce119a 1801 fc->current_mode = fc->requested_mode;
9d5c8243 1802
4ae196df
AD
1803 /* disable receive for all VFs and wait one second */
1804 if (adapter->vfs_allocated_count) {
1805 int i;
1806 for (i = 0 ; i < adapter->vfs_allocated_count; i++)
8fa7e0f7 1807 adapter->vf_data[i].flags &= IGB_VF_FLAG_PF_SET_MAC;
4ae196df
AD
1808
1809 /* ping all the active vfs to let them know we are going down */
f2ca0dbe 1810 igb_ping_all_vfs(adapter);
4ae196df
AD
1811
1812 /* disable transmits and receives */
1813 wr32(E1000_VFRE, 0);
1814 wr32(E1000_VFTE, 0);
1815 }
1816
9d5c8243 1817 /* Allow time for pending master requests to run */
330a6d6a 1818 hw->mac.ops.reset_hw(hw);
9d5c8243
AK
1819 wr32(E1000_WUC, 0);
1820
330a6d6a 1821 if (hw->mac.ops.init_hw(hw))
090b1795 1822 dev_err(&pdev->dev, "Hardware Error\n");
831ec0b4 1823
b980ac18 1824 /* Flow control settings reset on hardware reset, so guarantee flow
a27416bb
MV
1825 * control is off when forcing speed.
1826 */
1827 if (!hw->mac.autoneg)
1828 igb_force_mac_fc(hw);
1829
b6e0c419 1830 igb_init_dmac(adapter, pba);
e428893b
CW
1831#ifdef CONFIG_IGB_HWMON
1832 /* Re-initialize the thermal sensor on i350 devices. */
1833 if (!test_bit(__IGB_DOWN, &adapter->state)) {
1834 if (mac->type == e1000_i350 && hw->bus.func == 0) {
1835 /* If present, re-initialize the external thermal sensor
1836 * interface.
1837 */
1838 if (adapter->ets)
1839 mac->ops.init_thermal_sensor_thresh(hw);
1840 }
1841 }
1842#endif
88a268c1
NN
1843 if (!netif_running(adapter->netdev))
1844 igb_power_down_link(adapter);
1845
9d5c8243
AK
1846 igb_update_mng_vlan(adapter);
1847
1848 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1849 wr32(E1000_VET, ETHERNET_IEEE_VLAN_TYPE);
1850
1f6e8178
MV
1851 /* Re-enable PTP, where applicable. */
1852 igb_ptp_reset(adapter);
1f6e8178 1853
330a6d6a 1854 igb_get_phy_info(hw);
9d5c8243
AK
1855}
1856
c8f44aff
MM
1857static netdev_features_t igb_fix_features(struct net_device *netdev,
1858 netdev_features_t features)
b2cb09b1 1859{
b980ac18
JK
1860 /* Since there is no support for separate Rx/Tx vlan accel
1861 * enable/disable make sure Tx flag is always in same state as Rx.
b2cb09b1 1862 */
f646968f
PM
1863 if (features & NETIF_F_HW_VLAN_CTAG_RX)
1864 features |= NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1 1865 else
f646968f 1866 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
b2cb09b1
JP
1867
1868 return features;
1869}
1870
c8f44aff
MM
1871static int igb_set_features(struct net_device *netdev,
1872 netdev_features_t features)
ac52caa3 1873{
c8f44aff 1874 netdev_features_t changed = netdev->features ^ features;
89eaefb6 1875 struct igb_adapter *adapter = netdev_priv(netdev);
ac52caa3 1876
f646968f 1877 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
b2cb09b1
JP
1878 igb_vlan_mode(netdev, features);
1879
89eaefb6
BG
1880 if (!(changed & NETIF_F_RXALL))
1881 return 0;
1882
1883 netdev->features = features;
1884
1885 if (netif_running(netdev))
1886 igb_reinit_locked(adapter);
1887 else
1888 igb_reset(adapter);
1889
ac52caa3
MM
1890 return 0;
1891}
1892
2e5c6922 1893static const struct net_device_ops igb_netdev_ops = {
559e9c49 1894 .ndo_open = igb_open,
2e5c6922 1895 .ndo_stop = igb_close,
cd392f5c 1896 .ndo_start_xmit = igb_xmit_frame,
12dcd86b 1897 .ndo_get_stats64 = igb_get_stats64,
ff41f8dc 1898 .ndo_set_rx_mode = igb_set_rx_mode,
2e5c6922
SH
1899 .ndo_set_mac_address = igb_set_mac,
1900 .ndo_change_mtu = igb_change_mtu,
1901 .ndo_do_ioctl = igb_ioctl,
1902 .ndo_tx_timeout = igb_tx_timeout,
1903 .ndo_validate_addr = eth_validate_addr,
2e5c6922
SH
1904 .ndo_vlan_rx_add_vid = igb_vlan_rx_add_vid,
1905 .ndo_vlan_rx_kill_vid = igb_vlan_rx_kill_vid,
8151d294
WM
1906 .ndo_set_vf_mac = igb_ndo_set_vf_mac,
1907 .ndo_set_vf_vlan = igb_ndo_set_vf_vlan,
1908 .ndo_set_vf_tx_rate = igb_ndo_set_vf_bw,
70ea4783 1909 .ndo_set_vf_spoofchk = igb_ndo_set_vf_spoofchk,
8151d294 1910 .ndo_get_vf_config = igb_ndo_get_vf_config,
2e5c6922
SH
1911#ifdef CONFIG_NET_POLL_CONTROLLER
1912 .ndo_poll_controller = igb_netpoll,
1913#endif
b2cb09b1
JP
1914 .ndo_fix_features = igb_fix_features,
1915 .ndo_set_features = igb_set_features,
2e5c6922
SH
1916};
1917
d67974f0
CW
1918/**
1919 * igb_set_fw_version - Configure version string for ethtool
1920 * @adapter: adapter struct
d67974f0
CW
1921 **/
1922void igb_set_fw_version(struct igb_adapter *adapter)
1923{
1924 struct e1000_hw *hw = &adapter->hw;
0b1a6f2e
CW
1925 struct e1000_fw_version fw;
1926
1927 igb_get_fw_version(hw, &fw);
1928
1929 switch (hw->mac.type) {
1930 case e1000_i211:
d67974f0 1931 snprintf(adapter->fw_version, sizeof(adapter->fw_version),
0b1a6f2e
CW
1932 "%2d.%2d-%d",
1933 fw.invm_major, fw.invm_minor, fw.invm_img_type);
1934 break;
1935
1936 default:
1937 /* if option is rom valid, display its version too */
1938 if (fw.or_valid) {
1939 snprintf(adapter->fw_version,
1940 sizeof(adapter->fw_version),
1941 "%d.%d, 0x%08x, %d.%d.%d",
1942 fw.eep_major, fw.eep_minor, fw.etrack_id,
1943 fw.or_major, fw.or_build, fw.or_patch);
1944 /* no option rom */
1945 } else {
1946 snprintf(adapter->fw_version,
1947 sizeof(adapter->fw_version),
1948 "%d.%d, 0x%08x",
1949 fw.eep_major, fw.eep_minor, fw.etrack_id);
1950 }
1951 break;
d67974f0 1952 }
d67974f0
CW
1953 return;
1954}
1955
b980ac18
JK
1956/**
1957 * igb_init_i2c - Init I2C interface
441fc6fd 1958 * @adapter: pointer to adapter structure
b980ac18 1959 **/
441fc6fd
CW
1960static s32 igb_init_i2c(struct igb_adapter *adapter)
1961{
1962 s32 status = E1000_SUCCESS;
1963
1964 /* I2C interface supported on i350 devices */
1965 if (adapter->hw.mac.type != e1000_i350)
1966 return E1000_SUCCESS;
1967
1968 /* Initialize the i2c bus which is controlled by the registers.
1969 * This bus will use the i2c_algo_bit structue that implements
1970 * the protocol through toggling of the 4 bits in the register.
1971 */
1972 adapter->i2c_adap.owner = THIS_MODULE;
1973 adapter->i2c_algo = igb_i2c_algo;
1974 adapter->i2c_algo.data = adapter;
1975 adapter->i2c_adap.algo_data = &adapter->i2c_algo;
1976 adapter->i2c_adap.dev.parent = &adapter->pdev->dev;
1977 strlcpy(adapter->i2c_adap.name, "igb BB",
1978 sizeof(adapter->i2c_adap.name));
1979 status = i2c_bit_add_bus(&adapter->i2c_adap);
1980 return status;
1981}
1982
9d5c8243 1983/**
b980ac18
JK
1984 * igb_probe - Device Initialization Routine
1985 * @pdev: PCI device information struct
1986 * @ent: entry in igb_pci_tbl
9d5c8243 1987 *
b980ac18 1988 * Returns 0 on success, negative on failure
9d5c8243 1989 *
b980ac18
JK
1990 * igb_probe initializes an adapter identified by a pci_dev structure.
1991 * The OS initialization, configuring of the adapter private structure,
1992 * and a hardware reset occur.
9d5c8243 1993 **/
1dd06ae8 1994static int igb_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
9d5c8243
AK
1995{
1996 struct net_device *netdev;
1997 struct igb_adapter *adapter;
1998 struct e1000_hw *hw;
4337e993 1999 u16 eeprom_data = 0;
9835fd73 2000 s32 ret_val;
4337e993 2001 static int global_quad_port_a; /* global quad port a indication */
9d5c8243
AK
2002 const struct e1000_info *ei = igb_info_tbl[ent->driver_data];
2003 unsigned long mmio_start, mmio_len;
2d6a5e95 2004 int err, pci_using_dac;
9835fd73 2005 u8 part_str[E1000_PBANUM_LENGTH];
9d5c8243 2006
bded64a7
AG
2007 /* Catch broken hardware that put the wrong VF device ID in
2008 * the PCIe SR-IOV capability.
2009 */
2010 if (pdev->is_virtfn) {
2011 WARN(1, KERN_ERR "%s (%hx:%hx) should not be a VF!\n",
f96a8a0b 2012 pci_name(pdev), pdev->vendor, pdev->device);
bded64a7
AG
2013 return -EINVAL;
2014 }
2015
aed5dec3 2016 err = pci_enable_device_mem(pdev);
9d5c8243
AK
2017 if (err)
2018 return err;
2019
2020 pci_using_dac = 0;
59d71989 2021 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243 2022 if (!err) {
59d71989 2023 err = dma_set_coherent_mask(&pdev->dev, DMA_BIT_MASK(64));
9d5c8243
AK
2024 if (!err)
2025 pci_using_dac = 1;
2026 } else {
59d71989 2027 err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
9d5c8243 2028 if (err) {
b980ac18
JK
2029 err = dma_set_coherent_mask(&pdev->dev,
2030 DMA_BIT_MASK(32));
9d5c8243 2031 if (err) {
b980ac18
JK
2032 dev_err(&pdev->dev,
2033 "No usable DMA configuration, aborting\n");
9d5c8243
AK
2034 goto err_dma;
2035 }
2036 }
2037 }
2038
aed5dec3 2039 err = pci_request_selected_regions(pdev, pci_select_bars(pdev,
b980ac18
JK
2040 IORESOURCE_MEM),
2041 igb_driver_name);
9d5c8243
AK
2042 if (err)
2043 goto err_pci_reg;
2044
19d5afd4 2045 pci_enable_pcie_error_reporting(pdev);
40a914fa 2046
9d5c8243 2047 pci_set_master(pdev);
c682fc23 2048 pci_save_state(pdev);
9d5c8243
AK
2049
2050 err = -ENOMEM;
1bfaf07b 2051 netdev = alloc_etherdev_mq(sizeof(struct igb_adapter),
1cc3bd87 2052 IGB_MAX_TX_QUEUES);
9d5c8243
AK
2053 if (!netdev)
2054 goto err_alloc_etherdev;
2055
2056 SET_NETDEV_DEV(netdev, &pdev->dev);
2057
2058 pci_set_drvdata(pdev, netdev);
2059 adapter = netdev_priv(netdev);
2060 adapter->netdev = netdev;
2061 adapter->pdev = pdev;
2062 hw = &adapter->hw;
2063 hw->back = adapter;
b3f4d599 2064 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
9d5c8243
AK
2065
2066 mmio_start = pci_resource_start(pdev, 0);
2067 mmio_len = pci_resource_len(pdev, 0);
2068
2069 err = -EIO;
28b0759c
AD
2070 hw->hw_addr = ioremap(mmio_start, mmio_len);
2071 if (!hw->hw_addr)
9d5c8243
AK
2072 goto err_ioremap;
2073
2e5c6922 2074 netdev->netdev_ops = &igb_netdev_ops;
9d5c8243 2075 igb_set_ethtool_ops(netdev);
9d5c8243 2076 netdev->watchdog_timeo = 5 * HZ;
9d5c8243
AK
2077
2078 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
2079
2080 netdev->mem_start = mmio_start;
2081 netdev->mem_end = mmio_start + mmio_len;
2082
9d5c8243
AK
2083 /* PCI config space info */
2084 hw->vendor_id = pdev->vendor;
2085 hw->device_id = pdev->device;
2086 hw->revision_id = pdev->revision;
2087 hw->subsystem_vendor_id = pdev->subsystem_vendor;
2088 hw->subsystem_device_id = pdev->subsystem_device;
2089
9d5c8243
AK
2090 /* Copy the default MAC, PHY and NVM function pointers */
2091 memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
2092 memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
2093 memcpy(&hw->nvm.ops, ei->nvm_ops, sizeof(hw->nvm.ops));
2094 /* Initialize skew-specific constants */
2095 err = ei->get_invariants(hw);
2096 if (err)
450c87c8 2097 goto err_sw_init;
9d5c8243 2098
450c87c8 2099 /* setup the private structure */
9d5c8243
AK
2100 err = igb_sw_init(adapter);
2101 if (err)
2102 goto err_sw_init;
2103
2104 igb_get_bus_info_pcie(hw);
2105
2106 hw->phy.autoneg_wait_to_complete = false;
9d5c8243
AK
2107
2108 /* Copper options */
2109 if (hw->phy.media_type == e1000_media_type_copper) {
2110 hw->phy.mdix = AUTO_ALL_MODES;
2111 hw->phy.disable_polarity_correction = false;
2112 hw->phy.ms_type = e1000_ms_hw_default;
2113 }
2114
2115 if (igb_check_reset_block(hw))
2116 dev_info(&pdev->dev,
2117 "PHY reset is blocked due to SOL/IDER session.\n");
2118
b980ac18 2119 /* features is initialized to 0 in allocation, it might have bits
077887c3
AD
2120 * set by igb_sw_init so we should use an or instead of an
2121 * assignment.
2122 */
2123 netdev->features |= NETIF_F_SG |
2124 NETIF_F_IP_CSUM |
2125 NETIF_F_IPV6_CSUM |
2126 NETIF_F_TSO |
2127 NETIF_F_TSO6 |
2128 NETIF_F_RXHASH |
2129 NETIF_F_RXCSUM |
f646968f
PM
2130 NETIF_F_HW_VLAN_CTAG_RX |
2131 NETIF_F_HW_VLAN_CTAG_TX;
077887c3
AD
2132
2133 /* copy netdev features into list of user selectable features */
2134 netdev->hw_features |= netdev->features;
89eaefb6 2135 netdev->hw_features |= NETIF_F_RXALL;
077887c3
AD
2136
2137 /* set this bit last since it cannot be part of hw_features */
f646968f 2138 netdev->features |= NETIF_F_HW_VLAN_CTAG_FILTER;
077887c3
AD
2139
2140 netdev->vlan_features |= NETIF_F_TSO |
2141 NETIF_F_TSO6 |
2142 NETIF_F_IP_CSUM |
2143 NETIF_F_IPV6_CSUM |
2144 NETIF_F_SG;
48f29ffc 2145
6b8f0922
BG
2146 netdev->priv_flags |= IFF_SUPP_NOFCS;
2147
7b872a55 2148 if (pci_using_dac) {
9d5c8243 2149 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
2150 netdev->vlan_features |= NETIF_F_HIGHDMA;
2151 }
9d5c8243 2152
ac52caa3
MM
2153 if (hw->mac.type >= e1000_82576) {
2154 netdev->hw_features |= NETIF_F_SCTP_CSUM;
b9473560 2155 netdev->features |= NETIF_F_SCTP_CSUM;
ac52caa3 2156 }
b9473560 2157
01789349
JP
2158 netdev->priv_flags |= IFF_UNICAST_FLT;
2159
330a6d6a 2160 adapter->en_mng_pt = igb_enable_mng_pass_thru(hw);
9d5c8243
AK
2161
2162 /* before reading the NVM, reset the controller to put the device in a
b980ac18
JK
2163 * known good starting state
2164 */
9d5c8243
AK
2165 hw->mac.ops.reset_hw(hw);
2166
b980ac18 2167 /* make sure the NVM is good , i211 parts have special NVM that
f96a8a0b
CW
2168 * doesn't contain a checksum
2169 */
2170 if (hw->mac.type != e1000_i211) {
2171 if (hw->nvm.ops.validate(hw) < 0) {
2172 dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
2173 err = -EIO;
2174 goto err_eeprom;
2175 }
9d5c8243
AK
2176 }
2177
2178 /* copy the MAC address out of the NVM */
2179 if (hw->mac.ops.read_mac_addr(hw))
2180 dev_err(&pdev->dev, "NVM Read Error\n");
2181
2182 memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
9d5c8243 2183
aaeb6cdf 2184 if (!is_valid_ether_addr(netdev->dev_addr)) {
9d5c8243
AK
2185 dev_err(&pdev->dev, "Invalid MAC Address\n");
2186 err = -EIO;
2187 goto err_eeprom;
2188 }
2189
d67974f0
CW
2190 /* get firmware version for ethtool -i */
2191 igb_set_fw_version(adapter);
2192
c061b18d 2193 setup_timer(&adapter->watchdog_timer, igb_watchdog,
b980ac18 2194 (unsigned long) adapter);
c061b18d 2195 setup_timer(&adapter->phy_info_timer, igb_update_phy_info,
b980ac18 2196 (unsigned long) adapter);
9d5c8243
AK
2197
2198 INIT_WORK(&adapter->reset_task, igb_reset_task);
2199 INIT_WORK(&adapter->watchdog_task, igb_watchdog_task);
2200
450c87c8 2201 /* Initialize link properties that are user-changeable */
9d5c8243
AK
2202 adapter->fc_autoneg = true;
2203 hw->mac.autoneg = true;
2204 hw->phy.autoneg_advertised = 0x2f;
2205
0cce119a
AD
2206 hw->fc.requested_mode = e1000_fc_default;
2207 hw->fc.current_mode = e1000_fc_default;
9d5c8243 2208
9d5c8243
AK
2209 igb_validate_mdi_setting(hw);
2210
63d4a8f9 2211 /* By default, support wake on port A */
a2cf8b6c 2212 if (hw->bus.func == 0)
63d4a8f9
MV
2213 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2214
2215 /* Check the NVM for wake support on non-port A ports */
2216 if (hw->mac.type >= e1000_82580)
55cac248 2217 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_A +
b980ac18
JK
2218 NVM_82580_LAN_FUNC_OFFSET(hw->bus.func), 1,
2219 &eeprom_data);
a2cf8b6c
AD
2220 else if (hw->bus.func == 1)
2221 hw->nvm.ops.read(hw, NVM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
9d5c8243 2222
63d4a8f9
MV
2223 if (eeprom_data & IGB_EEPROM_APME)
2224 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2225
2226 /* now that we have the eeprom settings, apply the special cases where
2227 * the eeprom may be wrong or the board simply won't support wake on
b980ac18
JK
2228 * lan on a particular port
2229 */
9d5c8243
AK
2230 switch (pdev->device) {
2231 case E1000_DEV_ID_82575GB_QUAD_COPPER:
63d4a8f9 2232 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2233 break;
2234 case E1000_DEV_ID_82575EB_FIBER_SERDES:
2d064c06
AD
2235 case E1000_DEV_ID_82576_FIBER:
2236 case E1000_DEV_ID_82576_SERDES:
9d5c8243 2237 /* Wake events only supported on port A for dual fiber
b980ac18
JK
2238 * regardless of eeprom setting
2239 */
9d5c8243 2240 if (rd32(E1000_STATUS) & E1000_STATUS_FUNC_1)
63d4a8f9 2241 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243 2242 break;
c8ea5ea9 2243 case E1000_DEV_ID_82576_QUAD_COPPER:
d5aa2252 2244 case E1000_DEV_ID_82576_QUAD_COPPER_ET2:
c8ea5ea9
AD
2245 /* if quad port adapter, disable WoL on all but port A */
2246 if (global_quad_port_a != 0)
63d4a8f9 2247 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
c8ea5ea9
AD
2248 else
2249 adapter->flags |= IGB_FLAG_QUAD_PORT_A;
2250 /* Reset for multiple quad port adapters */
2251 if (++global_quad_port_a == 4)
2252 global_quad_port_a = 0;
2253 break;
63d4a8f9
MV
2254 default:
2255 /* If the device can't wake, don't set software support */
2256 if (!device_can_wakeup(&adapter->pdev->dev))
2257 adapter->flags &= ~IGB_FLAG_WOL_SUPPORTED;
9d5c8243
AK
2258 }
2259
2260 /* initialize the wol settings based on the eeprom settings */
63d4a8f9
MV
2261 if (adapter->flags & IGB_FLAG_WOL_SUPPORTED)
2262 adapter->wol |= E1000_WUFC_MAG;
2263
2264 /* Some vendors want WoL disabled by default, but still supported */
2265 if ((hw->mac.type == e1000_i350) &&
2266 (pdev->subsystem_vendor == PCI_VENDOR_ID_HP)) {
2267 adapter->flags |= IGB_FLAG_WOL_SUPPORTED;
2268 adapter->wol = 0;
2269 }
2270
2271 device_set_wakeup_enable(&adapter->pdev->dev,
2272 adapter->flags & IGB_FLAG_WOL_SUPPORTED);
9d5c8243
AK
2273
2274 /* reset the hardware with the new settings */
2275 igb_reset(adapter);
2276
441fc6fd
CW
2277 /* Init the I2C interface */
2278 err = igb_init_i2c(adapter);
2279 if (err) {
2280 dev_err(&pdev->dev, "failed to init i2c interface\n");
2281 goto err_eeprom;
2282 }
2283
9d5c8243
AK
2284 /* let the f/w know that the h/w is now under the control of the
2285 * driver. */
2286 igb_get_hw_control(adapter);
2287
9d5c8243
AK
2288 strcpy(netdev->name, "eth%d");
2289 err = register_netdev(netdev);
2290 if (err)
2291 goto err_register;
2292
b168dfc5
JB
2293 /* carrier off reporting is important to ethtool even BEFORE open */
2294 netif_carrier_off(netdev);
2295
421e02f0 2296#ifdef CONFIG_IGB_DCA
bbd98fe4 2297 if (dca_add_requester(&pdev->dev) == 0) {
7dfc16fa 2298 adapter->flags |= IGB_FLAG_DCA_ENABLED;
fe4506b6 2299 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
2300 igb_setup_dca(adapter);
2301 }
fe4506b6 2302
38c845c7 2303#endif
e428893b
CW
2304#ifdef CONFIG_IGB_HWMON
2305 /* Initialize the thermal sensor on i350 devices. */
2306 if (hw->mac.type == e1000_i350 && hw->bus.func == 0) {
2307 u16 ets_word;
3c89f6d0 2308
b980ac18 2309 /* Read the NVM to determine if this i350 device supports an
e428893b
CW
2310 * external thermal sensor.
2311 */
2312 hw->nvm.ops.read(hw, NVM_ETS_CFG, 1, &ets_word);
2313 if (ets_word != 0x0000 && ets_word != 0xFFFF)
2314 adapter->ets = true;
2315 else
2316 adapter->ets = false;
2317 if (igb_sysfs_init(adapter))
2318 dev_err(&pdev->dev,
2319 "failed to allocate sysfs resources\n");
2320 } else {
2321 adapter->ets = false;
2322 }
2323#endif
673b8b70 2324 /* do hw tstamp init after resetting */
7ebae817 2325 igb_ptp_init(adapter);
673b8b70 2326
9d5c8243 2327 dev_info(&pdev->dev, "Intel(R) Gigabit Ethernet Network Connection\n");
ceb5f13b
CW
2328 /* print bus type/speed/width info, not applicable to i354 */
2329 if (hw->mac.type != e1000_i354) {
2330 dev_info(&pdev->dev, "%s: (PCIe:%s:%s) %pM\n",
2331 netdev->name,
2332 ((hw->bus.speed == e1000_bus_speed_2500) ? "2.5Gb/s" :
2333 (hw->bus.speed == e1000_bus_speed_5000) ? "5.0Gb/s" :
2334 "unknown"),
2335 ((hw->bus.width == e1000_bus_width_pcie_x4) ?
2336 "Width x4" :
2337 (hw->bus.width == e1000_bus_width_pcie_x2) ?
2338 "Width x2" :
2339 (hw->bus.width == e1000_bus_width_pcie_x1) ?
2340 "Width x1" : "unknown"), netdev->dev_addr);
2341 }
9d5c8243 2342
9835fd73
CW
2343 ret_val = igb_read_part_string(hw, part_str, E1000_PBANUM_LENGTH);
2344 if (ret_val)
2345 strcpy(part_str, "Unknown");
2346 dev_info(&pdev->dev, "%s: PBA No: %s\n", netdev->name, part_str);
9d5c8243
AK
2347 dev_info(&pdev->dev,
2348 "Using %s interrupts. %d rx queue(s), %d tx queue(s)\n",
2349 adapter->msix_entries ? "MSI-X" :
7dfc16fa 2350 (adapter->flags & IGB_FLAG_HAS_MSI) ? "MSI" : "legacy",
9d5c8243 2351 adapter->num_rx_queues, adapter->num_tx_queues);
09b068d4
CW
2352 switch (hw->mac.type) {
2353 case e1000_i350:
f96a8a0b
CW
2354 case e1000_i210:
2355 case e1000_i211:
09b068d4
CW
2356 igb_set_eee_i350(hw);
2357 break;
ceb5f13b
CW
2358 case e1000_i354:
2359 if (hw->phy.media_type == e1000_media_type_copper) {
2360 if ((rd32(E1000_CTRL_EXT) &
2361 E1000_CTRL_EXT_LINK_MODE_SGMII))
2362 igb_set_eee_i354(hw);
2363 }
2364 break;
09b068d4
CW
2365 default:
2366 break;
2367 }
749ab2cd
YZ
2368
2369 pm_runtime_put_noidle(&pdev->dev);
9d5c8243
AK
2370 return 0;
2371
2372err_register:
2373 igb_release_hw_control(adapter);
441fc6fd 2374 memset(&adapter->i2c_adap, 0, sizeof(adapter->i2c_adap));
9d5c8243
AK
2375err_eeprom:
2376 if (!igb_check_reset_block(hw))
f5f4cf08 2377 igb_reset_phy(hw);
9d5c8243
AK
2378
2379 if (hw->flash_address)
2380 iounmap(hw->flash_address);
9d5c8243 2381err_sw_init:
047e0030 2382 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
2383 iounmap(hw->hw_addr);
2384err_ioremap:
2385 free_netdev(netdev);
2386err_alloc_etherdev:
559e9c49 2387 pci_release_selected_regions(pdev,
b980ac18 2388 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243
AK
2389err_pci_reg:
2390err_dma:
2391 pci_disable_device(pdev);
2392 return err;
2393}
2394
fa44f2f1
GR
2395#ifdef CONFIG_PCI_IOV
2396static int igb_disable_sriov(struct pci_dev *pdev)
2397{
2398 struct net_device *netdev = pci_get_drvdata(pdev);
2399 struct igb_adapter *adapter = netdev_priv(netdev);
2400 struct e1000_hw *hw = &adapter->hw;
2401
2402 /* reclaim resources allocated to VFs */
2403 if (adapter->vf_data) {
2404 /* disable iov and allow time for transactions to clear */
2405 if (igb_vfs_are_assigned(adapter)) {
2406 dev_warn(&pdev->dev,
2407 "Cannot deallocate SR-IOV virtual functions while they are assigned - VFs will not be deallocated\n");
2408 return -EPERM;
2409 } else {
2410 pci_disable_sriov(pdev);
2411 msleep(500);
2412 }
2413
2414 kfree(adapter->vf_data);
2415 adapter->vf_data = NULL;
2416 adapter->vfs_allocated_count = 0;
2417 wr32(E1000_IOVCTL, E1000_IOVCTL_REUSE_VFQ);
2418 wrfl();
2419 msleep(100);
2420 dev_info(&pdev->dev, "IOV Disabled\n");
2421
2422 /* Re-enable DMA Coalescing flag since IOV is turned off */
2423 adapter->flags |= IGB_FLAG_DMAC;
2424 }
2425
2426 return 0;
2427}
2428
2429static int igb_enable_sriov(struct pci_dev *pdev, int num_vfs)
2430{
2431 struct net_device *netdev = pci_get_drvdata(pdev);
2432 struct igb_adapter *adapter = netdev_priv(netdev);
2433 int old_vfs = pci_num_vf(pdev);
2434 int err = 0;
2435 int i;
2436
2437 if (!num_vfs)
2438 goto out;
2439 else if (old_vfs && old_vfs == num_vfs)
2440 goto out;
2441 else if (old_vfs && old_vfs != num_vfs)
2442 err = igb_disable_sriov(pdev);
2443
2444 if (err)
2445 goto out;
2446
2447 if (num_vfs > 7) {
2448 err = -EPERM;
2449 goto out;
2450 }
2451
2452 adapter->vfs_allocated_count = num_vfs;
2453
2454 adapter->vf_data = kcalloc(adapter->vfs_allocated_count,
2455 sizeof(struct vf_data_storage), GFP_KERNEL);
2456
2457 /* if allocation failed then we do not support SR-IOV */
2458 if (!adapter->vf_data) {
2459 adapter->vfs_allocated_count = 0;
2460 dev_err(&pdev->dev,
2461 "Unable to allocate memory for VF Data Storage\n");
2462 err = -ENOMEM;
2463 goto out;
2464 }
2465
2466 err = pci_enable_sriov(pdev, adapter->vfs_allocated_count);
2467 if (err)
2468 goto err_out;
2469
2470 dev_info(&pdev->dev, "%d VFs allocated\n",
2471 adapter->vfs_allocated_count);
2472 for (i = 0; i < adapter->vfs_allocated_count; i++)
2473 igb_vf_configure(adapter, i);
2474
2475 /* DMA Coalescing is not supported in IOV mode. */
2476 adapter->flags &= ~IGB_FLAG_DMAC;
2477 goto out;
2478
2479err_out:
2480 kfree(adapter->vf_data);
2481 adapter->vf_data = NULL;
2482 adapter->vfs_allocated_count = 0;
2483out:
2484 return err;
2485}
2486
2487#endif
b980ac18 2488/**
441fc6fd
CW
2489 * igb_remove_i2c - Cleanup I2C interface
2490 * @adapter: pointer to adapter structure
b980ac18 2491 **/
441fc6fd
CW
2492static void igb_remove_i2c(struct igb_adapter *adapter)
2493{
441fc6fd
CW
2494 /* free the adapter bus structure */
2495 i2c_del_adapter(&adapter->i2c_adap);
2496}
2497
9d5c8243 2498/**
b980ac18
JK
2499 * igb_remove - Device Removal Routine
2500 * @pdev: PCI device information struct
9d5c8243 2501 *
b980ac18
JK
2502 * igb_remove is called by the PCI subsystem to alert the driver
2503 * that it should release a PCI device. The could be caused by a
2504 * Hot-Plug event, or because the driver is going to be removed from
2505 * memory.
9d5c8243 2506 **/
9f9a12f8 2507static void igb_remove(struct pci_dev *pdev)
9d5c8243
AK
2508{
2509 struct net_device *netdev = pci_get_drvdata(pdev);
2510 struct igb_adapter *adapter = netdev_priv(netdev);
fe4506b6 2511 struct e1000_hw *hw = &adapter->hw;
9d5c8243 2512
749ab2cd 2513 pm_runtime_get_noresume(&pdev->dev);
e428893b
CW
2514#ifdef CONFIG_IGB_HWMON
2515 igb_sysfs_exit(adapter);
2516#endif
441fc6fd 2517 igb_remove_i2c(adapter);
a79f4f88 2518 igb_ptp_stop(adapter);
b980ac18 2519 /* The watchdog timer may be rescheduled, so explicitly
760141a5
TH
2520 * disable watchdog from being rescheduled.
2521 */
9d5c8243
AK
2522 set_bit(__IGB_DOWN, &adapter->state);
2523 del_timer_sync(&adapter->watchdog_timer);
2524 del_timer_sync(&adapter->phy_info_timer);
2525
760141a5
TH
2526 cancel_work_sync(&adapter->reset_task);
2527 cancel_work_sync(&adapter->watchdog_task);
9d5c8243 2528
421e02f0 2529#ifdef CONFIG_IGB_DCA
7dfc16fa 2530 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6
JC
2531 dev_info(&pdev->dev, "DCA disabled\n");
2532 dca_remove_requester(&pdev->dev);
7dfc16fa 2533 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 2534 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
2535 }
2536#endif
2537
9d5c8243 2538 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
2539 * would have already happened in close and is redundant.
