]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - fs/namespace.c
vfs: start hiding vfsmount guts series
[mirror_ubuntu-zesty-kernel.git] / fs / namespace.c
CommitLineData
1da177e4
LT
1/*
2 * linux/fs/namespace.c
3 *
4 * (C) Copyright Al Viro 2000, 2001
5 * Released under GPL v2.
6 *
7 * Based on code from fs/super.c, copyright Linus Torvalds and others.
8 * Heavily rewritten.
9 */
10
1da177e4
LT
11#include <linux/syscalls.h>
12#include <linux/slab.h>
13#include <linux/sched.h>
99b7db7b
NP
14#include <linux/spinlock.h>
15#include <linux/percpu.h>
1da177e4 16#include <linux/init.h>
15a67dd8 17#include <linux/kernel.h>
1da177e4 18#include <linux/acct.h>
16f7e0fe 19#include <linux/capability.h>
3d733633 20#include <linux/cpumask.h>
1da177e4 21#include <linux/module.h>
f20a9ead 22#include <linux/sysfs.h>
1da177e4 23#include <linux/seq_file.h>
6b3286ed 24#include <linux/mnt_namespace.h>
1da177e4 25#include <linux/namei.h>
b43f3cbd 26#include <linux/nsproxy.h>
1da177e4
LT
27#include <linux/security.h>
28#include <linux/mount.h>
07f3f05c 29#include <linux/ramfs.h>
13f14b4d 30#include <linux/log2.h>
73cd49ec 31#include <linux/idr.h>
5ad4e53b 32#include <linux/fs_struct.h>
2504c5d6 33#include <linux/fsnotify.h>
1da177e4
LT
34#include <asm/uaccess.h>
35#include <asm/unistd.h>
07b20889 36#include "pnode.h"
948730b0 37#include "internal.h"
1da177e4 38
13f14b4d
ED
39#define HASH_SHIFT ilog2(PAGE_SIZE / sizeof(struct list_head))
40#define HASH_SIZE (1UL << HASH_SHIFT)
41
5addc5dd 42static int event;
73cd49ec 43static DEFINE_IDA(mnt_id_ida);
719f5d7f 44static DEFINE_IDA(mnt_group_ida);
99b7db7b 45static DEFINE_SPINLOCK(mnt_id_lock);
f21f6220
AV
46static int mnt_id_start = 0;
47static int mnt_group_start = 1;
1da177e4 48
fa3536cc 49static struct list_head *mount_hashtable __read_mostly;
e18b890b 50static struct kmem_cache *mnt_cache __read_mostly;
390c6843 51static struct rw_semaphore namespace_sem;
1da177e4 52
f87fd4c2 53/* /sys/fs */
00d26666
GKH
54struct kobject *fs_kobj;
55EXPORT_SYMBOL_GPL(fs_kobj);
f87fd4c2 56
99b7db7b
NP
57/*
58 * vfsmount lock may be taken for read to prevent changes to the
59 * vfsmount hash, ie. during mountpoint lookups or walking back
60 * up the tree.
61 *
62 * It should be taken for write in all cases where the vfsmount
63 * tree or hash is modified or when a vfsmount structure is modified.
64 */
65DEFINE_BRLOCK(vfsmount_lock);
66
1da177e4
LT
67static inline unsigned long hash(struct vfsmount *mnt, struct dentry *dentry)
68{
b58fed8b
RP
69 unsigned long tmp = ((unsigned long)mnt / L1_CACHE_BYTES);
70 tmp += ((unsigned long)dentry / L1_CACHE_BYTES);
13f14b4d
ED
71 tmp = tmp + (tmp >> HASH_SHIFT);
72 return tmp & (HASH_SIZE - 1);
1da177e4
LT
73}
74
3d733633
DH
75#define MNT_WRITER_UNDERFLOW_LIMIT -(1<<16)
76
99b7db7b
NP
77/*
78 * allocation is serialized by namespace_sem, but we need the spinlock to
79 * serialize with freeing.
80 */
73cd49ec
MS
81static int mnt_alloc_id(struct vfsmount *mnt)
82{
83 int res;
84
85retry:
86 ida_pre_get(&mnt_id_ida, GFP_KERNEL);
99b7db7b 87 spin_lock(&mnt_id_lock);
f21f6220
AV
88 res = ida_get_new_above(&mnt_id_ida, mnt_id_start, &mnt->mnt_id);
89 if (!res)
90 mnt_id_start = mnt->mnt_id + 1;
99b7db7b 91 spin_unlock(&mnt_id_lock);
73cd49ec
MS
92 if (res == -EAGAIN)
93 goto retry;
94
95 return res;
96}
97
98static void mnt_free_id(struct vfsmount *mnt)
99{
f21f6220 100 int id = mnt->mnt_id;
99b7db7b 101 spin_lock(&mnt_id_lock);
f21f6220
AV
102 ida_remove(&mnt_id_ida, id);
103 if (mnt_id_start > id)
104 mnt_id_start = id;
99b7db7b 105 spin_unlock(&mnt_id_lock);
73cd49ec
MS
106}
107
719f5d7f
MS
108/*
109 * Allocate a new peer group ID
110 *
111 * mnt_group_ida is protected by namespace_sem
112 */
113static int mnt_alloc_group_id(struct vfsmount *mnt)
114{
f21f6220
AV
115 int res;
116
719f5d7f
MS
117 if (!ida_pre_get(&mnt_group_ida, GFP_KERNEL))
118 return -ENOMEM;
119
f21f6220
AV
120 res = ida_get_new_above(&mnt_group_ida,
121 mnt_group_start,
122 &mnt->mnt_group_id);
123 if (!res)
124 mnt_group_start = mnt->mnt_group_id + 1;
125
126 return res;
719f5d7f
MS
127}
128
129/*
130 * Release a peer group ID
131 */
132void mnt_release_group_id(struct vfsmount *mnt)
133{
f21f6220
AV
134 int id = mnt->mnt_group_id;
135 ida_remove(&mnt_group_ida, id);
136 if (mnt_group_start > id)
137 mnt_group_start = id;
719f5d7f
MS
138 mnt->mnt_group_id = 0;
139}
140
b3e19d92
NP
141/*
142 * vfsmount lock must be held for read
143 */
144static inline void mnt_add_count(struct vfsmount *mnt, int n)
145{
146#ifdef CONFIG_SMP
147 this_cpu_add(mnt->mnt_pcp->mnt_count, n);
148#else
149 preempt_disable();
150 mnt->mnt_count += n;
151 preempt_enable();
152#endif
153}
154
b3e19d92
NP
155/*
156 * vfsmount lock must be held for write
157 */
158unsigned int mnt_get_count(struct vfsmount *mnt)
159{
160#ifdef CONFIG_SMP
f03c6599 161 unsigned int count = 0;
b3e19d92
NP
162 int cpu;
163
164 for_each_possible_cpu(cpu) {
165 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_count;
166 }
167
168 return count;
169#else
170 return mnt->mnt_count;
171#endif
172}
173
9d412a43 174static struct vfsmount *alloc_vfsmnt(const char *name)
1da177e4 175{
7d6fec45
AV
176 struct mount *p = kmem_cache_zalloc(mnt_cache, GFP_KERNEL);
177 if (p) {
178 struct vfsmount *mnt = &p->mnt;
73cd49ec
MS
179 int err;
180
181 err = mnt_alloc_id(mnt);
88b38782
LZ
182 if (err)
183 goto out_free_cache;
184
185 if (name) {
186 mnt->mnt_devname = kstrdup(name, GFP_KERNEL);
187 if (!mnt->mnt_devname)
188 goto out_free_id;
73cd49ec
MS
189 }
190
b3e19d92
NP
191#ifdef CONFIG_SMP
192 mnt->mnt_pcp = alloc_percpu(struct mnt_pcp);
193 if (!mnt->mnt_pcp)
194 goto out_free_devname;
195
f03c6599 196 this_cpu_add(mnt->mnt_pcp->mnt_count, 1);
b3e19d92
NP
197#else
198 mnt->mnt_count = 1;
199 mnt->mnt_writers = 0;
200#endif
201
1da177e4
LT
202 INIT_LIST_HEAD(&mnt->mnt_hash);
203 INIT_LIST_HEAD(&mnt->mnt_child);
204 INIT_LIST_HEAD(&mnt->mnt_mounts);
205 INIT_LIST_HEAD(&mnt->mnt_list);
55e700b9 206 INIT_LIST_HEAD(&mnt->mnt_expire);
03e06e68 207 INIT_LIST_HEAD(&mnt->mnt_share);
a58b0eb8
RP
208 INIT_LIST_HEAD(&mnt->mnt_slave_list);
209 INIT_LIST_HEAD(&mnt->mnt_slave);
2504c5d6
AG
210#ifdef CONFIG_FSNOTIFY
211 INIT_HLIST_HEAD(&mnt->mnt_fsnotify_marks);
d3ef3d73 212#endif
1da177e4 213 }
7d6fec45 214 return &p->mnt;
88b38782 215
d3ef3d73 216#ifdef CONFIG_SMP
217out_free_devname:
7d6fec45 218 kfree(p->mnt.mnt_devname);
d3ef3d73 219#endif
88b38782 220out_free_id:
7d6fec45 221 mnt_free_id(&p->mnt);
88b38782 222out_free_cache:
7d6fec45 223 kmem_cache_free(mnt_cache, p);
88b38782 224 return NULL;
1da177e4
LT
225}
226
3d733633
DH
227/*
228 * Most r/o checks on a fs are for operations that take
229 * discrete amounts of time, like a write() or unlink().
230 * We must keep track of when those operations start
231 * (for permission checks) and when they end, so that
232 * we can determine when writes are able to occur to
233 * a filesystem.
234 */
235/*
236 * __mnt_is_readonly: check whether a mount is read-only
237 * @mnt: the mount to check for its write status
238 *
239 * This shouldn't be used directly ouside of the VFS.
240 * It does not guarantee that the filesystem will stay
241 * r/w, just that it is right *now*. This can not and
242 * should not be used in place of IS_RDONLY(inode).
243 * mnt_want/drop_write() will _keep_ the filesystem
244 * r/w.
245 */
246int __mnt_is_readonly(struct vfsmount *mnt)
247{
2e4b7fcd
DH
248 if (mnt->mnt_flags & MNT_READONLY)
249 return 1;
250 if (mnt->mnt_sb->s_flags & MS_RDONLY)
251 return 1;
252 return 0;
3d733633
DH
253}
254EXPORT_SYMBOL_GPL(__mnt_is_readonly);
255
c6653a83 256static inline void mnt_inc_writers(struct vfsmount *mnt)
d3ef3d73 257{
258#ifdef CONFIG_SMP
b3e19d92 259 this_cpu_inc(mnt->mnt_pcp->mnt_writers);
d3ef3d73 260#else
261 mnt->mnt_writers++;
262#endif
263}
3d733633 264
c6653a83 265static inline void mnt_dec_writers(struct vfsmount *mnt)
3d733633 266{
d3ef3d73 267#ifdef CONFIG_SMP
b3e19d92 268 this_cpu_dec(mnt->mnt_pcp->mnt_writers);
d3ef3d73 269#else
270 mnt->mnt_writers--;
271#endif
3d733633 272}
3d733633 273
c6653a83 274static unsigned int mnt_get_writers(struct vfsmount *mnt)
3d733633 275{
d3ef3d73 276#ifdef CONFIG_SMP
277 unsigned int count = 0;
3d733633 278 int cpu;
3d733633
DH
279
280 for_each_possible_cpu(cpu) {
b3e19d92 281 count += per_cpu_ptr(mnt->mnt_pcp, cpu)->mnt_writers;
3d733633 282 }
3d733633 283
d3ef3d73 284 return count;
285#else
286 return mnt->mnt_writers;
287#endif
3d733633
DH
288}
289
8366025e
DH
290/*
291 * Most r/o checks on a fs are for operations that take
292 * discrete amounts of time, like a write() or unlink().
293 * We must keep track of when those operations start
294 * (for permission checks) and when they end, so that
295 * we can determine when writes are able to occur to
296 * a filesystem.
297 */
298/**
299 * mnt_want_write - get write access to a mount
300 * @mnt: the mount on which to take a write
301 *
302 * This tells the low-level filesystem that a write is
303 * about to be performed to it, and makes sure that
304 * writes are allowed before returning success. When
305 * the write operation is finished, mnt_drop_write()
306 * must be called. This is effectively a refcount.
307 */
308int mnt_want_write(struct vfsmount *mnt)
309{
3d733633 310 int ret = 0;
3d733633 311
d3ef3d73 312 preempt_disable();
c6653a83 313 mnt_inc_writers(mnt);
d3ef3d73 314 /*
c6653a83 315 * The store to mnt_inc_writers must be visible before we pass
d3ef3d73 316 * MNT_WRITE_HOLD loop below, so that the slowpath can see our
317 * incremented count after it has set MNT_WRITE_HOLD.
318 */
319 smp_mb();
320 while (mnt->mnt_flags & MNT_WRITE_HOLD)
321 cpu_relax();
322 /*
323 * After the slowpath clears MNT_WRITE_HOLD, mnt_is_readonly will
324 * be set to match its requirements. So we must not load that until
325 * MNT_WRITE_HOLD is cleared.
326 */
327 smp_rmb();
3d733633 328 if (__mnt_is_readonly(mnt)) {
c6653a83 329 mnt_dec_writers(mnt);
3d733633
DH
330 ret = -EROFS;
331 goto out;
332 }
3d733633 333out:
d3ef3d73 334 preempt_enable();
3d733633 335 return ret;
8366025e
DH
336}
337EXPORT_SYMBOL_GPL(mnt_want_write);
338
96029c4e 339/**
340 * mnt_clone_write - get write access to a mount
341 * @mnt: the mount on which to take a write
342 *
343 * This is effectively like mnt_want_write, except
344 * it must only be used to take an extra write reference
345 * on a mountpoint that we already know has a write reference
346 * on it. This allows some optimisation.
347 *
348 * After finished, mnt_drop_write must be called as usual to
349 * drop the reference.
350 */
351int mnt_clone_write(struct vfsmount *mnt)
352{
353 /* superblock may be r/o */
354 if (__mnt_is_readonly(mnt))
355 return -EROFS;
356 preempt_disable();
c6653a83 357 mnt_inc_writers(mnt);
96029c4e 358 preempt_enable();
359 return 0;
360}
361EXPORT_SYMBOL_GPL(mnt_clone_write);
362
363/**
364 * mnt_want_write_file - get write access to a file's mount
365 * @file: the file who's mount on which to take a write
366 *
367 * This is like mnt_want_write, but it takes a file and can
368 * do some optimisations if the file is open for write already
369 */
370int mnt_want_write_file(struct file *file)
371{
2d8dd38a
OH
372 struct inode *inode = file->f_dentry->d_inode;
373 if (!(file->f_mode & FMODE_WRITE) || special_file(inode->i_mode))
96029c4e 374 return mnt_want_write(file->f_path.mnt);
375 else
376 return mnt_clone_write(file->f_path.mnt);
377}
378EXPORT_SYMBOL_GPL(mnt_want_write_file);
379
8366025e
DH
380/**
381 * mnt_drop_write - give up write access to a mount
382 * @mnt: the mount on which to give up write access
383 *
384 * Tells the low-level filesystem that we are done
385 * performing writes to it. Must be matched with
386 * mnt_want_write() call above.
387 */
388void mnt_drop_write(struct vfsmount *mnt)
389{
d3ef3d73 390 preempt_disable();
c6653a83 391 mnt_dec_writers(mnt);
d3ef3d73 392 preempt_enable();
8366025e
DH
393}
394EXPORT_SYMBOL_GPL(mnt_drop_write);
395
2a79f17e
AV
396void mnt_drop_write_file(struct file *file)
397{
398 mnt_drop_write(file->f_path.mnt);
399}
400EXPORT_SYMBOL(mnt_drop_write_file);
401
2e4b7fcd 402static int mnt_make_readonly(struct vfsmount *mnt)
8366025e 403{
3d733633
DH
404 int ret = 0;
405
99b7db7b 406 br_write_lock(vfsmount_lock);
d3ef3d73 407 mnt->mnt_flags |= MNT_WRITE_HOLD;
3d733633 408 /*
d3ef3d73 409 * After storing MNT_WRITE_HOLD, we'll read the counters. This store
410 * should be visible before we do.
3d733633 411 */
d3ef3d73 412 smp_mb();
413
3d733633 414 /*
d3ef3d73 415 * With writers on hold, if this value is zero, then there are
416 * definitely no active writers (although held writers may subsequently
417 * increment the count, they'll have to wait, and decrement it after
418 * seeing MNT_READONLY).
419 *
420 * It is OK to have counter incremented on one CPU and decremented on
421 * another: the sum will add up correctly. The danger would be when we
422 * sum up each counter, if we read a counter before it is incremented,
423 * but then read another CPU's count which it has been subsequently
424 * decremented from -- we would see more decrements than we should.
425 * MNT_WRITE_HOLD protects against this scenario, because
426 * mnt_want_write first increments count, then smp_mb, then spins on
427 * MNT_WRITE_HOLD, so it can't be decremented by another CPU while
428 * we're counting up here.
3d733633 429 */
c6653a83 430 if (mnt_get_writers(mnt) > 0)
d3ef3d73 431 ret = -EBUSY;
432 else
2e4b7fcd 433 mnt->mnt_flags |= MNT_READONLY;
d3ef3d73 434 /*
435 * MNT_READONLY must become visible before ~MNT_WRITE_HOLD, so writers
436 * that become unheld will see MNT_READONLY.
437 */
438 smp_wmb();
439 mnt->mnt_flags &= ~MNT_WRITE_HOLD;
99b7db7b 440 br_write_unlock(vfsmount_lock);
3d733633 441 return ret;
8366025e 442}
8366025e 443
2e4b7fcd
DH
444static void __mnt_unmake_readonly(struct vfsmount *mnt)
445{
99b7db7b 446 br_write_lock(vfsmount_lock);
2e4b7fcd 447 mnt->mnt_flags &= ~MNT_READONLY;
99b7db7b 448 br_write_unlock(vfsmount_lock);
2e4b7fcd
DH
449}
450
9d412a43 451static void free_vfsmnt(struct vfsmount *mnt)
1da177e4 452{
7d6fec45 453 struct mount *p = real_mount(mnt);
1da177e4 454 kfree(mnt->mnt_devname);
73cd49ec 455 mnt_free_id(mnt);
d3ef3d73 456#ifdef CONFIG_SMP
b3e19d92 457 free_percpu(mnt->mnt_pcp);
d3ef3d73 458#endif
7d6fec45 459 kmem_cache_free(mnt_cache, p);
1da177e4
LT
460}
461
462/*
a05964f3
RP
463 * find the first or last mount at @dentry on vfsmount @mnt depending on
464 * @dir. If @dir is set return the first mount else return the last mount.
99b7db7b 465 * vfsmount_lock must be held for read or write.
1da177e4 466 */
a05964f3
RP
467struct vfsmount *__lookup_mnt(struct vfsmount *mnt, struct dentry *dentry,
468 int dir)
1da177e4 469{
b58fed8b
RP
470 struct list_head *head = mount_hashtable + hash(mnt, dentry);
471 struct list_head *tmp = head;
1da177e4
LT
472 struct vfsmount *p, *found = NULL;
473
1da177e4 474 for (;;) {
a05964f3 475 tmp = dir ? tmp->next : tmp->prev;
1da177e4
LT
476 p = NULL;
477 if (tmp == head)
478 break;
479 p = list_entry(tmp, struct vfsmount, mnt_hash);
480 if (p->mnt_parent == mnt && p->mnt_mountpoint == dentry) {
a05964f3 481 found = p;
1da177e4
LT
482 break;
483 }
484 }
1da177e4
LT
485 return found;
486}
487
a05964f3
RP
488/*
489 * lookup_mnt increments the ref count before returning
490 * the vfsmount struct.
491 */
1c755af4 492struct vfsmount *lookup_mnt(struct path *path)
a05964f3
RP
493{
494 struct vfsmount *child_mnt;
99b7db7b
NP
495
496 br_read_lock(vfsmount_lock);
1c755af4 497 if ((child_mnt = __lookup_mnt(path->mnt, path->dentry, 1)))
a05964f3 498 mntget(child_mnt);
99b7db7b 499 br_read_unlock(vfsmount_lock);
a05964f3
RP
500 return child_mnt;
501}
502
1da177e4
LT
503static inline int check_mnt(struct vfsmount *mnt)
504{
6b3286ed 505 return mnt->mnt_ns == current->nsproxy->mnt_ns;
1da177e4
LT
506}
507
99b7db7b
NP
508/*
509 * vfsmount lock must be held for write
510 */
6b3286ed 511static void touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
512{
513 if (ns) {
514 ns->event = ++event;
515 wake_up_interruptible(&ns->poll);
516 }
517}
518
99b7db7b
NP
519/*
520 * vfsmount lock must be held for write
521 */
6b3286ed 522static void __touch_mnt_namespace(struct mnt_namespace *ns)
5addc5dd
AV
523{
524 if (ns && ns->event != event) {
525 ns->event = event;
526 wake_up_interruptible(&ns->poll);
527 }
528}
529
5f57cbcc
NP
530/*
531 * Clear dentry's mounted state if it has no remaining mounts.
532 * vfsmount_lock must be held for write.
533 */
aa0a4cf0 534static void dentry_reset_mounted(struct dentry *dentry)
5f57cbcc
NP
535{
536 unsigned u;
537
538 for (u = 0; u < HASH_SIZE; u++) {
539 struct vfsmount *p;
540
541 list_for_each_entry(p, &mount_hashtable[u], mnt_hash) {
542 if (p->mnt_mountpoint == dentry)
543 return;
544 }
545 }
546 spin_lock(&dentry->d_lock);
547 dentry->d_flags &= ~DCACHE_MOUNTED;
548 spin_unlock(&dentry->d_lock);
549}
550
99b7db7b
NP
551/*
552 * vfsmount lock must be held for write
553 */
1a390689 554static void detach_mnt(struct vfsmount *mnt, struct path *old_path)
1da177e4 555{
1a390689
AV
556 old_path->dentry = mnt->mnt_mountpoint;
557 old_path->mnt = mnt->mnt_parent;
1da177e4
LT
558 mnt->mnt_parent = mnt;
559 mnt->mnt_mountpoint = mnt->mnt_root;
560 list_del_init(&mnt->mnt_child);
561 list_del_init(&mnt->mnt_hash);
aa0a4cf0 562 dentry_reset_mounted(old_path->dentry);
1da177e4
LT
563}
564
99b7db7b
NP
565/*
566 * vfsmount lock must be held for write
567 */
b90fa9ae
RP
568void mnt_set_mountpoint(struct vfsmount *mnt, struct dentry *dentry,
569 struct vfsmount *child_mnt)
570{
571 child_mnt->mnt_parent = mntget(mnt);
572 child_mnt->mnt_mountpoint = dget(dentry);
5f57cbcc
NP
573 spin_lock(&dentry->d_lock);
574 dentry->d_flags |= DCACHE_MOUNTED;
575 spin_unlock(&dentry->d_lock);
b90fa9ae
RP
576}
577
99b7db7b
NP
578/*
579 * vfsmount lock must be held for write
580 */
1a390689 581static void attach_mnt(struct vfsmount *mnt, struct path *path)
1da177e4 582{
1a390689 583 mnt_set_mountpoint(path->mnt, path->dentry, mnt);
b90fa9ae 584 list_add_tail(&mnt->mnt_hash, mount_hashtable +
1a390689
AV
585 hash(path->mnt, path->dentry));
586 list_add_tail(&mnt->mnt_child, &path->mnt->mnt_mounts);
b90fa9ae
RP
587}
588
7e3d0eb0
AV
589static inline void __mnt_make_longterm(struct vfsmount *mnt)
590{
591#ifdef CONFIG_SMP
592 atomic_inc(&mnt->mnt_longterm);
593#endif
594}
595
596/* needs vfsmount lock for write */
597static inline void __mnt_make_shortterm(struct vfsmount *mnt)
598{
599#ifdef CONFIG_SMP
600 atomic_dec(&mnt->mnt_longterm);
601#endif
602}
603
b90fa9ae 604/*
99b7db7b 605 * vfsmount lock must be held for write
b90fa9ae
RP
606 */
607static void commit_tree(struct vfsmount *mnt)
608{
609 struct vfsmount *parent = mnt->mnt_parent;
610 struct vfsmount *m;
611 LIST_HEAD(head);
6b3286ed 612 struct mnt_namespace *n = parent->mnt_ns;
b90fa9ae
RP
613
614 BUG_ON(parent == mnt);
615
616 list_add_tail(&head, &mnt->mnt_list);
f03c6599 617 list_for_each_entry(m, &head, mnt_list) {
6b3286ed 618 m->mnt_ns = n;
7e3d0eb0 619 __mnt_make_longterm(m);
f03c6599
AV
620 }
621
b90fa9ae
RP
622 list_splice(&head, n->list.prev);
623
624 list_add_tail(&mnt->mnt_hash, mount_hashtable +
625 hash(parent, mnt->mnt_mountpoint));
626 list_add_tail(&mnt->mnt_child, &parent->mnt_mounts);
6b3286ed 627 touch_mnt_namespace(n);
1da177e4
LT
628}
629
630static struct vfsmount *next_mnt(struct vfsmount *p, struct vfsmount *root)
631{
632 struct list_head *next = p->mnt_mounts.next;
633 if (next == &p->mnt_mounts) {
634 while (1) {
635 if (p == root)
636 return NULL;
637 next = p->mnt_child.next;
638 if (next != &p->mnt_parent->mnt_mounts)
639 break;
640 p = p->mnt_parent;
641 }
642 }
643 return list_entry(next, struct vfsmount, mnt_child);
644}
645
9676f0c6
RP
646static struct vfsmount *skip_mnt_tree(struct vfsmount *p)
647{
648 struct list_head *prev = p->mnt_mounts.prev;
649 while (prev != &p->mnt_mounts) {
650 p = list_entry(prev, struct vfsmount, mnt_child);
651 prev = p->mnt_mounts.prev;
652 }
653 return p;
654}
655
9d412a43
AV
656struct vfsmount *
657vfs_kern_mount(struct file_system_type *type, int flags, const char *name, void *data)
658{
659 struct vfsmount *mnt;
660 struct dentry *root;
661
662 if (!type)
663 return ERR_PTR(-ENODEV);
664
665 mnt = alloc_vfsmnt(name);
666 if (!mnt)
667 return ERR_PTR(-ENOMEM);
668
669 if (flags & MS_KERNMOUNT)
670 mnt->mnt_flags = MNT_INTERNAL;
671
672 root = mount_fs(type, flags, name, data);
673 if (IS_ERR(root)) {
674 free_vfsmnt(mnt);
675 return ERR_CAST(root);
676 }
677
678 mnt->mnt_root = root;
679 mnt->mnt_sb = root->d_sb;
680 mnt->mnt_mountpoint = mnt->mnt_root;
681 mnt->mnt_parent = mnt;
682 return mnt;
683}
684EXPORT_SYMBOL_GPL(vfs_kern_mount);
685
36341f64
RP
686static struct vfsmount *clone_mnt(struct vfsmount *old, struct dentry *root,
687 int flag)
1da177e4
LT
688{
689 struct super_block *sb = old->mnt_sb;
690 struct vfsmount *mnt = alloc_vfsmnt(old->mnt_devname);
691
692 if (mnt) {
719f5d7f
MS
693 if (flag & (CL_SLAVE | CL_PRIVATE))
694 mnt->mnt_group_id = 0; /* not a peer of original */
695 else
696 mnt->mnt_group_id = old->mnt_group_id;
697
698 if ((flag & CL_MAKE_SHARED) && !mnt->mnt_group_id) {
699 int err = mnt_alloc_group_id(mnt);
700 if (err)
701 goto out_free;
702 }
703
be1a16a0 704 mnt->mnt_flags = old->mnt_flags & ~MNT_WRITE_HOLD;
1da177e4
LT
705 atomic_inc(&sb->s_active);
706 mnt->mnt_sb = sb;
707 mnt->mnt_root = dget(root);
708 mnt->mnt_mountpoint = mnt->mnt_root;
709 mnt->mnt_parent = mnt;
b90fa9ae 710
5afe0022
RP
711 if (flag & CL_SLAVE) {
712 list_add(&mnt->mnt_slave, &old->mnt_slave_list);
713 mnt->mnt_master = old;
714 CLEAR_MNT_SHARED(mnt);
8aec0809 715 } else if (!(flag & CL_PRIVATE)) {
796a6b52 716 if ((flag & CL_MAKE_SHARED) || IS_MNT_SHARED(old))
5afe0022
RP
717 list_add(&mnt->mnt_share, &old->mnt_share);
718 if (IS_MNT_SLAVE(old))
719 list_add(&mnt->mnt_slave, &old->mnt_slave);
720 mnt->mnt_master = old->mnt_master;
721 }
b90fa9ae
RP
722 if (flag & CL_MAKE_SHARED)
723 set_mnt_shared(mnt);
1da177e4
LT
724
725 /* stick the duplicate mount on the same expiry list
726 * as the original if that was on one */
36341f64 727 if (flag & CL_EXPIRE) {
36341f64
RP
728 if (!list_empty(&old->mnt_expire))
729 list_add(&mnt->mnt_expire, &old->mnt_expire);
36341f64 730 }
1da177e4
LT
731 }
732 return mnt;
719f5d7f
MS
733
734 out_free:
735 free_vfsmnt(mnt);
736 return NULL;
1da177e4
LT
737}
738
b3e19d92 739static inline void mntfree(struct vfsmount *mnt)
1da177e4
LT
740{
741 struct super_block *sb = mnt->mnt_sb;
b3e19d92 742
3d733633
DH
743 /*
744 * This probably indicates that somebody messed
745 * up a mnt_want/drop_write() pair. If this
746 * happens, the filesystem was probably unable
747 * to make r/w->r/o transitions.