2540 */
9d5c8243
AK
2541 igb_release_hw_control(adapter);
2542
2543 unregister_netdev(netdev);
2544
047e0030 2545 igb_clear_interrupt_scheme(adapter);
9d5c8243 2546
37680117 2547#ifdef CONFIG_PCI_IOV
fa44f2f1 2548 igb_disable_sriov(pdev);
37680117 2549#endif
559e9c49 2550
28b0759c
AD
2551 iounmap(hw->hw_addr);
2552 if (hw->flash_address)
2553 iounmap(hw->flash_address);
559e9c49 2554 pci_release_selected_regions(pdev,
b980ac18 2555 pci_select_bars(pdev, IORESOURCE_MEM));
9d5c8243 2556
1128c756 2557 kfree(adapter->shadow_vfta);
9d5c8243
AK
2558 free_netdev(netdev);
2559
19d5afd4 2560 pci_disable_pcie_error_reporting(pdev);
40a914fa 2561
9d5c8243
AK
2562 pci_disable_device(pdev);
2563}
2564
a6b623e0 2565/**
b980ac18
JK
2566 * igb_probe_vfs - Initialize vf data storage and add VFs to pci config space
2567 * @adapter: board private structure to initialize
a6b623e0 2568 *
b980ac18
JK
2569 * This function initializes the vf specific data storage and then attempts to
2570 * allocate the VFs. The reason for ordering it this way is because it is much
2571 * mor expensive time wise to disable SR-IOV than it is to allocate and free
2572 * the memory for the VFs.
a6b623e0 2573 **/
9f9a12f8 2574static void igb_probe_vfs(struct igb_adapter *adapter)
a6b623e0
AD
2575{
2576#ifdef CONFIG_PCI_IOV
2577 struct pci_dev *pdev = adapter->pdev;
f96a8a0b 2578 struct e1000_hw *hw = &adapter->hw;
a6b623e0 2579
f96a8a0b
CW
2580 /* Virtualization features not supported on i210 family. */
2581 if ((hw->mac.type == e1000_i210) || (hw->mac.type == e1000_i211))
2582 return;
2583
fa44f2f1 2584 pci_sriov_set_totalvfs(pdev, 7);
d5e51a10 2585 igb_enable_sriov(pdev, max_vfs);
0224d663 2586
a6b623e0
AD
2587#endif /* CONFIG_PCI_IOV */
2588}
2589
fa44f2f1 2590static void igb_init_queue_configuration(struct igb_adapter *adapter)
9d5c8243
AK
2591{
2592 struct e1000_hw *hw = &adapter->hw;
374a542d 2593 u32 max_rss_queues;
9d5c8243 2594
374a542d 2595 /* Determine the maximum number of RSS queues supported. */
f96a8a0b 2596 switch (hw->mac.type) {
374a542d
MV
2597 case e1000_i211:
2598 max_rss_queues = IGB_MAX_RX_QUEUES_I211;
2599 break;
2600 case e1000_82575:
f96a8a0b 2601 case e1000_i210:
374a542d
MV
2602 max_rss_queues = IGB_MAX_RX_QUEUES_82575;
2603 break;
2604 case e1000_i350:
2605 /* I350 cannot do RSS and SR-IOV at the same time */
2606 if (!!adapter->vfs_allocated_count) {
2607 max_rss_queues = 1;
2608 break;
2609 }
2610 /* fall through */
2611 case e1000_82576:
2612 if (!!adapter->vfs_allocated_count) {
2613 max_rss_queues = 2;
2614 break;
2615 }
2616 /* fall through */
2617 case e1000_82580:
ceb5f13b 2618 case e1000_i354:
374a542d
MV
2619 default:
2620 max_rss_queues = IGB_MAX_RX_QUEUES;
f96a8a0b 2621 break;
374a542d
MV
2622 }
2623
2624 adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
2625
2626 /* Determine if we need to pair queues. */
2627 switch (hw->mac.type) {
2628 case e1000_82575:
f96a8a0b 2629 case e1000_i211:
374a542d 2630 /* Device supports enough interrupts without queue pairing. */
f96a8a0b 2631 break;
374a542d 2632 case e1000_82576:
b980ac18 2633 /* If VFs are going to be allocated with RSS queues then we
374a542d
MV
2634 * should pair the queues in order to conserve interrupts due
2635 * to limited supply.
2636 */
2637 if ((adapter->rss_queues > 1) &&
2638 (adapter->vfs_allocated_count > 6))
2639 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
2640 /* fall through */
2641 case e1000_82580:
2642 case e1000_i350:
ceb5f13b 2643 case e1000_i354:
374a542d 2644 case e1000_i210:
f96a8a0b 2645 default:
b980ac18 2646 /* If rss_queues > half of max_rss_queues, pair the queues in
374a542d
MV
2647 * order to conserve interrupts due to limited supply.
2648 */
2649 if (adapter->rss_queues > (max_rss_queues / 2))
2650 adapter->flags |= IGB_FLAG_QUEUE_PAIRS;
f96a8a0b
CW
2651 break;
2652 }
fa44f2f1
GR
2653}
2654
2655/**
b980ac18
JK
2656 * igb_sw_init - Initialize general software structures (struct igb_adapter)
2657 * @adapter: board private structure to initialize
fa44f2f1 2658 *
b980ac18
JK
2659 * igb_sw_init initializes the Adapter private data structure.
2660 * Fields are initialized based on PCI device information and
2661 * OS network device settings (MTU size).
fa44f2f1
GR
2662 **/
2663static int igb_sw_init(struct igb_adapter *adapter)
2664{
2665 struct e1000_hw *hw = &adapter->hw;
2666 struct net_device *netdev = adapter->netdev;
2667 struct pci_dev *pdev = adapter->pdev;
2668
2669 pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
2670
2671 /* set default ring sizes */
2672 adapter->tx_ring_count = IGB_DEFAULT_TXD;
2673 adapter->rx_ring_count = IGB_DEFAULT_RXD;
2674
2675 /* set default ITR values */
2676 adapter->rx_itr_setting = IGB_DEFAULT_ITR;
2677 adapter->tx_itr_setting = IGB_DEFAULT_ITR;
2678
2679 /* set default work limits */
2680 adapter->tx_work_limit = IGB_DEFAULT_TX_WORK;
2681
2682 adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
2683 VLAN_HLEN;
2684 adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
2685
2686 spin_lock_init(&adapter->stats64_lock);
2687#ifdef CONFIG_PCI_IOV
2688 switch (hw->mac.type) {
2689 case e1000_82576:
2690 case e1000_i350:
2691 if (max_vfs > 7) {
2692 dev_warn(&pdev->dev,
2693 "Maximum of 7 VFs per PF, using max\n");
d0f63acc 2694 max_vfs = adapter->vfs_allocated_count = 7;
fa44f2f1
GR
2695 } else
2696 adapter->vfs_allocated_count = max_vfs;
2697 if (adapter->vfs_allocated_count)
2698 dev_warn(&pdev->dev,
2699 "Enabling SR-IOV VFs using the module parameter is deprecated - please use the pci sysfs interface.\n");
2700 break;
2701 default:
2702 break;
2703 }
2704#endif /* CONFIG_PCI_IOV */
2705
2706 igb_init_queue_configuration(adapter);
a99955fc 2707
1128c756 2708 /* Setup and initialize a copy of the hw vlan table array */
b2adaca9
JP
2709 adapter->shadow_vfta = kcalloc(E1000_VLAN_FILTER_TBL_SIZE, sizeof(u32),
2710 GFP_ATOMIC);
1128c756 2711
a6b623e0 2712 /* This call may decrease the number of queues */
53c7d064 2713 if (igb_init_interrupt_scheme(adapter, true)) {
9d5c8243
AK
2714 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
2715 return -ENOMEM;
2716 }
2717
a6b623e0
AD
2718 igb_probe_vfs(adapter);
2719
9d5c8243
AK
2720 /* Explicitly disable IRQ since the NIC can be in any state. */
2721 igb_irq_disable(adapter);
2722
f96a8a0b 2723 if (hw->mac.type >= e1000_i350)
831ec0b4
CW
2724 adapter->flags &= ~IGB_FLAG_DMAC;
2725
9d5c8243
AK
2726 set_bit(__IGB_DOWN, &adapter->state);
2727 return 0;
2728}
2729
2730/**
b980ac18
JK
2731 * igb_open - Called when a network interface is made active
2732 * @netdev: network interface device structure
9d5c8243 2733 *
b980ac18 2734 * Returns 0 on success, negative value on failure
9d5c8243 2735 *
b980ac18
JK
2736 * The open entry point is called when a network interface is made
2737 * active by the system (IFF_UP). At this point all resources needed
2738 * for transmit and receive operations are allocated, the interrupt
2739 * handler is registered with the OS, the watchdog timer is started,
2740 * and the stack is notified that the interface is ready.
9d5c8243 2741 **/
749ab2cd 2742static int __igb_open(struct net_device *netdev, bool resuming)
9d5c8243
AK
2743{
2744 struct igb_adapter *adapter = netdev_priv(netdev);
2745 struct e1000_hw *hw = &adapter->hw;
749ab2cd 2746 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2747 int err;
2748 int i;
2749
2750 /* disallow open during test */
749ab2cd
YZ
2751 if (test_bit(__IGB_TESTING, &adapter->state)) {
2752 WARN_ON(resuming);
9d5c8243 2753 return -EBUSY;
749ab2cd
YZ
2754 }
2755
2756 if (!resuming)
2757 pm_runtime_get_sync(&pdev->dev);
9d5c8243 2758
b168dfc5
JB
2759 netif_carrier_off(netdev);
2760
9d5c8243
AK
2761 /* allocate transmit descriptors */
2762 err = igb_setup_all_tx_resources(adapter);
2763 if (err)
2764 goto err_setup_tx;
2765
2766 /* allocate receive descriptors */
2767 err = igb_setup_all_rx_resources(adapter);
2768 if (err)
2769 goto err_setup_rx;
2770
88a268c1 2771 igb_power_up_link(adapter);
9d5c8243 2772
9d5c8243
AK
2773 /* before we allocate an interrupt, we must be ready to handle it.
2774 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
2775 * as soon as we call pci_request_irq, so we have to setup our
b980ac18
JK
2776 * clean_rx handler before we do so.
2777 */
9d5c8243
AK
2778 igb_configure(adapter);
2779
2780 err = igb_request_irq(adapter);
2781 if (err)
2782 goto err_req_irq;
2783
0c2cc02e
AD
2784 /* Notify the stack of the actual queue counts. */
2785 err = netif_set_real_num_tx_queues(adapter->netdev,
2786 adapter->num_tx_queues);
2787 if (err)
2788 goto err_set_queues;
2789
2790 err = netif_set_real_num_rx_queues(adapter->netdev,
2791 adapter->num_rx_queues);
2792 if (err)
2793 goto err_set_queues;
2794
9d5c8243
AK
2795 /* From here on the code is the same as igb_up() */
2796 clear_bit(__IGB_DOWN, &adapter->state);
2797
0d1ae7f4
AD
2798 for (i = 0; i < adapter->num_q_vectors; i++)
2799 napi_enable(&(adapter->q_vector[i]->napi));
9d5c8243
AK
2800
2801 /* Clear any pending interrupts. */
2802 rd32(E1000_ICR);
844290e5
PW
2803
2804 igb_irq_enable(adapter);
2805
d4960307
AD
2806 /* notify VFs that reset has been completed */
2807 if (adapter->vfs_allocated_count) {
2808 u32 reg_data = rd32(E1000_CTRL_EXT);
2809 reg_data |= E1000_CTRL_EXT_PFRSTD;
2810 wr32(E1000_CTRL_EXT, reg_data);
2811 }
2812
d55b53ff
JK
2813 netif_tx_start_all_queues(netdev);
2814
749ab2cd
YZ
2815 if (!resuming)
2816 pm_runtime_put(&pdev->dev);
2817
25568a53
AD
2818 /* start the watchdog. */
2819 hw->mac.get_link_status = 1;
2820 schedule_work(&adapter->watchdog_task);
9d5c8243
AK
2821
2822 return 0;
2823
0c2cc02e
AD
2824err_set_queues:
2825 igb_free_irq(adapter);
9d5c8243
AK
2826err_req_irq:
2827 igb_release_hw_control(adapter);
88a268c1 2828 igb_power_down_link(adapter);
9d5c8243
AK
2829 igb_free_all_rx_resources(adapter);
2830err_setup_rx:
2831 igb_free_all_tx_resources(adapter);
2832err_setup_tx:
2833 igb_reset(adapter);
749ab2cd
YZ
2834 if (!resuming)
2835 pm_runtime_put(&pdev->dev);
9d5c8243
AK
2836
2837 return err;
2838}
2839
749ab2cd
YZ
2840static int igb_open(struct net_device *netdev)
2841{
2842 return __igb_open(netdev, false);
2843}
2844
9d5c8243 2845/**
b980ac18
JK
2846 * igb_close - Disables a network interface
2847 * @netdev: network interface device structure
9d5c8243 2848 *
b980ac18 2849 * Returns 0, this is not allowed to fail
9d5c8243 2850 *
b980ac18
JK
2851 * The close entry point is called when an interface is de-activated
2852 * by the OS. The hardware is still under the driver's control, but
2853 * needs to be disabled. A global MAC reset is issued to stop the
2854 * hardware, and all transmit and receive resources are freed.
9d5c8243 2855 **/
749ab2cd 2856static int __igb_close(struct net_device *netdev, bool suspending)
9d5c8243
AK
2857{
2858 struct igb_adapter *adapter = netdev_priv(netdev);
749ab2cd 2859 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2860
2861 WARN_ON(test_bit(__IGB_RESETTING, &adapter->state));
9d5c8243 2862
749ab2cd
YZ
2863 if (!suspending)
2864 pm_runtime_get_sync(&pdev->dev);
2865
2866 igb_down(adapter);
9d5c8243
AK
2867 igb_free_irq(adapter);
2868
2869 igb_free_all_tx_resources(adapter);
2870 igb_free_all_rx_resources(adapter);
2871
749ab2cd
YZ
2872 if (!suspending)
2873 pm_runtime_put_sync(&pdev->dev);
9d5c8243
AK
2874 return 0;
2875}
2876
749ab2cd
YZ
2877static int igb_close(struct net_device *netdev)
2878{
2879 return __igb_close(netdev, false);
2880}
2881
9d5c8243 2882/**
b980ac18
JK
2883 * igb_setup_tx_resources - allocate Tx resources (Descriptors)
2884 * @tx_ring: tx descriptor ring (for a specific queue) to setup
9d5c8243 2885 *
b980ac18 2886 * Return 0 on success, negative on failure
9d5c8243 2887 **/
80785298 2888int igb_setup_tx_resources(struct igb_ring *tx_ring)
9d5c8243 2889{
59d71989 2890 struct device *dev = tx_ring->dev;
9d5c8243
AK
2891 int size;
2892
06034649 2893 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
f33005a6
AD
2894
2895 tx_ring->tx_buffer_info = vzalloc(size);
06034649 2896 if (!tx_ring->tx_buffer_info)
9d5c8243 2897 goto err;
9d5c8243
AK
2898
2899 /* round up to nearest 4K */
85e8d004 2900 tx_ring->size = tx_ring->count * sizeof(union e1000_adv_tx_desc);
9d5c8243
AK
2901 tx_ring->size = ALIGN(tx_ring->size, 4096);
2902
5536d210
AD
2903 tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
2904 &tx_ring->dma, GFP_KERNEL);
9d5c8243
AK
2905 if (!tx_ring->desc)
2906 goto err;
2907
9d5c8243
AK
2908 tx_ring->next_to_use = 0;
2909 tx_ring->next_to_clean = 0;
81c2fc22 2910
9d5c8243
AK
2911 return 0;
2912
2913err:
06034649 2914 vfree(tx_ring->tx_buffer_info);
f33005a6
AD
2915 tx_ring->tx_buffer_info = NULL;
2916 dev_err(dev, "Unable to allocate memory for the Tx descriptor ring\n");
9d5c8243
AK
2917 return -ENOMEM;
2918}
2919
2920/**
b980ac18
JK
2921 * igb_setup_all_tx_resources - wrapper to allocate Tx resources
2922 * (Descriptors) for all queues
2923 * @adapter: board private structure
9d5c8243 2924 *
b980ac18 2925 * Return 0 on success, negative on failure
9d5c8243
AK
2926 **/
2927static int igb_setup_all_tx_resources(struct igb_adapter *adapter)
2928{
439705e1 2929 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
2930 int i, err = 0;
2931
2932 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 2933 err = igb_setup_tx_resources(adapter->tx_ring[i]);
9d5c8243 2934 if (err) {
439705e1 2935 dev_err(&pdev->dev,
9d5c8243
AK
2936 "Allocation for Tx Queue %u failed\n", i);
2937 for (i--; i >= 0; i--)
3025a446 2938 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
2939 break;
2940 }
2941 }
2942
2943 return err;
2944}
2945
2946/**
b980ac18
JK
2947 * igb_setup_tctl - configure the transmit control registers
2948 * @adapter: Board private structure
9d5c8243 2949 **/
d7ee5b3a 2950void igb_setup_tctl(struct igb_adapter *adapter)
9d5c8243 2951{
9d5c8243
AK
2952 struct e1000_hw *hw = &adapter->hw;
2953 u32 tctl;
9d5c8243 2954
85b430b4
AD
2955 /* disable queue 0 which is enabled by default on 82575 and 82576 */
2956 wr32(E1000_TXDCTL(0), 0);
9d5c8243
AK
2957
2958 /* Program the Transmit Control Register */
9d5c8243
AK
2959 tctl = rd32(E1000_TCTL);
2960 tctl &= ~E1000_TCTL_CT;
2961 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
2962 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
2963
2964 igb_config_collision_dist(hw);
2965
9d5c8243
AK
2966 /* Enable transmits */
2967 tctl |= E1000_TCTL_EN;
2968
2969 wr32(E1000_TCTL, tctl);
2970}
2971
85b430b4 2972/**
b980ac18
JK
2973 * igb_configure_tx_ring - Configure transmit ring after Reset
2974 * @adapter: board private structure
2975 * @ring: tx ring to configure
85b430b4 2976 *
b980ac18 2977 * Configure a transmit ring after a reset.
85b430b4 2978 **/
d7ee5b3a
AD
2979void igb_configure_tx_ring(struct igb_adapter *adapter,
2980 struct igb_ring *ring)
85b430b4
AD
2981{
2982 struct e1000_hw *hw = &adapter->hw;
a74420e0 2983 u32 txdctl = 0;
85b430b4
AD
2984 u64 tdba = ring->dma;
2985 int reg_idx = ring->reg_idx;
2986
2987 /* disable the queue */
a74420e0 2988 wr32(E1000_TXDCTL(reg_idx), 0);
85b430b4
AD
2989 wrfl();
2990 mdelay(10);
2991
2992 wr32(E1000_TDLEN(reg_idx),
b980ac18 2993 ring->count * sizeof(union e1000_adv_tx_desc));
85b430b4 2994 wr32(E1000_TDBAL(reg_idx),
b980ac18 2995 tdba & 0x00000000ffffffffULL);
85b430b4
AD
2996 wr32(E1000_TDBAH(reg_idx), tdba >> 32);
2997
fce99e34 2998 ring->tail = hw->hw_addr + E1000_TDT(reg_idx);
a74420e0 2999 wr32(E1000_TDH(reg_idx), 0);
fce99e34 3000 writel(0, ring->tail);
85b430b4
AD
3001
3002 txdctl |= IGB_TX_PTHRESH;
3003 txdctl |= IGB_TX_HTHRESH << 8;
3004 txdctl |= IGB_TX_WTHRESH << 16;
3005
3006 txdctl |= E1000_TXDCTL_QUEUE_ENABLE;
3007 wr32(E1000_TXDCTL(reg_idx), txdctl);
3008}
3009
3010/**
b980ac18
JK
3011 * igb_configure_tx - Configure transmit Unit after Reset
3012 * @adapter: board private structure
85b430b4 3013 *
b980ac18 3014 * Configure the Tx unit of the MAC after a reset.
85b430b4
AD
3015 **/
3016static void igb_configure_tx(struct igb_adapter *adapter)
3017{
3018 int i;
3019
3020 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3021 igb_configure_tx_ring(adapter, adapter->tx_ring[i]);
85b430b4
AD
3022}
3023
9d5c8243 3024/**
b980ac18
JK
3025 * igb_setup_rx_resources - allocate Rx resources (Descriptors)
3026 * @rx_ring: Rx descriptor ring (for a specific queue) to setup
9d5c8243 3027 *
b980ac18 3028 * Returns 0 on success, negative on failure
9d5c8243 3029 **/
80785298 3030int igb_setup_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3031{
59d71989 3032 struct device *dev = rx_ring->dev;
f33005a6 3033 int size;
9d5c8243 3034
06034649 3035 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
f33005a6
AD
3036
3037 rx_ring->rx_buffer_info = vzalloc(size);
06034649 3038 if (!rx_ring->rx_buffer_info)
9d5c8243 3039 goto err;
9d5c8243 3040
9d5c8243 3041 /* Round up to nearest 4K */
f33005a6 3042 rx_ring->size = rx_ring->count * sizeof(union e1000_adv_rx_desc);
9d5c8243
AK
3043 rx_ring->size = ALIGN(rx_ring->size, 4096);
3044
5536d210
AD
3045 rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
3046 &rx_ring->dma, GFP_KERNEL);
9d5c8243
AK
3047 if (!rx_ring->desc)
3048 goto err;
3049
cbc8e55f 3050 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3051 rx_ring->next_to_clean = 0;
3052 rx_ring->next_to_use = 0;
9d5c8243 3053
9d5c8243
AK
3054 return 0;
3055
3056err:
06034649
AD
3057 vfree(rx_ring->rx_buffer_info);
3058 rx_ring->rx_buffer_info = NULL;
f33005a6 3059 dev_err(dev, "Unable to allocate memory for the Rx descriptor ring\n");
9d5c8243
AK
3060 return -ENOMEM;
3061}
3062
3063/**
b980ac18
JK
3064 * igb_setup_all_rx_resources - wrapper to allocate Rx resources
3065 * (Descriptors) for all queues
3066 * @adapter: board private structure
9d5c8243 3067 *
b980ac18 3068 * Return 0 on success, negative on failure
9d5c8243
AK
3069 **/
3070static int igb_setup_all_rx_resources(struct igb_adapter *adapter)
3071{
439705e1 3072 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
3073 int i, err = 0;
3074
3075 for (i = 0; i < adapter->num_rx_queues; i++) {
3025a446 3076 err = igb_setup_rx_resources(adapter->rx_ring[i]);
9d5c8243 3077 if (err) {
439705e1 3078 dev_err(&pdev->dev,
9d5c8243
AK
3079 "Allocation for Rx Queue %u failed\n", i);
3080 for (i--; i >= 0; i--)
3025a446 3081 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3082 break;
3083 }
3084 }
3085
3086 return err;
3087}
3088
06cf2666 3089/**
b980ac18
JK
3090 * igb_setup_mrqc - configure the multiple receive queue control registers
3091 * @adapter: Board private structure
06cf2666
AD
3092 **/
3093static void igb_setup_mrqc(struct igb_adapter *adapter)
3094{
3095 struct e1000_hw *hw = &adapter->hw;
3096 u32 mrqc, rxcsum;
797fd4be 3097 u32 j, num_rx_queues, shift = 0;
a57fe23e
AD
3098 static const u32 rsskey[10] = { 0xDA565A6D, 0xC20E5B25, 0x3D256741,
3099 0xB08FA343, 0xCB2BCAD0, 0xB4307BAE,
3100 0xA32DCB77, 0x0CF23080, 0x3BB7426A,
3101 0xFA01ACBE };
06cf2666
AD
3102
3103 /* Fill out hash function seeds */
a57fe23e
AD
3104 for (j = 0; j < 10; j++)
3105 wr32(E1000_RSSRK(j), rsskey[j]);
06cf2666 3106
a99955fc 3107 num_rx_queues = adapter->rss_queues;
06cf2666 3108
797fd4be
AD
3109 switch (hw->mac.type) {
3110 case e1000_82575:
3111 shift = 6;
3112 break;
3113 case e1000_82576:
3114 /* 82576 supports 2 RSS queues for SR-IOV */
3115 if (adapter->vfs_allocated_count) {
06cf2666
AD
3116 shift = 3;
3117 num_rx_queues = 2;
06cf2666 3118 }
797fd4be
AD
3119 break;
3120 default:
3121 break;
06cf2666
AD
3122 }
3123
b980ac18 3124 /* Populate the indirection table 4 entries at a time. To do this
797fd4be
AD
3125 * we are generating the results for n and n+2 and then interleaving
3126 * those with the results with n+1 and n+3.
3127 */
3128 for (j = 0; j < 32; j++) {
3129 /* first pass generates n and n+2 */
3130 u32 base = ((j * 0x00040004) + 0x00020000) * num_rx_queues;
3131 u32 reta = (base & 0x07800780) >> (7 - shift);
3132
3133 /* second pass generates n+1 and n+3 */
3134 base += 0x00010001 * num_rx_queues;
3135 reta |= (base & 0x07800780) << (1 + shift);
3136
3137 wr32(E1000_RETA(j), reta);
06cf2666
AD
3138 }
3139
b980ac18 3140 /* Disable raw packet checksumming so that RSS hash is placed in
06cf2666
AD
3141 * descriptor on writeback. No need to enable TCP/UDP/IP checksum
3142 * offloads as they are enabled by default
3143 */
3144 rxcsum = rd32(E1000_RXCSUM);
3145 rxcsum |= E1000_RXCSUM_PCSD;
3146
3147 if (adapter->hw.mac.type >= e1000_82576)
3148 /* Enable Receive Checksum Offload for SCTP */
3149 rxcsum |= E1000_RXCSUM_CRCOFL;
3150
3151 /* Don't need to set TUOFL or IPOFL, they default to 1 */
3152 wr32(E1000_RXCSUM, rxcsum);
f96a8a0b 3153
039454a8
AA
3154 /* Generate RSS hash based on packet types, TCP/UDP
3155 * port numbers and/or IPv4/v6 src and dst addresses
3156 */
f96a8a0b
CW
3157 mrqc = E1000_MRQC_RSS_FIELD_IPV4 |
3158 E1000_MRQC_RSS_FIELD_IPV4_TCP |
3159 E1000_MRQC_RSS_FIELD_IPV6 |
3160 E1000_MRQC_RSS_FIELD_IPV6_TCP |
3161 E1000_MRQC_RSS_FIELD_IPV6_TCP_EX;
06cf2666 3162
039454a8
AA
3163 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV4_UDP)
3164 mrqc |= E1000_MRQC_RSS_FIELD_IPV4_UDP;
3165 if (adapter->flags & IGB_FLAG_RSS_FIELD_IPV6_UDP)
3166 mrqc |= E1000_MRQC_RSS_FIELD_IPV6_UDP;
3167
06cf2666
AD
3168 /* If VMDq is enabled then we set the appropriate mode for that, else
3169 * we default to RSS so that an RSS hash is calculated per packet even
b980ac18
JK
3170 * if we are only using one queue
3171 */
06cf2666
AD
3172 if (adapter->vfs_allocated_count) {
3173 if (hw->mac.type > e1000_82575) {
3174 /* Set the default pool for the PF's first queue */
3175 u32 vtctl = rd32(E1000_VT_CTL);
3176 vtctl &= ~(E1000_VT_CTL_DEFAULT_POOL_MASK |
3177 E1000_VT_CTL_DISABLE_DEF_POOL);
3178 vtctl |= adapter->vfs_allocated_count <<
3179 E1000_VT_CTL_DEFAULT_POOL_SHIFT;
3180 wr32(E1000_VT_CTL, vtctl);
3181 }
a99955fc 3182 if (adapter->rss_queues > 1)
f96a8a0b 3183 mrqc |= E1000_MRQC_ENABLE_VMDQ_RSS_2Q;
06cf2666 3184 else
f96a8a0b 3185 mrqc |= E1000_MRQC_ENABLE_VMDQ;
06cf2666 3186 } else {
f96a8a0b
CW
3187 if (hw->mac.type != e1000_i211)
3188 mrqc |= E1000_MRQC_ENABLE_RSS_4Q;
06cf2666
AD
3189 }
3190 igb_vmm_control(adapter);
3191
06cf2666
AD
3192 wr32(E1000_MRQC, mrqc);
3193}
3194
9d5c8243 3195/**
b980ac18
JK
3196 * igb_setup_rctl - configure the receive control registers
3197 * @adapter: Board private structure
9d5c8243 3198 **/
d7ee5b3a 3199void igb_setup_rctl(struct igb_adapter *adapter)
9d5c8243
AK
3200{
3201 struct e1000_hw *hw = &adapter->hw;
3202 u32 rctl;
9d5c8243
AK
3203
3204 rctl = rd32(E1000_RCTL);
3205
3206 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
69d728ba 3207 rctl &= ~(E1000_RCTL_LBM_TCVR | E1000_RCTL_LBM_MAC);
9d5c8243 3208
69d728ba 3209 rctl |= E1000_RCTL_EN | E1000_RCTL_BAM | E1000_RCTL_RDMTS_HALF |
28b0759c 3210 (hw->mac.mc_filter_type << E1000_RCTL_MO_SHIFT);
9d5c8243 3211
b980ac18 3212 /* enable stripping of CRC. It's unlikely this will break BMC
87cb7e8c
AK
3213 * redirection as it did with e1000. Newer features require
3214 * that the HW strips the CRC.
73cd78f1 3215 */
87cb7e8c 3216 rctl |= E1000_RCTL_SECRC;
9d5c8243 3217
559e9c49 3218 /* disable store bad packets and clear size bits. */
ec54d7d6 3219 rctl &= ~(E1000_RCTL_SBP | E1000_RCTL_SZ_256);
9d5c8243 3220
6ec43fe6
AD
3221 /* enable LPE to prevent packets larger than max_frame_size */
3222 rctl |= E1000_RCTL_LPE;
9d5c8243 3223
952f72a8
AD
3224 /* disable queue 0 to prevent tail write w/o re-config */
3225 wr32(E1000_RXDCTL(0), 0);
9d5c8243 3226
e1739522
AD
3227 /* Attention!!! For SR-IOV PF driver operations you must enable
3228 * queue drop for all VF and PF queues to prevent head of line blocking
3229 * if an un-trusted VF does not provide descriptors to hardware.
3230 */
3231 if (adapter->vfs_allocated_count) {
e1739522
AD
3232 /* set all queue drop enable bits */
3233 wr32(E1000_QDE, ALL_QUEUES);
e1739522
AD
3234 }
3235
89eaefb6
BG
3236 /* This is useful for sniffing bad packets. */
3237 if (adapter->netdev->features & NETIF_F_RXALL) {
3238 /* UPE and MPE will be handled by normal PROMISC logic
b980ac18
JK
3239 * in e1000e_set_rx_mode
3240 */
89eaefb6
BG
3241 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
3242 E1000_RCTL_BAM | /* RX All Bcast Pkts */
3243 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
3244
3245 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
3246 E1000_RCTL_DPF | /* Allow filtered pause */
3247 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
3248 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
3249 * and that breaks VLANs.
3250 */
3251 }
3252
9d5c8243
AK
3253 wr32(E1000_RCTL, rctl);
3254}
3255
7d5753f0
AD
3256static inline int igb_set_vf_rlpml(struct igb_adapter *adapter, int size,
3257 int vfn)
3258{
3259 struct e1000_hw *hw = &adapter->hw;
3260 u32 vmolr;
3261
3262 /* if it isn't the PF check to see if VFs are enabled and
b980ac18
JK
3263 * increase the size to support vlan tags
3264 */
7d5753f0
AD
3265 if (vfn < adapter->vfs_allocated_count &&
3266 adapter->vf_data[vfn].vlans_enabled)
3267 size += VLAN_TAG_SIZE;
3268
3269 vmolr = rd32(E1000_VMOLR(vfn));
3270 vmolr &= ~E1000_VMOLR_RLPML_MASK;
3271 vmolr |= size | E1000_VMOLR_LPE;
3272 wr32(E1000_VMOLR(vfn), vmolr);
3273
3274 return 0;
3275}
3276
e1739522 3277/**
b980ac18
JK
3278 * igb_rlpml_set - set maximum receive packet size
3279 * @adapter: board private structure
e1739522 3280 *
b980ac18 3281 * Configure maximum receivable packet size.
e1739522
AD
3282 **/
3283static void igb_rlpml_set(struct igb_adapter *adapter)
3284{
153285f9 3285 u32 max_frame_size = adapter->max_frame_size;
e1739522
AD
3286 struct e1000_hw *hw = &adapter->hw;
3287 u16 pf_id = adapter->vfs_allocated_count;
3288
e1739522
AD
3289 if (pf_id) {
3290 igb_set_vf_rlpml(adapter, max_frame_size, pf_id);
b980ac18 3291 /* If we're in VMDQ or SR-IOV mode, then set global RLPML
153285f9
AD
3292 * to our max jumbo frame size, in case we need to enable
3293 * jumbo frames on one of the rings later.
3294 * This will not pass over-length frames into the default
3295 * queue because it's gated by the VMOLR.RLPML.
3296 */
7d5753f0 3297 max_frame_size = MAX_JUMBO_FRAME_SIZE;
e1739522
AD
3298 }
3299
3300 wr32(E1000_RLPML, max_frame_size);
3301}
3302
8151d294
WM
3303static inline void igb_set_vmolr(struct igb_adapter *adapter,
3304 int vfn, bool aupe)
7d5753f0
AD
3305{
3306 struct e1000_hw *hw = &adapter->hw;
3307 u32 vmolr;
3308
b980ac18 3309 /* This register exists only on 82576 and newer so if we are older then
7d5753f0
AD
3310 * we should exit and do nothing
3311 */
3312 if (hw->mac.type < e1000_82576)
3313 return;
3314
3315 vmolr = rd32(E1000_VMOLR(vfn));
b980ac18 3316 vmolr |= E1000_VMOLR_STRVLAN; /* Strip vlan tags */
8151d294 3317 if (aupe)
b980ac18 3318 vmolr |= E1000_VMOLR_AUPE; /* Accept untagged packets */
8151d294
WM
3319 else
3320 vmolr &= ~(E1000_VMOLR_AUPE); /* Tagged packets ONLY */
7d5753f0
AD
3321
3322 /* clear all bits that might not be set */
3323 vmolr &= ~(E1000_VMOLR_BAM | E1000_VMOLR_RSSE);
3324
a99955fc 3325 if (adapter->rss_queues > 1 && vfn == adapter->vfs_allocated_count)
7d5753f0 3326 vmolr |= E1000_VMOLR_RSSE; /* enable RSS */
b980ac18 3327 /* for VMDq only allow the VFs and pool 0 to accept broadcast and
7d5753f0
AD
3328 * multicast packets
3329 */
3330 if (vfn <= adapter->vfs_allocated_count)
b980ac18 3331 vmolr |= E1000_VMOLR_BAM; /* Accept broadcast */
7d5753f0
AD
3332
3333 wr32(E1000_VMOLR(vfn), vmolr);
3334}
3335
85b430b4 3336/**
b980ac18
JK
3337 * igb_configure_rx_ring - Configure a receive ring after Reset
3338 * @adapter: board private structure
3339 * @ring: receive ring to be configured
85b430b4 3340 *
b980ac18 3341 * Configure the Rx unit of the MAC after a reset.
85b430b4 3342 **/
d7ee5b3a 3343void igb_configure_rx_ring(struct igb_adapter *adapter,
b980ac18 3344 struct igb_ring *ring)
85b430b4
AD
3345{
3346 struct e1000_hw *hw = &adapter->hw;
3347 u64 rdba = ring->dma;
3348 int reg_idx = ring->reg_idx;
a74420e0 3349 u32 srrctl = 0, rxdctl = 0;
85b430b4
AD
3350
3351 /* disable the queue */
a74420e0 3352 wr32(E1000_RXDCTL(reg_idx), 0);
85b430b4
AD
3353
3354 /* Set DMA base address registers */
3355 wr32(E1000_RDBAL(reg_idx),
3356 rdba & 0x00000000ffffffffULL);
3357 wr32(E1000_RDBAH(reg_idx), rdba >> 32);
3358 wr32(E1000_RDLEN(reg_idx),
b980ac18 3359 ring->count * sizeof(union e1000_adv_rx_desc));
85b430b4
AD
3360
3361 /* initialize head and tail */
fce99e34 3362 ring->tail = hw->hw_addr + E1000_RDT(reg_idx);
a74420e0 3363 wr32(E1000_RDH(reg_idx), 0);
fce99e34 3364 writel(0, ring->tail);
85b430b4 3365
952f72a8 3366 /* set descriptor configuration */
44390ca6 3367 srrctl = IGB_RX_HDR_LEN << E1000_SRRCTL_BSIZEHDRSIZE_SHIFT;
de78d1f9 3368 srrctl |= IGB_RX_BUFSZ >> E1000_SRRCTL_BSIZEPKT_SHIFT;
1a1c225b 3369 srrctl |= E1000_SRRCTL_DESCTYPE_ADV_ONEBUF;
06218a8d 3370 if (hw->mac.type >= e1000_82580)
757b77e2 3371 srrctl |= E1000_SRRCTL_TIMESTAMP;
e6bdb6fe
NN
3372 /* Only set Drop Enable if we are supporting multiple queues */
3373 if (adapter->vfs_allocated_count || adapter->num_rx_queues > 1)
3374 srrctl |= E1000_SRRCTL_DROP_EN;
952f72a8
AD
3375
3376 wr32(E1000_SRRCTL(reg_idx), srrctl);
3377
7d5753f0 3378 /* set filtering for VMDQ pools */
8151d294 3379 igb_set_vmolr(adapter, reg_idx & 0x7, true);
7d5753f0 3380
85b430b4
AD
3381 rxdctl |= IGB_RX_PTHRESH;
3382 rxdctl |= IGB_RX_HTHRESH << 8;
3383 rxdctl |= IGB_RX_WTHRESH << 16;
a74420e0
AD
3384
3385 /* enable receive descriptor fetching */
3386 rxdctl |= E1000_RXDCTL_QUEUE_ENABLE;
85b430b4
AD
3387 wr32(E1000_RXDCTL(reg_idx), rxdctl);
3388}
3389
9d5c8243 3390/**
b980ac18
JK
3391 * igb_configure_rx - Configure receive Unit after Reset
3392 * @adapter: board private structure
9d5c8243 3393 *
b980ac18 3394 * Configure the Rx unit of the MAC after a reset.
9d5c8243
AK
3395 **/
3396static void igb_configure_rx(struct igb_adapter *adapter)
3397{
9107584e 3398 int i;
9d5c8243 3399
68d480c4
AD
3400 /* set UTA to appropriate mode */
3401 igb_set_uta(adapter);
3402
26ad9178
AD
3403 /* set the correct pool for the PF default MAC address in entry 0 */
3404 igb_rar_set_qsel(adapter, adapter->hw.mac.addr, 0,
b980ac18 3405 adapter->vfs_allocated_count);
26ad9178 3406
06cf2666 3407 /* Setup the HW Rx Head and Tail Descriptor Pointers and
b980ac18
JK
3408 * the Base and Length of the Rx Descriptor Ring
3409 */
f9d40f6a
AD
3410 for (i = 0; i < adapter->num_rx_queues; i++)
3411 igb_configure_rx_ring(adapter, adapter->rx_ring[i]);
9d5c8243
AK
3412}
3413
3414/**
b980ac18
JK
3415 * igb_free_tx_resources - Free Tx Resources per Queue
3416 * @tx_ring: Tx descriptor ring for a specific queue
9d5c8243 3417 *
b980ac18 3418 * Free all transmit software resources
9d5c8243 3419 **/
68fd9910 3420void igb_free_tx_resources(struct igb_ring *tx_ring)
9d5c8243 3421{
3b644cf6 3422 igb_clean_tx_ring(tx_ring);
9d5c8243 3423
06034649
AD
3424 vfree(tx_ring->tx_buffer_info);
3425 tx_ring->tx_buffer_info = NULL;
9d5c8243 3426
439705e1
AD
3427 /* if not set, then don't free */
3428 if (!tx_ring->desc)
3429 return;
3430
59d71989
AD
3431 dma_free_coherent(tx_ring->dev, tx_ring->size,
3432 tx_ring->desc, tx_ring->dma);
9d5c8243
AK
3433
3434 tx_ring->desc = NULL;
3435}
3436
3437/**
b980ac18
JK
3438 * igb_free_all_tx_resources - Free Tx Resources for All Queues
3439 * @adapter: board private structure
9d5c8243 3440 *
b980ac18 3441 * Free all transmit software resources
9d5c8243
AK
3442 **/
3443static void igb_free_all_tx_resources(struct igb_adapter *adapter)
3444{
3445 int i;
3446
3447 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3448 igb_free_tx_resources(adapter->tx_ring[i]);
9d5c8243
AK
3449}
3450
ebe42d16
AD
3451void igb_unmap_and_free_tx_resource(struct igb_ring *ring,
3452 struct igb_tx_buffer *tx_buffer)
3453{
3454 if (tx_buffer->skb) {
3455 dev_kfree_skb_any(tx_buffer->skb);
c9f14bf3 3456 if (dma_unmap_len(tx_buffer, len))
ebe42d16 3457 dma_unmap_single(ring->dev,
c9f14bf3
AD
3458 dma_unmap_addr(tx_buffer, dma),
3459 dma_unmap_len(tx_buffer, len),
ebe42d16 3460 DMA_TO_DEVICE);
c9f14bf3 3461 } else if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 3462 dma_unmap_page(ring->dev,
c9f14bf3
AD
3463 dma_unmap_addr(tx_buffer, dma),
3464 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
3465 DMA_TO_DEVICE);
3466 }
3467 tx_buffer->next_to_watch = NULL;
3468 tx_buffer->skb = NULL;
c9f14bf3 3469 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16 3470 /* buffer_info must be completely set up in the transmit path */
9d5c8243
AK
3471}
3472
3473/**
b980ac18
JK
3474 * igb_clean_tx_ring - Free Tx Buffers
3475 * @tx_ring: ring to be cleaned
9d5c8243 3476 **/
3b644cf6 3477static void igb_clean_tx_ring(struct igb_ring *tx_ring)
9d5c8243 3478{
06034649 3479 struct igb_tx_buffer *buffer_info;
9d5c8243 3480 unsigned long size;
6ad4edfc 3481 u16 i;
9d5c8243 3482
06034649 3483 if (!tx_ring->tx_buffer_info)
9d5c8243
AK
3484 return;
3485 /* Free all the Tx ring sk_buffs */
3486
3487 for (i = 0; i < tx_ring->count; i++) {
06034649 3488 buffer_info = &tx_ring->tx_buffer_info[i];
80785298 3489 igb_unmap_and_free_tx_resource(tx_ring, buffer_info);
9d5c8243
AK
3490 }
3491
dad8a3b3
JF
3492 netdev_tx_reset_queue(txring_txq(tx_ring));
3493
06034649
AD
3494 size = sizeof(struct igb_tx_buffer) * tx_ring->count;
3495 memset(tx_ring->tx_buffer_info, 0, size);
9d5c8243
AK
3496
3497 /* Zero out the descriptor ring */
9d5c8243
AK
3498 memset(tx_ring->desc, 0, tx_ring->size);
3499
3500 tx_ring->next_to_use = 0;
3501 tx_ring->next_to_clean = 0;
9d5c8243
AK
3502}
3503
3504/**
b980ac18
JK
3505 * igb_clean_all_tx_rings - Free Tx Buffers for all queues
3506 * @adapter: board private structure
9d5c8243
AK
3507 **/
3508static void igb_clean_all_tx_rings(struct igb_adapter *adapter)
3509{
3510 int i;
3511
3512 for (i = 0; i < adapter->num_tx_queues; i++)
3025a446 3513 igb_clean_tx_ring(adapter->tx_ring[i]);
9d5c8243
AK
3514}
3515
3516/**
b980ac18
JK
3517 * igb_free_rx_resources - Free Rx Resources
3518 * @rx_ring: ring to clean the resources from
9d5c8243 3519 *
b980ac18 3520 * Free all receive software resources
9d5c8243 3521 **/
68fd9910 3522void igb_free_rx_resources(struct igb_ring *rx_ring)
9d5c8243 3523{
3b644cf6 3524 igb_clean_rx_ring(rx_ring);
9d5c8243 3525
06034649
AD
3526 vfree(rx_ring->rx_buffer_info);
3527 rx_ring->rx_buffer_info = NULL;
9d5c8243 3528
439705e1
AD
3529 /* if not set, then don't free */
3530 if (!rx_ring->desc)
3531 return;
3532
59d71989
AD
3533 dma_free_coherent(rx_ring->dev, rx_ring->size,
3534 rx_ring->desc, rx_ring->dma);
9d5c8243
AK
3535
3536 rx_ring->desc = NULL;
3537}
3538
3539/**
b980ac18
JK
3540 * igb_free_all_rx_resources - Free Rx Resources for All Queues
3541 * @adapter: board private structure
9d5c8243 3542 *
b980ac18 3543 * Free all receive software resources
9d5c8243
AK
3544 **/
3545static void igb_free_all_rx_resources(struct igb_adapter *adapter)
3546{
3547 int i;
3548
3549 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3550 igb_free_rx_resources(adapter->rx_ring[i]);
9d5c8243
AK
3551}
3552
3553/**
b980ac18
JK
3554 * igb_clean_rx_ring - Free Rx Buffers per Queue
3555 * @rx_ring: ring to free buffers from
9d5c8243 3556 **/
3b644cf6 3557static void igb_clean_rx_ring(struct igb_ring *rx_ring)
9d5c8243 3558{
9d5c8243 3559 unsigned long size;
c023cd88 3560 u16 i;
9d5c8243 3561
1a1c225b
AD
3562 if (rx_ring->skb)
3563 dev_kfree_skb(rx_ring->skb);
3564 rx_ring->skb = NULL;
3565
06034649 3566 if (!rx_ring->rx_buffer_info)
9d5c8243 3567 return;
439705e1 3568
9d5c8243
AK
3569 /* Free all the Rx ring sk_buffs */
3570 for (i = 0; i < rx_ring->count; i++) {
06034649 3571 struct igb_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
9d5c8243 3572
cbc8e55f
AD
3573 if (!buffer_info->page)
3574 continue;
3575
3576 dma_unmap_page(rx_ring->dev,
3577 buffer_info->dma,
3578 PAGE_SIZE,
3579 DMA_FROM_DEVICE);
3580 __free_page(buffer_info->page);
3581
1a1c225b 3582 buffer_info->page = NULL;
9d5c8243
AK
3583 }
3584
06034649
AD
3585 size = sizeof(struct igb_rx_buffer) * rx_ring->count;
3586 memset(rx_ring->rx_buffer_info, 0, size);
9d5c8243
AK
3587
3588 /* Zero out the descriptor ring */
3589 memset(rx_ring->desc, 0, rx_ring->size);
3590
cbc8e55f 3591 rx_ring->next_to_alloc = 0;
9d5c8243
AK
3592 rx_ring->next_to_clean = 0;
3593 rx_ring->next_to_use = 0;
9d5c8243
AK
3594}
3595
3596/**
b980ac18
JK
3597 * igb_clean_all_rx_rings - Free Rx Buffers for all queues
3598 * @adapter: board private structure
9d5c8243
AK
3599 **/
3600static void igb_clean_all_rx_rings(struct igb_adapter *adapter)
3601{
3602 int i;
3603
3604 for (i = 0; i < adapter->num_rx_queues; i++)
3025a446 3605 igb_clean_rx_ring(adapter->rx_ring[i]);
9d5c8243
AK
3606}
3607
3608/**
b980ac18
JK
3609 * igb_set_mac - Change the Ethernet Address of the NIC
3610 * @netdev: network interface device structure
3611 * @p: pointer to an address structure
9d5c8243 3612 *
b980ac18 3613 * Returns 0 on success, negative on failure
9d5c8243
AK
3614 **/
3615static int igb_set_mac(struct net_device *netdev, void *p)
3616{
3617 struct igb_adapter *adapter = netdev_priv(netdev);
28b0759c 3618 struct e1000_hw *hw = &adapter->hw;
9d5c8243
AK
3619 struct sockaddr *addr = p;
3620
3621 if (!is_valid_ether_addr(addr->sa_data))
3622 return -EADDRNOTAVAIL;
3623
3624 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
28b0759c 3625 memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
9d5c8243 3626
26ad9178
AD
3627 /* set the correct pool for the new PF MAC address in entry 0 */
3628 igb_rar_set_qsel(adapter, hw->mac.addr, 0,
b980ac18 3629 adapter->vfs_allocated_count);
e1739522 3630
9d5c8243
AK
3631 return 0;
3632}
3633
3634/**
b980ac18
JK
3635 * igb_write_mc_addr_list - write multicast addresses to MTA
3636 * @netdev: network interface device structure
9d5c8243 3637 *
b980ac18
JK
3638 * Writes multicast address list to the MTA hash table.
3639 * Returns: -ENOMEM on failure
3640 * 0 on no addresses written
3641 * X on writing X addresses to MTA
9d5c8243 3642 **/
68d480c4 3643static int igb_write_mc_addr_list(struct net_device *netdev)
9d5c8243
AK
3644{
3645 struct igb_adapter *adapter = netdev_priv(netdev);
3646 struct e1000_hw *hw = &adapter->hw;
22bedad3 3647 struct netdev_hw_addr *ha;
68d480c4 3648 u8 *mta_list;
9d5c8243
AK
3649 int i;
3650
4cd24eaf 3651 if (netdev_mc_empty(netdev)) {
68d480c4
AD
3652 /* nothing to program, so clear mc list */
3653 igb_update_mc_addr_list(hw, NULL, 0);
3654 igb_restore_vf_multicasts(adapter);
3655 return 0;
3656 }
9d5c8243 3657
4cd24eaf 3658 mta_list = kzalloc(netdev_mc_count(netdev) * 6, GFP_ATOMIC);
68d480c4
AD
3659 if (!mta_list)
3660 return -ENOMEM;
ff41f8dc 3661
68d480c4 3662 /* The shared function expects a packed array of only addresses. */
48e2f183 3663 i = 0;
22bedad3
JP
3664 netdev_for_each_mc_addr(ha, netdev)
3665 memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
68d480c4 3666
68d480c4
AD
3667 igb_update_mc_addr_list(hw, mta_list, i);
3668 kfree(mta_list);
3669
4cd24eaf 3670 return netdev_mc_count(netdev);
68d480c4
AD
3671}
3672
3673/**
b980ac18
JK
3674 * igb_write_uc_addr_list - write unicast addresses to RAR table
3675 * @netdev: network interface device structure
68d480c4 3676 *
b980ac18
JK
3677 * Writes unicast address list to the RAR table.
3678 * Returns: -ENOMEM on failure/insufficient address space
3679 * 0 on no addresses written
3680 * X on writing X addresses to the RAR table
68d480c4
AD
3681 **/
3682static int igb_write_uc_addr_list(struct net_device *netdev)
3683{
3684 struct igb_adapter *adapter = netdev_priv(netdev);
3685 struct e1000_hw *hw = &adapter->hw;
3686 unsigned int vfn = adapter->vfs_allocated_count;
3687 unsigned int rar_entries = hw->mac.rar_entry_count - (vfn + 1);
3688 int count = 0;
3689
3690 /* return ENOMEM indicating insufficient memory for addresses */
32e7bfc4 3691 if (netdev_uc_count(netdev) > rar_entries)
68d480c4 3692 return -ENOMEM;
9d5c8243 3693
32e7bfc4 3694 if (!netdev_uc_empty(netdev) && rar_entries) {
ff41f8dc 3695 struct netdev_hw_addr *ha;
32e7bfc4
JP
3696
3697 netdev_for_each_uc_addr(ha, netdev) {
ff41f8dc
AD
3698 if (!rar_entries)
3699 break;
26ad9178 3700 igb_rar_set_qsel(adapter, ha->addr,
b980ac18
JK
3701 rar_entries--,
3702 vfn);
68d480c4 3703 count++;
ff41f8dc
AD
3704 }
3705 }
3706 /* write the addresses in reverse order to avoid write combining */
3707 for (; rar_entries > 0 ; rar_entries--) {
3708 wr32(E1000_RAH(rar_entries), 0);
3709 wr32(E1000_RAL(rar_entries), 0);
3710 }
3711 wrfl();
3712
68d480c4
AD
3713 return count;
3714}
3715
3716/**
b980ac18
JK
3717 * igb_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3718 * @netdev: network interface device structure
68d480c4 3719 *
b980ac18
JK
3720 * The set_rx_mode entry point is called whenever the unicast or multicast
3721 * address lists or the network interface flags are updated. This routine is
3722 * responsible for configuring the hardware for proper unicast, multicast,
3723 * promiscuous mode, and all-multi behavior.
68d480c4
AD
3724 **/
3725static void igb_set_rx_mode(struct net_device *netdev)
3726{
3727 struct igb_adapter *adapter = netdev_priv(netdev);
3728 struct e1000_hw *hw = &adapter->hw;
3729 unsigned int vfn = adapter->vfs_allocated_count;
3730 u32 rctl, vmolr = 0;
3731 int count;
3732
3733 /* Check for Promiscuous and All Multicast modes */
3734 rctl = rd32(E1000_RCTL);
3735
3736 /* clear the effected bits */
3737 rctl &= ~(E1000_RCTL_UPE | E1000_RCTL_MPE | E1000_RCTL_VFE);
3738
3739 if (netdev->flags & IFF_PROMISC) {
3740 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
3741 vmolr |= (E1000_VMOLR_ROPE | E1000_VMOLR_MPME);
3742 } else {
3743 if (netdev->flags & IFF_ALLMULTI) {
3744 rctl |= E1000_RCTL_MPE;
3745 vmolr |= E1000_VMOLR_MPME;
3746 } else {
b980ac18 3747 /* Write addresses to the MTA, if the attempt fails
25985edc 3748 * then we should just turn on promiscuous mode so
68d480c4
AD
3749 * that we can at least receive multicast traffic
3750 */
3751 count = igb_write_mc_addr_list(netdev);
3752 if (count < 0) {
3753 rctl |= E1000_RCTL_MPE;
3754 vmolr |= E1000_VMOLR_MPME;
3755 } else if (count) {
3756 vmolr |= E1000_VMOLR_ROMPE;
3757 }
3758 }
b980ac18 3759 /* Write addresses to available RAR registers, if there is not
68d480c4 3760 * sufficient space to store all the addresses then enable
25985edc 3761 * unicast promiscuous mode
68d480c4
AD
3762 */
3763 count = igb_write_uc_addr_list(netdev);
3764 if (count < 0) {
3765 rctl |= E1000_RCTL_UPE;
3766 vmolr |= E1000_VMOLR_ROPE;
3767 }
3768 rctl |= E1000_RCTL_VFE;
28fc06f5 3769 }
68d480c4 3770 wr32(E1000_RCTL, rctl);
28fc06f5 3771
b980ac18 3772 /* In order to support SR-IOV and eventually VMDq it is necessary to set
68d480c4
AD
3773 * the VMOLR to enable the appropriate modes. Without this workaround
3774 * we will have issues with VLAN tag stripping not being done for frames
3775 * that are only arriving because we are the default pool
3776 */
f96a8a0b 3777 if ((hw->mac.type < e1000_82576) || (hw->mac.type > e1000_i350))
28fc06f5 3778 return;
9d5c8243 3779
68d480c4 3780 vmolr |= rd32(E1000_VMOLR(vfn)) &
b980ac18 3781 ~(E1000_VMOLR_ROPE | E1000_VMOLR_MPME | E1000_VMOLR_ROMPE);
68d480c4 3782 wr32(E1000_VMOLR(vfn), vmolr);
28fc06f5 3783 igb_restore_vf_multicasts(adapter);
9d5c8243
AK
3784}
3785
13800469
GR
3786static void igb_check_wvbr(struct igb_adapter *adapter)
3787{
3788 struct e1000_hw *hw = &adapter->hw;
3789 u32 wvbr = 0;
3790
3791 switch (hw->mac.type) {
3792 case e1000_82576:
3793 case e1000_i350:
3794 if (!(wvbr = rd32(E1000_WVBR)))
3795 return;
3796 break;
3797 default:
3798 break;
3799 }
3800
3801 adapter->wvbr |= wvbr;
3802}
3803
3804#define IGB_STAGGERED_QUEUE_OFFSET 8
3805
3806static void igb_spoof_check(struct igb_adapter *adapter)
3807{
3808 int j;
3809
3810 if (!adapter->wvbr)
3811 return;
3812
3813 for(j = 0; j < adapter->vfs_allocated_count; j++) {
3814 if (adapter->wvbr & (1 << j) ||
3815 adapter->wvbr & (1 << (j + IGB_STAGGERED_QUEUE_OFFSET))) {
3816 dev_warn(&adapter->pdev->dev,
3817 "Spoof event(s) detected on VF %d\n", j);
3818 adapter->wvbr &=
3819 ~((1 << j) |
3820 (1 << (j + IGB_STAGGERED_QUEUE_OFFSET)));
3821 }
3822 }
3823}
3824
9d5c8243 3825/* Need to wait a few seconds after link up to get diagnostic information from
b980ac18
JK
3826 * the phy
3827 */
9d5c8243
AK
3828static void igb_update_phy_info(unsigned long data)
3829{
3830 struct igb_adapter *adapter = (struct igb_adapter *) data;
f5f4cf08 3831 igb_get_phy_info(&adapter->hw);
9d5c8243
AK
3832}
3833
4d6b725e 3834/**
b980ac18
JK
3835 * igb_has_link - check shared code for link and determine up/down
3836 * @adapter: pointer to driver private info
4d6b725e 3837 **/
3145535a 3838bool igb_has_link(struct igb_adapter *adapter)
4d6b725e
AD
3839{
3840 struct e1000_hw *hw = &adapter->hw;
3841 bool link_active = false;
3842 s32 ret_val = 0;
3843
3844 /* get_link_status is set on LSC (link status) interrupt or
3845 * rx sequence error interrupt. get_link_status will stay
3846 * false until the e1000_check_for_link establishes link
3847 * for copper adapters ONLY
3848 */
3849 switch (hw->phy.media_type) {
3850 case e1000_media_type_copper:
3851 if (hw->mac.get_link_status) {
3852 ret_val = hw->mac.ops.check_for_link(hw);
3853 link_active = !hw->mac.get_link_status;
3854 } else {
3855 link_active = true;
3856 }
3857 break;
4d6b725e
AD
3858 case e1000_media_type_internal_serdes:
3859 ret_val = hw->mac.ops.check_for_link(hw);
3860 link_active = hw->mac.serdes_has_link;
3861 break;
3862 default:
3863 case e1000_media_type_unknown:
3864 break;
3865 }
3866
3867 return link_active;
3868}
3869
563988dc
SA
3870static bool igb_thermal_sensor_event(struct e1000_hw *hw, u32 event)
3871{
3872 bool ret = false;
3873 u32 ctrl_ext, thstat;
3874
f96a8a0b 3875 /* check for thermal sensor event on i350 copper only */
563988dc
SA
3876 if (hw->mac.type == e1000_i350) {
3877 thstat = rd32(E1000_THSTAT);
3878 ctrl_ext = rd32(E1000_CTRL_EXT);
3879
3880 if ((hw->phy.media_type == e1000_media_type_copper) &&
5c17a203 3881 !(ctrl_ext & E1000_CTRL_EXT_LINK_MODE_SGMII))
563988dc 3882 ret = !!(thstat & event);
563988dc
SA
3883 }
3884
3885 return ret;
3886}
3887
9d5c8243 3888/**
b980ac18
JK
3889 * igb_watchdog - Timer Call-back
3890 * @data: pointer to adapter cast into an unsigned long
9d5c8243
AK
3891 **/
3892static void igb_watchdog(unsigned long data)
3893{
3894 struct igb_adapter *adapter = (struct igb_adapter *)data;
3895 /* Do the rest outside of interrupt context */
3896 schedule_work(&adapter->watchdog_task);
3897}
3898
3899static void igb_watchdog_task(struct work_struct *work)
3900{
3901 struct igb_adapter *adapter = container_of(work,
b980ac18
JK
3902 struct igb_adapter,
3903 watchdog_task);
9d5c8243 3904 struct e1000_hw *hw = &adapter->hw;
9d5c8243 3905 struct net_device *netdev = adapter->netdev;
563988dc 3906 u32 link;
7a6ea550 3907 int i;
9d5c8243 3908
4d6b725e 3909 link = igb_has_link(adapter);
9d5c8243 3910 if (link) {
749ab2cd
YZ
3911 /* Cancel scheduled suspend requests. */
3912 pm_runtime_resume(netdev->dev.parent);
3913
9d5c8243
AK
3914 if (!netif_carrier_ok(netdev)) {
3915 u32 ctrl;
330a6d6a 3916 hw->mac.ops.get_speed_and_duplex(hw,
b980ac18
JK
3917 &adapter->link_speed,
3918 &adapter->link_duplex);
9d5c8243
AK
3919
3920 ctrl = rd32(E1000_CTRL);
527d47c1 3921 /* Links status message must follow this format */
876d2d6f
JK
3922 printk(KERN_INFO "igb: %s NIC Link is Up %d Mbps %s "
3923 "Duplex, Flow Control: %s\n",
559e9c49
AD
3924 netdev->name,
3925 adapter->link_speed,
3926 adapter->link_duplex == FULL_DUPLEX ?
876d2d6f
JK
3927 "Full" : "Half",
3928 (ctrl & E1000_CTRL_TFCE) &&
3929 (ctrl & E1000_CTRL_RFCE) ? "RX/TX" :
3930 (ctrl & E1000_CTRL_RFCE) ? "RX" :
3931 (ctrl & E1000_CTRL_TFCE) ? "TX" : "None");
9d5c8243 3932
563988dc 3933 /* check for thermal sensor event */
876d2d6f
JK
3934 if (igb_thermal_sensor_event(hw,
3935 E1000_THSTAT_LINK_THROTTLE)) {
3936 netdev_info(netdev, "The network adapter link "
3937 "speed was downshifted because it "
3938 "overheated\n");
7ef5ed1c 3939 }
563988dc 3940
d07f3e37 3941 /* adjust timeout factor according to speed/duplex */
9d5c8243
AK
3942 adapter->tx_timeout_factor = 1;
3943 switch (adapter->link_speed) {
3944 case SPEED_10:
9d5c8243
AK
3945 adapter->tx_timeout_factor = 14;
3946 break;
3947 case SPEED_100:
9d5c8243
AK
3948 /* maybe add some timeout factor ? */
3949 break;
3950 }
3951
3952 netif_carrier_on(netdev);
9d5c8243 3953
4ae196df 3954 igb_ping_all_vfs(adapter);
17dc566c 3955 igb_check_vf_rate_limit(adapter);
4ae196df 3956
4b1a9877 3957 /* link state has changed, schedule phy info update */
9d5c8243
AK
3958 if (!test_bit(__IGB_DOWN, &adapter->state))
3959 mod_timer(&adapter->phy_info_timer,
3960 round_jiffies(jiffies + 2 * HZ));
3961 }
3962 } else {
3963 if (netif_carrier_ok(netdev)) {
3964 adapter->link_speed = 0;
3965 adapter->link_duplex = 0;
563988dc
SA
3966
3967 /* check for thermal sensor event */
876d2d6f
JK
3968 if (igb_thermal_sensor_event(hw,
3969 E1000_THSTAT_PWR_DOWN)) {
3970 netdev_err(netdev, "The network adapter was "
3971 "stopped because it overheated\n");
7ef5ed1c 3972 }
563988dc 3973
527d47c1
AD
3974 /* Links status message must follow this format */
3975 printk(KERN_INFO "igb: %s NIC Link is Down\n",
3976 netdev->name);
9d5c8243 3977 netif_carrier_off(netdev);
4b1a9877 3978
4ae196df
AD
3979 igb_ping_all_vfs(adapter);
3980
4b1a9877 3981 /* link state has changed, schedule phy info update */
9d5c8243
AK
3982 if (!test_bit(__IGB_DOWN, &adapter->state))
3983 mod_timer(&adapter->phy_info_timer,
3984 round_jiffies(jiffies + 2 * HZ));
749ab2cd
YZ
3985
3986 pm_schedule_suspend(netdev->dev.parent,
3987 MSEC_PER_SEC * 5);
9d5c8243
AK
3988 }
3989 }
3990
12dcd86b
ED
3991 spin_lock(&adapter->stats64_lock);
3992 igb_update_stats(adapter, &adapter->stats64);
3993 spin_unlock(&adapter->stats64_lock);
9d5c8243 3994
dbabb065 3995 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 3996 struct igb_ring *tx_ring = adapter->tx_ring[i];
dbabb065 3997 if (!netif_carrier_ok(netdev)) {
9d5c8243
AK
3998 /* We've lost link, so the controller stops DMA,
3999 * but we've got queued Tx work that's never going
4000 * to get done, so reset controller to flush Tx.
b980ac18
JK
4001 * (Do the reset outside of interrupt context).
4002 */
dbabb065
AD
4003 if (igb_desc_unused(tx_ring) + 1 < tx_ring->count) {
4004 adapter->tx_timeout_count++;
4005 schedule_work(&adapter->reset_task);
4006 /* return immediately since reset is imminent */
4007 return;
4008 }
9d5c8243 4009 }
9d5c8243 4010
dbabb065 4011 /* Force detection of hung controller every watchdog period */
6d095fa8 4012 set_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
dbabb065 4013 }
f7ba205e 4014
b980ac18 4015 /* Cause software interrupt to ensure Rx ring is cleaned */
7a6ea550 4016 if (adapter->msix_entries) {
047e0030 4017 u32 eics = 0;
0d1ae7f4
AD
4018 for (i = 0; i < adapter->num_q_vectors; i++)
4019 eics |= adapter->q_vector[i]->eims_value;
7a6ea550
AD
4020 wr32(E1000_EICS, eics);
4021 } else {
4022 wr32(E1000_ICS, E1000_ICS_RXDMT0);
4023 }
9d5c8243 4024
13800469 4025 igb_spoof_check(adapter);
fc580751 4026 igb_ptp_rx_hang(adapter);
13800469 4027
9d5c8243
AK
4028 /* Reset the timer */
4029 if (!test_bit(__IGB_DOWN, &adapter->state))
4030 mod_timer(&adapter->watchdog_timer,
4031 round_jiffies(jiffies + 2 * HZ));
4032}
4033
4034enum latency_range {
4035 lowest_latency = 0,
4036 low_latency = 1,
4037 bulk_latency = 2,
4038 latency_invalid = 255
4039};
4040
6eb5a7f1 4041/**
b980ac18
JK
4042 * igb_update_ring_itr - update the dynamic ITR value based on packet size
4043 * @q_vector: pointer to q_vector
6eb5a7f1 4044 *
b980ac18
JK
4045 * Stores a new ITR value based on strictly on packet size. This
4046 * algorithm is less sophisticated than that used in igb_update_itr,
4047 * due to the difficulty of synchronizing statistics across multiple
4048 * receive rings. The divisors and thresholds used by this function
4049 * were determined based on theoretical maximum wire speed and testing
4050 * data, in order to minimize response time while increasing bulk
4051 * throughput.