748 */
d3ef3d73 749 /*
b3e19d92
NP
750 * The locking used to deal with mnt_count decrement provides barriers,
751 * so mnt_get_writers() below is safe.
d3ef3d73 752 */
c6653a83 753 WARN_ON(mnt_get_writers(mnt));
ca9c726e 754 fsnotify_vfsmount_delete(mnt);
1da177e4
LT
755 dput(mnt->mnt_root);
756 free_vfsmnt(mnt);
757 deactivate_super(sb);
758}
759
f03c6599 760static void mntput_no_expire(struct vfsmount *mnt)
b3e19d92 761{
b3e19d92 762put_again:
f03c6599
AV
763#ifdef CONFIG_SMP
764 br_read_lock(vfsmount_lock);
765 if (likely(atomic_read(&mnt->mnt_longterm))) {
aa9c0e07 766 mnt_add_count(mnt, -1);
b3e19d92 767 br_read_unlock(vfsmount_lock);
f03c6599 768 return;
b3e19d92 769 }
f03c6599 770 br_read_unlock(vfsmount_lock);
b3e19d92 771
99b7db7b 772 br_write_lock(vfsmount_lock);
aa9c0e07 773 mnt_add_count(mnt, -1);
b3e19d92 774 if (mnt_get_count(mnt)) {
99b7db7b
NP
775 br_write_unlock(vfsmount_lock);
776 return;
777 }
b3e19d92 778#else
aa9c0e07 779 mnt_add_count(mnt, -1);
b3e19d92 780 if (likely(mnt_get_count(mnt)))
99b7db7b 781 return;
b3e19d92 782 br_write_lock(vfsmount_lock);
f03c6599 783#endif
b3e19d92
NP
784 if (unlikely(mnt->mnt_pinned)) {
785 mnt_add_count(mnt, mnt->mnt_pinned + 1);
786 mnt->mnt_pinned = 0;
787 br_write_unlock(vfsmount_lock);
788 acct_auto_close_mnt(mnt);
789 goto put_again;
7b7b1ace 790 }
99b7db7b 791 br_write_unlock(vfsmount_lock);
b3e19d92
NP
792 mntfree(mnt);
793}
b3e19d92
NP
794
795void mntput(struct vfsmount *mnt)
796{
797 if (mnt) {
798 /* avoid cacheline pingpong, hope gcc doesn't get "smart" */
799 if (unlikely(mnt->mnt_expiry_mark))
800 mnt->mnt_expiry_mark = 0;
f03c6599 801 mntput_no_expire(mnt);
b3e19d92
NP
802 }
803}
804EXPORT_SYMBOL(mntput);
805
806struct vfsmount *mntget(struct vfsmount *mnt)
807{
808 if (mnt)
aa9c0e07 809 mnt_add_count(mnt, 1);
b3e19d92
NP
810 return mnt;
811}
812EXPORT_SYMBOL(mntget);
813
7b7b1ace
AV
814void mnt_pin(struct vfsmount *mnt)
815{
99b7db7b 816 br_write_lock(vfsmount_lock);
7b7b1ace 817 mnt->mnt_pinned++;
99b7db7b 818 br_write_unlock(vfsmount_lock);
7b7b1ace 819}
7b7b1ace
AV
820EXPORT_SYMBOL(mnt_pin);
821
822void mnt_unpin(struct vfsmount *mnt)
823{
99b7db7b 824 br_write_lock(vfsmount_lock);
7b7b1ace 825 if (mnt->mnt_pinned) {
aa9c0e07 826 mnt_add_count(mnt, 1);
7b7b1ace
AV
827 mnt->mnt_pinned--;
828 }
99b7db7b 829 br_write_unlock(vfsmount_lock);
7b7b1ace 830}
7b7b1ace 831EXPORT_SYMBOL(mnt_unpin);
1da177e4 832
b3b304a2
MS
833static inline void mangle(struct seq_file *m, const char *s)
834{
835 seq_escape(m, s, " \t\n\\");
836}
837
838/*
839 * Simple .show_options callback for filesystems which don't want to
840 * implement more complex mount option showing.
841 *
842 * See also save_mount_options().
843 */
844int generic_show_options(struct seq_file *m, struct vfsmount *mnt)
845{
2a32cebd
AV
846 const char *options;
847
848 rcu_read_lock();
849 options = rcu_dereference(mnt->mnt_sb->s_options);
b3b304a2
MS
850
851 if (options != NULL && options[0]) {
852 seq_putc(m, ',');
853 mangle(m, options);
854 }
2a32cebd 855 rcu_read_unlock();
b3b304a2
MS
856
857 return 0;
858}
859EXPORT_SYMBOL(generic_show_options);
860
861/*
862 * If filesystem uses generic_show_options(), this function should be
863 * called from the fill_super() callback.
864 *
865 * The .remount_fs callback usually needs to be handled in a special
866 * way, to make sure, that previous options are not overwritten if the
867 * remount fails.
868 *
869 * Also note, that if the filesystem's .remount_fs function doesn't
870 * reset all options to their default value, but changes only newly
871 * given options, then the displayed options will not reflect reality
872 * any more.
873 */
874void save_mount_options(struct super_block *sb, char *options)
875{
2a32cebd
AV
876 BUG_ON(sb->s_options);
877 rcu_assign_pointer(sb->s_options, kstrdup(options, GFP_KERNEL));
b3b304a2
MS
878}
879EXPORT_SYMBOL(save_mount_options);
880
2a32cebd
AV
881void replace_mount_options(struct super_block *sb, char *options)
882{
883 char *old = sb->s_options;
884 rcu_assign_pointer(sb->s_options, options);
885 if (old) {
886 synchronize_rcu();
887 kfree(old);
888 }
889}
890EXPORT_SYMBOL(replace_mount_options);
891
a1a2c409 892#ifdef CONFIG_PROC_FS
1da177e4
LT
893/* iterator */
894static void *m_start(struct seq_file *m, loff_t *pos)
895{
a1a2c409 896 struct proc_mounts *p = m->private;
1da177e4 897
390c6843 898 down_read(&namespace_sem);
a1a2c409 899 return seq_list_start(&p->ns->list, *pos);
1da177e4
LT
900}
901
902static void *m_next(struct seq_file *m, void *v, loff_t *pos)
903{
a1a2c409 904 struct proc_mounts *p = m->private;
b0765fb8 905
a1a2c409 906 return seq_list_next(v, &p->ns->list, pos);
1da177e4
LT
907}
908
909static void m_stop(struct seq_file *m, void *v)
910{
390c6843 911 up_read(&namespace_sem);
1da177e4
LT
912}
913
9f5596af
AV
914int mnt_had_events(struct proc_mounts *p)
915{
916 struct mnt_namespace *ns = p->ns;
917 int res = 0;
918
99b7db7b 919 br_read_lock(vfsmount_lock);
f1514638
KS
920 if (p->m.poll_event != ns->event) {
921 p->m.poll_event = ns->event;
9f5596af
AV
922 res = 1;
923 }
99b7db7b 924 br_read_unlock(vfsmount_lock);
9f5596af
AV
925
926 return res;
927}
928
2d4d4864
RP
929struct proc_fs_info {
930 int flag;
931 const char *str;
932};
933
2069f457 934static int show_sb_opts(struct seq_file *m, struct super_block *sb)
1da177e4 935{
2d4d4864 936 static const struct proc_fs_info fs_info[] = {
1da177e4
LT
937 { MS_SYNCHRONOUS, ",sync" },
938 { MS_DIRSYNC, ",dirsync" },
939 { MS_MANDLOCK, ",mand" },
1da177e4
LT
940 { 0, NULL }
941 };
2d4d4864
RP
942 const struct proc_fs_info *fs_infop;
943
944 for (fs_infop = fs_info; fs_infop->flag; fs_infop++) {
945 if (sb->s_flags & fs_infop->flag)
946 seq_puts(m, fs_infop->str);
947 }
2069f457
EP
948
949 return security_sb_show_options(m, sb);
2d4d4864
RP
950}
951
952static void show_mnt_opts(struct seq_file *m, struct vfsmount *mnt)
953{
954 static const struct proc_fs_info mnt_info[] = {
1da177e4
LT
955 { MNT_NOSUID, ",nosuid" },
956 { MNT_NODEV, ",nodev" },
957 { MNT_NOEXEC, ",noexec" },
fc33a7bb
CH
958 { MNT_NOATIME, ",noatime" },
959 { MNT_NODIRATIME, ",nodiratime" },
47ae32d6 960 { MNT_RELATIME, ",relatime" },
1da177e4
LT
961 { 0, NULL }
962 };
2d4d4864
RP
963 const struct proc_fs_info *fs_infop;
964
965 for (fs_infop = mnt_info; fs_infop->flag; fs_infop++) {
966 if (mnt->mnt_flags & fs_infop->flag)
967 seq_puts(m, fs_infop->str);
968 }
969}
970
971static void show_type(struct seq_file *m, struct super_block *sb)
972{
973 mangle(m, sb->s_type->name);
974 if (sb->s_subtype && sb->s_subtype[0]) {
975 seq_putc(m, '.');
976 mangle(m, sb->s_subtype);
977 }
978}
979
980static int show_vfsmnt(struct seq_file *m, void *v)
981{
982 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
983 int err = 0;
c32c2f63 984 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1da177e4 985
c7f404b4
AV
986 if (mnt->mnt_sb->s_op->show_devname) {
987 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
988 if (err)
989 goto out;
990 } else {
991 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
992 }
1da177e4 993 seq_putc(m, ' ');
c32c2f63 994 seq_path(m, &mnt_path, " \t\n\\");
1da177e4 995 seq_putc(m, ' ');
2d4d4864 996 show_type(m, mnt->mnt_sb);
2e4b7fcd 997 seq_puts(m, __mnt_is_readonly(mnt) ? " ro" : " rw");
2069f457
EP
998 err = show_sb_opts(m, mnt->mnt_sb);
999 if (err)
1000 goto out;
2d4d4864 1001 show_mnt_opts(m, mnt);
1da177e4
LT
1002 if (mnt->mnt_sb->s_op->show_options)
1003 err = mnt->mnt_sb->s_op->show_options(m, mnt);
1004 seq_puts(m, " 0 0\n");
2069f457 1005out:
1da177e4
LT
1006 return err;
1007}
1008
a1a2c409 1009const struct seq_operations mounts_op = {
1da177e4
LT
1010 .start = m_start,
1011 .next = m_next,
1012 .stop = m_stop,
1013 .show = show_vfsmnt
1014};
1015
2d4d4864
RP
1016static int show_mountinfo(struct seq_file *m, void *v)
1017{
1018 struct proc_mounts *p = m->private;
1019 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
1020 struct super_block *sb = mnt->mnt_sb;
1021 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
1022 struct path root = p->root;
1023 int err = 0;
1024
1025 seq_printf(m, "%i %i %u:%u ", mnt->mnt_id, mnt->mnt_parent->mnt_id,
1026 MAJOR(sb->s_dev), MINOR(sb->s_dev));
c7f404b4
AV
1027 if (sb->s_op->show_path)
1028 err = sb->s_op->show_path(m, mnt);
1029 else
1030 seq_dentry(m, mnt->mnt_root, " \t\n\\");
1031 if (err)
1032 goto out;
2d4d4864 1033 seq_putc(m, ' ');
02125a82
AV
1034
1035 /* mountpoints outside of chroot jail will give SEQ_SKIP on this */
1036 err = seq_path_root(m, &mnt_path, &root, " \t\n\\");
1037 if (err)
1038 goto out;
1039
2d4d4864
RP
1040 seq_puts(m, mnt->mnt_flags & MNT_READONLY ? " ro" : " rw");
1041 show_mnt_opts(m, mnt);
1042
1043 /* Tagged fields ("foo:X" or "bar") */
1044 if (IS_MNT_SHARED(mnt))
1045 seq_printf(m, " shared:%i", mnt->mnt_group_id);
97e7e0f7
MS
1046 if (IS_MNT_SLAVE(mnt)) {
1047 int master = mnt->mnt_master->mnt_group_id;
1048 int dom = get_dominating_id(mnt, &p->root);
1049 seq_printf(m, " master:%i", master);
1050 if (dom && dom != master)
1051 seq_printf(m, " propagate_from:%i", dom);
1052 }
2d4d4864
RP
1053 if (IS_MNT_UNBINDABLE(mnt))
1054 seq_puts(m, " unbindable");
1055
1056 /* Filesystem specific data */
1057 seq_puts(m, " - ");
1058 show_type(m, sb);
1059 seq_putc(m, ' ');
c7f404b4
AV
1060 if (sb->s_op->show_devname)
1061 err = sb->s_op->show_devname(m, mnt);
1062 else
1063 mangle(m, mnt->mnt_devname ? mnt->mnt_devname : "none");
1064 if (err)
1065 goto out;
2d4d4864 1066 seq_puts(m, sb->s_flags & MS_RDONLY ? " ro" : " rw");
2069f457
EP
1067 err = show_sb_opts(m, sb);
1068 if (err)
1069 goto out;
2d4d4864
RP
1070 if (sb->s_op->show_options)
1071 err = sb->s_op->show_options(m, mnt);
1072 seq_putc(m, '\n');
2069f457 1073out:
2d4d4864
RP
1074 return err;
1075}
1076
1077const struct seq_operations mountinfo_op = {
1078 .start = m_start,
1079 .next = m_next,
1080 .stop = m_stop,
1081 .show = show_mountinfo,
1082};
1083
b4629fe2
CL
1084static int show_vfsstat(struct seq_file *m, void *v)
1085{
b0765fb8 1086 struct vfsmount *mnt = list_entry(v, struct vfsmount, mnt_list);
c32c2f63 1087 struct path mnt_path = { .dentry = mnt->mnt_root, .mnt = mnt };
b4629fe2
CL
1088 int err = 0;
1089
1090 /* device */
c7f404b4 1091 if (mnt->mnt_sb->s_op->show_devname) {
a877ee03 1092 seq_puts(m, "device ");
c7f404b4
AV
1093 err = mnt->mnt_sb->s_op->show_devname(m, mnt);
1094 } else {
1095 if (mnt->mnt_devname) {
1096 seq_puts(m, "device ");
1097 mangle(m, mnt->mnt_devname);
1098 } else
1099 seq_puts(m, "no device");
1100 }
b4629fe2
CL
1101
1102 /* mount point */
1103 seq_puts(m, " mounted on ");
c32c2f63 1104 seq_path(m, &mnt_path, " \t\n\\");
b4629fe2
CL
1105 seq_putc(m, ' ');
1106
1107 /* file system type */
1108 seq_puts(m, "with fstype ");
2d4d4864 1109 show_type(m, mnt->mnt_sb);
b4629fe2
CL
1110
1111 /* optional statistics */
1112 if (mnt->mnt_sb->s_op->show_stats) {
1113 seq_putc(m, ' ');
c7f404b4
AV
1114 if (!err)
1115 err = mnt->mnt_sb->s_op->show_stats(m, mnt);
b4629fe2
CL
1116 }
1117
1118 seq_putc(m, '\n');
1119 return err;
1120}
1121
a1a2c409 1122const struct seq_operations mountstats_op = {
b4629fe2
CL
1123 .start = m_start,
1124 .next = m_next,
1125 .stop = m_stop,
1126 .show = show_vfsstat,
1127};
a1a2c409 1128#endif /* CONFIG_PROC_FS */
b4629fe2 1129
1da177e4
LT
1130/**
1131 * may_umount_tree - check if a mount tree is busy
1132 * @mnt: root of mount tree
1133 *
1134 * This is called to check if a tree of mounts has any
1135 * open files, pwds, chroots or sub mounts that are
1136 * busy.
1137 */
1138int may_umount_tree(struct vfsmount *mnt)
1139{
36341f64
RP
1140 int actual_refs = 0;
1141 int minimum_refs = 0;
1142 struct vfsmount *p;
1da177e4 1143
b3e19d92
NP
1144 /* write lock needed for mnt_get_count */
1145 br_write_lock(vfsmount_lock);
36341f64 1146 for (p = mnt; p; p = next_mnt(p, mnt)) {
b3e19d92 1147 actual_refs += mnt_get_count(p);
1da177e4 1148 minimum_refs += 2;
1da177e4 1149 }
b3e19d92 1150 br_write_unlock(vfsmount_lock);
1da177e4
LT
1151
1152 if (actual_refs > minimum_refs)
e3474a8e 1153 return 0;
1da177e4 1154
e3474a8e 1155 return 1;
1da177e4
LT
1156}
1157
1158EXPORT_SYMBOL(may_umount_tree);
1159
1160/**
1161 * may_umount - check if a mount point is busy
1162 * @mnt: root of mount
1163 *
1164 * This is called to check if a mount point has any
1165 * open files, pwds, chroots or sub mounts. If the
1166 * mount has sub mounts this will return busy
1167 * regardless of whether the sub mounts are busy.
1168 *
1169 * Doesn't take quota and stuff into account. IOW, in some cases it will
1170 * give false negatives. The main reason why it's here is that we need
1171 * a non-destructive way to look for easily umountable filesystems.
1172 */
1173int may_umount(struct vfsmount *mnt)
1174{
e3474a8e 1175 int ret = 1;
8ad08d8a 1176 down_read(&namespace_sem);
b3e19d92 1177 br_write_lock(vfsmount_lock);
a05964f3 1178 if (propagate_mount_busy(mnt, 2))
e3474a8e 1179 ret = 0;
b3e19d92 1180 br_write_unlock(vfsmount_lock);
8ad08d8a 1181 up_read(&namespace_sem);
a05964f3 1182 return ret;
1da177e4
LT
1183}
1184
1185EXPORT_SYMBOL(may_umount);
1186
b90fa9ae 1187void release_mounts(struct list_head *head)
70fbcdf4
RP
1188{
1189 struct vfsmount *mnt;
bf066c7d 1190 while (!list_empty(head)) {
b5e61818 1191 mnt = list_first_entry(head, struct vfsmount, mnt_hash);
70fbcdf4 1192 list_del_init(&mnt->mnt_hash);
b2dba1af 1193 if (mnt_has_parent(mnt)) {
70fbcdf4
RP
1194 struct dentry *dentry;
1195 struct vfsmount *m;
99b7db7b
NP
1196
1197 br_write_lock(vfsmount_lock);
70fbcdf4
RP
1198 dentry = mnt->mnt_mountpoint;
1199 m = mnt->mnt_parent;
1200 mnt->mnt_mountpoint = mnt->mnt_root;
1201 mnt->mnt_parent = mnt;
7c4b93d8 1202 m->mnt_ghosts--;
99b7db7b 1203 br_write_unlock(vfsmount_lock);
70fbcdf4
RP
1204 dput(dentry);
1205 mntput(m);
1206 }
f03c6599 1207 mntput(mnt);
70fbcdf4
RP
1208 }
1209}
1210
99b7db7b
NP
1211/*
1212 * vfsmount lock must be held for write
1213 * namespace_sem must be held for write
1214 */
a05964f3 1215void umount_tree(struct vfsmount *mnt, int propagate, struct list_head *kill)
1da177e4 1216{
7b8a53fd 1217 LIST_HEAD(tmp_list);
1da177e4 1218 struct vfsmount *p;
1da177e4 1219
1bfba4e8 1220 for (p = mnt; p; p = next_mnt(p, mnt))
7b8a53fd 1221 list_move(&p->mnt_hash, &tmp_list);
1da177e4 1222
a05964f3 1223 if (propagate)
7b8a53fd 1224 propagate_umount(&tmp_list);
a05964f3 1225
7b8a53fd 1226 list_for_each_entry(p, &tmp_list, mnt_hash) {
70fbcdf4
RP
1227 list_del_init(&p->mnt_expire);
1228 list_del_init(&p->mnt_list);
6b3286ed
KK
1229 __touch_mnt_namespace(p->mnt_ns);
1230 p->mnt_ns = NULL;
7e3d0eb0 1231 __mnt_make_shortterm(p);
70fbcdf4 1232 list_del_init(&p->mnt_child);
b2dba1af 1233 if (mnt_has_parent(p)) {
7c4b93d8 1234 p->mnt_parent->mnt_ghosts++;
aa0a4cf0 1235 dentry_reset_mounted(p->mnt_mountpoint);
7c4b93d8 1236 }
a05964f3 1237 change_mnt_propagation(p, MS_PRIVATE);
1da177e4 1238 }
7b8a53fd 1239 list_splice(&tmp_list, kill);
1da177e4
LT
1240}
1241
c35038be
AV
1242static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts);
1243
1da177e4
LT
1244static int do_umount(struct vfsmount *mnt, int flags)
1245{
b58fed8b 1246 struct super_block *sb = mnt->mnt_sb;
1da177e4 1247 int retval;
70fbcdf4 1248 LIST_HEAD(umount_list);
1da177e4
LT
1249
1250 retval = security_sb_umount(mnt, flags);
1251 if (retval)
1252 return retval;
1253
1254 /*
1255 * Allow userspace to request a mountpoint be expired rather than
1256 * unmounting unconditionally. Unmount only happens if:
1257 * (1) the mark is already set (the mark is cleared by mntput())
1258 * (2) the usage count == 1 [parent vfsmount] + 1 [sys_umount]
1259 */
1260 if (flags & MNT_EXPIRE) {
6ac08c39 1261 if (mnt == current->fs->root.mnt ||
1da177e4
LT
1262 flags & (MNT_FORCE | MNT_DETACH))
1263 return -EINVAL;
1264
b3e19d92
NP
1265 /*
1266 * probably don't strictly need the lock here if we examined
1267 * all race cases, but it's a slowpath.
1268 */
1269 br_write_lock(vfsmount_lock);
1270 if (mnt_get_count(mnt) != 2) {
bf9faa2a 1271 br_write_unlock(vfsmount_lock);
1da177e4 1272 return -EBUSY;
b3e19d92
NP
1273 }
1274 br_write_unlock(vfsmount_lock);
1da177e4
LT
1275
1276 if (!xchg(&mnt->mnt_expiry_mark, 1))
1277 return -EAGAIN;
1278 }
1279
1280 /*
1281 * If we may have to abort operations to get out of this
1282 * mount, and they will themselves hold resources we must
1283 * allow the fs to do things. In the Unix tradition of
1284 * 'Gee thats tricky lets do it in userspace' the umount_begin
1285 * might fail to complete on the first run through as other tasks
1286 * must return, and the like. Thats for the mount program to worry
1287 * about for the moment.
1288 */
1289
42faad99 1290 if (flags & MNT_FORCE && sb->s_op->umount_begin) {
42faad99 1291 sb->s_op->umount_begin(sb);
42faad99 1292 }
1da177e4
LT
1293
1294 /*
1295 * No sense to grab the lock for this test, but test itself looks
1296 * somewhat bogus. Suggestions for better replacement?
1297 * Ho-hum... In principle, we might treat that as umount + switch
1298 * to rootfs. GC would eventually take care of the old vfsmount.
1299 * Actually it makes sense, especially if rootfs would contain a
1300 * /reboot - static binary that would close all descriptors and
1301 * call reboot(9). Then init(8) could umount root and exec /reboot.
1302 */
6ac08c39 1303 if (mnt == current->fs->root.mnt && !(flags & MNT_DETACH)) {
1da177e4
LT
1304 /*
1305 * Special case for "unmounting" root ...
1306 * we just try to remount it readonly.
1307 */
1308 down_write(&sb->s_umount);
4aa98cf7 1309 if (!(sb->s_flags & MS_RDONLY))
1da177e4 1310 retval = do_remount_sb(sb, MS_RDONLY, NULL, 0);
1da177e4
LT
1311 up_write(&sb->s_umount);
1312 return retval;
1313 }
1314
390c6843 1315 down_write(&namespace_sem);
99b7db7b 1316 br_write_lock(vfsmount_lock);
5addc5dd 1317 event++;
1da177e4 1318
c35038be
AV
1319 if (!(flags & MNT_DETACH))
1320 shrink_submounts(mnt, &umount_list);
1321
1da177e4 1322 retval = -EBUSY;
a05964f3 1323 if (flags & MNT_DETACH || !propagate_mount_busy(mnt, 2)) {
1da177e4 1324 if (!list_empty(&mnt->mnt_list))
a05964f3 1325 umount_tree(mnt, 1, &umount_list);
1da177e4
LT
1326 retval = 0;
1327 }
99b7db7b 1328 br_write_unlock(vfsmount_lock);
390c6843 1329 up_write(&namespace_sem);
70fbcdf4 1330 release_mounts(&umount_list);
1da177e4
LT
1331 return retval;
1332}
1333
1334/*
1335 * Now umount can handle mount points as well as block devices.
1336 * This is important for filesystems which use unnamed block devices.
1337 *
1338 * We now support a flag for forced unmount like the other 'big iron'
1339 * unixes. Our API is identical to OSF/1 to avoid making a mess of AMD
1340 */
1341
bdc480e3 1342SYSCALL_DEFINE2(umount, char __user *, name, int, flags)
1da177e4 1343{
2d8f3038 1344 struct path path;
1da177e4 1345 int retval;
db1f05bb 1346 int lookup_flags = 0;
1da177e4 1347
db1f05bb
MS
1348 if (flags & ~(MNT_FORCE | MNT_DETACH | MNT_EXPIRE | UMOUNT_NOFOLLOW))
1349 return -EINVAL;
1350
1351 if (!(flags & UMOUNT_NOFOLLOW))
1352 lookup_flags |= LOOKUP_FOLLOW;
1353
1354 retval = user_path_at(AT_FDCWD, name, lookup_flags, &path);
1da177e4
LT
1355 if (retval)
1356 goto out;
1357 retval = -EINVAL;
2d8f3038 1358 if (path.dentry != path.mnt->mnt_root)
1da177e4 1359 goto dput_and_out;
2d8f3038 1360 if (!check_mnt(path.mnt))
1da177e4
LT
1361 goto dput_and_out;
1362
1363 retval = -EPERM;
1364 if (!capable(CAP_SYS_ADMIN))
1365 goto dput_and_out;
1366
2d8f3038 1367 retval = do_umount(path.mnt, flags);
1da177e4 1368dput_and_out:
429731b1 1369 /* we mustn't call path_put() as that would clear mnt_expiry_mark */
2d8f3038
AV
1370 dput(path.dentry);
1371 mntput_no_expire(path.mnt);
1da177e4
LT
1372out:
1373 return retval;
1374}
1375
1376#ifdef __ARCH_WANT_SYS_OLDUMOUNT
1377
1378/*
b58fed8b 1379 * The 2.0 compatible umount. No flags.