4052 * This functionality is controlled by the InterruptThrottleRate module
4053 * parameter (see igb_param.c)
4054 * NOTE: This function is called only when operating in a multiqueue
4055 * receive environment.
6eb5a7f1 4056 **/
047e0030 4057static void igb_update_ring_itr(struct igb_q_vector *q_vector)
9d5c8243 4058{
047e0030 4059 int new_val = q_vector->itr_val;
6eb5a7f1 4060 int avg_wire_size = 0;
047e0030 4061 struct igb_adapter *adapter = q_vector->adapter;
12dcd86b 4062 unsigned int packets;
9d5c8243 4063
6eb5a7f1
AD
4064 /* For non-gigabit speeds, just fix the interrupt rate at 4000
4065 * ints/sec - ITR timer value of 120 ticks.
4066 */
4067 if (adapter->link_speed != SPEED_1000) {
0ba82994 4068 new_val = IGB_4K_ITR;
6eb5a7f1 4069 goto set_itr_val;
9d5c8243 4070 }
047e0030 4071
0ba82994
AD
4072 packets = q_vector->rx.total_packets;
4073 if (packets)
4074 avg_wire_size = q_vector->rx.total_bytes / packets;
047e0030 4075
0ba82994
AD
4076 packets = q_vector->tx.total_packets;
4077 if (packets)
4078 avg_wire_size = max_t(u32, avg_wire_size,
4079 q_vector->tx.total_bytes / packets);
047e0030
AD
4080
4081 /* if avg_wire_size isn't set no work was done */
4082 if (!avg_wire_size)
4083 goto clear_counts;
9d5c8243 4084
6eb5a7f1
AD
4085 /* Add 24 bytes to size to account for CRC, preamble, and gap */
4086 avg_wire_size += 24;
4087
4088 /* Don't starve jumbo frames */
4089 avg_wire_size = min(avg_wire_size, 3000);
9d5c8243 4090
6eb5a7f1
AD
4091 /* Give a little boost to mid-size frames */
4092 if ((avg_wire_size > 300) && (avg_wire_size < 1200))
4093 new_val = avg_wire_size / 3;
4094 else
4095 new_val = avg_wire_size / 2;
9d5c8243 4096
0ba82994
AD
4097 /* conservative mode (itr 3) eliminates the lowest_latency setting */
4098 if (new_val < IGB_20K_ITR &&
4099 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4100 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
4101 new_val = IGB_20K_ITR;
abe1c363 4102
6eb5a7f1 4103set_itr_val:
047e0030
AD
4104 if (new_val != q_vector->itr_val) {
4105 q_vector->itr_val = new_val;
4106 q_vector->set_itr = 1;
9d5c8243 4107 }
6eb5a7f1 4108clear_counts:
0ba82994
AD
4109 q_vector->rx.total_bytes = 0;
4110 q_vector->rx.total_packets = 0;
4111 q_vector->tx.total_bytes = 0;
4112 q_vector->tx.total_packets = 0;
9d5c8243
AK
4113}
4114
4115/**
b980ac18
JK
4116 * igb_update_itr - update the dynamic ITR value based on statistics
4117 * @q_vector: pointer to q_vector
4118 * @ring_container: ring info to update the itr for
4119 *
4120 * Stores a new ITR value based on packets and byte
4121 * counts during the last interrupt. The advantage of per interrupt
4122 * computation is faster updates and more accurate ITR for the current
4123 * traffic pattern. Constants in this function were computed
4124 * based on theoretical maximum wire speed and thresholds were set based
4125 * on testing data as well as attempting to minimize response time
4126 * while increasing bulk throughput.
4127 * this functionality is controlled by the InterruptThrottleRate module
4128 * parameter (see igb_param.c)
4129 * NOTE: These calculations are only valid when operating in a single-
4130 * queue environment.
9d5c8243 4131 **/
0ba82994
AD
4132static void igb_update_itr(struct igb_q_vector *q_vector,
4133 struct igb_ring_container *ring_container)
9d5c8243 4134{
0ba82994
AD
4135 unsigned int packets = ring_container->total_packets;
4136 unsigned int bytes = ring_container->total_bytes;
4137 u8 itrval = ring_container->itr;
9d5c8243 4138
0ba82994 4139 /* no packets, exit with status unchanged */
9d5c8243 4140 if (packets == 0)
0ba82994 4141 return;
9d5c8243 4142
0ba82994 4143 switch (itrval) {
9d5c8243
AK
4144 case lowest_latency:
4145 /* handle TSO and jumbo frames */
4146 if (bytes/packets > 8000)
0ba82994 4147 itrval = bulk_latency;
9d5c8243 4148 else if ((packets < 5) && (bytes > 512))
0ba82994 4149 itrval = low_latency;
9d5c8243
AK
4150 break;
4151 case low_latency: /* 50 usec aka 20000 ints/s */
4152 if (bytes > 10000) {
4153 /* this if handles the TSO accounting */
4154 if (bytes/packets > 8000) {
0ba82994 4155 itrval = bulk_latency;
9d5c8243 4156 } else if ((packets < 10) || ((bytes/packets) > 1200)) {
0ba82994 4157 itrval = bulk_latency;
9d5c8243 4158 } else if ((packets > 35)) {
0ba82994 4159 itrval = lowest_latency;
9d5c8243
AK
4160 }
4161 } else if (bytes/packets > 2000) {
0ba82994 4162 itrval = bulk_latency;
9d5c8243 4163 } else if (packets <= 2 && bytes < 512) {
0ba82994 4164 itrval = lowest_latency;
9d5c8243
AK
4165 }
4166 break;
4167 case bulk_latency: /* 250 usec aka 4000 ints/s */
4168 if (bytes > 25000) {
4169 if (packets > 35)
0ba82994 4170 itrval = low_latency;
1e5c3d21 4171 } else if (bytes < 1500) {
0ba82994 4172 itrval = low_latency;
9d5c8243
AK
4173 }
4174 break;
4175 }
4176
0ba82994
AD
4177 /* clear work counters since we have the values we need */
4178 ring_container->total_bytes = 0;
4179 ring_container->total_packets = 0;
4180
4181 /* write updated itr to ring container */
4182 ring_container->itr = itrval;
9d5c8243
AK
4183}
4184
0ba82994 4185static void igb_set_itr(struct igb_q_vector *q_vector)
9d5c8243 4186{
0ba82994 4187 struct igb_adapter *adapter = q_vector->adapter;
047e0030 4188 u32 new_itr = q_vector->itr_val;
0ba82994 4189 u8 current_itr = 0;
9d5c8243
AK
4190
4191 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
4192 if (adapter->link_speed != SPEED_1000) {
4193 current_itr = 0;
0ba82994 4194 new_itr = IGB_4K_ITR;
9d5c8243
AK
4195 goto set_itr_now;
4196 }
4197
0ba82994
AD
4198 igb_update_itr(q_vector, &q_vector->tx);
4199 igb_update_itr(q_vector, &q_vector->rx);
9d5c8243 4200
0ba82994 4201 current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
9d5c8243 4202
6eb5a7f1 4203 /* conservative mode (itr 3) eliminates the lowest_latency setting */
0ba82994
AD
4204 if (current_itr == lowest_latency &&
4205 ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
4206 (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
6eb5a7f1
AD
4207 current_itr = low_latency;
4208
9d5c8243
AK
4209 switch (current_itr) {
4210 /* counts and packets in update_itr are dependent on these numbers */
4211 case lowest_latency:
0ba82994 4212 new_itr = IGB_70K_ITR; /* 70,000 ints/sec */
9d5c8243
AK
4213 break;
4214 case low_latency:
0ba82994 4215 new_itr = IGB_20K_ITR; /* 20,000 ints/sec */
9d5c8243
AK
4216 break;
4217 case bulk_latency:
0ba82994 4218 new_itr = IGB_4K_ITR; /* 4,000 ints/sec */
9d5c8243
AK
4219 break;
4220 default:
4221 break;
4222 }
4223
4224set_itr_now:
047e0030 4225 if (new_itr != q_vector->itr_val) {
9d5c8243
AK
4226 /* this attempts to bias the interrupt rate towards Bulk
4227 * by adding intermediate steps when interrupt rate is
b980ac18
JK
4228 * increasing
4229 */
047e0030 4230 new_itr = new_itr > q_vector->itr_val ?
b980ac18
JK
4231 max((new_itr * q_vector->itr_val) /
4232 (new_itr + (q_vector->itr_val >> 2)),
4233 new_itr) : new_itr;
9d5c8243
AK
4234 /* Don't write the value here; it resets the adapter's
4235 * internal timer, and causes us to delay far longer than
4236 * we should between interrupts. Instead, we write the ITR
4237 * value at the beginning of the next interrupt so the timing
4238 * ends up being correct.
4239 */
047e0030
AD
4240 q_vector->itr_val = new_itr;
4241 q_vector->set_itr = 1;
9d5c8243 4242 }
9d5c8243
AK
4243}
4244
c50b52a0
SH
4245static void igb_tx_ctxtdesc(struct igb_ring *tx_ring, u32 vlan_macip_lens,
4246 u32 type_tucmd, u32 mss_l4len_idx)
7d13a7d0
AD
4247{
4248 struct e1000_adv_tx_context_desc *context_desc;
4249 u16 i = tx_ring->next_to_use;
4250
4251 context_desc = IGB_TX_CTXTDESC(tx_ring, i);
4252
4253 i++;
4254 tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
4255
4256 /* set bits to identify this as an advanced context descriptor */
4257 type_tucmd |= E1000_TXD_CMD_DEXT | E1000_ADVTXD_DTYP_CTXT;
4258
4259 /* For 82575, context index must be unique per ring. */
866cff06 4260 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
7d13a7d0
AD
4261 mss_l4len_idx |= tx_ring->reg_idx << 4;
4262
4263 context_desc->vlan_macip_lens = cpu_to_le32(vlan_macip_lens);
4264 context_desc->seqnum_seed = 0;
4265 context_desc->type_tucmd_mlhl = cpu_to_le32(type_tucmd);
4266 context_desc->mss_l4len_idx = cpu_to_le32(mss_l4len_idx);
4267}
4268
7af40ad9
AD
4269static int igb_tso(struct igb_ring *tx_ring,
4270 struct igb_tx_buffer *first,
4271 u8 *hdr_len)
9d5c8243 4272{
7af40ad9 4273 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4274 u32 vlan_macip_lens, type_tucmd;
4275 u32 mss_l4len_idx, l4len;
4276
ed6aa105
AD
4277 if (skb->ip_summed != CHECKSUM_PARTIAL)
4278 return 0;
4279
7d13a7d0
AD
4280 if (!skb_is_gso(skb))
4281 return 0;
9d5c8243
AK
4282
4283 if (skb_header_cloned(skb)) {
7af40ad9 4284 int err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
9d5c8243
AK
4285 if (err)
4286 return err;
4287 }
4288
7d13a7d0
AD
4289 /* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
4290 type_tucmd = E1000_ADVTXD_TUCMD_L4T_TCP;
9d5c8243 4291
7af40ad9 4292 if (first->protocol == __constant_htons(ETH_P_IP)) {
9d5c8243
AK
4293 struct iphdr *iph = ip_hdr(skb);
4294 iph->tot_len = 0;
4295 iph->check = 0;
4296 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
4297 iph->daddr, 0,
4298 IPPROTO_TCP,
4299 0);
7d13a7d0 4300 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
7af40ad9
AD
4301 first->tx_flags |= IGB_TX_FLAGS_TSO |
4302 IGB_TX_FLAGS_CSUM |
4303 IGB_TX_FLAGS_IPV4;
8e1e8a47 4304 } else if (skb_is_gso_v6(skb)) {
9d5c8243
AK
4305 ipv6_hdr(skb)->payload_len = 0;
4306 tcp_hdr(skb)->check = ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
4307 &ipv6_hdr(skb)->daddr,
4308 0, IPPROTO_TCP, 0);
7af40ad9
AD
4309 first->tx_flags |= IGB_TX_FLAGS_TSO |
4310 IGB_TX_FLAGS_CSUM;
9d5c8243
AK
4311 }
4312
7af40ad9 4313 /* compute header lengths */
7d13a7d0
AD
4314 l4len = tcp_hdrlen(skb);
4315 *hdr_len = skb_transport_offset(skb) + l4len;
9d5c8243 4316
7af40ad9
AD
4317 /* update gso size and bytecount with header size */
4318 first->gso_segs = skb_shinfo(skb)->gso_segs;
4319 first->bytecount += (first->gso_segs - 1) * *hdr_len;
4320
9d5c8243 4321 /* MSS L4LEN IDX */
7d13a7d0
AD
4322 mss_l4len_idx = l4len << E1000_ADVTXD_L4LEN_SHIFT;
4323 mss_l4len_idx |= skb_shinfo(skb)->gso_size << E1000_ADVTXD_MSS_SHIFT;
9d5c8243 4324
7d13a7d0
AD
4325 /* VLAN MACLEN IPLEN */
4326 vlan_macip_lens = skb_network_header_len(skb);
4327 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4328 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4329
7d13a7d0 4330 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243 4331
7d13a7d0 4332 return 1;
9d5c8243
AK
4333}
4334
7af40ad9 4335static void igb_tx_csum(struct igb_ring *tx_ring, struct igb_tx_buffer *first)
9d5c8243 4336{
7af40ad9 4337 struct sk_buff *skb = first->skb;
7d13a7d0
AD
4338 u32 vlan_macip_lens = 0;
4339 u32 mss_l4len_idx = 0;
4340 u32 type_tucmd = 0;
9d5c8243 4341
7d13a7d0 4342 if (skb->ip_summed != CHECKSUM_PARTIAL) {
7af40ad9
AD
4343 if (!(first->tx_flags & IGB_TX_FLAGS_VLAN))
4344 return;
7d13a7d0
AD
4345 } else {
4346 u8 l4_hdr = 0;
7af40ad9 4347 switch (first->protocol) {
7d13a7d0
AD
4348 case __constant_htons(ETH_P_IP):
4349 vlan_macip_lens |= skb_network_header_len(skb);
4350 type_tucmd |= E1000_ADVTXD_TUCMD_IPV4;
4351 l4_hdr = ip_hdr(skb)->protocol;
4352 break;
4353 case __constant_htons(ETH_P_IPV6):
4354 vlan_macip_lens |= skb_network_header_len(skb);
4355 l4_hdr = ipv6_hdr(skb)->nexthdr;
4356 break;
4357 default:
4358 if (unlikely(net_ratelimit())) {
4359 dev_warn(tx_ring->dev,
b980ac18
JK
4360 "partial checksum but proto=%x!\n",
4361 first->protocol);
fa4a7ef3 4362 }
7d13a7d0
AD
4363 break;
4364 }
fa4a7ef3 4365
7d13a7d0
AD
4366 switch (l4_hdr) {
4367 case IPPROTO_TCP:
4368 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_TCP;
4369 mss_l4len_idx = tcp_hdrlen(skb) <<
4370 E1000_ADVTXD_L4LEN_SHIFT;
4371 break;
4372 case IPPROTO_SCTP:
4373 type_tucmd |= E1000_ADVTXD_TUCMD_L4T_SCTP;
4374 mss_l4len_idx = sizeof(struct sctphdr) <<
4375 E1000_ADVTXD_L4LEN_SHIFT;
4376 break;
4377 case IPPROTO_UDP:
4378 mss_l4len_idx = sizeof(struct udphdr) <<
4379 E1000_ADVTXD_L4LEN_SHIFT;
4380 break;
4381 default:
4382 if (unlikely(net_ratelimit())) {
4383 dev_warn(tx_ring->dev,
b980ac18
JK
4384 "partial checksum but l4 proto=%x!\n",
4385 l4_hdr);
44b0cda3 4386 }
7d13a7d0 4387 break;
9d5c8243 4388 }
7af40ad9
AD
4389
4390 /* update TX checksum flag */
4391 first->tx_flags |= IGB_TX_FLAGS_CSUM;
7d13a7d0 4392 }
9d5c8243 4393
7d13a7d0 4394 vlan_macip_lens |= skb_network_offset(skb) << E1000_ADVTXD_MACLEN_SHIFT;
7af40ad9 4395 vlan_macip_lens |= first->tx_flags & IGB_TX_FLAGS_VLAN_MASK;
9d5c8243 4396
7d13a7d0 4397 igb_tx_ctxtdesc(tx_ring, vlan_macip_lens, type_tucmd, mss_l4len_idx);
9d5c8243
AK
4398}
4399
1d9daf45
AD
4400#define IGB_SET_FLAG(_input, _flag, _result) \
4401 ((_flag <= _result) ? \
4402 ((u32)(_input & _flag) * (_result / _flag)) : \
4403 ((u32)(_input & _flag) / (_flag / _result)))
4404
4405static u32 igb_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
e032afc8
AD
4406{
4407 /* set type for advanced descriptor with frame checksum insertion */
1d9daf45
AD
4408 u32 cmd_type = E1000_ADVTXD_DTYP_DATA |
4409 E1000_ADVTXD_DCMD_DEXT |
4410 E1000_ADVTXD_DCMD_IFCS;
e032afc8
AD
4411
4412 /* set HW vlan bit if vlan is present */
1d9daf45
AD
4413 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_VLAN,
4414 (E1000_ADVTXD_DCMD_VLE));
4415
4416 /* set segmentation bits for TSO */
4417 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSO,
4418 (E1000_ADVTXD_DCMD_TSE));
e032afc8
AD
4419
4420 /* set timestamp bit if present */
1d9daf45
AD
4421 cmd_type |= IGB_SET_FLAG(tx_flags, IGB_TX_FLAGS_TSTAMP,
4422 (E1000_ADVTXD_MAC_TSTAMP));
e032afc8 4423
1d9daf45
AD
4424 /* insert frame checksum */
4425 cmd_type ^= IGB_SET_FLAG(skb->no_fcs, 1, E1000_ADVTXD_DCMD_IFCS);
e032afc8
AD
4426
4427 return cmd_type;
4428}
4429
7af40ad9
AD
4430static void igb_tx_olinfo_status(struct igb_ring *tx_ring,
4431 union e1000_adv_tx_desc *tx_desc,
4432 u32 tx_flags, unsigned int paylen)
e032afc8
AD
4433{
4434 u32 olinfo_status = paylen << E1000_ADVTXD_PAYLEN_SHIFT;
4435
1d9daf45
AD
4436 /* 82575 requires a unique index per ring */
4437 if (test_bit(IGB_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
e032afc8
AD
4438 olinfo_status |= tx_ring->reg_idx << 4;
4439
4440 /* insert L4 checksum */
1d9daf45
AD
4441 olinfo_status |= IGB_SET_FLAG(tx_flags,
4442 IGB_TX_FLAGS_CSUM,
4443 (E1000_TXD_POPTS_TXSM << 8));
e032afc8 4444
1d9daf45
AD
4445 /* insert IPv4 checksum */
4446 olinfo_status |= IGB_SET_FLAG(tx_flags,
4447 IGB_TX_FLAGS_IPV4,
4448 (E1000_TXD_POPTS_IXSM << 8));
e032afc8 4449
7af40ad9 4450 tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
e032afc8
AD
4451}
4452
7af40ad9
AD
4453static void igb_tx_map(struct igb_ring *tx_ring,
4454 struct igb_tx_buffer *first,
ebe42d16 4455 const u8 hdr_len)
9d5c8243 4456{
7af40ad9 4457 struct sk_buff *skb = first->skb;
c9f14bf3 4458 struct igb_tx_buffer *tx_buffer;
ebe42d16 4459 union e1000_adv_tx_desc *tx_desc;
80d0759e 4460 struct skb_frag_struct *frag;
ebe42d16 4461 dma_addr_t dma;
80d0759e 4462 unsigned int data_len, size;
7af40ad9 4463 u32 tx_flags = first->tx_flags;
1d9daf45 4464 u32 cmd_type = igb_tx_cmd_type(skb, tx_flags);
ebe42d16 4465 u16 i = tx_ring->next_to_use;
ebe42d16
AD
4466
4467 tx_desc = IGB_TX_DESC(tx_ring, i);
4468
80d0759e
AD
4469 igb_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
4470
4471 size = skb_headlen(skb);
4472 data_len = skb->data_len;
ebe42d16
AD
4473
4474 dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
9d5c8243 4475
80d0759e
AD
4476 tx_buffer = first;
4477
4478 for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
4479 if (dma_mapping_error(tx_ring->dev, dma))
4480 goto dma_error;
4481
4482 /* record length, and DMA address */
4483 dma_unmap_len_set(tx_buffer, len, size);
4484 dma_unmap_addr_set(tx_buffer, dma, dma);
4485
4486 tx_desc->read.buffer_addr = cpu_to_le64(dma);
ebe42d16 4487
ebe42d16
AD
4488 while (unlikely(size > IGB_MAX_DATA_PER_TXD)) {
4489 tx_desc->read.cmd_type_len =
1d9daf45 4490 cpu_to_le32(cmd_type ^ IGB_MAX_DATA_PER_TXD);
ebe42d16
AD
4491
4492 i++;
4493 tx_desc++;
4494 if (i == tx_ring->count) {
4495 tx_desc = IGB_TX_DESC(tx_ring, 0);
4496 i = 0;
4497 }
80d0759e 4498 tx_desc->read.olinfo_status = 0;
ebe42d16
AD
4499
4500 dma += IGB_MAX_DATA_PER_TXD;
4501 size -= IGB_MAX_DATA_PER_TXD;
4502
ebe42d16
AD
4503 tx_desc->read.buffer_addr = cpu_to_le64(dma);
4504 }
4505
4506 if (likely(!data_len))
4507 break;
2bbfebe2 4508
1d9daf45 4509 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
9d5c8243 4510
65689fef 4511 i++;
ebe42d16
AD
4512 tx_desc++;
4513 if (i == tx_ring->count) {
4514 tx_desc = IGB_TX_DESC(tx_ring, 0);
65689fef 4515 i = 0;
ebe42d16 4516 }
80d0759e 4517 tx_desc->read.olinfo_status = 0;
65689fef 4518
9e903e08 4519 size = skb_frag_size(frag);
ebe42d16
AD
4520 data_len -= size;
4521
4522 dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
80d0759e 4523 size, DMA_TO_DEVICE);
6366ad33 4524
c9f14bf3 4525 tx_buffer = &tx_ring->tx_buffer_info[i];
9d5c8243
AK
4526 }
4527
ebe42d16 4528 /* write last descriptor with RS and EOP bits */
1d9daf45
AD
4529 cmd_type |= size | IGB_TXD_DCMD;
4530 tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
8542db05 4531
80d0759e
AD
4532 netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
4533
8542db05
AD
4534 /* set the timestamp */
4535 first->time_stamp = jiffies;
4536
b980ac18 4537 /* Force memory writes to complete before letting h/w know there
ebe42d16
AD
4538 * are new descriptors to fetch. (Only applicable for weak-ordered
4539 * memory model archs, such as IA-64).
4540 *
4541 * We also need this memory barrier to make certain all of the
4542 * status bits have been updated before next_to_watch is written.
4543 */
4544 wmb();
4545
8542db05 4546 /* set next_to_watch value indicating a packet is present */
ebe42d16 4547 first->next_to_watch = tx_desc;
9d5c8243 4548
ebe42d16
AD
4549 i++;
4550 if (i == tx_ring->count)
4551 i = 0;
6366ad33 4552
ebe42d16 4553 tx_ring->next_to_use = i;
6366ad33 4554
ebe42d16 4555 writel(i, tx_ring->tail);
6366ad33 4556
ebe42d16 4557 /* we need this if more than one processor can write to our tail
b980ac18
JK
4558 * at a time, it synchronizes IO on IA64/Altix systems
4559 */
ebe42d16
AD
4560 mmiowb();
4561
4562 return;
4563
4564dma_error:
4565 dev_err(tx_ring->dev, "TX DMA map failed\n");
4566
4567 /* clear dma mappings for failed tx_buffer_info map */
4568 for (;;) {
c9f14bf3
AD
4569 tx_buffer = &tx_ring->tx_buffer_info[i];
4570 igb_unmap_and_free_tx_resource(tx_ring, tx_buffer);
4571 if (tx_buffer == first)
ebe42d16 4572 break;
a77ff709
NN
4573 if (i == 0)
4574 i = tx_ring->count;
6366ad33 4575 i--;
6366ad33
AD
4576 }
4577
9d5c8243 4578 tx_ring->next_to_use = i;
9d5c8243
AK
4579}
4580
6ad4edfc 4581static int __igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4582{
e694e964
AD
4583 struct net_device *netdev = tx_ring->netdev;
4584
661086df 4585 netif_stop_subqueue(netdev, tx_ring->queue_index);
661086df 4586
9d5c8243
AK
4587 /* Herbert's original patch had:
4588 * smp_mb__after_netif_stop_queue();
b980ac18
JK
4589 * but since that doesn't exist yet, just open code it.
4590 */
9d5c8243
AK
4591 smp_mb();
4592
4593 /* We need to check again in a case another CPU has just
b980ac18
JK
4594 * made room available.
4595 */
c493ea45 4596 if (igb_desc_unused(tx_ring) < size)
9d5c8243
AK
4597 return -EBUSY;
4598
4599 /* A reprieve! */
661086df 4600 netif_wake_subqueue(netdev, tx_ring->queue_index);
12dcd86b
ED
4601
4602 u64_stats_update_begin(&tx_ring->tx_syncp2);
4603 tx_ring->tx_stats.restart_queue2++;
4604 u64_stats_update_end(&tx_ring->tx_syncp2);
4605
9d5c8243
AK
4606 return 0;
4607}
4608
6ad4edfc 4609static inline int igb_maybe_stop_tx(struct igb_ring *tx_ring, const u16 size)
9d5c8243 4610{
c493ea45 4611 if (igb_desc_unused(tx_ring) >= size)
9d5c8243 4612 return 0;
e694e964 4613 return __igb_maybe_stop_tx(tx_ring, size);
9d5c8243
AK
4614}
4615
cd392f5c
AD
4616netdev_tx_t igb_xmit_frame_ring(struct sk_buff *skb,
4617 struct igb_ring *tx_ring)
9d5c8243 4618{
8542db05 4619 struct igb_tx_buffer *first;
ebe42d16 4620 int tso;
91d4ee33 4621 u32 tx_flags = 0;
21ba6fe1 4622 u16 count = TXD_USE_COUNT(skb_headlen(skb));
31f6adbb 4623 __be16 protocol = vlan_get_protocol(skb);
91d4ee33 4624 u8 hdr_len = 0;
9d5c8243 4625
21ba6fe1
AD
4626 /* need: 1 descriptor per page * PAGE_SIZE/IGB_MAX_DATA_PER_TXD,
4627 * + 1 desc for skb_headlen/IGB_MAX_DATA_PER_TXD,
9d5c8243 4628 * + 2 desc gap to keep tail from touching head,
9d5c8243 4629 * + 1 desc for context descriptor,
21ba6fe1
AD
4630 * otherwise try next time
4631 */
4632 if (NETDEV_FRAG_PAGE_MAX_SIZE > IGB_MAX_DATA_PER_TXD) {
4633 unsigned short f;
4634 for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
4635 count += TXD_USE_COUNT(skb_shinfo(skb)->frags[f].size);
4636 } else {
4637 count += skb_shinfo(skb)->nr_frags;
4638 }
4639
4640 if (igb_maybe_stop_tx(tx_ring, count + 3)) {
9d5c8243 4641 /* this is a hard error */
9d5c8243
AK
4642 return NETDEV_TX_BUSY;
4643 }
33af6bcc 4644
7af40ad9
AD
4645 /* record the location of the first descriptor for this packet */
4646 first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
4647 first->skb = skb;
4648 first->bytecount = skb->len;
4649 first->gso_segs = 1;
4650
b66e2397
MV
4651 skb_tx_timestamp(skb);
4652
b646c22e
AD
4653 if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
4654 struct igb_adapter *adapter = netdev_priv(tx_ring->netdev);
1f6e8178 4655
b646c22e
AD
4656 if (!(adapter->ptp_tx_skb)) {
4657 skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
4658 tx_flags |= IGB_TX_FLAGS_TSTAMP;
4659
4660 adapter->ptp_tx_skb = skb_get(skb);
4661 adapter->ptp_tx_start = jiffies;
4662 if (adapter->hw.mac.type == e1000_82576)
4663 schedule_work(&adapter->ptp_tx_work);
4664 }
33af6bcc 4665 }
9d5c8243 4666
eab6d18d 4667 if (vlan_tx_tag_present(skb)) {
9d5c8243
AK
4668 tx_flags |= IGB_TX_FLAGS_VLAN;
4669 tx_flags |= (vlan_tx_tag_get(skb) << IGB_TX_FLAGS_VLAN_SHIFT);
4670 }
4671
7af40ad9
AD
4672 /* record initial flags and protocol */
4673 first->tx_flags = tx_flags;
4674 first->protocol = protocol;
cdfd01fc 4675
7af40ad9
AD
4676 tso = igb_tso(tx_ring, first, &hdr_len);
4677 if (tso < 0)
7d13a7d0 4678 goto out_drop;
7af40ad9
AD
4679 else if (!tso)
4680 igb_tx_csum(tx_ring, first);
9d5c8243 4681
7af40ad9 4682 igb_tx_map(tx_ring, first, hdr_len);
85ad76b2
AD
4683
4684 /* Make sure there is space in the ring for the next send. */
21ba6fe1 4685 igb_maybe_stop_tx(tx_ring, DESC_NEEDED);
85ad76b2 4686
9d5c8243 4687 return NETDEV_TX_OK;
7d13a7d0
AD
4688
4689out_drop:
7af40ad9
AD
4690 igb_unmap_and_free_tx_resource(tx_ring, first);
4691
7d13a7d0 4692 return NETDEV_TX_OK;
9d5c8243
AK
4693}
4694
1cc3bd87
AD
4695static inline struct igb_ring *igb_tx_queue_mapping(struct igb_adapter *adapter,
4696 struct sk_buff *skb)
4697{
4698 unsigned int r_idx = skb->queue_mapping;
4699
4700 if (r_idx >= adapter->num_tx_queues)
4701 r_idx = r_idx % adapter->num_tx_queues;
4702
4703 return adapter->tx_ring[r_idx];
4704}
4705
cd392f5c
AD
4706static netdev_tx_t igb_xmit_frame(struct sk_buff *skb,
4707 struct net_device *netdev)
9d5c8243
AK
4708{
4709 struct igb_adapter *adapter = netdev_priv(netdev);
b1a436c3
AD
4710
4711 if (test_bit(__IGB_DOWN, &adapter->state)) {
4712 dev_kfree_skb_any(skb);
4713 return NETDEV_TX_OK;
4714 }
4715
4716 if (skb->len <= 0) {
4717 dev_kfree_skb_any(skb);
4718 return NETDEV_TX_OK;
4719 }
4720
b980ac18 4721 /* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1cc3bd87
AD
4722 * in order to meet this minimum size requirement.