1da177e4 1380 */
bdc480e3 1381SYSCALL_DEFINE1(oldumount, char __user *, name)
1da177e4 1382{
b58fed8b 1383 return sys_umount(name, 0);
1da177e4
LT
1384}
1385
1386#endif
1387
2d92ab3c 1388static int mount_is_safe(struct path *path)
1da177e4
LT
1389{
1390 if (capable(CAP_SYS_ADMIN))
1391 return 0;
1392 return -EPERM;
1393#ifdef notyet
2d92ab3c 1394 if (S_ISLNK(path->dentry->d_inode->i_mode))
1da177e4 1395 return -EPERM;
2d92ab3c 1396 if (path->dentry->d_inode->i_mode & S_ISVTX) {
da9592ed 1397 if (current_uid() != path->dentry->d_inode->i_uid)
1da177e4
LT
1398 return -EPERM;
1399 }
2d92ab3c 1400 if (inode_permission(path->dentry->d_inode, MAY_WRITE))
1da177e4
LT
1401 return -EPERM;
1402 return 0;
1403#endif
1404}
1405
b90fa9ae 1406struct vfsmount *copy_tree(struct vfsmount *mnt, struct dentry *dentry,
36341f64 1407 int flag)
1da177e4
LT
1408{
1409 struct vfsmount *res, *p, *q, *r, *s;
1a390689 1410 struct path path;
1da177e4 1411
9676f0c6
RP
1412 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(mnt))
1413 return NULL;
1414
36341f64 1415 res = q = clone_mnt(mnt, dentry, flag);
1da177e4
LT
1416 if (!q)
1417 goto Enomem;
1418 q->mnt_mountpoint = mnt->mnt_mountpoint;
1419
1420 p = mnt;
fdadd65f 1421 list_for_each_entry(r, &mnt->mnt_mounts, mnt_child) {
7ec02ef1 1422 if (!is_subdir(r->mnt_mountpoint, dentry))
1da177e4
LT
1423 continue;
1424
1425 for (s = r; s; s = next_mnt(s, r)) {
9676f0c6
RP
1426 if (!(flag & CL_COPY_ALL) && IS_MNT_UNBINDABLE(s)) {
1427 s = skip_mnt_tree(s);
1428 continue;
1429 }
1da177e4
LT
1430 while (p != s->mnt_parent) {
1431 p = p->mnt_parent;
1432 q = q->mnt_parent;
1433 }
1434 p = s;
1a390689
AV
1435 path.mnt = q;
1436 path.dentry = p->mnt_mountpoint;
36341f64 1437 q = clone_mnt(p, p->mnt_root, flag);
1da177e4
LT
1438 if (!q)
1439 goto Enomem;
99b7db7b 1440 br_write_lock(vfsmount_lock);
1da177e4 1441 list_add_tail(&q->mnt_list, &res->mnt_list);
1a390689 1442 attach_mnt(q, &path);
99b7db7b 1443 br_write_unlock(vfsmount_lock);
1da177e4
LT
1444 }
1445 }
1446 return res;
b58fed8b 1447Enomem:
1da177e4 1448 if (res) {
70fbcdf4 1449 LIST_HEAD(umount_list);
99b7db7b 1450 br_write_lock(vfsmount_lock);
a05964f3 1451 umount_tree(res, 0, &umount_list);
99b7db7b 1452 br_write_unlock(vfsmount_lock);
70fbcdf4 1453 release_mounts(&umount_list);
1da177e4
LT
1454 }
1455 return NULL;
1456}
1457
589ff870 1458struct vfsmount *collect_mounts(struct path *path)
8aec0809
AV
1459{
1460 struct vfsmount *tree;
1a60a280 1461 down_write(&namespace_sem);
589ff870 1462 tree = copy_tree(path->mnt, path->dentry, CL_COPY_ALL | CL_PRIVATE);
1a60a280 1463 up_write(&namespace_sem);
8aec0809
AV
1464 return tree;
1465}
1466
1467void drop_collected_mounts(struct vfsmount *mnt)
1468{
1469 LIST_HEAD(umount_list);
1a60a280 1470 down_write(&namespace_sem);
99b7db7b 1471 br_write_lock(vfsmount_lock);
8aec0809 1472 umount_tree(mnt, 0, &umount_list);
99b7db7b 1473 br_write_unlock(vfsmount_lock);
1a60a280 1474 up_write(&namespace_sem);
8aec0809
AV
1475 release_mounts(&umount_list);
1476}
1477
1f707137
AV
1478int iterate_mounts(int (*f)(struct vfsmount *, void *), void *arg,
1479 struct vfsmount *root)
1480{
1481 struct vfsmount *mnt;
1482 int res = f(root, arg);
1483 if (res)
1484 return res;
1485 list_for_each_entry(mnt, &root->mnt_list, mnt_list) {
1486 res = f(mnt, arg);
1487 if (res)
1488 return res;
1489 }
1490 return 0;
1491}
1492
719f5d7f
MS
1493static void cleanup_group_ids(struct vfsmount *mnt, struct vfsmount *end)
1494{
1495 struct vfsmount *p;
1496
1497 for (p = mnt; p != end; p = next_mnt(p, mnt)) {
1498 if (p->mnt_group_id && !IS_MNT_SHARED(p))
1499 mnt_release_group_id(p);
1500 }
1501}
1502
1503static int invent_group_ids(struct vfsmount *mnt, bool recurse)
1504{
1505 struct vfsmount *p;
1506
1507 for (p = mnt; p; p = recurse ? next_mnt(p, mnt) : NULL) {
1508 if (!p->mnt_group_id && !IS_MNT_SHARED(p)) {
1509 int err = mnt_alloc_group_id(p);
1510 if (err) {
1511 cleanup_group_ids(mnt, p);
1512 return err;
1513 }
1514 }
1515 }
1516
1517 return 0;
1518}
1519
b90fa9ae
RP
1520/*
1521 * @source_mnt : mount tree to be attached
21444403
RP
1522 * @nd : place the mount tree @source_mnt is attached
1523 * @parent_nd : if non-null, detach the source_mnt from its parent and
1524 * store the parent mount and mountpoint dentry.
1525 * (done when source_mnt is moved)
b90fa9ae
RP
1526 *
1527 * NOTE: in the table below explains the semantics when a source mount
1528 * of a given type is attached to a destination mount of a given type.
9676f0c6
RP
1529 * ---------------------------------------------------------------------------
1530 * | BIND MOUNT OPERATION |
1531 * |**************************************************************************
1532 * | source-->| shared | private | slave | unbindable |
1533 * | dest | | | | |
1534 * | | | | | | |
1535 * | v | | | | |
1536 * |**************************************************************************
1537 * | shared | shared (++) | shared (+) | shared(+++)| invalid |
1538 * | | | | | |
1539 * |non-shared| shared (+) | private | slave (*) | invalid |
1540 * ***************************************************************************
b90fa9ae
RP
1541 * A bind operation clones the source mount and mounts the clone on the
1542 * destination mount.
1543 *
1544 * (++) the cloned mount is propagated to all the mounts in the propagation
1545 * tree of the destination mount and the cloned mount is added to
1546 * the peer group of the source mount.
1547 * (+) the cloned mount is created under the destination mount and is marked
1548 * as shared. The cloned mount is added to the peer group of the source
1549 * mount.
5afe0022
RP
1550 * (+++) the mount is propagated to all the mounts in the propagation tree
1551 * of the destination mount and the cloned mount is made slave
1552 * of the same master as that of the source mount. The cloned mount
1553 * is marked as 'shared and slave'.
1554 * (*) the cloned mount is made a slave of the same master as that of the
1555 * source mount.
1556 *
9676f0c6
RP
1557 * ---------------------------------------------------------------------------
1558 * | MOVE MOUNT OPERATION |
1559 * |**************************************************************************
1560 * | source-->| shared | private | slave | unbindable |
1561 * | dest | | | | |
1562 * | | | | | | |
1563 * | v | | | | |
1564 * |**************************************************************************
1565 * | shared | shared (+) | shared (+) | shared(+++) | invalid |
1566 * | | | | | |
1567 * |non-shared| shared (+*) | private | slave (*) | unbindable |
1568 * ***************************************************************************
5afe0022
RP
1569 *
1570 * (+) the mount is moved to the destination. And is then propagated to
1571 * all the mounts in the propagation tree of the destination mount.
21444403 1572 * (+*) the mount is moved to the destination.
5afe0022
RP
1573 * (+++) the mount is moved to the destination and is then propagated to
1574 * all the mounts belonging to the destination mount's propagation tree.
1575 * the mount is marked as 'shared and slave'.
1576 * (*) the mount continues to be a slave at the new location.
b90fa9ae
RP
1577 *
1578 * if the source mount is a tree, the operations explained above is
1579 * applied to each mount in the tree.
1580 * Must be called without spinlocks held, since this function can sleep
1581 * in allocations.
1582 */
1583static int attach_recursive_mnt(struct vfsmount *source_mnt,
1a390689 1584 struct path *path, struct path *parent_path)
b90fa9ae
RP
1585{
1586 LIST_HEAD(tree_list);
1a390689
AV
1587 struct vfsmount *dest_mnt = path->mnt;
1588 struct dentry *dest_dentry = path->dentry;
b90fa9ae 1589 struct vfsmount *child, *p;
719f5d7f 1590 int err;
b90fa9ae 1591
719f5d7f
MS
1592 if (IS_MNT_SHARED(dest_mnt)) {
1593 err = invent_group_ids(source_mnt, true);
1594 if (err)
1595 goto out;
1596 }
1597 err = propagate_mnt(dest_mnt, dest_dentry, source_mnt, &tree_list);
1598 if (err)
1599 goto out_cleanup_ids;
b90fa9ae 1600
99b7db7b 1601 br_write_lock(vfsmount_lock);
df1a1ad2 1602
b90fa9ae
RP
1603 if (IS_MNT_SHARED(dest_mnt)) {
1604 for (p = source_mnt; p; p = next_mnt(p, source_mnt))
1605 set_mnt_shared(p);
1606 }
1a390689
AV
1607 if (parent_path) {
1608 detach_mnt(source_mnt, parent_path);
1609 attach_mnt(source_mnt, path);
e5d67f07 1610 touch_mnt_namespace(parent_path->mnt->mnt_ns);
21444403
RP
1611 } else {
1612 mnt_set_mountpoint(dest_mnt, dest_dentry, source_mnt);
1613 commit_tree(source_mnt);
1614 }
b90fa9ae
RP
1615
1616 list_for_each_entry_safe(child, p, &tree_list, mnt_hash) {
1617 list_del_init(&child->mnt_hash);
1618 commit_tree(child);
1619 }
99b7db7b
NP
1620 br_write_unlock(vfsmount_lock);
1621
b90fa9ae 1622 return 0;
719f5d7f
MS
1623
1624 out_cleanup_ids:
1625 if (IS_MNT_SHARED(dest_mnt))
1626 cleanup_group_ids(source_mnt, NULL);
1627 out:
1628 return err;
b90fa9ae
RP
1629}
1630
b12cea91
AV
1631static int lock_mount(struct path *path)
1632{
1633 struct vfsmount *mnt;
1634retry:
1635 mutex_lock(&path->dentry->d_inode->i_mutex);
1636 if (unlikely(cant_mount(path->dentry))) {
1637 mutex_unlock(&path->dentry->d_inode->i_mutex);
1638 return -ENOENT;
1639 }
1640 down_write(&namespace_sem);
1641 mnt = lookup_mnt(path);
1642 if (likely(!mnt))
1643 return 0;
1644 up_write(&namespace_sem);
1645 mutex_unlock(&path->dentry->d_inode->i_mutex);
1646 path_put(path);
1647 path->mnt = mnt;
1648 path->dentry = dget(mnt->mnt_root);
1649 goto retry;
1650}
1651
1652static void unlock_mount(struct path *path)
1653{
1654 up_write(&namespace_sem);
1655 mutex_unlock(&path->dentry->d_inode->i_mutex);
1656}
1657
8c3ee42e 1658static int graft_tree(struct vfsmount *mnt, struct path *path)
1da177e4 1659{
1da177e4
LT
1660 if (mnt->mnt_sb->s_flags & MS_NOUSER)
1661 return -EINVAL;
1662
8c3ee42e 1663 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1da177e4
LT
1664 S_ISDIR(mnt->mnt_root->d_inode->i_mode))
1665 return -ENOTDIR;
1666
b12cea91
AV
1667 if (d_unlinked(path->dentry))
1668 return -ENOENT;
1da177e4 1669
b12cea91 1670 return attach_recursive_mnt(mnt, path, NULL);
1da177e4
LT
1671}
1672
7a2e8a8f
VA
1673/*
1674 * Sanity check the flags to change_mnt_propagation.
1675 */
1676
1677static int flags_to_propagation_type(int flags)
1678{
7c6e984d 1679 int type = flags & ~(MS_REC | MS_SILENT);
7a2e8a8f
VA
1680
1681 /* Fail if any non-propagation flags are set */
1682 if (type & ~(MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
1683 return 0;
1684 /* Only one propagation flag should be set */
1685 if (!is_power_of_2(type))
1686 return 0;
1687 return type;
1688}
1689
07b20889
RP
1690/*
1691 * recursively change the type of the mountpoint.
1692 */
0a0d8a46 1693static int do_change_type(struct path *path, int flag)
07b20889 1694{
2d92ab3c 1695 struct vfsmount *m, *mnt = path->mnt;
07b20889 1696 int recurse = flag & MS_REC;
7a2e8a8f 1697 int type;
719f5d7f 1698 int err = 0;
07b20889 1699
ee6f9582
MS
1700 if (!capable(CAP_SYS_ADMIN))
1701 return -EPERM;
1702
2d92ab3c 1703 if (path->dentry != path->mnt->mnt_root)
07b20889
RP
1704 return -EINVAL;
1705
7a2e8a8f
VA
1706 type = flags_to_propagation_type(flag);
1707 if (!type)
1708 return -EINVAL;
1709
07b20889 1710 down_write(&namespace_sem);
719f5d7f
MS
1711 if (type == MS_SHARED) {
1712 err = invent_group_ids(mnt, recurse);
1713 if (err)
1714 goto out_unlock;
1715 }
1716
99b7db7b 1717 br_write_lock(vfsmount_lock);
07b20889
RP
1718 for (m = mnt; m; m = (recurse ? next_mnt(m, mnt) : NULL))
1719 change_mnt_propagation(m, type);
99b7db7b 1720 br_write_unlock(vfsmount_lock);
719f5d7f
MS
1721
1722 out_unlock:
07b20889 1723 up_write(&namespace_sem);
719f5d7f 1724 return err;
07b20889
RP
1725}
1726
1da177e4
LT
1727/*
1728 * do loopback mount.