4723 */
ea5ceeab
TD
4724 if (unlikely(skb->len < 17)) {
4725 if (skb_pad(skb, 17 - skb->len))
1cc3bd87
AD
4726 return NETDEV_TX_OK;
4727 skb->len = 17;
ea5ceeab 4728 skb_set_tail_pointer(skb, 17);
1cc3bd87 4729 }
9d5c8243 4730
1cc3bd87 4731 return igb_xmit_frame_ring(skb, igb_tx_queue_mapping(adapter, skb));
9d5c8243
AK
4732}
4733
4734/**
b980ac18
JK
4735 * igb_tx_timeout - Respond to a Tx Hang
4736 * @netdev: network interface device structure
9d5c8243
AK
4737 **/
4738static void igb_tx_timeout(struct net_device *netdev)
4739{
4740 struct igb_adapter *adapter = netdev_priv(netdev);
4741 struct e1000_hw *hw = &adapter->hw;
4742
4743 /* Do the reset outside of interrupt context */
4744 adapter->tx_timeout_count++;
f7ba205e 4745
06218a8d 4746 if (hw->mac.type >= e1000_82580)
55cac248
AD
4747 hw->dev_spec._82575.global_device_reset = true;
4748
9d5c8243 4749 schedule_work(&adapter->reset_task);
265de409
AD
4750 wr32(E1000_EICS,
4751 (adapter->eims_enable_mask & ~adapter->eims_other));
9d5c8243
AK
4752}
4753
4754static void igb_reset_task(struct work_struct *work)
4755{
4756 struct igb_adapter *adapter;
4757 adapter = container_of(work, struct igb_adapter, reset_task);
4758
c97ec42a
TI
4759 igb_dump(adapter);
4760 netdev_err(adapter->netdev, "Reset adapter\n");
9d5c8243
AK
4761 igb_reinit_locked(adapter);
4762}
4763
4764/**
b980ac18
JK
4765 * igb_get_stats64 - Get System Network Statistics
4766 * @netdev: network interface device structure
4767 * @stats: rtnl_link_stats64 pointer
9d5c8243 4768 **/
12dcd86b 4769static struct rtnl_link_stats64 *igb_get_stats64(struct net_device *netdev,
b980ac18 4770 struct rtnl_link_stats64 *stats)
9d5c8243 4771{
12dcd86b
ED
4772 struct igb_adapter *adapter = netdev_priv(netdev);
4773
4774 spin_lock(&adapter->stats64_lock);
4775 igb_update_stats(adapter, &adapter->stats64);
4776 memcpy(stats, &adapter->stats64, sizeof(*stats));
4777 spin_unlock(&adapter->stats64_lock);
4778
4779 return stats;
9d5c8243
AK
4780}
4781
4782/**
b980ac18
JK
4783 * igb_change_mtu - Change the Maximum Transfer Unit
4784 * @netdev: network interface device structure
4785 * @new_mtu: new value for maximum frame size
9d5c8243 4786 *
b980ac18 4787 * Returns 0 on success, negative on failure
9d5c8243
AK
4788 **/
4789static int igb_change_mtu(struct net_device *netdev, int new_mtu)
4790{
4791 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 4792 struct pci_dev *pdev = adapter->pdev;
153285f9 4793 int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
9d5c8243 4794
c809d227 4795 if ((new_mtu < 68) || (max_frame > MAX_JUMBO_FRAME_SIZE)) {
090b1795 4796 dev_err(&pdev->dev, "Invalid MTU setting\n");
9d5c8243
AK
4797 return -EINVAL;
4798 }
4799
153285f9 4800#define MAX_STD_JUMBO_FRAME_SIZE 9238
9d5c8243 4801 if (max_frame > MAX_STD_JUMBO_FRAME_SIZE) {
090b1795 4802 dev_err(&pdev->dev, "MTU > 9216 not supported.\n");
9d5c8243
AK
4803 return -EINVAL;
4804 }
4805
4806 while (test_and_set_bit(__IGB_RESETTING, &adapter->state))
4807 msleep(1);
73cd78f1 4808
9d5c8243
AK
4809 /* igb_down has a dependency on max_frame_size */
4810 adapter->max_frame_size = max_frame;
559e9c49 4811
4c844851
AD
4812 if (netif_running(netdev))
4813 igb_down(adapter);
9d5c8243 4814
090b1795 4815 dev_info(&pdev->dev, "changing MTU from %d to %d\n",
9d5c8243
AK
4816 netdev->mtu, new_mtu);
4817 netdev->mtu = new_mtu;
4818
4819 if (netif_running(netdev))
4820 igb_up(adapter);
4821 else
4822 igb_reset(adapter);
4823
4824 clear_bit(__IGB_RESETTING, &adapter->state);
4825
4826 return 0;
4827}
4828
4829/**
b980ac18
JK
4830 * igb_update_stats - Update the board statistics counters
4831 * @adapter: board private structure
9d5c8243 4832 **/
12dcd86b
ED
4833void igb_update_stats(struct igb_adapter *adapter,
4834 struct rtnl_link_stats64 *net_stats)
9d5c8243
AK
4835{
4836 struct e1000_hw *hw = &adapter->hw;
4837 struct pci_dev *pdev = adapter->pdev;
fa3d9a6d 4838 u32 reg, mpc;
9d5c8243 4839 u16 phy_tmp;
3f9c0164
AD
4840 int i;
4841 u64 bytes, packets;
12dcd86b
ED
4842 unsigned int start;
4843 u64 _bytes, _packets;
9d5c8243
AK
4844
4845#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
4846
b980ac18 4847 /* Prevent stats update while adapter is being reset, or if the pci
9d5c8243
AK
4848 * connection is down.
4849 */
4850 if (adapter->link_speed == 0)
4851 return;
4852 if (pci_channel_offline(pdev))
4853 return;
4854
3f9c0164
AD
4855 bytes = 0;
4856 packets = 0;
4857 for (i = 0; i < adapter->num_rx_queues; i++) {
ae1c07a6 4858 u32 rqdpc = rd32(E1000_RQDPC(i));
3025a446 4859 struct igb_ring *ring = adapter->rx_ring[i];
12dcd86b 4860
ae1c07a6
AD
4861 if (rqdpc) {
4862 ring->rx_stats.drops += rqdpc;
4863 net_stats->rx_fifo_errors += rqdpc;
4864 }
12dcd86b
ED
4865
4866 do {
4867 start = u64_stats_fetch_begin_bh(&ring->rx_syncp);
4868 _bytes = ring->rx_stats.bytes;
4869 _packets = ring->rx_stats.packets;
4870 } while (u64_stats_fetch_retry_bh(&ring->rx_syncp, start));
4871 bytes += _bytes;
4872 packets += _packets;
3f9c0164
AD
4873 }
4874
128e45eb
AD
4875 net_stats->rx_bytes = bytes;
4876 net_stats->rx_packets = packets;
3f9c0164
AD
4877
4878 bytes = 0;
4879 packets = 0;
4880 for (i = 0; i < adapter->num_tx_queues; i++) {
3025a446 4881 struct igb_ring *ring = adapter->tx_ring[i];
12dcd86b
ED
4882 do {
4883 start = u64_stats_fetch_begin_bh(&ring->tx_syncp);
4884 _bytes = ring->tx_stats.bytes;
4885 _packets = ring->tx_stats.packets;
4886 } while (u64_stats_fetch_retry_bh(&ring->tx_syncp, start));
4887 bytes += _bytes;
4888 packets += _packets;
3f9c0164 4889 }
128e45eb
AD
4890 net_stats->tx_bytes = bytes;
4891 net_stats->tx_packets = packets;
3f9c0164
AD
4892
4893 /* read stats registers */
9d5c8243
AK
4894 adapter->stats.crcerrs += rd32(E1000_CRCERRS);
4895 adapter->stats.gprc += rd32(E1000_GPRC);
4896 adapter->stats.gorc += rd32(E1000_GORCL);
4897 rd32(E1000_GORCH); /* clear GORCL */
4898 adapter->stats.bprc += rd32(E1000_BPRC);
4899 adapter->stats.mprc += rd32(E1000_MPRC);
4900 adapter->stats.roc += rd32(E1000_ROC);
4901
4902 adapter->stats.prc64 += rd32(E1000_PRC64);
4903 adapter->stats.prc127 += rd32(E1000_PRC127);
4904 adapter->stats.prc255 += rd32(E1000_PRC255);
4905 adapter->stats.prc511 += rd32(E1000_PRC511);
4906 adapter->stats.prc1023 += rd32(E1000_PRC1023);
4907 adapter->stats.prc1522 += rd32(E1000_PRC1522);
4908 adapter->stats.symerrs += rd32(E1000_SYMERRS);
4909 adapter->stats.sec += rd32(E1000_SEC);
4910
fa3d9a6d
MW
4911 mpc = rd32(E1000_MPC);
4912 adapter->stats.mpc += mpc;
4913 net_stats->rx_fifo_errors += mpc;
9d5c8243
AK
4914 adapter->stats.scc += rd32(E1000_SCC);
4915 adapter->stats.ecol += rd32(E1000_ECOL);
4916 adapter->stats.mcc += rd32(E1000_MCC);
4917 adapter->stats.latecol += rd32(E1000_LATECOL);
4918 adapter->stats.dc += rd32(E1000_DC);
4919 adapter->stats.rlec += rd32(E1000_RLEC);
4920 adapter->stats.xonrxc += rd32(E1000_XONRXC);
4921 adapter->stats.xontxc += rd32(E1000_XONTXC);
4922 adapter->stats.xoffrxc += rd32(E1000_XOFFRXC);
4923 adapter->stats.xofftxc += rd32(E1000_XOFFTXC);
4924 adapter->stats.fcruc += rd32(E1000_FCRUC);
4925 adapter->stats.gptc += rd32(E1000_GPTC);
4926 adapter->stats.gotc += rd32(E1000_GOTCL);
4927 rd32(E1000_GOTCH); /* clear GOTCL */
fa3d9a6d 4928 adapter->stats.rnbc += rd32(E1000_RNBC);
9d5c8243
AK
4929 adapter->stats.ruc += rd32(E1000_RUC);
4930 adapter->stats.rfc += rd32(E1000_RFC);
4931 adapter->stats.rjc += rd32(E1000_RJC);
4932 adapter->stats.tor += rd32(E1000_TORH);
4933 adapter->stats.tot += rd32(E1000_TOTH);
4934 adapter->stats.tpr += rd32(E1000_TPR);
4935
4936 adapter->stats.ptc64 += rd32(E1000_PTC64);
4937 adapter->stats.ptc127 += rd32(E1000_PTC127);
4938 adapter->stats.ptc255 += rd32(E1000_PTC255);
4939 adapter->stats.ptc511 += rd32(E1000_PTC511);
4940 adapter->stats.ptc1023 += rd32(E1000_PTC1023);
4941 adapter->stats.ptc1522 += rd32(E1000_PTC1522);
4942
4943 adapter->stats.mptc += rd32(E1000_MPTC);
4944 adapter->stats.bptc += rd32(E1000_BPTC);
4945
2d0b0f69
NN
4946 adapter->stats.tpt += rd32(E1000_TPT);
4947 adapter->stats.colc += rd32(E1000_COLC);
9d5c8243
AK
4948
4949 adapter->stats.algnerrc += rd32(E1000_ALGNERRC);
43915c7c
NN
4950 /* read internal phy specific stats */
4951 reg = rd32(E1000_CTRL_EXT);
4952 if (!(reg & E1000_CTRL_EXT_LINK_MODE_MASK)) {
4953 adapter->stats.rxerrc += rd32(E1000_RXERRC);
3dbdf969
CW
4954
4955 /* this stat has invalid values on i210/i211 */
4956 if ((hw->mac.type != e1000_i210) &&
4957 (hw->mac.type != e1000_i211))
4958 adapter->stats.tncrs += rd32(E1000_TNCRS);
43915c7c
NN
4959 }
4960
9d5c8243
AK
4961 adapter->stats.tsctc += rd32(E1000_TSCTC);
4962 adapter->stats.tsctfc += rd32(E1000_TSCTFC);
4963
4964 adapter->stats.iac += rd32(E1000_IAC);
4965 adapter->stats.icrxoc += rd32(E1000_ICRXOC);
4966 adapter->stats.icrxptc += rd32(E1000_ICRXPTC);
4967 adapter->stats.icrxatc += rd32(E1000_ICRXATC);
4968 adapter->stats.ictxptc += rd32(E1000_ICTXPTC);
4969 adapter->stats.ictxatc += rd32(E1000_ICTXATC);
4970 adapter->stats.ictxqec += rd32(E1000_ICTXQEC);
4971 adapter->stats.ictxqmtc += rd32(E1000_ICTXQMTC);
4972 adapter->stats.icrxdmtc += rd32(E1000_ICRXDMTC);
4973
4974 /* Fill out the OS statistics structure */
128e45eb
AD
4975 net_stats->multicast = adapter->stats.mprc;
4976 net_stats->collisions = adapter->stats.colc;
9d5c8243
AK
4977
4978 /* Rx Errors */
4979
4980 /* RLEC on some newer hardware can be incorrect so build
b980ac18
JK
4981 * our own version based on RUC and ROC
4982 */
128e45eb 4983 net_stats->rx_errors = adapter->stats.rxerrc +
9d5c8243
AK
4984 adapter->stats.crcerrs + adapter->stats.algnerrc +
4985 adapter->stats.ruc + adapter->stats.roc +
4986 adapter->stats.cexterr;
128e45eb
AD
4987 net_stats->rx_length_errors = adapter->stats.ruc +
4988 adapter->stats.roc;
4989 net_stats->rx_crc_errors = adapter->stats.crcerrs;
4990 net_stats->rx_frame_errors = adapter->stats.algnerrc;
4991 net_stats->rx_missed_errors = adapter->stats.mpc;
9d5c8243
AK
4992
4993 /* Tx Errors */
128e45eb
AD
4994 net_stats->tx_errors = adapter->stats.ecol +
4995 adapter->stats.latecol;
4996 net_stats->tx_aborted_errors = adapter->stats.ecol;
4997 net_stats->tx_window_errors = adapter->stats.latecol;
4998 net_stats->tx_carrier_errors = adapter->stats.tncrs;
9d5c8243
AK
4999
5000 /* Tx Dropped needs to be maintained elsewhere */
5001
5002 /* Phy Stats */
5003 if (hw->phy.media_type == e1000_media_type_copper) {
5004 if ((adapter->link_speed == SPEED_1000) &&
73cd78f1 5005 (!igb_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
9d5c8243
AK
5006 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
5007 adapter->phy_stats.idle_errors += phy_tmp;
5008 }
5009 }
5010
5011 /* Management Stats */
5012 adapter->stats.mgptc += rd32(E1000_MGTPTC);
5013 adapter->stats.mgprc += rd32(E1000_MGTPRC);
5014 adapter->stats.mgpdc += rd32(E1000_MGTPDC);
0a915b95
CW
5015
5016 /* OS2BMC Stats */
5017 reg = rd32(E1000_MANC);
5018 if (reg & E1000_MANC_EN_BMC2OS) {
5019 adapter->stats.o2bgptc += rd32(E1000_O2BGPTC);
5020 adapter->stats.o2bspc += rd32(E1000_O2BSPC);
5021 adapter->stats.b2ospc += rd32(E1000_B2OSPC);
5022 adapter->stats.b2ogprc += rd32(E1000_B2OGPRC);
5023 }
9d5c8243
AK
5024}
5025
9d5c8243
AK
5026static irqreturn_t igb_msix_other(int irq, void *data)
5027{
047e0030 5028 struct igb_adapter *adapter = data;
9d5c8243 5029 struct e1000_hw *hw = &adapter->hw;
844290e5 5030 u32 icr = rd32(E1000_ICR);
844290e5 5031 /* reading ICR causes bit 31 of EICR to be cleared */
dda0e083 5032
7f081d40
AD
5033 if (icr & E1000_ICR_DRSTA)
5034 schedule_work(&adapter->reset_task);
5035
047e0030 5036 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5037 /* HW is reporting DMA is out of sync */
5038 adapter->stats.doosync++;
13800469
GR
5039 /* The DMA Out of Sync is also indication of a spoof event
5040 * in IOV mode. Check the Wrong VM Behavior register to
b980ac18
JK
5041 * see if it is really a spoof event.
5042 */
13800469 5043 igb_check_wvbr(adapter);
dda0e083 5044 }
eebbbdba 5045
4ae196df
AD
5046 /* Check for a mailbox event */
5047 if (icr & E1000_ICR_VMMB)
5048 igb_msg_task(adapter);
5049
5050 if (icr & E1000_ICR_LSC) {
5051 hw->mac.get_link_status = 1;
5052 /* guard against interrupt when we're going down */
5053 if (!test_bit(__IGB_DOWN, &adapter->state))
5054 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5055 }
5056
1f6e8178
MV
5057 if (icr & E1000_ICR_TS) {
5058 u32 tsicr = rd32(E1000_TSICR);
5059
5060 if (tsicr & E1000_TSICR_TXTS) {
5061 /* acknowledge the interrupt */
5062 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5063 /* retrieve hardware timestamp */
5064 schedule_work(&adapter->ptp_tx_work);
5065 }
5066 }
1f6e8178 5067
844290e5 5068 wr32(E1000_EIMS, adapter->eims_other);
9d5c8243
AK
5069
5070 return IRQ_HANDLED;
5071}
5072
047e0030 5073static void igb_write_itr(struct igb_q_vector *q_vector)
9d5c8243 5074{
26b39276 5075 struct igb_adapter *adapter = q_vector->adapter;
047e0030 5076 u32 itr_val = q_vector->itr_val & 0x7FFC;
9d5c8243 5077
047e0030
AD
5078 if (!q_vector->set_itr)
5079 return;
73cd78f1 5080
047e0030
AD
5081 if (!itr_val)
5082 itr_val = 0x4;
661086df 5083
26b39276
AD
5084 if (adapter->hw.mac.type == e1000_82575)
5085 itr_val |= itr_val << 16;
661086df 5086 else
0ba82994 5087 itr_val |= E1000_EITR_CNT_IGNR;
661086df 5088
047e0030
AD
5089 writel(itr_val, q_vector->itr_register);
5090 q_vector->set_itr = 0;
6eb5a7f1
AD
5091}
5092
047e0030 5093static irqreturn_t igb_msix_ring(int irq, void *data)
9d5c8243 5094{
047e0030 5095 struct igb_q_vector *q_vector = data;
9d5c8243 5096
047e0030
AD
5097 /* Write the ITR value calculated from the previous interrupt. */
5098 igb_write_itr(q_vector);
9d5c8243 5099
047e0030 5100 napi_schedule(&q_vector->napi);
844290e5 5101
047e0030 5102 return IRQ_HANDLED;
fe4506b6
JC
5103}
5104
421e02f0 5105#ifdef CONFIG_IGB_DCA
6a05004a
AD
5106static void igb_update_tx_dca(struct igb_adapter *adapter,
5107 struct igb_ring *tx_ring,
5108 int cpu)
5109{
5110 struct e1000_hw *hw = &adapter->hw;
5111 u32 txctrl = dca3_get_tag(tx_ring->dev, cpu);
5112
5113 if (hw->mac.type != e1000_82575)
5114 txctrl <<= E1000_DCA_TXCTRL_CPUID_SHIFT;
5115
b980ac18 5116 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5117 * DCA is enabled. This is due to a known issue in some chipsets
5118 * which will cause the DCA tag to be cleared.
5119 */
5120 txctrl |= E1000_DCA_TXCTRL_DESC_RRO_EN |
5121 E1000_DCA_TXCTRL_DATA_RRO_EN |
5122 E1000_DCA_TXCTRL_DESC_DCA_EN;
5123
5124 wr32(E1000_DCA_TXCTRL(tx_ring->reg_idx), txctrl);
5125}
5126
5127static void igb_update_rx_dca(struct igb_adapter *adapter,
5128 struct igb_ring *rx_ring,
5129 int cpu)
5130{
5131 struct e1000_hw *hw = &adapter->hw;
5132 u32 rxctrl = dca3_get_tag(&adapter->pdev->dev, cpu);
5133
5134 if (hw->mac.type != e1000_82575)
5135 rxctrl <<= E1000_DCA_RXCTRL_CPUID_SHIFT;
5136
b980ac18 5137 /* We can enable relaxed ordering for reads, but not writes when
6a05004a
AD
5138 * DCA is enabled. This is due to a known issue in some chipsets
5139 * which will cause the DCA tag to be cleared.
5140 */
5141 rxctrl |= E1000_DCA_RXCTRL_DESC_RRO_EN |
5142 E1000_DCA_RXCTRL_DESC_DCA_EN;
5143
5144 wr32(E1000_DCA_RXCTRL(rx_ring->reg_idx), rxctrl);
5145}
5146
047e0030 5147static void igb_update_dca(struct igb_q_vector *q_vector)
fe4506b6 5148{
047e0030 5149 struct igb_adapter *adapter = q_vector->adapter;
fe4506b6 5150 int cpu = get_cpu();
fe4506b6 5151
047e0030
AD
5152 if (q_vector->cpu == cpu)
5153 goto out_no_update;
5154
6a05004a
AD
5155 if (q_vector->tx.ring)
5156 igb_update_tx_dca(adapter, q_vector->tx.ring, cpu);
5157
5158 if (q_vector->rx.ring)
5159 igb_update_rx_dca(adapter, q_vector->rx.ring, cpu);
5160
047e0030
AD
5161 q_vector->cpu = cpu;
5162out_no_update:
fe4506b6
JC
5163 put_cpu();
5164}
5165
5166static void igb_setup_dca(struct igb_adapter *adapter)
5167{
7e0e99ef 5168 struct e1000_hw *hw = &adapter->hw;
fe4506b6
JC
5169 int i;
5170
7dfc16fa 5171 if (!(adapter->flags & IGB_FLAG_DCA_ENABLED))
fe4506b6
JC
5172 return;
5173
7e0e99ef
AD
5174 /* Always use CB2 mode, difference is masked in the CB driver. */
5175 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_CB2);
5176
047e0030 5177 for (i = 0; i < adapter->num_q_vectors; i++) {
26b39276
AD
5178 adapter->q_vector[i]->cpu = -1;
5179 igb_update_dca(adapter->q_vector[i]);
fe4506b6
JC
5180 }
5181}
5182
5183static int __igb_notify_dca(struct device *dev, void *data)
5184{
5185 struct net_device *netdev = dev_get_drvdata(dev);
5186 struct igb_adapter *adapter = netdev_priv(netdev);
090b1795 5187 struct pci_dev *pdev = adapter->pdev;
fe4506b6
JC
5188 struct e1000_hw *hw = &adapter->hw;
5189 unsigned long event = *(unsigned long *)data;
5190
5191 switch (event) {
5192 case DCA_PROVIDER_ADD:
5193 /* if already enabled, don't do it again */
7dfc16fa 5194 if (adapter->flags & IGB_FLAG_DCA_ENABLED)
fe4506b6 5195 break;
fe4506b6 5196 if (dca_add_requester(dev) == 0) {
bbd98fe4 5197 adapter->flags |= IGB_FLAG_DCA_ENABLED;
090b1795 5198 dev_info(&pdev->dev, "DCA enabled\n");
fe4506b6
JC
5199 igb_setup_dca(adapter);
5200 break;
5201 }
5202 /* Fall Through since DCA is disabled. */
5203 case DCA_PROVIDER_REMOVE:
7dfc16fa 5204 if (adapter->flags & IGB_FLAG_DCA_ENABLED) {
fe4506b6 5205 /* without this a class_device is left
b980ac18
JK
5206 * hanging around in the sysfs model
5207 */
fe4506b6 5208 dca_remove_requester(dev);
090b1795 5209 dev_info(&pdev->dev, "DCA disabled\n");
7dfc16fa 5210 adapter->flags &= ~IGB_FLAG_DCA_ENABLED;
cbd347ad 5211 wr32(E1000_DCA_CTRL, E1000_DCA_CTRL_DCA_MODE_DISABLE);
fe4506b6
JC
5212 }
5213 break;
5214 }
bbd98fe4 5215
fe4506b6 5216 return 0;
9d5c8243
AK
5217}
5218
fe4506b6 5219static int igb_notify_dca(struct notifier_block *nb, unsigned long event,
b980ac18 5220 void *p)
fe4506b6
JC
5221{
5222 int ret_val;
5223
5224 ret_val = driver_for_each_device(&igb_driver.driver, NULL, &event,
b980ac18 5225 __igb_notify_dca);
fe4506b6
JC
5226
5227 return ret_val ? NOTIFY_BAD : NOTIFY_DONE;
5228}
421e02f0 5229#endif /* CONFIG_IGB_DCA */
9d5c8243 5230
0224d663
GR
5231#ifdef CONFIG_PCI_IOV
5232static int igb_vf_configure(struct igb_adapter *adapter, int vf)
5233{
5234 unsigned char mac_addr[ETH_ALEN];
0224d663 5235
5ac6f91d 5236 eth_zero_addr(mac_addr);
0224d663
GR
5237 igb_set_vf_mac(adapter, vf, mac_addr);
5238
70ea4783
LL
5239 /* By default spoof check is enabled for all VFs */
5240 adapter->vf_data[vf].spoofchk_enabled = true;
5241
f557147c 5242 return 0;
0224d663
GR
5243}
5244
f557147c 5245static bool igb_vfs_are_assigned(struct igb_adapter *adapter)
0224d663 5246{
0224d663 5247 struct pci_dev *pdev = adapter->pdev;
f557147c
SA
5248 struct pci_dev *vfdev;
5249 int dev_id;
0224d663
GR
5250
5251 switch (adapter->hw.mac.type) {
5252 case e1000_82576:
f557147c 5253 dev_id = IGB_82576_VF_DEV_ID;
0224d663
GR
5254 break;
5255 case e1000_i350:
f557147c 5256 dev_id = IGB_I350_VF_DEV_ID;
0224d663
GR
5257 break;
5258 default:
f557147c 5259 return false;
0224d663
GR
5260 }
5261
f557147c
SA
5262 /* loop through all the VFs to see if we own any that are assigned */
5263 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, NULL);
5264 while (vfdev) {
5265 /* if we don't own it we don't care */
5266 if (vfdev->is_virtfn && vfdev->physfn == pdev) {
5267 /* if it is assigned we cannot release it */
5268 if (vfdev->dev_flags & PCI_DEV_FLAGS_ASSIGNED)
0224d663
GR
5269 return true;
5270 }
f557147c
SA
5271
5272 vfdev = pci_get_device(PCI_VENDOR_ID_INTEL, dev_id, vfdev);
0224d663 5273 }
f557147c 5274
0224d663
GR
5275 return false;
5276}
5277
5278#endif
4ae196df
AD
5279static void igb_ping_all_vfs(struct igb_adapter *adapter)
5280{
5281 struct e1000_hw *hw = &adapter->hw;
5282 u32 ping;
5283 int i;
5284
5285 for (i = 0 ; i < adapter->vfs_allocated_count; i++) {
5286 ping = E1000_PF_CONTROL_MSG;
f2ca0dbe 5287 if (adapter->vf_data[i].flags & IGB_VF_FLAG_CTS)
4ae196df
AD
5288 ping |= E1000_VT_MSGTYPE_CTS;
5289 igb_write_mbx(hw, &ping, 1, i);
5290 }
5291}
5292
7d5753f0
AD
5293static int igb_set_vf_promisc(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5294{
5295 struct e1000_hw *hw = &adapter->hw;
5296 u32 vmolr = rd32(E1000_VMOLR(vf));
5297 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5298
d85b9004 5299 vf_data->flags &= ~(IGB_VF_FLAG_UNI_PROMISC |
b980ac18 5300 IGB_VF_FLAG_MULTI_PROMISC);
7d5753f0
AD
5301 vmolr &= ~(E1000_VMOLR_ROPE | E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5302
5303 if (*msgbuf & E1000_VF_SET_PROMISC_MULTICAST) {
5304 vmolr |= E1000_VMOLR_MPME;
d85b9004 5305 vf_data->flags |= IGB_VF_FLAG_MULTI_PROMISC;
7d5753f0
AD
5306 *msgbuf &= ~E1000_VF_SET_PROMISC_MULTICAST;
5307 } else {
b980ac18 5308 /* if we have hashes and we are clearing a multicast promisc
7d5753f0
AD
5309 * flag we need to write the hashes to the MTA as this step
5310 * was previously skipped
5311 */
5312 if (vf_data->num_vf_mc_hashes > 30) {
5313 vmolr |= E1000_VMOLR_MPME;
5314 } else if (vf_data->num_vf_mc_hashes) {
5315 int j;
5316 vmolr |= E1000_VMOLR_ROMPE;
5317 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5318 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5319 }
5320 }
5321
5322 wr32(E1000_VMOLR(vf), vmolr);
5323
5324 /* there are flags left unprocessed, likely not supported */
5325 if (*msgbuf & E1000_VT_MSGINFO_MASK)
5326 return -EINVAL;
5327
5328 return 0;
7d5753f0
AD
5329}
5330
4ae196df
AD
5331static int igb_set_vf_multicasts(struct igb_adapter *adapter,
5332 u32 *msgbuf, u32 vf)
5333{
5334 int n = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5335 u16 *hash_list = (u16 *)&msgbuf[1];
5336 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
5337 int i;
5338
7d5753f0 5339 /* salt away the number of multicast addresses assigned
4ae196df
AD
5340 * to this VF for later use to restore when the PF multi cast
5341 * list changes
5342 */
5343 vf_data->num_vf_mc_hashes = n;
5344
7d5753f0
AD
5345 /* only up to 30 hash values supported */
5346 if (n > 30)
5347 n = 30;
5348
5349 /* store the hashes for later use */
4ae196df 5350 for (i = 0; i < n; i++)
a419aef8 5351 vf_data->vf_mc_hashes[i] = hash_list[i];
4ae196df
AD
5352
5353 /* Flush and reset the mta with the new values */
ff41f8dc 5354 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5355
5356 return 0;
5357}
5358
5359static void igb_restore_vf_multicasts(struct igb_adapter *adapter)
5360{
5361 struct e1000_hw *hw = &adapter->hw;
5362 struct vf_data_storage *vf_data;
5363 int i, j;
5364
5365 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7d5753f0
AD
5366 u32 vmolr = rd32(E1000_VMOLR(i));
5367 vmolr &= ~(E1000_VMOLR_ROMPE | E1000_VMOLR_MPME);
5368
4ae196df 5369 vf_data = &adapter->vf_data[i];
7d5753f0
AD
5370
5371 if ((vf_data->num_vf_mc_hashes > 30) ||
5372 (vf_data->flags & IGB_VF_FLAG_MULTI_PROMISC)) {
5373 vmolr |= E1000_VMOLR_MPME;
5374 } else if (vf_data->num_vf_mc_hashes) {
5375 vmolr |= E1000_VMOLR_ROMPE;
5376 for (j = 0; j < vf_data->num_vf_mc_hashes; j++)
5377 igb_mta_set(hw, vf_data->vf_mc_hashes[j]);
5378 }
5379 wr32(E1000_VMOLR(i), vmolr);
4ae196df
AD
5380 }
5381}
5382
5383static void igb_clear_vf_vfta(struct igb_adapter *adapter, u32 vf)
5384{
5385 struct e1000_hw *hw = &adapter->hw;
5386 u32 pool_mask, reg, vid;
5387 int i;
5388
5389 pool_mask = 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5390
5391 /* Find the vlan filter for this id */
5392 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5393 reg = rd32(E1000_VLVF(i));
5394
5395 /* remove the vf from the pool */
5396 reg &= ~pool_mask;
5397
5398 /* if pool is empty then remove entry from vfta */
5399 if (!(reg & E1000_VLVF_POOLSEL_MASK) &&
5400 (reg & E1000_VLVF_VLANID_ENABLE)) {
5401 reg = 0;
5402 vid = reg & E1000_VLVF_VLANID_MASK;
5403 igb_vfta_set(hw, vid, false);
5404 }
5405
5406 wr32(E1000_VLVF(i), reg);
5407 }
ae641bdc
AD
5408
5409 adapter->vf_data[vf].vlans_enabled = 0;
4ae196df
AD
5410}
5411
5412static s32 igb_vlvf_set(struct igb_adapter *adapter, u32 vid, bool add, u32 vf)
5413{
5414 struct e1000_hw *hw = &adapter->hw;
5415 u32 reg, i;
5416
51466239
AD
5417 /* The vlvf table only exists on 82576 hardware and newer */
5418 if (hw->mac.type < e1000_82576)
5419 return -1;
5420
5421 /* we only need to do this if VMDq is enabled */
4ae196df
AD
5422 if (!adapter->vfs_allocated_count)
5423 return -1;
5424
5425 /* Find the vlan filter for this id */
5426 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5427 reg = rd32(E1000_VLVF(i));
5428 if ((reg & E1000_VLVF_VLANID_ENABLE) &&
5429 vid == (reg & E1000_VLVF_VLANID_MASK))
5430 break;
5431 }
5432
5433 if (add) {
5434 if (i == E1000_VLVF_ARRAY_SIZE) {
5435 /* Did not find a matching VLAN ID entry that was
5436 * enabled. Search for a free filter entry, i.e.
5437 * one without the enable bit set
5438 */
5439 for (i = 0; i < E1000_VLVF_ARRAY_SIZE; i++) {
5440 reg = rd32(E1000_VLVF(i));
5441 if (!(reg & E1000_VLVF_VLANID_ENABLE))
5442 break;
5443 }
5444 }
5445 if (i < E1000_VLVF_ARRAY_SIZE) {
5446 /* Found an enabled/available entry */
5447 reg |= 1 << (E1000_VLVF_POOLSEL_SHIFT + vf);
5448
5449 /* if !enabled we need to set this up in vfta */
5450 if (!(reg & E1000_VLVF_VLANID_ENABLE)) {
51466239
AD
5451 /* add VID to filter table */
5452 igb_vfta_set(hw, vid, true);
4ae196df
AD
5453 reg |= E1000_VLVF_VLANID_ENABLE;
5454 }
cad6d05f
AD
5455 reg &= ~E1000_VLVF_VLANID_MASK;
5456 reg |= vid;
4ae196df 5457 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5458
5459 /* do not modify RLPML for PF devices */
5460 if (vf >= adapter->vfs_allocated_count)
5461 return 0;
5462
5463 if (!adapter->vf_data[vf].vlans_enabled) {
5464 u32 size;
5465 reg = rd32(E1000_VMOLR(vf));
5466 size = reg & E1000_VMOLR_RLPML_MASK;
5467 size += 4;
5468 reg &= ~E1000_VMOLR_RLPML_MASK;
5469 reg |= size;
5470 wr32(E1000_VMOLR(vf), reg);
5471 }
ae641bdc 5472
51466239 5473 adapter->vf_data[vf].vlans_enabled++;
4ae196df
AD
5474 }
5475 } else {
5476 if (i < E1000_VLVF_ARRAY_SIZE) {
5477 /* remove vf from the pool */
5478 reg &= ~(1 << (E1000_VLVF_POOLSEL_SHIFT + vf));
5479 /* if pool is empty then remove entry from vfta */
5480 if (!(reg & E1000_VLVF_POOLSEL_MASK)) {
5481 reg = 0;
5482 igb_vfta_set(hw, vid, false);
5483 }
5484 wr32(E1000_VLVF(i), reg);
ae641bdc
AD
5485
5486 /* do not modify RLPML for PF devices */
5487 if (vf >= adapter->vfs_allocated_count)
5488 return 0;
5489
5490 adapter->vf_data[vf].vlans_enabled--;
5491 if (!adapter->vf_data[vf].vlans_enabled) {
5492 u32 size;
5493 reg = rd32(E1000_VMOLR(vf));
5494 size = reg & E1000_VMOLR_RLPML_MASK;
5495 size -= 4;
5496 reg &= ~E1000_VMOLR_RLPML_MASK;
5497 reg |= size;
5498 wr32(E1000_VMOLR(vf), reg);
5499 }
4ae196df
AD
5500 }
5501 }
8151d294
WM
5502 return 0;
5503}
5504
5505static void igb_set_vmvir(struct igb_adapter *adapter, u32 vid, u32 vf)
5506{
5507 struct e1000_hw *hw = &adapter->hw;
5508
5509 if (vid)
5510 wr32(E1000_VMVIR(vf), (vid | E1000_VMVIR_VLANA_DEFAULT));
5511 else
5512 wr32(E1000_VMVIR(vf), 0);
5513}
5514
5515static int igb_ndo_set_vf_vlan(struct net_device *netdev,
5516 int vf, u16 vlan, u8 qos)
5517{
5518 int err = 0;
5519 struct igb_adapter *adapter = netdev_priv(netdev);
5520
5521 if ((vf >= adapter->vfs_allocated_count) || (vlan > 4095) || (qos > 7))
5522 return -EINVAL;
5523 if (vlan || qos) {
5524 err = igb_vlvf_set(adapter, vlan, !!vlan, vf);
5525 if (err)
5526 goto out;
5527 igb_set_vmvir(adapter, vlan | (qos << VLAN_PRIO_SHIFT), vf);
5528 igb_set_vmolr(adapter, vf, !vlan);
5529 adapter->vf_data[vf].pf_vlan = vlan;
5530 adapter->vf_data[vf].pf_qos = qos;
5531 dev_info(&adapter->pdev->dev,
5532 "Setting VLAN %d, QOS 0x%x on VF %d\n", vlan, qos, vf);
5533 if (test_bit(__IGB_DOWN, &adapter->state)) {
5534 dev_warn(&adapter->pdev->dev,
b980ac18 5535 "The VF VLAN has been set, but the PF device is not up.\n");
8151d294 5536 dev_warn(&adapter->pdev->dev,
b980ac18 5537 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
5538 }
5539 } else {
5540 igb_vlvf_set(adapter, adapter->vf_data[vf].pf_vlan,
b980ac18 5541 false, vf);
8151d294
WM
5542 igb_set_vmvir(adapter, vlan, vf);
5543 igb_set_vmolr(adapter, vf, true);
5544 adapter->vf_data[vf].pf_vlan = 0;
5545 adapter->vf_data[vf].pf_qos = 0;
b980ac18 5546 }
8151d294 5547out:
b980ac18 5548 return err;
4ae196df
AD
5549}
5550
5551static int igb_set_vf_vlan(struct igb_adapter *adapter, u32 *msgbuf, u32 vf)
5552{
5553 int add = (msgbuf[0] & E1000_VT_MSGINFO_MASK) >> E1000_VT_MSGINFO_SHIFT;
5554 int vid = (msgbuf[1] & E1000_VLVF_VLANID_MASK);
5555
5556 return igb_vlvf_set(adapter, vid, add, vf);
5557}
5558
f2ca0dbe 5559static inline void igb_vf_reset(struct igb_adapter *adapter, u32 vf)
4ae196df 5560{
8fa7e0f7
GR
5561 /* clear flags - except flag that indicates PF has set the MAC */
5562 adapter->vf_data[vf].flags &= IGB_VF_FLAG_PF_SET_MAC;
f2ca0dbe 5563 adapter->vf_data[vf].last_nack = jiffies;
4ae196df
AD
5564
5565 /* reset offloads to defaults */
8151d294 5566 igb_set_vmolr(adapter, vf, true);
4ae196df
AD
5567
5568 /* reset vlans for device */
5569 igb_clear_vf_vfta(adapter, vf);
8151d294
WM
5570 if (adapter->vf_data[vf].pf_vlan)
5571 igb_ndo_set_vf_vlan(adapter->netdev, vf,
5572 adapter->vf_data[vf].pf_vlan,
5573 adapter->vf_data[vf].pf_qos);
5574 else
5575 igb_clear_vf_vfta(adapter, vf);
4ae196df
AD
5576
5577 /* reset multicast table array for vf */
5578 adapter->vf_data[vf].num_vf_mc_hashes = 0;
5579
5580 /* Flush and reset the mta with the new values */
ff41f8dc 5581 igb_set_rx_mode(adapter->netdev);
4ae196df
AD
5582}
5583
f2ca0dbe
AD
5584static void igb_vf_reset_event(struct igb_adapter *adapter, u32 vf)
5585{
5586 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
5587
5ac6f91d 5588 /* clear mac address as we were hotplug removed/added */
8151d294 5589 if (!(adapter->vf_data[vf].flags & IGB_VF_FLAG_PF_SET_MAC))
5ac6f91d 5590 eth_zero_addr(vf_mac);
f2ca0dbe
AD
5591
5592 /* process remaining reset events */
5593 igb_vf_reset(adapter, vf);
5594}
5595
5596static void igb_vf_reset_msg(struct igb_adapter *adapter, u32 vf)
4ae196df
AD
5597{
5598 struct e1000_hw *hw = &adapter->hw;
5599 unsigned char *vf_mac = adapter->vf_data[vf].vf_mac_addresses;
ff41f8dc 5600 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df
AD
5601 u32 reg, msgbuf[3];
5602 u8 *addr = (u8 *)(&msgbuf[1]);
5603
5604 /* process all the same items cleared in a function level reset */
f2ca0dbe 5605 igb_vf_reset(adapter, vf);
4ae196df
AD
5606
5607 /* set vf mac address */
26ad9178 5608 igb_rar_set_qsel(adapter, vf_mac, rar_entry, vf);
4ae196df
AD
5609
5610 /* enable transmit and receive for vf */
5611 reg = rd32(E1000_VFTE);
5612 wr32(E1000_VFTE, reg | (1 << vf));
5613 reg = rd32(E1000_VFRE);
5614 wr32(E1000_VFRE, reg | (1 << vf));
5615
8fa7e0f7 5616 adapter->vf_data[vf].flags |= IGB_VF_FLAG_CTS;
4ae196df
AD
5617
5618 /* reply to reset with ack and vf mac address */
5619 msgbuf[0] = E1000_VF_RESET | E1000_VT_MSGTYPE_ACK;
5620 memcpy(addr, vf_mac, 6);
5621 igb_write_mbx(hw, msgbuf, 3, vf);
5622}
5623
5624static int igb_set_vf_mac_addr(struct igb_adapter *adapter, u32 *msg, int vf)
5625{
b980ac18 5626 /* The VF MAC Address is stored in a packed array of bytes
de42edde
GR
5627 * starting at the second 32 bit word of the msg array
5628 */
f2ca0dbe
AD
5629 unsigned char *addr = (char *)&msg[1];
5630 int err = -1;
4ae196df 5631
f2ca0dbe
AD
5632 if (is_valid_ether_addr(addr))
5633 err = igb_set_vf_mac(adapter, vf, addr);
4ae196df 5634
f2ca0dbe 5635 return err;
4ae196df
AD
5636}
5637
5638static void igb_rcv_ack_from_vf(struct igb_adapter *adapter, u32 vf)
5639{
5640 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5641 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5642 u32 msg = E1000_VT_MSGTYPE_NACK;
5643
5644 /* if device isn't clear to send it shouldn't be reading either */
f2ca0dbe
AD
5645 if (!(vf_data->flags & IGB_VF_FLAG_CTS) &&
5646 time_after(jiffies, vf_data->last_nack + (2 * HZ))) {
4ae196df 5647 igb_write_mbx(hw, &msg, 1, vf);
f2ca0dbe 5648 vf_data->last_nack = jiffies;
4ae196df
AD
5649 }
5650}
5651
f2ca0dbe 5652static void igb_rcv_msg_from_vf(struct igb_adapter *adapter, u32 vf)
4ae196df 5653{
f2ca0dbe
AD
5654 struct pci_dev *pdev = adapter->pdev;
5655 u32 msgbuf[E1000_VFMAILBOX_SIZE];
4ae196df 5656 struct e1000_hw *hw = &adapter->hw;
f2ca0dbe 5657 struct vf_data_storage *vf_data = &adapter->vf_data[vf];
4ae196df
AD
5658 s32 retval;
5659
f2ca0dbe 5660 retval = igb_read_mbx(hw, msgbuf, E1000_VFMAILBOX_SIZE, vf);
4ae196df 5661
fef45f4c
AD
5662 if (retval) {
5663 /* if receive failed revoke VF CTS stats and restart init */
f2ca0dbe 5664 dev_err(&pdev->dev, "Error receiving message from VF\n");
fef45f4c
AD
5665 vf_data->flags &= ~IGB_VF_FLAG_CTS;
5666 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5667 return;
5668 goto out;
5669 }
4ae196df
AD
5670
5671 /* this is a message we already processed, do nothing */
5672 if (msgbuf[0] & (E1000_VT_MSGTYPE_ACK | E1000_VT_MSGTYPE_NACK))
f2ca0dbe 5673 return;
4ae196df 5674
b980ac18 5675 /* until the vf completes a reset it should not be
4ae196df
AD
5676 * allowed to start any configuration.
5677 */
4ae196df
AD
5678 if (msgbuf[0] == E1000_VF_RESET) {
5679 igb_vf_reset_msg(adapter, vf);
f2ca0dbe 5680 return;
4ae196df
AD
5681 }
5682
f2ca0dbe 5683 if (!(vf_data->flags & IGB_VF_FLAG_CTS)) {
fef45f4c
AD
5684 if (!time_after(jiffies, vf_data->last_nack + (2 * HZ)))
5685 return;
5686 retval = -1;
5687 goto out;
4ae196df
AD
5688 }
5689
5690 switch ((msgbuf[0] & 0xFFFF)) {
5691 case E1000_VF_SET_MAC_ADDR:
a6b5ea35
GR
5692 retval = -EINVAL;
5693 if (!(vf_data->flags & IGB_VF_FLAG_PF_SET_MAC))
5694 retval = igb_set_vf_mac_addr(adapter, msgbuf, vf);
5695 else
5696 dev_warn(&pdev->dev,
b980ac18
JK
5697 "VF %d attempted to override administratively set MAC address\nReload the VF driver to resume operations\n",
5698 vf);
4ae196df 5699 break;
7d5753f0
AD
5700 case E1000_VF_SET_PROMISC:
5701 retval = igb_set_vf_promisc(adapter, msgbuf, vf);
5702 break;
4ae196df
AD
5703 case E1000_VF_SET_MULTICAST:
5704 retval = igb_set_vf_multicasts(adapter, msgbuf, vf);
5705 break;
5706 case E1000_VF_SET_LPE:
5707 retval = igb_set_vf_rlpml(adapter, msgbuf[1], vf);
5708 break;
5709 case E1000_VF_SET_VLAN:
a6b5ea35
GR
5710 retval = -1;
5711 if (vf_data->pf_vlan)
5712 dev_warn(&pdev->dev,
b980ac18
JK
5713 "VF %d attempted to override administratively set VLAN tag\nReload the VF driver to resume operations\n",
5714 vf);
8151d294
WM
5715 else
5716 retval = igb_set_vf_vlan(adapter, msgbuf, vf);
4ae196df
AD
5717 break;
5718 default:
090b1795 5719 dev_err(&pdev->dev, "Unhandled Msg %08x\n", msgbuf[0]);
4ae196df
AD
5720 retval = -1;
5721 break;
5722 }
5723
fef45f4c
AD
5724 msgbuf[0] |= E1000_VT_MSGTYPE_CTS;
5725out:
4ae196df
AD
5726 /* notify the VF of the results of what it sent us */
5727 if (retval)
5728 msgbuf[0] |= E1000_VT_MSGTYPE_NACK;
5729 else
5730 msgbuf[0] |= E1000_VT_MSGTYPE_ACK;
5731
4ae196df 5732 igb_write_mbx(hw, msgbuf, 1, vf);
f2ca0dbe 5733}
4ae196df 5734
f2ca0dbe
AD
5735static void igb_msg_task(struct igb_adapter *adapter)
5736{
5737 struct e1000_hw *hw = &adapter->hw;
5738 u32 vf;
5739
5740 for (vf = 0; vf < adapter->vfs_allocated_count; vf++) {
5741 /* process any reset requests */
5742 if (!igb_check_for_rst(hw, vf))
5743 igb_vf_reset_event(adapter, vf);
5744
5745 /* process any messages pending */
5746 if (!igb_check_for_msg(hw, vf))
5747 igb_rcv_msg_from_vf(adapter, vf);
5748
5749 /* process any acks */
5750 if (!igb_check_for_ack(hw, vf))
5751 igb_rcv_ack_from_vf(adapter, vf);
5752 }
4ae196df
AD
5753}
5754
68d480c4
AD
5755/**
5756 * igb_set_uta - Set unicast filter table address
5757 * @adapter: board private structure
5758 *
5759 * The unicast table address is a register array of 32-bit registers.
5760 * The table is meant to be used in a way similar to how the MTA is used
5761 * however due to certain limitations in the hardware it is necessary to
25985edc
LDM
5762 * set all the hash bits to 1 and use the VMOLR ROPE bit as a promiscuous
5763 * enable bit to allow vlan tag stripping when promiscuous mode is enabled
68d480c4
AD
5764 **/
5765static void igb_set_uta(struct igb_adapter *adapter)
5766{
5767 struct e1000_hw *hw = &adapter->hw;
5768 int i;
5769
5770 /* The UTA table only exists on 82576 hardware and newer */
5771 if (hw->mac.type < e1000_82576)
5772 return;
5773
5774 /* we only need to do this if VMDq is enabled */
5775 if (!adapter->vfs_allocated_count)
5776 return;
5777
5778 for (i = 0; i < hw->mac.uta_reg_count; i++)
5779 array_wr32(E1000_UTA, i, ~0);
5780}
5781
9d5c8243 5782/**
b980ac18
JK
5783 * igb_intr_msi - Interrupt Handler
5784 * @irq: interrupt number
5785 * @data: pointer to a network interface device structure
9d5c8243
AK
5786 **/
5787static irqreturn_t igb_intr_msi(int irq, void *data)
5788{
047e0030
AD
5789 struct igb_adapter *adapter = data;
5790 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5791 struct e1000_hw *hw = &adapter->hw;
5792 /* read ICR disables interrupts using IAM */
5793 u32 icr = rd32(E1000_ICR);
5794
047e0030 5795 igb_write_itr(q_vector);
9d5c8243 5796
7f081d40
AD
5797 if (icr & E1000_ICR_DRSTA)
5798 schedule_work(&adapter->reset_task);
5799
047e0030 5800 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5801 /* HW is reporting DMA is out of sync */
5802 adapter->stats.doosync++;
5803 }
5804
9d5c8243
AK
5805 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5806 hw->mac.get_link_status = 1;
5807 if (!test_bit(__IGB_DOWN, &adapter->state))
5808 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5809 }
5810
1f6e8178
MV
5811 if (icr & E1000_ICR_TS) {
5812 u32 tsicr = rd32(E1000_TSICR);
5813
5814 if (tsicr & E1000_TSICR_TXTS) {
5815 /* acknowledge the interrupt */
5816 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5817 /* retrieve hardware timestamp */
5818 schedule_work(&adapter->ptp_tx_work);
5819 }
5820 }
1f6e8178 5821
047e0030 5822 napi_schedule(&q_vector->napi);
9d5c8243
AK
5823
5824 return IRQ_HANDLED;
5825}
5826
5827/**
b980ac18
JK
5828 * igb_intr - Legacy Interrupt Handler
5829 * @irq: interrupt number
5830 * @data: pointer to a network interface device structure
9d5c8243
AK
5831 **/
5832static irqreturn_t igb_intr(int irq, void *data)
5833{
047e0030
AD
5834 struct igb_adapter *adapter = data;
5835 struct igb_q_vector *q_vector = adapter->q_vector[0];
9d5c8243
AK
5836 struct e1000_hw *hw = &adapter->hw;
5837 /* Interrupt Auto-Mask...upon reading ICR, interrupts are masked. No
b980ac18
JK
5838 * need for the IMC write
5839 */
9d5c8243 5840 u32 icr = rd32(E1000_ICR);
9d5c8243
AK
5841
5842 /* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
b980ac18
JK
5843 * not set, then the adapter didn't send an interrupt
5844 */
9d5c8243
AK
5845 if (!(icr & E1000_ICR_INT_ASSERTED))
5846 return IRQ_NONE;
5847
0ba82994
AD
5848 igb_write_itr(q_vector);
5849
7f081d40
AD
5850 if (icr & E1000_ICR_DRSTA)
5851 schedule_work(&adapter->reset_task);
5852
047e0030 5853 if (icr & E1000_ICR_DOUTSYNC) {
dda0e083
AD
5854 /* HW is reporting DMA is out of sync */
5855 adapter->stats.doosync++;
5856 }
5857
9d5c8243
AK
5858 if (icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC)) {
5859 hw->mac.get_link_status = 1;
5860 /* guard against interrupt when we're going down */
5861 if (!test_bit(__IGB_DOWN, &adapter->state))
5862 mod_timer(&adapter->watchdog_timer, jiffies + 1);
5863 }
5864
1f6e8178
MV
5865 if (icr & E1000_ICR_TS) {
5866 u32 tsicr = rd32(E1000_TSICR);
5867
5868 if (tsicr & E1000_TSICR_TXTS) {
5869 /* acknowledge the interrupt */
5870 wr32(E1000_TSICR, E1000_TSICR_TXTS);
5871 /* retrieve hardware timestamp */
5872 schedule_work(&adapter->ptp_tx_work);
5873 }
5874 }
1f6e8178 5875
047e0030 5876 napi_schedule(&q_vector->napi);
9d5c8243
AK
5877
5878 return IRQ_HANDLED;
5879}
5880
c50b52a0 5881static void igb_ring_irq_enable(struct igb_q_vector *q_vector)
9d5c8243 5882{
047e0030 5883 struct igb_adapter *adapter = q_vector->adapter;
46544258 5884 struct e1000_hw *hw = &adapter->hw;
9d5c8243 5885
0ba82994
AD
5886 if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
5887 (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
5888 if ((adapter->num_q_vectors == 1) && !adapter->vf_data)
5889 igb_set_itr(q_vector);
46544258 5890 else
047e0030 5891 igb_update_ring_itr(q_vector);
9d5c8243
AK
5892 }
5893
46544258
AD
5894 if (!test_bit(__IGB_DOWN, &adapter->state)) {
5895 if (adapter->msix_entries)
047e0030 5896 wr32(E1000_EIMS, q_vector->eims_value);
46544258
AD
5897 else
5898 igb_irq_enable(adapter);
5899 }
9d5c8243
AK
5900}
5901
46544258 5902/**
b980ac18
JK
5903 * igb_poll - NAPI Rx polling callback
5904 * @napi: napi polling structure
5905 * @budget: count of how many packets we should handle
46544258
AD
5906 **/
5907static int igb_poll(struct napi_struct *napi, int budget)
9d5c8243 5908{
047e0030 5909 struct igb_q_vector *q_vector = container_of(napi,
b980ac18
JK
5910 struct igb_q_vector,
5911 napi);
16eb8815 5912 bool clean_complete = true;
9d5c8243 5913
421e02f0 5914#ifdef CONFIG_IGB_DCA
047e0030
AD
5915 if (q_vector->adapter->flags & IGB_FLAG_DCA_ENABLED)
5916 igb_update_dca(q_vector);
fe4506b6 5917#endif
0ba82994 5918 if (q_vector->tx.ring)
13fde97a 5919 clean_complete = igb_clean_tx_irq(q_vector);
9d5c8243 5920
0ba82994 5921 if (q_vector->rx.ring)
cd392f5c 5922 clean_complete &= igb_clean_rx_irq(q_vector, budget);
047e0030 5923
16eb8815
AD
5924 /* If all work not completed, return budget and keep polling */
5925 if (!clean_complete)
5926 return budget;
46544258 5927
9d5c8243 5928 /* If not enough Rx work done, exit the polling mode */
16eb8815
AD
5929 napi_complete(napi);
5930 igb_ring_irq_enable(q_vector);
9d5c8243 5931
16eb8815 5932 return 0;
9d5c8243 5933}
6d8126f9 5934
9d5c8243 5935/**
b980ac18
JK
5936 * igb_clean_tx_irq - Reclaim resources after transmit completes
5937 * @q_vector: pointer to q_vector containing needed info
49ce9c2c 5938 *
b980ac18 5939 * returns true if ring is completely cleaned
9d5c8243 5940 **/
047e0030 5941static bool igb_clean_tx_irq(struct igb_q_vector *q_vector)
9d5c8243 5942{
047e0030 5943 struct igb_adapter *adapter = q_vector->adapter;
0ba82994 5944 struct igb_ring *tx_ring = q_vector->tx.ring;
06034649 5945 struct igb_tx_buffer *tx_buffer;
f4128785 5946 union e1000_adv_tx_desc *tx_desc;
9d5c8243 5947 unsigned int total_bytes = 0, total_packets = 0;
0ba82994 5948 unsigned int budget = q_vector->tx.work_limit;
8542db05 5949 unsigned int i = tx_ring->next_to_clean;
9d5c8243 5950
13fde97a
AD
5951 if (test_bit(__IGB_DOWN, &adapter->state))
5952 return true;
0e014cb1 5953
06034649 5954 tx_buffer = &tx_ring->tx_buffer_info[i];
13fde97a 5955 tx_desc = IGB_TX_DESC(tx_ring, i);
8542db05 5956 i -= tx_ring->count;
9d5c8243 5957
f4128785
AD
5958 do {
5959 union e1000_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
8542db05
AD
5960
5961 /* if next_to_watch is not set then there is no work pending */
5962 if (!eop_desc)
5963 break;
13fde97a 5964
f4128785 5965 /* prevent any other reads prior to eop_desc */
70d289bc 5966 read_barrier_depends();
f4128785 5967
13fde97a
AD
5968 /* if DD is not set pending work has not been completed */
5969 if (!(eop_desc->wb.status & cpu_to_le32(E1000_TXD_STAT_DD)))
5970 break;
5971
8542db05
AD
5972 /* clear next_to_watch to prevent false hangs */
5973 tx_buffer->next_to_watch = NULL;
9d5c8243 5974
ebe42d16
AD
5975 /* update the statistics for this packet */
5976 total_bytes += tx_buffer->bytecount;
5977 total_packets += tx_buffer->gso_segs;
13fde97a 5978
ebe42d16
AD
5979 /* free the skb */
5980 dev_kfree_skb_any(tx_buffer->skb);
13fde97a 5981
ebe42d16
AD
5982 /* unmap skb header data */
5983 dma_unmap_single(tx_ring->dev,
c9f14bf3
AD
5984 dma_unmap_addr(tx_buffer, dma),
5985 dma_unmap_len(tx_buffer, len),
ebe42d16
AD
5986 DMA_TO_DEVICE);
5987
c9f14bf3
AD
5988 /* clear tx_buffer data */
5989 tx_buffer->skb = NULL;
5990 dma_unmap_len_set(tx_buffer, len, 0);
5991
ebe42d16
AD
5992 /* clear last DMA location and unmap remaining buffers */
5993 while (tx_desc != eop_desc) {
13fde97a
AD
5994 tx_buffer++;
5995 tx_desc++;
9d5c8243 5996 i++;
8542db05
AD
5997 if (unlikely(!i)) {
5998 i -= tx_ring->count;
06034649 5999 tx_buffer = tx_ring->tx_buffer_info;
13fde97a
AD
6000 tx_desc = IGB_TX_DESC(tx_ring, 0);
6001 }
ebe42d16
AD
6002
6003 /* unmap any remaining paged data */
c9f14bf3 6004 if (dma_unmap_len(tx_buffer, len)) {
ebe42d16 6005 dma_unmap_page(tx_ring->dev,
c9f14bf3
AD
6006 dma_unmap_addr(tx_buffer, dma),
6007 dma_unmap_len(tx_buffer, len),
ebe42d16 6008 DMA_TO_DEVICE);
c9f14bf3 6009 dma_unmap_len_set(tx_buffer, len, 0);
ebe42d16
AD
6010 }
6011 }
6012
ebe42d16
AD
6013 /* move us one more past the eop_desc for start of next pkt */
6014 tx_buffer++;
6015 tx_desc++;
6016 i++;
6017 if (unlikely(!i)) {
6018 i -= tx_ring->count;
6019 tx_buffer = tx_ring->tx_buffer_info;
6020 tx_desc = IGB_TX_DESC(tx_ring, 0);
6021 }
f4128785
AD
6022
6023 /* issue prefetch for next Tx descriptor */
6024 prefetch(tx_desc);
6025
6026 /* update budget accounting */
6027 budget--;
6028 } while (likely(budget));
0e014cb1 6029
bdbc0631
ED
6030 netdev_tx_completed_queue(txring_txq(tx_ring),
6031 total_packets, total_bytes);
8542db05 6032 i += tx_ring->count;
9d5c8243 6033 tx_ring->next_to_clean = i;
13fde97a
AD
6034 u64_stats_update_begin(&tx_ring->tx_syncp);
6035 tx_ring->tx_stats.bytes += total_bytes;
6036 tx_ring->tx_stats.packets += total_packets;
6037 u64_stats_update_end(&tx_ring->tx_syncp);
0ba82994
AD
6038 q_vector->tx.total_bytes += total_bytes;
6039 q_vector->tx.total_packets += total_packets;
9d5c8243 6040
6d095fa8 6041 if (test_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
13fde97a 6042 struct e1000_hw *hw = &adapter->hw;
12dcd86b 6043
9d5c8243 6044 /* Detect a transmit hang in hardware, this serializes the
b980ac18
JK
6045 * check with the clearing of time_stamp and movement of i
6046 */
6d095fa8 6047 clear_bit(IGB_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
f4128785 6048 if (tx_buffer->next_to_watch &&
8542db05 6049 time_after(jiffies, tx_buffer->time_stamp +
8e95a202
JP
6050 (adapter->tx_timeout_factor * HZ)) &&
6051 !(rd32(E1000_STATUS) & E1000_STATUS_TXOFF)) {
9d5c8243 6052
9d5c8243 6053 /* detected Tx unit hang */
59d71989 6054 dev_err(tx_ring->dev,
9d5c8243 6055 "Detected Tx Unit Hang\n"
2d064c06 6056 " Tx Queue <%d>\n"
9d5c8243
AK
6057 " TDH <%x>\n"
6058 " TDT <%x>\n"
6059 " next_to_use <%x>\n"
6060 " next_to_clean <%x>\n"
9d5c8243
AK
6061 "buffer_info[next_to_clean]\n"
6062 " time_stamp <%lx>\n"
8542db05 6063 " next_to_watch <%p>\n"
9d5c8243
AK
6064 " jiffies <%lx>\n"
6065 " desc.status <%x>\n",
2d064c06 6066 tx_ring->queue_index,
238ac817 6067 rd32(E1000_TDH(tx_ring->reg_idx)),
fce99e34 6068 readl(tx_ring->tail),
9d5c8243
AK
6069 tx_ring->next_to_use,
6070 tx_ring->next_to_clean,
8542db05 6071 tx_buffer->time_stamp,
f4128785 6072 tx_buffer->next_to_watch,
9d5c8243 6073 jiffies,
f4128785 6074 tx_buffer->next_to_watch->wb.status);
13fde97a
AD
6075 netif_stop_subqueue(tx_ring->netdev,
6076 tx_ring->queue_index);
6077
6078 /* we are about to reset, no point in enabling stuff */
6079 return true;
9d5c8243
AK
6080 }
6081 }
13fde97a 6082
21ba6fe1 6083#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
13fde97a 6084 if (unlikely(total_packets &&
b980ac18
JK
6085 netif_carrier_ok(tx_ring->netdev) &&
6086 igb_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
13fde97a
AD
6087 /* Make sure that anybody stopping the queue after this
6088 * sees the new next_to_clean.
6089 */
6090 smp_mb();
6091 if (__netif_subqueue_stopped(tx_ring->netdev,
6092 tx_ring->queue_index) &&
6093 !(test_bit(__IGB_DOWN, &adapter->state))) {
6094 netif_wake_subqueue(tx_ring->netdev,
6095 tx_ring->queue_index);
6096
6097 u64_stats_update_begin(&tx_ring->tx_syncp);
6098 tx_ring->tx_stats.restart_queue++;
6099 u64_stats_update_end(&tx_ring->tx_syncp);
6100 }
6101 }
6102
6103 return !!budget;
9d5c8243
AK
6104}
6105
cbc8e55f 6106/**
b980ac18
JK
6107 * igb_reuse_rx_page - page flip buffer and store it back on the ring
6108 * @rx_ring: rx descriptor ring to store buffers on
6109 * @old_buff: donor buffer to have page reused
cbc8e55f 6110 *
b980ac18 6111 * Synchronizes page for reuse by the adapter
cbc8e55f
AD
6112 **/
6113static void igb_reuse_rx_page(struct igb_ring *rx_ring,
6114 struct igb_rx_buffer *old_buff)
6115{
6116 struct igb_rx_buffer *new_buff;
6117 u16 nta = rx_ring->next_to_alloc;
6118
6119 new_buff = &rx_ring->rx_buffer_info[nta];
6120
6121 /* update, and store next to alloc */
6122 nta++;
6123 rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
6124
6125 /* transfer page from old buffer to new buffer */
6126 memcpy(new_buff, old_buff, sizeof(struct igb_rx_buffer));
6127
6128 /* sync the buffer for use by the device */
6129 dma_sync_single_range_for_device(rx_ring->dev, old_buff->dma,
6130 old_buff->page_offset,
de78d1f9 6131 IGB_RX_BUFSZ,
cbc8e55f
AD
6132 DMA_FROM_DEVICE);
6133}
6134
74e238ea
AD
6135static bool igb_can_reuse_rx_page(struct igb_rx_buffer *rx_buffer,
6136 struct page *page,
6137 unsigned int truesize)
6138{
6139 /* avoid re-using remote pages */
6140 if (unlikely(page_to_nid(page) != numa_node_id()))
6141 return false;
6142
6143#if (PAGE_SIZE < 8192)
6144 /* if we are only owner of page we can reuse it */
6145 if (unlikely(page_count(page) != 1))
6146 return false;
6147
6148 /* flip page offset to other buffer */
6149 rx_buffer->page_offset ^= IGB_RX_BUFSZ;
6150
6151 /* since we are the only owner of the page and we need to
6152 * increment it, just set the value to 2 in order to avoid
6153 * an unnecessary locked operation
6154 */
6155 atomic_set(&page->_count, 2);
6156#else
6157 /* move offset up to the next cache line */
6158 rx_buffer->page_offset += truesize;
6159
6160 if (rx_buffer->page_offset > (PAGE_SIZE - IGB_RX_BUFSZ))
6161 return false;
6162
6163 /* bump ref count on page before it is given to the stack */
6164 get_page(page);
6165#endif
6166
6167 return true;
6168}
6169
cbc8e55f 6170/**
b980ac18
JK
6171 * igb_add_rx_frag - Add contents of Rx buffer to sk_buff
6172 * @rx_ring: rx descriptor ring to transact packets on
6173 * @rx_buffer: buffer containing page to add
6174 * @rx_desc: descriptor containing length of buffer written by hardware
6175 * @skb: sk_buff to place the data into
cbc8e55f 6176 *
b980ac18
JK
6177 * This function will add the data contained in rx_buffer->page to the skb.