1729 */
0a0d8a46 1730static int do_loopback(struct path *path, char *old_name,
2dafe1c4 1731 int recurse)
1da177e4 1732{
b12cea91 1733 LIST_HEAD(umount_list);
2d92ab3c 1734 struct path old_path;
1da177e4 1735 struct vfsmount *mnt = NULL;
2d92ab3c 1736 int err = mount_is_safe(path);
1da177e4
LT
1737 if (err)
1738 return err;
1739 if (!old_name || !*old_name)
1740 return -EINVAL;
815d405c 1741 err = kern_path(old_name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &old_path);
1da177e4
LT
1742 if (err)
1743 return err;
1744
b12cea91
AV
1745 err = lock_mount(path);
1746 if (err)
1747 goto out;
1748
1da177e4 1749 err = -EINVAL;
2d92ab3c 1750 if (IS_MNT_UNBINDABLE(old_path.mnt))
b12cea91 1751 goto out2;
9676f0c6 1752
2d92ab3c 1753 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
b12cea91 1754 goto out2;
1da177e4 1755
ccd48bc7
AV
1756 err = -ENOMEM;
1757 if (recurse)
2d92ab3c 1758 mnt = copy_tree(old_path.mnt, old_path.dentry, 0);
ccd48bc7 1759 else
2d92ab3c 1760 mnt = clone_mnt(old_path.mnt, old_path.dentry, 0);
ccd48bc7
AV
1761
1762 if (!mnt)
b12cea91 1763 goto out2;
ccd48bc7 1764
2d92ab3c 1765 err = graft_tree(mnt, path);
ccd48bc7 1766 if (err) {
99b7db7b 1767 br_write_lock(vfsmount_lock);
a05964f3 1768 umount_tree(mnt, 0, &umount_list);
99b7db7b 1769 br_write_unlock(vfsmount_lock);
5b83d2c5 1770 }
b12cea91
AV
1771out2:
1772 unlock_mount(path);
1773 release_mounts(&umount_list);
ccd48bc7 1774out:
2d92ab3c 1775 path_put(&old_path);
1da177e4
LT
1776 return err;
1777}
1778
2e4b7fcd
DH
1779static int change_mount_flags(struct vfsmount *mnt, int ms_flags)
1780{
1781 int error = 0;
1782 int readonly_request = 0;
1783
1784 if (ms_flags & MS_RDONLY)
1785 readonly_request = 1;
1786 if (readonly_request == __mnt_is_readonly(mnt))
1787 return 0;
1788
1789 if (readonly_request)
1790 error = mnt_make_readonly(mnt);
1791 else
1792 __mnt_unmake_readonly(mnt);
1793 return error;
1794}
1795
1da177e4
LT
1796/*
1797 * change filesystem flags. dir should be a physical root of filesystem.
1798 * If you've mounted a non-root directory somewhere and want to do remount
1799 * on it - tough luck.
1800 */
0a0d8a46 1801static int do_remount(struct path *path, int flags, int mnt_flags,
1da177e4
LT
1802 void *data)
1803{
1804 int err;
2d92ab3c 1805 struct super_block *sb = path->mnt->mnt_sb;
1da177e4
LT
1806
1807 if (!capable(CAP_SYS_ADMIN))
1808 return -EPERM;
1809
2d92ab3c 1810 if (!check_mnt(path->mnt))
1da177e4
LT
1811 return -EINVAL;
1812
2d92ab3c 1813 if (path->dentry != path->mnt->mnt_root)
1da177e4
LT
1814 return -EINVAL;
1815
ff36fe2c
EP
1816 err = security_sb_remount(sb, data);
1817 if (err)
1818 return err;
1819
1da177e4 1820 down_write(&sb->s_umount);
2e4b7fcd 1821 if (flags & MS_BIND)
2d92ab3c 1822 err = change_mount_flags(path->mnt, flags);
4aa98cf7 1823 else
2e4b7fcd 1824 err = do_remount_sb(sb, flags, data, 0);
7b43a79f 1825 if (!err) {
99b7db7b 1826 br_write_lock(vfsmount_lock);
495d6c9c 1827 mnt_flags |= path->mnt->mnt_flags & MNT_PROPAGATION_MASK;
2d92ab3c 1828 path->mnt->mnt_flags = mnt_flags;
99b7db7b 1829 br_write_unlock(vfsmount_lock);
7b43a79f 1830 }
1da177e4 1831 up_write(&sb->s_umount);
0e55a7cc 1832 if (!err) {
99b7db7b 1833 br_write_lock(vfsmount_lock);
0e55a7cc 1834 touch_mnt_namespace(path->mnt->mnt_ns);
99b7db7b 1835 br_write_unlock(vfsmount_lock);
0e55a7cc 1836 }
1da177e4
LT
1837 return err;
1838}
1839
9676f0c6
RP
1840static inline int tree_contains_unbindable(struct vfsmount *mnt)
1841{
1842 struct vfsmount *p;
1843 for (p = mnt; p; p = next_mnt(p, mnt)) {
1844 if (IS_MNT_UNBINDABLE(p))
1845 return 1;
1846 }
1847 return 0;
1848}
1849
0a0d8a46 1850static int do_move_mount(struct path *path, char *old_name)
1da177e4 1851{
2d92ab3c 1852 struct path old_path, parent_path;
1da177e4
LT
1853 struct vfsmount *p;
1854 int err = 0;
1855 if (!capable(CAP_SYS_ADMIN))
1856 return -EPERM;
1857 if (!old_name || !*old_name)
1858 return -EINVAL;
2d92ab3c 1859 err = kern_path(old_name, LOOKUP_FOLLOW, &old_path);
1da177e4
LT
1860 if (err)
1861 return err;
1862
b12cea91 1863 err = lock_mount(path);
cc53ce53
DH
1864 if (err < 0)
1865 goto out;
1866
1da177e4 1867 err = -EINVAL;
2d92ab3c 1868 if (!check_mnt(path->mnt) || !check_mnt(old_path.mnt))
1da177e4
LT
1869 goto out1;
1870
f3da392e 1871 if (d_unlinked(path->dentry))
21444403 1872 goto out1;
1da177e4
LT
1873
1874 err = -EINVAL;
2d92ab3c 1875 if (old_path.dentry != old_path.mnt->mnt_root)
21444403 1876 goto out1;
1da177e4 1877
b2dba1af 1878 if (!mnt_has_parent(old_path.mnt))
21444403 1879 goto out1;
1da177e4 1880
2d92ab3c
AV
1881 if (S_ISDIR(path->dentry->d_inode->i_mode) !=
1882 S_ISDIR(old_path.dentry->d_inode->i_mode))
21444403
RP
1883 goto out1;
1884 /*
1885 * Don't move a mount residing in a shared parent.
1886 */
afac7cba 1887 if (IS_MNT_SHARED(old_path.mnt->mnt_parent))
21444403 1888 goto out1;
9676f0c6
RP
1889 /*
1890 * Don't move a mount tree containing unbindable mounts to a destination
1891 * mount which is shared.
1892 */
2d92ab3c
AV
1893 if (IS_MNT_SHARED(path->mnt) &&
1894 tree_contains_unbindable(old_path.mnt))
9676f0c6 1895 goto out1;
1da177e4 1896 err = -ELOOP;
b2dba1af 1897 for (p = path->mnt; mnt_has_parent(p); p = p->mnt_parent)
2d92ab3c 1898 if (p == old_path.mnt)
21444403 1899 goto out1;
1da177e4 1900
2d92ab3c 1901 err = attach_recursive_mnt(old_path.mnt, path, &parent_path);
4ac91378 1902 if (err)
21444403 1903 goto out1;
1da177e4
LT
1904
1905 /* if the mount is moved, it should no longer be expire
1906 * automatically */
2d92ab3c 1907 list_del_init(&old_path.mnt->mnt_expire);
1da177e4 1908out1:
b12cea91 1909 unlock_mount(path);
1da177e4 1910out:
1da177e4 1911 if (!err)
1a390689 1912 path_put(&parent_path);
2d92ab3c 1913 path_put(&old_path);
1da177e4
LT
1914 return err;
1915}
1916
9d412a43
AV
1917static struct vfsmount *fs_set_subtype(struct vfsmount *mnt, const char *fstype)
1918{
1919 int err;
1920 const char *subtype = strchr(fstype, '.');
1921 if (subtype) {
1922 subtype++;
1923 err = -EINVAL;
1924 if (!subtype[0])
1925 goto err;
1926 } else
1927 subtype = "";
1928
1929 mnt->mnt_sb->s_subtype = kstrdup(subtype, GFP_KERNEL);
1930 err = -ENOMEM;
1931 if (!mnt->mnt_sb->s_subtype)
1932 goto err;
1933 return mnt;
1934
1935 err:
1936 mntput(mnt);
1937 return ERR_PTR(err);
1938}
1939
79e801a9 1940static struct vfsmount *
9d412a43
AV
1941do_kern_mount(const char *fstype, int flags, const char *name, void *data)
1942{
1943 struct file_system_type *type = get_fs_type(fstype);
1944 struct vfsmount *mnt;
1945 if (!type)
1946 return ERR_PTR(-ENODEV);
1947 mnt = vfs_kern_mount(type, flags, name, data);
1948 if (!IS_ERR(mnt) && (type->fs_flags & FS_HAS_SUBTYPE) &&
1949 !mnt->mnt_sb->s_subtype)
1950 mnt = fs_set_subtype(mnt, fstype);
1951 put_filesystem(type);
1952 return mnt;
1953}
9d412a43
AV
1954
1955/*
1956 * add a mount into a namespace's mount tree
1957 */
1958static int do_add_mount(struct vfsmount *newmnt, struct path *path, int mnt_flags)
1959{
1960 int err;
1961
1962 mnt_flags &= ~(MNT_SHARED | MNT_WRITE_HOLD | MNT_INTERNAL);
1963
b12cea91
AV
1964 err = lock_mount(path);
1965 if (err)
1966 return err;
9d412a43
AV
1967
1968 err = -EINVAL;
1969 if (!(mnt_flags & MNT_SHRINKABLE) && !check_mnt(path->mnt))
1970 goto unlock;
1971
1972 /* Refuse the same filesystem on the same mount point */
1973 err = -EBUSY;
1974 if (path->mnt->mnt_sb == newmnt->mnt_sb &&
1975 path->mnt->mnt_root == path->dentry)
1976 goto unlock;
1977
1978 err = -EINVAL;
1979 if (S_ISLNK(newmnt->mnt_root->d_inode->i_mode))
1980 goto unlock;
1981
1982 newmnt->mnt_flags = mnt_flags;
1983 err = graft_tree(newmnt, path);
1984
1985unlock:
b12cea91 1986 unlock_mount(path);
9d412a43
AV
1987 return err;
1988}
b1e75df4 1989
1da177e4
LT
1990/*
1991 * create a new mount for userspace and request it to be added into the
1992 * namespace's tree
1993 */
0a0d8a46 1994static int do_new_mount(struct path *path, char *type, int flags,
1da177e4
LT
1995 int mnt_flags, char *name, void *data)
1996{
1997 struct vfsmount *mnt;
15f9a3f3 1998 int err;
1da177e4 1999
eca6f534 2000 if (!type)
1da177e4
LT
2001 return -EINVAL;
2002
2003 /* we need capabilities... */
2004 if (!capable(CAP_SYS_ADMIN))
2005 return -EPERM;
2006
2007 mnt = do_kern_mount(type, flags, name, data);
2008 if (IS_ERR(mnt))
2009 return PTR_ERR(mnt);
2010
15f9a3f3
AV
2011 err = do_add_mount(mnt, path, mnt_flags);
2012 if (err)
2013 mntput(mnt);
2014 return err;
1da177e4
LT
2015}
2016
19a167af
AV
2017int finish_automount(struct vfsmount *m, struct path *path)
2018{
2019 int err;
2020 /* The new mount record should have at least 2 refs to prevent it being
2021 * expired before we get a chance to add it
2022 */
2023 BUG_ON(mnt_get_count(m) < 2);
2024
2025 if (m->mnt_sb == path->mnt->mnt_sb &&
2026 m->mnt_root == path->dentry) {
b1e75df4
AV
2027 err = -ELOOP;
2028 goto fail;
19a167af
AV
2029 }
2030
19a167af 2031 err = do_add_mount(m, path, path->mnt->mnt_flags | MNT_SHRINKABLE);
b1e75df4
AV
2032 if (!err)
2033 return 0;
2034fail:
2035 /* remove m from any expiration list it may be on */
2036 if (!list_empty(&m->mnt_expire)) {
2037 down_write(&namespace_sem);
2038 br_write_lock(vfsmount_lock);
2039 list_del_init(&m->mnt_expire);
2040 br_write_unlock(vfsmount_lock);
2041 up_write(&namespace_sem);
19a167af 2042 }
b1e75df4
AV
2043 mntput(m);
2044 mntput(m);
19a167af
AV
2045 return err;
2046}
2047
ea5b778a
DH
2048/**
2049 * mnt_set_expiry - Put a mount on an expiration list
2050 * @mnt: The mount to list.
2051 * @expiry_list: The list to add the mount to.
2052 */
2053void mnt_set_expiry(struct vfsmount *mnt, struct list_head *expiry_list)
2054{
2055 down_write(&namespace_sem);
2056 br_write_lock(vfsmount_lock);
2057
2058 list_add_tail(&mnt->mnt_expire, expiry_list);
2059
2060 br_write_unlock(vfsmount_lock);
2061 up_write(&namespace_sem);
2062}
2063EXPORT_SYMBOL(mnt_set_expiry);
2064
1da177e4
LT
2065/*
2066 * process a list of expirable mountpoints with the intent of discarding any
2067 * mountpoints that aren't in use and haven't been touched since last we came
2068 * here
2069 */
2070void mark_mounts_for_expiry(struct list_head *mounts)
2071{
1da177e4
LT
2072 struct vfsmount *mnt, *next;
2073 LIST_HEAD(graveyard);
bcc5c7d2 2074 LIST_HEAD(umounts);
1da177e4
LT
2075
2076 if (list_empty(mounts))
2077 return;
2078
bcc5c7d2 2079 down_write(&namespace_sem);
99b7db7b 2080 br_write_lock(vfsmount_lock);
1da177e4
LT
2081
2082 /* extract from the expiration list every vfsmount that matches the
2083 * following criteria:
2084 * - only referenced by its parent vfsmount
2085 * - still marked for expiry (marked on the last call here; marks are
2086 * cleared by mntput())
2087 */
55e700b9 2088 list_for_each_entry_safe(mnt, next, mounts, mnt_expire) {
1da177e4 2089 if (!xchg(&mnt->mnt_expiry_mark, 1) ||
bcc5c7d2 2090 propagate_mount_busy(mnt, 1))
1da177e4 2091 continue;
55e700b9 2092 list_move(&mnt->mnt_expire, &graveyard);
1da177e4 2093 }
bcc5c7d2
AV
2094 while (!list_empty(&graveyard)) {
2095 mnt = list_first_entry(&graveyard, struct vfsmount, mnt_expire);
2096 touch_mnt_namespace(mnt->mnt_ns);
2097 umount_tree(mnt, 1, &umounts);
2098 }
99b7db7b 2099 br_write_unlock(vfsmount_lock);
bcc5c7d2
AV
2100 up_write(&namespace_sem);
2101
2102 release_mounts(&umounts);
5528f911
TM
2103}
2104
2105EXPORT_SYMBOL_GPL(mark_mounts_for_expiry);
2106
2107/*
2108 * Ripoff of 'select_parent()'
2109 *
2110 * search the list of submounts for a given mountpoint, and move any
2111 * shrinkable submounts to the 'graveyard' list.