6178 * This is done either through a direct copy if the data in the buffer is
6179 * less than the skb header size, otherwise it will just attach the page as
6180 * a frag to the skb.
cbc8e55f 6181 *
b980ac18
JK
6182 * The function will then update the page offset if necessary and return
6183 * true if the buffer can be reused by the adapter.
cbc8e55f
AD
6184 **/
6185static bool igb_add_rx_frag(struct igb_ring *rx_ring,
6186 struct igb_rx_buffer *rx_buffer,
6187 union e1000_adv_rx_desc *rx_desc,
6188 struct sk_buff *skb)
6189{
6190 struct page *page = rx_buffer->page;
6191 unsigned int size = le16_to_cpu(rx_desc->wb.upper.length);
74e238ea
AD
6192#if (PAGE_SIZE < 8192)
6193 unsigned int truesize = IGB_RX_BUFSZ;
6194#else
6195 unsigned int truesize = ALIGN(size, L1_CACHE_BYTES);
6196#endif
cbc8e55f
AD
6197
6198 if ((size <= IGB_RX_HDR_LEN) && !skb_is_nonlinear(skb)) {
6199 unsigned char *va = page_address(page) + rx_buffer->page_offset;
6200
cbc8e55f
AD
6201 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6202 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6203 va += IGB_TS_HDR_LEN;
6204 size -= IGB_TS_HDR_LEN;
6205 }
6206
cbc8e55f
AD
6207 memcpy(__skb_put(skb, size), va, ALIGN(size, sizeof(long)));
6208
6209 /* we can reuse buffer as-is, just make sure it is local */
6210 if (likely(page_to_nid(page) == numa_node_id()))
6211 return true;
6212
6213 /* this page cannot be reused so discard it */
6214 put_page(page);
6215 return false;
6216 }
6217
6218 skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, page,
74e238ea 6219 rx_buffer->page_offset, size, truesize);
cbc8e55f 6220
74e238ea
AD
6221 return igb_can_reuse_rx_page(rx_buffer, page, truesize);
6222}
cbc8e55f 6223
2e334eee
AD
6224static struct sk_buff *igb_fetch_rx_buffer(struct igb_ring *rx_ring,
6225 union e1000_adv_rx_desc *rx_desc,
6226 struct sk_buff *skb)
6227{
6228 struct igb_rx_buffer *rx_buffer;
6229 struct page *page;
6230
6231 rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
6232
2e334eee
AD
6233 page = rx_buffer->page;
6234 prefetchw(page);
6235
6236 if (likely(!skb)) {
6237 void *page_addr = page_address(page) +
6238 rx_buffer->page_offset;
6239
6240 /* prefetch first cache line of first page */
6241 prefetch(page_addr);
6242#if L1_CACHE_BYTES < 128
6243 prefetch(page_addr + L1_CACHE_BYTES);
6244#endif
6245
6246 /* allocate a skb to store the frags */
6247 skb = netdev_alloc_skb_ip_align(rx_ring->netdev,
6248 IGB_RX_HDR_LEN);
6249 if (unlikely(!skb)) {
6250 rx_ring->rx_stats.alloc_failed++;
6251 return NULL;
6252 }
6253
b980ac18 6254 /* we will be copying header into skb->data in
2e334eee
AD
6255 * pskb_may_pull so it is in our interest to prefetch
6256 * it now to avoid a possible cache miss
6257 */
6258 prefetchw(skb->data);
6259 }
6260
6261 /* we are reusing so sync this buffer for CPU use */
6262 dma_sync_single_range_for_cpu(rx_ring->dev,
6263 rx_buffer->dma,
6264 rx_buffer->page_offset,
de78d1f9 6265 IGB_RX_BUFSZ,
2e334eee
AD
6266 DMA_FROM_DEVICE);
6267
6268 /* pull page into skb */
6269 if (igb_add_rx_frag(rx_ring, rx_buffer, rx_desc, skb)) {
6270 /* hand second half of page back to the ring */
6271 igb_reuse_rx_page(rx_ring, rx_buffer);
6272 } else {
6273 /* we are not reusing the buffer so unmap it */
6274 dma_unmap_page(rx_ring->dev, rx_buffer->dma,
6275 PAGE_SIZE, DMA_FROM_DEVICE);
6276 }
6277
6278 /* clear contents of rx_buffer */
6279 rx_buffer->page = NULL;
6280
6281 return skb;
6282}
6283
cd392f5c 6284static inline void igb_rx_checksum(struct igb_ring *ring,
3ceb90fd
AD
6285 union e1000_adv_rx_desc *rx_desc,
6286 struct sk_buff *skb)
9d5c8243 6287{
bc8acf2c 6288 skb_checksum_none_assert(skb);
9d5c8243 6289
294e7d78 6290 /* Ignore Checksum bit is set */
3ceb90fd 6291 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_IXSM))
294e7d78
AD
6292 return;
6293
6294 /* Rx checksum disabled via ethtool */
6295 if (!(ring->netdev->features & NETIF_F_RXCSUM))
9d5c8243 6296 return;
85ad76b2 6297
9d5c8243 6298 /* TCP/UDP checksum error bit is set */
3ceb90fd
AD
6299 if (igb_test_staterr(rx_desc,
6300 E1000_RXDEXT_STATERR_TCPE |
6301 E1000_RXDEXT_STATERR_IPE)) {
b980ac18 6302 /* work around errata with sctp packets where the TCPE aka
b9473560
JB
6303 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
6304 * packets, (aka let the stack check the crc32c)
6305 */
866cff06
AD
6306 if (!((skb->len == 60) &&
6307 test_bit(IGB_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
12dcd86b 6308 u64_stats_update_begin(&ring->rx_syncp);
04a5fcaa 6309 ring->rx_stats.csum_err++;
12dcd86b
ED
6310 u64_stats_update_end(&ring->rx_syncp);
6311 }
9d5c8243 6312 /* let the stack verify checksum errors */
9d5c8243
AK
6313 return;
6314 }
6315 /* It must be a TCP or UDP packet with a valid checksum */
3ceb90fd
AD
6316 if (igb_test_staterr(rx_desc, E1000_RXD_STAT_TCPCS |
6317 E1000_RXD_STAT_UDPCS))
9d5c8243
AK
6318 skb->ip_summed = CHECKSUM_UNNECESSARY;
6319
3ceb90fd
AD
6320 dev_dbg(ring->dev, "cksum success: bits %08X\n",
6321 le32_to_cpu(rx_desc->wb.upper.status_error));
9d5c8243
AK
6322}
6323
077887c3
AD
6324static inline void igb_rx_hash(struct igb_ring *ring,
6325 union e1000_adv_rx_desc *rx_desc,
6326 struct sk_buff *skb)
6327{
6328 if (ring->netdev->features & NETIF_F_RXHASH)
6329 skb->rxhash = le32_to_cpu(rx_desc->wb.lower.hi_dword.rss);
6330}
6331
2e334eee 6332/**
b980ac18
JK
6333 * igb_is_non_eop - process handling of non-EOP buffers
6334 * @rx_ring: Rx ring being processed
6335 * @rx_desc: Rx descriptor for current buffer
6336 * @skb: current socket buffer containing buffer in progress
2e334eee 6337 *
b980ac18
JK
6338 * This function updates next to clean. If the buffer is an EOP buffer
6339 * this function exits returning false, otherwise it will place the
6340 * sk_buff in the next buffer to be chained and return true indicating
6341 * that this is in fact a non-EOP buffer.
2e334eee
AD
6342 **/
6343static bool igb_is_non_eop(struct igb_ring *rx_ring,
6344 union e1000_adv_rx_desc *rx_desc)
6345{
6346 u32 ntc = rx_ring->next_to_clean + 1;
6347
6348 /* fetch, update, and store next to clean */
6349 ntc = (ntc < rx_ring->count) ? ntc : 0;
6350 rx_ring->next_to_clean = ntc;
6351
6352 prefetch(IGB_RX_DESC(rx_ring, ntc));
6353
6354 if (likely(igb_test_staterr(rx_desc, E1000_RXD_STAT_EOP)))
6355 return false;
6356
6357 return true;
6358}
6359
1a1c225b 6360/**
b980ac18
JK
6361 * igb_get_headlen - determine size of header for LRO/GRO
6362 * @data: pointer to the start of the headers
6363 * @max_len: total length of section to find headers in
1a1c225b 6364 *
b980ac18
JK
6365 * This function is meant to determine the length of headers that will
6366 * be recognized by hardware for LRO, and GRO offloads. The main
6367 * motivation of doing this is to only perform one pull for IPv4 TCP
6368 * packets so that we can do basic things like calculating the gso_size
6369 * based on the average data per packet.
1a1c225b
AD
6370 **/
6371static unsigned int igb_get_headlen(unsigned char *data,
6372 unsigned int max_len)
6373{
6374 union {
6375 unsigned char *network;
6376 /* l2 headers */
6377 struct ethhdr *eth;
6378 struct vlan_hdr *vlan;
6379 /* l3 headers */
6380 struct iphdr *ipv4;
6381 struct ipv6hdr *ipv6;
6382 } hdr;
6383 __be16 protocol;
6384 u8 nexthdr = 0; /* default to not TCP */
6385 u8 hlen;
6386
6387 /* this should never happen, but better safe than sorry */
6388 if (max_len < ETH_HLEN)
6389 return max_len;
6390
6391 /* initialize network frame pointer */
6392 hdr.network = data;
6393
6394 /* set first protocol and move network header forward */
6395 protocol = hdr.eth->h_proto;
6396 hdr.network += ETH_HLEN;
6397
6398 /* handle any vlan tag if present */
6399 if (protocol == __constant_htons(ETH_P_8021Q)) {
6400 if ((hdr.network - data) > (max_len - VLAN_HLEN))
6401 return max_len;
6402
6403 protocol = hdr.vlan->h_vlan_encapsulated_proto;
6404 hdr.network += VLAN_HLEN;
6405 }
6406
6407 /* handle L3 protocols */
6408 if (protocol == __constant_htons(ETH_P_IP)) {
6409 if ((hdr.network - data) > (max_len - sizeof(struct iphdr)))
6410 return max_len;
6411
6412 /* access ihl as a u8 to avoid unaligned access on ia64 */
6413 hlen = (hdr.network[0] & 0x0F) << 2;
6414
6415 /* verify hlen meets minimum size requirements */
6416 if (hlen < sizeof(struct iphdr))
6417 return hdr.network - data;
6418
f2fb4ab2 6419 /* record next protocol if header is present */
b9555f66 6420 if (!(hdr.ipv4->frag_off & htons(IP_OFFSET)))
f2fb4ab2 6421 nexthdr = hdr.ipv4->protocol;
1a1c225b
AD
6422 } else if (protocol == __constant_htons(ETH_P_IPV6)) {
6423 if ((hdr.network - data) > (max_len - sizeof(struct ipv6hdr)))
6424 return max_len;
6425
6426 /* record next protocol */
6427 nexthdr = hdr.ipv6->nexthdr;
f2fb4ab2 6428 hlen = sizeof(struct ipv6hdr);
1a1c225b
AD
6429 } else {
6430 return hdr.network - data;
6431 }
6432
f2fb4ab2
AD
6433 /* relocate pointer to start of L4 header */
6434 hdr.network += hlen;
6435
1a1c225b
AD
6436 /* finally sort out TCP */
6437 if (nexthdr == IPPROTO_TCP) {
6438 if ((hdr.network - data) > (max_len - sizeof(struct tcphdr)))
6439 return max_len;
6440
6441 /* access doff as a u8 to avoid unaligned access on ia64 */
6442 hlen = (hdr.network[12] & 0xF0) >> 2;
6443
6444 /* verify hlen meets minimum size requirements */
6445 if (hlen < sizeof(struct tcphdr))
6446 return hdr.network - data;
6447
6448 hdr.network += hlen;
6449 } else if (nexthdr == IPPROTO_UDP) {
6450 if ((hdr.network - data) > (max_len - sizeof(struct udphdr)))
6451 return max_len;
6452
6453 hdr.network += sizeof(struct udphdr);
6454 }
6455
b980ac18 6456 /* If everything has gone correctly hdr.network should be the
1a1c225b
AD
6457 * data section of the packet and will be the end of the header.
6458 * If not then it probably represents the end of the last recognized
6459 * header.
6460 */
6461 if ((hdr.network - data) < max_len)
6462 return hdr.network - data;
6463 else
6464 return max_len;
6465}
6466
6467/**
b980ac18
JK
6468 * igb_pull_tail - igb specific version of skb_pull_tail
6469 * @rx_ring: rx descriptor ring packet is being transacted on
6470 * @rx_desc: pointer to the EOP Rx descriptor
6471 * @skb: pointer to current skb being adjusted
1a1c225b 6472 *
b980ac18
JK
6473 * This function is an igb specific version of __pskb_pull_tail. The
6474 * main difference between this version and the original function is that
6475 * this function can make several assumptions about the state of things
6476 * that allow for significant optimizations versus the standard function.
6477 * As a result we can do things like drop a frag and maintain an accurate
6478 * truesize for the skb.
1a1c225b
AD
6479 */
6480static void igb_pull_tail(struct igb_ring *rx_ring,
6481 union e1000_adv_rx_desc *rx_desc,
6482 struct sk_buff *skb)
2d94d8ab 6483{
1a1c225b
AD
6484 struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
6485 unsigned char *va;
6486 unsigned int pull_len;
6487
b980ac18 6488 /* it is valid to use page_address instead of kmap since we are
1a1c225b
AD
6489 * working with pages allocated out of the lomem pool per
6490 * alloc_page(GFP_ATOMIC)
2d94d8ab 6491 */
1a1c225b
AD
6492 va = skb_frag_address(frag);
6493
1a1c225b
AD
6494 if (igb_test_staterr(rx_desc, E1000_RXDADV_STAT_TSIP)) {
6495 /* retrieve timestamp from buffer */
6496 igb_ptp_rx_pktstamp(rx_ring->q_vector, va, skb);
6497
6498 /* update pointers to remove timestamp header */
6499 skb_frag_size_sub(frag, IGB_TS_HDR_LEN);
6500 frag->page_offset += IGB_TS_HDR_LEN;
6501 skb->data_len -= IGB_TS_HDR_LEN;
6502 skb->len -= IGB_TS_HDR_LEN;
6503
6504 /* move va to start of packet data */
6505 va += IGB_TS_HDR_LEN;
6506 }
6507
b980ac18 6508 /* we need the header to contain the greater of either ETH_HLEN or
1a1c225b
AD
6509 * 60 bytes if the skb->len is less than 60 for skb_pad.
6510 */
6511 pull_len = igb_get_headlen(va, IGB_RX_HDR_LEN);
6512
6513 /* align pull length to size of long to optimize memcpy performance */
6514 skb_copy_to_linear_data(skb, va, ALIGN(pull_len, sizeof(long)));
6515
6516 /* update all of the pointers */
6517 skb_frag_size_sub(frag, pull_len);
6518 frag->page_offset += pull_len;
6519 skb->data_len -= pull_len;
6520 skb->tail += pull_len;
6521}
6522
6523/**
b980ac18
JK
6524 * igb_cleanup_headers - Correct corrupted or empty headers
6525 * @rx_ring: rx descriptor ring packet is being transacted on
6526 * @rx_desc: pointer to the EOP Rx descriptor
6527 * @skb: pointer to current skb being fixed
1a1c225b 6528 *
b980ac18
JK
6529 * Address the case where we are pulling data in on pages only
6530 * and as such no data is present in the skb header.
1a1c225b 6531 *
b980ac18
JK
6532 * In addition if skb is not at least 60 bytes we need to pad it so that
6533 * it is large enough to qualify as a valid Ethernet frame.
1a1c225b 6534 *
b980ac18 6535 * Returns true if an error was encountered and skb was freed.
1a1c225b
AD
6536 **/
6537static bool igb_cleanup_headers(struct igb_ring *rx_ring,
6538 union e1000_adv_rx_desc *rx_desc,
6539 struct sk_buff *skb)
6540{
1a1c225b
AD
6541 if (unlikely((igb_test_staterr(rx_desc,
6542 E1000_RXDEXT_ERR_FRAME_ERR_MASK)))) {
6543 struct net_device *netdev = rx_ring->netdev;
6544 if (!(netdev->features & NETIF_F_RXALL)) {
6545 dev_kfree_skb_any(skb);
6546 return true;
6547 }
6548 }
6549
6550 /* place header in linear portion of buffer */
6551 if (skb_is_nonlinear(skb))
6552 igb_pull_tail(rx_ring, rx_desc, skb);
6553
6554 /* if skb_pad returns an error the skb was freed */
6555 if (unlikely(skb->len < 60)) {
6556 int pad_len = 60 - skb->len;
6557
6558 if (skb_pad(skb, pad_len))
6559 return true;
6560 __skb_put(skb, pad_len);
6561 }
6562
6563 return false;
2d94d8ab
AD
6564}
6565
db2ee5bd 6566/**
b980ac18
JK
6567 * igb_process_skb_fields - Populate skb header fields from Rx descriptor
6568 * @rx_ring: rx descriptor ring packet is being transacted on
6569 * @rx_desc: pointer to the EOP Rx descriptor
6570 * @skb: pointer to current skb being populated
db2ee5bd 6571 *
b980ac18
JK
6572 * This function checks the ring, descriptor, and packet information in
6573 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
6574 * other fields within the skb.
db2ee5bd
AD
6575 **/
6576static void igb_process_skb_fields(struct igb_ring *rx_ring,
6577 union e1000_adv_rx_desc *rx_desc,
6578 struct sk_buff *skb)
6579{
6580 struct net_device *dev = rx_ring->netdev;
6581
6582 igb_rx_hash(rx_ring, rx_desc, skb);
6583
6584 igb_rx_checksum(rx_ring, rx_desc, skb);
6585
db2ee5bd 6586 igb_ptp_rx_hwtstamp(rx_ring->q_vector, rx_desc, skb);
db2ee5bd 6587
f646968f 6588 if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
db2ee5bd
AD
6589 igb_test_staterr(rx_desc, E1000_RXD_STAT_VP)) {
6590 u16 vid;
6591 if (igb_test_staterr(rx_desc, E1000_RXDEXT_STATERR_LB) &&
6592 test_bit(IGB_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
6593 vid = be16_to_cpu(rx_desc->wb.upper.vlan);
6594 else
6595 vid = le16_to_cpu(rx_desc->wb.upper.vlan);
6596
86a9bad3 6597 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
db2ee5bd
AD
6598 }
6599
6600 skb_record_rx_queue(skb, rx_ring->queue_index);
6601
6602 skb->protocol = eth_type_trans(skb, rx_ring->netdev);
6603}
6604
2e334eee 6605static bool igb_clean_rx_irq(struct igb_q_vector *q_vector, const int budget)
9d5c8243 6606{
0ba82994 6607 struct igb_ring *rx_ring = q_vector->rx.ring;
1a1c225b 6608 struct sk_buff *skb = rx_ring->skb;
9d5c8243 6609 unsigned int total_bytes = 0, total_packets = 0;
16eb8815 6610 u16 cleaned_count = igb_desc_unused(rx_ring);
9d5c8243 6611
2e334eee
AD
6612 do {
6613 union e1000_adv_rx_desc *rx_desc;
bf36c1a0 6614
2e334eee
AD
6615 /* return some buffers to hardware, one at a time is too slow */
6616 if (cleaned_count >= IGB_RX_BUFFER_WRITE) {
6617 igb_alloc_rx_buffers(rx_ring, cleaned_count);
6618 cleaned_count = 0;
6619 }
bf36c1a0 6620
2e334eee 6621 rx_desc = IGB_RX_DESC(rx_ring, rx_ring->next_to_clean);
16eb8815 6622
2e334eee
AD
6623 if (!igb_test_staterr(rx_desc, E1000_RXD_STAT_DD))
6624 break;
9d5c8243 6625
74e238ea
AD
6626 /* This memory barrier is needed to keep us from reading
6627 * any other fields out of the rx_desc until we know the
6628 * RXD_STAT_DD bit is set
6629 */
6630 rmb();
6631
2e334eee 6632 /* retrieve a buffer from the ring */
f9d40f6a 6633 skb = igb_fetch_rx_buffer(rx_ring, rx_desc, skb);
9d5c8243 6634
2e334eee
AD
6635 /* exit if we failed to retrieve a buffer */
6636 if (!skb)
6637 break;
1a1c225b 6638
2e334eee 6639 cleaned_count++;
1a1c225b 6640
2e334eee
AD
6641 /* fetch next buffer in frame if non-eop */
6642 if (igb_is_non_eop(rx_ring, rx_desc))
6643 continue;
1a1c225b
AD
6644
6645 /* verify the packet layout is correct */
6646 if (igb_cleanup_headers(rx_ring, rx_desc, skb)) {
6647 skb = NULL;
6648 continue;
9d5c8243 6649 }
9d5c8243 6650
db2ee5bd 6651 /* probably a little skewed due to removing CRC */
3ceb90fd 6652 total_bytes += skb->len;
3ceb90fd 6653
db2ee5bd
AD
6654 /* populate checksum, timestamp, VLAN, and protocol */
6655 igb_process_skb_fields(rx_ring, rx_desc, skb);
3ceb90fd 6656
b2cb09b1 6657 napi_gro_receive(&q_vector->napi, skb);
9d5c8243 6658
1a1c225b
AD
6659 /* reset skb pointer */
6660 skb = NULL;
6661
2e334eee
AD
6662 /* update budget accounting */
6663 total_packets++;
6664 } while (likely(total_packets < budget));
bf36c1a0 6665
1a1c225b
AD
6666 /* place incomplete frames back on ring for completion */
6667 rx_ring->skb = skb;
6668
12dcd86b 6669 u64_stats_update_begin(&rx_ring->rx_syncp);
9d5c8243
AK
6670 rx_ring->rx_stats.packets += total_packets;
6671 rx_ring->rx_stats.bytes += total_bytes;
12dcd86b 6672 u64_stats_update_end(&rx_ring->rx_syncp);
0ba82994
AD
6673 q_vector->rx.total_packets += total_packets;
6674 q_vector->rx.total_bytes += total_bytes;
c023cd88
AD
6675
6676 if (cleaned_count)
cd392f5c 6677 igb_alloc_rx_buffers(rx_ring, cleaned_count);
c023cd88 6678
2e334eee 6679 return (total_packets < budget);
9d5c8243
AK
6680}
6681
c023cd88 6682static bool igb_alloc_mapped_page(struct igb_ring *rx_ring,
06034649 6683 struct igb_rx_buffer *bi)
c023cd88
AD
6684{
6685 struct page *page = bi->page;
cbc8e55f 6686 dma_addr_t dma;
c023cd88 6687
cbc8e55f
AD
6688 /* since we are recycling buffers we should seldom need to alloc */
6689 if (likely(page))
c023cd88
AD
6690 return true;
6691
cbc8e55f
AD
6692 /* alloc new page for storage */
6693 page = __skb_alloc_page(GFP_ATOMIC | __GFP_COLD, NULL);
6694 if (unlikely(!page)) {
6695 rx_ring->rx_stats.alloc_failed++;
6696 return false;
c023cd88
AD
6697 }
6698
cbc8e55f
AD
6699 /* map page for use */
6700 dma = dma_map_page(rx_ring->dev, page, 0, PAGE_SIZE, DMA_FROM_DEVICE);
c023cd88 6701
b980ac18 6702 /* if mapping failed free memory back to system since
cbc8e55f
AD
6703 * there isn't much point in holding memory we can't use
6704 */
1a1c225b 6705 if (dma_mapping_error(rx_ring->dev, dma)) {
cbc8e55f
AD
6706 __free_page(page);
6707
c023cd88
AD
6708 rx_ring->rx_stats.alloc_failed++;
6709 return false;
6710 }
6711
1a1c225b 6712 bi->dma = dma;
cbc8e55f
AD
6713 bi->page = page;
6714 bi->page_offset = 0;
1a1c225b 6715
c023cd88
AD
6716 return true;
6717}
6718
9d5c8243 6719/**
b980ac18
JK
6720 * igb_alloc_rx_buffers - Replace used receive buffers; packet split
6721 * @adapter: address of board private structure
9d5c8243 6722 **/
cd392f5c 6723void igb_alloc_rx_buffers(struct igb_ring *rx_ring, u16 cleaned_count)
9d5c8243 6724{
9d5c8243 6725 union e1000_adv_rx_desc *rx_desc;
06034649 6726 struct igb_rx_buffer *bi;
c023cd88 6727 u16 i = rx_ring->next_to_use;
9d5c8243 6728
cbc8e55f
AD
6729 /* nothing to do */
6730 if (!cleaned_count)
6731 return;
6732
60136906 6733 rx_desc = IGB_RX_DESC(rx_ring, i);
06034649 6734 bi = &rx_ring->rx_buffer_info[i];
c023cd88 6735 i -= rx_ring->count;
9d5c8243 6736
cbc8e55f 6737 do {
1a1c225b 6738 if (!igb_alloc_mapped_page(rx_ring, bi))
c023cd88 6739 break;
9d5c8243 6740
b980ac18 6741 /* Refresh the desc even if buffer_addrs didn't change
cbc8e55f
AD
6742 * because each write-back erases this info.
6743 */
f9d40f6a 6744 rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
9d5c8243 6745
c023cd88
AD
6746 rx_desc++;
6747 bi++;
9d5c8243 6748 i++;
c023cd88 6749 if (unlikely(!i)) {
60136906 6750 rx_desc = IGB_RX_DESC(rx_ring, 0);
06034649 6751 bi = rx_ring->rx_buffer_info;
c023cd88
AD
6752 i -= rx_ring->count;
6753 }
6754
6755 /* clear the hdr_addr for the next_to_use descriptor */
6756 rx_desc->read.hdr_addr = 0;
cbc8e55f
AD
6757
6758 cleaned_count--;
6759 } while (cleaned_count);
9d5c8243 6760
c023cd88
AD
6761 i += rx_ring->count;
6762
9d5c8243 6763 if (rx_ring->next_to_use != i) {
cbc8e55f 6764 /* record the next descriptor to use */
9d5c8243 6765 rx_ring->next_to_use = i;
9d5c8243 6766
cbc8e55f
AD
6767 /* update next to alloc since we have filled the ring */
6768 rx_ring->next_to_alloc = i;
6769
b980ac18 6770 /* Force memory writes to complete before letting h/w
9d5c8243
AK
6771 * know there are new descriptors to fetch. (Only
6772 * applicable for weak-ordered memory model archs,
cbc8e55f
AD
6773 * such as IA-64).
6774 */
9d5c8243 6775 wmb();
fce99e34 6776 writel(i, rx_ring->tail);
9d5c8243
AK
6777 }
6778}
6779
6780/**
6781 * igb_mii_ioctl -
6782 * @netdev:
6783 * @ifreq:
6784 * @cmd:
6785 **/
6786static int igb_mii_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6787{
6788 struct igb_adapter *adapter = netdev_priv(netdev);
6789 struct mii_ioctl_data *data = if_mii(ifr);
6790
6791 if (adapter->hw.phy.media_type != e1000_media_type_copper)
6792 return -EOPNOTSUPP;
6793
6794 switch (cmd) {
6795 case SIOCGMIIPHY:
6796 data->phy_id = adapter->hw.phy.addr;
6797 break;
6798 case SIOCGMIIREG:
f5f4cf08
AD
6799 if (igb_read_phy_reg(&adapter->hw, data->reg_num & 0x1F,
6800 &data->val_out))
9d5c8243
AK
6801 return -EIO;
6802 break;
6803 case SIOCSMIIREG:
6804 default:
6805 return -EOPNOTSUPP;
6806 }
6807 return 0;
6808}
6809
6810/**
6811 * igb_ioctl -
6812 * @netdev:
6813 * @ifreq:
6814 * @cmd:
6815 **/
6816static int igb_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
6817{
6818 switch (cmd) {
6819 case SIOCGMIIPHY:
6820 case SIOCGMIIREG:
6821 case SIOCSMIIREG:
6822 return igb_mii_ioctl(netdev, ifr, cmd);
c6cb090b 6823 case SIOCSHWTSTAMP:
a79f4f88 6824 return igb_ptp_hwtstamp_ioctl(netdev, ifr, cmd);
9d5c8243
AK
6825 default:
6826 return -EOPNOTSUPP;
6827 }
6828}
6829
009bc06e
AD
6830s32 igb_read_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6831{
6832 struct igb_adapter *adapter = hw->back;
009bc06e 6833
23d028cc 6834 if (pcie_capability_read_word(adapter->pdev, reg, value))
009bc06e
AD
6835 return -E1000_ERR_CONFIG;
6836
009bc06e
AD
6837 return 0;
6838}
6839
6840s32 igb_write_pcie_cap_reg(struct e1000_hw *hw, u32 reg, u16 *value)
6841{
6842 struct igb_adapter *adapter = hw->back;
009bc06e 6843
23d028cc 6844 if (pcie_capability_write_word(adapter->pdev, reg, *value))
009bc06e
AD
6845 return -E1000_ERR_CONFIG;
6846
009bc06e
AD
6847 return 0;
6848}
6849
c8f44aff 6850static void igb_vlan_mode(struct net_device *netdev, netdev_features_t features)
9d5c8243
AK
6851{
6852 struct igb_adapter *adapter = netdev_priv(netdev);
6853 struct e1000_hw *hw = &adapter->hw;
6854 u32 ctrl, rctl;
f646968f 6855 bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
9d5c8243 6856
5faf030c 6857 if (enable) {
9d5c8243
AK
6858 /* enable VLAN tag insert/strip */
6859 ctrl = rd32(E1000_CTRL);
6860 ctrl |= E1000_CTRL_VME;
6861 wr32(E1000_CTRL, ctrl);
6862
51466239 6863 /* Disable CFI check */
9d5c8243 6864 rctl = rd32(E1000_RCTL);
9d5c8243
AK
6865 rctl &= ~E1000_RCTL_CFIEN;
6866 wr32(E1000_RCTL, rctl);
9d5c8243
AK
6867 } else {
6868 /* disable VLAN tag insert/strip */
6869 ctrl = rd32(E1000_CTRL);
6870 ctrl &= ~E1000_CTRL_VME;
6871 wr32(E1000_CTRL, ctrl);
9d5c8243
AK
6872 }
6873
e1739522 6874 igb_rlpml_set(adapter);
9d5c8243
AK
6875}
6876
80d5c368
PM
6877static int igb_vlan_rx_add_vid(struct net_device *netdev,
6878 __be16 proto, u16 vid)
9d5c8243
AK
6879{
6880 struct igb_adapter *adapter = netdev_priv(netdev);
6881 struct e1000_hw *hw = &adapter->hw;
4ae196df 6882 int pf_id = adapter->vfs_allocated_count;
9d5c8243 6883
51466239
AD
6884 /* attempt to add filter to vlvf array */
6885 igb_vlvf_set(adapter, vid, true, pf_id);
4ae196df 6886
51466239
AD
6887 /* add the filter since PF can receive vlans w/o entry in vlvf */
6888 igb_vfta_set(hw, vid, true);
b2cb09b1
JP
6889
6890 set_bit(vid, adapter->active_vlans);
8e586137
JP
6891
6892 return 0;
9d5c8243
AK
6893}
6894
80d5c368
PM
6895static int igb_vlan_rx_kill_vid(struct net_device *netdev,
6896 __be16 proto, u16 vid)
9d5c8243
AK
6897{
6898 struct igb_adapter *adapter = netdev_priv(netdev);
6899 struct e1000_hw *hw = &adapter->hw;
4ae196df 6900 int pf_id = adapter->vfs_allocated_count;
51466239 6901 s32 err;
9d5c8243 6902
51466239
AD
6903 /* remove vlan from VLVF table array */
6904 err = igb_vlvf_set(adapter, vid, false, pf_id);
9d5c8243 6905
51466239
AD
6906 /* if vid was not present in VLVF just remove it from table */
6907 if (err)
4ae196df 6908 igb_vfta_set(hw, vid, false);
b2cb09b1
JP
6909
6910 clear_bit(vid, adapter->active_vlans);
8e586137
JP
6911
6912 return 0;
9d5c8243
AK
6913}
6914
6915static void igb_restore_vlan(struct igb_adapter *adapter)
6916{
b2cb09b1 6917 u16 vid;
9d5c8243 6918
5faf030c
AD
6919 igb_vlan_mode(adapter->netdev, adapter->netdev->features);
6920
b2cb09b1 6921 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 6922 igb_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
9d5c8243
AK
6923}
6924
14ad2513 6925int igb_set_spd_dplx(struct igb_adapter *adapter, u32 spd, u8 dplx)
9d5c8243 6926{
090b1795 6927 struct pci_dev *pdev = adapter->pdev;
9d5c8243
AK
6928 struct e1000_mac_info *mac = &adapter->hw.mac;
6929
6930 mac->autoneg = 0;
6931
14ad2513 6932 /* Make sure dplx is at most 1 bit and lsb of speed is not set
b980ac18
JK
6933 * for the switch() below to work
6934 */
14ad2513
DD
6935 if ((spd & 1) || (dplx & ~1))
6936 goto err_inval;
6937
f502ef7d
AA
6938 /* Fiber NIC's only allow 1000 gbps Full duplex
6939 * and 100Mbps Full duplex for 100baseFx sfp
6940 */
6941 if (adapter->hw.phy.media_type == e1000_media_type_internal_serdes) {
6942 switch (spd + dplx) {
6943 case SPEED_10 + DUPLEX_HALF:
6944 case SPEED_10 + DUPLEX_FULL:
6945 case SPEED_100 + DUPLEX_HALF:
6946 goto err_inval;
6947 default:
6948 break;
6949 }
6950 }
cd2638a8 6951
14ad2513 6952 switch (spd + dplx) {
9d5c8243
AK
6953 case SPEED_10 + DUPLEX_HALF:
6954 mac->forced_speed_duplex = ADVERTISE_10_HALF;
6955 break;
6956 case SPEED_10 + DUPLEX_FULL:
6957 mac->forced_speed_duplex = ADVERTISE_10_FULL;
6958 break;
6959 case SPEED_100 + DUPLEX_HALF:
6960 mac->forced_speed_duplex = ADVERTISE_100_HALF;
6961 break;
6962 case SPEED_100 + DUPLEX_FULL:
6963 mac->forced_speed_duplex = ADVERTISE_100_FULL;
6964 break;
6965 case SPEED_1000 + DUPLEX_FULL:
6966 mac->autoneg = 1;
6967 adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
6968 break;
6969 case SPEED_1000 + DUPLEX_HALF: /* not supported */
6970 default:
14ad2513 6971 goto err_inval;
9d5c8243 6972 }
8376dad0
JB
6973
6974 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
6975 adapter->hw.phy.mdix = AUTO_ALL_MODES;
6976
9d5c8243 6977 return 0;
14ad2513
DD
6978
6979err_inval:
6980 dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
6981 return -EINVAL;
9d5c8243
AK
6982}
6983
749ab2cd
YZ
6984static int __igb_shutdown(struct pci_dev *pdev, bool *enable_wake,
6985 bool runtime)
9d5c8243
AK
6986{
6987 struct net_device *netdev = pci_get_drvdata(pdev);
6988 struct igb_adapter *adapter = netdev_priv(netdev);
6989 struct e1000_hw *hw = &adapter->hw;
2d064c06 6990 u32 ctrl, rctl, status;
749ab2cd 6991 u32 wufc = runtime ? E1000_WUFC_LNKC : adapter->wol;
9d5c8243
AK
6992#ifdef CONFIG_PM
6993 int retval = 0;
6994#endif
6995
6996 netif_device_detach(netdev);
6997
a88f10ec 6998 if (netif_running(netdev))
749ab2cd 6999 __igb_close(netdev, true);
a88f10ec 7000
047e0030 7001 igb_clear_interrupt_scheme(adapter);
9d5c8243
AK
7002
7003#ifdef CONFIG_PM
7004 retval = pci_save_state(pdev);
7005 if (retval)
7006 return retval;
7007#endif
7008
7009 status = rd32(E1000_STATUS);
7010 if (status & E1000_STATUS_LU)
7011 wufc &= ~E1000_WUFC_LNKC;
7012
7013 if (wufc) {
7014 igb_setup_rctl(adapter);
ff41f8dc 7015 igb_set_rx_mode(netdev);
9d5c8243
AK
7016
7017 /* turn on all-multi mode if wake on multicast is enabled */
7018 if (wufc & E1000_WUFC_MC) {
7019 rctl = rd32(E1000_RCTL);
7020 rctl |= E1000_RCTL_MPE;
7021 wr32(E1000_RCTL, rctl);
7022 }
7023
7024 ctrl = rd32(E1000_CTRL);
7025 /* advertise wake from D3Cold */
7026 #define E1000_CTRL_ADVD3WUC 0x00100000
7027 /* phy power management enable */
7028 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
7029 ctrl |= E1000_CTRL_ADVD3WUC;
7030 wr32(E1000_CTRL, ctrl);
7031
9d5c8243 7032 /* Allow time for pending master requests to run */
330a6d6a 7033 igb_disable_pcie_master(hw);
9d5c8243
AK
7034
7035 wr32(E1000_WUC, E1000_WUC_PME_EN);
7036 wr32(E1000_WUFC, wufc);
9d5c8243
AK
7037 } else {
7038 wr32(E1000_WUC, 0);
7039 wr32(E1000_WUFC, 0);
9d5c8243
AK
7040 }
7041
3fe7c4c9
RW
7042 *enable_wake = wufc || adapter->en_mng_pt;
7043 if (!*enable_wake)
88a268c1
NN
7044 igb_power_down_link(adapter);
7045 else
7046 igb_power_up_link(adapter);
9d5c8243
AK
7047
7048 /* Release control of h/w to f/w. If f/w is AMT enabled, this
b980ac18
JK
7049 * would have already happened in close and is redundant.