2112 */
2113static int select_submounts(struct vfsmount *parent, struct list_head *graveyard)
2114{
2115 struct vfsmount *this_parent = parent;
2116 struct list_head *next;
2117 int found = 0;
2118
2119repeat:
2120 next = this_parent->mnt_mounts.next;
2121resume:
2122 while (next != &this_parent->mnt_mounts) {
2123 struct list_head *tmp = next;
2124 struct vfsmount *mnt = list_entry(tmp, struct vfsmount, mnt_child);
2125
2126 next = tmp->next;
2127 if (!(mnt->mnt_flags & MNT_SHRINKABLE))
1da177e4 2128 continue;
5528f911
TM
2129 /*
2130 * Descend a level if the d_mounts list is non-empty.
2131 */
2132 if (!list_empty(&mnt->mnt_mounts)) {
2133 this_parent = mnt;
2134 goto repeat;
2135 }
1da177e4 2136
5528f911 2137 if (!propagate_mount_busy(mnt, 1)) {
5528f911
TM
2138 list_move_tail(&mnt->mnt_expire, graveyard);
2139 found++;
2140 }
1da177e4 2141 }
5528f911
TM
2142 /*
2143 * All done at this level ... ascend and resume the search
2144 */
2145 if (this_parent != parent) {
2146 next = this_parent->mnt_child.next;
2147 this_parent = this_parent->mnt_parent;
2148 goto resume;
2149 }
2150 return found;
2151}
2152
2153/*
2154 * process a list of expirable mountpoints with the intent of discarding any
2155 * submounts of a specific parent mountpoint
99b7db7b
NP
2156 *
2157 * vfsmount_lock must be held for write
5528f911 2158 */
c35038be 2159static void shrink_submounts(struct vfsmount *mnt, struct list_head *umounts)
5528f911
TM
2160{
2161 LIST_HEAD(graveyard);
c35038be 2162 struct vfsmount *m;
5528f911 2163
5528f911 2164 /* extract submounts of 'mountpoint' from the expiration list */
c35038be 2165 while (select_submounts(mnt, &graveyard)) {
bcc5c7d2 2166 while (!list_empty(&graveyard)) {
c35038be 2167 m = list_first_entry(&graveyard, struct vfsmount,
bcc5c7d2 2168 mnt_expire);
afef80b3
EB
2169 touch_mnt_namespace(m->mnt_ns);
2170 umount_tree(m, 1, umounts);
bcc5c7d2
AV
2171 }
2172 }
1da177e4
LT
2173}
2174
1da177e4
LT
2175/*
2176 * Some copy_from_user() implementations do not return the exact number of
2177 * bytes remaining to copy on a fault. But copy_mount_options() requires that.
2178 * Note that this function differs from copy_from_user() in that it will oops
2179 * on bad values of `to', rather than returning a short copy.
2180 */
b58fed8b
RP
2181static long exact_copy_from_user(void *to, const void __user * from,
2182 unsigned long n)
1da177e4
LT
2183{
2184 char *t = to;
2185 const char __user *f = from;
2186 char c;
2187
2188 if (!access_ok(VERIFY_READ, from, n))
2189 return n;
2190
2191 while (n) {
2192 if (__get_user(c, f)) {
2193 memset(t, 0, n);
2194 break;
2195 }
2196 *t++ = c;
2197 f++;
2198 n--;
2199 }
2200 return n;
2201}
2202
b58fed8b 2203int copy_mount_options(const void __user * data, unsigned long *where)
1da177e4
LT
2204{
2205 int i;
2206 unsigned long page;
2207 unsigned long size;
b58fed8b 2208
1da177e4
LT
2209 *where = 0;
2210 if (!data)
2211 return 0;
2212
2213 if (!(page = __get_free_page(GFP_KERNEL)))
2214 return -ENOMEM;
2215
2216 /* We only care that *some* data at the address the user
2217 * gave us is valid. Just in case, we'll zero
2218 * the remainder of the page.
2219 */
2220 /* copy_from_user cannot cross TASK_SIZE ! */
2221 size = TASK_SIZE - (unsigned long)data;
2222 if (size > PAGE_SIZE)
2223 size = PAGE_SIZE;
2224
2225 i = size - exact_copy_from_user((void *)page, data, size);
2226 if (!i) {
b58fed8b 2227 free_page(page);
1da177e4
LT
2228 return -EFAULT;
2229 }
2230 if (i != PAGE_SIZE)
2231 memset((char *)page + i, 0, PAGE_SIZE - i);
2232 *where = page;
2233 return 0;
2234}
2235
eca6f534
VN
2236int copy_mount_string(const void __user *data, char **where)
2237{
2238 char *tmp;
2239
2240 if (!data) {
2241 *where = NULL;
2242 return 0;
2243 }
2244
2245 tmp = strndup_user(data, PAGE_SIZE);
2246 if (IS_ERR(tmp))
2247 return PTR_ERR(tmp);
2248
2249 *where = tmp;
2250 return 0;
2251}
2252
1da177e4
LT
2253/*
2254 * Flags is a 32-bit value that allows up to 31 non-fs dependent flags to
2255 * be given to the mount() call (ie: read-only, no-dev, no-suid etc).
2256 *
2257 * data is a (void *) that can point to any structure up to
2258 * PAGE_SIZE-1 bytes, which can contain arbitrary fs-dependent
2259 * information (or be NULL).
2260 *
2261 * Pre-0.97 versions of mount() didn't have a flags word.
2262 * When the flags word was introduced its top half was required
2263 * to have the magic value 0xC0ED, and this remained so until 2.4.0-test9.
2264 * Therefore, if this magic number is present, it carries no information
2265 * and must be discarded.
2266 */
b58fed8b 2267long do_mount(char *dev_name, char *dir_name, char *type_page,
1da177e4
LT
2268 unsigned long flags, void *data_page)
2269{
2d92ab3c 2270 struct path path;
1da177e4
LT
2271 int retval = 0;
2272 int mnt_flags = 0;
2273
2274 /* Discard magic */
2275 if ((flags & MS_MGC_MSK) == MS_MGC_VAL)
2276 flags &= ~MS_MGC_MSK;
2277
2278 /* Basic sanity checks */
2279
2280 if (!dir_name || !*dir_name || !memchr(dir_name, 0, PAGE_SIZE))
2281 return -EINVAL;
1da177e4
LT
2282
2283 if (data_page)
2284 ((char *)data_page)[PAGE_SIZE - 1] = 0;
2285
a27ab9f2
TH
2286 /* ... and get the mountpoint */
2287 retval = kern_path(dir_name, LOOKUP_FOLLOW, &path);
2288 if (retval)
2289 return retval;
2290
2291 retval = security_sb_mount(dev_name, &path,
2292 type_page, flags, data_page);
2293 if (retval)
2294 goto dput_out;
2295
613cbe3d
AK
2296 /* Default to relatime unless overriden */
2297 if (!(flags & MS_NOATIME))
2298 mnt_flags |= MNT_RELATIME;
0a1c01c9 2299
1da177e4
LT
2300 /* Separate the per-mountpoint flags */
2301 if (flags & MS_NOSUID)
2302 mnt_flags |= MNT_NOSUID;
2303 if (flags & MS_NODEV)
2304 mnt_flags |= MNT_NODEV;
2305 if (flags & MS_NOEXEC)
2306 mnt_flags |= MNT_NOEXEC;
fc33a7bb
CH
2307 if (flags & MS_NOATIME)
2308 mnt_flags |= MNT_NOATIME;
2309 if (flags & MS_NODIRATIME)
2310 mnt_flags |= MNT_NODIRATIME;
d0adde57
MG
2311 if (flags & MS_STRICTATIME)
2312 mnt_flags &= ~(MNT_RELATIME | MNT_NOATIME);
2e4b7fcd
DH
2313 if (flags & MS_RDONLY)
2314 mnt_flags |= MNT_READONLY;
fc33a7bb 2315
7a4dec53 2316 flags &= ~(MS_NOSUID | MS_NOEXEC | MS_NODEV | MS_ACTIVE | MS_BORN |
d0adde57
MG
2317 MS_NOATIME | MS_NODIRATIME | MS_RELATIME| MS_KERNMOUNT |
2318 MS_STRICTATIME);
1da177e4 2319
1da177e4 2320 if (flags & MS_REMOUNT)
2d92ab3c 2321 retval = do_remount(&path, flags & ~MS_REMOUNT, mnt_flags,
1da177e4
LT
2322 data_page);
2323 else if (flags & MS_BIND)
2d92ab3c 2324 retval = do_loopback(&path, dev_name, flags & MS_REC);
9676f0c6 2325 else if (flags & (MS_SHARED | MS_PRIVATE | MS_SLAVE | MS_UNBINDABLE))
2d92ab3c 2326 retval = do_change_type(&path, flags);
1da177e4 2327 else if (flags & MS_MOVE)
2d92ab3c 2328 retval = do_move_mount(&path, dev_name);
1da177e4 2329 else
2d92ab3c 2330 retval = do_new_mount(&path, type_page, flags, mnt_flags,
1da177e4
LT
2331 dev_name, data_page);
2332dput_out:
2d92ab3c 2333 path_put(&path);
1da177e4
LT
2334 return retval;
2335}
2336
cf8d2c11
TM
2337static struct mnt_namespace *alloc_mnt_ns(void)
2338{
2339 struct mnt_namespace *new_ns;
2340
2341 new_ns = kmalloc(sizeof(struct mnt_namespace), GFP_KERNEL);
2342 if (!new_ns)
2343 return ERR_PTR(-ENOMEM);
2344 atomic_set(&new_ns->count, 1);
2345 new_ns->root = NULL;
2346 INIT_LIST_HEAD(&new_ns->list);
2347 init_waitqueue_head(&new_ns->poll);
2348 new_ns->event = 0;
2349 return new_ns;
2350}
2351
f03c6599
AV
2352void mnt_make_longterm(struct vfsmount *mnt)
2353{
7e3d0eb0 2354 __mnt_make_longterm(mnt);
f03c6599
AV
2355}
2356
2357void mnt_make_shortterm(struct vfsmount *mnt)
2358{
7e3d0eb0 2359#ifdef CONFIG_SMP
f03c6599
AV
2360 if (atomic_add_unless(&mnt->mnt_longterm, -1, 1))
2361 return;
2362 br_write_lock(vfsmount_lock);
2363 atomic_dec(&mnt->mnt_longterm);
2364 br_write_unlock(vfsmount_lock);
7e3d0eb0 2365#endif
f03c6599
AV
2366}
2367
741a2951
JD
2368/*
2369 * Allocate a new namespace structure and populate it with contents
2370 * copied from the namespace of the passed in task structure.
2371 */
e3222c4e 2372static struct mnt_namespace *dup_mnt_ns(struct mnt_namespace *mnt_ns,
6b3286ed 2373 struct fs_struct *fs)
1da177e4 2374{
6b3286ed 2375 struct mnt_namespace *new_ns;
7f2da1e7 2376 struct vfsmount *rootmnt = NULL, *pwdmnt = NULL;
1da177e4
LT
2377 struct vfsmount *p, *q;
2378
cf8d2c11
TM
2379 new_ns = alloc_mnt_ns();
2380 if (IS_ERR(new_ns))
2381 return new_ns;
1da177e4 2382
390c6843 2383 down_write(&namespace_sem);
1da177e4 2384 /* First pass: copy the tree topology */
6b3286ed 2385 new_ns->root = copy_tree(mnt_ns->root, mnt_ns->root->mnt_root,
9676f0c6 2386 CL_COPY_ALL | CL_EXPIRE);
1da177e4 2387 if (!new_ns->root) {
390c6843 2388 up_write(&namespace_sem);
1da177e4 2389 kfree(new_ns);
5cc4a034 2390 return ERR_PTR(-ENOMEM);
1da177e4 2391 }
99b7db7b 2392 br_write_lock(vfsmount_lock);
1da177e4 2393 list_add_tail(&new_ns->list, &new_ns->root->mnt_list);
99b7db7b 2394 br_write_unlock(vfsmount_lock);
1da177e4
LT
2395
2396 /*
2397 * Second pass: switch the tsk->fs->* elements and mark new vfsmounts
2398 * as belonging to new namespace. We have already acquired a private
2399 * fs_struct, so tsk->fs->lock is not needed.
2400 */
6b3286ed 2401 p = mnt_ns->root;
1da177e4
LT
2402 q = new_ns->root;
2403 while (p) {
6b3286ed 2404 q->mnt_ns = new_ns;
7e3d0eb0 2405 __mnt_make_longterm(q);
1da177e4 2406 if (fs) {
6ac08c39 2407 if (p == fs->root.mnt) {
f03c6599 2408 fs->root.mnt = mntget(q);
7e3d0eb0 2409 __mnt_make_longterm(q);
f03c6599 2410 mnt_make_shortterm(p);
1da177e4 2411 rootmnt = p;
1da177e4 2412 }
6ac08c39 2413 if (p == fs->pwd.mnt) {
f03c6599 2414 fs->pwd.mnt = mntget(q);
7e3d0eb0 2415 __mnt_make_longterm(q);
f03c6599 2416 mnt_make_shortterm(p);
1da177e4 2417 pwdmnt = p;
1da177e4 2418 }
1da177e4 2419 }
6b3286ed 2420 p = next_mnt(p, mnt_ns->root);
1da177e4
LT
2421 q = next_mnt(q, new_ns->root);
2422 }
390c6843 2423 up_write(&namespace_sem);
1da177e4 2424
1da177e4 2425 if (rootmnt)
f03c6599 2426 mntput(rootmnt);
1da177e4 2427 if (pwdmnt)
f03c6599 2428 mntput(pwdmnt);
1da177e4 2429
741a2951
JD
2430 return new_ns;
2431}
2432
213dd266 2433struct mnt_namespace *copy_mnt_ns(unsigned long flags, struct mnt_namespace *ns,
e3222c4e 2434 struct fs_struct *new_fs)
741a2951 2435{
6b3286ed 2436 struct mnt_namespace *new_ns;
741a2951 2437
e3222c4e 2438 BUG_ON(!ns);
6b3286ed 2439 get_mnt_ns(ns);
741a2951
JD
2440
2441 if (!(flags & CLONE_NEWNS))
e3222c4e 2442 return ns;
741a2951 2443
e3222c4e 2444 new_ns = dup_mnt_ns(ns, new_fs);
741a2951 2445
6b3286ed 2446 put_mnt_ns(ns);
e3222c4e 2447 return new_ns;
1da177e4
LT
2448}
2449
cf8d2c11
TM
2450/**
2451 * create_mnt_ns - creates a private namespace and adds a root filesystem
2452 * @mnt: pointer to the new root filesystem mountpoint
2453 */
6c449c8d 2454static struct mnt_namespace *create_mnt_ns(struct vfsmount *mnt)
cf8d2c11
TM
2455{
2456 struct mnt_namespace *new_ns;
2457
2458 new_ns = alloc_mnt_ns();
2459 if (!IS_ERR(new_ns)) {
2460 mnt->mnt_ns = new_ns;
7e3d0eb0 2461 __mnt_make_longterm(mnt);
cf8d2c11
TM
2462 new_ns->root = mnt;
2463 list_add(&new_ns->list, &new_ns->root->mnt_list);
c1334495
AV
2464 } else {
2465 mntput(mnt);
cf8d2c11
TM
2466 }
2467 return new_ns;
2468}
cf8d2c11 2469
ea441d11
AV
2470struct dentry *mount_subtree(struct vfsmount *mnt, const char *name)
2471{
2472 struct mnt_namespace *ns;
d31da0f0 2473 struct super_block *s;
ea441d11
AV
2474 struct path path;
2475 int err;
2476
2477 ns = create_mnt_ns(mnt);
2478 if (IS_ERR(ns))
2479 return ERR_CAST(ns);
2480
2481 err = vfs_path_lookup(mnt->mnt_root, mnt,
2482 name, LOOKUP_FOLLOW|LOOKUP_AUTOMOUNT, &path);
2483
2484 put_mnt_ns(ns);
2485
2486 if (err)
2487 return ERR_PTR(err);
2488
2489 /* trade a vfsmount reference for active sb one */
d31da0f0
AV
2490 s = path.mnt->mnt_sb;
2491 atomic_inc(&s->s_active);
ea441d11
AV
2492 mntput(path.mnt);
2493 /* lock the sucker */
d31da0f0 2494 down_write(&s->s_umount);
ea441d11
AV
2495 /* ... and return the root of (sub)tree on it */
2496 return path.dentry;
2497}
2498EXPORT_SYMBOL(mount_subtree);
2499
bdc480e3
HC
2500SYSCALL_DEFINE5(mount, char __user *, dev_name, char __user *, dir_name,
2501 char __user *, type, unsigned long, flags, void __user *, data)
1da177e4 2502{
eca6f534
VN
2503 int ret;
2504 char *kernel_type;
2505 char *kernel_dir;
2506 char *kernel_dev;
1da177e4 2507 unsigned long data_page;
1da177e4 2508
eca6f534
VN
2509 ret = copy_mount_string(type, &kernel_type);
2510 if (ret < 0)
2511 goto out_type;
1da177e4 2512
eca6f534
VN
2513 kernel_dir = getname(dir_name);
2514 if (IS_ERR(kernel_dir)) {
2515 ret = PTR_ERR(kernel_dir);
2516 goto out_dir;
2517 }
1da177e4 2518
eca6f534
VN
2519 ret = copy_mount_string(dev_name, &kernel_dev);
2520 if (ret < 0)
2521 goto out_dev;
1da177e4 2522
eca6f534
VN
2523 ret = copy_mount_options(data, &data_page);
2524 if (ret < 0)
2525 goto out_data;
1da177e4 2526
eca6f534
VN
2527 ret = do_mount(kernel_dev, kernel_dir, kernel_type, flags,
2528 (void *) data_page);
1da177e4 2529
eca6f534
VN
2530 free_page(data_page);
2531out_data:
2532 kfree(kernel_dev);
2533out_dev:
2534 putname(kernel_dir);
2535out_dir:
2536 kfree(kernel_type);
2537out_type:
2538 return ret;
1da177e4
LT
2539}
2540
afac7cba
AV
2541/*
2542 * Return true if path is reachable from root
2543 *
2544 * namespace_sem or vfsmount_lock is held
2545 */
2546bool is_path_reachable(struct vfsmount *mnt, struct dentry *dentry,
2547 const struct path *root)
2548{
2549 while (mnt != root->mnt && mnt_has_parent(mnt)) {
2550 dentry = mnt->mnt_mountpoint;
2551 mnt = mnt->mnt_parent;
2552 }
2553 return mnt == root->mnt && is_subdir(dentry, root->dentry);
2554}
2555
2556int path_is_under(struct path *path1, struct path *path2)
2557{
2558 int res;
2559 br_read_lock(vfsmount_lock);
2560 res = is_path_reachable(path1->mnt, path1->dentry, path2);
2561 br_read_unlock(vfsmount_lock);
2562 return res;
2563}
2564EXPORT_SYMBOL(path_is_under);
2565
1da177e4
LT
2566/*
2567 * pivot_root Semantics:
2568 * Moves the root file system of the current process to the directory put_old,
2569 * makes new_root as the new root file system of the current process, and sets
2570 * root/cwd of all processes which had them on the current root to new_root.
2571 *
2572 * Restrictions:
2573 * The new_root and put_old must be directories, and must not be on the
2574 * same file system as the current process root. The put_old must be
2575 * underneath new_root, i.e. adding a non-zero number of /.. to the string
2576 * pointed to by put_old must yield the same directory as new_root. No other
2577 * file system may be mounted on put_old. After all, new_root is a mountpoint.
2578 *
4a0d11fa
NB
2579 * Also, the current root cannot be on the 'rootfs' (initial ramfs) filesystem.
2580 * See Documentation/filesystems/ramfs-rootfs-initramfs.txt for alternatives
2581 * in this situation.
2582 *
1da177e4
LT
2583 * Notes:
2584 * - we don't move root/cwd if they are not at the root (reason: if something
2585 * cared enough to change them, it's probably wrong to force them elsewhere)
2586 * - it's okay to pick a root that isn't the root of a file system, e.g.
2587 * /nfs/my_root where /nfs is the mount point. It must be a mountpoint,
2588 * though, so you may need to say mount --bind /nfs/my_root /nfs/my_root
2589 * first.
2590 */
3480b257
HC
2591SYSCALL_DEFINE2(pivot_root, const char __user *, new_root,
2592 const char __user *, put_old)
1da177e4 2593{
2d8f3038 2594 struct path new, old, parent_path, root_parent, root;
1da177e4
LT
2595 int error;
2596
2597 if (!capable(CAP_SYS_ADMIN))
2598 return -EPERM;
2599
2d8f3038 2600 error = user_path_dir(new_root, &new);
1da177e4
LT
2601 if (error)
2602 goto out0;
1da177e4 2603
2d8f3038 2604 error = user_path_dir(put_old, &old);
1da177e4
LT
2605 if (error)
2606 goto out1;
2607
2d8f3038 2608 error = security_sb_pivotroot(&old, &new);
b12cea91
AV
2609 if (error)
2610 goto out2;
1da177e4 2611
f7ad3c6b 2612 get_fs_root(current->fs, &root);
b12cea91
AV
2613 error = lock_mount(&old);
2614 if (error)
2615 goto out3;
2616
1da177e4 2617 error = -EINVAL;
2d8f3038
AV
2618 if (IS_MNT_SHARED(old.mnt) ||
2619 IS_MNT_SHARED(new.mnt->mnt_parent) ||
8c3ee42e 2620 IS_MNT_SHARED(root.mnt->mnt_parent))
b12cea91 2621 goto out4;
27cb1572 2622 if (!check_mnt(root.mnt) || !check_mnt(new.mnt))
b12cea91 2623 goto out4;
1da177e4 2624 error = -ENOENT;
f3da392e 2625 if (d_unlinked(new.dentry))
b12cea91 2626 goto out4;
f3da392e 2627 if (d_unlinked(old.dentry))
b12cea91 2628 goto out4;
1da177e4 2629 error = -EBUSY;
2d8f3038
AV
2630 if (new.mnt == root.mnt ||
2631 old.mnt == root.mnt)
b12cea91 2632 goto out4; /* loop, on the same file system */
1da177e4 2633 error = -EINVAL;
8c3ee42e 2634 if (root.mnt->mnt_root != root.dentry)
b12cea91 2635 goto out4; /* not a mountpoint */
b2dba1af 2636 if (!mnt_has_parent(root.mnt))
b12cea91 2637 goto out4; /* not attached */
2d8f3038 2638 if (new.mnt->mnt_root != new.dentry)
b12cea91 2639 goto out4; /* not a mountpoint */
b2dba1af 2640 if (!mnt_has_parent(new.mnt))
b12cea91 2641 goto out4; /* not attached */
4ac91378 2642 /* make sure we can reach put_old from new_root */
afac7cba 2643 if (!is_path_reachable(old.mnt, old.dentry, &new))
b12cea91 2644 goto out4;
27cb1572 2645 br_write_lock(vfsmount_lock);
2d8f3038 2646 detach_mnt(new.mnt, &parent_path);
8c3ee42e 2647 detach_mnt(root.mnt, &root_parent);
4ac91378 2648 /* mount old root on put_old */
2d8f3038 2649 attach_mnt(root.mnt, &old);
4ac91378 2650 /* mount new_root on / */
2d8f3038 2651 attach_mnt(new.mnt, &root_parent);
6b3286ed 2652 touch_mnt_namespace(current->nsproxy->mnt_ns);
99b7db7b 2653 br_write_unlock(vfsmount_lock);
2d8f3038 2654 chroot_fs_refs(&root, &new);
1da177e4 2655 error = 0;
b12cea91
AV
2656out4:
2657 unlock_mount(&old);
2658 if (!error) {
2659 path_put(&root_parent);
2660 path_put(&parent_path);
2661 }
2662out3:
8c3ee42e 2663 path_put(&root);
b12cea91 2664out2:
2d8f3038 2665 path_put(&old);
1da177e4 2666out1:
2d8f3038 2667 path_put(&new);
1da177e4 2668out0:
1da177e4 2669 return error;
1da177e4
LT
2670}
2671
2672static void __init init_mount_tree(void)
2673{
2674 struct vfsmount *mnt;
6b3286ed 2675 struct mnt_namespace *ns;
ac748a09 2676 struct path root;
1da177e4
LT
2677
2678 mnt = do_kern_mount("rootfs", 0, "rootfs", NULL);
2679 if (IS_ERR(mnt))
2680 panic("Can't create rootfs");
b3e19d92 2681
3b22edc5
TM
2682 ns = create_mnt_ns(mnt);
2683 if (IS_ERR(ns))
1da177e4 2684 panic("Can't allocate initial namespace");
6b3286ed
KK
2685
2686 init_task.nsproxy->mnt_ns = ns;
2687 get_mnt_ns(ns);
2688
ac748a09
JB
2689 root.mnt = ns->root;
2690 root.dentry = ns->root->mnt_root;
2691
2692 set_fs_pwd(current->fs, &root);
2693 set_fs_root(current->fs, &root);
1da177e4
LT
2694}
2695
74bf17cf 2696void __init mnt_init(void)
1da177e4 2697{
13f14b4d 2698 unsigned u;
15a67dd8 2699 int err;
1da177e4 2700
390c6843
RP
2701 init_rwsem(&namespace_sem);
2702
7d6fec45 2703 mnt_cache = kmem_cache_create("mnt_cache", sizeof(struct mount),
20c2df83 2704 0, SLAB_HWCACHE_ALIGN | SLAB_PANIC, NULL);
1da177e4 2705
b58fed8b 2706 mount_hashtable = (struct list_head *)__get_free_page(GFP_ATOMIC);
1da177e4
LT
2707
2708 if (!mount_hashtable)
2709 panic("Failed to allocate mount hash table\n");
2710
80cdc6da 2711 printk(KERN_INFO "Mount-cache hash table entries: %lu\n", HASH_SIZE);
13f14b4d
ED
2712
2713 for (u = 0; u < HASH_SIZE; u++)
2714 INIT_LIST_HEAD(&mount_hashtable[u]);
1da177e4 2715
99b7db7b
NP
2716 br_lock_init(vfsmount_lock);
2717
15a67dd8
RD
2718 err = sysfs_init();
2719 if (err)
2720 printk(KERN_WARNING "%s: sysfs_init error: %d\n",
8e24eea7 2721 __func__, err);
00d26666
GKH
2722 fs_kobj = kobject_create_and_add("fs", NULL);
2723 if (!fs_kobj)
8e24eea7 2724 printk(KERN_WARNING "%s: kobj create error\n", __func__);
1da177e4
LT
2725 init_rootfs();
2726 init_mount_tree();
2727}
2728
616511d0 2729void put_mnt_ns(struct mnt_namespace *ns)
1da177e4 2730{
70fbcdf4 2731 LIST_HEAD(umount_list);
616511d0 2732
d498b25a 2733 if (!atomic_dec_and_test(&ns->count))
616511d0 2734 return;
390c6843 2735 down_write(&namespace_sem);
99b7db7b 2736 br_write_lock(vfsmount_lock);
d498b25a 2737 umount_tree(ns->root, 0, &umount_list);
99b7db7b 2738 br_write_unlock(vfsmount_lock);
390c6843 2739 up_write(&namespace_sem);
70fbcdf4 2740 release_mounts(&umount_list);
6b3286ed 2741 kfree(ns);
1da177e4 2742}
9d412a43
AV
2743
2744struct vfsmount *kern_mount_data(struct file_system_type *type, void *data)
2745{
423e0ab0
TC
2746 struct vfsmount *mnt;
2747 mnt = vfs_kern_mount(type, MS_KERNMOUNT, type->name, data);
2748 if (!IS_ERR(mnt)) {
2749 /*
2750 * it is a longterm mount, don't release mnt until
2751 * we unmount before file sys is unregistered
2752 */
2753 mnt_make_longterm(mnt);
2754 }
2755 return mnt;
9d412a43
AV
2756}
2757EXPORT_SYMBOL_GPL(kern_mount_data);
423e0ab0
TC
2758
2759void kern_unmount(struct vfsmount *mnt)
2760{
2761 /* release long term mount so mount point can be released */
2762 if (!IS_ERR_OR_NULL(mnt)) {
2763 mnt_make_shortterm(mnt);
2764 mntput(mnt);
2765 }
2766}
2767EXPORT_SYMBOL(kern_unmount);
02125a82
AV
2768
2769bool our_mnt(struct vfsmount *mnt)
2770{
2771 return check_mnt(mnt);
2772}