7050 */
9d5c8243
AK
7051 igb_release_hw_control(adapter);
7052
7053 pci_disable_device(pdev);
7054
9d5c8243
AK
7055 return 0;
7056}
7057
7058#ifdef CONFIG_PM
d9dd966d 7059#ifdef CONFIG_PM_SLEEP
749ab2cd 7060static int igb_suspend(struct device *dev)
3fe7c4c9
RW
7061{
7062 int retval;
7063 bool wake;
749ab2cd 7064 struct pci_dev *pdev = to_pci_dev(dev);
3fe7c4c9 7065
749ab2cd 7066 retval = __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7067 if (retval)
7068 return retval;
7069
7070 if (wake) {
7071 pci_prepare_to_sleep(pdev);
7072 } else {
7073 pci_wake_from_d3(pdev, false);
7074 pci_set_power_state(pdev, PCI_D3hot);
7075 }
7076
7077 return 0;
7078}
d9dd966d 7079#endif /* CONFIG_PM_SLEEP */
3fe7c4c9 7080
749ab2cd 7081static int igb_resume(struct device *dev)
9d5c8243 7082{
749ab2cd 7083 struct pci_dev *pdev = to_pci_dev(dev);
9d5c8243
AK
7084 struct net_device *netdev = pci_get_drvdata(pdev);
7085 struct igb_adapter *adapter = netdev_priv(netdev);
7086 struct e1000_hw *hw = &adapter->hw;
7087 u32 err;
7088
7089 pci_set_power_state(pdev, PCI_D0);
7090 pci_restore_state(pdev);
b94f2d77 7091 pci_save_state(pdev);
42bfd33a 7092
aed5dec3 7093 err = pci_enable_device_mem(pdev);
9d5c8243
AK
7094 if (err) {
7095 dev_err(&pdev->dev,
7096 "igb: Cannot enable PCI device from suspend\n");
7097 return err;
7098 }
7099 pci_set_master(pdev);
7100
7101 pci_enable_wake(pdev, PCI_D3hot, 0);
7102 pci_enable_wake(pdev, PCI_D3cold, 0);
7103
53c7d064 7104 if (igb_init_interrupt_scheme(adapter, true)) {
a88f10ec
AD
7105 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7106 return -ENOMEM;
9d5c8243
AK
7107 }
7108
9d5c8243 7109 igb_reset(adapter);
a8564f03
AD
7110
7111 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7112 * driver.
7113 */
a8564f03
AD
7114 igb_get_hw_control(adapter);
7115
9d5c8243
AK
7116 wr32(E1000_WUS, ~0);
7117
749ab2cd 7118 if (netdev->flags & IFF_UP) {
0c2cc02e 7119 rtnl_lock();
749ab2cd 7120 err = __igb_open(netdev, true);
0c2cc02e 7121 rtnl_unlock();
a88f10ec
AD
7122 if (err)
7123 return err;
7124 }
9d5c8243
AK
7125
7126 netif_device_attach(netdev);
749ab2cd
YZ
7127 return 0;
7128}
7129
7130#ifdef CONFIG_PM_RUNTIME
7131static int igb_runtime_idle(struct device *dev)
7132{
7133 struct pci_dev *pdev = to_pci_dev(dev);
7134 struct net_device *netdev = pci_get_drvdata(pdev);
7135 struct igb_adapter *adapter = netdev_priv(netdev);
7136
7137 if (!igb_has_link(adapter))
7138 pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
7139
7140 return -EBUSY;
7141}
7142
7143static int igb_runtime_suspend(struct device *dev)
7144{
7145 struct pci_dev *pdev = to_pci_dev(dev);
7146 int retval;
7147 bool wake;
7148
7149 retval = __igb_shutdown(pdev, &wake, 1);
7150 if (retval)
7151 return retval;
7152
7153 if (wake) {
7154 pci_prepare_to_sleep(pdev);
7155 } else {
7156 pci_wake_from_d3(pdev, false);
7157 pci_set_power_state(pdev, PCI_D3hot);
7158 }
9d5c8243 7159
9d5c8243
AK
7160 return 0;
7161}
749ab2cd
YZ
7162
7163static int igb_runtime_resume(struct device *dev)
7164{
7165 return igb_resume(dev);
7166}
7167#endif /* CONFIG_PM_RUNTIME */
9d5c8243
AK
7168#endif
7169
7170static void igb_shutdown(struct pci_dev *pdev)
7171{
3fe7c4c9
RW
7172 bool wake;
7173
749ab2cd 7174 __igb_shutdown(pdev, &wake, 0);
3fe7c4c9
RW
7175
7176 if (system_state == SYSTEM_POWER_OFF) {
7177 pci_wake_from_d3(pdev, wake);
7178 pci_set_power_state(pdev, PCI_D3hot);
7179 }
9d5c8243
AK
7180}
7181
fa44f2f1
GR
7182#ifdef CONFIG_PCI_IOV
7183static int igb_sriov_reinit(struct pci_dev *dev)
7184{
7185 struct net_device *netdev = pci_get_drvdata(dev);
7186 struct igb_adapter *adapter = netdev_priv(netdev);
7187 struct pci_dev *pdev = adapter->pdev;
7188
7189 rtnl_lock();
7190
7191 if (netif_running(netdev))
7192 igb_close(netdev);
7193
7194 igb_clear_interrupt_scheme(adapter);
7195
7196 igb_init_queue_configuration(adapter);
7197
7198 if (igb_init_interrupt_scheme(adapter, true)) {
7199 dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
7200 return -ENOMEM;
7201 }
7202
7203 if (netif_running(netdev))
7204 igb_open(netdev);
7205
7206 rtnl_unlock();
7207
7208 return 0;
7209}
7210
7211static int igb_pci_disable_sriov(struct pci_dev *dev)
7212{
7213 int err = igb_disable_sriov(dev);
7214
7215 if (!err)
7216 err = igb_sriov_reinit(dev);
7217
7218 return err;
7219}
7220
7221static int igb_pci_enable_sriov(struct pci_dev *dev, int num_vfs)
7222{
7223 int err = igb_enable_sriov(dev, num_vfs);
7224
7225 if (err)
7226 goto out;
7227
7228 err = igb_sriov_reinit(dev);
7229 if (!err)
7230 return num_vfs;
7231
7232out:
7233 return err;
7234}
7235
7236#endif
7237static int igb_pci_sriov_configure(struct pci_dev *dev, int num_vfs)
7238{
7239#ifdef CONFIG_PCI_IOV
7240 if (num_vfs == 0)
7241 return igb_pci_disable_sriov(dev);
7242 else
7243 return igb_pci_enable_sriov(dev, num_vfs);
7244#endif
7245 return 0;
7246}
7247
9d5c8243 7248#ifdef CONFIG_NET_POLL_CONTROLLER
b980ac18 7249/* Polling 'interrupt' - used by things like netconsole to send skbs
9d5c8243
AK
7250 * without having to re-enable interrupts. It's not called while
7251 * the interrupt routine is executing.
7252 */
7253static void igb_netpoll(struct net_device *netdev)
7254{
7255 struct igb_adapter *adapter = netdev_priv(netdev);
eebbbdba 7256 struct e1000_hw *hw = &adapter->hw;
0d1ae7f4 7257 struct igb_q_vector *q_vector;
9d5c8243 7258 int i;
9d5c8243 7259
047e0030 7260 for (i = 0; i < adapter->num_q_vectors; i++) {
0d1ae7f4
AD
7261 q_vector = adapter->q_vector[i];
7262 if (adapter->msix_entries)
7263 wr32(E1000_EIMC, q_vector->eims_value);
7264 else
7265 igb_irq_disable(adapter);
047e0030 7266 napi_schedule(&q_vector->napi);
eebbbdba 7267 }
9d5c8243
AK
7268}
7269#endif /* CONFIG_NET_POLL_CONTROLLER */
7270
7271/**
b980ac18
JK
7272 * igb_io_error_detected - called when PCI error is detected
7273 * @pdev: Pointer to PCI device
7274 * @state: The current pci connection state
9d5c8243 7275 *
b980ac18
JK
7276 * This function is called after a PCI bus error affecting
7277 * this device has been detected.
7278 **/
9d5c8243
AK
7279static pci_ers_result_t igb_io_error_detected(struct pci_dev *pdev,
7280 pci_channel_state_t state)
7281{
7282 struct net_device *netdev = pci_get_drvdata(pdev);
7283 struct igb_adapter *adapter = netdev_priv(netdev);
7284
7285 netif_device_detach(netdev);
7286
59ed6eec
AD
7287 if (state == pci_channel_io_perm_failure)
7288 return PCI_ERS_RESULT_DISCONNECT;
7289
9d5c8243
AK
7290 if (netif_running(netdev))
7291 igb_down(adapter);
7292 pci_disable_device(pdev);
7293
7294 /* Request a slot slot reset. */
7295 return PCI_ERS_RESULT_NEED_RESET;
7296}
7297
7298/**
b980ac18
JK
7299 * igb_io_slot_reset - called after the pci bus has been reset.
7300 * @pdev: Pointer to PCI device
9d5c8243 7301 *
b980ac18
JK
7302 * Restart the card from scratch, as if from a cold-boot. Implementation
7303 * resembles the first-half of the igb_resume routine.
7304 **/
9d5c8243
AK
7305static pci_ers_result_t igb_io_slot_reset(struct pci_dev *pdev)
7306{
7307 struct net_device *netdev = pci_get_drvdata(pdev);
7308 struct igb_adapter *adapter = netdev_priv(netdev);
7309 struct e1000_hw *hw = &adapter->hw;
40a914fa 7310 pci_ers_result_t result;
42bfd33a 7311 int err;
9d5c8243 7312
aed5dec3 7313 if (pci_enable_device_mem(pdev)) {
9d5c8243
AK
7314 dev_err(&pdev->dev,
7315 "Cannot re-enable PCI device after reset.\n");
40a914fa
AD
7316 result = PCI_ERS_RESULT_DISCONNECT;
7317 } else {
7318 pci_set_master(pdev);
7319 pci_restore_state(pdev);
b94f2d77 7320 pci_save_state(pdev);
9d5c8243 7321
40a914fa
AD
7322 pci_enable_wake(pdev, PCI_D3hot, 0);
7323 pci_enable_wake(pdev, PCI_D3cold, 0);
9d5c8243 7324
40a914fa
AD
7325 igb_reset(adapter);
7326 wr32(E1000_WUS, ~0);
7327 result = PCI_ERS_RESULT_RECOVERED;
7328 }
9d5c8243 7329
ea943d41
JK
7330 err = pci_cleanup_aer_uncorrect_error_status(pdev);
7331 if (err) {
b980ac18
JK
7332 dev_err(&pdev->dev,
7333 "pci_cleanup_aer_uncorrect_error_status failed 0x%0x\n",
7334 err);
ea943d41
JK
7335 /* non-fatal, continue */
7336 }
40a914fa
AD
7337
7338 return result;
9d5c8243
AK
7339}
7340
7341/**
b980ac18
JK
7342 * igb_io_resume - called when traffic can start flowing again.
7343 * @pdev: Pointer to PCI device
9d5c8243 7344 *
b980ac18
JK
7345 * This callback is called when the error recovery driver tells us that
7346 * its OK to resume normal operation. Implementation resembles the
7347 * second-half of the igb_resume routine.
9d5c8243
AK
7348 */
7349static void igb_io_resume(struct pci_dev *pdev)
7350{
7351 struct net_device *netdev = pci_get_drvdata(pdev);
7352 struct igb_adapter *adapter = netdev_priv(netdev);
7353
9d5c8243
AK
7354 if (netif_running(netdev)) {
7355 if (igb_up(adapter)) {
7356 dev_err(&pdev->dev, "igb_up failed after reset\n");
7357 return;
7358 }
7359 }
7360
7361 netif_device_attach(netdev);
7362
7363 /* let the f/w know that the h/w is now under the control of the
b980ac18
JK
7364 * driver.
7365 */
9d5c8243 7366 igb_get_hw_control(adapter);
9d5c8243
AK
7367}
7368
26ad9178 7369static void igb_rar_set_qsel(struct igb_adapter *adapter, u8 *addr, u32 index,
b980ac18 7370 u8 qsel)
26ad9178
AD
7371{
7372 u32 rar_low, rar_high;
7373 struct e1000_hw *hw = &adapter->hw;
7374
7375 /* HW expects these in little endian so we reverse the byte order
7376 * from network order (big endian) to little endian
7377 */
7378 rar_low = ((u32) addr[0] | ((u32) addr[1] << 8) |
b980ac18 7379 ((u32) addr[2] << 16) | ((u32) addr[3] << 24));
26ad9178
AD
7380 rar_high = ((u32) addr[4] | ((u32) addr[5] << 8));
7381
7382 /* Indicate to hardware the Address is Valid. */
7383 rar_high |= E1000_RAH_AV;
7384
7385 if (hw->mac.type == e1000_82575)
7386 rar_high |= E1000_RAH_POOL_1 * qsel;
7387 else
7388 rar_high |= E1000_RAH_POOL_1 << qsel;
7389
7390 wr32(E1000_RAL(index), rar_low);
7391 wrfl();
7392 wr32(E1000_RAH(index), rar_high);
7393 wrfl();
7394}
7395
4ae196df 7396static int igb_set_vf_mac(struct igb_adapter *adapter,
b980ac18 7397 int vf, unsigned char *mac_addr)
4ae196df
AD
7398{
7399 struct e1000_hw *hw = &adapter->hw;
ff41f8dc 7400 /* VF MAC addresses start at end of receive addresses and moves
b980ac18
JK
7401 * towards the first, as a result a collision should not be possible
7402 */
ff41f8dc 7403 int rar_entry = hw->mac.rar_entry_count - (vf + 1);
4ae196df 7404
37680117 7405 memcpy(adapter->vf_data[vf].vf_mac_addresses, mac_addr, ETH_ALEN);
4ae196df 7406
26ad9178 7407 igb_rar_set_qsel(adapter, mac_addr, rar_entry, vf);
4ae196df
AD
7408
7409 return 0;
7410}
7411
8151d294
WM
7412static int igb_ndo_set_vf_mac(struct net_device *netdev, int vf, u8 *mac)
7413{
7414 struct igb_adapter *adapter = netdev_priv(netdev);
7415 if (!is_valid_ether_addr(mac) || (vf >= adapter->vfs_allocated_count))
7416 return -EINVAL;
7417 adapter->vf_data[vf].flags |= IGB_VF_FLAG_PF_SET_MAC;
7418 dev_info(&adapter->pdev->dev, "setting MAC %pM on VF %d\n", mac, vf);
b980ac18
JK
7419 dev_info(&adapter->pdev->dev,
7420 "Reload the VF driver to make this change effective.");
8151d294 7421 if (test_bit(__IGB_DOWN, &adapter->state)) {
b980ac18
JK
7422 dev_warn(&adapter->pdev->dev,
7423 "The VF MAC address has been set, but the PF device is not up.\n");
7424 dev_warn(&adapter->pdev->dev,
7425 "Bring the PF device up before attempting to use the VF device.\n");
8151d294
WM
7426 }
7427 return igb_set_vf_mac(adapter, vf, mac);
7428}
7429
17dc566c
LL
7430static int igb_link_mbps(int internal_link_speed)
7431{
7432 switch (internal_link_speed) {
7433 case SPEED_100:
7434 return 100;
7435 case SPEED_1000:
7436 return 1000;
7437 default:
7438 return 0;
7439 }
7440}
7441
7442static void igb_set_vf_rate_limit(struct e1000_hw *hw, int vf, int tx_rate,
7443 int link_speed)
7444{
7445 int rf_dec, rf_int;
7446 u32 bcnrc_val;
7447
7448 if (tx_rate != 0) {
7449 /* Calculate the rate factor values to set */
7450 rf_int = link_speed / tx_rate;
7451 rf_dec = (link_speed - (rf_int * tx_rate));
b980ac18
JK
7452 rf_dec = (rf_dec * (1 << E1000_RTTBCNRC_RF_INT_SHIFT)) /
7453 tx_rate;
17dc566c
LL
7454
7455 bcnrc_val = E1000_RTTBCNRC_RS_ENA;
b980ac18
JK
7456 bcnrc_val |= ((rf_int << E1000_RTTBCNRC_RF_INT_SHIFT) &
7457 E1000_RTTBCNRC_RF_INT_MASK);
17dc566c
LL
7458 bcnrc_val |= (rf_dec & E1000_RTTBCNRC_RF_DEC_MASK);
7459 } else {
7460 bcnrc_val = 0;
7461 }
7462
7463 wr32(E1000_RTTDQSEL, vf); /* vf X uses queue X */
b980ac18 7464 /* Set global transmit compensation time to the MMW_SIZE in RTTBCNRM
f00b0da7
LL
7465 * register. MMW_SIZE=0x014 if 9728-byte jumbo is supported.
7466 */
7467 wr32(E1000_RTTBCNRM, 0x14);
17dc566c
LL
7468 wr32(E1000_RTTBCNRC, bcnrc_val);
7469}
7470
7471static void igb_check_vf_rate_limit(struct igb_adapter *adapter)
7472{
7473 int actual_link_speed, i;
7474 bool reset_rate = false;
7475
7476 /* VF TX rate limit was not set or not supported */
7477 if ((adapter->vf_rate_link_speed == 0) ||
7478 (adapter->hw.mac.type != e1000_82576))
7479 return;
7480
7481 actual_link_speed = igb_link_mbps(adapter->link_speed);
7482 if (actual_link_speed != adapter->vf_rate_link_speed) {
7483 reset_rate = true;
7484 adapter->vf_rate_link_speed = 0;
7485 dev_info(&adapter->pdev->dev,
b980ac18 7486 "Link speed has been changed. VF Transmit rate is disabled\n");
17dc566c
LL
7487 }
7488
7489 for (i = 0; i < adapter->vfs_allocated_count; i++) {
7490 if (reset_rate)
7491 adapter->vf_data[i].tx_rate = 0;
7492
7493 igb_set_vf_rate_limit(&adapter->hw, i,
b980ac18
JK
7494 adapter->vf_data[i].tx_rate,
7495 actual_link_speed);
17dc566c
LL
7496 }
7497}
7498
8151d294
WM
7499static int igb_ndo_set_vf_bw(struct net_device *netdev, int vf, int tx_rate)
7500{
17dc566c
LL
7501 struct igb_adapter *adapter = netdev_priv(netdev);
7502 struct e1000_hw *hw = &adapter->hw;
7503 int actual_link_speed;
7504
7505 if (hw->mac.type != e1000_82576)
7506 return -EOPNOTSUPP;
7507
7508 actual_link_speed = igb_link_mbps(adapter->link_speed);
7509 if ((vf >= adapter->vfs_allocated_count) ||
7510 (!(rd32(E1000_STATUS) & E1000_STATUS_LU)) ||
7511 (tx_rate < 0) || (tx_rate > actual_link_speed))
7512 return -EINVAL;
7513
7514 adapter->vf_rate_link_speed = actual_link_speed;
7515 adapter->vf_data[vf].tx_rate = (u16)tx_rate;
7516 igb_set_vf_rate_limit(hw, vf, tx_rate, actual_link_speed);
7517
7518 return 0;
8151d294
WM
7519}
7520
70ea4783
LL
7521static int igb_ndo_set_vf_spoofchk(struct net_device *netdev, int vf,
7522 bool setting)
7523{
7524 struct igb_adapter *adapter = netdev_priv(netdev);
7525 struct e1000_hw *hw = &adapter->hw;
7526 u32 reg_val, reg_offset;
7527
7528 if (!adapter->vfs_allocated_count)
7529 return -EOPNOTSUPP;
7530
7531 if (vf >= adapter->vfs_allocated_count)
7532 return -EINVAL;
7533
7534 reg_offset = (hw->mac.type == e1000_82576) ? E1000_DTXSWC : E1000_TXSWC;
7535 reg_val = rd32(reg_offset);
7536 if (setting)
7537 reg_val |= ((1 << vf) |
7538 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7539 else
7540 reg_val &= ~((1 << vf) |
7541 (1 << (vf + E1000_DTXSWC_VLAN_SPOOF_SHIFT)));
7542 wr32(reg_offset, reg_val);
7543
7544 adapter->vf_data[vf].spoofchk_enabled = setting;
7545 return E1000_SUCCESS;
7546}
7547
8151d294
WM
7548static int igb_ndo_get_vf_config(struct net_device *netdev,
7549 int vf, struct ifla_vf_info *ivi)
7550{
7551 struct igb_adapter *adapter = netdev_priv(netdev);
7552 if (vf >= adapter->vfs_allocated_count)
7553 return -EINVAL;
7554 ivi->vf = vf;
7555 memcpy(&ivi->mac, adapter->vf_data[vf].vf_mac_addresses, ETH_ALEN);
17dc566c 7556 ivi->tx_rate = adapter->vf_data[vf].tx_rate;
8151d294
WM
7557 ivi->vlan = adapter->vf_data[vf].pf_vlan;
7558 ivi->qos = adapter->vf_data[vf].pf_qos;
70ea4783 7559 ivi->spoofchk = adapter->vf_data[vf].spoofchk_enabled;
8151d294
WM
7560 return 0;
7561}
7562
4ae196df
AD
7563static void igb_vmm_control(struct igb_adapter *adapter)
7564{
7565 struct e1000_hw *hw = &adapter->hw;
10d8e907 7566 u32 reg;
4ae196df 7567
52a1dd4d
AD
7568 switch (hw->mac.type) {
7569 case e1000_82575:
f96a8a0b
CW
7570 case e1000_i210:
7571 case e1000_i211:
ceb5f13b 7572 case e1000_i354:
52a1dd4d
AD
7573 default:
7574 /* replication is not supported for 82575 */
4ae196df 7575 return;
52a1dd4d
AD
7576 case e1000_82576:
7577 /* notify HW that the MAC is adding vlan tags */
7578 reg = rd32(E1000_DTXCTL);
7579 reg |= E1000_DTXCTL_VLAN_ADDED;
7580 wr32(E1000_DTXCTL, reg);
7581 case e1000_82580:
7582 /* enable replication vlan tag stripping */
7583 reg = rd32(E1000_RPLOLR);
7584 reg |= E1000_RPLOLR_STRVLAN;
7585 wr32(E1000_RPLOLR, reg);
d2ba2ed8
AD
7586 case e1000_i350:
7587 /* none of the above registers are supported by i350 */
52a1dd4d
AD
7588 break;
7589 }
10d8e907 7590
d4960307
AD
7591 if (adapter->vfs_allocated_count) {
7592 igb_vmdq_set_loopback_pf(hw, true);
7593 igb_vmdq_set_replication_pf(hw, true);
13800469 7594 igb_vmdq_set_anti_spoofing_pf(hw, true,
b980ac18 7595 adapter->vfs_allocated_count);
d4960307
AD
7596 } else {
7597 igb_vmdq_set_loopback_pf(hw, false);
7598 igb_vmdq_set_replication_pf(hw, false);
7599 }
4ae196df
AD
7600}
7601
b6e0c419
CW
7602static void igb_init_dmac(struct igb_adapter *adapter, u32 pba)
7603{
7604 struct e1000_hw *hw = &adapter->hw;
7605 u32 dmac_thr;
7606 u16 hwm;
7607
7608 if (hw->mac.type > e1000_82580) {
7609 if (adapter->flags & IGB_FLAG_DMAC) {
7610 u32 reg;
7611
7612 /* force threshold to 0. */
7613 wr32(E1000_DMCTXTH, 0);
7614
b980ac18 7615 /* DMA Coalescing high water mark needs to be greater
e8c626e9
MV
7616 * than the Rx threshold. Set hwm to PBA - max frame
7617 * size in 16B units, capping it at PBA - 6KB.
b6e0c419 7618 */
e8c626e9
MV
7619 hwm = 64 * pba - adapter->max_frame_size / 16;
7620 if (hwm < 64 * (pba - 6))
7621 hwm = 64 * (pba - 6);
7622 reg = rd32(E1000_FCRTC);
7623 reg &= ~E1000_FCRTC_RTH_COAL_MASK;
7624 reg |= ((hwm << E1000_FCRTC_RTH_COAL_SHIFT)
7625 & E1000_FCRTC_RTH_COAL_MASK);
7626 wr32(E1000_FCRTC, reg);
7627
b980ac18 7628 /* Set the DMA Coalescing Rx threshold to PBA - 2 * max
e8c626e9
MV
7629 * frame size, capping it at PBA - 10KB.
7630 */
7631 dmac_thr = pba - adapter->max_frame_size / 512;
7632 if (dmac_thr < pba - 10)
7633 dmac_thr = pba - 10;
b6e0c419
CW
7634 reg = rd32(E1000_DMACR);
7635 reg &= ~E1000_DMACR_DMACTHR_MASK;
b6e0c419
CW
7636 reg |= ((dmac_thr << E1000_DMACR_DMACTHR_SHIFT)
7637 & E1000_DMACR_DMACTHR_MASK);
7638
7639 /* transition to L0x or L1 if available..*/
7640 reg |= (E1000_DMACR_DMAC_EN | E1000_DMACR_DMAC_LX_MASK);
7641
7642 /* watchdog timer= +-1000 usec in 32usec intervals */
7643 reg |= (1000 >> 5);
0c02dd98
MV
7644
7645 /* Disable BMC-to-OS Watchdog Enable */
ceb5f13b
CW
7646 if (hw->mac.type != e1000_i354)
7647 reg &= ~E1000_DMACR_DC_BMC2OSW_EN;
7648
b6e0c419
CW
7649 wr32(E1000_DMACR, reg);
7650
b980ac18 7651 /* no lower threshold to disable
b6e0c419
CW
7652 * coalescing(smart fifb)-UTRESH=0
7653 */
7654 wr32(E1000_DMCRTRH, 0);
b6e0c419
CW
7655
7656 reg = (IGB_DMCTLX_DCFLUSH_DIS | 0x4);
7657
7658 wr32(E1000_DMCTLX, reg);
7659
b980ac18 7660 /* free space in tx packet buffer to wake from
b6e0c419
CW
7661 * DMA coal
7662 */
7663 wr32(E1000_DMCTXTH, (IGB_MIN_TXPBSIZE -
7664 (IGB_TX_BUF_4096 + adapter->max_frame_size)) >> 6);
7665
b980ac18 7666 /* make low power state decision controlled
b6e0c419
CW
7667 * by DMA coal
7668 */
7669 reg = rd32(E1000_PCIEMISC);
7670 reg &= ~E1000_PCIEMISC_LX_DECISION;
7671 wr32(E1000_PCIEMISC, reg);
7672 } /* endif adapter->dmac is not disabled */
7673 } else if (hw->mac.type == e1000_82580) {
7674 u32 reg = rd32(E1000_PCIEMISC);
7675 wr32(E1000_PCIEMISC, reg & ~E1000_PCIEMISC_LX_DECISION);
7676 wr32(E1000_DMACR, 0);
7677 }
7678}
7679
b980ac18
JK
7680/**
7681 * igb_read_i2c_byte - Reads 8 bit word over I2C
441fc6fd
CW
7682 * @hw: pointer to hardware structure
7683 * @byte_offset: byte offset to read
7684 * @dev_addr: device address
7685 * @data: value read
7686 *
7687 * Performs byte read operation over I2C interface at
7688 * a specified device address.
b980ac18 7689 **/
441fc6fd 7690s32 igb_read_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 7691 u8 dev_addr, u8 *data)
441fc6fd
CW
7692{
7693 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 7694 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
7695 s32 status;
7696 u16 swfw_mask = 0;
7697
7698 if (!this_client)
7699 return E1000_ERR_I2C;
7700
7701 swfw_mask = E1000_SWFW_PHY0_SM;
7702
7703 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask)
7704 != E1000_SUCCESS)
7705 return E1000_ERR_SWFW_SYNC;
7706
7707 status = i2c_smbus_read_byte_data(this_client, byte_offset);
7708 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7709
7710 if (status < 0)
7711 return E1000_ERR_I2C;
7712 else {
7713 *data = status;
7714 return E1000_SUCCESS;
7715 }
7716}
7717
b980ac18
JK
7718/**
7719 * igb_write_i2c_byte - Writes 8 bit word over I2C
441fc6fd
CW
7720 * @hw: pointer to hardware structure
7721 * @byte_offset: byte offset to write
7722 * @dev_addr: device address
7723 * @data: value to write
7724 *
7725 * Performs byte write operation over I2C interface at
7726 * a specified device address.
b980ac18 7727 **/
441fc6fd 7728s32 igb_write_i2c_byte(struct e1000_hw *hw, u8 byte_offset,
b980ac18 7729 u8 dev_addr, u8 data)
441fc6fd
CW
7730{
7731 struct igb_adapter *adapter = container_of(hw, struct igb_adapter, hw);
603e86fa 7732 struct i2c_client *this_client = adapter->i2c_client;
441fc6fd
CW
7733 s32 status;
7734 u16 swfw_mask = E1000_SWFW_PHY0_SM;
7735
7736 if (!this_client)
7737 return E1000_ERR_I2C;
7738
7739 if (hw->mac.ops.acquire_swfw_sync(hw, swfw_mask) != E1000_SUCCESS)
7740 return E1000_ERR_SWFW_SYNC;
7741 status = i2c_smbus_write_byte_data(this_client, byte_offset, data);
7742 hw->mac.ops.release_swfw_sync(hw, swfw_mask);
7743
7744 if (status)
7745 return E1000_ERR_I2C;
7746 else
7747 return E1000_SUCCESS;
7748
7749}
9d5c8243 7750/* igb_main.c */